Btrfs: Initialize btrfs_root->highest_objectid when loading tree root and subvolume...
[cascardo/linux.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/slab.h>
30 #include <linux/migrate.h>
31 #include <linux/ratelimit.h>
32 #include <linux/uuid.h>
33 #include <linux/semaphore.h>
34 #include <asm/unaligned.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "hash.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50 #include "sysfs.h"
51 #include "qgroup.h"
52
53 #ifdef CONFIG_X86
54 #include <asm/cpufeature.h>
55 #endif
56
57 static const struct extent_io_ops btree_extent_io_ops;
58 static void end_workqueue_fn(struct btrfs_work *work);
59 static void free_fs_root(struct btrfs_root *root);
60 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
61                                     int read_only);
62 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
63 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
64                                       struct btrfs_root *root);
65 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
66 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
67                                         struct extent_io_tree *dirty_pages,
68                                         int mark);
69 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
70                                        struct extent_io_tree *pinned_extents);
71 static int btrfs_cleanup_transaction(struct btrfs_root *root);
72 static void btrfs_error_commit_super(struct btrfs_root *root);
73
74 /*
75  * btrfs_end_io_wq structs are used to do processing in task context when an IO
76  * is complete.  This is used during reads to verify checksums, and it is used
77  * by writes to insert metadata for new file extents after IO is complete.
78  */
79 struct btrfs_end_io_wq {
80         struct bio *bio;
81         bio_end_io_t *end_io;
82         void *private;
83         struct btrfs_fs_info *info;
84         int error;
85         enum btrfs_wq_endio_type metadata;
86         struct list_head list;
87         struct btrfs_work work;
88 };
89
90 static struct kmem_cache *btrfs_end_io_wq_cache;
91
92 int __init btrfs_end_io_wq_init(void)
93 {
94         btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
95                                         sizeof(struct btrfs_end_io_wq),
96                                         0,
97                                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
98                                         NULL);
99         if (!btrfs_end_io_wq_cache)
100                 return -ENOMEM;
101         return 0;
102 }
103
104 void btrfs_end_io_wq_exit(void)
105 {
106         if (btrfs_end_io_wq_cache)
107                 kmem_cache_destroy(btrfs_end_io_wq_cache);
108 }
109
110 /*
111  * async submit bios are used to offload expensive checksumming
112  * onto the worker threads.  They checksum file and metadata bios
113  * just before they are sent down the IO stack.
114  */
115 struct async_submit_bio {
116         struct inode *inode;
117         struct bio *bio;
118         struct list_head list;
119         extent_submit_bio_hook_t *submit_bio_start;
120         extent_submit_bio_hook_t *submit_bio_done;
121         int rw;
122         int mirror_num;
123         unsigned long bio_flags;
124         /*
125          * bio_offset is optional, can be used if the pages in the bio
126          * can't tell us where in the file the bio should go
127          */
128         u64 bio_offset;
129         struct btrfs_work work;
130         int error;
131 };
132
133 /*
134  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
135  * eb, the lockdep key is determined by the btrfs_root it belongs to and
136  * the level the eb occupies in the tree.
137  *
138  * Different roots are used for different purposes and may nest inside each
139  * other and they require separate keysets.  As lockdep keys should be
140  * static, assign keysets according to the purpose of the root as indicated
141  * by btrfs_root->objectid.  This ensures that all special purpose roots
142  * have separate keysets.
143  *
144  * Lock-nesting across peer nodes is always done with the immediate parent
145  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
146  * subclass to avoid triggering lockdep warning in such cases.
147  *
148  * The key is set by the readpage_end_io_hook after the buffer has passed
149  * csum validation but before the pages are unlocked.  It is also set by
150  * btrfs_init_new_buffer on freshly allocated blocks.
151  *
152  * We also add a check to make sure the highest level of the tree is the
153  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
154  * needs update as well.
155  */
156 #ifdef CONFIG_DEBUG_LOCK_ALLOC
157 # if BTRFS_MAX_LEVEL != 8
158 #  error
159 # endif
160
161 static struct btrfs_lockdep_keyset {
162         u64                     id;             /* root objectid */
163         const char              *name_stem;     /* lock name stem */
164         char                    names[BTRFS_MAX_LEVEL + 1][20];
165         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
166 } btrfs_lockdep_keysets[] = {
167         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
168         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
169         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
170         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
171         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
172         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
173         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
174         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
175         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
176         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
177         { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
178         { .id = 0,                              .name_stem = "tree"     },
179 };
180
181 void __init btrfs_init_lockdep(void)
182 {
183         int i, j;
184
185         /* initialize lockdep class names */
186         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
187                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
188
189                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
190                         snprintf(ks->names[j], sizeof(ks->names[j]),
191                                  "btrfs-%s-%02d", ks->name_stem, j);
192         }
193 }
194
195 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
196                                     int level)
197 {
198         struct btrfs_lockdep_keyset *ks;
199
200         BUG_ON(level >= ARRAY_SIZE(ks->keys));
201
202         /* find the matching keyset, id 0 is the default entry */
203         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
204                 if (ks->id == objectid)
205                         break;
206
207         lockdep_set_class_and_name(&eb->lock,
208                                    &ks->keys[level], ks->names[level]);
209 }
210
211 #endif
212
213 /*
214  * extents on the btree inode are pretty simple, there's one extent
215  * that covers the entire device
216  */
217 static struct extent_map *btree_get_extent(struct inode *inode,
218                 struct page *page, size_t pg_offset, u64 start, u64 len,
219                 int create)
220 {
221         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
222         struct extent_map *em;
223         int ret;
224
225         read_lock(&em_tree->lock);
226         em = lookup_extent_mapping(em_tree, start, len);
227         if (em) {
228                 em->bdev =
229                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
230                 read_unlock(&em_tree->lock);
231                 goto out;
232         }
233         read_unlock(&em_tree->lock);
234
235         em = alloc_extent_map();
236         if (!em) {
237                 em = ERR_PTR(-ENOMEM);
238                 goto out;
239         }
240         em->start = 0;
241         em->len = (u64)-1;
242         em->block_len = (u64)-1;
243         em->block_start = 0;
244         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
245
246         write_lock(&em_tree->lock);
247         ret = add_extent_mapping(em_tree, em, 0);
248         if (ret == -EEXIST) {
249                 free_extent_map(em);
250                 em = lookup_extent_mapping(em_tree, start, len);
251                 if (!em)
252                         em = ERR_PTR(-EIO);
253         } else if (ret) {
254                 free_extent_map(em);
255                 em = ERR_PTR(ret);
256         }
257         write_unlock(&em_tree->lock);
258
259 out:
260         return em;
261 }
262
263 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
264 {
265         return btrfs_crc32c(seed, data, len);
266 }
267
268 void btrfs_csum_final(u32 crc, char *result)
269 {
270         put_unaligned_le32(~crc, result);
271 }
272
273 /*
274  * compute the csum for a btree block, and either verify it or write it
275  * into the csum field of the block.
276  */
277 static int csum_tree_block(struct btrfs_fs_info *fs_info,
278                            struct extent_buffer *buf,
279                            int verify)
280 {
281         u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
282         char *result = NULL;
283         unsigned long len;
284         unsigned long cur_len;
285         unsigned long offset = BTRFS_CSUM_SIZE;
286         char *kaddr;
287         unsigned long map_start;
288         unsigned long map_len;
289         int err;
290         u32 crc = ~(u32)0;
291         unsigned long inline_result;
292
293         len = buf->len - offset;
294         while (len > 0) {
295                 err = map_private_extent_buffer(buf, offset, 32,
296                                         &kaddr, &map_start, &map_len);
297                 if (err)
298                         return 1;
299                 cur_len = min(len, map_len - (offset - map_start));
300                 crc = btrfs_csum_data(kaddr + offset - map_start,
301                                       crc, cur_len);
302                 len -= cur_len;
303                 offset += cur_len;
304         }
305         if (csum_size > sizeof(inline_result)) {
306                 result = kzalloc(csum_size, GFP_NOFS);
307                 if (!result)
308                         return 1;
309         } else {
310                 result = (char *)&inline_result;
311         }
312
313         btrfs_csum_final(crc, result);
314
315         if (verify) {
316                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
317                         u32 val;
318                         u32 found = 0;
319                         memcpy(&found, result, csum_size);
320
321                         read_extent_buffer(buf, &val, 0, csum_size);
322                         btrfs_warn_rl(fs_info,
323                                 "%s checksum verify failed on %llu wanted %X found %X "
324                                 "level %d",
325                                 fs_info->sb->s_id, buf->start,
326                                 val, found, btrfs_header_level(buf));
327                         if (result != (char *)&inline_result)
328                                 kfree(result);
329                         return 1;
330                 }
331         } else {
332                 write_extent_buffer(buf, result, 0, csum_size);
333         }
334         if (result != (char *)&inline_result)
335                 kfree(result);
336         return 0;
337 }
338
339 /*
340  * we can't consider a given block up to date unless the transid of the
341  * block matches the transid in the parent node's pointer.  This is how we
342  * detect blocks that either didn't get written at all or got written
343  * in the wrong place.
344  */
345 static int verify_parent_transid(struct extent_io_tree *io_tree,
346                                  struct extent_buffer *eb, u64 parent_transid,
347                                  int atomic)
348 {
349         struct extent_state *cached_state = NULL;
350         int ret;
351         bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
352
353         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
354                 return 0;
355
356         if (atomic)
357                 return -EAGAIN;
358
359         if (need_lock) {
360                 btrfs_tree_read_lock(eb);
361                 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
362         }
363
364         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
365                          0, &cached_state);
366         if (extent_buffer_uptodate(eb) &&
367             btrfs_header_generation(eb) == parent_transid) {
368                 ret = 0;
369                 goto out;
370         }
371         btrfs_err_rl(eb->fs_info,
372                 "parent transid verify failed on %llu wanted %llu found %llu",
373                         eb->start,
374                         parent_transid, btrfs_header_generation(eb));
375         ret = 1;
376
377         /*
378          * Things reading via commit roots that don't have normal protection,
379          * like send, can have a really old block in cache that may point at a
380          * block that has been free'd and re-allocated.  So don't clear uptodate
381          * if we find an eb that is under IO (dirty/writeback) because we could
382          * end up reading in the stale data and then writing it back out and
383          * making everybody very sad.
384          */
385         if (!extent_buffer_under_io(eb))
386                 clear_extent_buffer_uptodate(eb);
387 out:
388         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
389                              &cached_state, GFP_NOFS);
390         if (need_lock)
391                 btrfs_tree_read_unlock_blocking(eb);
392         return ret;
393 }
394
395 /*
396  * Return 0 if the superblock checksum type matches the checksum value of that
397  * algorithm. Pass the raw disk superblock data.
398  */
399 static int btrfs_check_super_csum(char *raw_disk_sb)
400 {
401         struct btrfs_super_block *disk_sb =
402                 (struct btrfs_super_block *)raw_disk_sb;
403         u16 csum_type = btrfs_super_csum_type(disk_sb);
404         int ret = 0;
405
406         if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
407                 u32 crc = ~(u32)0;
408                 const int csum_size = sizeof(crc);
409                 char result[csum_size];
410
411                 /*
412                  * The super_block structure does not span the whole
413                  * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
414                  * is filled with zeros and is included in the checkum.
415                  */
416                 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
417                                 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
418                 btrfs_csum_final(crc, result);
419
420                 if (memcmp(raw_disk_sb, result, csum_size))
421                         ret = 1;
422         }
423
424         if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
425                 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
426                                 csum_type);
427                 ret = 1;
428         }
429
430         return ret;
431 }
432
433 /*
434  * helper to read a given tree block, doing retries as required when
435  * the checksums don't match and we have alternate mirrors to try.
436  */
437 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
438                                           struct extent_buffer *eb,
439                                           u64 start, u64 parent_transid)
440 {
441         struct extent_io_tree *io_tree;
442         int failed = 0;
443         int ret;
444         int num_copies = 0;
445         int mirror_num = 0;
446         int failed_mirror = 0;
447
448         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
449         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
450         while (1) {
451                 ret = read_extent_buffer_pages(io_tree, eb, start,
452                                                WAIT_COMPLETE,
453                                                btree_get_extent, mirror_num);
454                 if (!ret) {
455                         if (!verify_parent_transid(io_tree, eb,
456                                                    parent_transid, 0))
457                                 break;
458                         else
459                                 ret = -EIO;
460                 }
461
462                 /*
463                  * This buffer's crc is fine, but its contents are corrupted, so
464                  * there is no reason to read the other copies, they won't be
465                  * any less wrong.
466                  */
467                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
468                         break;
469
470                 num_copies = btrfs_num_copies(root->fs_info,
471                                               eb->start, eb->len);
472                 if (num_copies == 1)
473                         break;
474
475                 if (!failed_mirror) {
476                         failed = 1;
477                         failed_mirror = eb->read_mirror;
478                 }
479
480                 mirror_num++;
481                 if (mirror_num == failed_mirror)
482                         mirror_num++;
483
484                 if (mirror_num > num_copies)
485                         break;
486         }
487
488         if (failed && !ret && failed_mirror)
489                 repair_eb_io_failure(root, eb, failed_mirror);
490
491         return ret;
492 }
493
494 /*
495  * checksum a dirty tree block before IO.  This has extra checks to make sure
496  * we only fill in the checksum field in the first page of a multi-page block
497  */
498
499 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
500 {
501         u64 start = page_offset(page);
502         u64 found_start;
503         struct extent_buffer *eb;
504
505         eb = (struct extent_buffer *)page->private;
506         if (page != eb->pages[0])
507                 return 0;
508         found_start = btrfs_header_bytenr(eb);
509         if (WARN_ON(found_start != start || !PageUptodate(page)))
510                 return 0;
511         csum_tree_block(fs_info, eb, 0);
512         return 0;
513 }
514
515 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
516                                  struct extent_buffer *eb)
517 {
518         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
519         u8 fsid[BTRFS_UUID_SIZE];
520         int ret = 1;
521
522         read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
523         while (fs_devices) {
524                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
525                         ret = 0;
526                         break;
527                 }
528                 fs_devices = fs_devices->seed;
529         }
530         return ret;
531 }
532
533 #define CORRUPT(reason, eb, root, slot)                         \
534         btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu,"       \
535                    "root=%llu, slot=%d", reason,                        \
536                btrfs_header_bytenr(eb), root->objectid, slot)
537
538 static noinline int check_leaf(struct btrfs_root *root,
539                                struct extent_buffer *leaf)
540 {
541         struct btrfs_key key;
542         struct btrfs_key leaf_key;
543         u32 nritems = btrfs_header_nritems(leaf);
544         int slot;
545
546         if (nritems == 0)
547                 return 0;
548
549         /* Check the 0 item */
550         if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
551             BTRFS_LEAF_DATA_SIZE(root)) {
552                 CORRUPT("invalid item offset size pair", leaf, root, 0);
553                 return -EIO;
554         }
555
556         /*
557          * Check to make sure each items keys are in the correct order and their
558          * offsets make sense.  We only have to loop through nritems-1 because
559          * we check the current slot against the next slot, which verifies the
560          * next slot's offset+size makes sense and that the current's slot
561          * offset is correct.
562          */
563         for (slot = 0; slot < nritems - 1; slot++) {
564                 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
565                 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
566
567                 /* Make sure the keys are in the right order */
568                 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
569                         CORRUPT("bad key order", leaf, root, slot);
570                         return -EIO;
571                 }
572
573                 /*
574                  * Make sure the offset and ends are right, remember that the
575                  * item data starts at the end of the leaf and grows towards the
576                  * front.
577                  */
578                 if (btrfs_item_offset_nr(leaf, slot) !=
579                         btrfs_item_end_nr(leaf, slot + 1)) {
580                         CORRUPT("slot offset bad", leaf, root, slot);
581                         return -EIO;
582                 }
583
584                 /*
585                  * Check to make sure that we don't point outside of the leaf,
586                  * just incase all the items are consistent to eachother, but
587                  * all point outside of the leaf.
588                  */
589                 if (btrfs_item_end_nr(leaf, slot) >
590                     BTRFS_LEAF_DATA_SIZE(root)) {
591                         CORRUPT("slot end outside of leaf", leaf, root, slot);
592                         return -EIO;
593                 }
594         }
595
596         return 0;
597 }
598
599 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
600                                       u64 phy_offset, struct page *page,
601                                       u64 start, u64 end, int mirror)
602 {
603         u64 found_start;
604         int found_level;
605         struct extent_buffer *eb;
606         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
607         int ret = 0;
608         int reads_done;
609
610         if (!page->private)
611                 goto out;
612
613         eb = (struct extent_buffer *)page->private;
614
615         /* the pending IO might have been the only thing that kept this buffer
616          * in memory.  Make sure we have a ref for all this other checks
617          */
618         extent_buffer_get(eb);
619
620         reads_done = atomic_dec_and_test(&eb->io_pages);
621         if (!reads_done)
622                 goto err;
623
624         eb->read_mirror = mirror;
625         if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
626                 ret = -EIO;
627                 goto err;
628         }
629
630         found_start = btrfs_header_bytenr(eb);
631         if (found_start != eb->start) {
632                 btrfs_err_rl(eb->fs_info, "bad tree block start %llu %llu",
633                                found_start, eb->start);
634                 ret = -EIO;
635                 goto err;
636         }
637         if (check_tree_block_fsid(root->fs_info, eb)) {
638                 btrfs_err_rl(eb->fs_info, "bad fsid on block %llu",
639                                eb->start);
640                 ret = -EIO;
641                 goto err;
642         }
643         found_level = btrfs_header_level(eb);
644         if (found_level >= BTRFS_MAX_LEVEL) {
645                 btrfs_err(root->fs_info, "bad tree block level %d",
646                            (int)btrfs_header_level(eb));
647                 ret = -EIO;
648                 goto err;
649         }
650
651         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
652                                        eb, found_level);
653
654         ret = csum_tree_block(root->fs_info, eb, 1);
655         if (ret) {
656                 ret = -EIO;
657                 goto err;
658         }
659
660         /*
661          * If this is a leaf block and it is corrupt, set the corrupt bit so
662          * that we don't try and read the other copies of this block, just
663          * return -EIO.
664          */
665         if (found_level == 0 && check_leaf(root, eb)) {
666                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
667                 ret = -EIO;
668         }
669
670         if (!ret)
671                 set_extent_buffer_uptodate(eb);
672 err:
673         if (reads_done &&
674             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
675                 btree_readahead_hook(root, eb, eb->start, ret);
676
677         if (ret) {
678                 /*
679                  * our io error hook is going to dec the io pages
680                  * again, we have to make sure it has something
681                  * to decrement
682                  */
683                 atomic_inc(&eb->io_pages);
684                 clear_extent_buffer_uptodate(eb);
685         }
686         free_extent_buffer(eb);
687 out:
688         return ret;
689 }
690
691 static int btree_io_failed_hook(struct page *page, int failed_mirror)
692 {
693         struct extent_buffer *eb;
694         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
695
696         eb = (struct extent_buffer *)page->private;
697         set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
698         eb->read_mirror = failed_mirror;
699         atomic_dec(&eb->io_pages);
700         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
701                 btree_readahead_hook(root, eb, eb->start, -EIO);
702         return -EIO;    /* we fixed nothing */
703 }
704
705 static void end_workqueue_bio(struct bio *bio)
706 {
707         struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
708         struct btrfs_fs_info *fs_info;
709         struct btrfs_workqueue *wq;
710         btrfs_work_func_t func;
711
712         fs_info = end_io_wq->info;
713         end_io_wq->error = bio->bi_error;
714
715         if (bio->bi_rw & REQ_WRITE) {
716                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
717                         wq = fs_info->endio_meta_write_workers;
718                         func = btrfs_endio_meta_write_helper;
719                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
720                         wq = fs_info->endio_freespace_worker;
721                         func = btrfs_freespace_write_helper;
722                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
723                         wq = fs_info->endio_raid56_workers;
724                         func = btrfs_endio_raid56_helper;
725                 } else {
726                         wq = fs_info->endio_write_workers;
727                         func = btrfs_endio_write_helper;
728                 }
729         } else {
730                 if (unlikely(end_io_wq->metadata ==
731                              BTRFS_WQ_ENDIO_DIO_REPAIR)) {
732                         wq = fs_info->endio_repair_workers;
733                         func = btrfs_endio_repair_helper;
734                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
735                         wq = fs_info->endio_raid56_workers;
736                         func = btrfs_endio_raid56_helper;
737                 } else if (end_io_wq->metadata) {
738                         wq = fs_info->endio_meta_workers;
739                         func = btrfs_endio_meta_helper;
740                 } else {
741                         wq = fs_info->endio_workers;
742                         func = btrfs_endio_helper;
743                 }
744         }
745
746         btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
747         btrfs_queue_work(wq, &end_io_wq->work);
748 }
749
750 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
751                         enum btrfs_wq_endio_type metadata)
752 {
753         struct btrfs_end_io_wq *end_io_wq;
754
755         end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
756         if (!end_io_wq)
757                 return -ENOMEM;
758
759         end_io_wq->private = bio->bi_private;
760         end_io_wq->end_io = bio->bi_end_io;
761         end_io_wq->info = info;
762         end_io_wq->error = 0;
763         end_io_wq->bio = bio;
764         end_io_wq->metadata = metadata;
765
766         bio->bi_private = end_io_wq;
767         bio->bi_end_io = end_workqueue_bio;
768         return 0;
769 }
770
771 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
772 {
773         unsigned long limit = min_t(unsigned long,
774                                     info->thread_pool_size,
775                                     info->fs_devices->open_devices);
776         return 256 * limit;
777 }
778
779 static void run_one_async_start(struct btrfs_work *work)
780 {
781         struct async_submit_bio *async;
782         int ret;
783
784         async = container_of(work, struct  async_submit_bio, work);
785         ret = async->submit_bio_start(async->inode, async->rw, async->bio,
786                                       async->mirror_num, async->bio_flags,
787                                       async->bio_offset);
788         if (ret)
789                 async->error = ret;
790 }
791
792 static void run_one_async_done(struct btrfs_work *work)
793 {
794         struct btrfs_fs_info *fs_info;
795         struct async_submit_bio *async;
796         int limit;
797
798         async = container_of(work, struct  async_submit_bio, work);
799         fs_info = BTRFS_I(async->inode)->root->fs_info;
800
801         limit = btrfs_async_submit_limit(fs_info);
802         limit = limit * 2 / 3;
803
804         /*
805          * atomic_dec_return implies a barrier for waitqueue_active
806          */
807         if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
808             waitqueue_active(&fs_info->async_submit_wait))
809                 wake_up(&fs_info->async_submit_wait);
810
811         /* If an error occured we just want to clean up the bio and move on */
812         if (async->error) {
813                 async->bio->bi_error = async->error;
814                 bio_endio(async->bio);
815                 return;
816         }
817
818         async->submit_bio_done(async->inode, async->rw, async->bio,
819                                async->mirror_num, async->bio_flags,
820                                async->bio_offset);
821 }
822
823 static void run_one_async_free(struct btrfs_work *work)
824 {
825         struct async_submit_bio *async;
826
827         async = container_of(work, struct  async_submit_bio, work);
828         kfree(async);
829 }
830
831 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
832                         int rw, struct bio *bio, int mirror_num,
833                         unsigned long bio_flags,
834                         u64 bio_offset,
835                         extent_submit_bio_hook_t *submit_bio_start,
836                         extent_submit_bio_hook_t *submit_bio_done)
837 {
838         struct async_submit_bio *async;
839
840         async = kmalloc(sizeof(*async), GFP_NOFS);
841         if (!async)
842                 return -ENOMEM;
843
844         async->inode = inode;
845         async->rw = rw;
846         async->bio = bio;
847         async->mirror_num = mirror_num;
848         async->submit_bio_start = submit_bio_start;
849         async->submit_bio_done = submit_bio_done;
850
851         btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
852                         run_one_async_done, run_one_async_free);
853
854         async->bio_flags = bio_flags;
855         async->bio_offset = bio_offset;
856
857         async->error = 0;
858
859         atomic_inc(&fs_info->nr_async_submits);
860
861         if (rw & REQ_SYNC)
862                 btrfs_set_work_high_priority(&async->work);
863
864         btrfs_queue_work(fs_info->workers, &async->work);
865
866         while (atomic_read(&fs_info->async_submit_draining) &&
867               atomic_read(&fs_info->nr_async_submits)) {
868                 wait_event(fs_info->async_submit_wait,
869                            (atomic_read(&fs_info->nr_async_submits) == 0));
870         }
871
872         return 0;
873 }
874
875 static int btree_csum_one_bio(struct bio *bio)
876 {
877         struct bio_vec *bvec;
878         struct btrfs_root *root;
879         int i, ret = 0;
880
881         bio_for_each_segment_all(bvec, bio, i) {
882                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
883                 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
884                 if (ret)
885                         break;
886         }
887
888         return ret;
889 }
890
891 static int __btree_submit_bio_start(struct inode *inode, int rw,
892                                     struct bio *bio, int mirror_num,
893                                     unsigned long bio_flags,
894                                     u64 bio_offset)
895 {
896         /*
897          * when we're called for a write, we're already in the async
898          * submission context.  Just jump into btrfs_map_bio
899          */
900         return btree_csum_one_bio(bio);
901 }
902
903 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
904                                  int mirror_num, unsigned long bio_flags,
905                                  u64 bio_offset)
906 {
907         int ret;
908
909         /*
910          * when we're called for a write, we're already in the async
911          * submission context.  Just jump into btrfs_map_bio
912          */
913         ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
914         if (ret) {
915                 bio->bi_error = ret;
916                 bio_endio(bio);
917         }
918         return ret;
919 }
920
921 static int check_async_write(struct inode *inode, unsigned long bio_flags)
922 {
923         if (bio_flags & EXTENT_BIO_TREE_LOG)
924                 return 0;
925 #ifdef CONFIG_X86
926         if (cpu_has_xmm4_2)
927                 return 0;
928 #endif
929         return 1;
930 }
931
932 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
933                                  int mirror_num, unsigned long bio_flags,
934                                  u64 bio_offset)
935 {
936         int async = check_async_write(inode, bio_flags);
937         int ret;
938
939         if (!(rw & REQ_WRITE)) {
940                 /*
941                  * called for a read, do the setup so that checksum validation
942                  * can happen in the async kernel threads
943                  */
944                 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
945                                           bio, BTRFS_WQ_ENDIO_METADATA);
946                 if (ret)
947                         goto out_w_error;
948                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
949                                     mirror_num, 0);
950         } else if (!async) {
951                 ret = btree_csum_one_bio(bio);
952                 if (ret)
953                         goto out_w_error;
954                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
955                                     mirror_num, 0);
956         } else {
957                 /*
958                  * kthread helpers are used to submit writes so that
959                  * checksumming can happen in parallel across all CPUs
960                  */
961                 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
962                                           inode, rw, bio, mirror_num, 0,
963                                           bio_offset,
964                                           __btree_submit_bio_start,
965                                           __btree_submit_bio_done);
966         }
967
968         if (ret)
969                 goto out_w_error;
970         return 0;
971
972 out_w_error:
973         bio->bi_error = ret;
974         bio_endio(bio);
975         return ret;
976 }
977
978 #ifdef CONFIG_MIGRATION
979 static int btree_migratepage(struct address_space *mapping,
980                         struct page *newpage, struct page *page,
981                         enum migrate_mode mode)
982 {
983         /*
984          * we can't safely write a btree page from here,
985          * we haven't done the locking hook
986          */
987         if (PageDirty(page))
988                 return -EAGAIN;
989         /*
990          * Buffers may be managed in a filesystem specific way.
991          * We must have no buffers or drop them.
992          */
993         if (page_has_private(page) &&
994             !try_to_release_page(page, GFP_KERNEL))
995                 return -EAGAIN;
996         return migrate_page(mapping, newpage, page, mode);
997 }
998 #endif
999
1000
1001 static int btree_writepages(struct address_space *mapping,
1002                             struct writeback_control *wbc)
1003 {
1004         struct btrfs_fs_info *fs_info;
1005         int ret;
1006
1007         if (wbc->sync_mode == WB_SYNC_NONE) {
1008
1009                 if (wbc->for_kupdate)
1010                         return 0;
1011
1012                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
1013                 /* this is a bit racy, but that's ok */
1014                 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1015                                              BTRFS_DIRTY_METADATA_THRESH);
1016                 if (ret < 0)
1017                         return 0;
1018         }
1019         return btree_write_cache_pages(mapping, wbc);
1020 }
1021
1022 static int btree_readpage(struct file *file, struct page *page)
1023 {
1024         struct extent_io_tree *tree;
1025         tree = &BTRFS_I(page->mapping->host)->io_tree;
1026         return extent_read_full_page(tree, page, btree_get_extent, 0);
1027 }
1028
1029 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1030 {
1031         if (PageWriteback(page) || PageDirty(page))
1032                 return 0;
1033
1034         return try_release_extent_buffer(page);
1035 }
1036
1037 static void btree_invalidatepage(struct page *page, unsigned int offset,
1038                                  unsigned int length)
1039 {
1040         struct extent_io_tree *tree;
1041         tree = &BTRFS_I(page->mapping->host)->io_tree;
1042         extent_invalidatepage(tree, page, offset);
1043         btree_releasepage(page, GFP_NOFS);
1044         if (PagePrivate(page)) {
1045                 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1046                            "page private not zero on page %llu",
1047                            (unsigned long long)page_offset(page));
1048                 ClearPagePrivate(page);
1049                 set_page_private(page, 0);
1050                 page_cache_release(page);
1051         }
1052 }
1053
1054 static int btree_set_page_dirty(struct page *page)
1055 {
1056 #ifdef DEBUG
1057         struct extent_buffer *eb;
1058
1059         BUG_ON(!PagePrivate(page));
1060         eb = (struct extent_buffer *)page->private;
1061         BUG_ON(!eb);
1062         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1063         BUG_ON(!atomic_read(&eb->refs));
1064         btrfs_assert_tree_locked(eb);
1065 #endif
1066         return __set_page_dirty_nobuffers(page);
1067 }
1068
1069 static const struct address_space_operations btree_aops = {
1070         .readpage       = btree_readpage,
1071         .writepages     = btree_writepages,
1072         .releasepage    = btree_releasepage,
1073         .invalidatepage = btree_invalidatepage,
1074 #ifdef CONFIG_MIGRATION
1075         .migratepage    = btree_migratepage,
1076 #endif
1077         .set_page_dirty = btree_set_page_dirty,
1078 };
1079
1080 void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
1081 {
1082         struct extent_buffer *buf = NULL;
1083         struct inode *btree_inode = root->fs_info->btree_inode;
1084
1085         buf = btrfs_find_create_tree_block(root, bytenr);
1086         if (!buf)
1087                 return;
1088         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1089                                  buf, 0, WAIT_NONE, btree_get_extent, 0);
1090         free_extent_buffer(buf);
1091 }
1092
1093 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
1094                          int mirror_num, struct extent_buffer **eb)
1095 {
1096         struct extent_buffer *buf = NULL;
1097         struct inode *btree_inode = root->fs_info->btree_inode;
1098         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1099         int ret;
1100
1101         buf = btrfs_find_create_tree_block(root, bytenr);
1102         if (!buf)
1103                 return 0;
1104
1105         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1106
1107         ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1108                                        btree_get_extent, mirror_num);
1109         if (ret) {
1110                 free_extent_buffer(buf);
1111                 return ret;
1112         }
1113
1114         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1115                 free_extent_buffer(buf);
1116                 return -EIO;
1117         } else if (extent_buffer_uptodate(buf)) {
1118                 *eb = buf;
1119         } else {
1120                 free_extent_buffer(buf);
1121         }
1122         return 0;
1123 }
1124
1125 struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
1126                                             u64 bytenr)
1127 {
1128         return find_extent_buffer(fs_info, bytenr);
1129 }
1130
1131 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1132                                                  u64 bytenr)
1133 {
1134         if (btrfs_test_is_dummy_root(root))
1135                 return alloc_test_extent_buffer(root->fs_info, bytenr);
1136         return alloc_extent_buffer(root->fs_info, bytenr);
1137 }
1138
1139
1140 int btrfs_write_tree_block(struct extent_buffer *buf)
1141 {
1142         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1143                                         buf->start + buf->len - 1);
1144 }
1145
1146 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1147 {
1148         return filemap_fdatawait_range(buf->pages[0]->mapping,
1149                                        buf->start, buf->start + buf->len - 1);
1150 }
1151
1152 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1153                                       u64 parent_transid)
1154 {
1155         struct extent_buffer *buf = NULL;
1156         int ret;
1157
1158         buf = btrfs_find_create_tree_block(root, bytenr);
1159         if (!buf)
1160                 return ERR_PTR(-ENOMEM);
1161
1162         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1163         if (ret) {
1164                 free_extent_buffer(buf);
1165                 return ERR_PTR(ret);
1166         }
1167         return buf;
1168
1169 }
1170
1171 void clean_tree_block(struct btrfs_trans_handle *trans,
1172                       struct btrfs_fs_info *fs_info,
1173                       struct extent_buffer *buf)
1174 {
1175         if (btrfs_header_generation(buf) ==
1176             fs_info->running_transaction->transid) {
1177                 btrfs_assert_tree_locked(buf);
1178
1179                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1180                         __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1181                                              -buf->len,
1182                                              fs_info->dirty_metadata_batch);
1183                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1184                         btrfs_set_lock_blocking(buf);
1185                         clear_extent_buffer_dirty(buf);
1186                 }
1187         }
1188 }
1189
1190 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1191 {
1192         struct btrfs_subvolume_writers *writers;
1193         int ret;
1194
1195         writers = kmalloc(sizeof(*writers), GFP_NOFS);
1196         if (!writers)
1197                 return ERR_PTR(-ENOMEM);
1198
1199         ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1200         if (ret < 0) {
1201                 kfree(writers);
1202                 return ERR_PTR(ret);
1203         }
1204
1205         init_waitqueue_head(&writers->wait);
1206         return writers;
1207 }
1208
1209 static void
1210 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1211 {
1212         percpu_counter_destroy(&writers->counter);
1213         kfree(writers);
1214 }
1215
1216 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1217                          struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1218                          u64 objectid)
1219 {
1220         root->node = NULL;
1221         root->commit_root = NULL;
1222         root->sectorsize = sectorsize;
1223         root->nodesize = nodesize;
1224         root->stripesize = stripesize;
1225         root->state = 0;
1226         root->orphan_cleanup_state = 0;
1227
1228         root->objectid = objectid;
1229         root->last_trans = 0;
1230         root->highest_objectid = 0;
1231         root->nr_delalloc_inodes = 0;
1232         root->nr_ordered_extents = 0;
1233         root->name = NULL;
1234         root->inode_tree = RB_ROOT;
1235         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1236         root->block_rsv = NULL;
1237         root->orphan_block_rsv = NULL;
1238
1239         INIT_LIST_HEAD(&root->dirty_list);
1240         INIT_LIST_HEAD(&root->root_list);
1241         INIT_LIST_HEAD(&root->delalloc_inodes);
1242         INIT_LIST_HEAD(&root->delalloc_root);
1243         INIT_LIST_HEAD(&root->ordered_extents);
1244         INIT_LIST_HEAD(&root->ordered_root);
1245         INIT_LIST_HEAD(&root->logged_list[0]);
1246         INIT_LIST_HEAD(&root->logged_list[1]);
1247         spin_lock_init(&root->orphan_lock);
1248         spin_lock_init(&root->inode_lock);
1249         spin_lock_init(&root->delalloc_lock);
1250         spin_lock_init(&root->ordered_extent_lock);
1251         spin_lock_init(&root->accounting_lock);
1252         spin_lock_init(&root->log_extents_lock[0]);
1253         spin_lock_init(&root->log_extents_lock[1]);
1254         mutex_init(&root->objectid_mutex);
1255         mutex_init(&root->log_mutex);
1256         mutex_init(&root->ordered_extent_mutex);
1257         mutex_init(&root->delalloc_mutex);
1258         init_waitqueue_head(&root->log_writer_wait);
1259         init_waitqueue_head(&root->log_commit_wait[0]);
1260         init_waitqueue_head(&root->log_commit_wait[1]);
1261         INIT_LIST_HEAD(&root->log_ctxs[0]);
1262         INIT_LIST_HEAD(&root->log_ctxs[1]);
1263         atomic_set(&root->log_commit[0], 0);
1264         atomic_set(&root->log_commit[1], 0);
1265         atomic_set(&root->log_writers, 0);
1266         atomic_set(&root->log_batch, 0);
1267         atomic_set(&root->orphan_inodes, 0);
1268         atomic_set(&root->refs, 1);
1269         atomic_set(&root->will_be_snapshoted, 0);
1270         atomic_set(&root->qgroup_meta_rsv, 0);
1271         root->log_transid = 0;
1272         root->log_transid_committed = -1;
1273         root->last_log_commit = 0;
1274         if (fs_info)
1275                 extent_io_tree_init(&root->dirty_log_pages,
1276                                      fs_info->btree_inode->i_mapping);
1277
1278         memset(&root->root_key, 0, sizeof(root->root_key));
1279         memset(&root->root_item, 0, sizeof(root->root_item));
1280         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1281         if (fs_info)
1282                 root->defrag_trans_start = fs_info->generation;
1283         else
1284                 root->defrag_trans_start = 0;
1285         root->root_key.objectid = objectid;
1286         root->anon_dev = 0;
1287
1288         spin_lock_init(&root->root_item_lock);
1289 }
1290
1291 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1292 {
1293         struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1294         if (root)
1295                 root->fs_info = fs_info;
1296         return root;
1297 }
1298
1299 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1300 /* Should only be used by the testing infrastructure */
1301 struct btrfs_root *btrfs_alloc_dummy_root(void)
1302 {
1303         struct btrfs_root *root;
1304
1305         root = btrfs_alloc_root(NULL);
1306         if (!root)
1307                 return ERR_PTR(-ENOMEM);
1308         __setup_root(4096, 4096, 4096, root, NULL, 1);
1309         set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
1310         root->alloc_bytenr = 0;
1311
1312         return root;
1313 }
1314 #endif
1315
1316 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1317                                      struct btrfs_fs_info *fs_info,
1318                                      u64 objectid)
1319 {
1320         struct extent_buffer *leaf;
1321         struct btrfs_root *tree_root = fs_info->tree_root;
1322         struct btrfs_root *root;
1323         struct btrfs_key key;
1324         int ret = 0;
1325         uuid_le uuid;
1326
1327         root = btrfs_alloc_root(fs_info);
1328         if (!root)
1329                 return ERR_PTR(-ENOMEM);
1330
1331         __setup_root(tree_root->nodesize, tree_root->sectorsize,
1332                 tree_root->stripesize, root, fs_info, objectid);
1333         root->root_key.objectid = objectid;
1334         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1335         root->root_key.offset = 0;
1336
1337         leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1338         if (IS_ERR(leaf)) {
1339                 ret = PTR_ERR(leaf);
1340                 leaf = NULL;
1341                 goto fail;
1342         }
1343
1344         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1345         btrfs_set_header_bytenr(leaf, leaf->start);
1346         btrfs_set_header_generation(leaf, trans->transid);
1347         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1348         btrfs_set_header_owner(leaf, objectid);
1349         root->node = leaf;
1350
1351         write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1352                             BTRFS_FSID_SIZE);
1353         write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1354                             btrfs_header_chunk_tree_uuid(leaf),
1355                             BTRFS_UUID_SIZE);
1356         btrfs_mark_buffer_dirty(leaf);
1357
1358         root->commit_root = btrfs_root_node(root);
1359         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1360
1361         root->root_item.flags = 0;
1362         root->root_item.byte_limit = 0;
1363         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1364         btrfs_set_root_generation(&root->root_item, trans->transid);
1365         btrfs_set_root_level(&root->root_item, 0);
1366         btrfs_set_root_refs(&root->root_item, 1);
1367         btrfs_set_root_used(&root->root_item, leaf->len);
1368         btrfs_set_root_last_snapshot(&root->root_item, 0);
1369         btrfs_set_root_dirid(&root->root_item, 0);
1370         uuid_le_gen(&uuid);
1371         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1372         root->root_item.drop_level = 0;
1373
1374         key.objectid = objectid;
1375         key.type = BTRFS_ROOT_ITEM_KEY;
1376         key.offset = 0;
1377         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1378         if (ret)
1379                 goto fail;
1380
1381         btrfs_tree_unlock(leaf);
1382
1383         return root;
1384
1385 fail:
1386         if (leaf) {
1387                 btrfs_tree_unlock(leaf);
1388                 free_extent_buffer(root->commit_root);
1389                 free_extent_buffer(leaf);
1390         }
1391         kfree(root);
1392
1393         return ERR_PTR(ret);
1394 }
1395
1396 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1397                                          struct btrfs_fs_info *fs_info)
1398 {
1399         struct btrfs_root *root;
1400         struct btrfs_root *tree_root = fs_info->tree_root;
1401         struct extent_buffer *leaf;
1402
1403         root = btrfs_alloc_root(fs_info);
1404         if (!root)
1405                 return ERR_PTR(-ENOMEM);
1406
1407         __setup_root(tree_root->nodesize, tree_root->sectorsize,
1408                      tree_root->stripesize, root, fs_info,
1409                      BTRFS_TREE_LOG_OBJECTID);
1410
1411         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1412         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1413         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1414
1415         /*
1416          * DON'T set REF_COWS for log trees
1417          *
1418          * log trees do not get reference counted because they go away
1419          * before a real commit is actually done.  They do store pointers
1420          * to file data extents, and those reference counts still get
1421          * updated (along with back refs to the log tree).
1422          */
1423
1424         leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1425                         NULL, 0, 0, 0);
1426         if (IS_ERR(leaf)) {
1427                 kfree(root);
1428                 return ERR_CAST(leaf);
1429         }
1430
1431         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1432         btrfs_set_header_bytenr(leaf, leaf->start);
1433         btrfs_set_header_generation(leaf, trans->transid);
1434         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1435         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1436         root->node = leaf;
1437
1438         write_extent_buffer(root->node, root->fs_info->fsid,
1439                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
1440         btrfs_mark_buffer_dirty(root->node);
1441         btrfs_tree_unlock(root->node);
1442         return root;
1443 }
1444
1445 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1446                              struct btrfs_fs_info *fs_info)
1447 {
1448         struct btrfs_root *log_root;
1449
1450         log_root = alloc_log_tree(trans, fs_info);
1451         if (IS_ERR(log_root))
1452                 return PTR_ERR(log_root);
1453         WARN_ON(fs_info->log_root_tree);
1454         fs_info->log_root_tree = log_root;
1455         return 0;
1456 }
1457
1458 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1459                        struct btrfs_root *root)
1460 {
1461         struct btrfs_root *log_root;
1462         struct btrfs_inode_item *inode_item;
1463
1464         log_root = alloc_log_tree(trans, root->fs_info);
1465         if (IS_ERR(log_root))
1466                 return PTR_ERR(log_root);
1467
1468         log_root->last_trans = trans->transid;
1469         log_root->root_key.offset = root->root_key.objectid;
1470
1471         inode_item = &log_root->root_item.inode;
1472         btrfs_set_stack_inode_generation(inode_item, 1);
1473         btrfs_set_stack_inode_size(inode_item, 3);
1474         btrfs_set_stack_inode_nlink(inode_item, 1);
1475         btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
1476         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1477
1478         btrfs_set_root_node(&log_root->root_item, log_root->node);
1479
1480         WARN_ON(root->log_root);
1481         root->log_root = log_root;
1482         root->log_transid = 0;
1483         root->log_transid_committed = -1;
1484         root->last_log_commit = 0;
1485         return 0;
1486 }
1487
1488 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1489                                                struct btrfs_key *key)
1490 {
1491         struct btrfs_root *root;
1492         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1493         struct btrfs_path *path;
1494         u64 generation;
1495         int ret;
1496
1497         path = btrfs_alloc_path();
1498         if (!path)
1499                 return ERR_PTR(-ENOMEM);
1500
1501         root = btrfs_alloc_root(fs_info);
1502         if (!root) {
1503                 ret = -ENOMEM;
1504                 goto alloc_fail;
1505         }
1506
1507         __setup_root(tree_root->nodesize, tree_root->sectorsize,
1508                 tree_root->stripesize, root, fs_info, key->objectid);
1509
1510         ret = btrfs_find_root(tree_root, key, path,
1511                               &root->root_item, &root->root_key);
1512         if (ret) {
1513                 if (ret > 0)
1514                         ret = -ENOENT;
1515                 goto find_fail;
1516         }
1517
1518         generation = btrfs_root_generation(&root->root_item);
1519         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1520                                      generation);
1521         if (IS_ERR(root->node)) {
1522                 ret = PTR_ERR(root->node);
1523                 goto find_fail;
1524         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1525                 ret = -EIO;
1526                 free_extent_buffer(root->node);
1527                 goto find_fail;
1528         }
1529         root->commit_root = btrfs_root_node(root);
1530 out:
1531         btrfs_free_path(path);
1532         return root;
1533
1534 find_fail:
1535         kfree(root);
1536 alloc_fail:
1537         root = ERR_PTR(ret);
1538         goto out;
1539 }
1540
1541 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1542                                       struct btrfs_key *location)
1543 {
1544         struct btrfs_root *root;
1545
1546         root = btrfs_read_tree_root(tree_root, location);
1547         if (IS_ERR(root))
1548                 return root;
1549
1550         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1551                 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1552                 btrfs_check_and_init_root_item(&root->root_item);
1553         }
1554
1555         return root;
1556 }
1557
1558 int btrfs_init_fs_root(struct btrfs_root *root)
1559 {
1560         int ret;
1561         struct btrfs_subvolume_writers *writers;
1562
1563         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1564         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1565                                         GFP_NOFS);
1566         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1567                 ret = -ENOMEM;
1568                 goto fail;
1569         }
1570
1571         writers = btrfs_alloc_subvolume_writers();
1572         if (IS_ERR(writers)) {
1573                 ret = PTR_ERR(writers);
1574                 goto fail;
1575         }
1576         root->subv_writers = writers;
1577
1578         btrfs_init_free_ino_ctl(root);
1579         spin_lock_init(&root->ino_cache_lock);
1580         init_waitqueue_head(&root->ino_cache_wait);
1581
1582         ret = get_anon_bdev(&root->anon_dev);
1583         if (ret)
1584                 goto free_writers;
1585
1586         mutex_lock(&root->objectid_mutex);
1587         ret = btrfs_find_highest_objectid(root,
1588                                         &root->highest_objectid);
1589         if (ret) {
1590                 mutex_unlock(&root->objectid_mutex);
1591                 goto free_root_dev;
1592         }
1593
1594         ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1595
1596         mutex_unlock(&root->objectid_mutex);
1597
1598         return 0;
1599
1600 free_root_dev:
1601         free_anon_bdev(root->anon_dev);
1602 free_writers:
1603         btrfs_free_subvolume_writers(root->subv_writers);
1604 fail:
1605         kfree(root->free_ino_ctl);
1606         kfree(root->free_ino_pinned);
1607         return ret;
1608 }
1609
1610 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1611                                                u64 root_id)
1612 {
1613         struct btrfs_root *root;
1614
1615         spin_lock(&fs_info->fs_roots_radix_lock);
1616         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1617                                  (unsigned long)root_id);
1618         spin_unlock(&fs_info->fs_roots_radix_lock);
1619         return root;
1620 }
1621
1622 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1623                          struct btrfs_root *root)
1624 {
1625         int ret;
1626
1627         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1628         if (ret)
1629                 return ret;
1630
1631         spin_lock(&fs_info->fs_roots_radix_lock);
1632         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1633                                 (unsigned long)root->root_key.objectid,
1634                                 root);
1635         if (ret == 0)
1636                 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1637         spin_unlock(&fs_info->fs_roots_radix_lock);
1638         radix_tree_preload_end();
1639
1640         return ret;
1641 }
1642
1643 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1644                                      struct btrfs_key *location,
1645                                      bool check_ref)
1646 {
1647         struct btrfs_root *root;
1648         struct btrfs_path *path;
1649         struct btrfs_key key;
1650         int ret;
1651
1652         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1653                 return fs_info->tree_root;
1654         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1655                 return fs_info->extent_root;
1656         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1657                 return fs_info->chunk_root;
1658         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1659                 return fs_info->dev_root;
1660         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1661                 return fs_info->csum_root;
1662         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1663                 return fs_info->quota_root ? fs_info->quota_root :
1664                                              ERR_PTR(-ENOENT);
1665         if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1666                 return fs_info->uuid_root ? fs_info->uuid_root :
1667                                             ERR_PTR(-ENOENT);
1668 again:
1669         root = btrfs_lookup_fs_root(fs_info, location->objectid);
1670         if (root) {
1671                 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1672                         return ERR_PTR(-ENOENT);
1673                 return root;
1674         }
1675
1676         root = btrfs_read_fs_root(fs_info->tree_root, location);
1677         if (IS_ERR(root))
1678                 return root;
1679
1680         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1681                 ret = -ENOENT;
1682                 goto fail;
1683         }
1684
1685         ret = btrfs_init_fs_root(root);
1686         if (ret)
1687                 goto fail;
1688
1689         path = btrfs_alloc_path();
1690         if (!path) {
1691                 ret = -ENOMEM;
1692                 goto fail;
1693         }
1694         key.objectid = BTRFS_ORPHAN_OBJECTID;
1695         key.type = BTRFS_ORPHAN_ITEM_KEY;
1696         key.offset = location->objectid;
1697
1698         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1699         btrfs_free_path(path);
1700         if (ret < 0)
1701                 goto fail;
1702         if (ret == 0)
1703                 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1704
1705         ret = btrfs_insert_fs_root(fs_info, root);
1706         if (ret) {
1707                 if (ret == -EEXIST) {
1708                         free_fs_root(root);
1709                         goto again;
1710                 }
1711                 goto fail;
1712         }
1713         return root;
1714 fail:
1715         free_fs_root(root);
1716         return ERR_PTR(ret);
1717 }
1718
1719 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1720 {
1721         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1722         int ret = 0;
1723         struct btrfs_device *device;
1724         struct backing_dev_info *bdi;
1725
1726         rcu_read_lock();
1727         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1728                 if (!device->bdev)
1729                         continue;
1730                 bdi = blk_get_backing_dev_info(device->bdev);
1731                 if (bdi_congested(bdi, bdi_bits)) {
1732                         ret = 1;
1733                         break;
1734                 }
1735         }
1736         rcu_read_unlock();
1737         return ret;
1738 }
1739
1740 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1741 {
1742         int err;
1743
1744         err = bdi_setup_and_register(bdi, "btrfs");
1745         if (err)
1746                 return err;
1747
1748         bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE;
1749         bdi->congested_fn       = btrfs_congested_fn;
1750         bdi->congested_data     = info;
1751         bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
1752         return 0;
1753 }
1754
1755 /*
1756  * called by the kthread helper functions to finally call the bio end_io
1757  * functions.  This is where read checksum verification actually happens
1758  */
1759 static void end_workqueue_fn(struct btrfs_work *work)
1760 {
1761         struct bio *bio;
1762         struct btrfs_end_io_wq *end_io_wq;
1763
1764         end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1765         bio = end_io_wq->bio;
1766
1767         bio->bi_error = end_io_wq->error;
1768         bio->bi_private = end_io_wq->private;
1769         bio->bi_end_io = end_io_wq->end_io;
1770         kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1771         bio_endio(bio);
1772 }
1773
1774 static int cleaner_kthread(void *arg)
1775 {
1776         struct btrfs_root *root = arg;
1777         int again;
1778         struct btrfs_trans_handle *trans;
1779
1780         set_freezable();
1781         do {
1782                 again = 0;
1783
1784                 /* Make the cleaner go to sleep early. */
1785                 if (btrfs_need_cleaner_sleep(root))
1786                         goto sleep;
1787
1788                 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1789                         goto sleep;
1790
1791                 /*
1792                  * Avoid the problem that we change the status of the fs
1793                  * during the above check and trylock.
1794                  */
1795                 if (btrfs_need_cleaner_sleep(root)) {
1796                         mutex_unlock(&root->fs_info->cleaner_mutex);
1797                         goto sleep;
1798                 }
1799
1800                 btrfs_run_delayed_iputs(root);
1801                 again = btrfs_clean_one_deleted_snapshot(root);
1802                 mutex_unlock(&root->fs_info->cleaner_mutex);
1803
1804                 /*
1805                  * The defragger has dealt with the R/O remount and umount,
1806                  * needn't do anything special here.
1807                  */
1808                 btrfs_run_defrag_inodes(root->fs_info);
1809
1810                 /*
1811                  * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1812                  * with relocation (btrfs_relocate_chunk) and relocation
1813                  * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1814                  * after acquiring fs_info->delete_unused_bgs_mutex. So we
1815                  * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1816                  * unused block groups.
1817                  */
1818                 btrfs_delete_unused_bgs(root->fs_info);
1819 sleep:
1820                 if (!try_to_freeze() && !again) {
1821                         set_current_state(TASK_INTERRUPTIBLE);
1822                         if (!kthread_should_stop())
1823                                 schedule();
1824                         __set_current_state(TASK_RUNNING);
1825                 }
1826         } while (!kthread_should_stop());
1827
1828         /*
1829          * Transaction kthread is stopped before us and wakes us up.
1830          * However we might have started a new transaction and COWed some
1831          * tree blocks when deleting unused block groups for example. So
1832          * make sure we commit the transaction we started to have a clean
1833          * shutdown when evicting the btree inode - if it has dirty pages
1834          * when we do the final iput() on it, eviction will trigger a
1835          * writeback for it which will fail with null pointer dereferences
1836          * since work queues and other resources were already released and
1837          * destroyed by the time the iput/eviction/writeback is made.
1838          */
1839         trans = btrfs_attach_transaction(root);
1840         if (IS_ERR(trans)) {
1841                 if (PTR_ERR(trans) != -ENOENT)
1842                         btrfs_err(root->fs_info,
1843                                   "cleaner transaction attach returned %ld",
1844                                   PTR_ERR(trans));
1845         } else {
1846                 int ret;
1847
1848                 ret = btrfs_commit_transaction(trans, root);
1849                 if (ret)
1850                         btrfs_err(root->fs_info,
1851                                   "cleaner open transaction commit returned %d",
1852                                   ret);
1853         }
1854
1855         return 0;
1856 }
1857
1858 static int transaction_kthread(void *arg)
1859 {
1860         struct btrfs_root *root = arg;
1861         struct btrfs_trans_handle *trans;
1862         struct btrfs_transaction *cur;
1863         u64 transid;
1864         unsigned long now;
1865         unsigned long delay;
1866         bool cannot_commit;
1867
1868         do {
1869                 cannot_commit = false;
1870                 delay = HZ * root->fs_info->commit_interval;
1871                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1872
1873                 spin_lock(&root->fs_info->trans_lock);
1874                 cur = root->fs_info->running_transaction;
1875                 if (!cur) {
1876                         spin_unlock(&root->fs_info->trans_lock);
1877                         goto sleep;
1878                 }
1879
1880                 now = get_seconds();
1881                 if (cur->state < TRANS_STATE_BLOCKED &&
1882                     (now < cur->start_time ||
1883                      now - cur->start_time < root->fs_info->commit_interval)) {
1884                         spin_unlock(&root->fs_info->trans_lock);
1885                         delay = HZ * 5;
1886                         goto sleep;
1887                 }
1888                 transid = cur->transid;
1889                 spin_unlock(&root->fs_info->trans_lock);
1890
1891                 /* If the file system is aborted, this will always fail. */
1892                 trans = btrfs_attach_transaction(root);
1893                 if (IS_ERR(trans)) {
1894                         if (PTR_ERR(trans) != -ENOENT)
1895                                 cannot_commit = true;
1896                         goto sleep;
1897                 }
1898                 if (transid == trans->transid) {
1899                         btrfs_commit_transaction(trans, root);
1900                 } else {
1901                         btrfs_end_transaction(trans, root);
1902                 }
1903 sleep:
1904                 wake_up_process(root->fs_info->cleaner_kthread);
1905                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1906
1907                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1908                                       &root->fs_info->fs_state)))
1909                         btrfs_cleanup_transaction(root);
1910                 if (!try_to_freeze()) {
1911                         set_current_state(TASK_INTERRUPTIBLE);
1912                         if (!kthread_should_stop() &&
1913                             (!btrfs_transaction_blocked(root->fs_info) ||
1914                              cannot_commit))
1915                                 schedule_timeout(delay);
1916                         __set_current_state(TASK_RUNNING);
1917                 }
1918         } while (!kthread_should_stop());
1919         return 0;
1920 }
1921
1922 /*
1923  * this will find the highest generation in the array of
1924  * root backups.  The index of the highest array is returned,
1925  * or -1 if we can't find anything.
1926  *
1927  * We check to make sure the array is valid by comparing the
1928  * generation of the latest  root in the array with the generation
1929  * in the super block.  If they don't match we pitch it.
1930  */
1931 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1932 {
1933         u64 cur;
1934         int newest_index = -1;
1935         struct btrfs_root_backup *root_backup;
1936         int i;
1937
1938         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1939                 root_backup = info->super_copy->super_roots + i;
1940                 cur = btrfs_backup_tree_root_gen(root_backup);
1941                 if (cur == newest_gen)
1942                         newest_index = i;
1943         }
1944
1945         /* check to see if we actually wrapped around */
1946         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1947                 root_backup = info->super_copy->super_roots;
1948                 cur = btrfs_backup_tree_root_gen(root_backup);
1949                 if (cur == newest_gen)
1950                         newest_index = 0;
1951         }
1952         return newest_index;
1953 }
1954
1955
1956 /*
1957  * find the oldest backup so we know where to store new entries
1958  * in the backup array.  This will set the backup_root_index
1959  * field in the fs_info struct
1960  */
1961 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1962                                      u64 newest_gen)
1963 {
1964         int newest_index = -1;
1965
1966         newest_index = find_newest_super_backup(info, newest_gen);
1967         /* if there was garbage in there, just move along */
1968         if (newest_index == -1) {
1969                 info->backup_root_index = 0;
1970         } else {
1971                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1972         }
1973 }
1974
1975 /*
1976  * copy all the root pointers into the super backup array.
1977  * this will bump the backup pointer by one when it is
1978  * done
1979  */
1980 static void backup_super_roots(struct btrfs_fs_info *info)
1981 {
1982         int next_backup;
1983         struct btrfs_root_backup *root_backup;
1984         int last_backup;
1985
1986         next_backup = info->backup_root_index;
1987         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1988                 BTRFS_NUM_BACKUP_ROOTS;
1989
1990         /*
1991          * just overwrite the last backup if we're at the same generation
1992          * this happens only at umount
1993          */
1994         root_backup = info->super_for_commit->super_roots + last_backup;
1995         if (btrfs_backup_tree_root_gen(root_backup) ==
1996             btrfs_header_generation(info->tree_root->node))
1997                 next_backup = last_backup;
1998
1999         root_backup = info->super_for_commit->super_roots + next_backup;
2000
2001         /*
2002          * make sure all of our padding and empty slots get zero filled
2003          * regardless of which ones we use today
2004          */
2005         memset(root_backup, 0, sizeof(*root_backup));
2006
2007         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2008
2009         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2010         btrfs_set_backup_tree_root_gen(root_backup,
2011                                btrfs_header_generation(info->tree_root->node));
2012
2013         btrfs_set_backup_tree_root_level(root_backup,
2014                                btrfs_header_level(info->tree_root->node));
2015
2016         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2017         btrfs_set_backup_chunk_root_gen(root_backup,
2018                                btrfs_header_generation(info->chunk_root->node));
2019         btrfs_set_backup_chunk_root_level(root_backup,
2020                                btrfs_header_level(info->chunk_root->node));
2021
2022         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2023         btrfs_set_backup_extent_root_gen(root_backup,
2024                                btrfs_header_generation(info->extent_root->node));
2025         btrfs_set_backup_extent_root_level(root_backup,
2026                                btrfs_header_level(info->extent_root->node));
2027
2028         /*
2029          * we might commit during log recovery, which happens before we set
2030          * the fs_root.  Make sure it is valid before we fill it in.
2031          */
2032         if (info->fs_root && info->fs_root->node) {
2033                 btrfs_set_backup_fs_root(root_backup,
2034                                          info->fs_root->node->start);
2035                 btrfs_set_backup_fs_root_gen(root_backup,
2036                                btrfs_header_generation(info->fs_root->node));
2037                 btrfs_set_backup_fs_root_level(root_backup,
2038                                btrfs_header_level(info->fs_root->node));
2039         }
2040
2041         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2042         btrfs_set_backup_dev_root_gen(root_backup,
2043                                btrfs_header_generation(info->dev_root->node));
2044         btrfs_set_backup_dev_root_level(root_backup,
2045                                        btrfs_header_level(info->dev_root->node));
2046
2047         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2048         btrfs_set_backup_csum_root_gen(root_backup,
2049                                btrfs_header_generation(info->csum_root->node));
2050         btrfs_set_backup_csum_root_level(root_backup,
2051                                btrfs_header_level(info->csum_root->node));
2052
2053         btrfs_set_backup_total_bytes(root_backup,
2054                              btrfs_super_total_bytes(info->super_copy));
2055         btrfs_set_backup_bytes_used(root_backup,
2056                              btrfs_super_bytes_used(info->super_copy));
2057         btrfs_set_backup_num_devices(root_backup,
2058                              btrfs_super_num_devices(info->super_copy));
2059
2060         /*
2061          * if we don't copy this out to the super_copy, it won't get remembered
2062          * for the next commit
2063          */
2064         memcpy(&info->super_copy->super_roots,
2065                &info->super_for_commit->super_roots,
2066                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2067 }
2068
2069 /*
2070  * this copies info out of the root backup array and back into
2071  * the in-memory super block.  It is meant to help iterate through
2072  * the array, so you send it the number of backups you've already
2073  * tried and the last backup index you used.
2074  *
2075  * this returns -1 when it has tried all the backups
2076  */
2077 static noinline int next_root_backup(struct btrfs_fs_info *info,
2078                                      struct btrfs_super_block *super,
2079                                      int *num_backups_tried, int *backup_index)
2080 {
2081         struct btrfs_root_backup *root_backup;
2082         int newest = *backup_index;
2083
2084         if (*num_backups_tried == 0) {
2085                 u64 gen = btrfs_super_generation(super);
2086
2087                 newest = find_newest_super_backup(info, gen);
2088                 if (newest == -1)
2089                         return -1;
2090
2091                 *backup_index = newest;
2092                 *num_backups_tried = 1;
2093         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2094                 /* we've tried all the backups, all done */
2095                 return -1;
2096         } else {
2097                 /* jump to the next oldest backup */
2098                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2099                         BTRFS_NUM_BACKUP_ROOTS;
2100                 *backup_index = newest;
2101                 *num_backups_tried += 1;
2102         }
2103         root_backup = super->super_roots + newest;
2104
2105         btrfs_set_super_generation(super,
2106                                    btrfs_backup_tree_root_gen(root_backup));
2107         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2108         btrfs_set_super_root_level(super,
2109                                    btrfs_backup_tree_root_level(root_backup));
2110         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2111
2112         /*
2113          * fixme: the total bytes and num_devices need to match or we should
2114          * need a fsck
2115          */
2116         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2117         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2118         return 0;
2119 }
2120
2121 /* helper to cleanup workers */
2122 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2123 {
2124         btrfs_destroy_workqueue(fs_info->fixup_workers);
2125         btrfs_destroy_workqueue(fs_info->delalloc_workers);
2126         btrfs_destroy_workqueue(fs_info->workers);
2127         btrfs_destroy_workqueue(fs_info->endio_workers);
2128         btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2129         btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2130         btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2131         btrfs_destroy_workqueue(fs_info->rmw_workers);
2132         btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2133         btrfs_destroy_workqueue(fs_info->endio_write_workers);
2134         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2135         btrfs_destroy_workqueue(fs_info->submit_workers);
2136         btrfs_destroy_workqueue(fs_info->delayed_workers);
2137         btrfs_destroy_workqueue(fs_info->caching_workers);
2138         btrfs_destroy_workqueue(fs_info->readahead_workers);
2139         btrfs_destroy_workqueue(fs_info->flush_workers);
2140         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2141         btrfs_destroy_workqueue(fs_info->extent_workers);
2142 }
2143
2144 static void free_root_extent_buffers(struct btrfs_root *root)
2145 {
2146         if (root) {
2147                 free_extent_buffer(root->node);
2148                 free_extent_buffer(root->commit_root);
2149                 root->node = NULL;
2150                 root->commit_root = NULL;
2151         }
2152 }
2153
2154 /* helper to cleanup tree roots */
2155 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2156 {
2157         free_root_extent_buffers(info->tree_root);
2158
2159         free_root_extent_buffers(info->dev_root);
2160         free_root_extent_buffers(info->extent_root);
2161         free_root_extent_buffers(info->csum_root);
2162         free_root_extent_buffers(info->quota_root);
2163         free_root_extent_buffers(info->uuid_root);
2164         if (chunk_root)
2165                 free_root_extent_buffers(info->chunk_root);
2166 }
2167
2168 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2169 {
2170         int ret;
2171         struct btrfs_root *gang[8];
2172         int i;
2173
2174         while (!list_empty(&fs_info->dead_roots)) {
2175                 gang[0] = list_entry(fs_info->dead_roots.next,
2176                                      struct btrfs_root, root_list);
2177                 list_del(&gang[0]->root_list);
2178
2179                 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2180                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2181                 } else {
2182                         free_extent_buffer(gang[0]->node);
2183                         free_extent_buffer(gang[0]->commit_root);
2184                         btrfs_put_fs_root(gang[0]);
2185                 }
2186         }
2187
2188         while (1) {
2189                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2190                                              (void **)gang, 0,
2191                                              ARRAY_SIZE(gang));
2192                 if (!ret)
2193                         break;
2194                 for (i = 0; i < ret; i++)
2195                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2196         }
2197
2198         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2199                 btrfs_free_log_root_tree(NULL, fs_info);
2200                 btrfs_destroy_pinned_extent(fs_info->tree_root,
2201                                             fs_info->pinned_extents);
2202         }
2203 }
2204
2205 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2206 {
2207         mutex_init(&fs_info->scrub_lock);
2208         atomic_set(&fs_info->scrubs_running, 0);
2209         atomic_set(&fs_info->scrub_pause_req, 0);
2210         atomic_set(&fs_info->scrubs_paused, 0);
2211         atomic_set(&fs_info->scrub_cancel_req, 0);
2212         init_waitqueue_head(&fs_info->scrub_pause_wait);
2213         fs_info->scrub_workers_refcnt = 0;
2214 }
2215
2216 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2217 {
2218         spin_lock_init(&fs_info->balance_lock);
2219         mutex_init(&fs_info->balance_mutex);
2220         atomic_set(&fs_info->balance_running, 0);
2221         atomic_set(&fs_info->balance_pause_req, 0);
2222         atomic_set(&fs_info->balance_cancel_req, 0);
2223         fs_info->balance_ctl = NULL;
2224         init_waitqueue_head(&fs_info->balance_wait_q);
2225 }
2226
2227 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2228                                    struct btrfs_root *tree_root)
2229 {
2230         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2231         set_nlink(fs_info->btree_inode, 1);
2232         /*
2233          * we set the i_size on the btree inode to the max possible int.
2234          * the real end of the address space is determined by all of
2235          * the devices in the system
2236          */
2237         fs_info->btree_inode->i_size = OFFSET_MAX;
2238         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2239
2240         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2241         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2242                              fs_info->btree_inode->i_mapping);
2243         BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2244         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2245
2246         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2247
2248         BTRFS_I(fs_info->btree_inode)->root = tree_root;
2249         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2250                sizeof(struct btrfs_key));
2251         set_bit(BTRFS_INODE_DUMMY,
2252                 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2253         btrfs_insert_inode_hash(fs_info->btree_inode);
2254 }
2255
2256 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2257 {
2258         fs_info->dev_replace.lock_owner = 0;
2259         atomic_set(&fs_info->dev_replace.nesting_level, 0);
2260         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2261         mutex_init(&fs_info->dev_replace.lock_management_lock);
2262         mutex_init(&fs_info->dev_replace.lock);
2263         init_waitqueue_head(&fs_info->replace_wait);
2264 }
2265
2266 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2267 {
2268         spin_lock_init(&fs_info->qgroup_lock);
2269         mutex_init(&fs_info->qgroup_ioctl_lock);
2270         fs_info->qgroup_tree = RB_ROOT;
2271         fs_info->qgroup_op_tree = RB_ROOT;
2272         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2273         fs_info->qgroup_seq = 1;
2274         fs_info->quota_enabled = 0;
2275         fs_info->pending_quota_state = 0;
2276         fs_info->qgroup_ulist = NULL;
2277         mutex_init(&fs_info->qgroup_rescan_lock);
2278 }
2279
2280 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2281                 struct btrfs_fs_devices *fs_devices)
2282 {
2283         int max_active = fs_info->thread_pool_size;
2284         unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2285
2286         fs_info->workers =
2287                 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2288                                       max_active, 16);
2289
2290         fs_info->delalloc_workers =
2291                 btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2292
2293         fs_info->flush_workers =
2294                 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2295
2296         fs_info->caching_workers =
2297                 btrfs_alloc_workqueue("cache", flags, max_active, 0);
2298
2299         /*
2300          * a higher idle thresh on the submit workers makes it much more
2301          * likely that bios will be send down in a sane order to the
2302          * devices
2303          */
2304         fs_info->submit_workers =
2305                 btrfs_alloc_workqueue("submit", flags,
2306                                       min_t(u64, fs_devices->num_devices,
2307                                             max_active), 64);
2308
2309         fs_info->fixup_workers =
2310                 btrfs_alloc_workqueue("fixup", flags, 1, 0);
2311
2312         /*
2313          * endios are largely parallel and should have a very
2314          * low idle thresh
2315          */
2316         fs_info->endio_workers =
2317                 btrfs_alloc_workqueue("endio", flags, max_active, 4);
2318         fs_info->endio_meta_workers =
2319                 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2320         fs_info->endio_meta_write_workers =
2321                 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2322         fs_info->endio_raid56_workers =
2323                 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2324         fs_info->endio_repair_workers =
2325                 btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
2326         fs_info->rmw_workers =
2327                 btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2328         fs_info->endio_write_workers =
2329                 btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2330         fs_info->endio_freespace_worker =
2331                 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2332         fs_info->delayed_workers =
2333                 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2334         fs_info->readahead_workers =
2335                 btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2336         fs_info->qgroup_rescan_workers =
2337                 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2338         fs_info->extent_workers =
2339                 btrfs_alloc_workqueue("extent-refs", flags,
2340                                       min_t(u64, fs_devices->num_devices,
2341                                             max_active), 8);
2342
2343         if (!(fs_info->workers && fs_info->delalloc_workers &&
2344               fs_info->submit_workers && fs_info->flush_workers &&
2345               fs_info->endio_workers && fs_info->endio_meta_workers &&
2346               fs_info->endio_meta_write_workers &&
2347               fs_info->endio_repair_workers &&
2348               fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2349               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2350               fs_info->caching_workers && fs_info->readahead_workers &&
2351               fs_info->fixup_workers && fs_info->delayed_workers &&
2352               fs_info->extent_workers &&
2353               fs_info->qgroup_rescan_workers)) {
2354                 return -ENOMEM;
2355         }
2356
2357         return 0;
2358 }
2359
2360 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2361                             struct btrfs_fs_devices *fs_devices)
2362 {
2363         int ret;
2364         struct btrfs_root *tree_root = fs_info->tree_root;
2365         struct btrfs_root *log_tree_root;
2366         struct btrfs_super_block *disk_super = fs_info->super_copy;
2367         u64 bytenr = btrfs_super_log_root(disk_super);
2368
2369         if (fs_devices->rw_devices == 0) {
2370                 btrfs_warn(fs_info, "log replay required on RO media");
2371                 return -EIO;
2372         }
2373
2374         log_tree_root = btrfs_alloc_root(fs_info);
2375         if (!log_tree_root)
2376                 return -ENOMEM;
2377
2378         __setup_root(tree_root->nodesize, tree_root->sectorsize,
2379                         tree_root->stripesize, log_tree_root, fs_info,
2380                         BTRFS_TREE_LOG_OBJECTID);
2381
2382         log_tree_root->node = read_tree_block(tree_root, bytenr,
2383                         fs_info->generation + 1);
2384         if (IS_ERR(log_tree_root->node)) {
2385                 btrfs_warn(fs_info, "failed to read log tree");
2386                 ret = PTR_ERR(log_tree_root->node);
2387                 kfree(log_tree_root);
2388                 return ret;
2389         } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2390                 btrfs_err(fs_info, "failed to read log tree");
2391                 free_extent_buffer(log_tree_root->node);
2392                 kfree(log_tree_root);
2393                 return -EIO;
2394         }
2395         /* returns with log_tree_root freed on success */
2396         ret = btrfs_recover_log_trees(log_tree_root);
2397         if (ret) {
2398                 btrfs_std_error(tree_root->fs_info, ret,
2399                             "Failed to recover log tree");
2400                 free_extent_buffer(log_tree_root->node);
2401                 kfree(log_tree_root);
2402                 return ret;
2403         }
2404
2405         if (fs_info->sb->s_flags & MS_RDONLY) {
2406                 ret = btrfs_commit_super(tree_root);
2407                 if (ret)
2408                         return ret;
2409         }
2410
2411         return 0;
2412 }
2413
2414 static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2415                             struct btrfs_root *tree_root)
2416 {
2417         struct btrfs_root *root;
2418         struct btrfs_key location;
2419         int ret;
2420
2421         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2422         location.type = BTRFS_ROOT_ITEM_KEY;
2423         location.offset = 0;
2424
2425         root = btrfs_read_tree_root(tree_root, &location);
2426         if (IS_ERR(root))
2427                 return PTR_ERR(root);
2428         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2429         fs_info->extent_root = root;
2430
2431         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2432         root = btrfs_read_tree_root(tree_root, &location);
2433         if (IS_ERR(root))
2434                 return PTR_ERR(root);
2435         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2436         fs_info->dev_root = root;
2437         btrfs_init_devices_late(fs_info);
2438
2439         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2440         root = btrfs_read_tree_root(tree_root, &location);
2441         if (IS_ERR(root))
2442                 return PTR_ERR(root);
2443         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2444         fs_info->csum_root = root;
2445
2446         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2447         root = btrfs_read_tree_root(tree_root, &location);
2448         if (!IS_ERR(root)) {
2449                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2450                 fs_info->quota_enabled = 1;
2451                 fs_info->pending_quota_state = 1;
2452                 fs_info->quota_root = root;
2453         }
2454
2455         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2456         root = btrfs_read_tree_root(tree_root, &location);
2457         if (IS_ERR(root)) {
2458                 ret = PTR_ERR(root);
2459                 if (ret != -ENOENT)
2460                         return ret;
2461         } else {
2462                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2463                 fs_info->uuid_root = root;
2464         }
2465
2466         return 0;
2467 }
2468
2469 int open_ctree(struct super_block *sb,
2470                struct btrfs_fs_devices *fs_devices,
2471                char *options)
2472 {
2473         u32 sectorsize;
2474         u32 nodesize;
2475         u32 stripesize;
2476         u64 generation;
2477         u64 features;
2478         struct btrfs_key location;
2479         struct buffer_head *bh;
2480         struct btrfs_super_block *disk_super;
2481         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2482         struct btrfs_root *tree_root;
2483         struct btrfs_root *chunk_root;
2484         int ret;
2485         int err = -EINVAL;
2486         int num_backups_tried = 0;
2487         int backup_index = 0;
2488         int max_active;
2489
2490         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2491         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2492         if (!tree_root || !chunk_root) {
2493                 err = -ENOMEM;
2494                 goto fail;
2495         }
2496
2497         ret = init_srcu_struct(&fs_info->subvol_srcu);
2498         if (ret) {
2499                 err = ret;
2500                 goto fail;
2501         }
2502
2503         ret = setup_bdi(fs_info, &fs_info->bdi);
2504         if (ret) {
2505                 err = ret;
2506                 goto fail_srcu;
2507         }
2508
2509         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2510         if (ret) {
2511                 err = ret;
2512                 goto fail_bdi;
2513         }
2514         fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2515                                         (1 + ilog2(nr_cpu_ids));
2516
2517         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2518         if (ret) {
2519                 err = ret;
2520                 goto fail_dirty_metadata_bytes;
2521         }
2522
2523         ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2524         if (ret) {
2525                 err = ret;
2526                 goto fail_delalloc_bytes;
2527         }
2528
2529         fs_info->btree_inode = new_inode(sb);
2530         if (!fs_info->btree_inode) {
2531                 err = -ENOMEM;
2532                 goto fail_bio_counter;
2533         }
2534
2535         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2536
2537         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2538         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2539         INIT_LIST_HEAD(&fs_info->trans_list);
2540         INIT_LIST_HEAD(&fs_info->dead_roots);
2541         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2542         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2543         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2544         spin_lock_init(&fs_info->delalloc_root_lock);
2545         spin_lock_init(&fs_info->trans_lock);
2546         spin_lock_init(&fs_info->fs_roots_radix_lock);
2547         spin_lock_init(&fs_info->delayed_iput_lock);
2548         spin_lock_init(&fs_info->defrag_inodes_lock);
2549         spin_lock_init(&fs_info->free_chunk_lock);
2550         spin_lock_init(&fs_info->tree_mod_seq_lock);
2551         spin_lock_init(&fs_info->super_lock);
2552         spin_lock_init(&fs_info->qgroup_op_lock);
2553         spin_lock_init(&fs_info->buffer_lock);
2554         spin_lock_init(&fs_info->unused_bgs_lock);
2555         rwlock_init(&fs_info->tree_mod_log_lock);
2556         mutex_init(&fs_info->unused_bg_unpin_mutex);
2557         mutex_init(&fs_info->delete_unused_bgs_mutex);
2558         mutex_init(&fs_info->reloc_mutex);
2559         mutex_init(&fs_info->delalloc_root_mutex);
2560         seqlock_init(&fs_info->profiles_lock);
2561         init_rwsem(&fs_info->delayed_iput_sem);
2562
2563         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2564         INIT_LIST_HEAD(&fs_info->space_info);
2565         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2566         INIT_LIST_HEAD(&fs_info->unused_bgs);
2567         btrfs_mapping_init(&fs_info->mapping_tree);
2568         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2569                              BTRFS_BLOCK_RSV_GLOBAL);
2570         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2571                              BTRFS_BLOCK_RSV_DELALLOC);
2572         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2573         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2574         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2575         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2576                              BTRFS_BLOCK_RSV_DELOPS);
2577         atomic_set(&fs_info->nr_async_submits, 0);
2578         atomic_set(&fs_info->async_delalloc_pages, 0);
2579         atomic_set(&fs_info->async_submit_draining, 0);
2580         atomic_set(&fs_info->nr_async_bios, 0);
2581         atomic_set(&fs_info->defrag_running, 0);
2582         atomic_set(&fs_info->qgroup_op_seq, 0);
2583         atomic64_set(&fs_info->tree_mod_seq, 0);
2584         fs_info->sb = sb;
2585         fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2586         fs_info->metadata_ratio = 0;
2587         fs_info->defrag_inodes = RB_ROOT;
2588         fs_info->free_chunk_space = 0;
2589         fs_info->tree_mod_log = RB_ROOT;
2590         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2591         fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2592         /* readahead state */
2593         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2594         spin_lock_init(&fs_info->reada_lock);
2595
2596         fs_info->thread_pool_size = min_t(unsigned long,
2597                                           num_online_cpus() + 2, 8);
2598
2599         INIT_LIST_HEAD(&fs_info->ordered_roots);
2600         spin_lock_init(&fs_info->ordered_root_lock);
2601         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2602                                         GFP_NOFS);
2603         if (!fs_info->delayed_root) {
2604                 err = -ENOMEM;
2605                 goto fail_iput;
2606         }
2607         btrfs_init_delayed_root(fs_info->delayed_root);
2608
2609         btrfs_init_scrub(fs_info);
2610 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2611         fs_info->check_integrity_print_mask = 0;
2612 #endif
2613         btrfs_init_balance(fs_info);
2614         btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2615
2616         sb->s_blocksize = 4096;
2617         sb->s_blocksize_bits = blksize_bits(4096);
2618         sb->s_bdi = &fs_info->bdi;
2619
2620         btrfs_init_btree_inode(fs_info, tree_root);
2621
2622         spin_lock_init(&fs_info->block_group_cache_lock);
2623         fs_info->block_group_cache_tree = RB_ROOT;
2624         fs_info->first_logical_byte = (u64)-1;
2625
2626         extent_io_tree_init(&fs_info->freed_extents[0],
2627                              fs_info->btree_inode->i_mapping);
2628         extent_io_tree_init(&fs_info->freed_extents[1],
2629                              fs_info->btree_inode->i_mapping);
2630         fs_info->pinned_extents = &fs_info->freed_extents[0];
2631         fs_info->do_barriers = 1;
2632
2633
2634         mutex_init(&fs_info->ordered_operations_mutex);
2635         mutex_init(&fs_info->tree_log_mutex);
2636         mutex_init(&fs_info->chunk_mutex);
2637         mutex_init(&fs_info->transaction_kthread_mutex);
2638         mutex_init(&fs_info->cleaner_mutex);
2639         mutex_init(&fs_info->volume_mutex);
2640         mutex_init(&fs_info->ro_block_group_mutex);
2641         init_rwsem(&fs_info->commit_root_sem);
2642         init_rwsem(&fs_info->cleanup_work_sem);
2643         init_rwsem(&fs_info->subvol_sem);
2644         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2645
2646         btrfs_init_dev_replace_locks(fs_info);
2647         btrfs_init_qgroup(fs_info);
2648
2649         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2650         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2651
2652         init_waitqueue_head(&fs_info->transaction_throttle);
2653         init_waitqueue_head(&fs_info->transaction_wait);
2654         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2655         init_waitqueue_head(&fs_info->async_submit_wait);
2656
2657         INIT_LIST_HEAD(&fs_info->pinned_chunks);
2658
2659         ret = btrfs_alloc_stripe_hash_table(fs_info);
2660         if (ret) {
2661                 err = ret;
2662                 goto fail_alloc;
2663         }
2664
2665         __setup_root(4096, 4096, 4096, tree_root,
2666                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
2667
2668         invalidate_bdev(fs_devices->latest_bdev);
2669
2670         /*
2671          * Read super block and check the signature bytes only
2672          */
2673         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2674         if (IS_ERR(bh)) {
2675                 err = PTR_ERR(bh);
2676                 goto fail_alloc;
2677         }
2678
2679         /*
2680          * We want to check superblock checksum, the type is stored inside.
2681          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2682          */
2683         if (btrfs_check_super_csum(bh->b_data)) {
2684                 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
2685                 err = -EINVAL;
2686                 brelse(bh);
2687                 goto fail_alloc;
2688         }
2689
2690         /*
2691          * super_copy is zeroed at allocation time and we never touch the
2692          * following bytes up to INFO_SIZE, the checksum is calculated from
2693          * the whole block of INFO_SIZE
2694          */
2695         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2696         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2697                sizeof(*fs_info->super_for_commit));
2698         brelse(bh);
2699
2700         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2701
2702         ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2703         if (ret) {
2704                 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
2705                 err = -EINVAL;
2706                 goto fail_alloc;
2707         }
2708
2709         disk_super = fs_info->super_copy;
2710         if (!btrfs_super_root(disk_super))
2711                 goto fail_alloc;
2712
2713         /* check FS state, whether FS is broken. */
2714         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2715                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2716
2717         /*
2718          * run through our array of backup supers and setup
2719          * our ring pointer to the oldest one
2720          */
2721         generation = btrfs_super_generation(disk_super);
2722         find_oldest_super_backup(fs_info, generation);
2723
2724         /*
2725          * In the long term, we'll store the compression type in the super
2726          * block, and it'll be used for per file compression control.
2727          */
2728         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2729
2730         ret = btrfs_parse_options(tree_root, options);
2731         if (ret) {
2732                 err = ret;
2733                 goto fail_alloc;
2734         }
2735
2736         features = btrfs_super_incompat_flags(disk_super) &
2737                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2738         if (features) {
2739                 printk(KERN_ERR "BTRFS: couldn't mount because of "
2740                        "unsupported optional features (%Lx).\n",
2741                        features);
2742                 err = -EINVAL;
2743                 goto fail_alloc;
2744         }
2745
2746         /*
2747          * Leafsize and nodesize were always equal, this is only a sanity check.
2748          */
2749         if (le32_to_cpu(disk_super->__unused_leafsize) !=
2750             btrfs_super_nodesize(disk_super)) {
2751                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2752                        "blocksizes don't match.  node %d leaf %d\n",
2753                        btrfs_super_nodesize(disk_super),
2754                        le32_to_cpu(disk_super->__unused_leafsize));
2755                 err = -EINVAL;
2756                 goto fail_alloc;
2757         }
2758         if (btrfs_super_nodesize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2759                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2760                        "blocksize (%d) was too large\n",
2761                        btrfs_super_nodesize(disk_super));
2762                 err = -EINVAL;
2763                 goto fail_alloc;
2764         }
2765
2766         features = btrfs_super_incompat_flags(disk_super);
2767         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2768         if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2769                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2770
2771         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2772                 printk(KERN_INFO "BTRFS: has skinny extents\n");
2773
2774         /*
2775          * flag our filesystem as having big metadata blocks if
2776          * they are bigger than the page size
2777          */
2778         if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) {
2779                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2780                         printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
2781                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2782         }
2783
2784         nodesize = btrfs_super_nodesize(disk_super);
2785         sectorsize = btrfs_super_sectorsize(disk_super);
2786         stripesize = btrfs_super_stripesize(disk_super);
2787         fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2788         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2789
2790         /*
2791          * mixed block groups end up with duplicate but slightly offset
2792          * extent buffers for the same range.  It leads to corruptions
2793          */
2794         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2795             (sectorsize != nodesize)) {
2796                 printk(KERN_ERR "BTRFS: unequal leaf/node/sector sizes "
2797                                 "are not allowed for mixed block groups on %s\n",
2798                                 sb->s_id);
2799                 goto fail_alloc;
2800         }
2801
2802         /*
2803          * Needn't use the lock because there is no other task which will
2804          * update the flag.
2805          */
2806         btrfs_set_super_incompat_flags(disk_super, features);
2807
2808         features = btrfs_super_compat_ro_flags(disk_super) &
2809                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2810         if (!(sb->s_flags & MS_RDONLY) && features) {
2811                 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2812                        "unsupported option features (%Lx).\n",
2813                        features);
2814                 err = -EINVAL;
2815                 goto fail_alloc;
2816         }
2817
2818         max_active = fs_info->thread_pool_size;
2819
2820         ret = btrfs_init_workqueues(fs_info, fs_devices);
2821         if (ret) {
2822                 err = ret;
2823                 goto fail_sb_buffer;
2824         }
2825
2826         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2827         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2828                                     4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2829
2830         tree_root->nodesize = nodesize;
2831         tree_root->sectorsize = sectorsize;
2832         tree_root->stripesize = stripesize;
2833
2834         sb->s_blocksize = sectorsize;
2835         sb->s_blocksize_bits = blksize_bits(sectorsize);
2836
2837         if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2838                 printk(KERN_ERR "BTRFS: valid FS not found on %s\n", sb->s_id);
2839                 goto fail_sb_buffer;
2840         }
2841
2842         if (sectorsize != PAGE_SIZE) {
2843                 printk(KERN_ERR "BTRFS: incompatible sector size (%lu) "
2844                        "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2845                 goto fail_sb_buffer;
2846         }
2847
2848         mutex_lock(&fs_info->chunk_mutex);
2849         ret = btrfs_read_sys_array(tree_root);
2850         mutex_unlock(&fs_info->chunk_mutex);
2851         if (ret) {
2852                 printk(KERN_ERR "BTRFS: failed to read the system "
2853                        "array on %s\n", sb->s_id);
2854                 goto fail_sb_buffer;
2855         }
2856
2857         generation = btrfs_super_chunk_root_generation(disk_super);
2858
2859         __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2860                      fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2861
2862         chunk_root->node = read_tree_block(chunk_root,
2863                                            btrfs_super_chunk_root(disk_super),
2864                                            generation);
2865         if (IS_ERR(chunk_root->node) ||
2866             !extent_buffer_uptodate(chunk_root->node)) {
2867                 printk(KERN_ERR "BTRFS: failed to read chunk root on %s\n",
2868                        sb->s_id);
2869                 if (!IS_ERR(chunk_root->node))
2870                         free_extent_buffer(chunk_root->node);
2871                 chunk_root->node = NULL;
2872                 goto fail_tree_roots;
2873         }
2874         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2875         chunk_root->commit_root = btrfs_root_node(chunk_root);
2876
2877         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2878            btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2879
2880         ret = btrfs_read_chunk_tree(chunk_root);
2881         if (ret) {
2882                 printk(KERN_ERR "BTRFS: failed to read chunk tree on %s\n",
2883                        sb->s_id);
2884                 goto fail_tree_roots;
2885         }
2886
2887         /*
2888          * keep the device that is marked to be the target device for the
2889          * dev_replace procedure
2890          */
2891         btrfs_close_extra_devices(fs_devices, 0);
2892
2893         if (!fs_devices->latest_bdev) {
2894                 printk(KERN_ERR "BTRFS: failed to read devices on %s\n",
2895                        sb->s_id);
2896                 goto fail_tree_roots;
2897         }
2898
2899 retry_root_backup:
2900         generation = btrfs_super_generation(disk_super);
2901
2902         tree_root->node = read_tree_block(tree_root,
2903                                           btrfs_super_root(disk_super),
2904                                           generation);
2905         if (IS_ERR(tree_root->node) ||
2906             !extent_buffer_uptodate(tree_root->node)) {
2907                 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
2908                        sb->s_id);
2909                 if (!IS_ERR(tree_root->node))
2910                         free_extent_buffer(tree_root->node);
2911                 tree_root->node = NULL;
2912                 goto recovery_tree_root;
2913         }
2914
2915         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2916         tree_root->commit_root = btrfs_root_node(tree_root);
2917         btrfs_set_root_refs(&tree_root->root_item, 1);
2918
2919         mutex_lock(&tree_root->objectid_mutex);
2920         ret = btrfs_find_highest_objectid(tree_root,
2921                                         &tree_root->highest_objectid);
2922         if (ret) {
2923                 mutex_unlock(&tree_root->objectid_mutex);
2924                 goto recovery_tree_root;
2925         }
2926
2927         ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2928
2929         mutex_unlock(&tree_root->objectid_mutex);
2930
2931         ret = btrfs_read_roots(fs_info, tree_root);
2932         if (ret)
2933                 goto recovery_tree_root;
2934
2935         fs_info->generation = generation;
2936         fs_info->last_trans_committed = generation;
2937
2938         ret = btrfs_recover_balance(fs_info);
2939         if (ret) {
2940                 printk(KERN_ERR "BTRFS: failed to recover balance\n");
2941                 goto fail_block_groups;
2942         }
2943
2944         ret = btrfs_init_dev_stats(fs_info);
2945         if (ret) {
2946                 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
2947                        ret);
2948                 goto fail_block_groups;
2949         }
2950
2951         ret = btrfs_init_dev_replace(fs_info);
2952         if (ret) {
2953                 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
2954                 goto fail_block_groups;
2955         }
2956
2957         btrfs_close_extra_devices(fs_devices, 1);
2958
2959         ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2960         if (ret) {
2961                 pr_err("BTRFS: failed to init sysfs fsid interface: %d\n", ret);
2962                 goto fail_block_groups;
2963         }
2964
2965         ret = btrfs_sysfs_add_device(fs_devices);
2966         if (ret) {
2967                 pr_err("BTRFS: failed to init sysfs device interface: %d\n", ret);
2968                 goto fail_fsdev_sysfs;
2969         }
2970
2971         ret = btrfs_sysfs_add_mounted(fs_info);
2972         if (ret) {
2973                 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
2974                 goto fail_fsdev_sysfs;
2975         }
2976
2977         ret = btrfs_init_space_info(fs_info);
2978         if (ret) {
2979                 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2980                 goto fail_sysfs;
2981         }
2982
2983         ret = btrfs_read_block_groups(fs_info->extent_root);
2984         if (ret) {
2985                 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2986                 goto fail_sysfs;
2987         }
2988         fs_info->num_tolerated_disk_barrier_failures =
2989                 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2990         if (fs_info->fs_devices->missing_devices >
2991              fs_info->num_tolerated_disk_barrier_failures &&
2992             !(sb->s_flags & MS_RDONLY)) {
2993                 pr_warn("BTRFS: missing devices(%llu) exceeds the limit(%d), writeable mount is not allowed\n",
2994                         fs_info->fs_devices->missing_devices,
2995                         fs_info->num_tolerated_disk_barrier_failures);
2996                 goto fail_sysfs;
2997         }
2998
2999         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3000                                                "btrfs-cleaner");
3001         if (IS_ERR(fs_info->cleaner_kthread))
3002                 goto fail_sysfs;
3003
3004         fs_info->transaction_kthread = kthread_run(transaction_kthread,
3005                                                    tree_root,
3006                                                    "btrfs-transaction");
3007         if (IS_ERR(fs_info->transaction_kthread))
3008                 goto fail_cleaner;
3009
3010         if (!btrfs_test_opt(tree_root, SSD) &&
3011             !btrfs_test_opt(tree_root, NOSSD) &&
3012             !fs_info->fs_devices->rotating) {
3013                 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
3014                        "mode\n");
3015                 btrfs_set_opt(fs_info->mount_opt, SSD);
3016         }
3017
3018         /*
3019          * Mount does not set all options immediatelly, we can do it now and do
3020          * not have to wait for transaction commit
3021          */
3022         btrfs_apply_pending_changes(fs_info);
3023
3024 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3025         if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
3026                 ret = btrfsic_mount(tree_root, fs_devices,
3027                                     btrfs_test_opt(tree_root,
3028                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3029                                     1 : 0,
3030                                     fs_info->check_integrity_print_mask);
3031                 if (ret)
3032                         printk(KERN_WARNING "BTRFS: failed to initialize"
3033                                " integrity check module %s\n", sb->s_id);
3034         }
3035 #endif
3036         ret = btrfs_read_qgroup_config(fs_info);
3037         if (ret)
3038                 goto fail_trans_kthread;
3039
3040         /* do not make disk changes in broken FS */
3041         if (btrfs_super_log_root(disk_super) != 0) {
3042                 ret = btrfs_replay_log(fs_info, fs_devices);
3043                 if (ret) {
3044                         err = ret;
3045                         goto fail_qgroup;
3046                 }
3047         }
3048
3049         ret = btrfs_find_orphan_roots(tree_root);
3050         if (ret)
3051                 goto fail_qgroup;
3052
3053         if (!(sb->s_flags & MS_RDONLY)) {
3054                 ret = btrfs_cleanup_fs_roots(fs_info);
3055                 if (ret)
3056                         goto fail_qgroup;
3057
3058                 mutex_lock(&fs_info->cleaner_mutex);
3059                 ret = btrfs_recover_relocation(tree_root);
3060                 mutex_unlock(&fs_info->cleaner_mutex);
3061                 if (ret < 0) {
3062                         printk(KERN_WARNING
3063                                "BTRFS: failed to recover relocation\n");
3064                         err = -EINVAL;
3065                         goto fail_qgroup;
3066                 }
3067         }
3068
3069         location.objectid = BTRFS_FS_TREE_OBJECTID;
3070         location.type = BTRFS_ROOT_ITEM_KEY;
3071         location.offset = 0;
3072
3073         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3074         if (IS_ERR(fs_info->fs_root)) {
3075                 err = PTR_ERR(fs_info->fs_root);
3076                 goto fail_qgroup;
3077         }
3078
3079         if (sb->s_flags & MS_RDONLY)
3080                 return 0;
3081
3082         down_read(&fs_info->cleanup_work_sem);
3083         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3084             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3085                 up_read(&fs_info->cleanup_work_sem);
3086                 close_ctree(tree_root);
3087                 return ret;
3088         }
3089         up_read(&fs_info->cleanup_work_sem);
3090
3091         ret = btrfs_resume_balance_async(fs_info);
3092         if (ret) {
3093                 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
3094                 close_ctree(tree_root);
3095                 return ret;
3096         }
3097
3098         ret = btrfs_resume_dev_replace_async(fs_info);
3099         if (ret) {
3100                 pr_warn("BTRFS: failed to resume dev_replace\n");
3101                 close_ctree(tree_root);
3102                 return ret;
3103         }
3104
3105         btrfs_qgroup_rescan_resume(fs_info);
3106
3107         if (!fs_info->uuid_root) {
3108                 pr_info("BTRFS: creating UUID tree\n");
3109                 ret = btrfs_create_uuid_tree(fs_info);
3110                 if (ret) {
3111                         pr_warn("BTRFS: failed to create the UUID tree %d\n",
3112                                 ret);
3113                         close_ctree(tree_root);
3114                         return ret;
3115                 }
3116         } else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) ||
3117                    fs_info->generation !=
3118                                 btrfs_super_uuid_tree_generation(disk_super)) {
3119                 pr_info("BTRFS: checking UUID tree\n");
3120                 ret = btrfs_check_uuid_tree(fs_info);
3121                 if (ret) {
3122                         pr_warn("BTRFS: failed to check the UUID tree %d\n",
3123                                 ret);
3124                         close_ctree(tree_root);
3125                         return ret;
3126                 }
3127         } else {
3128                 fs_info->update_uuid_tree_gen = 1;
3129         }
3130
3131         fs_info->open = 1;
3132
3133         return 0;
3134
3135 fail_qgroup:
3136         btrfs_free_qgroup_config(fs_info);
3137 fail_trans_kthread:
3138         kthread_stop(fs_info->transaction_kthread);
3139         btrfs_cleanup_transaction(fs_info->tree_root);
3140         btrfs_free_fs_roots(fs_info);
3141 fail_cleaner:
3142         kthread_stop(fs_info->cleaner_kthread);
3143
3144         /*
3145          * make sure we're done with the btree inode before we stop our
3146          * kthreads
3147          */
3148         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3149
3150 fail_sysfs:
3151         btrfs_sysfs_remove_mounted(fs_info);
3152
3153 fail_fsdev_sysfs:
3154         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3155
3156 fail_block_groups:
3157         btrfs_put_block_group_cache(fs_info);
3158         btrfs_free_block_groups(fs_info);
3159
3160 fail_tree_roots:
3161         free_root_pointers(fs_info, 1);
3162         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3163
3164 fail_sb_buffer:
3165         btrfs_stop_all_workers(fs_info);
3166 fail_alloc:
3167 fail_iput:
3168         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3169
3170         iput(fs_info->btree_inode);
3171 fail_bio_counter:
3172         percpu_counter_destroy(&fs_info->bio_counter);
3173 fail_delalloc_bytes:
3174         percpu_counter_destroy(&fs_info->delalloc_bytes);
3175 fail_dirty_metadata_bytes:
3176         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3177 fail_bdi:
3178         bdi_destroy(&fs_info->bdi);
3179 fail_srcu:
3180         cleanup_srcu_struct(&fs_info->subvol_srcu);
3181 fail:
3182         btrfs_free_stripe_hash_table(fs_info);
3183         btrfs_close_devices(fs_info->fs_devices);
3184         return err;
3185
3186 recovery_tree_root:
3187         if (!btrfs_test_opt(tree_root, RECOVERY))
3188                 goto fail_tree_roots;
3189
3190         free_root_pointers(fs_info, 0);
3191
3192         /* don't use the log in recovery mode, it won't be valid */
3193         btrfs_set_super_log_root(disk_super, 0);
3194
3195         /* we can't trust the free space cache either */
3196         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3197
3198         ret = next_root_backup(fs_info, fs_info->super_copy,
3199                                &num_backups_tried, &backup_index);
3200         if (ret == -1)
3201                 goto fail_block_groups;
3202         goto retry_root_backup;
3203 }
3204
3205 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3206 {
3207         if (uptodate) {
3208                 set_buffer_uptodate(bh);
3209         } else {
3210                 struct btrfs_device *device = (struct btrfs_device *)
3211                         bh->b_private;
3212
3213                 btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
3214                                 "lost page write due to IO error on %s",
3215                                           rcu_str_deref(device->name));
3216                 /* note, we dont' set_buffer_write_io_error because we have
3217                  * our own ways of dealing with the IO errors
3218                  */
3219                 clear_buffer_uptodate(bh);
3220                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3221         }
3222         unlock_buffer(bh);
3223         put_bh(bh);
3224 }
3225
3226 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3227                         struct buffer_head **bh_ret)
3228 {
3229         struct buffer_head *bh;
3230         struct btrfs_super_block *super;
3231         u64 bytenr;
3232
3233         bytenr = btrfs_sb_offset(copy_num);
3234         if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3235                 return -EINVAL;
3236
3237         bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3238         /*
3239          * If we fail to read from the underlying devices, as of now
3240          * the best option we have is to mark it EIO.
3241          */
3242         if (!bh)
3243                 return -EIO;
3244
3245         super = (struct btrfs_super_block *)bh->b_data;
3246         if (btrfs_super_bytenr(super) != bytenr ||
3247                     btrfs_super_magic(super) != BTRFS_MAGIC) {
3248                 brelse(bh);
3249                 return -EINVAL;
3250         }
3251
3252         *bh_ret = bh;
3253         return 0;
3254 }
3255
3256
3257 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3258 {
3259         struct buffer_head *bh;
3260         struct buffer_head *latest = NULL;
3261         struct btrfs_super_block *super;
3262         int i;
3263         u64 transid = 0;
3264         int ret = -EINVAL;
3265
3266         /* we would like to check all the supers, but that would make
3267          * a btrfs mount succeed after a mkfs from a different FS.
3268          * So, we need to add a special mount option to scan for
3269          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3270          */
3271         for (i = 0; i < 1; i++) {
3272                 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3273                 if (ret)
3274                         continue;
3275
3276                 super = (struct btrfs_super_block *)bh->b_data;
3277
3278                 if (!latest || btrfs_super_generation(super) > transid) {
3279                         brelse(latest);
3280                         latest = bh;
3281                         transid = btrfs_super_generation(super);
3282                 } else {
3283                         brelse(bh);
3284                 }
3285         }
3286
3287         if (!latest)
3288                 return ERR_PTR(ret);
3289
3290         return latest;
3291 }
3292
3293 /*
3294  * this should be called twice, once with wait == 0 and
3295  * once with wait == 1.  When wait == 0 is done, all the buffer heads
3296  * we write are pinned.
3297  *
3298  * They are released when wait == 1 is done.
3299  * max_mirrors must be the same for both runs, and it indicates how
3300  * many supers on this one device should be written.
3301  *
3302  * max_mirrors == 0 means to write them all.
3303  */
3304 static int write_dev_supers(struct btrfs_device *device,
3305                             struct btrfs_super_block *sb,
3306                             int do_barriers, int wait, int max_mirrors)
3307 {
3308         struct buffer_head *bh;
3309         int i;
3310         int ret;
3311         int errors = 0;
3312         u32 crc;
3313         u64 bytenr;
3314
3315         if (max_mirrors == 0)
3316                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3317
3318         for (i = 0; i < max_mirrors; i++) {
3319                 bytenr = btrfs_sb_offset(i);
3320                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3321                     device->commit_total_bytes)
3322                         break;
3323
3324                 if (wait) {
3325                         bh = __find_get_block(device->bdev, bytenr / 4096,
3326                                               BTRFS_SUPER_INFO_SIZE);
3327                         if (!bh) {
3328                                 errors++;
3329                                 continue;
3330                         }
3331                         wait_on_buffer(bh);
3332                         if (!buffer_uptodate(bh))
3333                                 errors++;
3334
3335                         /* drop our reference */
3336                         brelse(bh);
3337
3338                         /* drop the reference from the wait == 0 run */
3339                         brelse(bh);
3340                         continue;
3341                 } else {
3342                         btrfs_set_super_bytenr(sb, bytenr);
3343
3344                         crc = ~(u32)0;
3345                         crc = btrfs_csum_data((char *)sb +
3346                                               BTRFS_CSUM_SIZE, crc,
3347                                               BTRFS_SUPER_INFO_SIZE -
3348                                               BTRFS_CSUM_SIZE);
3349                         btrfs_csum_final(crc, sb->csum);
3350
3351                         /*
3352                          * one reference for us, and we leave it for the
3353                          * caller
3354                          */
3355                         bh = __getblk(device->bdev, bytenr / 4096,
3356                                       BTRFS_SUPER_INFO_SIZE);
3357                         if (!bh) {
3358                                 btrfs_err(device->dev_root->fs_info,
3359                                     "couldn't get super buffer head for bytenr %llu",
3360                                     bytenr);
3361                                 errors++;
3362                                 continue;
3363                         }
3364
3365                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3366
3367                         /* one reference for submit_bh */
3368                         get_bh(bh);
3369
3370                         set_buffer_uptodate(bh);
3371                         lock_buffer(bh);
3372                         bh->b_end_io = btrfs_end_buffer_write_sync;
3373                         bh->b_private = device;
3374                 }
3375
3376                 /*
3377                  * we fua the first super.  The others we allow
3378                  * to go down lazy.
3379                  */
3380                 if (i == 0)
3381                         ret = btrfsic_submit_bh(WRITE_FUA, bh);
3382                 else
3383                         ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3384                 if (ret)
3385                         errors++;
3386         }
3387         return errors < i ? 0 : -1;
3388 }
3389
3390 /*
3391  * endio for the write_dev_flush, this will wake anyone waiting
3392  * for the barrier when it is done
3393  */
3394 static void btrfs_end_empty_barrier(struct bio *bio)
3395 {
3396         if (bio->bi_private)
3397                 complete(bio->bi_private);
3398         bio_put(bio);
3399 }
3400
3401 /*
3402  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3403  * sent down.  With wait == 1, it waits for the previous flush.
3404  *
3405  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3406  * capable
3407  */
3408 static int write_dev_flush(struct btrfs_device *device, int wait)
3409 {
3410         struct bio *bio;
3411         int ret = 0;
3412
3413         if (device->nobarriers)
3414                 return 0;
3415
3416         if (wait) {
3417                 bio = device->flush_bio;
3418                 if (!bio)
3419                         return 0;
3420
3421                 wait_for_completion(&device->flush_wait);
3422
3423                 if (bio->bi_error) {
3424                         ret = bio->bi_error;
3425                         btrfs_dev_stat_inc_and_print(device,
3426                                 BTRFS_DEV_STAT_FLUSH_ERRS);
3427                 }
3428
3429                 /* drop the reference from the wait == 0 run */
3430                 bio_put(bio);
3431                 device->flush_bio = NULL;
3432
3433                 return ret;
3434         }
3435
3436         /*
3437          * one reference for us, and we leave it for the
3438          * caller
3439          */
3440         device->flush_bio = NULL;
3441         bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3442         if (!bio)
3443                 return -ENOMEM;
3444
3445         bio->bi_end_io = btrfs_end_empty_barrier;
3446         bio->bi_bdev = device->bdev;
3447         init_completion(&device->flush_wait);
3448         bio->bi_private = &device->flush_wait;
3449         device->flush_bio = bio;
3450
3451         bio_get(bio);
3452         btrfsic_submit_bio(WRITE_FLUSH, bio);
3453
3454         return 0;
3455 }
3456
3457 /*
3458  * send an empty flush down to each device in parallel,
3459  * then wait for them
3460  */
3461 static int barrier_all_devices(struct btrfs_fs_info *info)
3462 {
3463         struct list_head *head;
3464         struct btrfs_device *dev;
3465         int errors_send = 0;
3466         int errors_wait = 0;
3467         int ret;
3468
3469         /* send down all the barriers */
3470         head = &info->fs_devices->devices;
3471         list_for_each_entry_rcu(dev, head, dev_list) {
3472                 if (dev->missing)
3473                         continue;
3474                 if (!dev->bdev) {
3475                         errors_send++;
3476                         continue;
3477                 }
3478                 if (!dev->in_fs_metadata || !dev->writeable)
3479                         continue;
3480
3481                 ret = write_dev_flush(dev, 0);
3482                 if (ret)
3483                         errors_send++;
3484         }
3485
3486         /* wait for all the barriers */
3487         list_for_each_entry_rcu(dev, head, dev_list) {
3488                 if (dev->missing)
3489                         continue;
3490                 if (!dev->bdev) {
3491                         errors_wait++;
3492                         continue;
3493                 }
3494                 if (!dev->in_fs_metadata || !dev->writeable)
3495                         continue;
3496
3497                 ret = write_dev_flush(dev, 1);
3498                 if (ret)
3499                         errors_wait++;
3500         }
3501         if (errors_send > info->num_tolerated_disk_barrier_failures ||
3502             errors_wait > info->num_tolerated_disk_barrier_failures)
3503                 return -EIO;
3504         return 0;
3505 }
3506
3507 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3508 {
3509         int raid_type;
3510         int min_tolerated = INT_MAX;
3511
3512         if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3513             (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3514                 min_tolerated = min(min_tolerated,
3515                                     btrfs_raid_array[BTRFS_RAID_SINGLE].
3516                                     tolerated_failures);
3517
3518         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3519                 if (raid_type == BTRFS_RAID_SINGLE)
3520                         continue;
3521                 if (!(flags & btrfs_raid_group[raid_type]))
3522                         continue;
3523                 min_tolerated = min(min_tolerated,
3524                                     btrfs_raid_array[raid_type].
3525                                     tolerated_failures);
3526         }
3527
3528         if (min_tolerated == INT_MAX) {
3529                 pr_warn("BTRFS: unknown raid flag: %llu\n", flags);
3530                 min_tolerated = 0;
3531         }
3532
3533         return min_tolerated;
3534 }
3535
3536 int btrfs_calc_num_tolerated_disk_barrier_failures(
3537         struct btrfs_fs_info *fs_info)
3538 {
3539         struct btrfs_ioctl_space_info space;
3540         struct btrfs_space_info *sinfo;
3541         u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3542                        BTRFS_BLOCK_GROUP_SYSTEM,
3543                        BTRFS_BLOCK_GROUP_METADATA,
3544                        BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3545         int i;
3546         int c;
3547         int num_tolerated_disk_barrier_failures =
3548                 (int)fs_info->fs_devices->num_devices;
3549
3550         for (i = 0; i < ARRAY_SIZE(types); i++) {
3551                 struct btrfs_space_info *tmp;
3552
3553                 sinfo = NULL;
3554                 rcu_read_lock();
3555                 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3556                         if (tmp->flags == types[i]) {
3557                                 sinfo = tmp;
3558                                 break;
3559                         }
3560                 }
3561                 rcu_read_unlock();
3562
3563                 if (!sinfo)
3564                         continue;
3565
3566                 down_read(&sinfo->groups_sem);
3567                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3568                         u64 flags;
3569
3570                         if (list_empty(&sinfo->block_groups[c]))
3571                                 continue;
3572
3573                         btrfs_get_block_group_info(&sinfo->block_groups[c],
3574                                                    &space);
3575                         if (space.total_bytes == 0 || space.used_bytes == 0)
3576                                 continue;
3577                         flags = space.flags;
3578
3579                         num_tolerated_disk_barrier_failures = min(
3580                                 num_tolerated_disk_barrier_failures,
3581                                 btrfs_get_num_tolerated_disk_barrier_failures(
3582                                         flags));
3583                 }
3584                 up_read(&sinfo->groups_sem);
3585         }
3586
3587         return num_tolerated_disk_barrier_failures;
3588 }
3589
3590 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3591 {
3592         struct list_head *head;
3593         struct btrfs_device *dev;
3594         struct btrfs_super_block *sb;
3595         struct btrfs_dev_item *dev_item;
3596         int ret;
3597         int do_barriers;
3598         int max_errors;
3599         int total_errors = 0;
3600         u64 flags;
3601
3602         do_barriers = !btrfs_test_opt(root, NOBARRIER);
3603         backup_super_roots(root->fs_info);
3604
3605         sb = root->fs_info->super_for_commit;
3606         dev_item = &sb->dev_item;
3607
3608         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3609         head = &root->fs_info->fs_devices->devices;
3610         max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3611
3612         if (do_barriers) {
3613                 ret = barrier_all_devices(root->fs_info);
3614                 if (ret) {
3615                         mutex_unlock(
3616                                 &root->fs_info->fs_devices->device_list_mutex);
3617                         btrfs_std_error(root->fs_info, ret,
3618                                     "errors while submitting device barriers.");
3619                         return ret;
3620                 }
3621         }
3622
3623         list_for_each_entry_rcu(dev, head, dev_list) {
3624                 if (!dev->bdev) {
3625                         total_errors++;
3626                         continue;
3627                 }
3628                 if (!dev->in_fs_metadata || !dev->writeable)
3629                         continue;
3630
3631                 btrfs_set_stack_device_generation(dev_item, 0);
3632                 btrfs_set_stack_device_type(dev_item, dev->type);
3633                 btrfs_set_stack_device_id(dev_item, dev->devid);
3634                 btrfs_set_stack_device_total_bytes(dev_item,
3635                                                    dev->commit_total_bytes);
3636                 btrfs_set_stack_device_bytes_used(dev_item,
3637                                                   dev->commit_bytes_used);
3638                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3639                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3640                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3641                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3642                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3643
3644                 flags = btrfs_super_flags(sb);
3645                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3646
3647                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3648                 if (ret)
3649                         total_errors++;
3650         }
3651         if (total_errors > max_errors) {
3652                 btrfs_err(root->fs_info, "%d errors while writing supers",
3653                        total_errors);
3654                 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3655
3656                 /* FUA is masked off if unsupported and can't be the reason */
3657                 btrfs_std_error(root->fs_info, -EIO,
3658                             "%d errors while writing supers", total_errors);
3659                 return -EIO;
3660         }
3661
3662         total_errors = 0;
3663         list_for_each_entry_rcu(dev, head, dev_list) {
3664                 if (!dev->bdev)
3665                         continue;
3666                 if (!dev->in_fs_metadata || !dev->writeable)
3667                         continue;
3668
3669                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3670                 if (ret)
3671                         total_errors++;
3672         }
3673         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3674         if (total_errors > max_errors) {
3675                 btrfs_std_error(root->fs_info, -EIO,
3676                             "%d errors while writing supers", total_errors);
3677                 return -EIO;
3678         }
3679         return 0;
3680 }
3681
3682 int write_ctree_super(struct btrfs_trans_handle *trans,
3683                       struct btrfs_root *root, int max_mirrors)
3684 {
3685         return write_all_supers(root, max_mirrors);
3686 }
3687
3688 /* Drop a fs root from the radix tree and free it. */
3689 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3690                                   struct btrfs_root *root)
3691 {
3692         spin_lock(&fs_info->fs_roots_radix_lock);
3693         radix_tree_delete(&fs_info->fs_roots_radix,
3694                           (unsigned long)root->root_key.objectid);
3695         spin_unlock(&fs_info->fs_roots_radix_lock);
3696
3697         if (btrfs_root_refs(&root->root_item) == 0)
3698                 synchronize_srcu(&fs_info->subvol_srcu);
3699
3700         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3701                 btrfs_free_log(NULL, root);
3702
3703         if (root->free_ino_pinned)
3704                 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3705         if (root->free_ino_ctl)
3706                 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3707         free_fs_root(root);
3708 }
3709
3710 static void free_fs_root(struct btrfs_root *root)
3711 {
3712         iput(root->ino_cache_inode);
3713         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3714         btrfs_free_block_rsv(root, root->orphan_block_rsv);
3715         root->orphan_block_rsv = NULL;
3716         if (root->anon_dev)
3717                 free_anon_bdev(root->anon_dev);
3718         if (root->subv_writers)
3719                 btrfs_free_subvolume_writers(root->subv_writers);
3720         free_extent_buffer(root->node);
3721         free_extent_buffer(root->commit_root);
3722         kfree(root->free_ino_ctl);
3723         kfree(root->free_ino_pinned);
3724         kfree(root->name);
3725         btrfs_put_fs_root(root);
3726 }
3727
3728 void btrfs_free_fs_root(struct btrfs_root *root)
3729 {
3730         free_fs_root(root);
3731 }
3732
3733 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3734 {
3735         u64 root_objectid = 0;
3736         struct btrfs_root *gang[8];
3737         int i = 0;
3738         int err = 0;
3739         unsigned int ret = 0;
3740         int index;
3741
3742         while (1) {
3743                 index = srcu_read_lock(&fs_info->subvol_srcu);
3744                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3745                                              (void **)gang, root_objectid,
3746                                              ARRAY_SIZE(gang));
3747                 if (!ret) {
3748                         srcu_read_unlock(&fs_info->subvol_srcu, index);
3749                         break;
3750                 }
3751                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3752
3753                 for (i = 0; i < ret; i++) {
3754                         /* Avoid to grab roots in dead_roots */
3755                         if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3756                                 gang[i] = NULL;
3757                                 continue;
3758                         }
3759                         /* grab all the search result for later use */
3760                         gang[i] = btrfs_grab_fs_root(gang[i]);
3761                 }
3762                 srcu_read_unlock(&fs_info->subvol_srcu, index);
3763
3764                 for (i = 0; i < ret; i++) {
3765                         if (!gang[i])
3766                                 continue;
3767                         root_objectid = gang[i]->root_key.objectid;
3768                         err = btrfs_orphan_cleanup(gang[i]);
3769                         if (err)
3770                                 break;
3771                         btrfs_put_fs_root(gang[i]);
3772                 }
3773                 root_objectid++;
3774         }
3775
3776         /* release the uncleaned roots due to error */
3777         for (; i < ret; i++) {
3778                 if (gang[i])
3779                         btrfs_put_fs_root(gang[i]);
3780         }
3781         return err;
3782 }
3783
3784 int btrfs_commit_super(struct btrfs_root *root)
3785 {
3786         struct btrfs_trans_handle *trans;
3787
3788         mutex_lock(&root->fs_info->cleaner_mutex);
3789         btrfs_run_delayed_iputs(root);
3790         mutex_unlock(&root->fs_info->cleaner_mutex);
3791         wake_up_process(root->fs_info->cleaner_kthread);
3792
3793         /* wait until ongoing cleanup work done */
3794         down_write(&root->fs_info->cleanup_work_sem);
3795         up_write(&root->fs_info->cleanup_work_sem);
3796
3797         trans = btrfs_join_transaction(root);
3798         if (IS_ERR(trans))
3799                 return PTR_ERR(trans);
3800         return btrfs_commit_transaction(trans, root);
3801 }
3802
3803 void close_ctree(struct btrfs_root *root)
3804 {
3805         struct btrfs_fs_info *fs_info = root->fs_info;
3806         int ret;
3807
3808         fs_info->closing = 1;
3809         smp_mb();
3810
3811         /* wait for the qgroup rescan worker to stop */
3812         btrfs_qgroup_wait_for_completion(fs_info);
3813
3814         /* wait for the uuid_scan task to finish */
3815         down(&fs_info->uuid_tree_rescan_sem);
3816         /* avoid complains from lockdep et al., set sem back to initial state */
3817         up(&fs_info->uuid_tree_rescan_sem);
3818
3819         /* pause restriper - we want to resume on mount */
3820         btrfs_pause_balance(fs_info);
3821
3822         btrfs_dev_replace_suspend_for_unmount(fs_info);
3823
3824         btrfs_scrub_cancel(fs_info);
3825
3826         /* wait for any defraggers to finish */
3827         wait_event(fs_info->transaction_wait,
3828                    (atomic_read(&fs_info->defrag_running) == 0));
3829
3830         /* clear out the rbtree of defraggable inodes */
3831         btrfs_cleanup_defrag_inodes(fs_info);
3832
3833         cancel_work_sync(&fs_info->async_reclaim_work);
3834
3835         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3836                 /*
3837                  * If the cleaner thread is stopped and there are
3838                  * block groups queued for removal, the deletion will be
3839                  * skipped when we quit the cleaner thread.
3840                  */
3841                 btrfs_delete_unused_bgs(root->fs_info);
3842
3843                 ret = btrfs_commit_super(root);
3844                 if (ret)
3845                         btrfs_err(fs_info, "commit super ret %d", ret);
3846         }
3847
3848         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3849                 btrfs_error_commit_super(root);
3850
3851         kthread_stop(fs_info->transaction_kthread);
3852         kthread_stop(fs_info->cleaner_kthread);
3853
3854         fs_info->closing = 2;
3855         smp_mb();
3856
3857         btrfs_free_qgroup_config(fs_info);
3858
3859         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3860                 btrfs_info(fs_info, "at unmount delalloc count %lld",
3861                        percpu_counter_sum(&fs_info->delalloc_bytes));
3862         }
3863
3864         btrfs_sysfs_remove_mounted(fs_info);
3865         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3866
3867         btrfs_free_fs_roots(fs_info);
3868
3869         btrfs_put_block_group_cache(fs_info);
3870
3871         btrfs_free_block_groups(fs_info);
3872
3873         /*
3874          * we must make sure there is not any read request to
3875          * submit after we stopping all workers.
3876          */
3877         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3878         btrfs_stop_all_workers(fs_info);
3879
3880         fs_info->open = 0;
3881         free_root_pointers(fs_info, 1);
3882
3883         iput(fs_info->btree_inode);
3884
3885 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3886         if (btrfs_test_opt(root, CHECK_INTEGRITY))
3887                 btrfsic_unmount(root, fs_info->fs_devices);
3888 #endif
3889
3890         btrfs_close_devices(fs_info->fs_devices);
3891         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3892
3893         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3894         percpu_counter_destroy(&fs_info->delalloc_bytes);
3895         percpu_counter_destroy(&fs_info->bio_counter);
3896         bdi_destroy(&fs_info->bdi);
3897         cleanup_srcu_struct(&fs_info->subvol_srcu);
3898
3899         btrfs_free_stripe_hash_table(fs_info);
3900
3901         __btrfs_free_block_rsv(root->orphan_block_rsv);
3902         root->orphan_block_rsv = NULL;
3903
3904         lock_chunks(root);
3905         while (!list_empty(&fs_info->pinned_chunks)) {
3906                 struct extent_map *em;
3907
3908                 em = list_first_entry(&fs_info->pinned_chunks,
3909                                       struct extent_map, list);
3910                 list_del_init(&em->list);
3911                 free_extent_map(em);
3912         }
3913         unlock_chunks(root);
3914 }
3915
3916 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3917                           int atomic)
3918 {
3919         int ret;
3920         struct inode *btree_inode = buf->pages[0]->mapping->host;
3921
3922         ret = extent_buffer_uptodate(buf);
3923         if (!ret)
3924                 return ret;
3925
3926         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3927                                     parent_transid, atomic);
3928         if (ret == -EAGAIN)
3929                 return ret;
3930         return !ret;
3931 }
3932
3933 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3934 {
3935         return set_extent_buffer_uptodate(buf);
3936 }
3937
3938 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3939 {
3940         struct btrfs_root *root;
3941         u64 transid = btrfs_header_generation(buf);
3942         int was_dirty;
3943
3944 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3945         /*
3946          * This is a fast path so only do this check if we have sanity tests
3947          * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3948          * outside of the sanity tests.
3949          */
3950         if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3951                 return;
3952 #endif
3953         root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3954         btrfs_assert_tree_locked(buf);
3955         if (transid != root->fs_info->generation)
3956                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3957                        "found %llu running %llu\n",
3958                         buf->start, transid, root->fs_info->generation);
3959         was_dirty = set_extent_buffer_dirty(buf);
3960         if (!was_dirty)
3961                 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3962                                      buf->len,
3963                                      root->fs_info->dirty_metadata_batch);
3964 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3965         if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3966                 btrfs_print_leaf(root, buf);
3967                 ASSERT(0);
3968         }
3969 #endif
3970 }
3971
3972 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3973                                         int flush_delayed)
3974 {
3975         /*
3976          * looks as though older kernels can get into trouble with
3977          * this code, they end up stuck in balance_dirty_pages forever
3978          */
3979         int ret;
3980
3981         if (current->flags & PF_MEMALLOC)
3982                 return;
3983
3984         if (flush_delayed)
3985                 btrfs_balance_delayed_items(root);
3986
3987         ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3988                                      BTRFS_DIRTY_METADATA_THRESH);
3989         if (ret > 0) {
3990                 balance_dirty_pages_ratelimited(
3991                                    root->fs_info->btree_inode->i_mapping);
3992         }
3993         return;
3994 }
3995
3996 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3997 {
3998         __btrfs_btree_balance_dirty(root, 1);
3999 }
4000
4001 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
4002 {
4003         __btrfs_btree_balance_dirty(root, 0);
4004 }
4005
4006 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
4007 {
4008         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4009         return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
4010 }
4011
4012 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
4013                               int read_only)
4014 {
4015         struct btrfs_super_block *sb = fs_info->super_copy;
4016         int ret = 0;
4017
4018         if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
4019                 printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
4020                                 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
4021                 ret = -EINVAL;
4022         }
4023         if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
4024                 printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
4025                                 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
4026                 ret = -EINVAL;
4027         }
4028         if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
4029                 printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
4030                                 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
4031                 ret = -EINVAL;
4032         }
4033
4034         /*
4035          * The common minimum, we don't know if we can trust the nodesize/sectorsize
4036          * items yet, they'll be verified later. Issue just a warning.
4037          */
4038         if (!IS_ALIGNED(btrfs_super_root(sb), 4096))
4039                 printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
4040                                 btrfs_super_root(sb));
4041         if (!IS_ALIGNED(btrfs_super_chunk_root(sb), 4096))
4042                 printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
4043                                 btrfs_super_chunk_root(sb));
4044         if (!IS_ALIGNED(btrfs_super_log_root(sb), 4096))
4045                 printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
4046                                 btrfs_super_log_root(sb));
4047
4048         /*
4049          * Check the lower bound, the alignment and other constraints are
4050          * checked later.
4051          */
4052         if (btrfs_super_nodesize(sb) < 4096) {
4053                 printk(KERN_ERR "BTRFS: nodesize too small: %u < 4096\n",
4054                                 btrfs_super_nodesize(sb));
4055                 ret = -EINVAL;
4056         }
4057         if (btrfs_super_sectorsize(sb) < 4096) {
4058                 printk(KERN_ERR "BTRFS: sectorsize too small: %u < 4096\n",
4059                                 btrfs_super_sectorsize(sb));
4060                 ret = -EINVAL;
4061         }
4062
4063         if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
4064                 printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
4065                                 fs_info->fsid, sb->dev_item.fsid);
4066                 ret = -EINVAL;
4067         }
4068
4069         /*
4070          * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4071          * done later
4072          */
4073         if (btrfs_super_num_devices(sb) > (1UL << 31))
4074                 printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
4075                                 btrfs_super_num_devices(sb));
4076         if (btrfs_super_num_devices(sb) == 0) {
4077                 printk(KERN_ERR "BTRFS: number of devices is 0\n");
4078                 ret = -EINVAL;
4079         }
4080
4081         if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4082                 printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
4083                                 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4084                 ret = -EINVAL;
4085         }
4086
4087         /*
4088          * Obvious sys_chunk_array corruptions, it must hold at least one key
4089          * and one chunk
4090          */
4091         if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4092                 printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
4093                                 btrfs_super_sys_array_size(sb),
4094                                 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4095                 ret = -EINVAL;
4096         }
4097         if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4098                         + sizeof(struct btrfs_chunk)) {
4099                 printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
4100                                 btrfs_super_sys_array_size(sb),
4101                                 sizeof(struct btrfs_disk_key)
4102                                 + sizeof(struct btrfs_chunk));
4103                 ret = -EINVAL;
4104         }
4105
4106         /*
4107          * The generation is a global counter, we'll trust it more than the others
4108          * but it's still possible that it's the one that's wrong.
4109          */
4110         if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4111                 printk(KERN_WARNING
4112                         "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
4113                         btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
4114         if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4115             && btrfs_super_cache_generation(sb) != (u64)-1)
4116                 printk(KERN_WARNING
4117                         "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
4118                         btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
4119
4120         return ret;
4121 }
4122
4123 static void btrfs_error_commit_super(struct btrfs_root *root)
4124 {
4125         mutex_lock(&root->fs_info->cleaner_mutex);
4126         btrfs_run_delayed_iputs(root);
4127         mutex_unlock(&root->fs_info->cleaner_mutex);
4128
4129         down_write(&root->fs_info->cleanup_work_sem);
4130         up_write(&root->fs_info->cleanup_work_sem);
4131
4132         /* cleanup FS via transaction */
4133         btrfs_cleanup_transaction(root);
4134 }
4135
4136 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4137 {
4138         struct btrfs_ordered_extent *ordered;
4139
4140         spin_lock(&root->ordered_extent_lock);
4141         /*
4142          * This will just short circuit the ordered completion stuff which will
4143          * make sure the ordered extent gets properly cleaned up.
4144          */
4145         list_for_each_entry(ordered, &root->ordered_extents,
4146                             root_extent_list)
4147                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4148         spin_unlock(&root->ordered_extent_lock);
4149 }
4150
4151 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4152 {
4153         struct btrfs_root *root;
4154         struct list_head splice;
4155
4156         INIT_LIST_HEAD(&splice);
4157
4158         spin_lock(&fs_info->ordered_root_lock);
4159         list_splice_init(&fs_info->ordered_roots, &splice);
4160         while (!list_empty(&splice)) {
4161                 root = list_first_entry(&splice, struct btrfs_root,
4162                                         ordered_root);
4163                 list_move_tail(&root->ordered_root,
4164                                &fs_info->ordered_roots);
4165
4166                 spin_unlock(&fs_info->ordered_root_lock);
4167                 btrfs_destroy_ordered_extents(root);
4168
4169                 cond_resched();
4170                 spin_lock(&fs_info->ordered_root_lock);
4171         }
4172         spin_unlock(&fs_info->ordered_root_lock);
4173 }
4174
4175 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4176                                       struct btrfs_root *root)
4177 {
4178         struct rb_node *node;
4179         struct btrfs_delayed_ref_root *delayed_refs;
4180         struct btrfs_delayed_ref_node *ref;
4181         int ret = 0;
4182
4183         delayed_refs = &trans->delayed_refs;
4184
4185         spin_lock(&delayed_refs->lock);
4186         if (atomic_read(&delayed_refs->num_entries) == 0) {
4187                 spin_unlock(&delayed_refs->lock);
4188                 btrfs_info(root->fs_info, "delayed_refs has NO entry");
4189                 return ret;
4190         }
4191
4192         while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4193                 struct btrfs_delayed_ref_head *head;
4194                 struct btrfs_delayed_ref_node *tmp;
4195                 bool pin_bytes = false;
4196
4197                 head = rb_entry(node, struct btrfs_delayed_ref_head,
4198                                 href_node);
4199                 if (!mutex_trylock(&head->mutex)) {
4200                         atomic_inc(&head->node.refs);
4201                         spin_unlock(&delayed_refs->lock);
4202
4203                         mutex_lock(&head->mutex);
4204                         mutex_unlock(&head->mutex);
4205                         btrfs_put_delayed_ref(&head->node);
4206                         spin_lock(&delayed_refs->lock);
4207                         continue;
4208                 }
4209                 spin_lock(&head->lock);
4210                 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4211                                                  list) {
4212                         ref->in_tree = 0;
4213                         list_del(&ref->list);
4214                         atomic_dec(&delayed_refs->num_entries);
4215                         btrfs_put_delayed_ref(ref);
4216                 }
4217                 if (head->must_insert_reserved)
4218                         pin_bytes = true;
4219                 btrfs_free_delayed_extent_op(head->extent_op);
4220                 delayed_refs->num_heads--;
4221                 if (head->processing == 0)
4222                         delayed_refs->num_heads_ready--;
4223                 atomic_dec(&delayed_refs->num_entries);
4224                 head->node.in_tree = 0;
4225                 rb_erase(&head->href_node, &delayed_refs->href_root);
4226                 spin_unlock(&head->lock);
4227                 spin_unlock(&delayed_refs->lock);
4228                 mutex_unlock(&head->mutex);
4229
4230                 if (pin_bytes)
4231                         btrfs_pin_extent(root, head->node.bytenr,
4232                                          head->node.num_bytes, 1);
4233                 btrfs_put_delayed_ref(&head->node);
4234                 cond_resched();
4235                 spin_lock(&delayed_refs->lock);
4236         }
4237
4238         spin_unlock(&delayed_refs->lock);
4239
4240         return ret;
4241 }
4242
4243 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4244 {
4245         struct btrfs_inode *btrfs_inode;
4246         struct list_head splice;
4247
4248         INIT_LIST_HEAD(&splice);
4249
4250         spin_lock(&root->delalloc_lock);
4251         list_splice_init(&root->delalloc_inodes, &splice);
4252
4253         while (!list_empty(&splice)) {
4254                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4255                                                delalloc_inodes);
4256
4257                 list_del_init(&btrfs_inode->delalloc_inodes);
4258                 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4259                           &btrfs_inode->runtime_flags);
4260                 spin_unlock(&root->delalloc_lock);
4261
4262                 btrfs_invalidate_inodes(btrfs_inode->root);
4263
4264                 spin_lock(&root->delalloc_lock);
4265         }
4266
4267         spin_unlock(&root->delalloc_lock);
4268 }
4269
4270 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4271 {
4272         struct btrfs_root *root;
4273         struct list_head splice;
4274
4275         INIT_LIST_HEAD(&splice);
4276
4277         spin_lock(&fs_info->delalloc_root_lock);
4278         list_splice_init(&fs_info->delalloc_roots, &splice);
4279         while (!list_empty(&splice)) {
4280                 root = list_first_entry(&splice, struct btrfs_root,
4281                                          delalloc_root);
4282                 list_del_init(&root->delalloc_root);
4283                 root = btrfs_grab_fs_root(root);
4284                 BUG_ON(!root);
4285                 spin_unlock(&fs_info->delalloc_root_lock);
4286
4287                 btrfs_destroy_delalloc_inodes(root);
4288                 btrfs_put_fs_root(root);
4289
4290                 spin_lock(&fs_info->delalloc_root_lock);
4291         }
4292         spin_unlock(&fs_info->delalloc_root_lock);
4293 }
4294
4295 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4296                                         struct extent_io_tree *dirty_pages,
4297                                         int mark)
4298 {
4299         int ret;
4300         struct extent_buffer *eb;
4301         u64 start = 0;
4302         u64 end;
4303
4304         while (1) {
4305                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4306                                             mark, NULL);
4307                 if (ret)
4308                         break;
4309
4310                 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4311                 while (start <= end) {
4312                         eb = btrfs_find_tree_block(root->fs_info, start);
4313                         start += root->nodesize;
4314                         if (!eb)
4315                                 continue;
4316                         wait_on_extent_buffer_writeback(eb);
4317
4318                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4319                                                &eb->bflags))
4320                                 clear_extent_buffer_dirty(eb);
4321                         free_extent_buffer_stale(eb);
4322                 }
4323         }
4324
4325         return ret;
4326 }
4327
4328 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4329                                        struct extent_io_tree *pinned_extents)
4330 {
4331         struct extent_io_tree *unpin;
4332         u64 start;
4333         u64 end;
4334         int ret;
4335         bool loop = true;
4336
4337         unpin = pinned_extents;
4338 again:
4339         while (1) {
4340                 ret = find_first_extent_bit(unpin, 0, &start, &end,
4341                                             EXTENT_DIRTY, NULL);
4342                 if (ret)
4343                         break;
4344
4345                 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4346                 btrfs_error_unpin_extent_range(root, start, end);
4347                 cond_resched();
4348         }
4349
4350         if (loop) {
4351                 if (unpin == &root->fs_info->freed_extents[0])
4352                         unpin = &root->fs_info->freed_extents[1];
4353                 else
4354                         unpin = &root->fs_info->freed_extents[0];
4355                 loop = false;
4356                 goto again;
4357         }
4358
4359         return 0;
4360 }
4361
4362 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4363                                    struct btrfs_root *root)
4364 {
4365         btrfs_destroy_delayed_refs(cur_trans, root);
4366
4367         cur_trans->state = TRANS_STATE_COMMIT_START;
4368         wake_up(&root->fs_info->transaction_blocked_wait);
4369
4370         cur_trans->state = TRANS_STATE_UNBLOCKED;
4371         wake_up(&root->fs_info->transaction_wait);
4372
4373         btrfs_destroy_delayed_inodes(root);
4374         btrfs_assert_delayed_root_empty(root);
4375
4376         btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4377                                      EXTENT_DIRTY);
4378         btrfs_destroy_pinned_extent(root,
4379                                     root->fs_info->pinned_extents);
4380
4381         cur_trans->state =TRANS_STATE_COMPLETED;
4382         wake_up(&cur_trans->commit_wait);
4383
4384         /*
4385         memset(cur_trans, 0, sizeof(*cur_trans));
4386         kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4387         */
4388 }
4389
4390 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4391 {
4392         struct btrfs_transaction *t;
4393
4394         mutex_lock(&root->fs_info->transaction_kthread_mutex);
4395
4396         spin_lock(&root->fs_info->trans_lock);
4397         while (!list_empty(&root->fs_info->trans_list)) {
4398                 t = list_first_entry(&root->fs_info->trans_list,
4399                                      struct btrfs_transaction, list);
4400                 if (t->state >= TRANS_STATE_COMMIT_START) {
4401                         atomic_inc(&t->use_count);
4402                         spin_unlock(&root->fs_info->trans_lock);
4403                         btrfs_wait_for_commit(root, t->transid);
4404                         btrfs_put_transaction(t);
4405                         spin_lock(&root->fs_info->trans_lock);
4406                         continue;
4407                 }
4408                 if (t == root->fs_info->running_transaction) {
4409                         t->state = TRANS_STATE_COMMIT_DOING;
4410                         spin_unlock(&root->fs_info->trans_lock);
4411                         /*
4412                          * We wait for 0 num_writers since we don't hold a trans
4413                          * handle open currently for this transaction.
4414                          */
4415                         wait_event(t->writer_wait,
4416                                    atomic_read(&t->num_writers) == 0);
4417                 } else {
4418                         spin_unlock(&root->fs_info->trans_lock);
4419                 }
4420                 btrfs_cleanup_one_transaction(t, root);
4421
4422                 spin_lock(&root->fs_info->trans_lock);
4423                 if (t == root->fs_info->running_transaction)
4424                         root->fs_info->running_transaction = NULL;
4425                 list_del_init(&t->list);
4426                 spin_unlock(&root->fs_info->trans_lock);
4427
4428                 btrfs_put_transaction(t);
4429                 trace_btrfs_transaction_commit(root);
4430                 spin_lock(&root->fs_info->trans_lock);
4431         }
4432         spin_unlock(&root->fs_info->trans_lock);
4433         btrfs_destroy_all_ordered_extents(root->fs_info);
4434         btrfs_destroy_delayed_inodes(root);
4435         btrfs_assert_delayed_root_empty(root);
4436         btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4437         btrfs_destroy_all_delalloc_inodes(root->fs_info);
4438         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4439
4440         return 0;
4441 }
4442
4443 static const struct extent_io_ops btree_extent_io_ops = {
4444         .readpage_end_io_hook = btree_readpage_end_io_hook,
4445         .readpage_io_failed_hook = btree_io_failed_hook,
4446         .submit_bio_hook = btree_submit_bio_hook,
4447         /* note we're sharing with inode.c for the merge bio hook */
4448         .merge_bio_hook = btrfs_merge_bio_hook,
4449 };