777d9a5aa83f279dfea1fe9a65fc58698d8a776d
[cascardo/linux.git] / fs / btrfs / extent-tree.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "tree-log.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "volumes.h"
33 #include "raid56.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "free-space-tree.h"
37 #include "math.h"
38 #include "sysfs.h"
39 #include "qgroup.h"
40
41 #undef SCRAMBLE_DELAYED_REFS
42
43 /*
44  * control flags for do_chunk_alloc's force field
45  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
46  * if we really need one.
47  *
48  * CHUNK_ALLOC_LIMITED means to only try and allocate one
49  * if we have very few chunks already allocated.  This is
50  * used as part of the clustering code to help make sure
51  * we have a good pool of storage to cluster in, without
52  * filling the FS with empty chunks
53  *
54  * CHUNK_ALLOC_FORCE means it must try to allocate one
55  *
56  */
57 enum {
58         CHUNK_ALLOC_NO_FORCE = 0,
59         CHUNK_ALLOC_LIMITED = 1,
60         CHUNK_ALLOC_FORCE = 2,
61 };
62
63 /*
64  * Control how reservations are dealt with.
65  *
66  * RESERVE_FREE - freeing a reservation.
67  * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
68  *   ENOSPC accounting
69  * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
70  *   bytes_may_use as the ENOSPC accounting is done elsewhere
71  */
72 enum {
73         RESERVE_FREE = 0,
74         RESERVE_ALLOC = 1,
75         RESERVE_ALLOC_NO_ACCOUNT = 2,
76 };
77
78 static int update_block_group(struct btrfs_trans_handle *trans,
79                               struct btrfs_root *root, u64 bytenr,
80                               u64 num_bytes, int alloc);
81 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
82                                 struct btrfs_root *root,
83                                 struct btrfs_delayed_ref_node *node, u64 parent,
84                                 u64 root_objectid, u64 owner_objectid,
85                                 u64 owner_offset, int refs_to_drop,
86                                 struct btrfs_delayed_extent_op *extra_op);
87 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
88                                     struct extent_buffer *leaf,
89                                     struct btrfs_extent_item *ei);
90 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
91                                       struct btrfs_root *root,
92                                       u64 parent, u64 root_objectid,
93                                       u64 flags, u64 owner, u64 offset,
94                                       struct btrfs_key *ins, int ref_mod);
95 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
96                                      struct btrfs_root *root,
97                                      u64 parent, u64 root_objectid,
98                                      u64 flags, struct btrfs_disk_key *key,
99                                      int level, struct btrfs_key *ins);
100 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
101                           struct btrfs_root *extent_root, u64 flags,
102                           int force);
103 static int find_next_key(struct btrfs_path *path, int level,
104                          struct btrfs_key *key);
105 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
106                             int dump_block_groups);
107 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
108                                        u64 num_bytes, int reserve,
109                                        int delalloc);
110 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
111                                u64 num_bytes);
112 int btrfs_pin_extent(struct btrfs_root *root,
113                      u64 bytenr, u64 num_bytes, int reserved);
114
115 static noinline int
116 block_group_cache_done(struct btrfs_block_group_cache *cache)
117 {
118         smp_mb();
119         return cache->cached == BTRFS_CACHE_FINISHED ||
120                 cache->cached == BTRFS_CACHE_ERROR;
121 }
122
123 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
124 {
125         return (cache->flags & bits) == bits;
126 }
127
128 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
129 {
130         atomic_inc(&cache->count);
131 }
132
133 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
134 {
135         if (atomic_dec_and_test(&cache->count)) {
136                 WARN_ON(cache->pinned > 0);
137                 WARN_ON(cache->reserved > 0);
138                 kfree(cache->free_space_ctl);
139                 kfree(cache);
140         }
141 }
142
143 /*
144  * this adds the block group to the fs_info rb tree for the block group
145  * cache
146  */
147 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
148                                 struct btrfs_block_group_cache *block_group)
149 {
150         struct rb_node **p;
151         struct rb_node *parent = NULL;
152         struct btrfs_block_group_cache *cache;
153
154         spin_lock(&info->block_group_cache_lock);
155         p = &info->block_group_cache_tree.rb_node;
156
157         while (*p) {
158                 parent = *p;
159                 cache = rb_entry(parent, struct btrfs_block_group_cache,
160                                  cache_node);
161                 if (block_group->key.objectid < cache->key.objectid) {
162                         p = &(*p)->rb_left;
163                 } else if (block_group->key.objectid > cache->key.objectid) {
164                         p = &(*p)->rb_right;
165                 } else {
166                         spin_unlock(&info->block_group_cache_lock);
167                         return -EEXIST;
168                 }
169         }
170
171         rb_link_node(&block_group->cache_node, parent, p);
172         rb_insert_color(&block_group->cache_node,
173                         &info->block_group_cache_tree);
174
175         if (info->first_logical_byte > block_group->key.objectid)
176                 info->first_logical_byte = block_group->key.objectid;
177
178         spin_unlock(&info->block_group_cache_lock);
179
180         return 0;
181 }
182
183 /*
184  * This will return the block group at or after bytenr if contains is 0, else
185  * it will return the block group that contains the bytenr
186  */
187 static struct btrfs_block_group_cache *
188 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
189                               int contains)
190 {
191         struct btrfs_block_group_cache *cache, *ret = NULL;
192         struct rb_node *n;
193         u64 end, start;
194
195         spin_lock(&info->block_group_cache_lock);
196         n = info->block_group_cache_tree.rb_node;
197
198         while (n) {
199                 cache = rb_entry(n, struct btrfs_block_group_cache,
200                                  cache_node);
201                 end = cache->key.objectid + cache->key.offset - 1;
202                 start = cache->key.objectid;
203
204                 if (bytenr < start) {
205                         if (!contains && (!ret || start < ret->key.objectid))
206                                 ret = cache;
207                         n = n->rb_left;
208                 } else if (bytenr > start) {
209                         if (contains && bytenr <= end) {
210                                 ret = cache;
211                                 break;
212                         }
213                         n = n->rb_right;
214                 } else {
215                         ret = cache;
216                         break;
217                 }
218         }
219         if (ret) {
220                 btrfs_get_block_group(ret);
221                 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
222                         info->first_logical_byte = ret->key.objectid;
223         }
224         spin_unlock(&info->block_group_cache_lock);
225
226         return ret;
227 }
228
229 static int add_excluded_extent(struct btrfs_root *root,
230                                u64 start, u64 num_bytes)
231 {
232         u64 end = start + num_bytes - 1;
233         set_extent_bits(&root->fs_info->freed_extents[0],
234                         start, end, EXTENT_UPTODATE);
235         set_extent_bits(&root->fs_info->freed_extents[1],
236                         start, end, EXTENT_UPTODATE);
237         return 0;
238 }
239
240 static void free_excluded_extents(struct btrfs_root *root,
241                                   struct btrfs_block_group_cache *cache)
242 {
243         u64 start, end;
244
245         start = cache->key.objectid;
246         end = start + cache->key.offset - 1;
247
248         clear_extent_bits(&root->fs_info->freed_extents[0],
249                           start, end, EXTENT_UPTODATE);
250         clear_extent_bits(&root->fs_info->freed_extents[1],
251                           start, end, EXTENT_UPTODATE);
252 }
253
254 static int exclude_super_stripes(struct btrfs_root *root,
255                                  struct btrfs_block_group_cache *cache)
256 {
257         u64 bytenr;
258         u64 *logical;
259         int stripe_len;
260         int i, nr, ret;
261
262         if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
263                 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
264                 cache->bytes_super += stripe_len;
265                 ret = add_excluded_extent(root, cache->key.objectid,
266                                           stripe_len);
267                 if (ret)
268                         return ret;
269         }
270
271         for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
272                 bytenr = btrfs_sb_offset(i);
273                 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
274                                        cache->key.objectid, bytenr,
275                                        0, &logical, &nr, &stripe_len);
276                 if (ret)
277                         return ret;
278
279                 while (nr--) {
280                         u64 start, len;
281
282                         if (logical[nr] > cache->key.objectid +
283                             cache->key.offset)
284                                 continue;
285
286                         if (logical[nr] + stripe_len <= cache->key.objectid)
287                                 continue;
288
289                         start = logical[nr];
290                         if (start < cache->key.objectid) {
291                                 start = cache->key.objectid;
292                                 len = (logical[nr] + stripe_len) - start;
293                         } else {
294                                 len = min_t(u64, stripe_len,
295                                             cache->key.objectid +
296                                             cache->key.offset - start);
297                         }
298
299                         cache->bytes_super += len;
300                         ret = add_excluded_extent(root, start, len);
301                         if (ret) {
302                                 kfree(logical);
303                                 return ret;
304                         }
305                 }
306
307                 kfree(logical);
308         }
309         return 0;
310 }
311
312 static struct btrfs_caching_control *
313 get_caching_control(struct btrfs_block_group_cache *cache)
314 {
315         struct btrfs_caching_control *ctl;
316
317         spin_lock(&cache->lock);
318         if (!cache->caching_ctl) {
319                 spin_unlock(&cache->lock);
320                 return NULL;
321         }
322
323         ctl = cache->caching_ctl;
324         atomic_inc(&ctl->count);
325         spin_unlock(&cache->lock);
326         return ctl;
327 }
328
329 static void put_caching_control(struct btrfs_caching_control *ctl)
330 {
331         if (atomic_dec_and_test(&ctl->count))
332                 kfree(ctl);
333 }
334
335 #ifdef CONFIG_BTRFS_DEBUG
336 static void fragment_free_space(struct btrfs_root *root,
337                                 struct btrfs_block_group_cache *block_group)
338 {
339         u64 start = block_group->key.objectid;
340         u64 len = block_group->key.offset;
341         u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
342                 root->nodesize : root->sectorsize;
343         u64 step = chunk << 1;
344
345         while (len > chunk) {
346                 btrfs_remove_free_space(block_group, start, chunk);
347                 start += step;
348                 if (len < step)
349                         len = 0;
350                 else
351                         len -= step;
352         }
353 }
354 #endif
355
356 /*
357  * this is only called by cache_block_group, since we could have freed extents
358  * we need to check the pinned_extents for any extents that can't be used yet
359  * since their free space will be released as soon as the transaction commits.
360  */
361 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
362                        struct btrfs_fs_info *info, u64 start, u64 end)
363 {
364         u64 extent_start, extent_end, size, total_added = 0;
365         int ret;
366
367         while (start < end) {
368                 ret = find_first_extent_bit(info->pinned_extents, start,
369                                             &extent_start, &extent_end,
370                                             EXTENT_DIRTY | EXTENT_UPTODATE,
371                                             NULL);
372                 if (ret)
373                         break;
374
375                 if (extent_start <= start) {
376                         start = extent_end + 1;
377                 } else if (extent_start > start && extent_start < end) {
378                         size = extent_start - start;
379                         total_added += size;
380                         ret = btrfs_add_free_space(block_group, start,
381                                                    size);
382                         BUG_ON(ret); /* -ENOMEM or logic error */
383                         start = extent_end + 1;
384                 } else {
385                         break;
386                 }
387         }
388
389         if (start < end) {
390                 size = end - start;
391                 total_added += size;
392                 ret = btrfs_add_free_space(block_group, start, size);
393                 BUG_ON(ret); /* -ENOMEM or logic error */
394         }
395
396         return total_added;
397 }
398
399 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
400 {
401         struct btrfs_block_group_cache *block_group;
402         struct btrfs_fs_info *fs_info;
403         struct btrfs_root *extent_root;
404         struct btrfs_path *path;
405         struct extent_buffer *leaf;
406         struct btrfs_key key;
407         u64 total_found = 0;
408         u64 last = 0;
409         u32 nritems;
410         int ret;
411         bool wakeup = true;
412
413         block_group = caching_ctl->block_group;
414         fs_info = block_group->fs_info;
415         extent_root = fs_info->extent_root;
416
417         path = btrfs_alloc_path();
418         if (!path)
419                 return -ENOMEM;
420
421         last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
422
423 #ifdef CONFIG_BTRFS_DEBUG
424         /*
425          * If we're fragmenting we don't want to make anybody think we can
426          * allocate from this block group until we've had a chance to fragment
427          * the free space.
428          */
429         if (btrfs_should_fragment_free_space(extent_root, block_group))
430                 wakeup = false;
431 #endif
432         /*
433          * We don't want to deadlock with somebody trying to allocate a new
434          * extent for the extent root while also trying to search the extent
435          * root to add free space.  So we skip locking and search the commit
436          * root, since its read-only
437          */
438         path->skip_locking = 1;
439         path->search_commit_root = 1;
440         path->reada = READA_FORWARD;
441
442         key.objectid = last;
443         key.offset = 0;
444         key.type = BTRFS_EXTENT_ITEM_KEY;
445
446 next:
447         ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
448         if (ret < 0)
449                 goto out;
450
451         leaf = path->nodes[0];
452         nritems = btrfs_header_nritems(leaf);
453
454         while (1) {
455                 if (btrfs_fs_closing(fs_info) > 1) {
456                         last = (u64)-1;
457                         break;
458                 }
459
460                 if (path->slots[0] < nritems) {
461                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
462                 } else {
463                         ret = find_next_key(path, 0, &key);
464                         if (ret)
465                                 break;
466
467                         if (need_resched() ||
468                             rwsem_is_contended(&fs_info->commit_root_sem)) {
469                                 if (wakeup)
470                                         caching_ctl->progress = last;
471                                 btrfs_release_path(path);
472                                 up_read(&fs_info->commit_root_sem);
473                                 mutex_unlock(&caching_ctl->mutex);
474                                 cond_resched();
475                                 mutex_lock(&caching_ctl->mutex);
476                                 down_read(&fs_info->commit_root_sem);
477                                 goto next;
478                         }
479
480                         ret = btrfs_next_leaf(extent_root, path);
481                         if (ret < 0)
482                                 goto out;
483                         if (ret)
484                                 break;
485                         leaf = path->nodes[0];
486                         nritems = btrfs_header_nritems(leaf);
487                         continue;
488                 }
489
490                 if (key.objectid < last) {
491                         key.objectid = last;
492                         key.offset = 0;
493                         key.type = BTRFS_EXTENT_ITEM_KEY;
494
495                         if (wakeup)
496                                 caching_ctl->progress = last;
497                         btrfs_release_path(path);
498                         goto next;
499                 }
500
501                 if (key.objectid < block_group->key.objectid) {
502                         path->slots[0]++;
503                         continue;
504                 }
505
506                 if (key.objectid >= block_group->key.objectid +
507                     block_group->key.offset)
508                         break;
509
510                 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
511                     key.type == BTRFS_METADATA_ITEM_KEY) {
512                         total_found += add_new_free_space(block_group,
513                                                           fs_info, last,
514                                                           key.objectid);
515                         if (key.type == BTRFS_METADATA_ITEM_KEY)
516                                 last = key.objectid +
517                                         fs_info->tree_root->nodesize;
518                         else
519                                 last = key.objectid + key.offset;
520
521                         if (total_found > CACHING_CTL_WAKE_UP) {
522                                 total_found = 0;
523                                 if (wakeup)
524                                         wake_up(&caching_ctl->wait);
525                         }
526                 }
527                 path->slots[0]++;
528         }
529         ret = 0;
530
531         total_found += add_new_free_space(block_group, fs_info, last,
532                                           block_group->key.objectid +
533                                           block_group->key.offset);
534         caching_ctl->progress = (u64)-1;
535
536 out:
537         btrfs_free_path(path);
538         return ret;
539 }
540
541 static noinline void caching_thread(struct btrfs_work *work)
542 {
543         struct btrfs_block_group_cache *block_group;
544         struct btrfs_fs_info *fs_info;
545         struct btrfs_caching_control *caching_ctl;
546         struct btrfs_root *extent_root;
547         int ret;
548
549         caching_ctl = container_of(work, struct btrfs_caching_control, work);
550         block_group = caching_ctl->block_group;
551         fs_info = block_group->fs_info;
552         extent_root = fs_info->extent_root;
553
554         mutex_lock(&caching_ctl->mutex);
555         down_read(&fs_info->commit_root_sem);
556
557         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
558                 ret = load_free_space_tree(caching_ctl);
559         else
560                 ret = load_extent_tree_free(caching_ctl);
561
562         spin_lock(&block_group->lock);
563         block_group->caching_ctl = NULL;
564         block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
565         spin_unlock(&block_group->lock);
566
567 #ifdef CONFIG_BTRFS_DEBUG
568         if (btrfs_should_fragment_free_space(extent_root, block_group)) {
569                 u64 bytes_used;
570
571                 spin_lock(&block_group->space_info->lock);
572                 spin_lock(&block_group->lock);
573                 bytes_used = block_group->key.offset -
574                         btrfs_block_group_used(&block_group->item);
575                 block_group->space_info->bytes_used += bytes_used >> 1;
576                 spin_unlock(&block_group->lock);
577                 spin_unlock(&block_group->space_info->lock);
578                 fragment_free_space(extent_root, block_group);
579         }
580 #endif
581
582         caching_ctl->progress = (u64)-1;
583
584         up_read(&fs_info->commit_root_sem);
585         free_excluded_extents(fs_info->extent_root, block_group);
586         mutex_unlock(&caching_ctl->mutex);
587
588         wake_up(&caching_ctl->wait);
589
590         put_caching_control(caching_ctl);
591         btrfs_put_block_group(block_group);
592 }
593
594 static int cache_block_group(struct btrfs_block_group_cache *cache,
595                              int load_cache_only)
596 {
597         DEFINE_WAIT(wait);
598         struct btrfs_fs_info *fs_info = cache->fs_info;
599         struct btrfs_caching_control *caching_ctl;
600         int ret = 0;
601
602         caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
603         if (!caching_ctl)
604                 return -ENOMEM;
605
606         INIT_LIST_HEAD(&caching_ctl->list);
607         mutex_init(&caching_ctl->mutex);
608         init_waitqueue_head(&caching_ctl->wait);
609         caching_ctl->block_group = cache;
610         caching_ctl->progress = cache->key.objectid;
611         atomic_set(&caching_ctl->count, 1);
612         btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
613                         caching_thread, NULL, NULL);
614
615         spin_lock(&cache->lock);
616         /*
617          * This should be a rare occasion, but this could happen I think in the
618          * case where one thread starts to load the space cache info, and then
619          * some other thread starts a transaction commit which tries to do an
620          * allocation while the other thread is still loading the space cache
621          * info.  The previous loop should have kept us from choosing this block
622          * group, but if we've moved to the state where we will wait on caching
623          * block groups we need to first check if we're doing a fast load here,
624          * so we can wait for it to finish, otherwise we could end up allocating
625          * from a block group who's cache gets evicted for one reason or
626          * another.
627          */
628         while (cache->cached == BTRFS_CACHE_FAST) {
629                 struct btrfs_caching_control *ctl;
630
631                 ctl = cache->caching_ctl;
632                 atomic_inc(&ctl->count);
633                 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
634                 spin_unlock(&cache->lock);
635
636                 schedule();
637
638                 finish_wait(&ctl->wait, &wait);
639                 put_caching_control(ctl);
640                 spin_lock(&cache->lock);
641         }
642
643         if (cache->cached != BTRFS_CACHE_NO) {
644                 spin_unlock(&cache->lock);
645                 kfree(caching_ctl);
646                 return 0;
647         }
648         WARN_ON(cache->caching_ctl);
649         cache->caching_ctl = caching_ctl;
650         cache->cached = BTRFS_CACHE_FAST;
651         spin_unlock(&cache->lock);
652
653         if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
654                 mutex_lock(&caching_ctl->mutex);
655                 ret = load_free_space_cache(fs_info, cache);
656
657                 spin_lock(&cache->lock);
658                 if (ret == 1) {
659                         cache->caching_ctl = NULL;
660                         cache->cached = BTRFS_CACHE_FINISHED;
661                         cache->last_byte_to_unpin = (u64)-1;
662                         caching_ctl->progress = (u64)-1;
663                 } else {
664                         if (load_cache_only) {
665                                 cache->caching_ctl = NULL;
666                                 cache->cached = BTRFS_CACHE_NO;
667                         } else {
668                                 cache->cached = BTRFS_CACHE_STARTED;
669                                 cache->has_caching_ctl = 1;
670                         }
671                 }
672                 spin_unlock(&cache->lock);
673 #ifdef CONFIG_BTRFS_DEBUG
674                 if (ret == 1 &&
675                     btrfs_should_fragment_free_space(fs_info->extent_root,
676                                                      cache)) {
677                         u64 bytes_used;
678
679                         spin_lock(&cache->space_info->lock);
680                         spin_lock(&cache->lock);
681                         bytes_used = cache->key.offset -
682                                 btrfs_block_group_used(&cache->item);
683                         cache->space_info->bytes_used += bytes_used >> 1;
684                         spin_unlock(&cache->lock);
685                         spin_unlock(&cache->space_info->lock);
686                         fragment_free_space(fs_info->extent_root, cache);
687                 }
688 #endif
689                 mutex_unlock(&caching_ctl->mutex);
690
691                 wake_up(&caching_ctl->wait);
692                 if (ret == 1) {
693                         put_caching_control(caching_ctl);
694                         free_excluded_extents(fs_info->extent_root, cache);
695                         return 0;
696                 }
697         } else {
698                 /*
699                  * We're either using the free space tree or no caching at all.
700                  * Set cached to the appropriate value and wakeup any waiters.
701                  */
702                 spin_lock(&cache->lock);
703                 if (load_cache_only) {
704                         cache->caching_ctl = NULL;
705                         cache->cached = BTRFS_CACHE_NO;
706                 } else {
707                         cache->cached = BTRFS_CACHE_STARTED;
708                         cache->has_caching_ctl = 1;
709                 }
710                 spin_unlock(&cache->lock);
711                 wake_up(&caching_ctl->wait);
712         }
713
714         if (load_cache_only) {
715                 put_caching_control(caching_ctl);
716                 return 0;
717         }
718
719         down_write(&fs_info->commit_root_sem);
720         atomic_inc(&caching_ctl->count);
721         list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
722         up_write(&fs_info->commit_root_sem);
723
724         btrfs_get_block_group(cache);
725
726         btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
727
728         return ret;
729 }
730
731 /*
732  * return the block group that starts at or after bytenr
733  */
734 static struct btrfs_block_group_cache *
735 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
736 {
737         struct btrfs_block_group_cache *cache;
738
739         cache = block_group_cache_tree_search(info, bytenr, 0);
740
741         return cache;
742 }
743
744 /*
745  * return the block group that contains the given bytenr
746  */
747 struct btrfs_block_group_cache *btrfs_lookup_block_group(
748                                                  struct btrfs_fs_info *info,
749                                                  u64 bytenr)
750 {
751         struct btrfs_block_group_cache *cache;
752
753         cache = block_group_cache_tree_search(info, bytenr, 1);
754
755         return cache;
756 }
757
758 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
759                                                   u64 flags)
760 {
761         struct list_head *head = &info->space_info;
762         struct btrfs_space_info *found;
763
764         flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
765
766         rcu_read_lock();
767         list_for_each_entry_rcu(found, head, list) {
768                 if (found->flags & flags) {
769                         rcu_read_unlock();
770                         return found;
771                 }
772         }
773         rcu_read_unlock();
774         return NULL;
775 }
776
777 /*
778  * after adding space to the filesystem, we need to clear the full flags
779  * on all the space infos.
780  */
781 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
782 {
783         struct list_head *head = &info->space_info;
784         struct btrfs_space_info *found;
785
786         rcu_read_lock();
787         list_for_each_entry_rcu(found, head, list)
788                 found->full = 0;
789         rcu_read_unlock();
790 }
791
792 /* simple helper to search for an existing data extent at a given offset */
793 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
794 {
795         int ret;
796         struct btrfs_key key;
797         struct btrfs_path *path;
798
799         path = btrfs_alloc_path();
800         if (!path)
801                 return -ENOMEM;
802
803         key.objectid = start;
804         key.offset = len;
805         key.type = BTRFS_EXTENT_ITEM_KEY;
806         ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
807                                 0, 0);
808         btrfs_free_path(path);
809         return ret;
810 }
811
812 /*
813  * helper function to lookup reference count and flags of a tree block.
814  *
815  * the head node for delayed ref is used to store the sum of all the
816  * reference count modifications queued up in the rbtree. the head
817  * node may also store the extent flags to set. This way you can check
818  * to see what the reference count and extent flags would be if all of
819  * the delayed refs are not processed.
820  */
821 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
822                              struct btrfs_root *root, u64 bytenr,
823                              u64 offset, int metadata, u64 *refs, u64 *flags)
824 {
825         struct btrfs_delayed_ref_head *head;
826         struct btrfs_delayed_ref_root *delayed_refs;
827         struct btrfs_path *path;
828         struct btrfs_extent_item *ei;
829         struct extent_buffer *leaf;
830         struct btrfs_key key;
831         u32 item_size;
832         u64 num_refs;
833         u64 extent_flags;
834         int ret;
835
836         /*
837          * If we don't have skinny metadata, don't bother doing anything
838          * different
839          */
840         if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
841                 offset = root->nodesize;
842                 metadata = 0;
843         }
844
845         path = btrfs_alloc_path();
846         if (!path)
847                 return -ENOMEM;
848
849         if (!trans) {
850                 path->skip_locking = 1;
851                 path->search_commit_root = 1;
852         }
853
854 search_again:
855         key.objectid = bytenr;
856         key.offset = offset;
857         if (metadata)
858                 key.type = BTRFS_METADATA_ITEM_KEY;
859         else
860                 key.type = BTRFS_EXTENT_ITEM_KEY;
861
862         ret = btrfs_search_slot(trans, root->fs_info->extent_root,
863                                 &key, path, 0, 0);
864         if (ret < 0)
865                 goto out_free;
866
867         if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
868                 if (path->slots[0]) {
869                         path->slots[0]--;
870                         btrfs_item_key_to_cpu(path->nodes[0], &key,
871                                               path->slots[0]);
872                         if (key.objectid == bytenr &&
873                             key.type == BTRFS_EXTENT_ITEM_KEY &&
874                             key.offset == root->nodesize)
875                                 ret = 0;
876                 }
877         }
878
879         if (ret == 0) {
880                 leaf = path->nodes[0];
881                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
882                 if (item_size >= sizeof(*ei)) {
883                         ei = btrfs_item_ptr(leaf, path->slots[0],
884                                             struct btrfs_extent_item);
885                         num_refs = btrfs_extent_refs(leaf, ei);
886                         extent_flags = btrfs_extent_flags(leaf, ei);
887                 } else {
888 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
889                         struct btrfs_extent_item_v0 *ei0;
890                         BUG_ON(item_size != sizeof(*ei0));
891                         ei0 = btrfs_item_ptr(leaf, path->slots[0],
892                                              struct btrfs_extent_item_v0);
893                         num_refs = btrfs_extent_refs_v0(leaf, ei0);
894                         /* FIXME: this isn't correct for data */
895                         extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
896 #else
897                         BUG();
898 #endif
899                 }
900                 BUG_ON(num_refs == 0);
901         } else {
902                 num_refs = 0;
903                 extent_flags = 0;
904                 ret = 0;
905         }
906
907         if (!trans)
908                 goto out;
909
910         delayed_refs = &trans->transaction->delayed_refs;
911         spin_lock(&delayed_refs->lock);
912         head = btrfs_find_delayed_ref_head(trans, bytenr);
913         if (head) {
914                 if (!mutex_trylock(&head->mutex)) {
915                         atomic_inc(&head->node.refs);
916                         spin_unlock(&delayed_refs->lock);
917
918                         btrfs_release_path(path);
919
920                         /*
921                          * Mutex was contended, block until it's released and try
922                          * again
923                          */
924                         mutex_lock(&head->mutex);
925                         mutex_unlock(&head->mutex);
926                         btrfs_put_delayed_ref(&head->node);
927                         goto search_again;
928                 }
929                 spin_lock(&head->lock);
930                 if (head->extent_op && head->extent_op->update_flags)
931                         extent_flags |= head->extent_op->flags_to_set;
932                 else
933                         BUG_ON(num_refs == 0);
934
935                 num_refs += head->node.ref_mod;
936                 spin_unlock(&head->lock);
937                 mutex_unlock(&head->mutex);
938         }
939         spin_unlock(&delayed_refs->lock);
940 out:
941         WARN_ON(num_refs == 0);
942         if (refs)
943                 *refs = num_refs;
944         if (flags)
945                 *flags = extent_flags;
946 out_free:
947         btrfs_free_path(path);
948         return ret;
949 }
950
951 /*
952  * Back reference rules.  Back refs have three main goals:
953  *
954  * 1) differentiate between all holders of references to an extent so that
955  *    when a reference is dropped we can make sure it was a valid reference
956  *    before freeing the extent.
957  *
958  * 2) Provide enough information to quickly find the holders of an extent
959  *    if we notice a given block is corrupted or bad.
960  *
961  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
962  *    maintenance.  This is actually the same as #2, but with a slightly
963  *    different use case.
964  *
965  * There are two kinds of back refs. The implicit back refs is optimized
966  * for pointers in non-shared tree blocks. For a given pointer in a block,
967  * back refs of this kind provide information about the block's owner tree
968  * and the pointer's key. These information allow us to find the block by
969  * b-tree searching. The full back refs is for pointers in tree blocks not
970  * referenced by their owner trees. The location of tree block is recorded
971  * in the back refs. Actually the full back refs is generic, and can be
972  * used in all cases the implicit back refs is used. The major shortcoming
973  * of the full back refs is its overhead. Every time a tree block gets
974  * COWed, we have to update back refs entry for all pointers in it.
975  *
976  * For a newly allocated tree block, we use implicit back refs for
977  * pointers in it. This means most tree related operations only involve
978  * implicit back refs. For a tree block created in old transaction, the
979  * only way to drop a reference to it is COW it. So we can detect the
980  * event that tree block loses its owner tree's reference and do the
981  * back refs conversion.
982  *
983  * When a tree block is COWed through a tree, there are four cases:
984  *
985  * The reference count of the block is one and the tree is the block's
986  * owner tree. Nothing to do in this case.
987  *
988  * The reference count of the block is one and the tree is not the
989  * block's owner tree. In this case, full back refs is used for pointers
990  * in the block. Remove these full back refs, add implicit back refs for
991  * every pointers in the new block.
992  *
993  * The reference count of the block is greater than one and the tree is
994  * the block's owner tree. In this case, implicit back refs is used for
995  * pointers in the block. Add full back refs for every pointers in the
996  * block, increase lower level extents' reference counts. The original
997  * implicit back refs are entailed to the new block.
998  *
999  * The reference count of the block is greater than one and the tree is
1000  * not the block's owner tree. Add implicit back refs for every pointer in
1001  * the new block, increase lower level extents' reference count.
1002  *
1003  * Back Reference Key composing:
1004  *
1005  * The key objectid corresponds to the first byte in the extent,
1006  * The key type is used to differentiate between types of back refs.
1007  * There are different meanings of the key offset for different types
1008  * of back refs.
1009  *
1010  * File extents can be referenced by:
1011  *
1012  * - multiple snapshots, subvolumes, or different generations in one subvol
1013  * - different files inside a single subvolume
1014  * - different offsets inside a file (bookend extents in file.c)
1015  *
1016  * The extent ref structure for the implicit back refs has fields for:
1017  *
1018  * - Objectid of the subvolume root
1019  * - objectid of the file holding the reference
1020  * - original offset in the file
1021  * - how many bookend extents
1022  *
1023  * The key offset for the implicit back refs is hash of the first
1024  * three fields.
1025  *
1026  * The extent ref structure for the full back refs has field for:
1027  *
1028  * - number of pointers in the tree leaf
1029  *
1030  * The key offset for the implicit back refs is the first byte of
1031  * the tree leaf
1032  *
1033  * When a file extent is allocated, The implicit back refs is used.
1034  * the fields are filled in:
1035  *
1036  *     (root_key.objectid, inode objectid, offset in file, 1)
1037  *
1038  * When a file extent is removed file truncation, we find the
1039  * corresponding implicit back refs and check the following fields:
1040  *
1041  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
1042  *
1043  * Btree extents can be referenced by:
1044  *
1045  * - Different subvolumes
1046  *
1047  * Both the implicit back refs and the full back refs for tree blocks
1048  * only consist of key. The key offset for the implicit back refs is
1049  * objectid of block's owner tree. The key offset for the full back refs
1050  * is the first byte of parent block.
1051  *
1052  * When implicit back refs is used, information about the lowest key and
1053  * level of the tree block are required. These information are stored in
1054  * tree block info structure.
1055  */
1056
1057 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1058 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1059                                   struct btrfs_root *root,
1060                                   struct btrfs_path *path,
1061                                   u64 owner, u32 extra_size)
1062 {
1063         struct btrfs_extent_item *item;
1064         struct btrfs_extent_item_v0 *ei0;
1065         struct btrfs_extent_ref_v0 *ref0;
1066         struct btrfs_tree_block_info *bi;
1067         struct extent_buffer *leaf;
1068         struct btrfs_key key;
1069         struct btrfs_key found_key;
1070         u32 new_size = sizeof(*item);
1071         u64 refs;
1072         int ret;
1073
1074         leaf = path->nodes[0];
1075         BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1076
1077         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1078         ei0 = btrfs_item_ptr(leaf, path->slots[0],
1079                              struct btrfs_extent_item_v0);
1080         refs = btrfs_extent_refs_v0(leaf, ei0);
1081
1082         if (owner == (u64)-1) {
1083                 while (1) {
1084                         if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1085                                 ret = btrfs_next_leaf(root, path);
1086                                 if (ret < 0)
1087                                         return ret;
1088                                 BUG_ON(ret > 0); /* Corruption */
1089                                 leaf = path->nodes[0];
1090                         }
1091                         btrfs_item_key_to_cpu(leaf, &found_key,
1092                                               path->slots[0]);
1093                         BUG_ON(key.objectid != found_key.objectid);
1094                         if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1095                                 path->slots[0]++;
1096                                 continue;
1097                         }
1098                         ref0 = btrfs_item_ptr(leaf, path->slots[0],
1099                                               struct btrfs_extent_ref_v0);
1100                         owner = btrfs_ref_objectid_v0(leaf, ref0);
1101                         break;
1102                 }
1103         }
1104         btrfs_release_path(path);
1105
1106         if (owner < BTRFS_FIRST_FREE_OBJECTID)
1107                 new_size += sizeof(*bi);
1108
1109         new_size -= sizeof(*ei0);
1110         ret = btrfs_search_slot(trans, root, &key, path,
1111                                 new_size + extra_size, 1);
1112         if (ret < 0)
1113                 return ret;
1114         BUG_ON(ret); /* Corruption */
1115
1116         btrfs_extend_item(root, path, new_size);
1117
1118         leaf = path->nodes[0];
1119         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1120         btrfs_set_extent_refs(leaf, item, refs);
1121         /* FIXME: get real generation */
1122         btrfs_set_extent_generation(leaf, item, 0);
1123         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1124                 btrfs_set_extent_flags(leaf, item,
1125                                        BTRFS_EXTENT_FLAG_TREE_BLOCK |
1126                                        BTRFS_BLOCK_FLAG_FULL_BACKREF);
1127                 bi = (struct btrfs_tree_block_info *)(item + 1);
1128                 /* FIXME: get first key of the block */
1129                 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1130                 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1131         } else {
1132                 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1133         }
1134         btrfs_mark_buffer_dirty(leaf);
1135         return 0;
1136 }
1137 #endif
1138
1139 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1140 {
1141         u32 high_crc = ~(u32)0;
1142         u32 low_crc = ~(u32)0;
1143         __le64 lenum;
1144
1145         lenum = cpu_to_le64(root_objectid);
1146         high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1147         lenum = cpu_to_le64(owner);
1148         low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1149         lenum = cpu_to_le64(offset);
1150         low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1151
1152         return ((u64)high_crc << 31) ^ (u64)low_crc;
1153 }
1154
1155 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1156                                      struct btrfs_extent_data_ref *ref)
1157 {
1158         return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1159                                     btrfs_extent_data_ref_objectid(leaf, ref),
1160                                     btrfs_extent_data_ref_offset(leaf, ref));
1161 }
1162
1163 static int match_extent_data_ref(struct extent_buffer *leaf,
1164                                  struct btrfs_extent_data_ref *ref,
1165                                  u64 root_objectid, u64 owner, u64 offset)
1166 {
1167         if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1168             btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1169             btrfs_extent_data_ref_offset(leaf, ref) != offset)
1170                 return 0;
1171         return 1;
1172 }
1173
1174 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1175                                            struct btrfs_root *root,
1176                                            struct btrfs_path *path,
1177                                            u64 bytenr, u64 parent,
1178                                            u64 root_objectid,
1179                                            u64 owner, u64 offset)
1180 {
1181         struct btrfs_key key;
1182         struct btrfs_extent_data_ref *ref;
1183         struct extent_buffer *leaf;
1184         u32 nritems;
1185         int ret;
1186         int recow;
1187         int err = -ENOENT;
1188
1189         key.objectid = bytenr;
1190         if (parent) {
1191                 key.type = BTRFS_SHARED_DATA_REF_KEY;
1192                 key.offset = parent;
1193         } else {
1194                 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1195                 key.offset = hash_extent_data_ref(root_objectid,
1196                                                   owner, offset);
1197         }
1198 again:
1199         recow = 0;
1200         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1201         if (ret < 0) {
1202                 err = ret;
1203                 goto fail;
1204         }
1205
1206         if (parent) {
1207                 if (!ret)
1208                         return 0;
1209 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1210                 key.type = BTRFS_EXTENT_REF_V0_KEY;
1211                 btrfs_release_path(path);
1212                 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1213                 if (ret < 0) {
1214                         err = ret;
1215                         goto fail;
1216                 }
1217                 if (!ret)
1218                         return 0;
1219 #endif
1220                 goto fail;
1221         }
1222
1223         leaf = path->nodes[0];
1224         nritems = btrfs_header_nritems(leaf);
1225         while (1) {
1226                 if (path->slots[0] >= nritems) {
1227                         ret = btrfs_next_leaf(root, path);
1228                         if (ret < 0)
1229                                 err = ret;
1230                         if (ret)
1231                                 goto fail;
1232
1233                         leaf = path->nodes[0];
1234                         nritems = btrfs_header_nritems(leaf);
1235                         recow = 1;
1236                 }
1237
1238                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1239                 if (key.objectid != bytenr ||
1240                     key.type != BTRFS_EXTENT_DATA_REF_KEY)
1241                         goto fail;
1242
1243                 ref = btrfs_item_ptr(leaf, path->slots[0],
1244                                      struct btrfs_extent_data_ref);
1245
1246                 if (match_extent_data_ref(leaf, ref, root_objectid,
1247                                           owner, offset)) {
1248                         if (recow) {
1249                                 btrfs_release_path(path);
1250                                 goto again;
1251                         }
1252                         err = 0;
1253                         break;
1254                 }
1255                 path->slots[0]++;
1256         }
1257 fail:
1258         return err;
1259 }
1260
1261 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1262                                            struct btrfs_root *root,
1263                                            struct btrfs_path *path,
1264                                            u64 bytenr, u64 parent,
1265                                            u64 root_objectid, u64 owner,
1266                                            u64 offset, int refs_to_add)
1267 {
1268         struct btrfs_key key;
1269         struct extent_buffer *leaf;
1270         u32 size;
1271         u32 num_refs;
1272         int ret;
1273
1274         key.objectid = bytenr;
1275         if (parent) {
1276                 key.type = BTRFS_SHARED_DATA_REF_KEY;
1277                 key.offset = parent;
1278                 size = sizeof(struct btrfs_shared_data_ref);
1279         } else {
1280                 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1281                 key.offset = hash_extent_data_ref(root_objectid,
1282                                                   owner, offset);
1283                 size = sizeof(struct btrfs_extent_data_ref);
1284         }
1285
1286         ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1287         if (ret && ret != -EEXIST)
1288                 goto fail;
1289
1290         leaf = path->nodes[0];
1291         if (parent) {
1292                 struct btrfs_shared_data_ref *ref;
1293                 ref = btrfs_item_ptr(leaf, path->slots[0],
1294                                      struct btrfs_shared_data_ref);
1295                 if (ret == 0) {
1296                         btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1297                 } else {
1298                         num_refs = btrfs_shared_data_ref_count(leaf, ref);
1299                         num_refs += refs_to_add;
1300                         btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1301                 }
1302         } else {
1303                 struct btrfs_extent_data_ref *ref;
1304                 while (ret == -EEXIST) {
1305                         ref = btrfs_item_ptr(leaf, path->slots[0],
1306                                              struct btrfs_extent_data_ref);
1307                         if (match_extent_data_ref(leaf, ref, root_objectid,
1308                                                   owner, offset))
1309                                 break;
1310                         btrfs_release_path(path);
1311                         key.offset++;
1312                         ret = btrfs_insert_empty_item(trans, root, path, &key,
1313                                                       size);
1314                         if (ret && ret != -EEXIST)
1315                                 goto fail;
1316
1317                         leaf = path->nodes[0];
1318                 }
1319                 ref = btrfs_item_ptr(leaf, path->slots[0],
1320                                      struct btrfs_extent_data_ref);
1321                 if (ret == 0) {
1322                         btrfs_set_extent_data_ref_root(leaf, ref,
1323                                                        root_objectid);
1324                         btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1325                         btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1326                         btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1327                 } else {
1328                         num_refs = btrfs_extent_data_ref_count(leaf, ref);
1329                         num_refs += refs_to_add;
1330                         btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1331                 }
1332         }
1333         btrfs_mark_buffer_dirty(leaf);
1334         ret = 0;
1335 fail:
1336         btrfs_release_path(path);
1337         return ret;
1338 }
1339
1340 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1341                                            struct btrfs_root *root,
1342                                            struct btrfs_path *path,
1343                                            int refs_to_drop, int *last_ref)
1344 {
1345         struct btrfs_key key;
1346         struct btrfs_extent_data_ref *ref1 = NULL;
1347         struct btrfs_shared_data_ref *ref2 = NULL;
1348         struct extent_buffer *leaf;
1349         u32 num_refs = 0;
1350         int ret = 0;
1351
1352         leaf = path->nodes[0];
1353         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1354
1355         if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1356                 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1357                                       struct btrfs_extent_data_ref);
1358                 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1359         } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1360                 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1361                                       struct btrfs_shared_data_ref);
1362                 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1363 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1364         } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1365                 struct btrfs_extent_ref_v0 *ref0;
1366                 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1367                                       struct btrfs_extent_ref_v0);
1368                 num_refs = btrfs_ref_count_v0(leaf, ref0);
1369 #endif
1370         } else {
1371                 BUG();
1372         }
1373
1374         BUG_ON(num_refs < refs_to_drop);
1375         num_refs -= refs_to_drop;
1376
1377         if (num_refs == 0) {
1378                 ret = btrfs_del_item(trans, root, path);
1379                 *last_ref = 1;
1380         } else {
1381                 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1382                         btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1383                 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1384                         btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1385 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1386                 else {
1387                         struct btrfs_extent_ref_v0 *ref0;
1388                         ref0 = btrfs_item_ptr(leaf, path->slots[0],
1389                                         struct btrfs_extent_ref_v0);
1390                         btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1391                 }
1392 #endif
1393                 btrfs_mark_buffer_dirty(leaf);
1394         }
1395         return ret;
1396 }
1397
1398 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1399                                           struct btrfs_extent_inline_ref *iref)
1400 {
1401         struct btrfs_key key;
1402         struct extent_buffer *leaf;
1403         struct btrfs_extent_data_ref *ref1;
1404         struct btrfs_shared_data_ref *ref2;
1405         u32 num_refs = 0;
1406
1407         leaf = path->nodes[0];
1408         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1409         if (iref) {
1410                 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1411                     BTRFS_EXTENT_DATA_REF_KEY) {
1412                         ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1413                         num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1414                 } else {
1415                         ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1416                         num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1417                 }
1418         } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1419                 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1420                                       struct btrfs_extent_data_ref);
1421                 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1422         } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1423                 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1424                                       struct btrfs_shared_data_ref);
1425                 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1426 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1427         } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1428                 struct btrfs_extent_ref_v0 *ref0;
1429                 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1430                                       struct btrfs_extent_ref_v0);
1431                 num_refs = btrfs_ref_count_v0(leaf, ref0);
1432 #endif
1433         } else {
1434                 WARN_ON(1);
1435         }
1436         return num_refs;
1437 }
1438
1439 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1440                                           struct btrfs_root *root,
1441                                           struct btrfs_path *path,
1442                                           u64 bytenr, u64 parent,
1443                                           u64 root_objectid)
1444 {
1445         struct btrfs_key key;
1446         int ret;
1447
1448         key.objectid = bytenr;
1449         if (parent) {
1450                 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1451                 key.offset = parent;
1452         } else {
1453                 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1454                 key.offset = root_objectid;
1455         }
1456
1457         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1458         if (ret > 0)
1459                 ret = -ENOENT;
1460 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1461         if (ret == -ENOENT && parent) {
1462                 btrfs_release_path(path);
1463                 key.type = BTRFS_EXTENT_REF_V0_KEY;
1464                 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1465                 if (ret > 0)
1466                         ret = -ENOENT;
1467         }
1468 #endif
1469         return ret;
1470 }
1471
1472 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1473                                           struct btrfs_root *root,
1474                                           struct btrfs_path *path,
1475                                           u64 bytenr, u64 parent,
1476                                           u64 root_objectid)
1477 {
1478         struct btrfs_key key;
1479         int ret;
1480
1481         key.objectid = bytenr;
1482         if (parent) {
1483                 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1484                 key.offset = parent;
1485         } else {
1486                 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1487                 key.offset = root_objectid;
1488         }
1489
1490         ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1491         btrfs_release_path(path);
1492         return ret;
1493 }
1494
1495 static inline int extent_ref_type(u64 parent, u64 owner)
1496 {
1497         int type;
1498         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1499                 if (parent > 0)
1500                         type = BTRFS_SHARED_BLOCK_REF_KEY;
1501                 else
1502                         type = BTRFS_TREE_BLOCK_REF_KEY;
1503         } else {
1504                 if (parent > 0)
1505                         type = BTRFS_SHARED_DATA_REF_KEY;
1506                 else
1507                         type = BTRFS_EXTENT_DATA_REF_KEY;
1508         }
1509         return type;
1510 }
1511
1512 static int find_next_key(struct btrfs_path *path, int level,
1513                          struct btrfs_key *key)
1514
1515 {
1516         for (; level < BTRFS_MAX_LEVEL; level++) {
1517                 if (!path->nodes[level])
1518                         break;
1519                 if (path->slots[level] + 1 >=
1520                     btrfs_header_nritems(path->nodes[level]))
1521                         continue;
1522                 if (level == 0)
1523                         btrfs_item_key_to_cpu(path->nodes[level], key,
1524                                               path->slots[level] + 1);
1525                 else
1526                         btrfs_node_key_to_cpu(path->nodes[level], key,
1527                                               path->slots[level] + 1);
1528                 return 0;
1529         }
1530         return 1;
1531 }
1532
1533 /*
1534  * look for inline back ref. if back ref is found, *ref_ret is set
1535  * to the address of inline back ref, and 0 is returned.
1536  *
1537  * if back ref isn't found, *ref_ret is set to the address where it
1538  * should be inserted, and -ENOENT is returned.
1539  *
1540  * if insert is true and there are too many inline back refs, the path
1541  * points to the extent item, and -EAGAIN is returned.
1542  *
1543  * NOTE: inline back refs are ordered in the same way that back ref
1544  *       items in the tree are ordered.
1545  */
1546 static noinline_for_stack
1547 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1548                                  struct btrfs_root *root,
1549                                  struct btrfs_path *path,
1550                                  struct btrfs_extent_inline_ref **ref_ret,
1551                                  u64 bytenr, u64 num_bytes,
1552                                  u64 parent, u64 root_objectid,
1553                                  u64 owner, u64 offset, int insert)
1554 {
1555         struct btrfs_key key;
1556         struct extent_buffer *leaf;
1557         struct btrfs_extent_item *ei;
1558         struct btrfs_extent_inline_ref *iref;
1559         u64 flags;
1560         u64 item_size;
1561         unsigned long ptr;
1562         unsigned long end;
1563         int extra_size;
1564         int type;
1565         int want;
1566         int ret;
1567         int err = 0;
1568         bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1569                                                  SKINNY_METADATA);
1570
1571         key.objectid = bytenr;
1572         key.type = BTRFS_EXTENT_ITEM_KEY;
1573         key.offset = num_bytes;
1574
1575         want = extent_ref_type(parent, owner);
1576         if (insert) {
1577                 extra_size = btrfs_extent_inline_ref_size(want);
1578                 path->keep_locks = 1;
1579         } else
1580                 extra_size = -1;
1581
1582         /*
1583          * Owner is our parent level, so we can just add one to get the level
1584          * for the block we are interested in.
1585          */
1586         if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1587                 key.type = BTRFS_METADATA_ITEM_KEY;
1588                 key.offset = owner;
1589         }
1590
1591 again:
1592         ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1593         if (ret < 0) {
1594                 err = ret;
1595                 goto out;
1596         }
1597
1598         /*
1599          * We may be a newly converted file system which still has the old fat
1600          * extent entries for metadata, so try and see if we have one of those.
1601          */
1602         if (ret > 0 && skinny_metadata) {
1603                 skinny_metadata = false;
1604                 if (path->slots[0]) {
1605                         path->slots[0]--;
1606                         btrfs_item_key_to_cpu(path->nodes[0], &key,
1607                                               path->slots[0]);
1608                         if (key.objectid == bytenr &&
1609                             key.type == BTRFS_EXTENT_ITEM_KEY &&
1610                             key.offset == num_bytes)
1611                                 ret = 0;
1612                 }
1613                 if (ret) {
1614                         key.objectid = bytenr;
1615                         key.type = BTRFS_EXTENT_ITEM_KEY;
1616                         key.offset = num_bytes;
1617                         btrfs_release_path(path);
1618                         goto again;
1619                 }
1620         }
1621
1622         if (ret && !insert) {
1623                 err = -ENOENT;
1624                 goto out;
1625         } else if (WARN_ON(ret)) {
1626                 err = -EIO;
1627                 goto out;
1628         }
1629
1630         leaf = path->nodes[0];
1631         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1632 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1633         if (item_size < sizeof(*ei)) {
1634                 if (!insert) {
1635                         err = -ENOENT;
1636                         goto out;
1637                 }
1638                 ret = convert_extent_item_v0(trans, root, path, owner,
1639                                              extra_size);
1640                 if (ret < 0) {
1641                         err = ret;
1642                         goto out;
1643                 }
1644                 leaf = path->nodes[0];
1645                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1646         }
1647 #endif
1648         BUG_ON(item_size < sizeof(*ei));
1649
1650         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1651         flags = btrfs_extent_flags(leaf, ei);
1652
1653         ptr = (unsigned long)(ei + 1);
1654         end = (unsigned long)ei + item_size;
1655
1656         if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1657                 ptr += sizeof(struct btrfs_tree_block_info);
1658                 BUG_ON(ptr > end);
1659         }
1660
1661         err = -ENOENT;
1662         while (1) {
1663                 if (ptr >= end) {
1664                         WARN_ON(ptr > end);
1665                         break;
1666                 }
1667                 iref = (struct btrfs_extent_inline_ref *)ptr;
1668                 type = btrfs_extent_inline_ref_type(leaf, iref);
1669                 if (want < type)
1670                         break;
1671                 if (want > type) {
1672                         ptr += btrfs_extent_inline_ref_size(type);
1673                         continue;
1674                 }
1675
1676                 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1677                         struct btrfs_extent_data_ref *dref;
1678                         dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1679                         if (match_extent_data_ref(leaf, dref, root_objectid,
1680                                                   owner, offset)) {
1681                                 err = 0;
1682                                 break;
1683                         }
1684                         if (hash_extent_data_ref_item(leaf, dref) <
1685                             hash_extent_data_ref(root_objectid, owner, offset))
1686                                 break;
1687                 } else {
1688                         u64 ref_offset;
1689                         ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1690                         if (parent > 0) {
1691                                 if (parent == ref_offset) {
1692                                         err = 0;
1693                                         break;
1694                                 }
1695                                 if (ref_offset < parent)
1696                                         break;
1697                         } else {
1698                                 if (root_objectid == ref_offset) {
1699                                         err = 0;
1700                                         break;
1701                                 }
1702                                 if (ref_offset < root_objectid)
1703                                         break;
1704                         }
1705                 }
1706                 ptr += btrfs_extent_inline_ref_size(type);
1707         }
1708         if (err == -ENOENT && insert) {
1709                 if (item_size + extra_size >=
1710                     BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1711                         err = -EAGAIN;
1712                         goto out;
1713                 }
1714                 /*
1715                  * To add new inline back ref, we have to make sure
1716                  * there is no corresponding back ref item.
1717                  * For simplicity, we just do not add new inline back
1718                  * ref if there is any kind of item for this block
1719                  */
1720                 if (find_next_key(path, 0, &key) == 0 &&
1721                     key.objectid == bytenr &&
1722                     key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1723                         err = -EAGAIN;
1724                         goto out;
1725                 }
1726         }
1727         *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1728 out:
1729         if (insert) {
1730                 path->keep_locks = 0;
1731                 btrfs_unlock_up_safe(path, 1);
1732         }
1733         return err;
1734 }
1735
1736 /*
1737  * helper to add new inline back ref
1738  */
1739 static noinline_for_stack
1740 void setup_inline_extent_backref(struct btrfs_root *root,
1741                                  struct btrfs_path *path,
1742                                  struct btrfs_extent_inline_ref *iref,
1743                                  u64 parent, u64 root_objectid,
1744                                  u64 owner, u64 offset, int refs_to_add,
1745                                  struct btrfs_delayed_extent_op *extent_op)
1746 {
1747         struct extent_buffer *leaf;
1748         struct btrfs_extent_item *ei;
1749         unsigned long ptr;
1750         unsigned long end;
1751         unsigned long item_offset;
1752         u64 refs;
1753         int size;
1754         int type;
1755
1756         leaf = path->nodes[0];
1757         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1758         item_offset = (unsigned long)iref - (unsigned long)ei;
1759
1760         type = extent_ref_type(parent, owner);
1761         size = btrfs_extent_inline_ref_size(type);
1762
1763         btrfs_extend_item(root, path, size);
1764
1765         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1766         refs = btrfs_extent_refs(leaf, ei);
1767         refs += refs_to_add;
1768         btrfs_set_extent_refs(leaf, ei, refs);
1769         if (extent_op)
1770                 __run_delayed_extent_op(extent_op, leaf, ei);
1771
1772         ptr = (unsigned long)ei + item_offset;
1773         end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1774         if (ptr < end - size)
1775                 memmove_extent_buffer(leaf, ptr + size, ptr,
1776                                       end - size - ptr);
1777
1778         iref = (struct btrfs_extent_inline_ref *)ptr;
1779         btrfs_set_extent_inline_ref_type(leaf, iref, type);
1780         if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1781                 struct btrfs_extent_data_ref *dref;
1782                 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1783                 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1784                 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1785                 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1786                 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1787         } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1788                 struct btrfs_shared_data_ref *sref;
1789                 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1790                 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1791                 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1792         } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1793                 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1794         } else {
1795                 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1796         }
1797         btrfs_mark_buffer_dirty(leaf);
1798 }
1799
1800 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1801                                  struct btrfs_root *root,
1802                                  struct btrfs_path *path,
1803                                  struct btrfs_extent_inline_ref **ref_ret,
1804                                  u64 bytenr, u64 num_bytes, u64 parent,
1805                                  u64 root_objectid, u64 owner, u64 offset)
1806 {
1807         int ret;
1808
1809         ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1810                                            bytenr, num_bytes, parent,
1811                                            root_objectid, owner, offset, 0);
1812         if (ret != -ENOENT)
1813                 return ret;
1814
1815         btrfs_release_path(path);
1816         *ref_ret = NULL;
1817
1818         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1819                 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1820                                             root_objectid);
1821         } else {
1822                 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1823                                              root_objectid, owner, offset);
1824         }
1825         return ret;
1826 }
1827
1828 /*
1829  * helper to update/remove inline back ref
1830  */
1831 static noinline_for_stack
1832 void update_inline_extent_backref(struct btrfs_root *root,
1833                                   struct btrfs_path *path,
1834                                   struct btrfs_extent_inline_ref *iref,
1835                                   int refs_to_mod,
1836                                   struct btrfs_delayed_extent_op *extent_op,
1837                                   int *last_ref)
1838 {
1839         struct extent_buffer *leaf;
1840         struct btrfs_extent_item *ei;
1841         struct btrfs_extent_data_ref *dref = NULL;
1842         struct btrfs_shared_data_ref *sref = NULL;
1843         unsigned long ptr;
1844         unsigned long end;
1845         u32 item_size;
1846         int size;
1847         int type;
1848         u64 refs;
1849
1850         leaf = path->nodes[0];
1851         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1852         refs = btrfs_extent_refs(leaf, ei);
1853         WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1854         refs += refs_to_mod;
1855         btrfs_set_extent_refs(leaf, ei, refs);
1856         if (extent_op)
1857                 __run_delayed_extent_op(extent_op, leaf, ei);
1858
1859         type = btrfs_extent_inline_ref_type(leaf, iref);
1860
1861         if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1862                 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1863                 refs = btrfs_extent_data_ref_count(leaf, dref);
1864         } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1865                 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1866                 refs = btrfs_shared_data_ref_count(leaf, sref);
1867         } else {
1868                 refs = 1;
1869                 BUG_ON(refs_to_mod != -1);
1870         }
1871
1872         BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1873         refs += refs_to_mod;
1874
1875         if (refs > 0) {
1876                 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1877                         btrfs_set_extent_data_ref_count(leaf, dref, refs);
1878                 else
1879                         btrfs_set_shared_data_ref_count(leaf, sref, refs);
1880         } else {
1881                 *last_ref = 1;
1882                 size =  btrfs_extent_inline_ref_size(type);
1883                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1884                 ptr = (unsigned long)iref;
1885                 end = (unsigned long)ei + item_size;
1886                 if (ptr + size < end)
1887                         memmove_extent_buffer(leaf, ptr, ptr + size,
1888                                               end - ptr - size);
1889                 item_size -= size;
1890                 btrfs_truncate_item(root, path, item_size, 1);
1891         }
1892         btrfs_mark_buffer_dirty(leaf);
1893 }
1894
1895 static noinline_for_stack
1896 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1897                                  struct btrfs_root *root,
1898                                  struct btrfs_path *path,
1899                                  u64 bytenr, u64 num_bytes, u64 parent,
1900                                  u64 root_objectid, u64 owner,
1901                                  u64 offset, int refs_to_add,
1902                                  struct btrfs_delayed_extent_op *extent_op)
1903 {
1904         struct btrfs_extent_inline_ref *iref;
1905         int ret;
1906
1907         ret = lookup_inline_extent_backref(trans, root, path, &iref,
1908                                            bytenr, num_bytes, parent,
1909                                            root_objectid, owner, offset, 1);
1910         if (ret == 0) {
1911                 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1912                 update_inline_extent_backref(root, path, iref,
1913                                              refs_to_add, extent_op, NULL);
1914         } else if (ret == -ENOENT) {
1915                 setup_inline_extent_backref(root, path, iref, parent,
1916                                             root_objectid, owner, offset,
1917                                             refs_to_add, extent_op);
1918                 ret = 0;
1919         }
1920         return ret;
1921 }
1922
1923 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1924                                  struct btrfs_root *root,
1925                                  struct btrfs_path *path,
1926                                  u64 bytenr, u64 parent, u64 root_objectid,
1927                                  u64 owner, u64 offset, int refs_to_add)
1928 {
1929         int ret;
1930         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1931                 BUG_ON(refs_to_add != 1);
1932                 ret = insert_tree_block_ref(trans, root, path, bytenr,
1933                                             parent, root_objectid);
1934         } else {
1935                 ret = insert_extent_data_ref(trans, root, path, bytenr,
1936                                              parent, root_objectid,
1937                                              owner, offset, refs_to_add);
1938         }
1939         return ret;
1940 }
1941
1942 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1943                                  struct btrfs_root *root,
1944                                  struct btrfs_path *path,
1945                                  struct btrfs_extent_inline_ref *iref,
1946                                  int refs_to_drop, int is_data, int *last_ref)
1947 {
1948         int ret = 0;
1949
1950         BUG_ON(!is_data && refs_to_drop != 1);
1951         if (iref) {
1952                 update_inline_extent_backref(root, path, iref,
1953                                              -refs_to_drop, NULL, last_ref);
1954         } else if (is_data) {
1955                 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1956                                              last_ref);
1957         } else {
1958                 *last_ref = 1;
1959                 ret = btrfs_del_item(trans, root, path);
1960         }
1961         return ret;
1962 }
1963
1964 #define in_range(b, first, len)        ((b) >= (first) && (b) < (first) + (len))
1965 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1966                                u64 *discarded_bytes)
1967 {
1968         int j, ret = 0;
1969         u64 bytes_left, end;
1970         u64 aligned_start = ALIGN(start, 1 << 9);
1971
1972         if (WARN_ON(start != aligned_start)) {
1973                 len -= aligned_start - start;
1974                 len = round_down(len, 1 << 9);
1975                 start = aligned_start;
1976         }
1977
1978         *discarded_bytes = 0;
1979
1980         if (!len)
1981                 return 0;
1982
1983         end = start + len;
1984         bytes_left = len;
1985
1986         /* Skip any superblocks on this device. */
1987         for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1988                 u64 sb_start = btrfs_sb_offset(j);
1989                 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1990                 u64 size = sb_start - start;
1991
1992                 if (!in_range(sb_start, start, bytes_left) &&
1993                     !in_range(sb_end, start, bytes_left) &&
1994                     !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1995                         continue;
1996
1997                 /*
1998                  * Superblock spans beginning of range.  Adjust start and
1999                  * try again.
2000                  */
2001                 if (sb_start <= start) {
2002                         start += sb_end - start;
2003                         if (start > end) {
2004                                 bytes_left = 0;
2005                                 break;
2006                         }
2007                         bytes_left = end - start;
2008                         continue;
2009                 }
2010
2011                 if (size) {
2012                         ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2013                                                    GFP_NOFS, 0);
2014                         if (!ret)
2015                                 *discarded_bytes += size;
2016                         else if (ret != -EOPNOTSUPP)
2017                                 return ret;
2018                 }
2019
2020                 start = sb_end;
2021                 if (start > end) {
2022                         bytes_left = 0;
2023                         break;
2024                 }
2025                 bytes_left = end - start;
2026         }
2027
2028         if (bytes_left) {
2029                 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2030                                            GFP_NOFS, 0);
2031                 if (!ret)
2032                         *discarded_bytes += bytes_left;
2033         }
2034         return ret;
2035 }
2036
2037 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
2038                          u64 num_bytes, u64 *actual_bytes)
2039 {
2040         int ret;
2041         u64 discarded_bytes = 0;
2042         struct btrfs_bio *bbio = NULL;
2043
2044
2045         /*
2046          * Avoid races with device replace and make sure our bbio has devices
2047          * associated to its stripes that don't go away while we are discarding.
2048          */
2049         btrfs_bio_counter_inc_blocked(root->fs_info);
2050         /* Tell the block device(s) that the sectors can be discarded */
2051         ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
2052                               bytenr, &num_bytes, &bbio, 0);
2053         /* Error condition is -ENOMEM */
2054         if (!ret) {
2055                 struct btrfs_bio_stripe *stripe = bbio->stripes;
2056                 int i;
2057
2058
2059                 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2060                         u64 bytes;
2061                         if (!stripe->dev->can_discard)
2062                                 continue;
2063
2064                         ret = btrfs_issue_discard(stripe->dev->bdev,
2065                                                   stripe->physical,
2066                                                   stripe->length,
2067                                                   &bytes);
2068                         if (!ret)
2069                                 discarded_bytes += bytes;
2070                         else if (ret != -EOPNOTSUPP)
2071                                 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2072
2073                         /*
2074                          * Just in case we get back EOPNOTSUPP for some reason,
2075                          * just ignore the return value so we don't screw up
2076                          * people calling discard_extent.
2077                          */
2078                         ret = 0;
2079                 }
2080                 btrfs_put_bbio(bbio);
2081         }
2082         btrfs_bio_counter_dec(root->fs_info);
2083
2084         if (actual_bytes)
2085                 *actual_bytes = discarded_bytes;
2086
2087
2088         if (ret == -EOPNOTSUPP)
2089                 ret = 0;
2090         return ret;
2091 }
2092
2093 /* Can return -ENOMEM */
2094 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2095                          struct btrfs_root *root,
2096                          u64 bytenr, u64 num_bytes, u64 parent,
2097                          u64 root_objectid, u64 owner, u64 offset)
2098 {
2099         int ret;
2100         struct btrfs_fs_info *fs_info = root->fs_info;
2101
2102         BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2103                root_objectid == BTRFS_TREE_LOG_OBJECTID);
2104
2105         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2106                 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2107                                         num_bytes,
2108                                         parent, root_objectid, (int)owner,
2109                                         BTRFS_ADD_DELAYED_REF, NULL);
2110         } else {
2111                 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2112                                         num_bytes, parent, root_objectid,
2113                                         owner, offset, 0,
2114                                         BTRFS_ADD_DELAYED_REF, NULL);
2115         }
2116         return ret;
2117 }
2118
2119 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2120                                   struct btrfs_root *root,
2121                                   struct btrfs_delayed_ref_node *node,
2122                                   u64 parent, u64 root_objectid,
2123                                   u64 owner, u64 offset, int refs_to_add,
2124                                   struct btrfs_delayed_extent_op *extent_op)
2125 {
2126         struct btrfs_fs_info *fs_info = root->fs_info;
2127         struct btrfs_path *path;
2128         struct extent_buffer *leaf;
2129         struct btrfs_extent_item *item;
2130         struct btrfs_key key;
2131         u64 bytenr = node->bytenr;
2132         u64 num_bytes = node->num_bytes;
2133         u64 refs;
2134         int ret;
2135
2136         path = btrfs_alloc_path();
2137         if (!path)
2138                 return -ENOMEM;
2139
2140         path->reada = READA_FORWARD;
2141         path->leave_spinning = 1;
2142         /* this will setup the path even if it fails to insert the back ref */
2143         ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
2144                                            bytenr, num_bytes, parent,
2145                                            root_objectid, owner, offset,
2146                                            refs_to_add, extent_op);
2147         if ((ret < 0 && ret != -EAGAIN) || !ret)
2148                 goto out;
2149
2150         /*
2151          * Ok we had -EAGAIN which means we didn't have space to insert and
2152          * inline extent ref, so just update the reference count and add a
2153          * normal backref.
2154          */
2155         leaf = path->nodes[0];
2156         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2157         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2158         refs = btrfs_extent_refs(leaf, item);
2159         btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2160         if (extent_op)
2161                 __run_delayed_extent_op(extent_op, leaf, item);
2162
2163         btrfs_mark_buffer_dirty(leaf);
2164         btrfs_release_path(path);
2165
2166         path->reada = READA_FORWARD;
2167         path->leave_spinning = 1;
2168         /* now insert the actual backref */
2169         ret = insert_extent_backref(trans, root->fs_info->extent_root,
2170                                     path, bytenr, parent, root_objectid,
2171                                     owner, offset, refs_to_add);
2172         if (ret)
2173                 btrfs_abort_transaction(trans, root, ret);
2174 out:
2175         btrfs_free_path(path);
2176         return ret;
2177 }
2178
2179 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2180                                 struct btrfs_root *root,
2181                                 struct btrfs_delayed_ref_node *node,
2182                                 struct btrfs_delayed_extent_op *extent_op,
2183                                 int insert_reserved)
2184 {
2185         int ret = 0;
2186         struct btrfs_delayed_data_ref *ref;
2187         struct btrfs_key ins;
2188         u64 parent = 0;
2189         u64 ref_root = 0;
2190         u64 flags = 0;
2191
2192         ins.objectid = node->bytenr;
2193         ins.offset = node->num_bytes;
2194         ins.type = BTRFS_EXTENT_ITEM_KEY;
2195
2196         ref = btrfs_delayed_node_to_data_ref(node);
2197         trace_run_delayed_data_ref(node, ref, node->action);
2198
2199         if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2200                 parent = ref->parent;
2201         ref_root = ref->root;
2202
2203         if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2204                 if (extent_op)
2205                         flags |= extent_op->flags_to_set;
2206                 ret = alloc_reserved_file_extent(trans, root,
2207                                                  parent, ref_root, flags,
2208                                                  ref->objectid, ref->offset,
2209                                                  &ins, node->ref_mod);
2210         } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2211                 ret = __btrfs_inc_extent_ref(trans, root, node, parent,
2212                                              ref_root, ref->objectid,
2213                                              ref->offset, node->ref_mod,
2214                                              extent_op);
2215         } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2216                 ret = __btrfs_free_extent(trans, root, node, parent,
2217                                           ref_root, ref->objectid,
2218                                           ref->offset, node->ref_mod,
2219                                           extent_op);
2220         } else {
2221                 BUG();
2222         }
2223         return ret;
2224 }
2225
2226 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2227                                     struct extent_buffer *leaf,
2228                                     struct btrfs_extent_item *ei)
2229 {
2230         u64 flags = btrfs_extent_flags(leaf, ei);
2231         if (extent_op->update_flags) {
2232                 flags |= extent_op->flags_to_set;
2233                 btrfs_set_extent_flags(leaf, ei, flags);
2234         }
2235
2236         if (extent_op->update_key) {
2237                 struct btrfs_tree_block_info *bi;
2238                 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2239                 bi = (struct btrfs_tree_block_info *)(ei + 1);
2240                 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2241         }
2242 }
2243
2244 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2245                                  struct btrfs_root *root,
2246                                  struct btrfs_delayed_ref_node *node,
2247                                  struct btrfs_delayed_extent_op *extent_op)
2248 {
2249         struct btrfs_key key;
2250         struct btrfs_path *path;
2251         struct btrfs_extent_item *ei;
2252         struct extent_buffer *leaf;
2253         u32 item_size;
2254         int ret;
2255         int err = 0;
2256         int metadata = !extent_op->is_data;
2257
2258         if (trans->aborted)
2259                 return 0;
2260
2261         if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2262                 metadata = 0;
2263
2264         path = btrfs_alloc_path();
2265         if (!path)
2266                 return -ENOMEM;
2267
2268         key.objectid = node->bytenr;
2269
2270         if (metadata) {
2271                 key.type = BTRFS_METADATA_ITEM_KEY;
2272                 key.offset = extent_op->level;
2273         } else {
2274                 key.type = BTRFS_EXTENT_ITEM_KEY;
2275                 key.offset = node->num_bytes;
2276         }
2277
2278 again:
2279         path->reada = READA_FORWARD;
2280         path->leave_spinning = 1;
2281         ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2282                                 path, 0, 1);
2283         if (ret < 0) {
2284                 err = ret;
2285                 goto out;
2286         }
2287         if (ret > 0) {
2288                 if (metadata) {
2289                         if (path->slots[0] > 0) {
2290                                 path->slots[0]--;
2291                                 btrfs_item_key_to_cpu(path->nodes[0], &key,
2292                                                       path->slots[0]);
2293                                 if (key.objectid == node->bytenr &&
2294                                     key.type == BTRFS_EXTENT_ITEM_KEY &&
2295                                     key.offset == node->num_bytes)
2296                                         ret = 0;
2297                         }
2298                         if (ret > 0) {
2299                                 btrfs_release_path(path);
2300                                 metadata = 0;
2301
2302                                 key.objectid = node->bytenr;
2303                                 key.offset = node->num_bytes;
2304                                 key.type = BTRFS_EXTENT_ITEM_KEY;
2305                                 goto again;
2306                         }
2307                 } else {
2308                         err = -EIO;
2309                         goto out;
2310                 }
2311         }
2312
2313         leaf = path->nodes[0];
2314         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2315 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2316         if (item_size < sizeof(*ei)) {
2317                 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2318                                              path, (u64)-1, 0);
2319                 if (ret < 0) {
2320                         err = ret;
2321                         goto out;
2322                 }
2323                 leaf = path->nodes[0];
2324                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2325         }
2326 #endif
2327         BUG_ON(item_size < sizeof(*ei));
2328         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2329         __run_delayed_extent_op(extent_op, leaf, ei);
2330
2331         btrfs_mark_buffer_dirty(leaf);
2332 out:
2333         btrfs_free_path(path);
2334         return err;
2335 }
2336
2337 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2338                                 struct btrfs_root *root,
2339                                 struct btrfs_delayed_ref_node *node,
2340                                 struct btrfs_delayed_extent_op *extent_op,
2341                                 int insert_reserved)
2342 {
2343         int ret = 0;
2344         struct btrfs_delayed_tree_ref *ref;
2345         struct btrfs_key ins;
2346         u64 parent = 0;
2347         u64 ref_root = 0;
2348         bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2349                                                  SKINNY_METADATA);
2350
2351         ref = btrfs_delayed_node_to_tree_ref(node);
2352         trace_run_delayed_tree_ref(node, ref, node->action);
2353
2354         if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2355                 parent = ref->parent;
2356         ref_root = ref->root;
2357
2358         ins.objectid = node->bytenr;
2359         if (skinny_metadata) {
2360                 ins.offset = ref->level;
2361                 ins.type = BTRFS_METADATA_ITEM_KEY;
2362         } else {
2363                 ins.offset = node->num_bytes;
2364                 ins.type = BTRFS_EXTENT_ITEM_KEY;
2365         }
2366
2367         BUG_ON(node->ref_mod != 1);
2368         if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2369                 BUG_ON(!extent_op || !extent_op->update_flags);
2370                 ret = alloc_reserved_tree_block(trans, root,
2371                                                 parent, ref_root,
2372                                                 extent_op->flags_to_set,
2373                                                 &extent_op->key,
2374                                                 ref->level, &ins);
2375         } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2376                 ret = __btrfs_inc_extent_ref(trans, root, node,
2377                                              parent, ref_root,
2378                                              ref->level, 0, 1,
2379                                              extent_op);
2380         } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2381                 ret = __btrfs_free_extent(trans, root, node,
2382                                           parent, ref_root,
2383                                           ref->level, 0, 1, extent_op);
2384         } else {
2385                 BUG();
2386         }
2387         return ret;
2388 }
2389
2390 /* helper function to actually process a single delayed ref entry */
2391 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2392                                struct btrfs_root *root,
2393                                struct btrfs_delayed_ref_node *node,
2394                                struct btrfs_delayed_extent_op *extent_op,
2395                                int insert_reserved)
2396 {
2397         int ret = 0;
2398
2399         if (trans->aborted) {
2400                 if (insert_reserved)
2401                         btrfs_pin_extent(root, node->bytenr,
2402                                          node->num_bytes, 1);
2403                 return 0;
2404         }
2405
2406         if (btrfs_delayed_ref_is_head(node)) {
2407                 struct btrfs_delayed_ref_head *head;
2408                 /*
2409                  * we've hit the end of the chain and we were supposed
2410                  * to insert this extent into the tree.  But, it got
2411                  * deleted before we ever needed to insert it, so all
2412                  * we have to do is clean up the accounting
2413                  */
2414                 BUG_ON(extent_op);
2415                 head = btrfs_delayed_node_to_head(node);
2416                 trace_run_delayed_ref_head(node, head, node->action);
2417
2418                 if (insert_reserved) {
2419                         btrfs_pin_extent(root, node->bytenr,
2420                                          node->num_bytes, 1);
2421                         if (head->is_data) {
2422                                 ret = btrfs_del_csums(trans, root,
2423                                                       node->bytenr,
2424                                                       node->num_bytes);
2425                         }
2426                 }
2427
2428                 /* Also free its reserved qgroup space */
2429                 btrfs_qgroup_free_delayed_ref(root->fs_info,
2430                                               head->qgroup_ref_root,
2431                                               head->qgroup_reserved);
2432                 return ret;
2433         }
2434
2435         if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2436             node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2437                 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2438                                            insert_reserved);
2439         else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2440                  node->type == BTRFS_SHARED_DATA_REF_KEY)
2441                 ret = run_delayed_data_ref(trans, root, node, extent_op,
2442                                            insert_reserved);
2443         else
2444                 BUG();
2445         return ret;
2446 }
2447
2448 static inline struct btrfs_delayed_ref_node *
2449 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2450 {
2451         struct btrfs_delayed_ref_node *ref;
2452
2453         if (list_empty(&head->ref_list))
2454                 return NULL;
2455
2456         /*
2457          * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2458          * This is to prevent a ref count from going down to zero, which deletes
2459          * the extent item from the extent tree, when there still are references
2460          * to add, which would fail because they would not find the extent item.
2461          */
2462         list_for_each_entry(ref, &head->ref_list, list) {
2463                 if (ref->action == BTRFS_ADD_DELAYED_REF)
2464                         return ref;
2465         }
2466
2467         return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node,
2468                           list);
2469 }
2470
2471 /*
2472  * Returns 0 on success or if called with an already aborted transaction.
2473  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2474  */
2475 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2476                                              struct btrfs_root *root,
2477                                              unsigned long nr)
2478 {
2479         struct btrfs_delayed_ref_root *delayed_refs;
2480         struct btrfs_delayed_ref_node *ref;
2481         struct btrfs_delayed_ref_head *locked_ref = NULL;
2482         struct btrfs_delayed_extent_op *extent_op;
2483         struct btrfs_fs_info *fs_info = root->fs_info;
2484         ktime_t start = ktime_get();
2485         int ret;
2486         unsigned long count = 0;
2487         unsigned long actual_count = 0;
2488         int must_insert_reserved = 0;
2489
2490         delayed_refs = &trans->transaction->delayed_refs;
2491         while (1) {
2492                 if (!locked_ref) {
2493                         if (count >= nr)
2494                                 break;
2495
2496                         spin_lock(&delayed_refs->lock);
2497                         locked_ref = btrfs_select_ref_head(trans);
2498                         if (!locked_ref) {
2499                                 spin_unlock(&delayed_refs->lock);
2500                                 break;
2501                         }
2502
2503                         /* grab the lock that says we are going to process
2504                          * all the refs for this head */
2505                         ret = btrfs_delayed_ref_lock(trans, locked_ref);
2506                         spin_unlock(&delayed_refs->lock);
2507                         /*
2508                          * we may have dropped the spin lock to get the head
2509                          * mutex lock, and that might have given someone else
2510                          * time to free the head.  If that's true, it has been
2511                          * removed from our list and we can move on.
2512                          */
2513                         if (ret == -EAGAIN) {
2514                                 locked_ref = NULL;
2515                                 count++;
2516                                 continue;
2517                         }
2518                 }
2519
2520                 /*
2521                  * We need to try and merge add/drops of the same ref since we
2522                  * can run into issues with relocate dropping the implicit ref
2523                  * and then it being added back again before the drop can
2524                  * finish.  If we merged anything we need to re-loop so we can
2525                  * get a good ref.
2526                  * Or we can get node references of the same type that weren't
2527                  * merged when created due to bumps in the tree mod seq, and
2528                  * we need to merge them to prevent adding an inline extent
2529                  * backref before dropping it (triggering a BUG_ON at
2530                  * insert_inline_extent_backref()).
2531                  */
2532                 spin_lock(&locked_ref->lock);
2533                 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2534                                          locked_ref);
2535
2536                 /*
2537                  * locked_ref is the head node, so we have to go one
2538                  * node back for any delayed ref updates
2539                  */
2540                 ref = select_delayed_ref(locked_ref);
2541
2542                 if (ref && ref->seq &&
2543                     btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2544                         spin_unlock(&locked_ref->lock);
2545                         btrfs_delayed_ref_unlock(locked_ref);
2546                         spin_lock(&delayed_refs->lock);
2547                         locked_ref->processing = 0;
2548                         delayed_refs->num_heads_ready++;
2549                         spin_unlock(&delayed_refs->lock);
2550                         locked_ref = NULL;
2551                         cond_resched();
2552                         count++;
2553                         continue;
2554                 }
2555
2556                 /*
2557                  * record the must insert reserved flag before we
2558                  * drop the spin lock.
2559                  */
2560                 must_insert_reserved = locked_ref->must_insert_reserved;
2561                 locked_ref->must_insert_reserved = 0;
2562
2563                 extent_op = locked_ref->extent_op;
2564                 locked_ref->extent_op = NULL;
2565
2566                 if (!ref) {
2567
2568
2569                         /* All delayed refs have been processed, Go ahead
2570                          * and send the head node to run_one_delayed_ref,
2571                          * so that any accounting fixes can happen
2572                          */
2573                         ref = &locked_ref->node;
2574
2575                         if (extent_op && must_insert_reserved) {
2576                                 btrfs_free_delayed_extent_op(extent_op);
2577                                 extent_op = NULL;
2578                         }
2579
2580                         if (extent_op) {
2581                                 spin_unlock(&locked_ref->lock);
2582                                 ret = run_delayed_extent_op(trans, root,
2583                                                             ref, extent_op);
2584                                 btrfs_free_delayed_extent_op(extent_op);
2585
2586                                 if (ret) {
2587                                         /*
2588                                          * Need to reset must_insert_reserved if
2589                                          * there was an error so the abort stuff
2590                                          * can cleanup the reserved space
2591                                          * properly.
2592                                          */
2593                                         if (must_insert_reserved)
2594                                                 locked_ref->must_insert_reserved = 1;
2595                                         locked_ref->processing = 0;
2596                                         btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2597                                         btrfs_delayed_ref_unlock(locked_ref);
2598                                         return ret;
2599                                 }
2600                                 continue;
2601                         }
2602
2603                         /*
2604                          * Need to drop our head ref lock and re-acquire the
2605                          * delayed ref lock and then re-check to make sure
2606                          * nobody got added.
2607                          */
2608                         spin_unlock(&locked_ref->lock);
2609                         spin_lock(&delayed_refs->lock);
2610                         spin_lock(&locked_ref->lock);
2611                         if (!list_empty(&locked_ref->ref_list) ||
2612                             locked_ref->extent_op) {
2613                                 spin_unlock(&locked_ref->lock);
2614                                 spin_unlock(&delayed_refs->lock);
2615                                 continue;
2616                         }
2617                         ref->in_tree = 0;
2618                         delayed_refs->num_heads--;
2619                         rb_erase(&locked_ref->href_node,
2620                                  &delayed_refs->href_root);
2621                         spin_unlock(&delayed_refs->lock);
2622                 } else {
2623                         actual_count++;
2624                         ref->in_tree = 0;
2625                         list_del(&ref->list);
2626                 }
2627                 atomic_dec(&delayed_refs->num_entries);
2628
2629                 if (!btrfs_delayed_ref_is_head(ref)) {
2630                         /*
2631                          * when we play the delayed ref, also correct the
2632                          * ref_mod on head
2633                          */
2634                         switch (ref->action) {
2635                         case BTRFS_ADD_DELAYED_REF:
2636                         case BTRFS_ADD_DELAYED_EXTENT:
2637                                 locked_ref->node.ref_mod -= ref->ref_mod;
2638                                 break;
2639                         case BTRFS_DROP_DELAYED_REF:
2640                                 locked_ref->node.ref_mod += ref->ref_mod;
2641                                 break;
2642                         default:
2643                                 WARN_ON(1);
2644                         }
2645                 }
2646                 spin_unlock(&locked_ref->lock);
2647
2648                 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2649                                           must_insert_reserved);
2650
2651                 btrfs_free_delayed_extent_op(extent_op);
2652                 if (ret) {
2653                         locked_ref->processing = 0;
2654                         btrfs_delayed_ref_unlock(locked_ref);
2655                         btrfs_put_delayed_ref(ref);
2656                         btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2657                         return ret;
2658                 }
2659
2660                 /*
2661                  * If this node is a head, that means all the refs in this head
2662                  * have been dealt with, and we will pick the next head to deal
2663                  * with, so we must unlock the head and drop it from the cluster
2664                  * list before we release it.
2665                  */
2666                 if (btrfs_delayed_ref_is_head(ref)) {
2667                         if (locked_ref->is_data &&
2668                             locked_ref->total_ref_mod < 0) {
2669                                 spin_lock(&delayed_refs->lock);
2670                                 delayed_refs->pending_csums -= ref->num_bytes;
2671                                 spin_unlock(&delayed_refs->lock);
2672                         }
2673                         btrfs_delayed_ref_unlock(locked_ref);
2674                         locked_ref = NULL;
2675                 }
2676                 btrfs_put_delayed_ref(ref);
2677                 count++;
2678                 cond_resched();
2679         }
2680
2681         /*
2682          * We don't want to include ref heads since we can have empty ref heads
2683          * and those will drastically skew our runtime down since we just do
2684          * accounting, no actual extent tree updates.
2685          */
2686         if (actual_count > 0) {
2687                 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2688                 u64 avg;
2689
2690                 /*
2691                  * We weigh the current average higher than our current runtime
2692                  * to avoid large swings in the average.
2693                  */
2694                 spin_lock(&delayed_refs->lock);
2695                 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2696                 fs_info->avg_delayed_ref_runtime = avg >> 2;    /* div by 4 */
2697                 spin_unlock(&delayed_refs->lock);
2698         }
2699         return 0;
2700 }
2701
2702 #ifdef SCRAMBLE_DELAYED_REFS
2703 /*
2704  * Normally delayed refs get processed in ascending bytenr order. This
2705  * correlates in most cases to the order added. To expose dependencies on this
2706  * order, we start to process the tree in the middle instead of the beginning
2707  */
2708 static u64 find_middle(struct rb_root *root)
2709 {
2710         struct rb_node *n = root->rb_node;
2711         struct btrfs_delayed_ref_node *entry;
2712         int alt = 1;
2713         u64 middle;
2714         u64 first = 0, last = 0;
2715
2716         n = rb_first(root);
2717         if (n) {
2718                 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2719                 first = entry->bytenr;
2720         }
2721         n = rb_last(root);
2722         if (n) {
2723                 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2724                 last = entry->bytenr;
2725         }
2726         n = root->rb_node;
2727
2728         while (n) {
2729                 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2730                 WARN_ON(!entry->in_tree);
2731
2732                 middle = entry->bytenr;
2733
2734                 if (alt)
2735                         n = n->rb_left;
2736                 else
2737                         n = n->rb_right;
2738
2739                 alt = 1 - alt;
2740         }
2741         return middle;
2742 }
2743 #endif
2744
2745 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2746 {
2747         u64 num_bytes;
2748
2749         num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2750                              sizeof(struct btrfs_extent_inline_ref));
2751         if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2752                 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2753
2754         /*
2755          * We don't ever fill up leaves all the way so multiply by 2 just to be
2756          * closer to what we're really going to want to use.
2757          */
2758         return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2759 }
2760
2761 /*
2762  * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2763  * would require to store the csums for that many bytes.
2764  */
2765 u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
2766 {
2767         u64 csum_size;
2768         u64 num_csums_per_leaf;
2769         u64 num_csums;
2770
2771         csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
2772         num_csums_per_leaf = div64_u64(csum_size,
2773                         (u64)btrfs_super_csum_size(root->fs_info->super_copy));
2774         num_csums = div64_u64(csum_bytes, root->sectorsize);
2775         num_csums += num_csums_per_leaf - 1;
2776         num_csums = div64_u64(num_csums, num_csums_per_leaf);
2777         return num_csums;
2778 }
2779
2780 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2781                                        struct btrfs_root *root)
2782 {
2783         struct btrfs_block_rsv *global_rsv;
2784         u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2785         u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2786         u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2787         u64 num_bytes, num_dirty_bgs_bytes;
2788         int ret = 0;
2789
2790         num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2791         num_heads = heads_to_leaves(root, num_heads);
2792         if (num_heads > 1)
2793                 num_bytes += (num_heads - 1) * root->nodesize;
2794         num_bytes <<= 1;
2795         num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
2796         num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2797                                                              num_dirty_bgs);
2798         global_rsv = &root->fs_info->global_block_rsv;
2799
2800         /*
2801          * If we can't allocate any more chunks lets make sure we have _lots_ of
2802          * wiggle room since running delayed refs can create more delayed refs.
2803          */
2804         if (global_rsv->space_info->full) {
2805                 num_dirty_bgs_bytes <<= 1;
2806                 num_bytes <<= 1;
2807         }
2808
2809         spin_lock(&global_rsv->lock);
2810         if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2811                 ret = 1;
2812         spin_unlock(&global_rsv->lock);
2813         return ret;
2814 }
2815
2816 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2817                                        struct btrfs_root *root)
2818 {
2819         struct btrfs_fs_info *fs_info = root->fs_info;
2820         u64 num_entries =
2821                 atomic_read(&trans->transaction->delayed_refs.num_entries);
2822         u64 avg_runtime;
2823         u64 val;
2824
2825         smp_mb();
2826         avg_runtime = fs_info->avg_delayed_ref_runtime;
2827         val = num_entries * avg_runtime;
2828         if (num_entries * avg_runtime >= NSEC_PER_SEC)
2829                 return 1;
2830         if (val >= NSEC_PER_SEC / 2)
2831                 return 2;
2832
2833         return btrfs_check_space_for_delayed_refs(trans, root);
2834 }
2835
2836 struct async_delayed_refs {
2837         struct btrfs_root *root;
2838         u64 transid;
2839         int count;
2840         int error;
2841         int sync;
2842         struct completion wait;
2843         struct btrfs_work work;
2844 };
2845
2846 static void delayed_ref_async_start(struct btrfs_work *work)
2847 {
2848         struct async_delayed_refs *async;
2849         struct btrfs_trans_handle *trans;
2850         int ret;
2851
2852         async = container_of(work, struct async_delayed_refs, work);
2853
2854         /* if the commit is already started, we don't need to wait here */
2855         if (btrfs_transaction_blocked(async->root->fs_info))
2856                 goto done;
2857
2858         trans = btrfs_join_transaction(async->root);
2859         if (IS_ERR(trans)) {
2860                 async->error = PTR_ERR(trans);
2861                 goto done;
2862         }
2863
2864         /*
2865          * trans->sync means that when we call end_transaction, we won't
2866          * wait on delayed refs
2867          */
2868         trans->sync = true;
2869
2870         /* Don't bother flushing if we got into a different transaction */
2871         if (trans->transid > async->transid)
2872                 goto end;
2873
2874         ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2875         if (ret)
2876                 async->error = ret;
2877 end:
2878         ret = btrfs_end_transaction(trans, async->root);
2879         if (ret && !async->error)
2880                 async->error = ret;
2881 done:
2882         if (async->sync)
2883                 complete(&async->wait);
2884         else
2885                 kfree(async);
2886 }
2887
2888 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2889                                  unsigned long count, u64 transid, int wait)
2890 {
2891         struct async_delayed_refs *async;
2892         int ret;
2893
2894         async = kmalloc(sizeof(*async), GFP_NOFS);
2895         if (!async)
2896                 return -ENOMEM;
2897
2898         async->root = root->fs_info->tree_root;
2899         async->count = count;
2900         async->error = 0;
2901         async->transid = transid;
2902         if (wait)
2903                 async->sync = 1;
2904         else
2905                 async->sync = 0;
2906         init_completion(&async->wait);
2907
2908         btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2909                         delayed_ref_async_start, NULL, NULL);
2910
2911         btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2912
2913         if (wait) {
2914                 wait_for_completion(&async->wait);
2915                 ret = async->error;
2916                 kfree(async);
2917                 return ret;
2918         }
2919         return 0;
2920 }
2921
2922 /*
2923  * this starts processing the delayed reference count updates and
2924  * extent insertions we have queued up so far.  count can be
2925  * 0, which means to process everything in the tree at the start
2926  * of the run (but not newly added entries), or it can be some target
2927  * number you'd like to process.
2928  *
2929  * Returns 0 on success or if called with an aborted transaction
2930  * Returns <0 on error and aborts the transaction
2931  */
2932 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2933                            struct btrfs_root *root, unsigned long count)
2934 {
2935         struct rb_node *node;
2936         struct btrfs_delayed_ref_root *delayed_refs;
2937         struct btrfs_delayed_ref_head *head;
2938         int ret;
2939         int run_all = count == (unsigned long)-1;
2940         bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
2941
2942         /* We'll clean this up in btrfs_cleanup_transaction */
2943         if (trans->aborted)
2944                 return 0;
2945
2946         if (root->fs_info->creating_free_space_tree)
2947                 return 0;
2948
2949         if (root == root->fs_info->extent_root)
2950                 root = root->fs_info->tree_root;
2951
2952         delayed_refs = &trans->transaction->delayed_refs;
2953         if (count == 0)
2954                 count = atomic_read(&delayed_refs->num_entries) * 2;
2955
2956 again:
2957 #ifdef SCRAMBLE_DELAYED_REFS
2958         delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2959 #endif
2960         trans->can_flush_pending_bgs = false;
2961         ret = __btrfs_run_delayed_refs(trans, root, count);
2962         if (ret < 0) {
2963                 btrfs_abort_transaction(trans, root, ret);
2964                 return ret;
2965         }
2966
2967         if (run_all) {
2968                 if (!list_empty(&trans->new_bgs))
2969                         btrfs_create_pending_block_groups(trans, root);
2970
2971                 spin_lock(&delayed_refs->lock);
2972                 node = rb_first(&delayed_refs->href_root);
2973                 if (!node) {
2974                         spin_unlock(&delayed_refs->lock);
2975                         goto out;
2976                 }
2977                 count = (unsigned long)-1;
2978
2979                 while (node) {
2980                         head = rb_entry(node, struct btrfs_delayed_ref_head,
2981                                         href_node);
2982                         if (btrfs_delayed_ref_is_head(&head->node)) {
2983                                 struct btrfs_delayed_ref_node *ref;
2984
2985                                 ref = &head->node;
2986                                 atomic_inc(&ref->refs);
2987
2988                                 spin_unlock(&delayed_refs->lock);
2989                                 /*
2990                                  * Mutex was contended, block until it's
2991                                  * released and try again
2992                                  */
2993                                 mutex_lock(&head->mutex);
2994                                 mutex_unlock(&head->mutex);
2995
2996                                 btrfs_put_delayed_ref(ref);
2997                                 cond_resched();
2998                                 goto again;
2999                         } else {
3000                                 WARN_ON(1);
3001                         }
3002                         node = rb_next(node);
3003                 }
3004                 spin_unlock(&delayed_refs->lock);
3005                 cond_resched();
3006                 goto again;
3007         }
3008 out:
3009         assert_qgroups_uptodate(trans);
3010         trans->can_flush_pending_bgs = can_flush_pending_bgs;
3011         return 0;
3012 }
3013
3014 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3015                                 struct btrfs_root *root,
3016                                 u64 bytenr, u64 num_bytes, u64 flags,
3017                                 int level, int is_data)
3018 {
3019         struct btrfs_delayed_extent_op *extent_op;
3020         int ret;
3021
3022         extent_op = btrfs_alloc_delayed_extent_op();
3023         if (!extent_op)
3024                 return -ENOMEM;
3025
3026         extent_op->flags_to_set = flags;
3027         extent_op->update_flags = true;
3028         extent_op->update_key = false;
3029         extent_op->is_data = is_data ? true : false;
3030         extent_op->level = level;
3031
3032         ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
3033                                           num_bytes, extent_op);
3034         if (ret)
3035                 btrfs_free_delayed_extent_op(extent_op);
3036         return ret;
3037 }
3038
3039 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
3040                                       struct btrfs_root *root,
3041                                       struct btrfs_path *path,
3042                                       u64 objectid, u64 offset, u64 bytenr)
3043 {
3044         struct btrfs_delayed_ref_head *head;
3045         struct btrfs_delayed_ref_node *ref;
3046         struct btrfs_delayed_data_ref *data_ref;
3047         struct btrfs_delayed_ref_root *delayed_refs;
3048         int ret = 0;
3049
3050         delayed_refs = &trans->transaction->delayed_refs;
3051         spin_lock(&delayed_refs->lock);
3052         head = btrfs_find_delayed_ref_head(trans, bytenr);
3053         if (!head) {
3054                 spin_unlock(&delayed_refs->lock);
3055                 return 0;
3056         }
3057
3058         if (!mutex_trylock(&head->mutex)) {
3059                 atomic_inc(&head->node.refs);
3060                 spin_unlock(&delayed_refs->lock);
3061
3062                 btrfs_release_path(path);
3063
3064                 /*
3065                  * Mutex was contended, block until it's released and let
3066                  * caller try again
3067                  */
3068                 mutex_lock(&head->mutex);
3069                 mutex_unlock(&head->mutex);
3070                 btrfs_put_delayed_ref(&head->node);
3071                 return -EAGAIN;
3072         }
3073         spin_unlock(&delayed_refs->lock);
3074
3075         spin_lock(&head->lock);
3076         list_for_each_entry(ref, &head->ref_list, list) {
3077                 /* If it's a shared ref we know a cross reference exists */
3078                 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3079                         ret = 1;
3080                         break;
3081                 }
3082
3083                 data_ref = btrfs_delayed_node_to_data_ref(ref);
3084
3085                 /*
3086                  * If our ref doesn't match the one we're currently looking at
3087                  * then we have a cross reference.
3088                  */
3089                 if (data_ref->root != root->root_key.objectid ||
3090                     data_ref->objectid != objectid ||
3091                     data_ref->offset != offset) {
3092                         ret = 1;
3093                         break;
3094                 }
3095         }
3096         spin_unlock(&head->lock);
3097         mutex_unlock(&head->mutex);
3098         return ret;
3099 }
3100
3101 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
3102                                         struct btrfs_root *root,
3103                                         struct btrfs_path *path,
3104                                         u64 objectid, u64 offset, u64 bytenr)
3105 {
3106         struct btrfs_root *extent_root = root->fs_info->extent_root;
3107         struct extent_buffer *leaf;
3108         struct btrfs_extent_data_ref *ref;
3109         struct btrfs_extent_inline_ref *iref;
3110         struct btrfs_extent_item *ei;
3111         struct btrfs_key key;
3112         u32 item_size;
3113         int ret;
3114
3115         key.objectid = bytenr;
3116         key.offset = (u64)-1;
3117         key.type = BTRFS_EXTENT_ITEM_KEY;
3118
3119         ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3120         if (ret < 0)
3121                 goto out;
3122         BUG_ON(ret == 0); /* Corruption */
3123
3124         ret = -ENOENT;
3125         if (path->slots[0] == 0)
3126                 goto out;
3127
3128         path->slots[0]--;
3129         leaf = path->nodes[0];
3130         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3131
3132         if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3133                 goto out;
3134
3135         ret = 1;
3136         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3137 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3138         if (item_size < sizeof(*ei)) {
3139                 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3140                 goto out;
3141         }
3142 #endif
3143         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3144
3145         if (item_size != sizeof(*ei) +
3146             btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3147                 goto out;
3148
3149         if (btrfs_extent_generation(leaf, ei) <=
3150             btrfs_root_last_snapshot(&root->root_item))
3151                 goto out;
3152
3153         iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3154         if (btrfs_extent_inline_ref_type(leaf, iref) !=
3155             BTRFS_EXTENT_DATA_REF_KEY)
3156                 goto out;
3157
3158         ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3159         if (btrfs_extent_refs(leaf, ei) !=
3160             btrfs_extent_data_ref_count(leaf, ref) ||
3161             btrfs_extent_data_ref_root(leaf, ref) !=
3162             root->root_key.objectid ||
3163             btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3164             btrfs_extent_data_ref_offset(leaf, ref) != offset)
3165                 goto out;
3166
3167         ret = 0;
3168 out:
3169         return ret;
3170 }
3171
3172 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3173                           struct btrfs_root *root,
3174                           u64 objectid, u64 offset, u64 bytenr)
3175 {
3176         struct btrfs_path *path;
3177         int ret;
3178         int ret2;
3179
3180         path = btrfs_alloc_path();
3181         if (!path)
3182                 return -ENOENT;
3183
3184         do {
3185                 ret = check_committed_ref(trans, root, path, objectid,
3186                                           offset, bytenr);
3187                 if (ret && ret != -ENOENT)
3188                         goto out;
3189
3190                 ret2 = check_delayed_ref(trans, root, path, objectid,
3191                                          offset, bytenr);
3192         } while (ret2 == -EAGAIN);
3193
3194         if (ret2 && ret2 != -ENOENT) {
3195                 ret = ret2;
3196                 goto out;
3197         }
3198
3199         if (ret != -ENOENT || ret2 != -ENOENT)
3200                 ret = 0;
3201 out:
3202         btrfs_free_path(path);
3203         if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3204                 WARN_ON(ret > 0);
3205         return ret;
3206 }
3207
3208 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3209                            struct btrfs_root *root,
3210                            struct extent_buffer *buf,
3211                            int full_backref, int inc)
3212 {
3213         u64 bytenr;
3214         u64 num_bytes;
3215         u64 parent;
3216         u64 ref_root;
3217         u32 nritems;
3218         struct btrfs_key key;
3219         struct btrfs_file_extent_item *fi;
3220         int i;
3221         int level;
3222         int ret = 0;
3223         int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3224                             u64, u64, u64, u64, u64, u64);
3225
3226
3227         if (btrfs_test_is_dummy_root(root))
3228                 return 0;
3229
3230         ref_root = btrfs_header_owner(buf);
3231         nritems = btrfs_header_nritems(buf);
3232         level = btrfs_header_level(buf);
3233
3234         if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3235                 return 0;
3236
3237         if (inc)
3238                 process_func = btrfs_inc_extent_ref;
3239         else
3240                 process_func = btrfs_free_extent;
3241
3242         if (full_backref)
3243                 parent = buf->start;
3244         else
3245                 parent = 0;
3246
3247         for (i = 0; i < nritems; i++) {
3248                 if (level == 0) {
3249                         btrfs_item_key_to_cpu(buf, &key, i);
3250                         if (key.type != BTRFS_EXTENT_DATA_KEY)
3251                                 continue;
3252                         fi = btrfs_item_ptr(buf, i,
3253                                             struct btrfs_file_extent_item);
3254                         if (btrfs_file_extent_type(buf, fi) ==
3255                             BTRFS_FILE_EXTENT_INLINE)
3256                                 continue;
3257                         bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3258                         if (bytenr == 0)
3259                                 continue;
3260
3261                         num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3262                         key.offset -= btrfs_file_extent_offset(buf, fi);
3263                         ret = process_func(trans, root, bytenr, num_bytes,
3264                                            parent, ref_root, key.objectid,
3265                                            key.offset);
3266                         if (ret)
3267                                 goto fail;
3268                 } else {
3269                         bytenr = btrfs_node_blockptr(buf, i);
3270                         num_bytes = root->nodesize;
3271                         ret = process_func(trans, root, bytenr, num_bytes,
3272                                            parent, ref_root, level - 1, 0);
3273                         if (ret)
3274                                 goto fail;
3275                 }
3276         }
3277         return 0;
3278 fail:
3279         return ret;
3280 }
3281
3282 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3283                   struct extent_buffer *buf, int full_backref)
3284 {
3285         return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3286 }
3287
3288 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3289                   struct extent_buffer *buf, int full_backref)
3290 {
3291         return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3292 }
3293
3294 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3295                                  struct btrfs_root *root,
3296                                  struct btrfs_path *path,
3297                                  struct btrfs_block_group_cache *cache)
3298 {
3299         int ret;
3300         struct btrfs_root *extent_root = root->fs_info->extent_root;
3301         unsigned long bi;
3302         struct extent_buffer *leaf;
3303
3304         ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3305         if (ret) {
3306                 if (ret > 0)
3307                         ret = -ENOENT;
3308                 goto fail;
3309         }
3310
3311         leaf = path->nodes[0];
3312         bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3313         write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3314         btrfs_mark_buffer_dirty(leaf);
3315 fail:
3316         btrfs_release_path(path);
3317         return ret;
3318
3319 }
3320
3321 static struct btrfs_block_group_cache *
3322 next_block_group(struct btrfs_root *root,
3323                  struct btrfs_block_group_cache *cache)
3324 {
3325         struct rb_node *node;
3326
3327         spin_lock(&root->fs_info->block_group_cache_lock);
3328
3329         /* If our block group was removed, we need a full search. */
3330         if (RB_EMPTY_NODE(&cache->cache_node)) {
3331                 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3332
3333                 spin_unlock(&root->fs_info->block_group_cache_lock);
3334                 btrfs_put_block_group(cache);
3335                 cache = btrfs_lookup_first_block_group(root->fs_info,
3336                                                        next_bytenr);
3337                 return cache;
3338         }
3339         node = rb_next(&cache->cache_node);
3340         btrfs_put_block_group(cache);
3341         if (node) {
3342                 cache = rb_entry(node, struct btrfs_block_group_cache,
3343                                  cache_node);
3344                 btrfs_get_block_group(cache);
3345         } else
3346                 cache = NULL;
3347         spin_unlock(&root->fs_info->block_group_cache_lock);
3348         return cache;
3349 }
3350
3351 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3352                             struct btrfs_trans_handle *trans,
3353                             struct btrfs_path *path)
3354 {
3355         struct btrfs_root *root = block_group->fs_info->tree_root;
3356         struct inode *inode = NULL;
3357         u64 alloc_hint = 0;
3358         int dcs = BTRFS_DC_ERROR;
3359         u64 num_pages = 0;
3360         int retries = 0;
3361         int ret = 0;
3362
3363         /*
3364          * If this block group is smaller than 100 megs don't bother caching the
3365          * block group.
3366          */
3367         if (block_group->key.offset < (100 * SZ_1M)) {
3368                 spin_lock(&block_group->lock);
3369                 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3370                 spin_unlock(&block_group->lock);
3371                 return 0;
3372         }
3373
3374         if (trans->aborted)
3375                 return 0;
3376 again:
3377         inode = lookup_free_space_inode(root, block_group, path);
3378         if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3379                 ret = PTR_ERR(inode);
3380                 btrfs_release_path(path);
3381                 goto out;
3382         }
3383
3384         if (IS_ERR(inode)) {
3385                 BUG_ON(retries);
3386                 retries++;
3387
3388                 if (block_group->ro)
3389                         goto out_free;
3390
3391                 ret = create_free_space_inode(root, trans, block_group, path);
3392                 if (ret)
3393                         goto out_free;
3394                 goto again;
3395         }
3396
3397         /* We've already setup this transaction, go ahead and exit */
3398         if (block_group->cache_generation == trans->transid &&
3399             i_size_read(inode)) {
3400                 dcs = BTRFS_DC_SETUP;
3401                 goto out_put;
3402         }
3403
3404         /*
3405          * We want to set the generation to 0, that way if anything goes wrong
3406          * from here on out we know not to trust this cache when we load up next
3407          * time.
3408          */
3409         BTRFS_I(inode)->generation = 0;
3410         ret = btrfs_update_inode(trans, root, inode);
3411         if (ret) {
3412                 /*
3413                  * So theoretically we could recover from this, simply set the
3414                  * super cache generation to 0 so we know to invalidate the
3415                  * cache, but then we'd have to keep track of the block groups
3416                  * that fail this way so we know we _have_ to reset this cache
3417                  * before the next commit or risk reading stale cache.  So to
3418                  * limit our exposure to horrible edge cases lets just abort the
3419                  * transaction, this only happens in really bad situations
3420                  * anyway.
3421                  */
3422                 btrfs_abort_transaction(trans, root, ret);
3423                 goto out_put;
3424         }
3425         WARN_ON(ret);
3426
3427         if (i_size_read(inode) > 0) {
3428                 ret = btrfs_check_trunc_cache_free_space(root,
3429                                         &root->fs_info->global_block_rsv);
3430                 if (ret)
3431                         goto out_put;
3432
3433                 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
3434                 if (ret)
3435                         goto out_put;
3436         }
3437
3438         spin_lock(&block_group->lock);
3439         if (block_group->cached != BTRFS_CACHE_FINISHED ||
3440             !btrfs_test_opt(root, SPACE_CACHE)) {
3441                 /*
3442                  * don't bother trying to write stuff out _if_
3443                  * a) we're not cached,
3444                  * b) we're with nospace_cache mount option.
3445                  */
3446                 dcs = BTRFS_DC_WRITTEN;
3447                 spin_unlock(&block_group->lock);
3448                 goto out_put;
3449         }
3450         spin_unlock(&block_group->lock);
3451
3452         /*
3453          * We hit an ENOSPC when setting up the cache in this transaction, just
3454          * skip doing the setup, we've already cleared the cache so we're safe.
3455          */
3456         if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3457                 ret = -ENOSPC;
3458                 goto out_put;
3459         }
3460
3461         /*
3462          * Try to preallocate enough space based on how big the block group is.
3463          * Keep in mind this has to include any pinned space which could end up
3464          * taking up quite a bit since it's not folded into the other space
3465          * cache.
3466          */
3467         num_pages = div_u64(block_group->key.offset, SZ_256M);
3468         if (!num_pages)
3469                 num_pages = 1;
3470
3471         num_pages *= 16;
3472         num_pages *= PAGE_SIZE;
3473
3474         ret = btrfs_check_data_free_space(inode, 0, num_pages);
3475         if (ret)
3476                 goto out_put;
3477
3478         ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3479                                               num_pages, num_pages,
3480                                               &alloc_hint);
3481         /*
3482          * Our cache requires contiguous chunks so that we don't modify a bunch
3483          * of metadata or split extents when writing the cache out, which means
3484          * we can enospc if we are heavily fragmented in addition to just normal
3485          * out of space conditions.  So if we hit this just skip setting up any
3486          * other block groups for this transaction, maybe we'll unpin enough
3487          * space the next time around.
3488          */
3489         if (!ret)
3490                 dcs = BTRFS_DC_SETUP;
3491         else if (ret == -ENOSPC)
3492                 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3493         btrfs_free_reserved_data_space(inode, 0, num_pages);
3494
3495 out_put:
3496         iput(inode);
3497 out_free:
3498         btrfs_release_path(path);
3499 out:
3500         spin_lock(&block_group->lock);
3501         if (!ret && dcs == BTRFS_DC_SETUP)
3502                 block_group->cache_generation = trans->transid;
3503         block_group->disk_cache_state = dcs;
3504         spin_unlock(&block_group->lock);
3505
3506         return ret;
3507 }
3508
3509 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3510                             struct btrfs_root *root)
3511 {
3512         struct btrfs_block_group_cache *cache, *tmp;
3513         struct btrfs_transaction *cur_trans = trans->transaction;
3514         struct btrfs_path *path;
3515
3516         if (list_empty(&cur_trans->dirty_bgs) ||
3517             !btrfs_test_opt(root, SPACE_CACHE))
3518                 return 0;
3519
3520         path = btrfs_alloc_path();
3521         if (!path)
3522                 return -ENOMEM;
3523
3524         /* Could add new block groups, use _safe just in case */
3525         list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3526                                  dirty_list) {
3527                 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3528                         cache_save_setup(cache, trans, path);
3529         }
3530
3531         btrfs_free_path(path);
3532         return 0;
3533 }
3534
3535 /*
3536  * transaction commit does final block group cache writeback during a
3537  * critical section where nothing is allowed to change the FS.  This is
3538  * required in order for the cache to actually match the block group,
3539  * but can introduce a lot of latency into the commit.
3540  *
3541  * So, btrfs_start_dirty_block_groups is here to kick off block group
3542  * cache IO.  There's a chance we'll have to redo some of it if the
3543  * block group changes again during the commit, but it greatly reduces
3544  * the commit latency by getting rid of the easy block groups while
3545  * we're still allowing others to join the commit.
3546  */
3547 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3548                                    struct btrfs_root *root)
3549 {
3550         struct btrfs_block_group_cache *cache;
3551         struct btrfs_transaction *cur_trans = trans->transaction;
3552         int ret = 0;
3553         int should_put;
3554         struct btrfs_path *path = NULL;
3555         LIST_HEAD(dirty);
3556         struct list_head *io = &cur_trans->io_bgs;
3557         int num_started = 0;
3558         int loops = 0;
3559
3560         spin_lock(&cur_trans->dirty_bgs_lock);
3561         if (list_empty(&cur_trans->dirty_bgs)) {
3562                 spin_unlock(&cur_trans->dirty_bgs_lock);
3563                 return 0;
3564         }
3565         list_splice_init(&cur_trans->dirty_bgs, &dirty);
3566         spin_unlock(&cur_trans->dirty_bgs_lock);
3567
3568 again:
3569         /*
3570          * make sure all the block groups on our dirty list actually
3571          * exist
3572          */
3573         btrfs_create_pending_block_groups(trans, root);
3574
3575         if (!path) {
3576                 path = btrfs_alloc_path();
3577                 if (!path)
3578                         return -ENOMEM;
3579         }
3580
3581         /*
3582          * cache_write_mutex is here only to save us from balance or automatic
3583          * removal of empty block groups deleting this block group while we are
3584          * writing out the cache
3585          */
3586         mutex_lock(&trans->transaction->cache_write_mutex);
3587         while (!list_empty(&dirty)) {
3588                 cache = list_first_entry(&dirty,
3589                                          struct btrfs_block_group_cache,
3590                                          dirty_list);
3591                 /*
3592                  * this can happen if something re-dirties a block
3593                  * group that is already under IO.  Just wait for it to
3594                  * finish and then do it all again
3595                  */
3596                 if (!list_empty(&cache->io_list)) {
3597                         list_del_init(&cache->io_list);
3598                         btrfs_wait_cache_io(root, trans, cache,
3599                                             &cache->io_ctl, path,
3600                                             cache->key.objectid);
3601                         btrfs_put_block_group(cache);
3602                 }
3603
3604
3605                 /*
3606                  * btrfs_wait_cache_io uses the cache->dirty_list to decide
3607                  * if it should update the cache_state.  Don't delete
3608                  * until after we wait.
3609                  *
3610                  * Since we're not running in the commit critical section
3611                  * we need the dirty_bgs_lock to protect from update_block_group
3612                  */
3613                 spin_lock(&cur_trans->dirty_bgs_lock);
3614                 list_del_init(&cache->dirty_list);
3615                 spin_unlock(&cur_trans->dirty_bgs_lock);
3616
3617                 should_put = 1;
3618
3619                 cache_save_setup(cache, trans, path);
3620
3621                 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3622                         cache->io_ctl.inode = NULL;
3623                         ret = btrfs_write_out_cache(root, trans, cache, path);
3624                         if (ret == 0 && cache->io_ctl.inode) {
3625                                 num_started++;
3626                                 should_put = 0;
3627
3628                                 /*
3629                                  * the cache_write_mutex is protecting
3630                                  * the io_list
3631                                  */
3632                                 list_add_tail(&cache->io_list, io);
3633                         } else {
3634                                 /*
3635                                  * if we failed to write the cache, the
3636                                  * generation will be bad and life goes on
3637                                  */
3638                                 ret = 0;
3639                         }
3640                 }
3641                 if (!ret) {
3642                         ret = write_one_cache_group(trans, root, path, cache);
3643                         /*
3644                          * Our block group might still be attached to the list
3645                          * of new block groups in the transaction handle of some
3646                          * other task (struct btrfs_trans_handle->new_bgs). This
3647                          * means its block group item isn't yet in the extent
3648                          * tree. If this happens ignore the error, as we will
3649                          * try again later in the critical section of the
3650                          * transaction commit.
3651                          */
3652                         if (ret == -ENOENT) {
3653                                 ret = 0;
3654                                 spin_lock(&cur_trans->dirty_bgs_lock);
3655                                 if (list_empty(&cache->dirty_list)) {
3656                                         list_add_tail(&cache->dirty_list,
3657                                                       &cur_trans->dirty_bgs);
3658                                         btrfs_get_block_group(cache);
3659                                 }
3660                                 spin_unlock(&cur_trans->dirty_bgs_lock);
3661                         } else if (ret) {
3662                                 btrfs_abort_transaction(trans, root, ret);
3663                         }
3664                 }
3665
3666                 /* if its not on the io list, we need to put the block group */
3667                 if (should_put)
3668                         btrfs_put_block_group(cache);
3669
3670                 if (ret)
3671                         break;
3672
3673                 /*
3674                  * Avoid blocking other tasks for too long. It might even save
3675                  * us from writing caches for block groups that are going to be
3676                  * removed.
3677                  */
3678                 mutex_unlock(&trans->transaction->cache_write_mutex);
3679                 mutex_lock(&trans->transaction->cache_write_mutex);
3680         }
3681         mutex_unlock(&trans->transaction->cache_write_mutex);
3682
3683         /*
3684          * go through delayed refs for all the stuff we've just kicked off
3685          * and then loop back (just once)
3686          */
3687         ret = btrfs_run_delayed_refs(trans, root, 0);
3688         if (!ret && loops == 0) {
3689                 loops++;
3690                 spin_lock(&cur_trans->dirty_bgs_lock);
3691                 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3692                 /*
3693                  * dirty_bgs_lock protects us from concurrent block group
3694                  * deletes too (not just cache_write_mutex).
3695                  */
3696                 if (!list_empty(&dirty)) {
3697                         spin_unlock(&cur_trans->dirty_bgs_lock);
3698                         goto again;
3699                 }
3700                 spin_unlock(&cur_trans->dirty_bgs_lock);
3701         }
3702
3703         btrfs_free_path(path);
3704         return ret;
3705 }
3706
3707 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3708                                    struct btrfs_root *root)
3709 {
3710         struct btrfs_block_group_cache *cache;
3711         struct btrfs_transaction *cur_trans = trans->transaction;
3712         int ret = 0;
3713         int should_put;
3714         struct btrfs_path *path;
3715         struct list_head *io = &cur_trans->io_bgs;
3716         int num_started = 0;
3717
3718         path = btrfs_alloc_path();
3719         if (!path)
3720                 return -ENOMEM;
3721
3722         /*
3723          * Even though we are in the critical section of the transaction commit,
3724          * we can still have concurrent tasks adding elements to this
3725          * transaction's list of dirty block groups. These tasks correspond to
3726          * endio free space workers started when writeback finishes for a
3727          * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3728          * allocate new block groups as a result of COWing nodes of the root
3729          * tree when updating the free space inode. The writeback for the space
3730          * caches is triggered by an earlier call to
3731          * btrfs_start_dirty_block_groups() and iterations of the following
3732          * loop.
3733          * Also we want to do the cache_save_setup first and then run the
3734          * delayed refs to make sure we have the best chance at doing this all
3735          * in one shot.
3736          */
3737         spin_lock(&cur_trans->dirty_bgs_lock);
3738         while (!list_empty(&cur_trans->dirty_bgs)) {
3739                 cache = list_first_entry(&cur_trans->dirty_bgs,
3740                                          struct btrfs_block_group_cache,
3741                                          dirty_list);
3742
3743                 /*
3744                  * this can happen if cache_save_setup re-dirties a block
3745                  * group that is already under IO.  Just wait for it to
3746                  * finish and then do it all again
3747                  */
3748                 if (!list_empty(&cache->io_list)) {
3749                         spin_unlock(&cur_trans->dirty_bgs_lock);
3750                         list_del_init(&cache->io_list);
3751                         btrfs_wait_cache_io(root, trans, cache,
3752                                             &cache->io_ctl, path,
3753                                             cache->key.objectid);
3754                         btrfs_put_block_group(cache);
3755                         spin_lock(&cur_trans->dirty_bgs_lock);
3756                 }
3757
3758                 /*
3759                  * don't remove from the dirty list until after we've waited
3760                  * on any pending IO
3761                  */
3762                 list_del_init(&cache->dirty_list);
3763                 spin_unlock(&cur_trans->dirty_bgs_lock);
3764                 should_put = 1;
3765
3766                 cache_save_setup(cache, trans, path);
3767
3768                 if (!ret)
3769                         ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3770
3771                 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3772                         cache->io_ctl.inode = NULL;
3773                         ret = btrfs_write_out_cache(root, trans, cache, path);
3774                         if (ret == 0 && cache->io_ctl.inode) {
3775                                 num_started++;
3776                                 should_put = 0;
3777                                 list_add_tail(&cache->io_list, io);
3778                         } else {
3779                                 /*
3780                                  * if we failed to write the cache, the
3781                                  * generation will be bad and life goes on
3782                                  */
3783                                 ret = 0;
3784                         }
3785                 }
3786                 if (!ret) {
3787                         ret = write_one_cache_group(trans, root, path, cache);
3788                         /*
3789                          * One of the free space endio workers might have
3790                          * created a new block group while updating a free space
3791                          * cache's inode (at inode.c:btrfs_finish_ordered_io())
3792                          * and hasn't released its transaction handle yet, in
3793                          * which case the new block group is still attached to
3794                          * its transaction handle and its creation has not
3795                          * finished yet (no block group item in the extent tree
3796                          * yet, etc). If this is the case, wait for all free
3797                          * space endio workers to finish and retry. This is a
3798                          * a very rare case so no need for a more efficient and
3799                          * complex approach.
3800                          */
3801                         if (ret == -ENOENT) {
3802                                 wait_event(cur_trans->writer_wait,
3803                                    atomic_read(&cur_trans->num_writers) == 1);
3804                                 ret = write_one_cache_group(trans, root, path,
3805                                                             cache);
3806                         }
3807                         if (ret)
3808                                 btrfs_abort_transaction(trans, root, ret);
3809                 }
3810
3811                 /* if its not on the io list, we need to put the block group */
3812                 if (should_put)
3813                         btrfs_put_block_group(cache);
3814                 spin_lock(&cur_trans->dirty_bgs_lock);
3815         }
3816         spin_unlock(&cur_trans->dirty_bgs_lock);
3817
3818         while (!list_empty(io)) {
3819                 cache = list_first_entry(io, struct btrfs_block_group_cache,
3820                                          io_list);
3821                 list_del_init(&cache->io_list);
3822                 btrfs_wait_cache_io(root, trans, cache,
3823                                     &cache->io_ctl, path, cache->key.objectid);
3824                 btrfs_put_block_group(cache);
3825         }
3826
3827         btrfs_free_path(path);
3828         return ret;
3829 }
3830
3831 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3832 {
3833         struct btrfs_block_group_cache *block_group;
3834         int readonly = 0;
3835
3836         block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3837         if (!block_group || block_group->ro)
3838                 readonly = 1;
3839         if (block_group)
3840                 btrfs_put_block_group(block_group);
3841         return readonly;
3842 }
3843
3844 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3845 {
3846         struct btrfs_block_group_cache *bg;
3847         bool ret = true;
3848
3849         bg = btrfs_lookup_block_group(fs_info, bytenr);
3850         if (!bg)
3851                 return false;
3852
3853         spin_lock(&bg->lock);
3854         if (bg->ro)
3855                 ret = false;
3856         else
3857                 atomic_inc(&bg->nocow_writers);
3858         spin_unlock(&bg->lock);
3859
3860         /* no put on block group, done by btrfs_dec_nocow_writers */
3861         if (!ret)
3862                 btrfs_put_block_group(bg);
3863
3864         return ret;
3865
3866 }
3867
3868 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3869 {
3870         struct btrfs_block_group_cache *bg;
3871
3872         bg = btrfs_lookup_block_group(fs_info, bytenr);
3873         ASSERT(bg);
3874         if (atomic_dec_and_test(&bg->nocow_writers))
3875                 wake_up_atomic_t(&bg->nocow_writers);
3876         /*
3877          * Once for our lookup and once for the lookup done by a previous call
3878          * to btrfs_inc_nocow_writers()
3879          */
3880         btrfs_put_block_group(bg);
3881         btrfs_put_block_group(bg);
3882 }
3883
3884 static int btrfs_wait_nocow_writers_atomic_t(atomic_t *a)
3885 {
3886         schedule();
3887         return 0;
3888 }
3889
3890 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3891 {
3892         wait_on_atomic_t(&bg->nocow_writers,
3893                          btrfs_wait_nocow_writers_atomic_t,
3894                          TASK_UNINTERRUPTIBLE);
3895 }
3896
3897 static const char *alloc_name(u64 flags)
3898 {
3899         switch (flags) {
3900         case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3901                 return "mixed";
3902         case BTRFS_BLOCK_GROUP_METADATA:
3903                 return "metadata";
3904         case BTRFS_BLOCK_GROUP_DATA:
3905                 return "data";
3906         case BTRFS_BLOCK_GROUP_SYSTEM:
3907                 return "system";
3908         default:
3909                 WARN_ON(1);
3910                 return "invalid-combination";
3911         };
3912 }
3913
3914 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3915                              u64 total_bytes, u64 bytes_used,
3916                              u64 bytes_readonly,
3917                              struct btrfs_space_info **space_info)
3918 {
3919         struct btrfs_space_info *found;
3920         int i;
3921         int factor;
3922         int ret;
3923
3924         if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3925                      BTRFS_BLOCK_GROUP_RAID10))
3926                 factor = 2;
3927         else
3928                 factor = 1;
3929
3930         found = __find_space_info(info, flags);
3931         if (found) {
3932                 spin_lock(&found->lock);
3933                 found->total_bytes += total_bytes;
3934                 found->disk_total += total_bytes * factor;
3935                 found->bytes_used += bytes_used;
3936                 found->disk_used += bytes_used * factor;
3937                 found->bytes_readonly += bytes_readonly;
3938                 if (total_bytes > 0)
3939                         found->full = 0;
3940                 spin_unlock(&found->lock);
3941                 *space_info = found;
3942                 return 0;
3943         }
3944         found = kzalloc(sizeof(*found), GFP_NOFS);
3945         if (!found)
3946                 return -ENOMEM;
3947
3948         ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3949         if (ret) {
3950                 kfree(found);
3951                 return ret;
3952         }
3953
3954         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3955                 INIT_LIST_HEAD(&found->block_groups[i]);
3956         init_rwsem(&found->groups_sem);
3957         spin_lock_init(&found->lock);
3958         found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3959         found->total_bytes = total_bytes;
3960         found->disk_total = total_bytes * factor;
3961         found->bytes_used = bytes_used;
3962         found->disk_used = bytes_used * factor;
3963         found->bytes_pinned = 0;
3964         found->bytes_reserved = 0;
3965         found->bytes_readonly = bytes_readonly;
3966         found->bytes_may_use = 0;
3967         found->full = 0;
3968         found->max_extent_size = 0;
3969         found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3970         found->chunk_alloc = 0;
3971         found->flush = 0;
3972         init_waitqueue_head(&found->wait);
3973         INIT_LIST_HEAD(&found->ro_bgs);
3974
3975         ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3976                                     info->space_info_kobj, "%s",
3977                                     alloc_name(found->flags));
3978         if (ret) {
3979                 kfree(found);
3980                 return ret;
3981         }
3982
3983         *space_info = found;
3984         list_add_rcu(&found->list, &info->space_info);
3985         if (flags & BTRFS_BLOCK_GROUP_DATA)
3986                 info->data_sinfo = found;
3987
3988         return ret;
3989 }
3990
3991 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3992 {
3993         u64 extra_flags = chunk_to_extended(flags) &
3994                                 BTRFS_EXTENDED_PROFILE_MASK;
3995
3996         write_seqlock(&fs_info->profiles_lock);
3997         if (flags & BTRFS_BLOCK_GROUP_DATA)
3998                 fs_info->avail_data_alloc_bits |= extra_flags;
3999         if (flags & BTRFS_BLOCK_GROUP_METADATA)
4000                 fs_info->avail_metadata_alloc_bits |= extra_flags;
4001         if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4002                 fs_info->avail_system_alloc_bits |= extra_flags;
4003         write_sequnlock(&fs_info->profiles_lock);
4004 }
4005
4006 /*
4007  * returns target flags in extended format or 0 if restripe for this
4008  * chunk_type is not in progress
4009  *
4010  * should be called with either volume_mutex or balance_lock held
4011  */
4012 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4013 {
4014         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4015         u64 target = 0;
4016
4017         if (!bctl)
4018                 return 0;
4019
4020         if (flags & BTRFS_BLOCK_GROUP_DATA &&
4021             bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4022                 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4023         } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4024                    bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4025                 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4026         } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4027                    bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4028                 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4029         }
4030
4031         return target;
4032 }
4033
4034 /*
4035  * @flags: available profiles in extended format (see ctree.h)
4036  *
4037  * Returns reduced profile in chunk format.  If profile changing is in
4038  * progress (either running or paused) picks the target profile (if it's
4039  * already available), otherwise falls back to plain reducing.
4040  */
4041 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
4042 {
4043         u64 num_devices = root->fs_info->fs_devices->rw_devices;
4044         u64 target;
4045         u64 raid_type;
4046         u64 allowed = 0;
4047
4048         /*
4049          * see if restripe for this chunk_type is in progress, if so
4050          * try to reduce to the target profile
4051          */
4052         spin_lock(&root->fs_info->balance_lock);
4053         target = get_restripe_target(root->fs_info, flags);
4054         if (target) {
4055                 /* pick target profile only if it's already available */
4056                 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
4057                         spin_unlock(&root->fs_info->balance_lock);
4058                         return extended_to_chunk(target);
4059                 }
4060         }
4061         spin_unlock(&root->fs_info->balance_lock);
4062
4063         /* First, mask out the RAID levels which aren't possible */
4064         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4065                 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4066                         allowed |= btrfs_raid_group[raid_type];
4067         }
4068         allowed &= flags;
4069
4070         if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4071                 allowed = BTRFS_BLOCK_GROUP_RAID6;
4072         else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4073                 allowed = BTRFS_BLOCK_GROUP_RAID5;
4074         else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4075                 allowed = BTRFS_BLOCK_GROUP_RAID10;
4076         else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4077                 allowed = BTRFS_BLOCK_GROUP_RAID1;
4078         else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4079                 allowed = BTRFS_BLOCK_GROUP_RAID0;
4080
4081         flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4082
4083         return extended_to_chunk(flags | allowed);
4084 }
4085
4086 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
4087 {
4088         unsigned seq;
4089         u64 flags;
4090
4091         do {
4092                 flags = orig_flags;
4093                 seq = read_seqbegin(&root->fs_info->profiles_lock);
4094
4095                 if (flags & BTRFS_BLOCK_GROUP_DATA)
4096                         flags |= root->fs_info->avail_data_alloc_bits;
4097                 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4098                         flags |= root->fs_info->avail_system_alloc_bits;
4099                 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4100                         flags |= root->fs_info->avail_metadata_alloc_bits;
4101         } while (read_seqretry(&root->fs_info->profiles_lock, seq));
4102
4103         return btrfs_reduce_alloc_profile(root, flags);
4104 }
4105
4106 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
4107 {
4108         u64 flags;
4109         u64 ret;
4110
4111         if (data)
4112                 flags = BTRFS_BLOCK_GROUP_DATA;
4113         else if (root == root->fs_info->chunk_root)
4114                 flags = BTRFS_BLOCK_GROUP_SYSTEM;
4115         else
4116                 flags = BTRFS_BLOCK_GROUP_METADATA;
4117
4118         ret = get_alloc_profile(root, flags);
4119         return ret;
4120 }
4121
4122 int btrfs_alloc_data_chunk_ondemand(struct inode *inode, u64 bytes)
4123 {
4124         struct btrfs_space_info *data_sinfo;
4125         struct btrfs_root *root = BTRFS_I(inode)->root;
4126         struct btrfs_fs_info *fs_info = root->fs_info;
4127         u64 used;
4128         int ret = 0;
4129         int need_commit = 2;
4130         int have_pinned_space;
4131
4132         /* make sure bytes are sectorsize aligned */
4133         bytes = ALIGN(bytes, root->sectorsize);
4134
4135         if (btrfs_is_free_space_inode(inode)) {
4136                 need_commit = 0;
4137                 ASSERT(current->journal_info);
4138         }
4139
4140         data_sinfo = fs_info->data_sinfo;
4141         if (!data_sinfo)
4142                 goto alloc;
4143
4144 again:
4145         /* make sure we have enough space to handle the data first */
4146         spin_lock(&data_sinfo->lock);
4147         used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
4148                 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
4149                 data_sinfo->bytes_may_use;
4150
4151         if (used + bytes > data_sinfo->total_bytes) {
4152                 struct btrfs_trans_handle *trans;
4153
4154                 /*
4155                  * if we don't have enough free bytes in this space then we need
4156                  * to alloc a new chunk.
4157                  */
4158                 if (!data_sinfo->full) {
4159                         u64 alloc_target;
4160
4161                         data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4162                         spin_unlock(&data_sinfo->lock);
4163 alloc:
4164                         alloc_target = btrfs_get_alloc_profile(root, 1);
4165                         /*
4166                          * It is ugly that we don't call nolock join
4167                          * transaction for the free space inode case here.
4168                          * But it is safe because we only do the data space
4169                          * reservation for the free space cache in the
4170                          * transaction context, the common join transaction
4171                          * just increase the counter of the current transaction
4172                          * handler, doesn't try to acquire the trans_lock of
4173                          * the fs.
4174                          */
4175                         trans = btrfs_join_transaction(root);
4176                         if (IS_ERR(trans))
4177                                 return PTR_ERR(trans);
4178
4179                         ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4180                                              alloc_target,
4181                                              CHUNK_ALLOC_NO_FORCE);
4182                         btrfs_end_transaction(trans, root);
4183                         if (ret < 0) {
4184                                 if (ret != -ENOSPC)
4185                                         return ret;
4186                                 else {
4187                                         have_pinned_space = 1;
4188                                         goto commit_trans;
4189                                 }
4190                         }
4191
4192                         if (!data_sinfo)
4193                                 data_sinfo = fs_info->data_sinfo;
4194
4195                         goto again;
4196                 }
4197
4198                 /*
4199                  * If we don't have enough pinned space to deal with this
4200                  * allocation, and no removed chunk in current transaction,
4201                  * don't bother committing the transaction.
4202                  */
4203                 have_pinned_space = percpu_counter_compare(
4204                         &data_sinfo->total_bytes_pinned,
4205                         used + bytes - data_sinfo->total_bytes);
4206                 spin_unlock(&data_sinfo->lock);
4207
4208                 /* commit the current transaction and try again */
4209 commit_trans:
4210                 if (need_commit &&
4211                     !atomic_read(&root->fs_info->open_ioctl_trans)) {
4212                         need_commit--;
4213
4214                         if (need_commit > 0) {
4215                                 btrfs_start_delalloc_roots(fs_info, 0, -1);
4216                                 btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1);
4217                         }
4218
4219                         trans = btrfs_join_transaction(root);
4220                         if (IS_ERR(trans))
4221                                 return PTR_ERR(trans);
4222                         if (have_pinned_space >= 0 ||
4223                             test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4224                                      &trans->transaction->flags) ||
4225                             need_commit > 0) {
4226                                 ret = btrfs_commit_transaction(trans, root);
4227                                 if (ret)
4228                                         return ret;
4229                                 /*
4230                                  * The cleaner kthread might still be doing iput
4231                                  * operations. Wait for it to finish so that
4232                                  * more space is released.
4233                                  */
4234                                 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
4235                                 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
4236                                 goto again;
4237                         } else {
4238                                 btrfs_end_transaction(trans, root);
4239                         }
4240                 }
4241
4242                 trace_btrfs_space_reservation(root->fs_info,
4243                                               "space_info:enospc",
4244                                               data_sinfo->flags, bytes, 1);
4245                 return -ENOSPC;
4246         }
4247         data_sinfo->bytes_may_use += bytes;
4248         trace_btrfs_space_reservation(root->fs_info, "space_info",
4249                                       data_sinfo->flags, bytes, 1);
4250         spin_unlock(&data_sinfo->lock);
4251
4252         return ret;
4253 }
4254
4255 /*
4256  * New check_data_free_space() with ability for precious data reservation
4257  * Will replace old btrfs_check_data_free_space(), but for patch split,
4258  * add a new function first and then replace it.
4259  */
4260 int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len)
4261 {
4262         struct btrfs_root *root = BTRFS_I(inode)->root;
4263         int ret;
4264
4265         /* align the range */
4266         len = round_up(start + len, root->sectorsize) -
4267               round_down(start, root->sectorsize);
4268         start = round_down(start, root->sectorsize);
4269
4270         ret = btrfs_alloc_data_chunk_ondemand(inode, len);
4271         if (ret < 0)
4272                 return ret;
4273
4274         /*
4275          * Use new btrfs_qgroup_reserve_data to reserve precious data space
4276          *
4277          * TODO: Find a good method to avoid reserve data space for NOCOW
4278          * range, but don't impact performance on quota disable case.
4279          */
4280         ret = btrfs_qgroup_reserve_data(inode, start, len);
4281         return ret;
4282 }
4283
4284 /*
4285  * Called if we need to clear a data reservation for this inode
4286  * Normally in a error case.
4287  *
4288  * This one will *NOT* use accurate qgroup reserved space API, just for case
4289  * which we can't sleep and is sure it won't affect qgroup reserved space.
4290  * Like clear_bit_hook().
4291  */
4292 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4293                                             u64 len)
4294 {
4295         struct btrfs_root *root = BTRFS_I(inode)->root;
4296         struct btrfs_space_info *data_sinfo;
4297
4298         /* Make sure the range is aligned to sectorsize */
4299         len = round_up(start + len, root->sectorsize) -
4300               round_down(start, root->sectorsize);
4301         start = round_down(start, root->sectorsize);
4302
4303         data_sinfo = root->fs_info->data_sinfo;
4304         spin_lock(&data_sinfo->lock);
4305         if (WARN_ON(data_sinfo->bytes_may_use < len))
4306                 data_sinfo->bytes_may_use = 0;
4307         else
4308                 data_sinfo->bytes_may_use -= len;
4309         trace_btrfs_space_reservation(root->fs_info, "space_info",
4310                                       data_sinfo->flags, len, 0);
4311         spin_unlock(&data_sinfo->lock);
4312 }
4313
4314 /*
4315  * Called if we need to clear a data reservation for this inode
4316  * Normally in a error case.
4317  *
4318  * This one will handle the per-inode data rsv map for accurate reserved
4319  * space framework.
4320  */
4321 void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len)
4322 {
4323         btrfs_free_reserved_data_space_noquota(inode, start, len);
4324         btrfs_qgroup_free_data(inode, start, len);
4325 }
4326
4327 static void force_metadata_allocation(struct btrfs_fs_info *info)
4328 {
4329         struct list_head *head = &info->space_info;
4330         struct btrfs_space_info *found;
4331
4332         rcu_read_lock();
4333         list_for_each_entry_rcu(found, head, list) {
4334                 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4335                         found->force_alloc = CHUNK_ALLOC_FORCE;
4336         }
4337         rcu_read_unlock();
4338 }
4339
4340 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4341 {
4342         return (global->size << 1);
4343 }
4344
4345 static int should_alloc_chunk(struct btrfs_root *root,
4346                               struct btrfs_space_info *sinfo, int force)
4347 {
4348         struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4349         u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
4350         u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
4351         u64 thresh;
4352
4353         if (force == CHUNK_ALLOC_FORCE)
4354                 return 1;
4355
4356         /*
4357          * We need to take into account the global rsv because for all intents
4358          * and purposes it's used space.  Don't worry about locking the
4359          * global_rsv, it doesn't change except when the transaction commits.
4360          */
4361         if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4362                 num_allocated += calc_global_rsv_need_space(global_rsv);
4363
4364         /*
4365          * in limited mode, we want to have some free space up to
4366          * about 1% of the FS size.
4367          */
4368         if (force == CHUNK_ALLOC_LIMITED) {
4369                 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
4370                 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4371
4372                 if (num_bytes - num_allocated < thresh)
4373                         return 1;
4374         }
4375
4376         if (num_allocated + SZ_2M < div_factor(num_bytes, 8))
4377                 return 0;
4378         return 1;
4379 }
4380
4381 static u64 get_profile_num_devs(struct btrfs_root *root, u64 type)
4382 {
4383         u64 num_dev;
4384
4385         if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4386                     BTRFS_BLOCK_GROUP_RAID0 |
4387                     BTRFS_BLOCK_GROUP_RAID5 |
4388                     BTRFS_BLOCK_GROUP_RAID6))
4389                 num_dev = root->fs_info->fs_devices->rw_devices;
4390         else if (type & BTRFS_BLOCK_GROUP_RAID1)
4391                 num_dev = 2;
4392         else
4393                 num_dev = 1;    /* DUP or single */
4394
4395         return num_dev;
4396 }
4397
4398 /*
4399  * If @is_allocation is true, reserve space in the system space info necessary
4400  * for allocating a chunk, otherwise if it's false, reserve space necessary for
4401  * removing a chunk.
4402  */
4403 void check_system_chunk(struct btrfs_trans_handle *trans,
4404                         struct btrfs_root *root,
4405                         u64 type)
4406 {
4407         struct btrfs_space_info *info;
4408         u64 left;
4409         u64 thresh;
4410         int ret = 0;
4411         u64 num_devs;
4412
4413         /*
4414          * Needed because we can end up allocating a system chunk and for an
4415          * atomic and race free space reservation in the chunk block reserve.
4416          */
4417         ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
4418
4419         info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4420         spin_lock(&info->lock);
4421         left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4422                 info->bytes_reserved - info->bytes_readonly -
4423                 info->bytes_may_use;
4424         spin_unlock(&info->lock);
4425
4426         num_devs = get_profile_num_devs(root, type);
4427
4428         /* num_devs device items to update and 1 chunk item to add or remove */
4429         thresh = btrfs_calc_trunc_metadata_size(root, num_devs) +
4430                 btrfs_calc_trans_metadata_size(root, 1);
4431
4432         if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
4433                 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4434                         left, thresh, type);
4435                 dump_space_info(info, 0, 0);
4436         }
4437
4438         if (left < thresh) {
4439                 u64 flags;
4440
4441                 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4442                 /*
4443                  * Ignore failure to create system chunk. We might end up not
4444                  * needing it, as we might not need to COW all nodes/leafs from
4445                  * the paths we visit in the chunk tree (they were already COWed
4446                  * or created in the current transaction for example).
4447                  */
4448                 ret = btrfs_alloc_chunk(trans, root, flags);
4449         }
4450
4451         if (!ret) {
4452                 ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
4453                                           &root->fs_info->chunk_block_rsv,
4454                                           thresh, BTRFS_RESERVE_NO_FLUSH);
4455                 if (!ret)
4456                         trans->chunk_bytes_reserved += thresh;
4457         }
4458 }
4459
4460 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4461                           struct btrfs_root *extent_root, u64 flags, int force)
4462 {
4463         struct btrfs_space_info *space_info;
4464         struct btrfs_fs_info *fs_info = extent_root->fs_info;
4465         int wait_for_alloc = 0;
4466         int ret = 0;
4467
4468         /* Don't re-enter if we're already allocating a chunk */
4469         if (trans->allocating_chunk)
4470                 return -ENOSPC;
4471
4472         space_info = __find_space_info(extent_root->fs_info, flags);
4473         if (!space_info) {
4474                 ret = update_space_info(extent_root->fs_info, flags,
4475                                         0, 0, 0, &space_info);
4476                 BUG_ON(ret); /* -ENOMEM */
4477         }
4478         BUG_ON(!space_info); /* Logic error */
4479
4480 again:
4481         spin_lock(&space_info->lock);
4482         if (force < space_info->force_alloc)
4483                 force = space_info->force_alloc;
4484         if (space_info->full) {
4485                 if (should_alloc_chunk(extent_root, space_info, force))
4486                         ret = -ENOSPC;
4487                 else
4488                         ret = 0;
4489                 spin_unlock(&space_info->lock);
4490                 return ret;
4491         }
4492
4493         if (!should_alloc_chunk(extent_root, space_info, force)) {
4494                 spin_unlock(&space_info->lock);
4495                 return 0;
4496         } else if (space_info->chunk_alloc) {
4497                 wait_for_alloc = 1;
4498         } else {
4499                 space_info->chunk_alloc = 1;
4500         }
4501
4502         spin_unlock(&space_info->lock);
4503
4504         mutex_lock(&fs_info->chunk_mutex);
4505
4506         /*
4507          * The chunk_mutex is held throughout the entirety of a chunk
4508          * allocation, so once we've acquired the chunk_mutex we know that the
4509          * other guy is done and we need to recheck and see if we should
4510          * allocate.
4511          */
4512         if (wait_for_alloc) {
4513                 mutex_unlock(&fs_info->chunk_mutex);
4514                 wait_for_alloc = 0;
4515                 goto again;
4516         }
4517
4518         trans->allocating_chunk = true;
4519
4520         /*
4521          * If we have mixed data/metadata chunks we want to make sure we keep
4522          * allocating mixed chunks instead of individual chunks.
4523          */
4524         if (btrfs_mixed_space_info(space_info))
4525                 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4526
4527         /*
4528          * if we're doing a data chunk, go ahead and make sure that
4529          * we keep a reasonable number of metadata chunks allocated in the
4530          * FS as well.
4531          */
4532         if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4533                 fs_info->data_chunk_allocations++;
4534                 if (!(fs_info->data_chunk_allocations %
4535                       fs_info->metadata_ratio))
4536                         force_metadata_allocation(fs_info);
4537         }
4538
4539         /*
4540          * Check if we have enough space in SYSTEM chunk because we may need
4541          * to update devices.
4542          */
4543         check_system_chunk(trans, extent_root, flags);
4544
4545         ret = btrfs_alloc_chunk(trans, extent_root, flags);
4546         trans->allocating_chunk = false;
4547
4548         spin_lock(&space_info->lock);
4549         if (ret < 0 && ret != -ENOSPC)
4550                 goto out;
4551         if (ret)
4552                 space_info->full = 1;
4553         else
4554                 ret = 1;
4555
4556         space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4557 out:
4558         space_info->chunk_alloc = 0;
4559         spin_unlock(&space_info->lock);
4560         mutex_unlock(&fs_info->chunk_mutex);
4561         /*
4562          * When we allocate a new chunk we reserve space in the chunk block
4563          * reserve to make sure we can COW nodes/leafs in the chunk tree or
4564          * add new nodes/leafs to it if we end up needing to do it when
4565          * inserting the chunk item and updating device items as part of the
4566          * second phase of chunk allocation, performed by
4567          * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4568          * large number of new block groups to create in our transaction
4569          * handle's new_bgs list to avoid exhausting the chunk block reserve
4570          * in extreme cases - like having a single transaction create many new
4571          * block groups when starting to write out the free space caches of all
4572          * the block groups that were made dirty during the lifetime of the
4573          * transaction.
4574          */
4575         if (trans->can_flush_pending_bgs &&
4576             trans->chunk_bytes_reserved >= (u64)SZ_2M) {
4577                 btrfs_create_pending_block_groups(trans, trans->root);
4578                 btrfs_trans_release_chunk_metadata(trans);
4579         }
4580         return ret;
4581 }
4582
4583 static int can_overcommit(struct btrfs_root *root,
4584                           struct btrfs_space_info *space_info, u64 bytes,
4585                           enum btrfs_reserve_flush_enum flush)
4586 {
4587         struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4588         u64 profile = btrfs_get_alloc_profile(root, 0);
4589         u64 space_size;
4590         u64 avail;
4591         u64 used;
4592
4593         used = space_info->bytes_used + space_info->bytes_reserved +
4594                 space_info->bytes_pinned + space_info->bytes_readonly;
4595
4596         /*
4597          * We only want to allow over committing if we have lots of actual space
4598          * free, but if we don't have enough space to handle the global reserve
4599          * space then we could end up having a real enospc problem when trying
4600          * to allocate a chunk or some other such important allocation.
4601          */
4602         spin_lock(&global_rsv->lock);
4603         space_size = calc_global_rsv_need_space(global_rsv);
4604         spin_unlock(&global_rsv->lock);
4605         if (used + space_size >= space_info->total_bytes)
4606                 return 0;
4607
4608         used += space_info->bytes_may_use;
4609
4610         spin_lock(&root->fs_info->free_chunk_lock);
4611         avail = root->fs_info->free_chunk_space;
4612         spin_unlock(&root->fs_info->free_chunk_lock);
4613
4614         /*
4615          * If we have dup, raid1 or raid10 then only half of the free
4616          * space is actually useable.  For raid56, the space info used
4617          * doesn't include the parity drive, so we don't have to
4618          * change the math
4619          */
4620         if (profile & (BTRFS_BLOCK_GROUP_DUP |
4621                        BTRFS_BLOCK_GROUP_RAID1 |
4622                        BTRFS_BLOCK_GROUP_RAID10))
4623                 avail >>= 1;
4624
4625         /*
4626          * If we aren't flushing all things, let us overcommit up to
4627          * 1/2th of the space. If we can flush, don't let us overcommit
4628          * too much, let it overcommit up to 1/8 of the space.
4629          */
4630         if (flush == BTRFS_RESERVE_FLUSH_ALL)
4631                 avail >>= 3;
4632         else
4633                 avail >>= 1;
4634
4635         if (used + bytes < space_info->total_bytes + avail)
4636                 return 1;
4637         return 0;
4638 }
4639
4640 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4641                                          unsigned long nr_pages, int nr_items)
4642 {
4643         struct super_block *sb = root->fs_info->sb;
4644
4645         if (down_read_trylock(&sb->s_umount)) {
4646                 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4647                 up_read(&sb->s_umount);
4648         } else {
4649                 /*
4650                  * We needn't worry the filesystem going from r/w to r/o though
4651                  * we don't acquire ->s_umount mutex, because the filesystem
4652                  * should guarantee the delalloc inodes list be empty after
4653                  * the filesystem is readonly(all dirty pages are written to
4654                  * the disk).
4655                  */
4656                 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4657                 if (!current->journal_info)
4658                         btrfs_wait_ordered_roots(root->fs_info, nr_items,
4659                                                  0, (u64)-1);
4660         }
4661 }
4662
4663 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4664 {
4665         u64 bytes;
4666         int nr;
4667
4668         bytes = btrfs_calc_trans_metadata_size(root, 1);
4669         nr = (int)div64_u64(to_reclaim, bytes);
4670         if (!nr)
4671                 nr = 1;
4672         return nr;
4673 }
4674
4675 #define EXTENT_SIZE_PER_ITEM    SZ_256K
4676
4677 /*
4678  * shrink metadata reservation for delalloc
4679  */
4680 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4681                             bool wait_ordered)
4682 {
4683         struct btrfs_block_rsv *block_rsv;
4684         struct btrfs_space_info *space_info;
4685         struct btrfs_trans_handle *trans;
4686         u64 delalloc_bytes;
4687         u64 max_reclaim;
4688         long time_left;
4689         unsigned long nr_pages;
4690         int loops;
4691         int items;
4692         enum btrfs_reserve_flush_enum flush;
4693
4694         /* Calc the number of the pages we need flush for space reservation */
4695         items = calc_reclaim_items_nr(root, to_reclaim);
4696         to_reclaim = (u64)items * EXTENT_SIZE_PER_ITEM;
4697
4698         trans = (struct btrfs_trans_handle *)current->journal_info;
4699         block_rsv = &root->fs_info->delalloc_block_rsv;
4700         space_info = block_rsv->space_info;
4701
4702         delalloc_bytes = percpu_counter_sum_positive(
4703                                                 &root->fs_info->delalloc_bytes);
4704         if (delalloc_bytes == 0) {
4705                 if (trans)
4706                         return;
4707                 if (wait_ordered)
4708                         btrfs_wait_ordered_roots(root->fs_info, items,
4709                                                  0, (u64)-1);
4710                 return;
4711         }
4712
4713         loops = 0;
4714         while (delalloc_bytes && loops < 3) {
4715                 max_reclaim = min(delalloc_bytes, to_reclaim);
4716                 nr_pages = max_reclaim >> PAGE_SHIFT;
4717                 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4718                 /*
4719                  * We need to wait for the async pages to actually start before
4720                  * we do anything.
4721                  */
4722                 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4723                 if (!max_reclaim)
4724                         goto skip_async;
4725
4726                 if (max_reclaim <= nr_pages)
4727                         max_reclaim = 0;
4728                 else
4729                         max_reclaim -= nr_pages;
4730
4731                 wait_event(root->fs_info->async_submit_wait,
4732                            atomic_read(&root->fs_info->async_delalloc_pages) <=
4733                            (int)max_reclaim);
4734 skip_async:
4735                 if (!trans)
4736                         flush = BTRFS_RESERVE_FLUSH_ALL;
4737                 else
4738                         flush = BTRFS_RESERVE_NO_FLUSH;
4739                 spin_lock(&space_info->lock);
4740                 if (can_overcommit(root, space_info, orig, flush)) {
4741                         spin_unlock(&space_info->lock);
4742                         break;
4743                 }
4744                 spin_unlock(&space_info->lock);
4745
4746                 loops++;
4747                 if (wait_ordered && !trans) {
4748                         btrfs_wait_ordered_roots(root->fs_info, items,
4749                                                  0, (u64)-1);
4750                 } else {
4751                         time_left = schedule_timeout_killable(1);
4752                         if (time_left)
4753                                 break;
4754                 }
4755                 delalloc_bytes = percpu_counter_sum_positive(
4756                                                 &root->fs_info->delalloc_bytes);
4757         }
4758 }
4759
4760 /**
4761  * maybe_commit_transaction - possibly commit the transaction if its ok to
4762  * @root - the root we're allocating for
4763  * @bytes - the number of bytes we want to reserve
4764  * @force - force the commit
4765  *
4766  * This will check to make sure that committing the transaction will actually
4767  * get us somewhere and then commit the transaction if it does.  Otherwise it
4768  * will return -ENOSPC.
4769  */
4770 static int may_commit_transaction(struct btrfs_root *root,
4771                                   struct btrfs_space_info *space_info,
4772                                   u64 bytes, int force)
4773 {
4774         struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4775         struct btrfs_trans_handle *trans;
4776
4777         trans = (struct btrfs_trans_handle *)current->journal_info;
4778         if (trans)
4779                 return -EAGAIN;
4780
4781         if (force)
4782                 goto commit;
4783
4784         /* See if there is enough pinned space to make this reservation */
4785         if (percpu_counter_compare(&space_info->total_bytes_pinned,
4786                                    bytes) >= 0)
4787                 goto commit;
4788
4789         /*
4790          * See if there is some space in the delayed insertion reservation for
4791          * this reservation.
4792          */
4793         if (space_info != delayed_rsv->space_info)
4794                 return -ENOSPC;
4795
4796         spin_lock(&delayed_rsv->lock);
4797         if (percpu_counter_compare(&space_info->total_bytes_pinned,
4798                                    bytes - delayed_rsv->size) >= 0) {
4799                 spin_unlock(&delayed_rsv->lock);
4800                 return -ENOSPC;
4801         }
4802         spin_unlock(&delayed_rsv->lock);
4803
4804 commit:
4805         trans = btrfs_join_transaction(root);
4806         if (IS_ERR(trans))
4807                 return -ENOSPC;
4808
4809         return btrfs_commit_transaction(trans, root);
4810 }
4811
4812 enum flush_state {
4813         FLUSH_DELAYED_ITEMS_NR  =       1,
4814         FLUSH_DELAYED_ITEMS     =       2,
4815         FLUSH_DELALLOC          =       3,
4816         FLUSH_DELALLOC_WAIT     =       4,
4817         ALLOC_CHUNK             =       5,
4818         COMMIT_TRANS            =       6,
4819 };
4820
4821 static int flush_space(struct btrfs_root *root,
4822                        struct btrfs_space_info *space_info, u64 num_bytes,
4823                        u64 orig_bytes, int state)
4824 {
4825         struct btrfs_trans_handle *trans;
4826         int nr;
4827         int ret = 0;
4828
4829         switch (state) {
4830         case FLUSH_DELAYED_ITEMS_NR:
4831         case FLUSH_DELAYED_ITEMS:
4832                 if (state == FLUSH_DELAYED_ITEMS_NR)
4833                         nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4834                 else
4835                         nr = -1;
4836
4837                 trans = btrfs_join_transaction(root);
4838                 if (IS_ERR(trans)) {
4839                         ret = PTR_ERR(trans);
4840                         break;
4841                 }
4842                 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4843                 btrfs_end_transaction(trans, root);
4844                 break;
4845         case FLUSH_DELALLOC:
4846         case FLUSH_DELALLOC_WAIT:
4847                 shrink_delalloc(root, num_bytes * 2, orig_bytes,
4848                                 state == FLUSH_DELALLOC_WAIT);
4849                 break;
4850         case ALLOC_CHUNK:
4851                 trans = btrfs_join_transaction(root);
4852                 if (IS_ERR(trans)) {
4853                         ret = PTR_ERR(trans);
4854                         break;
4855                 }
4856                 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4857                                      btrfs_get_alloc_profile(root, 0),
4858                                      CHUNK_ALLOC_NO_FORCE);
4859                 btrfs_end_transaction(trans, root);
4860                 if (ret == -ENOSPC)
4861                         ret = 0;
4862                 break;
4863         case COMMIT_TRANS:
4864                 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4865                 break;
4866         default:
4867                 ret = -ENOSPC;
4868                 break;
4869         }
4870
4871         return ret;
4872 }
4873
4874 static inline u64
4875 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4876                                  struct btrfs_space_info *space_info)
4877 {
4878         u64 used;
4879         u64 expected;
4880         u64 to_reclaim;
4881
4882         to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
4883         spin_lock(&space_info->lock);
4884         if (can_overcommit(root, space_info, to_reclaim,
4885                            BTRFS_RESERVE_FLUSH_ALL)) {
4886                 to_reclaim = 0;
4887                 goto out;
4888         }
4889
4890         used = space_info->bytes_used + space_info->bytes_reserved +
4891                space_info->bytes_pinned + space_info->bytes_readonly +
4892                space_info->bytes_may_use;
4893         if (can_overcommit(root, space_info, SZ_1M, BTRFS_RESERVE_FLUSH_ALL))
4894                 expected = div_factor_fine(space_info->total_bytes, 95);
4895         else
4896                 expected = div_factor_fine(space_info->total_bytes, 90);
4897
4898         if (used > expected)
4899                 to_reclaim = used - expected;
4900         else
4901                 to_reclaim = 0;
4902         to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4903                                      space_info->bytes_reserved);
4904 out:
4905         spin_unlock(&space_info->lock);
4906
4907         return to_reclaim;
4908 }
4909
4910 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4911                                         struct btrfs_fs_info *fs_info, u64 used)
4912 {
4913         u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4914
4915         /* If we're just plain full then async reclaim just slows us down. */
4916         if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
4917                 return 0;
4918
4919         return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4920                 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4921 }
4922
4923 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
4924                                        struct btrfs_fs_info *fs_info,
4925                                        int flush_state)
4926 {
4927         u64 used;
4928
4929         spin_lock(&space_info->lock);
4930         /*
4931          * We run out of space and have not got any free space via flush_space,
4932          * so don't bother doing async reclaim.
4933          */
4934         if (flush_state > COMMIT_TRANS && space_info->full) {
4935                 spin_unlock(&space_info->lock);
4936                 return 0;
4937         }
4938
4939         used = space_info->bytes_used + space_info->bytes_reserved +
4940                space_info->bytes_pinned + space_info->bytes_readonly +
4941                space_info->bytes_may_use;
4942         if (need_do_async_reclaim(space_info, fs_info, used)) {
4943                 spin_unlock(&space_info->lock);
4944                 return 1;
4945         }
4946         spin_unlock(&space_info->lock);
4947
4948         return 0;
4949 }
4950
4951 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4952 {
4953         struct btrfs_fs_info *fs_info;
4954         struct btrfs_space_info *space_info;
4955         u64 to_reclaim;
4956         int flush_state;
4957
4958         fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4959         space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4960
4961         to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4962                                                       space_info);
4963         if (!to_reclaim)
4964                 return;
4965
4966         flush_state = FLUSH_DELAYED_ITEMS_NR;
4967         do {
4968                 flush_space(fs_info->fs_root, space_info, to_reclaim,
4969                             to_reclaim, flush_state);
4970                 flush_state++;
4971                 if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4972                                                  flush_state))
4973                         return;
4974         } while (flush_state < COMMIT_TRANS);
4975 }
4976
4977 void btrfs_init_async_reclaim_work(struct work_struct *work)
4978 {
4979         INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4980 }
4981
4982 /**
4983  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4984  * @root - the root we're allocating for
4985  * @block_rsv - the block_rsv we're allocating for
4986  * @orig_bytes - the number of bytes we want
4987  * @flush - whether or not we can flush to make our reservation
4988  *
4989  * This will reserve orig_bytes number of bytes from the space info associated
4990  * with the block_rsv.  If there is not enough space it will make an attempt to
4991  * flush out space to make room.  It will do this by flushing delalloc if
4992  * possible or committing the transaction.  If flush is 0 then no attempts to
4993  * regain reservations will be made and this will fail if there is not enough
4994  * space already.
4995  */
4996 static int reserve_metadata_bytes(struct btrfs_root *root,
4997                                   struct btrfs_block_rsv *block_rsv,
4998                                   u64 orig_bytes,
4999                                   enum btrfs_reserve_flush_enum flush)
5000 {
5001         struct btrfs_space_info *space_info = block_rsv->space_info;
5002         u64 used;
5003         u64 num_bytes = orig_bytes;
5004         int flush_state = FLUSH_DELAYED_ITEMS_NR;
5005         int ret = 0;
5006         bool flushing = false;
5007
5008 again:
5009         ret = 0;
5010         spin_lock(&space_info->lock);
5011         /*
5012          * We only want to wait if somebody other than us is flushing and we
5013          * are actually allowed to flush all things.
5014          */
5015         while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
5016                space_info->flush) {
5017                 spin_unlock(&space_info->lock);
5018                 /*
5019                  * If we have a trans handle we can't wait because the flusher
5020                  * may have to commit the transaction, which would mean we would
5021                  * deadlock since we are waiting for the flusher to finish, but
5022                  * hold the current transaction open.
5023                  */
5024                 if (current->journal_info)
5025                         return -EAGAIN;
5026                 ret = wait_event_killable(space_info->wait, !space_info->flush);
5027                 /* Must have been killed, return */
5028                 if (ret)
5029                         return -EINTR;
5030
5031                 spin_lock(&space_info->lock);
5032         }
5033
5034         ret = -ENOSPC;
5035         used = space_info->bytes_used + space_info->bytes_reserved +
5036                 space_info->bytes_pinned + space_info->bytes_readonly +
5037                 space_info->bytes_may_use;
5038
5039         /*
5040          * The idea here is that we've not already over-reserved the block group
5041          * then we can go ahead and save our reservation first and then start
5042          * flushing if we need to.  Otherwise if we've already overcommitted
5043          * lets start flushing stuff first and then come back and try to make
5044          * our reservation.
5045          */
5046         if (used <= space_info->total_bytes) {
5047                 if (used + orig_bytes <= space_info->total_bytes) {
5048                         space_info->bytes_may_use += orig_bytes;
5049                         trace_btrfs_space_reservation(root->fs_info,
5050                                 "space_info", space_info->flags, orig_bytes, 1);
5051                         ret = 0;
5052                 } else {
5053                         /*
5054                          * Ok set num_bytes to orig_bytes since we aren't
5055                          * overocmmitted, this way we only try and reclaim what
5056                          * we need.
5057                          */
5058                         num_bytes = orig_bytes;
5059                 }
5060         } else {
5061                 /*
5062                  * Ok we're over committed, set num_bytes to the overcommitted
5063                  * amount plus the amount of bytes that we need for this
5064                  * reservation.
5065                  */
5066                 num_bytes = used - space_info->total_bytes +
5067                         (orig_bytes * 2);
5068         }
5069
5070         if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
5071                 space_info->bytes_may_use += orig_bytes;
5072                 trace_btrfs_space_reservation(root->fs_info, "space_info",
5073                                               space_info->flags, orig_bytes,
5074                                               1);
5075                 ret = 0;
5076         }
5077
5078         /*
5079          * Couldn't make our reservation, save our place so while we're trying
5080          * to reclaim space we can actually use it instead of somebody else
5081          * stealing it from us.
5082          *
5083          * We make the other tasks wait for the flush only when we can flush
5084          * all things.
5085          */
5086         if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5087                 flushing = true;
5088                 space_info->flush = 1;
5089         } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5090                 used += orig_bytes;
5091                 /*
5092                  * We will do the space reservation dance during log replay,
5093                  * which means we won't have fs_info->fs_root set, so don't do
5094                  * the async reclaim as we will panic.
5095                  */
5096                 if (!root->fs_info->log_root_recovering &&
5097                     need_do_async_reclaim(space_info, root->fs_info, used) &&
5098                     !work_busy(&root->fs_info->async_reclaim_work))
5099                         queue_work(system_unbound_wq,
5100                                    &root->fs_info->async_reclaim_work);
5101         }
5102         spin_unlock(&space_info->lock);
5103
5104         if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5105                 goto out;
5106
5107         ret = flush_space(root, space_info, num_bytes, orig_bytes,
5108                           flush_state);
5109         flush_state++;
5110
5111         /*
5112          * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
5113          * would happen. So skip delalloc flush.
5114          */
5115         if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
5116             (flush_state == FLUSH_DELALLOC ||
5117              flush_state == FLUSH_DELALLOC_WAIT))
5118                 flush_state = ALLOC_CHUNK;
5119
5120         if (!ret)
5121                 goto again;
5122         else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
5123                  flush_state < COMMIT_TRANS)
5124                 goto again;
5125         else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
5126                  flush_state <= COMMIT_TRANS)
5127                 goto again;
5128
5129 out:
5130         if (ret == -ENOSPC &&
5131             unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5132                 struct btrfs_block_rsv *global_rsv =
5133                         &root->fs_info->global_block_rsv;
5134
5135                 if (block_rsv != global_rsv &&
5136                     !block_rsv_use_bytes(global_rsv, orig_bytes))
5137                         ret = 0;
5138         }
5139         if (ret == -ENOSPC)
5140                 trace_btrfs_space_reservation(root->fs_info,
5141                                               "space_info:enospc",
5142                                               space_info->flags, orig_bytes, 1);
5143         if (flushing) {
5144                 spin_lock(&space_info->lock);
5145                 space_info->flush = 0;
5146                 wake_up_all(&space_info->wait);
5147                 spin_unlock(&space_info->lock);
5148         }
5149         return ret;
5150 }
5151
5152 static struct btrfs_block_rsv *get_block_rsv(
5153                                         const struct btrfs_trans_handle *trans,
5154                                         const struct btrfs_root *root)
5155 {
5156         struct btrfs_block_rsv *block_rsv = NULL;
5157
5158         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5159             (root == root->fs_info->csum_root && trans->adding_csums) ||
5160              (root == root->fs_info->uuid_root))
5161                 block_rsv = trans->block_rsv;
5162
5163         if (!block_rsv)
5164                 block_rsv = root->block_rsv;
5165
5166         if (!block_rsv)
5167                 block_rsv = &root->fs_info->empty_block_rsv;
5168
5169         return block_rsv;
5170 }
5171
5172 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5173                                u64 num_bytes)
5174 {
5175         int ret = -ENOSPC;
5176         spin_lock(&block_rsv->lock);
5177         if (block_rsv->reserved >= num_bytes) {
5178                 block_rsv->reserved -= num_bytes;
5179                 if (block_rsv->reserved < block_rsv->size)
5180                         block_rsv->full = 0;
5181                 ret = 0;
5182         }
5183         spin_unlock(&block_rsv->lock);
5184         return ret;
5185 }
5186
5187 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5188                                 u64 num_bytes, int update_size)
5189 {
5190         spin_lock(&block_rsv->lock);
5191         block_rsv->reserved += num_bytes;
5192         if (update_size)
5193                 block_rsv->size += num_bytes;
5194         else if (block_rsv->reserved >= block_rsv->size)
5195                 block_rsv->full = 1;
5196         spin_unlock(&block_rsv->lock);
5197 }
5198
5199 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5200                              struct btrfs_block_rsv *dest, u64 num_bytes,
5201                              int min_factor)
5202 {
5203         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5204         u64 min_bytes;
5205
5206         if (global_rsv->space_info != dest->space_info)
5207                 return -ENOSPC;
5208
5209         spin_lock(&global_rsv->lock);
5210         min_bytes = div_factor(global_rsv->size, min_factor);
5211         if (global_rsv->reserved < min_bytes + num_bytes) {
5212                 spin_unlock(&global_rsv->lock);
5213                 return -ENOSPC;
5214         }
5215         global_rsv->reserved -= num_bytes;
5216         if (global_rsv->reserved < global_rsv->size)
5217                 global_rsv->full = 0;
5218         spin_unlock(&global_rsv->lock);
5219
5220         block_rsv_add_bytes(dest, num_bytes, 1);
5221         return 0;
5222 }
5223
5224 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5225                                     struct btrfs_block_rsv *block_rsv,
5226                                     struct btrfs_block_rsv *dest, u64 num_bytes)
5227 {
5228         struct btrfs_space_info *space_info = block_rsv->space_info;
5229
5230         spin_lock(&block_rsv->lock);
5231         if (num_bytes == (u64)-1)
5232                 num_bytes = block_rsv->size;
5233         block_rsv->size -= num_bytes;
5234         if (block_rsv->reserved >= block_rsv->size) {
5235                 num_bytes = block_rsv->reserved - block_rsv->size;
5236                 block_rsv->reserved = block_rsv->size;
5237                 block_rsv->full = 1;
5238         } else {
5239                 num_bytes = 0;
5240         }
5241         spin_unlock(&block_rsv->lock);
5242
5243         if (num_bytes > 0) {
5244                 if (dest) {
5245                         spin_lock(&dest->lock);
5246                         if (!dest->full) {
5247                                 u64 bytes_to_add;
5248
5249                                 bytes_to_add = dest->size - dest->reserved;
5250                                 bytes_to_add = min(num_bytes, bytes_to_add);
5251                                 dest->reserved += bytes_to_add;
5252                                 if (dest->reserved >= dest->size)
5253                                         dest->full = 1;
5254                                 num_bytes -= bytes_to_add;
5255                         }
5256                         spin_unlock(&dest->lock);
5257                 }
5258                 if (num_bytes) {
5259                         spin_lock(&space_info->lock);
5260                         space_info->bytes_may_use -= num_bytes;
5261                         trace_btrfs_space_reservation(fs_info, "space_info",
5262                                         space_info->flags, num_bytes, 0);
5263                         spin_unlock(&space_info->lock);
5264                 }
5265         }
5266 }
5267
5268 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
5269                                    struct btrfs_block_rsv *dst, u64 num_bytes)
5270 {
5271         int ret;
5272
5273         ret = block_rsv_use_bytes(src, num_bytes);
5274         if (ret)
5275                 return ret;
5276
5277         block_rsv_add_bytes(dst, num_bytes, 1);
5278         return 0;
5279 }
5280
5281 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5282 {
5283         memset(rsv, 0, sizeof(*rsv));
5284         spin_lock_init(&rsv->lock);
5285         rsv->type = type;
5286 }
5287
5288 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
5289                                               unsigned short type)
5290 {
5291         struct btrfs_block_rsv *block_rsv;
5292         struct btrfs_fs_info *fs_info = root->fs_info;
5293
5294         block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5295         if (!block_rsv)
5296                 return NULL;
5297
5298         btrfs_init_block_rsv(block_rsv, type);
5299         block_rsv->space_info = __find_space_info(fs_info,
5300                                                   BTRFS_BLOCK_GROUP_METADATA);
5301         return block_rsv;
5302 }
5303
5304 void btrfs_free_block_rsv(struct btrfs_root *root,
5305                           struct btrfs_block_rsv *rsv)
5306 {
5307         if (!rsv)
5308                 return;
5309         btrfs_block_rsv_release(root, rsv, (u64)-1);
5310         kfree(rsv);
5311 }
5312
5313 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5314 {
5315         kfree(rsv);
5316 }
5317
5318 int btrfs_block_rsv_add(struct btrfs_root *root,
5319                         struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5320                         enum btrfs_reserve_flush_enum flush)
5321 {
5322         int ret;
5323
5324         if (num_bytes == 0)
5325                 return 0;
5326
5327         ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5328         if (!ret) {
5329                 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5330                 return 0;
5331         }
5332
5333         return ret;
5334 }
5335
5336 int btrfs_block_rsv_check(struct btrfs_root *root,
5337                           struct btrfs_block_rsv *block_rsv, int min_factor)
5338 {
5339         u64 num_bytes = 0;
5340         int ret = -ENOSPC;
5341
5342         if (!block_rsv)
5343                 return 0;
5344
5345         spin_lock(&block_rsv->lock);
5346         num_bytes = div_factor(block_rsv->size, min_factor);
5347         if (block_rsv->reserved >= num_bytes)
5348                 ret = 0;
5349         spin_unlock(&block_rsv->lock);
5350
5351         return ret;
5352 }
5353
5354 int btrfs_block_rsv_refill(struct btrfs_root *root,
5355                            struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5356                            enum btrfs_reserve_flush_enum flush)
5357 {
5358         u64 num_bytes = 0;
5359         int ret = -ENOSPC;
5360
5361         if (!block_rsv)
5362                 return 0;
5363
5364         spin_lock(&block_rsv->lock);
5365         num_bytes = min_reserved;
5366         if (block_rsv->reserved >= num_bytes)
5367                 ret = 0;
5368         else
5369                 num_bytes -= block_rsv->reserved;
5370         spin_unlock(&block_rsv->lock);
5371
5372         if (!ret)
5373                 return 0;
5374
5375         ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5376         if (!ret) {
5377                 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5378                 return 0;
5379         }
5380
5381         return ret;
5382 }
5383
5384 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
5385                             struct btrfs_block_rsv *dst_rsv,
5386                             u64 num_bytes)
5387 {
5388         return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5389 }
5390
5391 void btrfs_block_rsv_release(struct btrfs_root *root,
5392                              struct btrfs_block_rsv *block_rsv,
5393                              u64 num_bytes)
5394 {
5395         struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5396         if (global_rsv == block_rsv ||
5397             block_rsv->space_info != global_rsv->space_info)
5398                 global_rsv = NULL;
5399         block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5400                                 num_bytes);
5401 }
5402
5403 /*
5404  * helper to calculate size of global block reservation.
5405  * the desired value is sum of space used by extent tree,
5406  * checksum tree and root tree
5407  */
5408 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
5409 {
5410         struct btrfs_space_info *sinfo;
5411         u64 num_bytes;
5412         u64 meta_used;
5413         u64 data_used;
5414         int csum_size = btrfs_super_csum_size(fs_info->super_copy);
5415
5416         sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
5417         spin_lock(&sinfo->lock);
5418         data_used = sinfo->bytes_used;
5419         spin_unlock(&sinfo->lock);
5420
5421         sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5422         spin_lock(&sinfo->lock);
5423         if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
5424                 data_used = 0;
5425         meta_used = sinfo->bytes_used;
5426         spin_unlock(&sinfo->lock);
5427
5428         num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
5429                     csum_size * 2;
5430         num_bytes += div_u64(data_used + meta_used, 50);
5431
5432         if (num_bytes * 3 > meta_used)
5433                 num_bytes = div_u64(meta_used, 3);
5434
5435         return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
5436 }
5437
5438 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5439 {
5440         struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5441         struct btrfs_space_info *sinfo = block_rsv->space_info;
5442         u64 num_bytes;
5443
5444         num_bytes = calc_global_metadata_size(fs_info);
5445
5446         spin_lock(&sinfo->lock);
5447         spin_lock(&block_rsv->lock);
5448
5449         block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5450
5451         if (block_rsv->reserved < block_rsv->size) {
5452                 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
5453                         sinfo->bytes_reserved + sinfo->bytes_readonly +
5454                         sinfo->bytes_may_use;
5455                 if (sinfo->total_bytes > num_bytes) {
5456                         num_bytes = sinfo->total_bytes - num_bytes;
5457                         num_bytes = min(num_bytes,
5458                                         block_rsv->size - block_rsv->reserved);
5459                         block_rsv->reserved += num_bytes;
5460                         sinfo->bytes_may_use += num_bytes;
5461                         trace_btrfs_space_reservation(fs_info, "space_info",
5462                                                       sinfo->flags, num_bytes,
5463                                                       1);
5464                 }
5465         } else if (block_rsv->reserved > block_rsv->size) {
5466                 num_bytes = block_rsv->reserved - block_rsv->size;
5467                 sinfo->bytes_may_use -= num_bytes;
5468                 trace_btrfs_space_reservation(fs_info, "space_info",
5469                                       sinfo->flags, num_bytes, 0);
5470                 block_rsv->reserved = block_rsv->size;
5471         }
5472
5473         if (block_rsv->reserved == block_rsv->size)
5474                 block_rsv->full = 1;
5475         else
5476                 block_rsv->full = 0;
5477
5478         spin_unlock(&block_rsv->lock);
5479         spin_unlock(&sinfo->lock);
5480 }
5481
5482 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5483 {
5484         struct btrfs_space_info *space_info;
5485
5486         space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5487         fs_info->chunk_block_rsv.space_info = space_info;
5488
5489         space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5490         fs_info->global_block_rsv.space_info = space_info;
5491         fs_info->delalloc_block_rsv.space_info = space_info;
5492         fs_info->trans_block_rsv.space_info = space_info;
5493         fs_info->empty_block_rsv.space_info = space_info;
5494         fs_info->delayed_block_rsv.space_info = space_info;
5495
5496         fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5497         fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5498         fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5499         fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5500         if (fs_info->quota_root)
5501                 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5502         fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5503
5504         update_global_block_rsv(fs_info);
5505 }
5506
5507 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5508 {
5509         block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5510                                 (u64)-1);
5511         WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5512         WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5513         WARN_ON(fs_info->trans_block_rsv.size > 0);
5514         WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5515         WARN_ON(fs_info->chunk_block_rsv.size > 0);
5516         WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5517         WARN_ON(fs_info->delayed_block_rsv.size > 0);
5518         WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5519 }
5520
5521 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5522                                   struct btrfs_root *root)
5523 {
5524         if (!trans->block_rsv)
5525                 return;
5526
5527         if (!trans->bytes_reserved)
5528                 return;
5529
5530         trace_btrfs_space_reservation(root->fs_info, "transaction",
5531                                       trans->transid, trans->bytes_reserved, 0);
5532         btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
5533         trans->bytes_reserved = 0;
5534 }
5535
5536 /*
5537  * To be called after all the new block groups attached to the transaction
5538  * handle have been created (btrfs_create_pending_block_groups()).
5539  */
5540 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5541 {
5542         struct btrfs_fs_info *fs_info = trans->root->fs_info;
5543
5544         if (!trans->chunk_bytes_reserved)
5545                 return;
5546
5547         WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5548
5549         block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5550                                 trans->chunk_bytes_reserved);
5551         trans->chunk_bytes_reserved = 0;
5552 }
5553
5554 /* Can only return 0 or -ENOSPC */
5555 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5556                                   struct inode *inode)
5557 {
5558         struct btrfs_root *root = BTRFS_I(inode)->root;
5559         struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
5560         struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5561
5562         /*
5563          * We need to hold space in order to delete our orphan item once we've
5564          * added it, so this takes the reservation so we can release it later
5565          * when we are truly done with the orphan item.
5566          */
5567         u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5568         trace_btrfs_space_reservation(root->fs_info, "orphan",
5569                                       btrfs_ino(inode), num_bytes, 1);
5570         return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5571 }
5572
5573 void btrfs_orphan_release_metadata(struct inode *inode)
5574 {
5575         struct btrfs_root *root = BTRFS_I(inode)->root;
5576         u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5577         trace_btrfs_space_reservation(root->fs_info, "orphan",
5578                                       btrfs_ino(inode), num_bytes, 0);
5579         btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5580 }
5581
5582 /*
5583  * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5584  * root: the root of the parent directory
5585  * rsv: block reservation
5586  * items: the number of items that we need do reservation
5587  * qgroup_reserved: used to return the reserved size in qgroup
5588  *
5589  * This function is used to reserve the space for snapshot/subvolume
5590  * creation and deletion. Those operations are different with the
5591  * common file/directory operations, they change two fs/file trees
5592  * and root tree, the number of items that the qgroup reserves is
5593  * different with the free space reservation. So we can not use
5594  * the space reservation mechanism in start_transaction().
5595  */
5596 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5597                                      struct btrfs_block_rsv *rsv,
5598                                      int items,
5599                                      u64 *qgroup_reserved,
5600                                      bool use_global_rsv)
5601 {
5602         u64 num_bytes;
5603         int ret;
5604         struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5605
5606         if (root->fs_info->quota_enabled) {
5607                 /* One for parent inode, two for dir entries */
5608                 num_bytes = 3 * root->nodesize;
5609                 ret = btrfs_qgroup_reserve_meta(root, num_bytes);
5610                 if (ret)
5611                         return ret;
5612         } else {
5613                 num_bytes = 0;
5614         }
5615
5616         *qgroup_reserved = num_bytes;
5617
5618         num_bytes = btrfs_calc_trans_metadata_size(root, items);
5619         rsv->space_info = __find_space_info(root->fs_info,
5620                                             BTRFS_BLOCK_GROUP_METADATA);
5621         ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5622                                   BTRFS_RESERVE_FLUSH_ALL);
5623
5624         if (ret == -ENOSPC && use_global_rsv)
5625                 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5626
5627         if (ret && *qgroup_reserved)
5628                 btrfs_qgroup_free_meta(root, *qgroup_reserved);
5629
5630         return ret;
5631 }
5632
5633 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5634                                       struct btrfs_block_rsv *rsv,
5635                                       u64 qgroup_reserved)
5636 {
5637         btrfs_block_rsv_release(root, rsv, (u64)-1);
5638 }
5639
5640 /**
5641  * drop_outstanding_extent - drop an outstanding extent
5642  * @inode: the inode we're dropping the extent for
5643  * @num_bytes: the number of bytes we're releasing.
5644  *
5645  * This is called when we are freeing up an outstanding extent, either called
5646  * after an error or after an extent is written.  This will return the number of
5647  * reserved extents that need to be freed.  This must be called with
5648  * BTRFS_I(inode)->lock held.
5649  */
5650 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
5651 {
5652         unsigned drop_inode_space = 0;
5653         unsigned dropped_extents = 0;
5654         unsigned num_extents = 0;
5655
5656         num_extents = (unsigned)div64_u64(num_bytes +
5657                                           BTRFS_MAX_EXTENT_SIZE - 1,
5658                                           BTRFS_MAX_EXTENT_SIZE);
5659         ASSERT(num_extents);
5660         ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5661         BTRFS_I(inode)->outstanding_extents -= num_extents;
5662
5663         if (BTRFS_I(inode)->outstanding_extents == 0 &&
5664             test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5665                                &BTRFS_I(inode)->runtime_flags))
5666                 drop_inode_space = 1;
5667
5668         /*
5669          * If we have more or the same amount of outstanding extents than we have
5670          * reserved then we need to leave the reserved extents count alone.
5671          */
5672         if (BTRFS_I(inode)->outstanding_extents >=
5673             BTRFS_I(inode)->reserved_extents)
5674                 return drop_inode_space;
5675
5676         dropped_extents = BTRFS_I(inode)->reserved_extents -
5677                 BTRFS_I(inode)->outstanding_extents;
5678         BTRFS_I(inode)->reserved_extents -= dropped_extents;
5679         return dropped_extents + drop_inode_space;
5680 }
5681
5682 /**
5683  * calc_csum_metadata_size - return the amount of metadata space that must be
5684  *      reserved/freed for the given bytes.
5685  * @inode: the inode we're manipulating
5686  * @num_bytes: the number of bytes in question
5687  * @reserve: 1 if we are reserving space, 0 if we are freeing space
5688  *
5689  * This adjusts the number of csum_bytes in the inode and then returns the
5690  * correct amount of metadata that must either be reserved or freed.  We
5691  * calculate how many checksums we can fit into one leaf and then divide the
5692  * number of bytes that will need to be checksumed by this value to figure out
5693  * how many checksums will be required.  If we are adding bytes then the number
5694  * may go up and we will return the number of additional bytes that must be
5695  * reserved.  If it is going down we will return the number of bytes that must
5696  * be freed.
5697  *
5698  * This must be called with BTRFS_I(inode)->lock held.
5699  */
5700 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5701                                    int reserve)
5702 {
5703         struct btrfs_root *root = BTRFS_I(inode)->root;
5704         u64 old_csums, num_csums;
5705
5706         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5707             BTRFS_I(inode)->csum_bytes == 0)
5708                 return 0;
5709
5710         old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5711         if (reserve)
5712                 BTRFS_I(inode)->csum_bytes += num_bytes;
5713         else
5714                 BTRFS_I(inode)->csum_bytes -= num_bytes;
5715         num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5716
5717         /* No change, no need to reserve more */
5718         if (old_csums == num_csums)
5719                 return 0;
5720
5721         if (reserve)
5722                 return btrfs_calc_trans_metadata_size(root,
5723                                                       num_csums - old_csums);
5724
5725         return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5726 }
5727
5728 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5729 {
5730         struct btrfs_root *root = BTRFS_I(inode)->root;
5731         struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5732         u64 to_reserve = 0;
5733         u64 csum_bytes;
5734         unsigned nr_extents = 0;
5735         int extra_reserve = 0;
5736         enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5737         int ret = 0;
5738         bool delalloc_lock = true;
5739         u64 to_free = 0;
5740         unsigned dropped;
5741
5742         /* If we are a free space inode we need to not flush since we will be in
5743          * the middle of a transaction commit.  We also don't need the delalloc
5744          * mutex since we won't race with anybody.  We need this mostly to make
5745          * lockdep shut its filthy mouth.
5746          */
5747         if (btrfs_is_free_space_inode(inode)) {
5748                 flush = BTRFS_RESERVE_NO_FLUSH;
5749                 delalloc_lock = false;
5750         }
5751
5752         if (flush != BTRFS_RESERVE_NO_FLUSH &&
5753             btrfs_transaction_in_commit(root->fs_info))
5754                 schedule_timeout(1);
5755
5756         if (delalloc_lock)
5757                 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5758
5759         num_bytes = ALIGN(num_bytes, root->sectorsize);
5760
5761         spin_lock(&BTRFS_I(inode)->lock);
5762         nr_extents = (unsigned)div64_u64(num_bytes +
5763                                          BTRFS_MAX_EXTENT_SIZE - 1,
5764                                          BTRFS_MAX_EXTENT_SIZE);
5765         BTRFS_I(inode)->outstanding_extents += nr_extents;
5766         nr_extents = 0;
5767
5768         if (BTRFS_I(inode)->outstanding_extents >
5769             BTRFS_I(inode)->reserved_extents)
5770                 nr_extents = BTRFS_I(inode)->outstanding_extents -
5771                         BTRFS_I(inode)->reserved_extents;
5772
5773         /*
5774          * Add an item to reserve for updating the inode when we complete the
5775          * delalloc io.
5776          */
5777         if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5778                       &BTRFS_I(inode)->runtime_flags)) {
5779                 nr_extents++;
5780                 extra_reserve = 1;
5781         }
5782
5783         to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
5784         to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5785         csum_bytes = BTRFS_I(inode)->csum_bytes;
5786         spin_unlock(&BTRFS_I(inode)->lock);
5787
5788         if (root->fs_info->quota_enabled) {
5789                 ret = btrfs_qgroup_reserve_meta(root,
5790                                 nr_extents * root->nodesize);
5791                 if (ret)
5792                         goto out_fail;
5793         }
5794
5795         ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5796         if (unlikely(ret)) {
5797                 btrfs_qgroup_free_meta(root, nr_extents * root->nodesize);
5798                 goto out_fail;
5799         }
5800
5801         spin_lock(&BTRFS_I(inode)->lock);
5802         if (extra_reserve) {
5803                 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5804                         &BTRFS_I(inode)->runtime_flags);
5805                 nr_extents--;
5806         }
5807         BTRFS_I(inode)->reserved_extents += nr_extents;
5808         spin_unlock(&BTRFS_I(inode)->lock);
5809
5810         if (delalloc_lock)
5811                 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5812
5813         if (to_reserve)
5814                 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5815                                               btrfs_ino(inode), to_reserve, 1);
5816         block_rsv_add_bytes(block_rsv, to_reserve, 1);
5817
5818         return 0;
5819
5820 out_fail:
5821         spin_lock(&BTRFS_I(inode)->lock);
5822         dropped = drop_outstanding_extent(inode, num_bytes);
5823         /*
5824          * If the inodes csum_bytes is the same as the original
5825          * csum_bytes then we know we haven't raced with any free()ers
5826          * so we can just reduce our inodes csum bytes and carry on.
5827          */
5828         if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5829                 calc_csum_metadata_size(inode, num_bytes, 0);
5830         } else {
5831                 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5832                 u64 bytes;
5833
5834                 /*
5835                  * This is tricky, but first we need to figure out how much we
5836                  * freed from any free-ers that occurred during this
5837                  * reservation, so we reset ->csum_bytes to the csum_bytes
5838                  * before we dropped our lock, and then call the free for the
5839                  * number of bytes that were freed while we were trying our
5840                  * reservation.
5841                  */
5842                 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5843                 BTRFS_I(inode)->csum_bytes = csum_bytes;
5844                 to_free = calc_csum_metadata_size(inode, bytes, 0);
5845
5846
5847                 /*
5848                  * Now we need to see how much we would have freed had we not
5849                  * been making this reservation and our ->csum_bytes were not
5850                  * artificially inflated.
5851                  */
5852                 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5853                 bytes = csum_bytes - orig_csum_bytes;
5854                 bytes = calc_csum_metadata_size(inode, bytes, 0);
5855
5856                 /*
5857                  * Now reset ->csum_bytes to what it should be.  If bytes is
5858                  * more than to_free then we would have freed more space had we
5859                  * not had an artificially high ->csum_bytes, so we need to free
5860                  * the remainder.  If bytes is the same or less then we don't
5861                  * need to do anything, the other free-ers did the correct
5862                  * thing.
5863                  */
5864                 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5865                 if (bytes > to_free)
5866                         to_free = bytes - to_free;
5867                 else
5868                         to_free = 0;
5869         }
5870         spin_unlock(&BTRFS_I(inode)->lock);
5871         if (dropped)
5872                 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5873
5874         if (to_free) {
5875                 btrfs_block_rsv_release(root, block_rsv, to_free);
5876                 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5877                                               btrfs_ino(inode), to_free, 0);
5878         }
5879         if (delalloc_lock)
5880                 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5881         return ret;
5882 }
5883
5884 /**
5885  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5886  * @inode: the inode to release the reservation for
5887  * @num_bytes: the number of bytes we're releasing
5888  *
5889  * This will release the metadata reservation for an inode.  This can be called
5890  * once we complete IO for a given set of bytes to release their metadata
5891  * reservations.
5892  */
5893 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5894 {
5895         struct btrfs_root *root = BTRFS_I(inode)->root;
5896         u64 to_free = 0;
5897         unsigned dropped;
5898
5899         num_bytes = ALIGN(num_bytes, root->sectorsize);
5900         spin_lock(&BTRFS_I(inode)->lock);
5901         dropped = drop_outstanding_extent(inode, num_bytes);
5902
5903         if (num_bytes)
5904                 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5905         spin_unlock(&BTRFS_I(inode)->lock);
5906         if (dropped > 0)
5907                 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5908
5909         if (btrfs_test_is_dummy_root(root))
5910                 return;
5911
5912         trace_btrfs_space_reservation(root->fs_info, "delalloc",
5913                                       btrfs_ino(inode), to_free, 0);
5914
5915         btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5916                                 to_free);
5917 }
5918
5919 /**
5920  * btrfs_delalloc_reserve_space - reserve data and metadata space for
5921  * delalloc
5922  * @inode: inode we're writing to
5923  * @start: start range we are writing to
5924  * @len: how long the range we are writing to
5925  *
5926  * TODO: This function will finally replace old btrfs_delalloc_reserve_space()
5927  *
5928  * This will do the following things
5929  *
5930  * o reserve space in data space info for num bytes
5931  *   and reserve precious corresponding qgroup space
5932  *   (Done in check_data_free_space)
5933  *
5934  * o reserve space for metadata space, based on the number of outstanding
5935  *   extents and how much csums will be needed
5936  *   also reserve metadata space in a per root over-reserve method.
5937  * o add to the inodes->delalloc_bytes
5938  * o add it to the fs_info's delalloc inodes list.
5939  *   (Above 3 all done in delalloc_reserve_metadata)
5940  *
5941  * Return 0 for success
5942  * Return <0 for error(-ENOSPC or -EQUOT)
5943  */
5944 int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len)
5945 {
5946         int ret;
5947
5948         ret = btrfs_check_data_free_space(inode, start, len);
5949         if (ret < 0)
5950                 return ret;
5951         ret = btrfs_delalloc_reserve_metadata(inode, len);
5952         if (ret < 0)
5953                 btrfs_free_reserved_data_space(inode, start, len);
5954         return ret;
5955 }
5956
5957 /**
5958  * btrfs_delalloc_release_space - release data and metadata space for delalloc
5959  * @inode: inode we're releasing space for
5960  * @start: start position of the space already reserved
5961  * @len: the len of the space already reserved
5962  *
5963  * This must be matched with a call to btrfs_delalloc_reserve_space.  This is
5964  * called in the case that we don't need the metadata AND data reservations
5965  * anymore.  So if there is an error or we insert an inline extent.
5966  *
5967  * This function will release the metadata space that was not used and will
5968  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5969  * list if there are no delalloc bytes left.
5970  * Also it will handle the qgroup reserved space.
5971  */
5972 void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len)
5973 {
5974         btrfs_delalloc_release_metadata(inode, len);
5975         btrfs_free_reserved_data_space(inode, start, len);
5976 }
5977
5978 static int update_block_group(struct btrfs_trans_handle *trans,
5979                               struct btrfs_root *root, u64 bytenr,
5980                               u64 num_bytes, int alloc)
5981 {
5982         struct btrfs_block_group_cache *cache = NULL;
5983         struct btrfs_fs_info *info = root->fs_info;
5984         u64 total = num_bytes;
5985         u64 old_val;
5986         u64 byte_in_group;
5987         int factor;
5988
5989         /* block accounting for super block */
5990         spin_lock(&info->delalloc_root_lock);
5991         old_val = btrfs_super_bytes_used(info->super_copy);
5992         if (alloc)
5993                 old_val += num_bytes;
5994         else
5995                 old_val -= num_bytes;
5996         btrfs_set_super_bytes_used(info->super_copy, old_val);
5997         spin_unlock(&info->delalloc_root_lock);
5998
5999         while (total) {
6000                 cache = btrfs_lookup_block_group(info, bytenr);
6001                 if (!cache)
6002                         return -ENOENT;
6003                 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6004                                     BTRFS_BLOCK_GROUP_RAID1 |
6005                                     BTRFS_BLOCK_GROUP_RAID10))
6006                         factor = 2;
6007                 else
6008                         factor = 1;
6009                 /*
6010                  * If this block group has free space cache written out, we
6011                  * need to make sure to load it if we are removing space.  This
6012                  * is because we need the unpinning stage to actually add the
6013                  * space back to the block group, otherwise we will leak space.
6014                  */
6015                 if (!alloc && cache->cached == BTRFS_CACHE_NO)
6016                         cache_block_group(cache, 1);
6017
6018                 byte_in_group = bytenr - cache->key.objectid;
6019                 WARN_ON(byte_in_group > cache->key.offset);
6020
6021                 spin_lock(&cache->space_info->lock);
6022                 spin_lock(&cache->lock);
6023
6024                 if (btrfs_test_opt(root, SPACE_CACHE) &&
6025                     cache->disk_cache_state < BTRFS_DC_CLEAR)
6026                         cache->disk_cache_state = BTRFS_DC_CLEAR;
6027
6028                 old_val = btrfs_block_group_used(&cache->item);
6029                 num_bytes = min(total, cache->key.offset - byte_in_group);
6030                 if (alloc) {
6031                         old_val += num_bytes;
6032                         btrfs_set_block_group_used(&cache->item, old_val);
6033                         cache->reserved -= num_bytes;
6034                         cache->space_info->bytes_reserved -= num_bytes;
6035                         cache->space_info->bytes_used += num_bytes;
6036                         cache->space_info->disk_used += num_bytes * factor;
6037                         spin_unlock(&cache->lock);
6038                         spin_unlock(&cache->space_info->lock);
6039                 } else {
6040                         old_val -= num_bytes;
6041                         btrfs_set_block_group_used(&cache->item, old_val);
6042                         cache->pinned += num_bytes;
6043                         cache->space_info->bytes_pinned += num_bytes;
6044                         cache->space_info->bytes_used -= num_bytes;
6045                         cache->space_info->disk_used -= num_bytes * factor;
6046                         spin_unlock(&cache->lock);
6047                         spin_unlock(&cache->space_info->lock);
6048
6049                         set_extent_dirty(info->pinned_extents,
6050                                          bytenr, bytenr + num_bytes - 1,
6051                                          GFP_NOFS | __GFP_NOFAIL);
6052                 }
6053
6054                 spin_lock(&trans->transaction->dirty_bgs_lock);
6055                 if (list_empty(&cache->dirty_list)) {
6056                         list_add_tail(&cache->dirty_list,
6057                                       &trans->transaction->dirty_bgs);
6058                                 trans->transaction->num_dirty_bgs++;
6059                         btrfs_get_block_group(cache);
6060                 }
6061                 spin_unlock(&trans->transaction->dirty_bgs_lock);
6062
6063                 /*
6064                  * No longer have used bytes in this block group, queue it for
6065                  * deletion. We do this after adding the block group to the
6066                  * dirty list to avoid races between cleaner kthread and space
6067                  * cache writeout.
6068                  */
6069                 if (!alloc && old_val == 0) {
6070                         spin_lock(&info->unused_bgs_lock);
6071                         if (list_empty(&cache->bg_list)) {
6072                                 btrfs_get_block_group(cache);
6073                                 list_add_tail(&cache->bg_list,
6074                                               &info->unused_bgs);
6075                         }
6076                         spin_unlock(&info->unused_bgs_lock);
6077                 }
6078
6079                 btrfs_put_block_group(cache);
6080                 total -= num_bytes;
6081                 bytenr += num_bytes;
6082         }
6083         return 0;
6084 }
6085
6086 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
6087 {
6088         struct btrfs_block_group_cache *cache;
6089         u64 bytenr;
6090
6091         spin_lock(&root->fs_info->block_group_cache_lock);
6092         bytenr = root->fs_info->first_logical_byte;
6093         spin_unlock(&root->fs_info->block_group_cache_lock);
6094
6095         if (bytenr < (u64)-1)
6096                 return bytenr;
6097
6098         cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
6099         if (!cache)
6100                 return 0;
6101
6102         bytenr = cache->key.objectid;
6103         btrfs_put_block_group(cache);
6104
6105         return bytenr;
6106 }
6107
6108 static int pin_down_extent(struct btrfs_root *root,
6109                            struct btrfs_block_group_cache *cache,
6110                            u64 bytenr, u64 num_bytes, int reserved)
6111 {
6112         spin_lock(&cache->space_info->lock);
6113         spin_lock(&cache->lock);
6114         cache->pinned += num_bytes;
6115         cache->space_info->bytes_pinned += num_bytes;
6116         if (reserved) {
6117                 cache->reserved -= num_bytes;
6118                 cache->space_info->bytes_reserved -= num_bytes;
6119         }
6120         spin_unlock(&cache->lock);
6121         spin_unlock(&cache->space_info->lock);
6122
6123         set_extent_dirty(root->fs_info->pinned_extents, bytenr,
6124                          bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6125         if (reserved)
6126                 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
6127         return 0;
6128 }
6129
6130 /*
6131  * this function must be called within transaction
6132  */
6133 int btrfs_pin_extent(struct btrfs_root *root,
6134                      u64 bytenr, u64 num_bytes, int reserved)
6135 {
6136         struct btrfs_block_group_cache *cache;
6137
6138         cache = btrfs_lookup_block_group(root->fs_info, bytenr);
6139         BUG_ON(!cache); /* Logic error */
6140
6141         pin_down_extent(root, cache, bytenr, num_bytes, reserved);
6142
6143         btrfs_put_block_group(cache);
6144         return 0;
6145 }
6146
6147 /*
6148  * this function must be called within transaction
6149  */
6150 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
6151                                     u64 bytenr, u64 num_bytes)
6152 {
6153         struct btrfs_block_group_cache *cache;
6154         int ret;
6155
6156         cache = btrfs_lookup_block_group(root->fs_info, bytenr);
6157         if (!cache)
6158                 return -EINVAL;
6159
6160         /*
6161          * pull in the free space cache (if any) so that our pin
6162          * removes the free space from the cache.  We have load_only set
6163          * to one because the slow code to read in the free extents does check
6164          * the pinned extents.
6165          */
6166         cache_block_group(cache, 1);
6167
6168         pin_down_extent(root, cache, bytenr, num_bytes, 0);
6169
6170         /* remove us from the free space cache (if we're there at all) */
6171         ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6172         btrfs_put_block_group(cache);
6173         return ret;
6174 }
6175
6176 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
6177 {
6178         int ret;
6179         struct btrfs_block_group_cache *block_group;
6180         struct btrfs_caching_control *caching_ctl;
6181
6182         block_group = btrfs_lookup_block_group(root->fs_info, start);
6183         if (!block_group)
6184                 return -EINVAL;
6185
6186         cache_block_group(block_group, 0);
6187         caching_ctl = get_caching_control(block_group);
6188
6189         if (!caching_ctl) {
6190                 /* Logic error */
6191                 BUG_ON(!block_group_cache_done(block_group));
6192                 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6193         } else {
6194                 mutex_lock(&caching_ctl->mutex);
6195
6196                 if (start >= caching_ctl->progress) {
6197                         ret = add_excluded_extent(root, start, num_bytes);
6198                 } else if (start + num_bytes <= caching_ctl->progress) {
6199                         ret = btrfs_remove_free_space(block_group,
6200                                                       start, num_bytes);
6201                 } else {
6202                         num_bytes = caching_ctl->progress - start;
6203                         ret = btrfs_remove_free_space(block_group,
6204                                                       start, num_bytes);
6205                         if (ret)
6206                                 goto out_lock;
6207
6208                         num_bytes = (start + num_bytes) -
6209                                 caching_ctl->progress;
6210                         start = caching_ctl->progress;
6211                         ret = add_excluded_extent(root, start, num_bytes);
6212                 }
6213 out_lock:
6214                 mutex_unlock(&caching_ctl->mutex);
6215                 put_caching_control(caching_ctl);
6216         }
6217         btrfs_put_block_group(block_group);
6218         return ret;
6219 }
6220
6221 int btrfs_exclude_logged_extents(struct btrfs_root *log,
6222                                  struct extent_buffer *eb)
6223 {
6224         struct btrfs_file_extent_item *item;
6225         struct btrfs_key key;
6226         int found_type;
6227         int i;
6228
6229         if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
6230                 return 0;
6231
6232         for (i = 0; i < btrfs_header_nritems(eb); i++) {
6233                 btrfs_item_key_to_cpu(eb, &key, i);
6234                 if (key.type != BTRFS_EXTENT_DATA_KEY)
6235                         continue;
6236                 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6237                 found_type = btrfs_file_extent_type(eb, item);
6238                 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6239                         continue;
6240                 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6241                         continue;
6242                 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6243                 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6244                 __exclude_logged_extent(log, key.objectid, key.offset);
6245         }
6246
6247         return 0;
6248 }
6249
6250 static void
6251 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6252 {
6253         atomic_inc(&bg->reservations);
6254 }
6255
6256 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6257                                         const u64 start)
6258 {
6259         struct btrfs_block_group_cache *bg;
6260
6261         bg = btrfs_lookup_block_group(fs_info, start);
6262         ASSERT(bg);
6263         if (atomic_dec_and_test(&bg->reservations))
6264                 wake_up_atomic_t(&bg->reservations);
6265         btrfs_put_block_group(bg);
6266 }
6267
6268 static int btrfs_wait_bg_reservations_atomic_t(atomic_t *a)
6269 {
6270         schedule();
6271         return 0;
6272 }
6273
6274 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6275 {
6276         struct btrfs_space_info *space_info = bg->space_info;
6277
6278         ASSERT(bg->ro);
6279
6280         if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6281                 return;
6282
6283         /*
6284          * Our block group is read only but before we set it to read only,
6285          * some task might have had allocated an extent from it already, but it
6286          * has not yet created a respective ordered extent (and added it to a
6287          * root's list of ordered extents).
6288          * Therefore wait for any task currently allocating extents, since the
6289          * block group's reservations counter is incremented while a read lock
6290          * on the groups' semaphore is held and decremented after releasing
6291          * the read access on that semaphore and creating the ordered extent.
6292          */
6293         down_write(&space_info->groups_sem);
6294         up_write(&space_info->groups_sem);
6295
6296         wait_on_atomic_t(&bg->reservations,
6297                          btrfs_wait_bg_reservations_atomic_t,
6298                          TASK_UNINTERRUPTIBLE);
6299 }
6300
6301 /**
6302  * btrfs_update_reserved_bytes - update the block_group and space info counters
6303  * @cache:      The cache we are manipulating
6304  * @num_bytes:  The number of bytes in question
6305  * @reserve:    One of the reservation enums
6306  * @delalloc:   The blocks are allocated for the delalloc write
6307  *
6308  * This is called by the allocator when it reserves space, or by somebody who is
6309  * freeing space that was never actually used on disk.  For example if you
6310  * reserve some space for a new leaf in transaction A and before transaction A
6311  * commits you free that leaf, you call this with reserve set to 0 in order to
6312  * clear the reservation.
6313  *
6314  * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
6315  * ENOSPC accounting.  For data we handle the reservation through clearing the
6316  * delalloc bits in the io_tree.  We have to do this since we could end up
6317  * allocating less disk space for the amount of data we have reserved in the
6318  * case of compression.
6319  *
6320  * If this is a reservation and the block group has become read only we cannot
6321  * make the reservation and return -EAGAIN, otherwise this function always
6322  * succeeds.
6323  */
6324 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
6325                                        u64 num_bytes, int reserve, int delalloc)
6326 {
6327         struct btrfs_space_info *space_info = cache->space_info;
6328         int ret = 0;
6329
6330         spin_lock(&space_info->lock);
6331         spin_lock(&cache->lock);
6332         if (reserve != RESERVE_FREE) {
6333                 if (cache->ro) {
6334                         ret = -EAGAIN;
6335                 } else {
6336                         cache->reserved += num_bytes;
6337                         space_info->bytes_reserved += num_bytes;
6338                         if (reserve == RESERVE_ALLOC) {
6339                                 trace_btrfs_space_reservation(cache->fs_info,
6340                                                 "space_info", space_info->flags,
6341                                                 num_bytes, 0);
6342                                 space_info->bytes_may_use -= num_bytes;
6343                         }
6344
6345                         if (delalloc)
6346                                 cache->delalloc_bytes += num_bytes;
6347                 }
6348         } else {
6349                 if (cache->ro)
6350                         space_info->bytes_readonly += num_bytes;
6351                 cache->reserved -= num_bytes;
6352                 space_info->bytes_reserved -= num_bytes;
6353
6354                 if (delalloc)
6355                         cache->delalloc_bytes -= num_bytes;
6356         }
6357         spin_unlock(&cache->lock);
6358         spin_unlock(&space_info->lock);
6359         return ret;
6360 }
6361
6362 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
6363                                 struct btrfs_root *root)
6364 {
6365         struct btrfs_fs_info *fs_info = root->fs_info;
6366         struct btrfs_caching_control *next;
6367         struct btrfs_caching_control *caching_ctl;
6368         struct btrfs_block_group_cache *cache;
6369
6370         down_write(&fs_info->commit_root_sem);
6371
6372         list_for_each_entry_safe(caching_ctl, next,
6373                                  &fs_info->caching_block_groups, list) {
6374                 cache = caching_ctl->block_group;
6375                 if (block_group_cache_done(cache)) {
6376                         cache->last_byte_to_unpin = (u64)-1;
6377                         list_del_init(&caching_ctl->list);
6378                         put_caching_control(caching_ctl);
6379                 } else {
6380                         cache->last_byte_to_unpin = caching_ctl->progress;
6381                 }
6382         }
6383
6384         if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6385                 fs_info->pinned_extents = &fs_info->freed_extents[1];
6386         else
6387                 fs_info->pinned_extents = &fs_info->freed_extents[0];
6388
6389         up_write(&fs_info->commit_root_sem);
6390
6391         update_global_block_rsv(fs_info);
6392 }
6393
6394 /*
6395  * Returns the free cluster for the given space info and sets empty_cluster to
6396  * what it should be based on the mount options.
6397  */
6398 static struct btrfs_free_cluster *
6399 fetch_cluster_info(struct btrfs_root *root, struct btrfs_space_info *space_info,
6400                    u64 *empty_cluster)
6401 {
6402         struct btrfs_free_cluster *ret = NULL;
6403         bool ssd = btrfs_test_opt(root, SSD);
6404
6405         *empty_cluster = 0;
6406         if (btrfs_mixed_space_info(space_info))
6407                 return ret;
6408
6409         if (ssd)
6410                 *empty_cluster = SZ_2M;
6411         if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6412                 ret = &root->fs_info->meta_alloc_cluster;
6413                 if (!ssd)
6414                         *empty_cluster = SZ_64K;
6415         } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) {
6416                 ret = &root->fs_info->data_alloc_cluster;
6417         }
6418
6419         return ret;
6420 }
6421
6422 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
6423                               const bool return_free_space)
6424 {
6425         struct btrfs_fs_info *fs_info = root->fs_info;
6426         struct btrfs_block_group_cache *cache = NULL;
6427         struct btrfs_space_info *space_info;
6428         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6429         struct btrfs_free_cluster *cluster = NULL;
6430         u64 len;
6431         u64 total_unpinned = 0;
6432         u64 empty_cluster = 0;
6433         bool readonly;
6434
6435         while (start <= end) {
6436                 readonly = false;
6437                 if (!cache ||
6438                     start >= cache->key.objectid + cache->key.offset) {
6439                         if (cache)
6440                                 btrfs_put_block_group(cache);
6441                         total_unpinned = 0;
6442                         cache = btrfs_lookup_block_group(fs_info, start);
6443                         BUG_ON(!cache); /* Logic error */
6444
6445                         cluster = fetch_cluster_info(root,
6446                                                      cache->space_info,
6447                                                      &empty_cluster);
6448                         empty_cluster <<= 1;
6449                 }
6450
6451                 len = cache->key.objectid + cache->key.offset - start;
6452                 len = min(len, end + 1 - start);
6453
6454                 if (start < cache->last_byte_to_unpin) {
6455                         len = min(len, cache->last_byte_to_unpin - start);
6456                         if (return_free_space)
6457                                 btrfs_add_free_space(cache, start, len);
6458                 }
6459
6460                 start += len;
6461                 total_unpinned += len;
6462                 space_info = cache->space_info;
6463
6464                 /*
6465                  * If this space cluster has been marked as fragmented and we've
6466                  * unpinned enough in this block group to potentially allow a
6467                  * cluster to be created inside of it go ahead and clear the
6468                  * fragmented check.
6469                  */
6470                 if (cluster && cluster->fragmented &&
6471                     total_unpinned > empty_cluster) {
6472                         spin_lock(&cluster->lock);
6473                         cluster->fragmented = 0;
6474                         spin_unlock(&cluster->lock);
6475                 }
6476
6477                 spin_lock(&space_info->lock);
6478                 spin_lock(&cache->lock);
6479                 cache->pinned -= len;
6480                 space_info->bytes_pinned -= len;
6481                 space_info->max_extent_size = 0;
6482                 percpu_counter_add(&space_info->total_bytes_pinned, -len);
6483                 if (cache->ro) {
6484                         space_info->bytes_readonly += len;
6485                         readonly = true;
6486                 }
6487                 spin_unlock(&cache->lock);
6488                 if (!readonly && global_rsv->space_info == space_info) {
6489                         spin_lock(&global_rsv->lock);
6490                         if (!global_rsv->full) {
6491                                 len = min(len, global_rsv->size -
6492                                           global_rsv->reserved);
6493                                 global_rsv->reserved += len;
6494                                 space_info->bytes_may_use += len;
6495                                 if (global_rsv->reserved >= global_rsv->size)
6496                                         global_rsv->full = 1;
6497                         }
6498                         spin_unlock(&global_rsv->lock);
6499                 }
6500                 spin_unlock(&space_info->lock);
6501         }
6502
6503         if (cache)
6504                 btrfs_put_block_group(cache);
6505         return 0;
6506 }
6507
6508 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6509                                struct btrfs_root *root)
6510 {
6511         struct btrfs_fs_info *fs_info = root->fs_info;
6512         struct btrfs_block_group_cache *block_group, *tmp;
6513         struct list_head *deleted_bgs;
6514         struct extent_io_tree *unpin;
6515         u64 start;
6516         u64 end;
6517         int ret;
6518
6519         if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6520                 unpin = &fs_info->freed_extents[1];
6521         else
6522                 unpin = &fs_info->freed_extents[0];
6523
6524         while (!trans->aborted) {
6525                 mutex_lock(&fs_info->unused_bg_unpin_mutex);
6526                 ret = find_first_extent_bit(unpin, 0, &start, &end,
6527                                             EXTENT_DIRTY, NULL);
6528                 if (ret) {
6529                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6530                         break;
6531                 }
6532
6533                 if (btrfs_test_opt(root, DISCARD))
6534                         ret = btrfs_discard_extent(root, start,
6535                                                    end + 1 - start, NULL);
6536
6537                 clear_extent_dirty(unpin, start, end);
6538                 unpin_extent_range(root, start, end, true);
6539                 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6540                 cond_resched();
6541         }
6542
6543         /*
6544          * Transaction is finished.  We don't need the lock anymore.  We
6545          * do need to clean up the block groups in case of a transaction
6546          * abort.
6547          */
6548         deleted_bgs = &trans->transaction->deleted_bgs;
6549         list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6550                 u64 trimmed = 0;
6551
6552                 ret = -EROFS;
6553                 if (!trans->aborted)
6554                         ret = btrfs_discard_extent(root,
6555                                                    block_group->key.objectid,
6556                                                    block_group->key.offset,
6557                                                    &trimmed);
6558
6559                 list_del_init(&block_group->bg_list);
6560                 btrfs_put_block_group_trimming(block_group);
6561                 btrfs_put_block_group(block_group);
6562
6563                 if (ret) {
6564                         const char *errstr = btrfs_decode_error(ret);
6565                         btrfs_warn(fs_info,
6566                                    "Discard failed while removing blockgroup: errno=%d %s\n",
6567                                    ret, errstr);
6568                 }
6569         }
6570
6571         return 0;
6572 }
6573
6574 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6575                              u64 owner, u64 root_objectid)
6576 {
6577         struct btrfs_space_info *space_info;
6578         u64 flags;
6579
6580         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6581                 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6582                         flags = BTRFS_BLOCK_GROUP_SYSTEM;
6583                 else
6584                         flags = BTRFS_BLOCK_GROUP_METADATA;
6585         } else {
6586                 flags = BTRFS_BLOCK_GROUP_DATA;
6587         }
6588
6589         space_info = __find_space_info(fs_info, flags);
6590         BUG_ON(!space_info); /* Logic bug */
6591         percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6592 }
6593
6594
6595 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6596                                 struct btrfs_root *root,
6597                                 struct btrfs_delayed_ref_node *node, u64 parent,
6598                                 u64 root_objectid, u64 owner_objectid,
6599                                 u64 owner_offset, int refs_to_drop,
6600                                 struct btrfs_delayed_extent_op *extent_op)
6601 {
6602         struct btrfs_key key;
6603         struct btrfs_path *path;
6604         struct btrfs_fs_info *info = root->fs_info;
6605         struct btrfs_root *extent_root = info->extent_root;
6606         struct extent_buffer *leaf;
6607         struct btrfs_extent_item *ei;
6608         struct btrfs_extent_inline_ref *iref;
6609         int ret;
6610         int is_data;
6611         int extent_slot = 0;
6612         int found_extent = 0;
6613         int num_to_del = 1;
6614         u32 item_size;
6615         u64 refs;
6616         u64 bytenr = node->bytenr;
6617         u64 num_bytes = node->num_bytes;
6618         int last_ref = 0;
6619         bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6620                                                  SKINNY_METADATA);
6621
6622         path = btrfs_alloc_path();
6623         if (!path)
6624                 return -ENOMEM;
6625
6626         path->reada = READA_FORWARD;
6627         path->leave_spinning = 1;
6628
6629         is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6630         BUG_ON(!is_data && refs_to_drop != 1);
6631
6632         if (is_data)
6633                 skinny_metadata = 0;
6634
6635         ret = lookup_extent_backref(trans, extent_root, path, &iref,
6636                                     bytenr, num_bytes, parent,
6637                                     root_objectid, owner_objectid,
6638                                     owner_offset);
6639         if (ret == 0) {
6640                 extent_slot = path->slots[0];
6641                 while (extent_slot >= 0) {
6642                         btrfs_item_key_to_cpu(path->nodes[0], &key,
6643                                               extent_slot);
6644                         if (key.objectid != bytenr)
6645                                 break;
6646                         if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6647                             key.offset == num_bytes) {
6648                                 found_extent = 1;
6649                                 break;
6650                         }
6651                         if (key.type == BTRFS_METADATA_ITEM_KEY &&
6652                             key.offset == owner_objectid) {
6653                                 found_extent = 1;
6654                                 break;
6655                         }
6656                         if (path->slots[0] - extent_slot > 5)
6657                                 break;
6658                         extent_slot--;
6659                 }
6660 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6661                 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6662                 if (found_extent && item_size < sizeof(*ei))
6663                         found_extent = 0;
6664 #endif
6665                 if (!found_extent) {
6666                         BUG_ON(iref);
6667                         ret = remove_extent_backref(trans, extent_root, path,
6668                                                     NULL, refs_to_drop,
6669                                                     is_data, &last_ref);
6670                         if (ret) {
6671                                 btrfs_abort_transaction(trans, extent_root, ret);
6672                                 goto out;
6673                         }
6674                         btrfs_release_path(path);
6675                         path->leave_spinning = 1;
6676
6677                         key.objectid = bytenr;
6678                         key.type = BTRFS_EXTENT_ITEM_KEY;
6679                         key.offset = num_bytes;
6680
6681                         if (!is_data && skinny_metadata) {
6682                                 key.type = BTRFS_METADATA_ITEM_KEY;
6683                                 key.offset = owner_objectid;
6684                         }
6685
6686                         ret = btrfs_search_slot(trans, extent_root,
6687                                                 &key, path, -1, 1);
6688                         if (ret > 0 && skinny_metadata && path->slots[0]) {
6689                                 /*
6690                                  * Couldn't find our skinny metadata item,
6691                                  * see if we have ye olde extent item.
6692                                  */
6693                                 path->slots[0]--;
6694                                 btrfs_item_key_to_cpu(path->nodes[0], &key,
6695                                                       path->slots[0]);
6696                                 if (key.objectid == bytenr &&
6697                                     key.type == BTRFS_EXTENT_ITEM_KEY &&
6698                                     key.offset == num_bytes)
6699                                         ret = 0;
6700                         }
6701
6702                         if (ret > 0 && skinny_metadata) {
6703                                 skinny_metadata = false;
6704                                 key.objectid = bytenr;
6705                                 key.type = BTRFS_EXTENT_ITEM_KEY;
6706                                 key.offset = num_bytes;
6707                                 btrfs_release_path(path);
6708                                 ret = btrfs_search_slot(trans, extent_root,
6709                                                         &key, path, -1, 1);
6710                         }
6711
6712                         if (ret) {
6713                                 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6714                                         ret, bytenr);
6715                                 if (ret > 0)
6716                                         btrfs_print_leaf(extent_root,
6717                                                          path->nodes[0]);
6718                         }
6719                         if (ret < 0) {
6720                                 btrfs_abort_transaction(trans, extent_root, ret);
6721                                 goto out;
6722                         }
6723                         extent_slot = path->slots[0];
6724                 }
6725         } else if (WARN_ON(ret == -ENOENT)) {
6726                 btrfs_print_leaf(extent_root, path->nodes[0]);
6727                 btrfs_err(info,
6728                         "unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
6729                         bytenr, parent, root_objectid, owner_objectid,
6730                         owner_offset);
6731                 btrfs_abort_transaction(trans, extent_root, ret);
6732                 goto out;
6733         } else {
6734                 btrfs_abort_transaction(trans, extent_root, ret);
6735                 goto out;
6736         }
6737
6738         leaf = path->nodes[0];
6739         item_size = btrfs_item_size_nr(leaf, extent_slot);
6740 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6741         if (item_size < sizeof(*ei)) {
6742                 BUG_ON(found_extent || extent_slot != path->slots[0]);
6743                 ret = convert_extent_item_v0(trans, extent_root, path,
6744                                              owner_objectid, 0);
6745                 if (ret < 0) {
6746                         btrfs_abort_transaction(trans, extent_root, ret);
6747                         goto out;
6748                 }
6749
6750                 btrfs_release_path(path);
6751                 path->leave_spinning = 1;
6752
6753                 key.objectid = bytenr;
6754                 key.type = BTRFS_EXTENT_ITEM_KEY;
6755                 key.offset = num_bytes;
6756
6757                 ret = btrfs_search_slot(trans, extent_root, &key, path,
6758                                         -1, 1);
6759                 if (ret) {
6760                         btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6761                                 ret, bytenr);
6762                         btrfs_print_leaf(extent_root, path->nodes[0]);
6763                 }
6764                 if (ret < 0) {
6765                         btrfs_abort_transaction(trans, extent_root, ret);
6766                         goto out;
6767                 }
6768
6769                 extent_slot = path->slots[0];
6770                 leaf = path->nodes[0];
6771                 item_size = btrfs_item_size_nr(leaf, extent_slot);
6772         }
6773 #endif
6774         BUG_ON(item_size < sizeof(*ei));
6775         ei = btrfs_item_ptr(leaf, extent_slot,
6776                             struct btrfs_extent_item);
6777         if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6778             key.type == BTRFS_EXTENT_ITEM_KEY) {
6779                 struct btrfs_tree_block_info *bi;
6780                 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6781                 bi = (struct btrfs_tree_block_info *)(ei + 1);
6782                 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6783         }
6784
6785         refs = btrfs_extent_refs(leaf, ei);
6786         if (refs < refs_to_drop) {
6787                 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
6788                           "for bytenr %Lu", refs_to_drop, refs, bytenr);
6789                 ret = -EINVAL;
6790                 btrfs_abort_transaction(trans, extent_root, ret);
6791                 goto out;
6792         }
6793         refs -= refs_to_drop;
6794
6795         if (refs > 0) {
6796                 if (extent_op)
6797                         __run_delayed_extent_op(extent_op, leaf, ei);
6798                 /*
6799                  * In the case of inline back ref, reference count will
6800                  * be updated by remove_extent_backref
6801                  */
6802                 if (iref) {
6803                         BUG_ON(!found_extent);
6804                 } else {
6805                         btrfs_set_extent_refs(leaf, ei, refs);
6806                         btrfs_mark_buffer_dirty(leaf);
6807                 }
6808                 if (found_extent) {
6809                         ret = remove_extent_backref(trans, extent_root, path,
6810                                                     iref, refs_to_drop,
6811                                                     is_data, &last_ref);
6812                         if (ret) {
6813                                 btrfs_abort_transaction(trans, extent_root, ret);
6814                                 goto out;
6815                         }
6816                 }
6817                 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6818                                  root_objectid);
6819         } else {
6820                 if (found_extent) {
6821                         BUG_ON(is_data && refs_to_drop !=
6822                                extent_data_ref_count(path, iref));
6823                         if (iref) {
6824                                 BUG_ON(path->slots[0] != extent_slot);
6825                         } else {
6826                                 BUG_ON(path->slots[0] != extent_slot + 1);
6827                                 path->slots[0] = extent_slot;
6828                                 num_to_del = 2;
6829                         }
6830                 }
6831
6832                 last_ref = 1;
6833                 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6834                                       num_to_del);
6835                 if (ret) {
6836                         btrfs_abort_transaction(trans, extent_root, ret);
6837                         goto out;
6838                 }
6839                 btrfs_release_path(path);
6840
6841                 if (is_data) {
6842                         ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
6843                         if (ret) {
6844                                 btrfs_abort_transaction(trans, extent_root, ret);
6845                                 goto out;
6846                         }
6847                 }
6848
6849                 ret = add_to_free_space_tree(trans, root->fs_info, bytenr,
6850                                              num_bytes);
6851                 if (ret) {
6852                         btrfs_abort_transaction(trans, extent_root, ret);
6853                         goto out;
6854                 }
6855
6856                 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
6857                 if (ret) {
6858                         btrfs_abort_transaction(trans, extent_root, ret);
6859                         goto out;
6860                 }
6861         }
6862         btrfs_release_path(path);
6863
6864 out:
6865         btrfs_free_path(path);
6866         return ret;
6867 }
6868
6869 /*
6870  * when we free an block, it is possible (and likely) that we free the last
6871  * delayed ref for that extent as well.  This searches the delayed ref tree for
6872  * a given extent, and if there are no other delayed refs to be processed, it
6873  * removes it from the tree.
6874  */
6875 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6876                                       struct btrfs_root *root, u64 bytenr)
6877 {
6878         struct btrfs_delayed_ref_head *head;
6879         struct btrfs_delayed_ref_root *delayed_refs;
6880         int ret = 0;
6881
6882         delayed_refs = &trans->transaction->delayed_refs;
6883         spin_lock(&delayed_refs->lock);
6884         head = btrfs_find_delayed_ref_head(trans, bytenr);
6885         if (!head)
6886                 goto out_delayed_unlock;
6887
6888         spin_lock(&head->lock);
6889         if (!list_empty(&head->ref_list))
6890                 goto out;
6891
6892         if (head->extent_op) {
6893                 if (!head->must_insert_reserved)
6894                         goto out;
6895                 btrfs_free_delayed_extent_op(head->extent_op);
6896                 head->extent_op = NULL;
6897         }
6898
6899         /*
6900          * waiting for the lock here would deadlock.  If someone else has it
6901          * locked they are already in the process of dropping it anyway
6902          */
6903         if (!mutex_trylock(&head->mutex))
6904                 goto out;
6905
6906         /*
6907          * at this point we have a head with no other entries.  Go
6908          * ahead and process it.
6909          */
6910         head->node.in_tree = 0;
6911         rb_erase(&head->href_node, &delayed_refs->href_root);
6912
6913         atomic_dec(&delayed_refs->num_entries);
6914
6915         /*
6916          * we don't take a ref on the node because we're removing it from the
6917          * tree, so we just steal the ref the tree was holding.
6918          */
6919         delayed_refs->num_heads--;
6920         if (head->processing == 0)
6921                 delayed_refs->num_heads_ready--;
6922         head->processing = 0;
6923         spin_unlock(&head->lock);
6924         spin_unlock(&delayed_refs->lock);
6925
6926         BUG_ON(head->extent_op);
6927         if (head->must_insert_reserved)
6928                 ret = 1;
6929
6930         mutex_unlock(&head->mutex);
6931         btrfs_put_delayed_ref(&head->node);
6932         return ret;
6933 out:
6934         spin_unlock(&head->lock);
6935
6936 out_delayed_unlock:
6937         spin_unlock(&delayed_refs->lock);
6938         return 0;
6939 }
6940
6941 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6942                            struct btrfs_root *root,
6943                            struct extent_buffer *buf,
6944                            u64 parent, int last_ref)
6945 {
6946         int pin = 1;
6947         int ret;
6948
6949         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6950                 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6951                                         buf->start, buf->len,
6952                                         parent, root->root_key.objectid,
6953                                         btrfs_header_level(buf),
6954                                         BTRFS_DROP_DELAYED_REF, NULL);
6955                 BUG_ON(ret); /* -ENOMEM */
6956         }
6957
6958         if (!last_ref)
6959                 return;
6960
6961         if (btrfs_header_generation(buf) == trans->transid) {
6962                 struct btrfs_block_group_cache *cache;
6963
6964                 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6965                         ret = check_ref_cleanup(trans, root, buf->start);
6966                         if (!ret)
6967                                 goto out;
6968                 }
6969
6970                 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6971
6972                 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6973                         pin_down_extent(root, cache, buf->start, buf->len, 1);
6974                         btrfs_put_block_group(cache);
6975                         goto out;
6976                 }
6977
6978                 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6979
6980                 btrfs_add_free_space(cache, buf->start, buf->len);
6981                 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6982                 btrfs_put_block_group(cache);
6983                 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
6984                 pin = 0;
6985         }
6986 out:
6987         if (pin)
6988                 add_pinned_bytes(root->fs_info, buf->len,
6989                                  btrfs_header_level(buf),
6990                                  root->root_key.objectid);
6991
6992         /*
6993          * Deleting the buffer, clear the corrupt flag since it doesn't matter
6994          * anymore.
6995          */
6996         clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6997 }
6998
6999 /* Can return -ENOMEM */
7000 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7001                       u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
7002                       u64 owner, u64 offset)
7003 {
7004         int ret;
7005         struct btrfs_fs_info *fs_info = root->fs_info;
7006
7007         if (btrfs_test_is_dummy_root(root))
7008                 return 0;
7009
7010         add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
7011
7012         /*
7013          * tree log blocks never actually go into the extent allocation
7014          * tree, just update pinning info and exit early.
7015          */
7016         if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7017                 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
7018                 /* unlocks the pinned mutex */
7019                 btrfs_pin_extent(root, bytenr, num_bytes, 1);
7020                 ret = 0;
7021         } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
7022                 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7023                                         num_bytes,
7024                                         parent, root_objectid, (int)owner,
7025                                         BTRFS_DROP_DELAYED_REF, NULL);
7026         } else {
7027                 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7028                                                 num_bytes,
7029                                                 parent, root_objectid, owner,
7030                                                 offset, 0,
7031                                                 BTRFS_DROP_DELAYED_REF, NULL);
7032         }
7033         return ret;
7034 }
7035
7036 /*
7037  * when we wait for progress in the block group caching, its because
7038  * our allocation attempt failed at least once.  So, we must sleep
7039  * and let some progress happen before we try again.
7040  *
7041  * This function will sleep at least once waiting for new free space to
7042  * show up, and then it will check the block group free space numbers
7043  * for our min num_bytes.  Another option is to have it go ahead
7044  * and look in the rbtree for a free extent of a given size, but this
7045  * is a good start.
7046  *
7047  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7048  * any of the information in this block group.
7049  */
7050 static noinline void
7051 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7052                                 u64 num_bytes)
7053 {
7054         struct btrfs_caching_control *caching_ctl;
7055
7056         caching_ctl = get_caching_control(cache);
7057         if (!caching_ctl)
7058                 return;
7059
7060         wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
7061                    (cache->free_space_ctl->free_space >= num_bytes));
7062
7063         put_caching_control(caching_ctl);
7064 }
7065
7066 static noinline int
7067 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7068 {
7069         struct btrfs_caching_control *caching_ctl;
7070         int ret = 0;
7071
7072         caching_ctl = get_caching_control(cache);
7073         if (!caching_ctl)
7074                 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7075
7076         wait_event(caching_ctl->wait, block_group_cache_done(cache));
7077         if (cache->cached == BTRFS_CACHE_ERROR)
7078                 ret = -EIO;
7079         put_caching_control(caching_ctl);
7080         return ret;
7081 }
7082
7083 int __get_raid_index(u64 flags)
7084 {
7085         if (flags & BTRFS_BLOCK_GROUP_RAID10)
7086                 return BTRFS_RAID_RAID10;
7087         else if (flags & BTRFS_BLOCK_GROUP_RAID1)
7088                 return BTRFS_RAID_RAID1;
7089         else if (flags & BTRFS_BLOCK_GROUP_DUP)
7090                 return BTRFS_RAID_DUP;
7091         else if (flags & BTRFS_BLOCK_GROUP_RAID0)
7092                 return BTRFS_RAID_RAID0;
7093         else if (flags & BTRFS_BLOCK_GROUP_RAID5)
7094                 return BTRFS_RAID_RAID5;
7095         else if (flags & BTRFS_BLOCK_GROUP_RAID6)
7096                 return BTRFS_RAID_RAID6;
7097
7098         return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
7099 }
7100
7101 int get_block_group_index(struct btrfs_block_group_cache *cache)
7102 {
7103         return __get_raid_index(cache->flags);
7104 }
7105
7106 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7107         [BTRFS_RAID_RAID10]     = "raid10",
7108         [BTRFS_RAID_RAID1]      = "raid1",
7109         [BTRFS_RAID_DUP]        = "dup",
7110         [BTRFS_RAID_RAID0]      = "raid0",
7111         [BTRFS_RAID_SINGLE]     = "single",
7112         [BTRFS_RAID_RAID5]      = "raid5",
7113         [BTRFS_RAID_RAID6]      = "raid6",
7114 };
7115
7116 static const char *get_raid_name(enum btrfs_raid_types type)
7117 {
7118         if (type >= BTRFS_NR_RAID_TYPES)
7119                 return NULL;
7120
7121         return btrfs_raid_type_names[type];
7122 }
7123
7124 enum btrfs_loop_type {
7125         LOOP_CACHING_NOWAIT = 0,
7126         LOOP_CACHING_WAIT = 1,
7127         LOOP_ALLOC_CHUNK = 2,
7128         LOOP_NO_EMPTY_SIZE = 3,
7129 };
7130
7131 static inline void
7132 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7133                        int delalloc)
7134 {
7135         if (delalloc)
7136                 down_read(&cache->data_rwsem);
7137 }
7138
7139 static inline void
7140 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7141                        int delalloc)
7142 {
7143         btrfs_get_block_group(cache);
7144         if (delalloc)
7145                 down_read(&cache->data_rwsem);
7146 }
7147
7148 static struct btrfs_block_group_cache *
7149 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7150                    struct btrfs_free_cluster *cluster,
7151                    int delalloc)
7152 {
7153         struct btrfs_block_group_cache *used_bg = NULL;
7154
7155         spin_lock(&cluster->refill_lock);
7156         while (1) {
7157                 used_bg = cluster->block_group;
7158                 if (!used_bg)
7159                         return NULL;
7160
7161                 if (used_bg == block_group)
7162                         return used_bg;
7163
7164                 btrfs_get_block_group(used_bg);
7165
7166                 if (!delalloc)
7167                         return used_bg;
7168
7169                 if (down_read_trylock(&used_bg->data_rwsem))
7170                         return used_bg;
7171
7172                 spin_unlock(&cluster->refill_lock);
7173
7174                 down_read(&used_bg->data_rwsem);
7175
7176                 spin_lock(&cluster->refill_lock);
7177                 if (used_bg == cluster->block_group)
7178                         return used_bg;
7179
7180                 up_read(&used_bg->data_rwsem);
7181                 btrfs_put_block_group(used_bg);
7182         }
7183 }
7184
7185 static inline void
7186 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7187                          int delalloc)
7188 {
7189         if (delalloc)
7190                 up_read(&cache->data_rwsem);
7191         btrfs_put_block_group(cache);
7192 }
7193
7194 /*
7195  * walks the btree of allocated extents and find a hole of a given size.
7196  * The key ins is changed to record the hole:
7197  * ins->objectid == start position
7198  * ins->flags = BTRFS_EXTENT_ITEM_KEY
7199  * ins->offset == the size of the hole.
7200  * Any available blocks before search_start are skipped.
7201  *
7202  * If there is no suitable free space, we will record the max size of
7203  * the free space extent currently.
7204  */
7205 static noinline int find_free_extent(struct btrfs_root *orig_root,
7206                                      u64 num_bytes, u64 empty_size,
7207                                      u64 hint_byte, struct btrfs_key *ins,
7208                                      u64 flags, int delalloc)
7209 {
7210         int ret = 0;
7211         struct btrfs_root *root = orig_root->fs_info->extent_root;
7212         struct btrfs_free_cluster *last_ptr = NULL;
7213         struct btrfs_block_group_cache *block_group = NULL;
7214         u64 search_start = 0;
7215         u64 max_extent_size = 0;
7216         u64 empty_cluster = 0;
7217         struct btrfs_space_info *space_info;
7218         int loop = 0;
7219         int index = __get_raid_index(flags);
7220         int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
7221                 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
7222         bool failed_cluster_refill = false;
7223         bool failed_alloc = false;
7224         bool use_cluster = true;
7225         bool have_caching_bg = false;
7226         bool orig_have_caching_bg = false;
7227         bool full_search = false;
7228
7229         WARN_ON(num_bytes < root->sectorsize);
7230         ins->type = BTRFS_EXTENT_ITEM_KEY;
7231         ins->objectid = 0;
7232         ins->offset = 0;
7233
7234         trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
7235
7236         space_info = __find_space_info(root->fs_info, flags);
7237         if (!space_info) {
7238                 btrfs_err(root->fs_info, "No space info for %llu", flags);
7239                 return -ENOSPC;
7240         }
7241
7242         /*
7243          * If our free space is heavily fragmented we may not be able to make
7244          * big contiguous allocations, so instead of doing the expensive search
7245          * for free space, simply return ENOSPC with our max_extent_size so we
7246          * can go ahead and search for a more manageable chunk.
7247          *
7248          * If our max_extent_size is large enough for our allocation simply
7249          * disable clustering since we will likely not be able to find enough
7250          * space to create a cluster and induce latency trying.
7251          */
7252         if (unlikely(space_info->max_extent_size)) {
7253                 spin_lock(&space_info->lock);
7254                 if (space_info->max_extent_size &&
7255                     num_bytes > space_info->max_extent_size) {
7256                         ins->offset = space_info->max_extent_size;
7257                         spin_unlock(&space_info->lock);
7258                         return -ENOSPC;
7259                 } else if (space_info->max_extent_size) {
7260                         use_cluster = false;
7261                 }
7262                 spin_unlock(&space_info->lock);
7263         }
7264
7265         last_ptr = fetch_cluster_info(orig_root, space_info, &empty_cluster);
7266         if (last_ptr) {
7267                 spin_lock(&last_ptr->lock);
7268                 if (last_ptr->block_group)
7269                         hint_byte = last_ptr->window_start;
7270                 if (last_ptr->fragmented) {
7271                         /*
7272                          * We still set window_start so we can keep track of the
7273                          * last place we found an allocation to try and save
7274                          * some time.
7275                          */
7276                         hint_byte = last_ptr->window_start;
7277                         use_cluster = false;
7278                 }
7279                 spin_unlock(&last_ptr->lock);
7280         }
7281
7282         search_start = max(search_start, first_logical_byte(root, 0));
7283         search_start = max(search_start, hint_byte);
7284         if (search_start == hint_byte) {
7285                 block_group = btrfs_lookup_block_group(root->fs_info,
7286                                                        search_start);
7287                 /*
7288                  * we don't want to use the block group if it doesn't match our
7289                  * allocation bits, or if its not cached.
7290                  *
7291                  * However if we are re-searching with an ideal block group
7292                  * picked out then we don't care that the block group is cached.
7293                  */
7294                 if (block_group && block_group_bits(block_group, flags) &&
7295                     block_group->cached != BTRFS_CACHE_NO) {
7296                         down_read(&space_info->groups_sem);
7297                         if (list_empty(&block_group->list) ||
7298                             block_group->ro) {
7299                                 /*
7300                                  * someone is removing this block group,
7301                                  * we can't jump into the have_block_group
7302                                  * target because our list pointers are not
7303                                  * valid
7304                                  */
7305                                 btrfs_put_block_group(block_group);
7306                                 up_read(&space_info->groups_sem);
7307                         } else {
7308                                 index = get_block_group_index(block_group);
7309                                 btrfs_lock_block_group(block_group, delalloc);
7310                                 goto have_block_group;
7311                         }
7312                 } else if (block_group) {
7313                         btrfs_put_block_group(block_group);
7314                 }
7315         }
7316 search:
7317         have_caching_bg = false;
7318         if (index == 0 || index == __get_raid_index(flags))
7319                 full_search = true;
7320         down_read(&space_info->groups_sem);
7321         list_for_each_entry(block_group, &space_info->block_groups[index],
7322                             list) {
7323                 u64 offset;
7324                 int cached;
7325
7326                 btrfs_grab_block_group(block_group, delalloc);
7327                 search_start = block_group->key.objectid;
7328
7329                 /*
7330                  * this can happen if we end up cycling through all the
7331                  * raid types, but we want to make sure we only allocate
7332                  * for the proper type.
7333                  */
7334                 if (!block_group_bits(block_group, flags)) {
7335                     u64 extra = BTRFS_BLOCK_GROUP_DUP |
7336                                 BTRFS_BLOCK_GROUP_RAID1 |
7337                                 BTRFS_BLOCK_GROUP_RAID5 |
7338                                 BTRFS_BLOCK_GROUP_RAID6 |
7339                                 BTRFS_BLOCK_GROUP_RAID10;
7340
7341                         /*
7342                          * if they asked for extra copies and this block group
7343                          * doesn't provide them, bail.  This does allow us to
7344                          * fill raid0 from raid1.
7345                          */
7346                         if ((flags & extra) && !(block_group->flags & extra))
7347                                 goto loop;
7348                 }
7349
7350 have_block_group:
7351                 cached = block_group_cache_done(block_group);
7352                 if (unlikely(!cached)) {
7353                         have_caching_bg = true;
7354                         ret = cache_block_group(block_group, 0);
7355                         BUG_ON(ret < 0);
7356                         ret = 0;
7357                 }
7358
7359                 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7360                         goto loop;
7361                 if (unlikely(block_group->ro))
7362                         goto loop;
7363
7364                 /*
7365                  * Ok we want to try and use the cluster allocator, so
7366                  * lets look there
7367                  */
7368                 if (last_ptr && use_cluster) {
7369                         struct btrfs_block_group_cache *used_block_group;
7370                         unsigned long aligned_cluster;
7371                         /*
7372                          * the refill lock keeps out other
7373                          * people trying to start a new cluster
7374                          */
7375                         used_block_group = btrfs_lock_cluster(block_group,
7376                                                               last_ptr,
7377                                                               delalloc);
7378                         if (!used_block_group)
7379                                 goto refill_cluster;
7380
7381                         if (used_block_group != block_group &&
7382                             (used_block_group->ro ||
7383                              !block_group_bits(used_block_group, flags)))
7384                                 goto release_cluster;
7385
7386                         offset = btrfs_alloc_from_cluster(used_block_group,
7387                                                 last_ptr,
7388                                                 num_bytes,
7389                                                 used_block_group->key.objectid,
7390                                                 &max_extent_size);
7391                         if (offset) {
7392                                 /* we have a block, we're done */
7393                                 spin_unlock(&last_ptr->refill_lock);
7394                                 trace_btrfs_reserve_extent_cluster(root,
7395                                                 used_block_group,
7396                                                 search_start, num_bytes);
7397                                 if (used_block_group != block_group) {
7398                                         btrfs_release_block_group(block_group,
7399                                                                   delalloc);
7400                                         block_group = used_block_group;
7401                                 }
7402                                 goto checks;
7403                         }
7404
7405                         WARN_ON(last_ptr->block_group != used_block_group);
7406 release_cluster:
7407                         /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7408                          * set up a new clusters, so lets just skip it
7409                          * and let the allocator find whatever block
7410                          * it can find.  If we reach this point, we
7411                          * will have tried the cluster allocator
7412                          * plenty of times and not have found
7413                          * anything, so we are likely way too
7414                          * fragmented for the clustering stuff to find
7415                          * anything.
7416                          *
7417                          * However, if the cluster is taken from the
7418                          * current block group, release the cluster
7419                          * first, so that we stand a better chance of
7420                          * succeeding in the unclustered
7421                          * allocation.  */
7422                         if (loop >= LOOP_NO_EMPTY_SIZE &&
7423                             used_block_group != block_group) {
7424                                 spin_unlock(&last_ptr->refill_lock);
7425                                 btrfs_release_block_group(used_block_group,
7426                                                           delalloc);
7427                                 goto unclustered_alloc;
7428                         }
7429
7430                         /*
7431                          * this cluster didn't work out, free it and
7432                          * start over
7433                          */
7434                         btrfs_return_cluster_to_free_space(NULL, last_ptr);
7435
7436                         if (used_block_group != block_group)
7437                                 btrfs_release_block_group(used_block_group,
7438                                                           delalloc);
7439 refill_cluster:
7440                         if (loop >= LOOP_NO_EMPTY_SIZE) {
7441                                 spin_unlock(&last_ptr->refill_lock);
7442                                 goto unclustered_alloc;
7443                         }
7444
7445                         aligned_cluster = max_t(unsigned long,
7446                                                 empty_cluster + empty_size,
7447                                               block_group->full_stripe_len);
7448
7449                         /* allocate a cluster in this block group */
7450                         ret = btrfs_find_space_cluster(root, block_group,
7451                                                        last_ptr, search_start,
7452                                                        num_bytes,
7453                                                        aligned_cluster);
7454                         if (ret == 0) {
7455                                 /*
7456                                  * now pull our allocation out of this
7457                                  * cluster
7458                                  */
7459                                 offset = btrfs_alloc_from_cluster(block_group,
7460                                                         last_ptr,
7461                                                         num_bytes,
7462                                                         search_start,
7463                                                         &max_extent_size);
7464                                 if (offset) {
7465                                         /* we found one, proceed */
7466                                         spin_unlock(&last_ptr->refill_lock);
7467                                         trace_btrfs_reserve_extent_cluster(root,
7468                                                 block_group, search_start,
7469                                                 num_bytes);
7470                                         goto checks;
7471                                 }
7472                         } else if (!cached && loop > LOOP_CACHING_NOWAIT
7473                                    && !failed_cluster_refill) {
7474                                 spin_unlock(&last_ptr->refill_lock);
7475
7476                                 failed_cluster_refill = true;
7477                                 wait_block_group_cache_progress(block_group,
7478                                        num_bytes + empty_cluster + empty_size);
7479                                 goto have_block_group;
7480                         }
7481
7482                         /*
7483                          * at this point we either didn't find a cluster
7484                          * or we weren't able to allocate a block from our
7485                          * cluster.  Free the cluster we've been trying
7486                          * to use, and go to the next block group
7487                          */
7488                         btrfs_return_cluster_to_free_space(NULL, last_ptr);
7489                         spin_unlock(&last_ptr->refill_lock);
7490                         goto loop;
7491                 }
7492
7493 unclustered_alloc:
7494                 /*
7495                  * We are doing an unclustered alloc, set the fragmented flag so
7496                  * we don't bother trying to setup a cluster again until we get
7497                  * more space.
7498                  */
7499                 if (unlikely(last_ptr)) {
7500                         spin_lock(&last_ptr->lock);
7501                         last_ptr->fragmented = 1;
7502                         spin_unlock(&last_ptr->lock);
7503                 }
7504                 spin_lock(&block_group->free_space_ctl->tree_lock);
7505                 if (cached &&
7506                     block_group->free_space_ctl->free_space <
7507                     num_bytes + empty_cluster + empty_size) {
7508                         if (block_group->free_space_ctl->free_space >
7509                             max_extent_size)
7510                                 max_extent_size =
7511                                         block_group->free_space_ctl->free_space;
7512                         spin_unlock(&block_group->free_space_ctl->tree_lock);
7513                         goto loop;
7514                 }
7515                 spin_unlock(&block_group->free_space_ctl->tree_lock);
7516
7517                 offset = btrfs_find_space_for_alloc(block_group, search_start,
7518                                                     num_bytes, empty_size,
7519                                                     &max_extent_size);
7520                 /*
7521                  * If we didn't find a chunk, and we haven't failed on this
7522                  * block group before, and this block group is in the middle of
7523                  * caching and we are ok with waiting, then go ahead and wait
7524                  * for progress to be made, and set failed_alloc to true.
7525                  *
7526                  * If failed_alloc is true then we've already waited on this
7527                  * block group once and should move on to the next block group.
7528                  */
7529                 if (!offset && !failed_alloc && !cached &&
7530                     loop > LOOP_CACHING_NOWAIT) {
7531                         wait_block_group_cache_progress(block_group,
7532                                                 num_bytes + empty_size);
7533                         failed_alloc = true;
7534                         goto have_block_group;
7535                 } else if (!offset) {
7536                         goto loop;
7537                 }
7538 checks:
7539                 search_start = ALIGN(offset, root->stripesize);
7540
7541                 /* move on to the next group */
7542                 if (search_start + num_bytes >
7543                     block_group->key.objectid + block_group->key.offset) {
7544                         btrfs_add_free_space(block_group, offset, num_bytes);
7545                         goto loop;
7546                 }
7547
7548                 if (offset < search_start)
7549                         btrfs_add_free_space(block_group, offset,
7550                                              search_start - offset);
7551                 BUG_ON(offset > search_start);
7552
7553                 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
7554                                                   alloc_type, delalloc);
7555                 if (ret == -EAGAIN) {
7556                         btrfs_add_free_space(block_group, offset, num_bytes);
7557                         goto loop;
7558                 }
7559                 btrfs_inc_block_group_reservations(block_group);
7560
7561                 /* we are all good, lets return */
7562                 ins->objectid = search_start;
7563                 ins->offset = num_bytes;
7564
7565                 trace_btrfs_reserve_extent(orig_root, block_group,
7566                                            search_start, num_bytes);
7567                 btrfs_release_block_group(block_group, delalloc);
7568                 break;
7569 loop:
7570                 failed_cluster_refill = false;
7571                 failed_alloc = false;
7572                 BUG_ON(index != get_block_group_index(block_group));
7573                 btrfs_release_block_group(block_group, delalloc);
7574         }
7575         up_read(&space_info->groups_sem);
7576
7577         if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7578                 && !orig_have_caching_bg)
7579                 orig_have_caching_bg = true;
7580
7581         if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7582                 goto search;
7583
7584         if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7585                 goto search;
7586
7587         /*
7588          * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7589          *                      caching kthreads as we move along
7590          * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7591          * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7592          * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7593          *                      again
7594          */
7595         if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7596                 index = 0;
7597                 if (loop == LOOP_CACHING_NOWAIT) {
7598                         /*
7599                          * We want to skip the LOOP_CACHING_WAIT step if we
7600                          * don't have any uncached bgs and we've already done a
7601                          * full search through.
7602                          */
7603                         if (orig_have_caching_bg || !full_search)
7604                                 loop = LOOP_CACHING_WAIT;
7605                         else
7606                                 loop = LOOP_ALLOC_CHUNK;
7607                 } else {
7608                         loop++;
7609                 }
7610
7611                 if (loop == LOOP_ALLOC_CHUNK) {
7612                         struct btrfs_trans_handle *trans;
7613                         int exist = 0;
7614
7615                         trans = current->journal_info;
7616                         if (trans)
7617                                 exist = 1;
7618                         else
7619                                 trans = btrfs_join_transaction(root);
7620
7621                         if (IS_ERR(trans)) {
7622                                 ret = PTR_ERR(trans);
7623                                 goto out;
7624                         }
7625
7626                         ret = do_chunk_alloc(trans, root, flags,
7627                                              CHUNK_ALLOC_FORCE);
7628
7629                         /*
7630                          * If we can't allocate a new chunk we've already looped
7631                          * through at least once, move on to the NO_EMPTY_SIZE
7632                          * case.
7633                          */
7634                         if (ret == -ENOSPC)
7635                                 loop = LOOP_NO_EMPTY_SIZE;
7636
7637                         /*
7638                          * Do not bail out on ENOSPC since we
7639                          * can do more things.
7640                          */
7641                         if (ret < 0 && ret != -ENOSPC)
7642                                 btrfs_abort_transaction(trans,
7643                                                         root, ret);
7644                         else
7645                                 ret = 0;
7646                         if (!exist)
7647                                 btrfs_end_transaction(trans, root);
7648                         if (ret)
7649                                 goto out;
7650                 }
7651
7652                 if (loop == LOOP_NO_EMPTY_SIZE) {
7653                         /*
7654                          * Don't loop again if we already have no empty_size and
7655                          * no empty_cluster.
7656                          */
7657                         if (empty_size == 0 &&
7658                             empty_cluster == 0) {
7659                                 ret = -ENOSPC;
7660                                 goto out;
7661                         }
7662                         empty_size = 0;
7663                         empty_cluster = 0;
7664                 }
7665
7666                 goto search;
7667         } else if (!ins->objectid) {
7668                 ret = -ENOSPC;
7669         } else if (ins->objectid) {
7670                 if (!use_cluster && last_ptr) {
7671                         spin_lock(&last_ptr->lock);
7672                         last_ptr->window_start = ins->objectid;
7673                         spin_unlock(&last_ptr->lock);
7674                 }
7675                 ret = 0;
7676         }
7677 out:
7678         if (ret == -ENOSPC) {
7679                 spin_lock(&space_info->lock);
7680                 space_info->max_extent_size = max_extent_size;
7681                 spin_unlock(&space_info->lock);
7682                 ins->offset = max_extent_size;
7683         }
7684         return ret;
7685 }
7686
7687 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7688                             int dump_block_groups)
7689 {
7690         struct btrfs_block_group_cache *cache;
7691         int index = 0;
7692
7693         spin_lock(&info->lock);
7694         printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
7695                info->flags,
7696                info->total_bytes - info->bytes_used - info->bytes_pinned -
7697                info->bytes_reserved - info->bytes_readonly,
7698                (info->full) ? "" : "not ");
7699         printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
7700                "reserved=%llu, may_use=%llu, readonly=%llu\n",
7701                info->total_bytes, info->bytes_used, info->bytes_pinned,
7702                info->bytes_reserved, info->bytes_may_use,
7703                info->bytes_readonly);
7704         spin_unlock(&info->lock);
7705
7706         if (!dump_block_groups)
7707                 return;
7708
7709         down_read(&info->groups_sem);
7710 again:
7711         list_for_each_entry(cache, &info->block_groups[index], list) {
7712                 spin_lock(&cache->lock);
7713                 printk(KERN_INFO "BTRFS: "
7714                            "block group %llu has %llu bytes, "
7715                            "%llu used %llu pinned %llu reserved %s\n",
7716                        cache->key.objectid, cache->key.offset,
7717                        btrfs_block_group_used(&cache->item), cache->pinned,
7718                        cache->reserved, cache->ro ? "[readonly]" : "");
7719                 btrfs_dump_free_space(cache, bytes);
7720                 spin_unlock(&cache->lock);
7721         }
7722         if (++index < BTRFS_NR_RAID_TYPES)
7723                 goto again;
7724         up_read(&info->groups_sem);
7725 }
7726
7727 int btrfs_reserve_extent(struct btrfs_root *root,
7728                          u64 num_bytes, u64 min_alloc_size,
7729                          u64 empty_size, u64 hint_byte,
7730                          struct btrfs_key *ins, int is_data, int delalloc)
7731 {
7732         bool final_tried = num_bytes == min_alloc_size;
7733         u64 flags;
7734         int ret;
7735
7736         flags = btrfs_get_alloc_profile(root, is_data);
7737 again:
7738         WARN_ON(num_bytes < root->sectorsize);
7739         ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
7740                                flags, delalloc);
7741         if (!ret && !is_data) {
7742                 btrfs_dec_block_group_reservations(root->fs_info,
7743                                                    ins->objectid);
7744         } else if (ret == -ENOSPC) {
7745                 if (!final_tried && ins->offset) {
7746                         num_bytes = min(num_bytes >> 1, ins->offset);
7747                         num_bytes = round_down(num_bytes, root->sectorsize);
7748                         num_bytes = max(num_bytes, min_alloc_size);
7749                         if (num_bytes == min_alloc_size)
7750                                 final_tried = true;
7751                         goto again;
7752                 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7753                         struct btrfs_space_info *sinfo;
7754
7755                         sinfo = __find_space_info(root->fs_info, flags);
7756                         btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
7757                                 flags, num_bytes);
7758                         if (sinfo)
7759                                 dump_space_info(sinfo, num_bytes, 1);
7760                 }
7761         }
7762
7763         return ret;
7764 }
7765
7766 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
7767                                         u64 start, u64 len,
7768                                         int pin, int delalloc)
7769 {
7770         struct btrfs_block_group_cache *cache;
7771         int ret = 0;
7772
7773         cache = btrfs_lookup_block_group(root->fs_info, start);
7774         if (!cache) {
7775                 btrfs_err(root->fs_info, "Unable to find block group for %llu",
7776                         start);
7777                 return -ENOSPC;
7778         }
7779
7780         if (pin)
7781                 pin_down_extent(root, cache, start, len, 1);
7782         else {
7783                 if (btrfs_test_opt(root, DISCARD))
7784                         ret = btrfs_discard_extent(root, start, len, NULL);
7785                 btrfs_add_free_space(cache, start, len);
7786                 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
7787         }
7788
7789         btrfs_put_block_group(cache);
7790
7791         trace_btrfs_reserved_extent_free(root, start, len);
7792
7793         return ret;
7794 }
7795
7796 int btrfs_free_reserved_extent(struct btrfs_root *root,
7797                                u64 start, u64 len, int delalloc)
7798 {
7799         return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
7800 }
7801
7802 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
7803                                        u64 start, u64 len)
7804 {
7805         return __btrfs_free_reserved_extent(root, start, len, 1, 0);
7806 }
7807
7808 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7809                                       struct btrfs_root *root,
7810                                       u64 parent, u64 root_objectid,
7811                                       u64 flags, u64 owner, u64 offset,
7812                                       struct btrfs_key *ins, int ref_mod)
7813 {
7814         int ret;
7815         struct btrfs_fs_info *fs_info = root->fs_info;
7816         struct btrfs_extent_item *extent_item;
7817         struct btrfs_extent_inline_ref *iref;
7818         struct btrfs_path *path;
7819         struct extent_buffer *leaf;
7820         int type;
7821         u32 size;
7822
7823         if (parent > 0)
7824                 type = BTRFS_SHARED_DATA_REF_KEY;
7825         else
7826                 type = BTRFS_EXTENT_DATA_REF_KEY;
7827
7828         size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7829
7830         path = btrfs_alloc_path();
7831         if (!path)
7832                 return -ENOMEM;
7833
7834         path->leave_spinning = 1;
7835         ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7836                                       ins, size);
7837         if (ret) {
7838                 btrfs_free_path(path);
7839                 return ret;
7840         }
7841
7842         leaf = path->nodes[0];
7843         extent_item = btrfs_item_ptr(leaf, path->slots[0],
7844                                      struct btrfs_extent_item);
7845         btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7846         btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7847         btrfs_set_extent_flags(leaf, extent_item,
7848                                flags | BTRFS_EXTENT_FLAG_DATA);
7849
7850         iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7851         btrfs_set_extent_inline_ref_type(leaf, iref, type);
7852         if (parent > 0) {
7853                 struct btrfs_shared_data_ref *ref;
7854                 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7855                 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7856                 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7857         } else {
7858                 struct btrfs_extent_data_ref *ref;
7859                 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7860                 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7861                 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7862                 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7863                 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7864         }
7865
7866         btrfs_mark_buffer_dirty(path->nodes[0]);
7867         btrfs_free_path(path);
7868
7869         ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
7870                                           ins->offset);
7871         if (ret)
7872                 return ret;
7873
7874         ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
7875         if (ret) { /* -ENOENT, logic error */
7876                 btrfs_err(fs_info, "update block group failed for %llu %llu",
7877                         ins->objectid, ins->offset);
7878                 BUG();
7879         }
7880         trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
7881         return ret;
7882 }
7883
7884 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7885                                      struct btrfs_root *root,
7886                                      u64 parent, u64 root_objectid,
7887                                      u64 flags, struct btrfs_disk_key *key,
7888                                      int level, struct btrfs_key *ins)
7889 {
7890         int ret;
7891         struct btrfs_fs_info *fs_info = root->fs_info;
7892         struct btrfs_extent_item *extent_item;
7893         struct btrfs_tree_block_info *block_info;
7894         struct btrfs_extent_inline_ref *iref;
7895         struct btrfs_path *path;
7896         struct extent_buffer *leaf;
7897         u32 size = sizeof(*extent_item) + sizeof(*iref);
7898         u64 num_bytes = ins->offset;
7899         bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7900                                                  SKINNY_METADATA);
7901
7902         if (!skinny_metadata)
7903                 size += sizeof(*block_info);
7904
7905         path = btrfs_alloc_path();
7906         if (!path) {
7907                 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7908                                                    root->nodesize);
7909                 return -ENOMEM;
7910         }
7911
7912         path->leave_spinning = 1;
7913         ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7914                                       ins, size);
7915         if (ret) {
7916                 btrfs_free_path(path);
7917                 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7918                                                    root->nodesize);
7919                 return ret;
7920         }
7921
7922         leaf = path->nodes[0];
7923         extent_item = btrfs_item_ptr(leaf, path->slots[0],
7924                                      struct btrfs_extent_item);
7925         btrfs_set_extent_refs(leaf, extent_item, 1);
7926         btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7927         btrfs_set_extent_flags(leaf, extent_item,
7928                                flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
7929
7930         if (skinny_metadata) {
7931                 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7932                 num_bytes = root->nodesize;
7933         } else {
7934                 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7935                 btrfs_set_tree_block_key(leaf, block_info, key);
7936                 btrfs_set_tree_block_level(leaf, block_info, level);
7937                 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7938         }
7939
7940         if (parent > 0) {
7941                 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7942                 btrfs_set_extent_inline_ref_type(leaf, iref,
7943                                                  BTRFS_SHARED_BLOCK_REF_KEY);
7944                 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7945         } else {
7946                 btrfs_set_extent_inline_ref_type(leaf, iref,
7947                                                  BTRFS_TREE_BLOCK_REF_KEY);
7948                 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7949         }
7950
7951         btrfs_mark_buffer_dirty(leaf);
7952         btrfs_free_path(path);
7953
7954         ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
7955                                           num_bytes);
7956         if (ret)
7957                 return ret;
7958
7959         ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7960                                  1);
7961         if (ret) { /* -ENOENT, logic error */
7962                 btrfs_err(fs_info, "update block group failed for %llu %llu",
7963                         ins->objectid, ins->offset);
7964                 BUG();
7965         }
7966
7967         trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
7968         return ret;
7969 }
7970
7971 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7972                                      struct btrfs_root *root,
7973                                      u64 root_objectid, u64 owner,
7974                                      u64 offset, u64 ram_bytes,
7975                                      struct btrfs_key *ins)
7976 {
7977         int ret;
7978
7979         BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7980
7981         ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7982                                          ins->offset, 0,
7983                                          root_objectid, owner, offset,
7984                                          ram_bytes, BTRFS_ADD_DELAYED_EXTENT,
7985                                          NULL);
7986         return ret;
7987 }
7988
7989 /*
7990  * this is used by the tree logging recovery code.  It records that
7991  * an extent has been allocated and makes sure to clear the free
7992  * space cache bits as well
7993  */
7994 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7995                                    struct btrfs_root *root,
7996                                    u64 root_objectid, u64 owner, u64 offset,
7997                                    struct btrfs_key *ins)
7998 {
7999         int ret;
8000         struct btrfs_block_group_cache *block_group;
8001
8002         /*
8003          * Mixed block groups will exclude before processing the log so we only
8004          * need to do the exclude dance if this fs isn't mixed.
8005          */
8006         if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
8007                 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
8008                 if (ret)
8009                         return ret;
8010         }
8011
8012         block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
8013         if (!block_group)
8014                 return -EINVAL;
8015
8016         ret = btrfs_update_reserved_bytes(block_group, ins->offset,
8017                                           RESERVE_ALLOC_NO_ACCOUNT, 0);
8018         BUG_ON(ret); /* logic error */
8019         ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
8020                                          0, owner, offset, ins, 1);
8021         btrfs_put_block_group(block_group);
8022         return ret;
8023 }
8024
8025 static struct extent_buffer *
8026 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
8027                       u64 bytenr, int level)
8028 {
8029         struct extent_buffer *buf;
8030
8031         buf = btrfs_find_create_tree_block(root, bytenr);
8032         if (IS_ERR(buf))
8033                 return buf;
8034
8035         btrfs_set_header_generation(buf, trans->transid);
8036         btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
8037         btrfs_tree_lock(buf);
8038         clean_tree_block(trans, root->fs_info, buf);
8039         clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
8040
8041         btrfs_set_lock_blocking(buf);
8042         set_extent_buffer_uptodate(buf);
8043
8044         if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
8045                 buf->log_index = root->log_transid % 2;
8046                 /*
8047                  * we allow two log transactions at a time, use different
8048                  * EXENT bit to differentiate dirty pages.
8049                  */
8050                 if (buf->log_index == 0)
8051                         set_extent_dirty(&root->dirty_log_pages, buf->start,
8052                                         buf->start + buf->len - 1, GFP_NOFS);
8053                 else
8054                         set_extent_new(&root->dirty_log_pages, buf->start,
8055                                         buf->start + buf->len - 1);
8056         } else {
8057                 buf->log_index = -1;
8058                 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
8059                          buf->start + buf->len - 1, GFP_NOFS);
8060         }
8061         trans->dirty = true;
8062         /* this returns a buffer locked for blocking */
8063         return buf;
8064 }
8065
8066 static struct btrfs_block_rsv *
8067 use_block_rsv(struct btrfs_trans_handle *trans,
8068               struct btrfs_root *root, u32 blocksize)
8069 {
8070         struct btrfs_block_rsv *block_rsv;
8071         struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
8072         int ret;
8073         bool global_updated = false;
8074
8075         block_rsv = get_block_rsv(trans, root);
8076
8077         if (unlikely(block_rsv->size == 0))
8078                 goto try_reserve;
8079 again:
8080         ret = block_rsv_use_bytes(block_rsv, blocksize);
8081         if (!ret)
8082                 return block_rsv;
8083
8084         if (block_rsv->failfast)
8085                 return ERR_PTR(ret);
8086
8087         if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8088                 global_updated = true;
8089                 update_global_block_rsv(root->fs_info);
8090                 goto again;
8091         }
8092
8093         if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
8094                 static DEFINE_RATELIMIT_STATE(_rs,
8095                                 DEFAULT_RATELIMIT_INTERVAL * 10,
8096                                 /*DEFAULT_RATELIMIT_BURST*/ 1);
8097                 if (__ratelimit(&_rs))
8098                         WARN(1, KERN_DEBUG
8099                                 "BTRFS: block rsv returned %d\n", ret);
8100         }
8101 try_reserve:
8102         ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8103                                      BTRFS_RESERVE_NO_FLUSH);
8104         if (!ret)
8105                 return block_rsv;
8106         /*
8107          * If we couldn't reserve metadata bytes try and use some from
8108          * the global reserve if its space type is the same as the global
8109          * reservation.
8110          */
8111         if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8112             block_rsv->space_info == global_rsv->space_info) {
8113                 ret = block_rsv_use_bytes(global_rsv, blocksize);
8114                 if (!ret)
8115                         return global_rsv;
8116         }
8117         return ERR_PTR(ret);
8118 }
8119
8120 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8121                             struct btrfs_block_rsv *block_rsv, u32 blocksize)
8122 {
8123         block_rsv_add_bytes(block_rsv, blocksize, 0);
8124         block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
8125 }
8126
8127 /*
8128  * finds a free extent and does all the dirty work required for allocation
8129  * returns the tree buffer or an ERR_PTR on error.
8130  */
8131 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8132                                         struct btrfs_root *root,
8133                                         u64 parent, u64 root_objectid,
8134                                         struct btrfs_disk_key *key, int level,
8135                                         u64 hint, u64 empty_size)
8136 {
8137         struct btrfs_key ins;
8138         struct btrfs_block_rsv *block_rsv;
8139         struct extent_buffer *buf;
8140         struct btrfs_delayed_extent_op *extent_op;
8141         u64 flags = 0;
8142         int ret;
8143         u32 blocksize = root->nodesize;
8144         bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
8145                                                  SKINNY_METADATA);
8146
8147         if (btrfs_test_is_dummy_root(root)) {
8148                 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8149                                             level);
8150                 if (!IS_ERR(buf))
8151                         root->alloc_bytenr += blocksize;
8152                 return buf;
8153         }
8154
8155         block_rsv = use_block_rsv(trans, root, blocksize);
8156         if (IS_ERR(block_rsv))
8157                 return ERR_CAST(block_rsv);
8158
8159         ret = btrfs_reserve_extent(root, blocksize, blocksize,
8160                                    empty_size, hint, &ins, 0, 0);
8161         if (ret)
8162                 goto out_unuse;
8163
8164         buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
8165         if (IS_ERR(buf)) {
8166                 ret = PTR_ERR(buf);
8167                 goto out_free_reserved;
8168         }
8169
8170         if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8171                 if (parent == 0)
8172                         parent = ins.objectid;
8173                 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8174         } else
8175                 BUG_ON(parent > 0);
8176
8177         if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8178                 extent_op = btrfs_alloc_delayed_extent_op();
8179                 if (!extent_op) {
8180                         ret = -ENOMEM;
8181                         goto out_free_buf;
8182                 }
8183                 if (key)
8184                         memcpy(&extent_op->key, key, sizeof(extent_op->key));
8185                 else
8186                         memset(&extent_op->key, 0, sizeof(extent_op->key));
8187                 extent_op->flags_to_set = flags;
8188                 extent_op->update_key = skinny_metadata ? false : true;
8189                 extent_op->update_flags = true;
8190                 extent_op->is_data = false;
8191                 extent_op->level = level;
8192
8193                 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
8194                                                  ins.objectid, ins.offset,
8195                                                  parent, root_objectid, level,
8196                                                  BTRFS_ADD_DELAYED_EXTENT,
8197                                                  extent_op);
8198                 if (ret)
8199                         goto out_free_delayed;
8200         }
8201         return buf;
8202
8203 out_free_delayed:
8204         btrfs_free_delayed_extent_op(extent_op);
8205 out_free_buf:
8206         free_extent_buffer(buf);
8207 out_free_reserved:
8208         btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
8209 out_unuse:
8210         unuse_block_rsv(root->fs_info, block_rsv, blocksize);
8211         return ERR_PTR(ret);
8212 }
8213
8214 struct walk_control {
8215         u64 refs[BTRFS_MAX_LEVEL];
8216         u64 flags[BTRFS_MAX_LEVEL];
8217         struct btrfs_key update_progress;
8218         int stage;
8219         int level;
8220         int shared_level;
8221         int update_ref;
8222         int keep_locks;
8223         int reada_slot;
8224         int reada_count;
8225         int for_reloc;
8226 };
8227
8228 #define DROP_REFERENCE  1
8229 #define UPDATE_BACKREF  2
8230
8231 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8232                                      struct btrfs_root *root,
8233                                      struct walk_control *wc,
8234                                      struct btrfs_path *path)
8235 {
8236         u64 bytenr;
8237         u64 generation;
8238         u64 refs;
8239         u64 flags;
8240         u32 nritems;
8241         u32 blocksize;
8242         struct btrfs_key key;
8243         struct extent_buffer *eb;
8244         int ret;
8245         int slot;
8246         int nread = 0;
8247
8248         if (path->slots[wc->level] < wc->reada_slot) {
8249                 wc->reada_count = wc->reada_count * 2 / 3;
8250                 wc->reada_count = max(wc->reada_count, 2);
8251         } else {
8252                 wc->reada_count = wc->reada_count * 3 / 2;
8253                 wc->reada_count = min_t(int, wc->reada_count,
8254                                         BTRFS_NODEPTRS_PER_BLOCK(root));
8255         }
8256
8257         eb = path->nodes[wc->level];
8258         nritems = btrfs_header_nritems(eb);
8259         blocksize = root->nodesize;
8260
8261         for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8262                 if (nread >= wc->reada_count)
8263                         break;
8264
8265                 cond_resched();
8266                 bytenr = btrfs_node_blockptr(eb, slot);
8267                 generation = btrfs_node_ptr_generation(eb, slot);
8268
8269                 if (slot == path->slots[wc->level])
8270                         goto reada;
8271
8272                 if (wc->stage == UPDATE_BACKREF &&
8273                     generation <= root->root_key.offset)
8274                         continue;
8275
8276                 /* We don't lock the tree block, it's OK to be racy here */
8277                 ret = btrfs_lookup_extent_info(trans, root, bytenr,
8278                                                wc->level - 1, 1, &refs,
8279                                                &flags);
8280                 /* We don't care about errors in readahead. */
8281                 if (ret < 0)
8282                         continue;
8283                 BUG_ON(refs == 0);
8284
8285                 if (wc->stage == DROP_REFERENCE) {
8286                         if (refs == 1)
8287                                 goto reada;
8288
8289                         if (wc->level == 1 &&
8290                             (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8291                                 continue;
8292                         if (!wc->update_ref ||
8293                             generation <= root->root_key.offset)
8294                                 continue;
8295                         btrfs_node_key_to_cpu(eb, &key, slot);
8296                         ret = btrfs_comp_cpu_keys(&key,
8297                                                   &wc->update_progress);
8298                         if (ret < 0)
8299                                 continue;
8300                 } else {
8301                         if (wc->level == 1 &&
8302                             (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8303                                 continue;
8304                 }
8305 reada:
8306                 readahead_tree_block(root, bytenr);
8307                 nread++;
8308         }
8309         wc->reada_slot = slot;
8310 }
8311
8312 /*
8313  * These may not be seen by the usual inc/dec ref code so we have to
8314  * add them here.
8315  */
8316 static int record_one_subtree_extent(struct btrfs_trans_handle *trans,
8317                                      struct btrfs_root *root, u64 bytenr,
8318                                      u64 num_bytes)
8319 {
8320         struct btrfs_qgroup_extent_record *qrecord;
8321         struct btrfs_delayed_ref_root *delayed_refs;
8322
8323         qrecord = kmalloc(sizeof(*qrecord), GFP_NOFS);
8324         if (!qrecord)
8325                 return -ENOMEM;
8326
8327         qrecord->bytenr = bytenr;
8328         qrecord->num_bytes = num_bytes;
8329         qrecord->old_roots = NULL;
8330
8331         delayed_refs = &trans->transaction->delayed_refs;
8332         spin_lock(&delayed_refs->lock);
8333         if (btrfs_qgroup_insert_dirty_extent(delayed_refs, qrecord))
8334                 kfree(qrecord);
8335         spin_unlock(&delayed_refs->lock);
8336
8337         return 0;
8338 }
8339
8340 static int account_leaf_items(struct btrfs_trans_handle *trans,
8341                               struct btrfs_root *root,
8342                               struct extent_buffer *eb)
8343 {
8344         int nr = btrfs_header_nritems(eb);
8345         int i, extent_type, ret;
8346         struct btrfs_key key;
8347         struct btrfs_file_extent_item *fi;
8348         u64 bytenr, num_bytes;
8349
8350         /* We can be called directly from walk_up_proc() */
8351         if (!root->fs_info->quota_enabled)
8352                 return 0;
8353
8354         for (i = 0; i < nr; i++) {
8355                 btrfs_item_key_to_cpu(eb, &key, i);
8356
8357                 if (key.type != BTRFS_EXTENT_DATA_KEY)
8358                         continue;
8359
8360                 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
8361                 /* filter out non qgroup-accountable extents  */
8362                 extent_type = btrfs_file_extent_type(eb, fi);
8363
8364                 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
8365                         continue;
8366
8367                 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
8368                 if (!bytenr)
8369                         continue;
8370
8371                 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
8372
8373                 ret = record_one_subtree_extent(trans, root, bytenr, num_bytes);
8374                 if (ret)
8375                         return ret;
8376         }
8377         return 0;
8378 }
8379
8380 /*
8381  * Walk up the tree from the bottom, freeing leaves and any interior
8382  * nodes which have had all slots visited. If a node (leaf or
8383  * interior) is freed, the node above it will have it's slot
8384  * incremented. The root node will never be freed.
8385  *
8386  * At the end of this function, we should have a path which has all
8387  * slots incremented to the next position for a search. If we need to
8388  * read a new node it will be NULL and the node above it will have the
8389  * correct slot selected for a later read.
8390  *
8391  * If we increment the root nodes slot counter past the number of
8392  * elements, 1 is returned to signal completion of the search.
8393  */
8394 static int adjust_slots_upwards(struct btrfs_root *root,
8395                                 struct btrfs_path *path, int root_level)
8396 {
8397         int level = 0;
8398         int nr, slot;
8399         struct extent_buffer *eb;
8400
8401         if (root_level == 0)
8402                 return 1;
8403
8404         while (level <= root_level) {
8405                 eb = path->nodes[level];
8406                 nr = btrfs_header_nritems(eb);
8407                 path->slots[level]++;
8408                 slot = path->slots[level];
8409                 if (slot >= nr || level == 0) {
8410                         /*
8411                          * Don't free the root -  we will detect this
8412                          * condition after our loop and return a
8413                          * positive value for caller to stop walking the tree.
8414                          */
8415                         if (level != root_level) {
8416                                 btrfs_tree_unlock_rw(eb, path->locks[level]);
8417                                 path->locks[level] = 0;
8418
8419                                 free_extent_buffer(eb);
8420                                 path->nodes[level] = NULL;
8421                                 path->slots[level] = 0;
8422                         }
8423                 } else {
8424                         /*
8425                          * We have a valid slot to walk back down
8426                          * from. Stop here so caller can process these
8427                          * new nodes.
8428                          */
8429                         break;
8430                 }
8431
8432                 level++;
8433         }
8434
8435         eb = path->nodes[root_level];
8436         if (path->slots[root_level] >= btrfs_header_nritems(eb))
8437                 return 1;
8438
8439         return 0;
8440 }
8441
8442 /*
8443  * root_eb is the subtree root and is locked before this function is called.
8444  */
8445 static int account_shared_subtree(struct btrfs_trans_handle *trans,
8446                                   struct btrfs_root *root,
8447                                   struct extent_buffer *root_eb,
8448                                   u64 root_gen,
8449                                   int root_level)
8450 {
8451         int ret = 0;
8452         int level;
8453         struct extent_buffer *eb = root_eb;
8454         struct btrfs_path *path = NULL;
8455
8456         BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
8457         BUG_ON(root_eb == NULL);
8458
8459         if (!root->fs_info->quota_enabled)
8460                 return 0;
8461
8462         if (!extent_buffer_uptodate(root_eb)) {
8463                 ret = btrfs_read_buffer(root_eb, root_gen);
8464                 if (ret)
8465                         goto out;
8466         }
8467
8468         if (root_level == 0) {
8469                 ret = account_leaf_items(trans, root, root_eb);
8470                 goto out;
8471         }
8472
8473         path = btrfs_alloc_path();
8474         if (!path)
8475                 return -ENOMEM;
8476
8477         /*
8478          * Walk down the tree.  Missing extent blocks are filled in as
8479          * we go. Metadata is accounted every time we read a new
8480          * extent block.
8481          *
8482          * When we reach a leaf, we account for file extent items in it,
8483          * walk back up the tree (adjusting slot pointers as we go)
8484          * and restart the search process.
8485          */
8486         extent_buffer_get(root_eb); /* For path */
8487         path->nodes[root_level] = root_eb;
8488         path->slots[root_level] = 0;
8489         path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
8490 walk_down:
8491         level = root_level;
8492         while (level >= 0) {
8493                 if (path->nodes[level] == NULL) {
8494                         int parent_slot;
8495                         u64 child_gen;
8496                         u64 child_bytenr;
8497
8498                         /* We need to get child blockptr/gen from
8499                          * parent before we can read it. */
8500                         eb = path->nodes[level + 1];
8501                         parent_slot = path->slots[level + 1];
8502                         child_bytenr = btrfs_node_blockptr(eb, parent_slot);
8503                         child_gen = btrfs_node_ptr_generation(eb, parent_slot);
8504
8505                         eb = read_tree_block(root, child_bytenr, child_gen);
8506                         if (IS_ERR(eb)) {
8507                                 ret = PTR_ERR(eb);
8508                                 goto out;
8509                         } else if (!extent_buffer_uptodate(eb)) {
8510                                 free_extent_buffer(eb);
8511                                 ret = -EIO;
8512                                 goto out;
8513                         }
8514
8515                         path->nodes[level] = eb;
8516                         path->slots[level] = 0;
8517
8518                         btrfs_tree_read_lock(eb);
8519                         btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
8520                         path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
8521
8522                         ret = record_one_subtree_extent(trans, root, child_bytenr,
8523                                                         root->nodesize);
8524                         if (ret)
8525                                 goto out;
8526                 }
8527
8528                 if (level == 0) {
8529                         ret = account_leaf_items(trans, root, path->nodes[level]);
8530                         if (ret)
8531                                 goto out;
8532
8533                         /* Nonzero return here means we completed our search */
8534                         ret = adjust_slots_upwards(root, path, root_level);
8535                         if (ret)
8536                                 break;
8537
8538                         /* Restart search with new slots */
8539                         goto walk_down;
8540                 }
8541
8542                 level--;
8543         }
8544
8545         ret = 0;
8546 out:
8547         btrfs_free_path(path);
8548
8549         return ret;
8550 }
8551
8552 /*
8553  * helper to process tree block while walking down the tree.
8554  *
8555  * when wc->stage == UPDATE_BACKREF, this function updates
8556  * back refs for pointers in the block.
8557  *
8558  * NOTE: return value 1 means we should stop walking down.
8559  */
8560 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8561                                    struct btrfs_root *root,
8562                                    struct btrfs_path *path,
8563                                    struct walk_control *wc, int lookup_info)
8564 {
8565         int level = wc->level;
8566         struct extent_buffer *eb = path->nodes[level];
8567         u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8568         int ret;
8569
8570         if (wc->stage == UPDATE_BACKREF &&
8571             btrfs_header_owner(eb) != root->root_key.objectid)
8572                 return 1;
8573
8574         /*
8575          * when reference count of tree block is 1, it won't increase
8576          * again. once full backref flag is set, we never clear it.
8577          */
8578         if (lookup_info &&
8579             ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8580              (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8581                 BUG_ON(!path->locks[level]);
8582                 ret = btrfs_lookup_extent_info(trans, root,
8583                                                eb->start, level, 1,
8584                                                &wc->refs[level],
8585                                                &wc->flags[level]);
8586                 BUG_ON(ret == -ENOMEM);
8587                 if (ret)
8588                         return ret;
8589                 BUG_ON(wc->refs[level] == 0);
8590         }
8591
8592         if (wc->stage == DROP_REFERENCE) {
8593                 if (wc->refs[level] > 1)
8594                         return 1;
8595
8596                 if (path->locks[level] && !wc->keep_locks) {
8597                         btrfs_tree_unlock_rw(eb, path->locks[level]);
8598                         path->locks[level] = 0;
8599                 }
8600                 return 0;
8601         }
8602
8603         /* wc->stage == UPDATE_BACKREF */
8604         if (!(wc->flags[level] & flag)) {
8605                 BUG_ON(!path->locks[level]);
8606                 ret = btrfs_inc_ref(trans, root, eb, 1);
8607                 BUG_ON(ret); /* -ENOMEM */
8608                 ret = btrfs_dec_ref(trans, root, eb, 0);
8609                 BUG_ON(ret); /* -ENOMEM */
8610                 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
8611                                                   eb->len, flag,
8612                                                   btrfs_header_level(eb), 0);
8613                 BUG_ON(ret); /* -ENOMEM */
8614                 wc->flags[level] |= flag;
8615         }
8616
8617         /*
8618          * the block is shared by multiple trees, so it's not good to
8619          * keep the tree lock
8620          */
8621         if (path->locks[level] && level > 0) {
8622                 btrfs_tree_unlock_rw(eb, path->locks[level]);
8623                 path->locks[level] = 0;
8624         }
8625         return 0;
8626 }
8627
8628 /*
8629  * helper to process tree block pointer.
8630  *
8631  * when wc->stage == DROP_REFERENCE, this function checks
8632  * reference count of the block pointed to. if the block
8633  * is shared and we need update back refs for the subtree
8634  * rooted at the block, this function changes wc->stage to
8635  * UPDATE_BACKREF. if the block is shared and there is no
8636  * need to update back, this function drops the reference
8637  * to the block.
8638  *
8639  * NOTE: return value 1 means we should stop walking down.
8640  */
8641 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8642                                  struct btrfs_root *root,
8643                                  struct btrfs_path *path,
8644                                  struct walk_control *wc, int *lookup_info)
8645 {
8646         u64 bytenr;
8647         u64 generation;
8648         u64 parent;
8649         u32 blocksize;
8650         struct btrfs_key key;
8651         struct extent_buffer *next;
8652         int level = wc->level;
8653         int reada = 0;
8654         int ret = 0;
8655         bool need_account = false;
8656
8657         generation = btrfs_node_ptr_generation(path->nodes[level],
8658                                                path->slots[level]);
8659         /*
8660          * if the lower level block was created before the snapshot
8661          * was created, we know there is no need to update back refs
8662          * for the subtree
8663          */
8664         if (wc->stage == UPDATE_BACKREF &&
8665             generation <= root->root_key.offset) {
8666                 *lookup_info = 1;
8667                 return 1;
8668         }
8669
8670         bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8671         blocksize = root->nodesize;
8672
8673         next = btrfs_find_tree_block(root->fs_info, bytenr);
8674         if (!next) {
8675                 next = btrfs_find_create_tree_block(root, bytenr);
8676                 if (IS_ERR(next))
8677                         return PTR_ERR(next);
8678
8679                 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8680                                                level - 1);
8681                 reada = 1;
8682         }
8683         btrfs_tree_lock(next);
8684         btrfs_set_lock_blocking(next);
8685
8686         ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
8687                                        &wc->refs[level - 1],
8688                                        &wc->flags[level - 1]);
8689         if (ret < 0) {
8690                 btrfs_tree_unlock(next);
8691                 return ret;
8692         }
8693
8694         if (unlikely(wc->refs[level - 1] == 0)) {
8695                 btrfs_err(root->fs_info, "Missing references.");
8696                 BUG();
8697         }
8698         *lookup_info = 0;
8699
8700         if (wc->stage == DROP_REFERENCE) {
8701                 if (wc->refs[level - 1] > 1) {
8702                         need_account = true;
8703                         if (level == 1 &&
8704                             (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8705                                 goto skip;
8706
8707                         if (!wc->update_ref ||
8708                             generation <= root->root_key.offset)
8709                                 goto skip;
8710
8711                         btrfs_node_key_to_cpu(path->nodes[level], &key,
8712                                               path->slots[level]);
8713                         ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8714                         if (ret < 0)
8715                                 goto skip;
8716
8717                         wc->stage = UPDATE_BACKREF;
8718                         wc->shared_level = level - 1;
8719                 }
8720         } else {
8721                 if (level == 1 &&
8722                     (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8723                         goto skip;
8724         }
8725
8726         if (!btrfs_buffer_uptodate(next, generation, 0)) {
8727                 btrfs_tree_unlock(next);
8728                 free_extent_buffer(next);
8729                 next = NULL;
8730                 *lookup_info = 1;
8731         }
8732
8733         if (!next) {
8734                 if (reada && level == 1)
8735                         reada_walk_down(trans, root, wc, path);
8736                 next = read_tree_block(root, bytenr, generation);
8737                 if (IS_ERR(next)) {
8738                         return PTR_ERR(next);
8739                 } else if (!extent_buffer_uptodate(next)) {
8740                         free_extent_buffer(next);
8741                         return -EIO;
8742                 }
8743                 btrfs_tree_lock(next);
8744                 btrfs_set_lock_blocking(next);
8745         }
8746
8747         level--;
8748         BUG_ON(level != btrfs_header_level(next));
8749         path->nodes[level] = next;
8750         path->slots[level] = 0;
8751         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8752         wc->level = level;
8753         if (wc->level == 1)
8754                 wc->reada_slot = 0;
8755         return 0;
8756 skip:
8757         wc->refs[level - 1] = 0;
8758         wc->flags[level - 1] = 0;
8759         if (wc->stage == DROP_REFERENCE) {
8760                 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8761                         parent = path->nodes[level]->start;
8762                 } else {
8763                         BUG_ON(root->root_key.objectid !=
8764                                btrfs_header_owner(path->nodes[level]));
8765                         parent = 0;
8766                 }
8767
8768                 if (need_account) {
8769                         ret = account_shared_subtree(trans, root, next,
8770                                                      generation, level - 1);
8771                         if (ret) {
8772                                 btrfs_err_rl(root->fs_info,
8773                                         "Error "
8774                                         "%d accounting shared subtree. Quota "
8775                                         "is out of sync, rescan required.",
8776                                         ret);
8777                         }
8778                 }
8779                 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
8780                                 root->root_key.objectid, level - 1, 0);
8781                 BUG_ON(ret); /* -ENOMEM */
8782         }
8783         btrfs_tree_unlock(next);
8784         free_extent_buffer(next);
8785         *lookup_info = 1;
8786         return 1;
8787 }
8788
8789 /*
8790  * helper to process tree block while walking up the tree.
8791  *
8792  * when wc->stage == DROP_REFERENCE, this function drops
8793  * reference count on the block.
8794  *
8795  * when wc->stage == UPDATE_BACKREF, this function changes
8796  * wc->stage back to DROP_REFERENCE if we changed wc->stage
8797  * to UPDATE_BACKREF previously while processing the block.
8798  *
8799  * NOTE: return value 1 means we should stop walking up.
8800  */
8801 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8802                                  struct btrfs_root *root,
8803                                  struct btrfs_path *path,
8804                                  struct walk_control *wc)
8805 {
8806         int ret;
8807         int level = wc->level;
8808         struct extent_buffer *eb = path->nodes[level];
8809         u64 parent = 0;
8810
8811         if (wc->stage == UPDATE_BACKREF) {
8812                 BUG_ON(wc->shared_level < level);
8813                 if (level < wc->shared_level)
8814                         goto out;
8815
8816                 ret = find_next_key(path, level + 1, &wc->update_progress);
8817                 if (ret > 0)
8818                         wc->update_ref = 0;
8819
8820                 wc->stage = DROP_REFERENCE;
8821                 wc->shared_level = -1;
8822                 path->slots[level] = 0;
8823
8824                 /*
8825                  * check reference count again if the block isn't locked.
8826                  * we should start walking down the tree again if reference
8827                  * count is one.
8828                  */
8829                 if (!path->locks[level]) {
8830                         BUG_ON(level == 0);
8831                         btrfs_tree_lock(eb);
8832                         btrfs_set_lock_blocking(eb);
8833                         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8834
8835                         ret = btrfs_lookup_extent_info(trans, root,
8836                                                        eb->start, level, 1,
8837                                                        &wc->refs[level],
8838                                                        &wc->flags[level]);
8839                         if (ret < 0) {
8840                                 btrfs_tree_unlock_rw(eb, path->locks[level]);
8841                                 path->locks[level] = 0;
8842                                 return ret;
8843                         }
8844                         BUG_ON(wc->refs[level] == 0);
8845                         if (wc->refs[level] == 1) {
8846                                 btrfs_tree_unlock_rw(eb, path->locks[level]);
8847                                 path->locks[level] = 0;
8848                                 return 1;
8849                         }
8850                 }
8851         }
8852
8853         /* wc->stage == DROP_REFERENCE */
8854         BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8855
8856         if (wc->refs[level] == 1) {
8857                 if (level == 0) {
8858                         if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8859                                 ret = btrfs_dec_ref(trans, root, eb, 1);
8860                         else
8861                                 ret = btrfs_dec_ref(trans, root, eb, 0);
8862                         BUG_ON(ret); /* -ENOMEM */
8863                         ret = account_leaf_items(trans, root, eb);
8864                         if (ret) {
8865                                 btrfs_err_rl(root->fs_info,
8866                                         "error "
8867                                         "%d accounting leaf items. Quota "
8868                                         "is out of sync, rescan required.",
8869                                         ret);
8870                         }
8871                 }
8872                 /* make block locked assertion in clean_tree_block happy */
8873                 if (!path->locks[level] &&
8874                     btrfs_header_generation(eb) == trans->transid) {
8875                         btrfs_tree_lock(eb);
8876                         btrfs_set_lock_blocking(eb);
8877                         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8878                 }
8879                 clean_tree_block(trans, root->fs_info, eb);
8880         }
8881
8882         if (eb == root->node) {
8883                 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8884                         parent = eb->start;
8885                 else
8886                         BUG_ON(root->root_key.objectid !=
8887                                btrfs_header_owner(eb));
8888         } else {
8889                 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8890                         parent = path->nodes[level + 1]->start;
8891                 else
8892                         BUG_ON(root->root_key.objectid !=
8893                                btrfs_header_owner(path->nodes[level + 1]));
8894         }
8895
8896         btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8897 out:
8898         wc->refs[level] = 0;
8899         wc->flags[level] = 0;
8900         return 0;
8901 }
8902
8903 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8904                                    struct btrfs_root *root,
8905                                    struct btrfs_path *path,
8906                                    struct walk_control *wc)
8907 {
8908         int level = wc->level;
8909         int lookup_info = 1;
8910         int ret;
8911
8912         while (level >= 0) {
8913                 ret = walk_down_proc(trans, root, path, wc, lookup_info);
8914                 if (ret > 0)
8915                         break;
8916
8917                 if (level == 0)
8918                         break;
8919
8920                 if (path->slots[level] >=
8921                     btrfs_header_nritems(path->nodes[level]))
8922                         break;
8923
8924                 ret = do_walk_down(trans, root, path, wc, &lookup_info);
8925                 if (ret > 0) {
8926                         path->slots[level]++;
8927                         continue;
8928                 } else if (ret < 0)
8929                         return ret;
8930                 level = wc->level;
8931         }
8932         return 0;
8933 }
8934
8935 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8936                                  struct btrfs_root *root,
8937                                  struct btrfs_path *path,
8938                                  struct walk_control *wc, int max_level)
8939 {
8940         int level = wc->level;
8941         int ret;
8942
8943         path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8944         while (level < max_level && path->nodes[level]) {
8945                 wc->level = level;
8946                 if (path->slots[level] + 1 <
8947                     btrfs_header_nritems(path->nodes[level])) {
8948                         path->slots[level]++;
8949                         return 0;
8950                 } else {
8951                         ret = walk_up_proc(trans, root, path, wc);
8952                         if (ret > 0)
8953                                 return 0;
8954
8955                         if (path->locks[level]) {
8956                                 btrfs_tree_unlock_rw(path->nodes[level],
8957                                                      path->locks[level]);
8958                                 path->locks[level] = 0;
8959                         }
8960                         free_extent_buffer(path->nodes[level]);
8961                         path->nodes[level] = NULL;
8962                         level++;
8963                 }
8964         }
8965         return 1;
8966 }
8967
8968 /*
8969  * drop a subvolume tree.
8970  *
8971  * this function traverses the tree freeing any blocks that only
8972  * referenced by the tree.
8973  *
8974  * when a shared tree block is found. this function decreases its
8975  * reference count by one. if update_ref is true, this function
8976  * also make sure backrefs for the shared block and all lower level
8977  * blocks are properly updated.
8978  *
8979  * If called with for_reloc == 0, may exit early with -EAGAIN
8980  */
8981 int btrfs_drop_snapshot(struct btrfs_root *root,
8982                          struct btrfs_block_rsv *block_rsv, int update_ref,
8983                          int for_reloc)
8984 {
8985         struct btrfs_path *path;
8986         struct btrfs_trans_handle *trans;
8987         struct btrfs_root *tree_root = root->fs_info->tree_root;
8988         struct btrfs_root_item *root_item = &root->root_item;
8989         struct walk_control *wc;
8990         struct btrfs_key key;
8991         int err = 0;
8992         int ret;
8993         int level;
8994         bool root_dropped = false;
8995
8996         btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8997
8998         path = btrfs_alloc_path();
8999         if (!path) {
9000                 err = -ENOMEM;
9001                 goto out;
9002         }
9003
9004         wc = kzalloc(sizeof(*wc), GFP_NOFS);
9005         if (!wc) {
9006                 btrfs_free_path(path);
9007                 err = -ENOMEM;
9008                 goto out;
9009         }
9010
9011         trans = btrfs_start_transaction(tree_root, 0);
9012         if (IS_ERR(trans)) {
9013                 err = PTR_ERR(trans);
9014                 goto out_free;
9015         }
9016
9017         if (block_rsv)
9018                 trans->block_rsv = block_rsv;
9019
9020         if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
9021                 level = btrfs_header_level(root->node);
9022                 path->nodes[level] = btrfs_lock_root_node(root);
9023                 btrfs_set_lock_blocking(path->nodes[level]);
9024                 path->slots[level] = 0;
9025                 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9026                 memset(&wc->update_progress, 0,
9027                        sizeof(wc->update_progress));
9028         } else {
9029                 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
9030                 memcpy(&wc->update_progress, &key,
9031                        sizeof(wc->update_progress));
9032
9033                 level = root_item->drop_level;
9034                 BUG_ON(level == 0);
9035                 path->lowest_level = level;
9036                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9037                 path->lowest_level = 0;
9038                 if (ret < 0) {
9039                         err = ret;
9040                         goto out_end_trans;
9041                 }
9042                 WARN_ON(ret > 0);
9043
9044                 /*
9045                  * unlock our path, this is safe because only this
9046                  * function is allowed to delete this snapshot
9047                  */
9048                 btrfs_unlock_up_safe(path, 0);
9049
9050                 level = btrfs_header_level(root->node);
9051                 while (1) {
9052                         btrfs_tree_lock(path->nodes[level]);
9053                         btrfs_set_lock_blocking(path->nodes[level]);
9054                         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9055
9056                         ret = btrfs_lookup_extent_info(trans, root,
9057                                                 path->nodes[level]->start,
9058                                                 level, 1, &wc->refs[level],
9059                                                 &wc->flags[level]);
9060                         if (ret < 0) {
9061                                 err = ret;
9062                                 goto out_end_trans;
9063                         }
9064                         BUG_ON(wc->refs[level] == 0);
9065
9066                         if (level == root_item->drop_level)
9067                                 break;
9068
9069                         btrfs_tree_unlock(path->nodes[level]);
9070                         path->locks[level] = 0;
9071                         WARN_ON(wc->refs[level] != 1);
9072                         level--;
9073                 }
9074         }
9075
9076         wc->level = level;
9077         wc->shared_level = -1;
9078         wc->stage = DROP_REFERENCE;
9079         wc->update_ref = update_ref;
9080         wc->keep_locks = 0;
9081         wc->for_reloc = for_reloc;
9082         wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
9083
9084         while (1) {
9085
9086                 ret = walk_down_tree(trans, root, path, wc);
9087                 if (ret < 0) {
9088                         err = ret;
9089                         break;
9090                 }
9091
9092                 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9093                 if (ret < 0) {
9094                         err = ret;
9095                         break;
9096                 }
9097
9098                 if (ret > 0) {
9099                         BUG_ON(wc->stage != DROP_REFERENCE);
9100                         break;
9101                 }
9102
9103                 if (wc->stage == DROP_REFERENCE) {
9104                         level = wc->level;
9105                         btrfs_node_key(path->nodes[level],
9106                                        &root_item->drop_progress,
9107                                        path->slots[level]);
9108                         root_item->drop_level = level;
9109                 }
9110
9111                 BUG_ON(wc->level == 0);
9112                 if (btrfs_should_end_transaction(trans, tree_root) ||
9113                     (!for_reloc && btrfs_need_cleaner_sleep(root))) {
9114                         ret = btrfs_update_root(trans, tree_root,
9115                                                 &root->root_key,
9116                                                 root_item);
9117                         if (ret) {
9118                                 btrfs_abort_transaction(trans, tree_root, ret);
9119                                 err = ret;
9120                                 goto out_end_trans;
9121                         }
9122
9123                         btrfs_end_transaction_throttle(trans, tree_root);
9124                         if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
9125                                 pr_debug("BTRFS: drop snapshot early exit\n");
9126                                 err = -EAGAIN;
9127                                 goto out_free;
9128                         }
9129
9130                         trans = btrfs_start_transaction(tree_root, 0);
9131                         if (IS_ERR(trans)) {
9132                                 err = PTR_ERR(trans);
9133                                 goto out_free;
9134                         }
9135                         if (block_rsv)
9136                                 trans->block_rsv = block_rsv;
9137                 }
9138         }
9139         btrfs_release_path(path);
9140         if (err)
9141                 goto out_end_trans;
9142
9143         ret = btrfs_del_root(trans, tree_root, &root->root_key);
9144         if (ret) {
9145                 btrfs_abort_transaction(trans, tree_root, ret);
9146                 goto out_end_trans;
9147         }
9148
9149         if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9150                 ret = btrfs_find_root(tree_root, &root->root_key, path,
9151                                       NULL, NULL);
9152                 if (ret < 0) {
9153                         btrfs_abort_transaction(trans, tree_root, ret);
9154                         err = ret;
9155                         goto out_end_trans;
9156                 } else if (ret > 0) {
9157                         /* if we fail to delete the orphan item this time
9158                          * around, it'll get picked up the next time.
9159                          *
9160                          * The most common failure here is just -ENOENT.
9161                          */
9162                         btrfs_del_orphan_item(trans, tree_root,
9163                                               root->root_key.objectid);
9164                 }
9165         }
9166
9167         if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9168                 btrfs_add_dropped_root(trans, root);
9169         } else {
9170                 free_extent_buffer(root->node);
9171                 free_extent_buffer(root->commit_root);
9172                 btrfs_put_fs_root(root);
9173         }
9174         root_dropped = true;
9175 out_end_trans:
9176         btrfs_end_transaction_throttle(trans, tree_root);
9177 out_free:
9178         kfree(wc);
9179         btrfs_free_path(path);
9180 out:
9181         /*
9182          * So if we need to stop dropping the snapshot for whatever reason we
9183          * need to make sure to add it back to the dead root list so that we
9184          * keep trying to do the work later.  This also cleans up roots if we
9185          * don't have it in the radix (like when we recover after a power fail
9186          * or unmount) so we don't leak memory.
9187          */
9188         if (!for_reloc && root_dropped == false)
9189                 btrfs_add_dead_root(root);
9190         if (err && err != -EAGAIN)
9191                 btrfs_handle_fs_error(root->fs_info, err, NULL);
9192         return err;
9193 }
9194
9195 /*
9196  * drop subtree rooted at tree block 'node'.
9197  *
9198  * NOTE: this function will unlock and release tree block 'node'
9199  * only used by relocation code
9200  */
9201 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9202                         struct btrfs_root *root,
9203                         struct extent_buffer *node,
9204                         struct extent_buffer *parent)
9205 {
9206         struct btrfs_path *path;
9207         struct walk_control *wc;
9208         int level;
9209         int parent_level;
9210         int ret = 0;
9211         int wret;
9212
9213         BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9214
9215         path = btrfs_alloc_path();
9216         if (!path)
9217                 return -ENOMEM;
9218
9219         wc = kzalloc(sizeof(*wc), GFP_NOFS);
9220         if (!wc) {
9221                 btrfs_free_path(path);
9222                 return -ENOMEM;
9223         }
9224
9225         btrfs_assert_tree_locked(parent);
9226         parent_level = btrfs_header_level(parent);
9227         extent_buffer_get(parent);
9228         path->nodes[parent_level] = parent;
9229         path->slots[parent_level] = btrfs_header_nritems(parent);
9230
9231         btrfs_assert_tree_locked(node);
9232         level = btrfs_header_level(node);
9233         path->nodes[level] = node;
9234         path->slots[level] = 0;
9235         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9236
9237         wc->refs[parent_level] = 1;
9238         wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9239         wc->level = level;
9240         wc->shared_level = -1;
9241         wc->stage = DROP_REFERENCE;
9242         wc->update_ref = 0;
9243         wc->keep_locks = 1;
9244         wc->for_reloc = 1;
9245         wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
9246
9247         while (1) {
9248                 wret = walk_down_tree(trans, root, path, wc);
9249                 if (wret < 0) {
9250                         ret = wret;
9251                         break;
9252                 }
9253
9254                 wret = walk_up_tree(trans, root, path, wc, parent_level);
9255                 if (wret < 0)
9256                         ret = wret;
9257                 if (wret != 0)
9258                         break;
9259         }
9260
9261         kfree(wc);
9262         btrfs_free_path(path);
9263         return ret;
9264 }
9265
9266 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
9267 {
9268         u64 num_devices;
9269         u64 stripped;
9270
9271         /*
9272          * if restripe for this chunk_type is on pick target profile and
9273          * return, otherwise do the usual balance
9274          */
9275         stripped = get_restripe_target(root->fs_info, flags);
9276         if (stripped)
9277                 return extended_to_chunk(stripped);
9278
9279         num_devices = root->fs_info->fs_devices->rw_devices;
9280
9281         stripped = BTRFS_BLOCK_GROUP_RAID0 |
9282                 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9283                 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9284
9285         if (num_devices == 1) {
9286                 stripped |= BTRFS_BLOCK_GROUP_DUP;
9287                 stripped = flags & ~stripped;
9288
9289                 /* turn raid0 into single device chunks */
9290                 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9291                         return stripped;
9292
9293                 /* turn mirroring into duplication */
9294                 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9295                              BTRFS_BLOCK_GROUP_RAID10))
9296                         return stripped | BTRFS_BLOCK_GROUP_DUP;
9297         } else {
9298                 /* they already had raid on here, just return */
9299                 if (flags & stripped)
9300                         return flags;
9301
9302                 stripped |= BTRFS_BLOCK_GROUP_DUP;
9303                 stripped = flags & ~stripped;
9304
9305                 /* switch duplicated blocks with raid1 */
9306                 if (flags & BTRFS_BLOCK_GROUP_DUP)
9307                         return stripped | BTRFS_BLOCK_GROUP_RAID1;
9308
9309                 /* this is drive concat, leave it alone */
9310         }
9311
9312         return flags;
9313 }
9314
9315 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9316 {
9317         struct btrfs_space_info *sinfo = cache->space_info;
9318         u64 num_bytes;
9319         u64 min_allocable_bytes;
9320         int ret = -ENOSPC;
9321
9322         /*
9323          * We need some metadata space and system metadata space for
9324          * allocating chunks in some corner cases until we force to set
9325          * it to be readonly.
9326          */
9327         if ((sinfo->flags &
9328              (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9329             !force)
9330                 min_allocable_bytes = SZ_1M;
9331         else
9332                 min_allocable_bytes = 0;
9333
9334         spin_lock(&sinfo->lock);
9335         spin_lock(&cache->lock);
9336
9337         if (cache->ro) {
9338                 cache->ro++;
9339                 ret = 0;
9340                 goto out;
9341         }
9342
9343         num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9344                     cache->bytes_super - btrfs_block_group_used(&cache->item);
9345
9346         if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
9347             sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
9348             min_allocable_bytes <= sinfo->total_bytes) {
9349                 sinfo->bytes_readonly += num_bytes;
9350                 cache->ro++;
9351                 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9352                 ret = 0;
9353         }
9354 out:
9355         spin_unlock(&cache->lock);
9356         spin_unlock(&sinfo->lock);
9357         return ret;
9358 }
9359
9360 int btrfs_inc_block_group_ro(struct btrfs_root *root,
9361                              struct btrfs_block_group_cache *cache)
9362
9363 {
9364         struct btrfs_trans_handle *trans;
9365         u64 alloc_flags;
9366         int ret;
9367
9368 again:
9369         trans = btrfs_join_transaction(root);
9370         if (IS_ERR(trans))
9371                 return PTR_ERR(trans);
9372
9373         /*
9374          * we're not allowed to set block groups readonly after the dirty
9375          * block groups cache has started writing.  If it already started,
9376          * back off and let this transaction commit
9377          */
9378         mutex_lock(&root->fs_info->ro_block_group_mutex);
9379         if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9380                 u64 transid = trans->transid;
9381
9382                 mutex_unlock(&root->fs_info->ro_block_group_mutex);
9383                 btrfs_end_transaction(trans, root);
9384
9385                 ret = btrfs_wait_for_commit(root, transid);
9386                 if (ret)
9387                         return ret;
9388                 goto again;
9389         }
9390
9391         /*
9392          * if we are changing raid levels, try to allocate a corresponding
9393          * block group with the new raid level.
9394          */
9395         alloc_flags = update_block_group_flags(root, cache->flags);
9396         if (alloc_flags != cache->flags) {
9397                 ret = do_chunk_alloc(trans, root, alloc_flags,
9398                                      CHUNK_ALLOC_FORCE);
9399                 /*
9400                  * ENOSPC is allowed here, we may have enough space
9401                  * already allocated at the new raid level to
9402                  * carry on
9403                  */
9404                 if (ret == -ENOSPC)
9405                         ret = 0;
9406                 if (ret < 0)
9407                         goto out;
9408         }
9409
9410         ret = inc_block_group_ro(cache, 0);
9411         if (!ret)
9412                 goto out;
9413         alloc_flags = get_alloc_profile(root, cache->space_info->flags);
9414         ret = do_chunk_alloc(trans, root, alloc_flags,
9415                              CHUNK_ALLOC_FORCE);
9416         if (ret < 0)
9417                 goto out;
9418         ret = inc_block_group_ro(cache, 0);
9419 out:
9420         if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9421                 alloc_flags = update_block_group_flags(root, cache->flags);
9422                 lock_chunks(root->fs_info->chunk_root);
9423                 check_system_chunk(trans, root, alloc_flags);
9424                 unlock_chunks(root->fs_info->chunk_root);
9425         }
9426         mutex_unlock(&root->fs_info->ro_block_group_mutex);
9427
9428         btrfs_end_transaction(trans, root);
9429         return ret;
9430 }
9431
9432 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9433                             struct btrfs_root *root, u64 type)
9434 {
9435         u64 alloc_flags = get_alloc_profile(root, type);
9436         return do_chunk_alloc(trans, root, alloc_flags,
9437                               CHUNK_ALLOC_FORCE);
9438 }
9439
9440 /*
9441  * helper to account the unused space of all the readonly block group in the
9442  * space_info. takes mirrors into account.
9443  */
9444 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9445 {
9446         struct btrfs_block_group_cache *block_group;
9447         u64 free_bytes = 0;
9448         int factor;
9449
9450         /* It's df, we don't care if it's racy */
9451         if (list_empty(&sinfo->ro_bgs))
9452                 return 0;
9453
9454         spin_lock(&sinfo->lock);
9455         list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9456                 spin_lock(&block_group->lock);
9457
9458                 if (!block_group->ro) {
9459                         spin_unlock(&block_group->lock);
9460                         continue;
9461                 }
9462
9463                 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9464                                           BTRFS_BLOCK_GROUP_RAID10 |
9465                                           BTRFS_BLOCK_GROUP_DUP))
9466                         factor = 2;
9467                 else
9468                         factor = 1;
9469
9470                 free_bytes += (block_group->key.offset -
9471                                btrfs_block_group_used(&block_group->item)) *
9472                                factor;
9473
9474                 spin_unlock(&block_group->lock);
9475         }
9476         spin_unlock(&sinfo->lock);
9477
9478         return free_bytes;
9479 }
9480
9481 void btrfs_dec_block_group_ro(struct btrfs_root *root,
9482                               struct btrfs_block_group_cache *cache)
9483 {
9484         struct btrfs_space_info *sinfo = cache->space_info;
9485         u64 num_bytes;
9486
9487         BUG_ON(!cache->ro);
9488
9489         spin_lock(&sinfo->lock);
9490         spin_lock(&cache->lock);
9491         if (!--cache->ro) {
9492                 num_bytes = cache->key.offset - cache->reserved -
9493                             cache->pinned - cache->bytes_super -
9494                             btrfs_block_group_used(&cache->item);
9495                 sinfo->bytes_readonly -= num_bytes;
9496                 list_del_init(&cache->ro_list);
9497         }
9498         spin_unlock(&cache->lock);
9499         spin_unlock(&sinfo->lock);
9500 }
9501
9502 /*
9503  * checks to see if its even possible to relocate this block group.
9504  *
9505  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9506  * ok to go ahead and try.
9507  */
9508 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
9509 {
9510         struct btrfs_block_group_cache *block_group;
9511         struct btrfs_space_info *space_info;
9512         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
9513         struct btrfs_device *device;
9514         struct btrfs_trans_handle *trans;
9515         u64 min_free;
9516         u64 dev_min = 1;
9517         u64 dev_nr = 0;
9518         u64 target;
9519         int debug;
9520         int index;
9521         int full = 0;
9522         int ret = 0;
9523
9524         debug = btrfs_test_opt(root, ENOSPC_DEBUG);
9525
9526         block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
9527
9528         /* odd, couldn't find the block group, leave it alone */
9529         if (!block_group) {
9530                 if (debug)
9531                         btrfs_warn(root->fs_info,
9532                                    "can't find block group for bytenr %llu",
9533                                    bytenr);
9534                 return -1;
9535         }
9536
9537         min_free = btrfs_block_group_used(&block_group->item);
9538
9539         /* no bytes used, we're good */
9540         if (!min_free)
9541                 goto out;
9542
9543         space_info = block_group->space_info;
9544         spin_lock(&space_info->lock);
9545
9546         full = space_info->full;
9547
9548         /*
9549          * if this is the last block group we have in this space, we can't
9550          * relocate it unless we're able to allocate a new chunk below.
9551          *
9552          * Otherwise, we need to make sure we have room in the space to handle
9553          * all of the extents from this block group.  If we can, we're good
9554          */
9555         if ((space_info->total_bytes != block_group->key.offset) &&
9556             (space_info->bytes_used + space_info->bytes_reserved +
9557              space_info->bytes_pinned + space_info->bytes_readonly +
9558              min_free < space_info->total_bytes)) {
9559                 spin_unlock(&space_info->lock);
9560                 goto out;
9561         }
9562         spin_unlock(&space_info->lock);
9563
9564         /*
9565          * ok we don't have enough space, but maybe we have free space on our
9566          * devices to allocate new chunks for relocation, so loop through our
9567          * alloc devices and guess if we have enough space.  if this block
9568          * group is going to be restriped, run checks against the target
9569          * profile instead of the current one.
9570          */
9571         ret = -1;
9572
9573         /*
9574          * index:
9575          *      0: raid10
9576          *      1: raid1
9577          *      2: dup
9578          *      3: raid0
9579          *      4: single
9580          */
9581         target = get_restripe_target(root->fs_info, block_group->flags);
9582         if (target) {
9583                 index = __get_raid_index(extended_to_chunk(target));
9584         } else {
9585                 /*
9586                  * this is just a balance, so if we were marked as full
9587                  * we know there is no space for a new chunk
9588                  */
9589                 if (full) {
9590                         if (debug)
9591                                 btrfs_warn(root->fs_info,
9592                                         "no space to alloc new chunk for block group %llu",
9593                                         block_group->key.objectid);
9594                         goto out;
9595                 }
9596
9597                 index = get_block_group_index(block_group);
9598         }
9599
9600         if (index == BTRFS_RAID_RAID10) {
9601                 dev_min = 4;
9602                 /* Divide by 2 */
9603                 min_free >>= 1;
9604         } else if (index == BTRFS_RAID_RAID1) {
9605                 dev_min = 2;
9606         } else if (index == BTRFS_RAID_DUP) {
9607                 /* Multiply by 2 */
9608                 min_free <<= 1;
9609         } else if (index == BTRFS_RAID_RAID0) {
9610                 dev_min = fs_devices->rw_devices;
9611                 min_free = div64_u64(min_free, dev_min);
9612         }
9613
9614         /* We need to do this so that we can look at pending chunks */
9615         trans = btrfs_join_transaction(root);
9616         if (IS_ERR(trans)) {
9617                 ret = PTR_ERR(trans);
9618                 goto out;
9619         }
9620
9621         mutex_lock(&root->fs_info->chunk_mutex);
9622         list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9623                 u64 dev_offset;
9624
9625                 /*
9626                  * check to make sure we can actually find a chunk with enough
9627                  * space to fit our block group in.
9628                  */
9629                 if (device->total_bytes > device->bytes_used + min_free &&
9630                     !device->is_tgtdev_for_dev_replace) {
9631                         ret = find_free_dev_extent(trans, device, min_free,
9632                                                    &dev_offset, NULL);
9633                         if (!ret)
9634                                 dev_nr++;
9635
9636                         if (dev_nr >= dev_min)
9637                                 break;
9638
9639                         ret = -1;
9640                 }
9641         }
9642         if (debug && ret == -1)
9643                 btrfs_warn(root->fs_info,
9644                         "no space to allocate a new chunk for block group %llu",
9645                         block_group->key.objectid);
9646         mutex_unlock(&root->fs_info->chunk_mutex);
9647         btrfs_end_transaction(trans, root);
9648 out:
9649         btrfs_put_block_group(block_group);
9650         return ret;
9651 }
9652
9653 static int find_first_block_group(struct btrfs_root *root,
9654                 struct btrfs_path *path, struct btrfs_key *key)
9655 {
9656         int ret = 0;
9657         struct btrfs_key found_key;
9658         struct extent_buffer *leaf;
9659         int slot;
9660
9661         ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9662         if (ret < 0)
9663                 goto out;
9664
9665         while (1) {
9666                 slot = path->slots[0];
9667                 leaf = path->nodes[0];
9668                 if (slot >= btrfs_header_nritems(leaf)) {
9669                         ret = btrfs_next_leaf(root, path);
9670                         if (ret == 0)
9671                                 continue;
9672                         if (ret < 0)
9673                                 goto out;
9674                         break;
9675                 }
9676                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
9677
9678                 if (found_key.objectid >= key->objectid &&
9679                     found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9680                         ret = 0;
9681                         goto out;
9682                 }
9683                 path->slots[0]++;
9684         }
9685 out:
9686         return ret;
9687 }
9688
9689 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9690 {
9691         struct btrfs_block_group_cache *block_group;
9692         u64 last = 0;
9693
9694         while (1) {
9695                 struct inode *inode;
9696
9697                 block_group = btrfs_lookup_first_block_group(info, last);
9698                 while (block_group) {
9699                         spin_lock(&block_group->lock);
9700                         if (block_group->iref)
9701                                 break;
9702                         spin_unlock(&block_group->lock);
9703                         block_group = next_block_group(info->tree_root,
9704                                                        block_group);
9705                 }
9706                 if (!block_group) {
9707                         if (last == 0)
9708                                 break;
9709                         last = 0;
9710                         continue;
9711                 }
9712
9713                 inode = block_group->inode;
9714                 block_group->iref = 0;
9715                 block_group->inode = NULL;
9716                 spin_unlock(&block_group->lock);
9717                 iput(inode);
9718                 last = block_group->key.objectid + block_group->key.offset;
9719                 btrfs_put_block_group(block_group);
9720         }
9721 }
9722
9723 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9724 {
9725         struct btrfs_block_group_cache *block_group;
9726         struct btrfs_space_info *space_info;
9727         struct btrfs_caching_control *caching_ctl;
9728         struct rb_node *n;
9729
9730         down_write(&info->commit_root_sem);
9731         while (!list_empty(&info->caching_block_groups)) {
9732                 caching_ctl = list_entry(info->caching_block_groups.next,
9733                                          struct btrfs_caching_control, list);
9734                 list_del(&caching_ctl->list);
9735                 put_caching_control(caching_ctl);
9736         }
9737         up_write(&info->commit_root_sem);
9738
9739         spin_lock(&info->unused_bgs_lock);
9740         while (!list_empty(&info->unused_bgs)) {
9741                 block_group = list_first_entry(&info->unused_bgs,
9742                                                struct btrfs_block_group_cache,
9743                                                bg_list);
9744                 list_del_init(&block_group->bg_list);
9745                 btrfs_put_block_group(block_group);
9746         }
9747         spin_unlock(&info->unused_bgs_lock);
9748
9749         spin_lock(&info->block_group_cache_lock);
9750         while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9751                 block_group = rb_entry(n, struct btrfs_block_group_cache,
9752                                        cache_node);
9753                 rb_erase(&block_group->cache_node,
9754                          &info->block_group_cache_tree);
9755                 RB_CLEAR_NODE(&block_group->cache_node);
9756                 spin_unlock(&info->block_group_cache_lock);
9757
9758                 down_write(&block_group->space_info->groups_sem);
9759                 list_del(&block_group->list);
9760                 up_write(&block_group->space_info->groups_sem);
9761
9762                 if (block_group->cached == BTRFS_CACHE_STARTED)
9763                         wait_block_group_cache_done(block_group);
9764
9765                 /*
9766                  * We haven't cached this block group, which means we could
9767                  * possibly have excluded extents on this block group.
9768                  */
9769                 if (block_group->cached == BTRFS_CACHE_NO ||
9770                     block_group->cached == BTRFS_CACHE_ERROR)
9771                         free_excluded_extents(info->extent_root, block_group);
9772
9773                 btrfs_remove_free_space_cache(block_group);
9774                 btrfs_put_block_group(block_group);
9775
9776                 spin_lock(&info->block_group_cache_lock);
9777         }
9778         spin_unlock(&info->block_group_cache_lock);
9779
9780         /* now that all the block groups are freed, go through and
9781          * free all the space_info structs.  This is only called during
9782          * the final stages of unmount, and so we know nobody is
9783          * using them.  We call synchronize_rcu() once before we start,
9784          * just to be on the safe side.
9785          */
9786         synchronize_rcu();
9787
9788         release_global_block_rsv(info);
9789
9790         while (!list_empty(&info->space_info)) {
9791                 int i;
9792
9793                 space_info = list_entry(info->space_info.next,
9794                                         struct btrfs_space_info,
9795                                         list);
9796                 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
9797                         if (WARN_ON(space_info->bytes_pinned > 0 ||
9798                             space_info->bytes_reserved > 0 ||
9799                             space_info->bytes_may_use > 0)) {
9800                                 dump_space_info(space_info, 0, 0);
9801                         }
9802                 }
9803                 list_del(&space_info->list);
9804                 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9805                         struct kobject *kobj;
9806                         kobj = space_info->block_group_kobjs[i];
9807                         space_info->block_group_kobjs[i] = NULL;
9808                         if (kobj) {
9809                                 kobject_del(kobj);
9810                                 kobject_put(kobj);
9811                         }
9812                 }
9813                 kobject_del(&space_info->kobj);
9814                 kobject_put(&space_info->kobj);
9815         }
9816         return 0;
9817 }
9818
9819 static void __link_block_group(struct btrfs_space_info *space_info,
9820                                struct btrfs_block_group_cache *cache)
9821 {
9822         int index = get_block_group_index(cache);
9823         bool first = false;
9824
9825         down_write(&space_info->groups_sem);
9826         if (list_empty(&space_info->block_groups[index]))
9827                 first = true;
9828         list_add_tail(&cache->list, &space_info->block_groups[index]);
9829         up_write(&space_info->groups_sem);
9830
9831         if (first) {
9832                 struct raid_kobject *rkobj;
9833                 int ret;
9834
9835                 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9836                 if (!rkobj)
9837                         goto out_err;
9838                 rkobj->raid_type = index;
9839                 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9840                 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9841                                   "%s", get_raid_name(index));
9842                 if (ret) {
9843                         kobject_put(&rkobj->kobj);
9844                         goto out_err;
9845                 }
9846                 space_info->block_group_kobjs[index] = &rkobj->kobj;
9847         }
9848
9849         return;
9850 out_err:
9851         pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
9852 }
9853
9854 static struct btrfs_block_group_cache *
9855 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
9856 {
9857         struct btrfs_block_group_cache *cache;
9858
9859         cache = kzalloc(sizeof(*cache), GFP_NOFS);
9860         if (!cache)
9861                 return NULL;
9862
9863         cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9864                                         GFP_NOFS);
9865         if (!cache->free_space_ctl) {
9866                 kfree(cache);
9867                 return NULL;
9868         }
9869
9870         cache->key.objectid = start;
9871         cache->key.offset = size;
9872         cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9873
9874         cache->sectorsize = root->sectorsize;
9875         cache->fs_info = root->fs_info;
9876         cache->full_stripe_len = btrfs_full_stripe_len(root,
9877                                                &root->fs_info->mapping_tree,
9878                                                start);
9879         set_free_space_tree_thresholds(cache);
9880
9881         atomic_set(&cache->count, 1);
9882         spin_lock_init(&cache->lock);
9883         init_rwsem(&cache->data_rwsem);
9884         INIT_LIST_HEAD(&cache->list);
9885         INIT_LIST_HEAD(&cache->cluster_list);
9886         INIT_LIST_HEAD(&cache->bg_list);
9887         INIT_LIST_HEAD(&cache->ro_list);
9888         INIT_LIST_HEAD(&cache->dirty_list);
9889         INIT_LIST_HEAD(&cache->io_list);
9890         btrfs_init_free_space_ctl(cache);
9891         atomic_set(&cache->trimming, 0);
9892         mutex_init(&cache->free_space_lock);
9893
9894         return cache;
9895 }
9896
9897 int btrfs_read_block_groups(struct btrfs_root *root)
9898 {
9899         struct btrfs_path *path;
9900         int ret;
9901         struct btrfs_block_group_cache *cache;
9902         struct btrfs_fs_info *info = root->fs_info;
9903         struct btrfs_space_info *space_info;
9904         struct btrfs_key key;
9905         struct btrfs_key found_key;
9906         struct extent_buffer *leaf;
9907         int need_clear = 0;
9908         u64 cache_gen;
9909
9910         root = info->extent_root;
9911         key.objectid = 0;
9912         key.offset = 0;
9913         key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9914         path = btrfs_alloc_path();
9915         if (!path)
9916                 return -ENOMEM;
9917         path->reada = READA_FORWARD;
9918
9919         cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
9920         if (btrfs_test_opt(root, SPACE_CACHE) &&
9921             btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
9922                 need_clear = 1;
9923         if (btrfs_test_opt(root, CLEAR_CACHE))
9924                 need_clear = 1;
9925
9926         while (1) {
9927                 ret = find_first_block_group(root, path, &key);
9928                 if (ret > 0)
9929                         break;
9930                 if (ret != 0)
9931                         goto error;
9932
9933                 leaf = path->nodes[0];
9934                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9935
9936                 cache = btrfs_create_block_group_cache(root, found_key.objectid,
9937                                                        found_key.offset);
9938                 if (!cache) {
9939                         ret = -ENOMEM;
9940                         goto error;
9941                 }
9942
9943                 if (need_clear) {
9944                         /*
9945                          * When we mount with old space cache, we need to
9946                          * set BTRFS_DC_CLEAR and set dirty flag.
9947                          *
9948                          * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9949                          *    truncate the old free space cache inode and
9950                          *    setup a new one.
9951                          * b) Setting 'dirty flag' makes sure that we flush
9952                          *    the new space cache info onto disk.
9953                          */
9954                         if (btrfs_test_opt(root, SPACE_CACHE))
9955                                 cache->disk_cache_state = BTRFS_DC_CLEAR;
9956                 }
9957
9958                 read_extent_buffer(leaf, &cache->item,
9959                                    btrfs_item_ptr_offset(leaf, path->slots[0]),
9960                                    sizeof(cache->item));
9961                 cache->flags = btrfs_block_group_flags(&cache->item);
9962
9963                 key.objectid = found_key.objectid + found_key.offset;
9964                 btrfs_release_path(path);
9965
9966                 /*
9967                  * We need to exclude the super stripes now so that the space
9968                  * info has super bytes accounted for, otherwise we'll think
9969                  * we have more space than we actually do.
9970                  */
9971                 ret = exclude_super_stripes(root, cache);
9972                 if (ret) {
9973                         /*
9974                          * We may have excluded something, so call this just in
9975                          * case.
9976                          */
9977                         free_excluded_extents(root, cache);
9978                         btrfs_put_block_group(cache);
9979                         goto error;
9980                 }
9981
9982                 /*
9983                  * check for two cases, either we are full, and therefore
9984                  * don't need to bother with the caching work since we won't
9985                  * find any space, or we are empty, and we can just add all
9986                  * the space in and be done with it.  This saves us _alot_ of
9987                  * time, particularly in the full case.
9988                  */
9989                 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
9990                         cache->last_byte_to_unpin = (u64)-1;
9991                         cache->cached = BTRFS_CACHE_FINISHED;
9992                         free_excluded_extents(root, cache);
9993                 } else if (btrfs_block_group_used(&cache->item) == 0) {
9994                         cache->last_byte_to_unpin = (u64)-1;
9995                         cache->cached = BTRFS_CACHE_FINISHED;
9996                         add_new_free_space(cache, root->fs_info,
9997                                            found_key.objectid,
9998                                            found_key.objectid +
9999                                            found_key.offset);
10000                         free_excluded_extents(root, cache);
10001                 }
10002
10003                 ret = btrfs_add_block_group_cache(root->fs_info, cache);
10004                 if (ret) {
10005                         btrfs_remove_free_space_cache(cache);
10006                         btrfs_put_block_group(cache);
10007                         goto error;
10008                 }
10009
10010                 ret = update_space_info(info, cache->flags, found_key.offset,
10011                                         btrfs_block_group_used(&cache->item),
10012                                         cache->bytes_super, &space_info);
10013                 if (ret) {
10014                         btrfs_remove_free_space_cache(cache);
10015                         spin_lock(&info->block_group_cache_lock);
10016                         rb_erase(&cache->cache_node,
10017                                  &info->block_group_cache_tree);
10018                         RB_CLEAR_NODE(&cache->cache_node);
10019                         spin_unlock(&info->block_group_cache_lock);
10020                         btrfs_put_block_group(cache);
10021                         goto error;
10022                 }
10023
10024                 cache->space_info = space_info;
10025
10026                 __link_block_group(space_info, cache);
10027
10028                 set_avail_alloc_bits(root->fs_info, cache->flags);
10029                 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
10030                         inc_block_group_ro(cache, 1);
10031                 } else if (btrfs_block_group_used(&cache->item) == 0) {
10032                         spin_lock(&info->unused_bgs_lock);
10033                         /* Should always be true but just in case. */
10034                         if (list_empty(&cache->bg_list)) {
10035                                 btrfs_get_block_group(cache);
10036                                 list_add_tail(&cache->bg_list,
10037                                               &info->unused_bgs);
10038                         }
10039                         spin_unlock(&info->unused_bgs_lock);
10040                 }
10041         }
10042
10043         list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
10044                 if (!(get_alloc_profile(root, space_info->flags) &
10045                       (BTRFS_BLOCK_GROUP_RAID10 |
10046                        BTRFS_BLOCK_GROUP_RAID1 |
10047                        BTRFS_BLOCK_GROUP_RAID5 |
10048                        BTRFS_BLOCK_GROUP_RAID6 |
10049                        BTRFS_BLOCK_GROUP_DUP)))
10050                         continue;
10051                 /*
10052                  * avoid allocating from un-mirrored block group if there are
10053                  * mirrored block groups.
10054                  */
10055                 list_for_each_entry(cache,
10056                                 &space_info->block_groups[BTRFS_RAID_RAID0],
10057                                 list)
10058                         inc_block_group_ro(cache, 1);
10059                 list_for_each_entry(cache,
10060                                 &space_info->block_groups[BTRFS_RAID_SINGLE],
10061                                 list)
10062                         inc_block_group_ro(cache, 1);
10063         }
10064
10065         init_global_block_rsv(info);
10066         ret = 0;
10067 error:
10068         btrfs_free_path(path);
10069         return ret;
10070 }
10071
10072 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
10073                                        struct btrfs_root *root)
10074 {
10075         struct btrfs_block_group_cache *block_group, *tmp;
10076         struct btrfs_root *extent_root = root->fs_info->extent_root;
10077         struct btrfs_block_group_item item;
10078         struct btrfs_key key;
10079         int ret = 0;
10080         bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
10081
10082         trans->can_flush_pending_bgs = false;
10083         list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
10084                 if (ret)
10085                         goto next;
10086
10087                 spin_lock(&block_group->lock);
10088                 memcpy(&item, &block_group->item, sizeof(item));
10089                 memcpy(&key, &block_group->key, sizeof(key));
10090                 spin_unlock(&block_group->lock);
10091
10092                 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10093                                         sizeof(item));
10094                 if (ret)
10095                         btrfs_abort_transaction(trans, extent_root, ret);
10096                 ret = btrfs_finish_chunk_alloc(trans, extent_root,
10097                                                key.objectid, key.offset);
10098                 if (ret)
10099                         btrfs_abort_transaction(trans, extent_root, ret);
10100                 add_block_group_free_space(trans, root->fs_info, block_group);
10101                 /* already aborted the transaction if it failed. */
10102 next:
10103                 list_del_init(&block_group->bg_list);
10104         }
10105         trans->can_flush_pending_bgs = can_flush_pending_bgs;
10106 }
10107
10108 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
10109                            struct btrfs_root *root, u64 bytes_used,
10110                            u64 type, u64 chunk_objectid, u64 chunk_offset,
10111                            u64 size)
10112 {
10113         int ret;
10114         struct btrfs_root *extent_root;
10115         struct btrfs_block_group_cache *cache;
10116         extent_root = root->fs_info->extent_root;
10117
10118         btrfs_set_log_full_commit(root->fs_info, trans);
10119
10120         cache = btrfs_create_block_group_cache(root, chunk_offset, size);
10121         if (!cache)
10122                 return -ENOMEM;
10123
10124         btrfs_set_block_group_used(&cache->item, bytes_used);
10125         btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
10126         btrfs_set_block_group_flags(&cache->item, type);
10127
10128         cache->flags = type;
10129         cache->last_byte_to_unpin = (u64)-1;
10130         cache->cached = BTRFS_CACHE_FINISHED;
10131         cache->needs_free_space = 1;
10132         ret = exclude_super_stripes(root, cache);
10133         if (ret) {
10134                 /*
10135                  * We may have excluded something, so call this just in
10136                  * case.
10137                  */
10138                 free_excluded_extents(root, cache);
10139                 btrfs_put_block_group(cache);
10140                 return ret;
10141         }
10142
10143         add_new_free_space(cache, root->fs_info, chunk_offset,
10144                            chunk_offset + size);
10145
10146         free_excluded_extents(root, cache);
10147
10148 #ifdef CONFIG_BTRFS_DEBUG
10149         if (btrfs_should_fragment_free_space(root, cache)) {
10150                 u64 new_bytes_used = size - bytes_used;
10151
10152                 bytes_used += new_bytes_used >> 1;
10153                 fragment_free_space(root, cache);
10154         }
10155 #endif
10156         /*
10157          * Call to ensure the corresponding space_info object is created and
10158          * assigned to our block group, but don't update its counters just yet.
10159          * We want our bg to be added to the rbtree with its ->space_info set.
10160          */
10161         ret = update_space_info(root->fs_info, cache->flags, 0, 0, 0,
10162                                 &cache->space_info);
10163         if (ret) {
10164                 btrfs_remove_free_space_cache(cache);
10165                 btrfs_put_block_group(cache);
10166                 return ret;
10167         }
10168
10169         ret = btrfs_add_block_group_cache(root->fs_info, cache);
10170         if (ret) {
10171                 btrfs_remove_free_space_cache(cache);
10172                 btrfs_put_block_group(cache);
10173                 return ret;
10174         }
10175
10176         /*
10177          * Now that our block group has its ->space_info set and is inserted in
10178          * the rbtree, update the space info's counters.
10179          */
10180         ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
10181                                 cache->bytes_super, &cache->space_info);
10182         if (ret) {
10183                 btrfs_remove_free_space_cache(cache);
10184                 spin_lock(&root->fs_info->block_group_cache_lock);
10185                 rb_erase(&cache->cache_node,
10186                          &root->fs_info->block_group_cache_tree);
10187                 RB_CLEAR_NODE(&cache->cache_node);
10188                 spin_unlock(&root->fs_info->block_group_cache_lock);
10189                 btrfs_put_block_group(cache);
10190                 return ret;
10191         }
10192         update_global_block_rsv(root->fs_info);
10193
10194         __link_block_group(cache->space_info, cache);
10195
10196         list_add_tail(&cache->bg_list, &trans->new_bgs);
10197
10198         set_avail_alloc_bits(extent_root->fs_info, type);
10199         return 0;
10200 }
10201
10202 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10203 {
10204         u64 extra_flags = chunk_to_extended(flags) &
10205                                 BTRFS_EXTENDED_PROFILE_MASK;
10206
10207         write_seqlock(&fs_info->profiles_lock);
10208         if (flags & BTRFS_BLOCK_GROUP_DATA)
10209                 fs_info->avail_data_alloc_bits &= ~extra_flags;
10210         if (flags & BTRFS_BLOCK_GROUP_METADATA)
10211                 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10212         if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10213                 fs_info->avail_system_alloc_bits &= ~extra_flags;
10214         write_sequnlock(&fs_info->profiles_lock);
10215 }
10216
10217 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10218                              struct btrfs_root *root, u64 group_start,
10219                              struct extent_map *em)
10220 {
10221         struct btrfs_path *path;
10222         struct btrfs_block_group_cache *block_group;
10223         struct btrfs_free_cluster *cluster;
10224         struct btrfs_root *tree_root = root->fs_info->tree_root;
10225         struct btrfs_key key;
10226         struct inode *inode;
10227         struct kobject *kobj = NULL;
10228         int ret;
10229         int index;
10230         int factor;
10231         struct btrfs_caching_control *caching_ctl = NULL;
10232         bool remove_em;
10233
10234         root = root->fs_info->extent_root;
10235
10236         block_group = btrfs_lookup_block_group(root->fs_info, group_start);
10237         BUG_ON(!block_group);
10238         BUG_ON(!block_group->ro);
10239
10240         /*
10241          * Free the reserved super bytes from this block group before
10242          * remove it.
10243          */
10244         free_excluded_extents(root, block_group);
10245
10246         memcpy(&key, &block_group->key, sizeof(key));
10247         index = get_block_group_index(block_group);
10248         if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10249                                   BTRFS_BLOCK_GROUP_RAID1 |
10250                                   BTRFS_BLOCK_GROUP_RAID10))
10251                 factor = 2;
10252         else
10253                 factor = 1;
10254
10255         /* make sure this block group isn't part of an allocation cluster */
10256         cluster = &root->fs_info->data_alloc_cluster;
10257         spin_lock(&cluster->refill_lock);
10258         btrfs_return_cluster_to_free_space(block_group, cluster);
10259         spin_unlock(&cluster->refill_lock);
10260
10261         /*
10262          * make sure this block group isn't part of a metadata
10263          * allocation cluster
10264          */
10265         cluster = &root->fs_info->meta_alloc_cluster;
10266         spin_lock(&cluster->refill_lock);
10267         btrfs_return_cluster_to_free_space(block_group, cluster);
10268         spin_unlock(&cluster->refill_lock);
10269
10270         path = btrfs_alloc_path();
10271         if (!path) {
10272                 ret = -ENOMEM;
10273                 goto out;
10274         }
10275
10276         /*
10277          * get the inode first so any iput calls done for the io_list
10278          * aren't the final iput (no unlinks allowed now)
10279          */
10280         inode = lookup_free_space_inode(tree_root, block_group, path);
10281
10282         mutex_lock(&trans->transaction->cache_write_mutex);
10283         /*
10284          * make sure our free spache cache IO is done before remove the
10285          * free space inode
10286          */
10287         spin_lock(&trans->transaction->dirty_bgs_lock);
10288         if (!list_empty(&block_group->io_list)) {
10289                 list_del_init(&block_group->io_list);
10290
10291                 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10292
10293                 spin_unlock(&trans->transaction->dirty_bgs_lock);
10294                 btrfs_wait_cache_io(root, trans, block_group,
10295                                     &block_group->io_ctl, path,
10296                                     block_group->key.objectid);
10297                 btrfs_put_block_group(block_group);
10298                 spin_lock(&trans->transaction->dirty_bgs_lock);
10299         }
10300
10301         if (!list_empty(&block_group->dirty_list)) {
10302                 list_del_init(&block_group->dirty_list);
10303                 btrfs_put_block_group(block_group);
10304         }
10305         spin_unlock(&trans->transaction->dirty_bgs_lock);
10306         mutex_unlock(&trans->transaction->cache_write_mutex);
10307
10308         if (!IS_ERR(inode)) {
10309                 ret = btrfs_orphan_add(trans, inode);
10310                 if (ret) {
10311                         btrfs_add_delayed_iput(inode);
10312                         goto out;
10313                 }
10314                 clear_nlink(inode);
10315                 /* One for the block groups ref */
10316                 spin_lock(&block_group->lock);
10317                 if (block_group->iref) {
10318                         block_group->iref = 0;
10319                         block_group->inode = NULL;
10320                         spin_unlock(&block_group->lock);
10321                         iput(inode);
10322                 } else {
10323                         spin_unlock(&block_group->lock);
10324                 }
10325                 /* One for our lookup ref */
10326                 btrfs_add_delayed_iput(inode);
10327         }
10328
10329         key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10330         key.offset = block_group->key.objectid;
10331         key.type = 0;
10332
10333         ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10334         if (ret < 0)
10335                 goto out;
10336         if (ret > 0)
10337                 btrfs_release_path(path);
10338         if (ret == 0) {
10339                 ret = btrfs_del_item(trans, tree_root, path);
10340                 if (ret)
10341                         goto out;
10342                 btrfs_release_path(path);
10343         }
10344
10345         spin_lock(&root->fs_info->block_group_cache_lock);
10346         rb_erase(&block_group->cache_node,
10347                  &root->fs_info->block_group_cache_tree);
10348         RB_CLEAR_NODE(&block_group->cache_node);
10349
10350         if (root->fs_info->first_logical_byte == block_group->key.objectid)
10351                 root->fs_info->first_logical_byte = (u64)-1;
10352         spin_unlock(&root->fs_info->block_group_cache_lock);
10353
10354         down_write(&block_group->space_info->groups_sem);
10355         /*
10356          * we must use list_del_init so people can check to see if they
10357          * are still on the list after taking the semaphore
10358          */
10359         list_del_init(&block_group->list);
10360         if (list_empty(&block_group->space_info->block_groups[index])) {
10361                 kobj = block_group->space_info->block_group_kobjs[index];
10362                 block_group->space_info->block_group_kobjs[index] = NULL;
10363                 clear_avail_alloc_bits(root->fs_info, block_group->flags);
10364         }
10365         up_write(&block_group->space_info->groups_sem);
10366         if (kobj) {
10367                 kobject_del(kobj);
10368                 kobject_put(kobj);
10369         }
10370
10371         if (block_group->has_caching_ctl)
10372                 caching_ctl = get_caching_control(block_group);
10373         if (block_group->cached == BTRFS_CACHE_STARTED)
10374                 wait_block_group_cache_done(block_group);
10375         if (block_group->has_caching_ctl) {
10376                 down_write(&root->fs_info->commit_root_sem);
10377                 if (!caching_ctl) {
10378                         struct btrfs_caching_control *ctl;
10379
10380                         list_for_each_entry(ctl,
10381                                     &root->fs_info->caching_block_groups, list)
10382                                 if (ctl->block_group == block_group) {
10383                                         caching_ctl = ctl;
10384                                         atomic_inc(&caching_ctl->count);
10385                                         break;
10386                                 }
10387                 }
10388                 if (caching_ctl)
10389                         list_del_init(&caching_ctl->list);
10390                 up_write(&root->fs_info->commit_root_sem);
10391                 if (caching_ctl) {
10392                         /* Once for the caching bgs list and once for us. */
10393                         put_caching_control(caching_ctl);
10394                         put_caching_control(caching_ctl);
10395                 }
10396         }
10397
10398         spin_lock(&trans->transaction->dirty_bgs_lock);
10399         if (!list_empty(&block_group->dirty_list)) {
10400                 WARN_ON(1);
10401         }
10402         if (!list_empty(&block_group->io_list)) {
10403                 WARN_ON(1);
10404         }
10405         spin_unlock(&trans->transaction->dirty_bgs_lock);
10406         btrfs_remove_free_space_cache(block_group);
10407
10408         spin_lock(&block_group->space_info->lock);
10409         list_del_init(&block_group->ro_list);
10410
10411         if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
10412                 WARN_ON(block_group->space_info->total_bytes
10413                         < block_group->key.offset);
10414                 WARN_ON(block_group->space_info->bytes_readonly
10415                         < block_group->key.offset);
10416                 WARN_ON(block_group->space_info->disk_total
10417                         < block_group->key.offset * factor);
10418         }
10419         block_group->space_info->total_bytes -= block_group->key.offset;
10420         block_group->space_info->bytes_readonly -= block_group->key.offset;
10421         block_group->space_info->disk_total -= block_group->key.offset * factor;
10422
10423         spin_unlock(&block_group->space_info->lock);
10424
10425         memcpy(&key, &block_group->key, sizeof(key));
10426
10427         lock_chunks(root);
10428         if (!list_empty(&em->list)) {
10429                 /* We're in the transaction->pending_chunks list. */
10430                 free_extent_map(em);
10431         }
10432         spin_lock(&block_group->lock);
10433         block_group->removed = 1;
10434         /*
10435          * At this point trimming can't start on this block group, because we
10436          * removed the block group from the tree fs_info->block_group_cache_tree
10437          * so no one can't find it anymore and even if someone already got this
10438          * block group before we removed it from the rbtree, they have already
10439          * incremented block_group->trimming - if they didn't, they won't find
10440          * any free space entries because we already removed them all when we
10441          * called btrfs_remove_free_space_cache().
10442          *
10443          * And we must not remove the extent map from the fs_info->mapping_tree
10444          * to prevent the same logical address range and physical device space
10445          * ranges from being reused for a new block group. This is because our
10446          * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10447          * completely transactionless, so while it is trimming a range the
10448          * currently running transaction might finish and a new one start,
10449          * allowing for new block groups to be created that can reuse the same
10450          * physical device locations unless we take this special care.
10451          *
10452          * There may also be an implicit trim operation if the file system
10453          * is mounted with -odiscard. The same protections must remain
10454          * in place until the extents have been discarded completely when
10455          * the transaction commit has completed.
10456          */
10457         remove_em = (atomic_read(&block_group->trimming) == 0);
10458         /*
10459          * Make sure a trimmer task always sees the em in the pinned_chunks list
10460          * if it sees block_group->removed == 1 (needs to lock block_group->lock
10461          * before checking block_group->removed).
10462          */
10463         if (!remove_em) {
10464                 /*
10465                  * Our em might be in trans->transaction->pending_chunks which
10466                  * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10467                  * and so is the fs_info->pinned_chunks list.
10468                  *
10469                  * So at this point we must be holding the chunk_mutex to avoid
10470                  * any races with chunk allocation (more specifically at
10471                  * volumes.c:contains_pending_extent()), to ensure it always
10472                  * sees the em, either in the pending_chunks list or in the
10473                  * pinned_chunks list.
10474                  */
10475                 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
10476         }
10477         spin_unlock(&block_group->lock);
10478
10479         if (remove_em) {
10480                 struct extent_map_tree *em_tree;
10481
10482                 em_tree = &root->fs_info->mapping_tree.map_tree;
10483                 write_lock(&em_tree->lock);
10484                 /*
10485                  * The em might be in the pending_chunks list, so make sure the
10486                  * chunk mutex is locked, since remove_extent_mapping() will
10487                  * delete us from that list.
10488                  */
10489                 remove_extent_mapping(em_tree, em);
10490                 write_unlock(&em_tree->lock);
10491                 /* once for the tree */
10492                 free_extent_map(em);
10493         }
10494
10495         unlock_chunks(root);
10496
10497         ret = remove_block_group_free_space(trans, root->fs_info, block_group);
10498         if (ret)
10499                 goto out;
10500
10501         btrfs_put_block_group(block_group);
10502         btrfs_put_block_group(block_group);
10503
10504         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10505         if (ret > 0)
10506                 ret = -EIO;
10507         if (ret < 0)
10508                 goto out;
10509
10510         ret = btrfs_del_item(trans, root, path);
10511 out:
10512         btrfs_free_path(path);
10513         return ret;
10514 }
10515
10516 struct btrfs_trans_handle *
10517 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10518                                      const u64 chunk_offset)
10519 {
10520         struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10521         struct extent_map *em;
10522         struct map_lookup *map;
10523         unsigned int num_items;
10524
10525         read_lock(&em_tree->lock);
10526         em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10527         read_unlock(&em_tree->lock);
10528         ASSERT(em && em->start == chunk_offset);
10529
10530         /*
10531          * We need to reserve 3 + N units from the metadata space info in order
10532          * to remove a block group (done at btrfs_remove_chunk() and at
10533          * btrfs_remove_block_group()), which are used for:
10534          *
10535          * 1 unit for adding the free space inode's orphan (located in the tree
10536          * of tree roots).
10537          * 1 unit for deleting the block group item (located in the extent
10538          * tree).
10539          * 1 unit for deleting the free space item (located in tree of tree
10540          * roots).
10541          * N units for deleting N device extent items corresponding to each
10542          * stripe (located in the device tree).
10543          *
10544          * In order to remove a block group we also need to reserve units in the
10545          * system space info in order to update the chunk tree (update one or
10546          * more device items and remove one chunk item), but this is done at
10547          * btrfs_remove_chunk() through a call to check_system_chunk().
10548          */
10549         map = em->map_lookup;
10550         num_items = 3 + map->num_stripes;
10551         free_extent_map(em);
10552
10553         return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10554                                                            num_items, 1);
10555 }
10556
10557 /*
10558  * Process the unused_bgs list and remove any that don't have any allocated
10559  * space inside of them.
10560  */
10561 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10562 {
10563         struct btrfs_block_group_cache *block_group;
10564         struct btrfs_space_info *space_info;
10565         struct btrfs_root *root = fs_info->extent_root;
10566         struct btrfs_trans_handle *trans;
10567         int ret = 0;
10568
10569         if (!fs_info->open)
10570                 return;
10571
10572         spin_lock(&fs_info->unused_bgs_lock);
10573         while (!list_empty(&fs_info->unused_bgs)) {
10574                 u64 start, end;
10575                 int trimming;
10576
10577                 block_group = list_first_entry(&fs_info->unused_bgs,
10578                                                struct btrfs_block_group_cache,
10579                                                bg_list);
10580                 list_del_init(&block_group->bg_list);
10581
10582                 space_info = block_group->space_info;
10583
10584                 if (ret || btrfs_mixed_space_info(space_info)) {
10585                         btrfs_put_block_group(block_group);
10586                         continue;
10587                 }
10588                 spin_unlock(&fs_info->unused_bgs_lock);
10589
10590                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
10591
10592                 /* Don't want to race with allocators so take the groups_sem */
10593                 down_write(&space_info->groups_sem);
10594                 spin_lock(&block_group->lock);
10595                 if (block_group->reserved ||
10596                     btrfs_block_group_used(&block_group->item) ||
10597                     block_group->ro ||
10598                     list_is_singular(&block_group->list)) {
10599                         /*
10600                          * We want to bail if we made new allocations or have
10601                          * outstanding allocations in this block group.  We do
10602                          * the ro check in case balance is currently acting on
10603                          * this block group.
10604                          */
10605                         spin_unlock(&block_group->lock);
10606                         up_write(&space_info->groups_sem);
10607                         goto next;
10608                 }
10609                 spin_unlock(&block_group->lock);
10610
10611                 /* We don't want to force the issue, only flip if it's ok. */
10612                 ret = inc_block_group_ro(block_group, 0);
10613                 up_write(&space_info->groups_sem);
10614                 if (ret < 0) {
10615                         ret = 0;
10616                         goto next;
10617                 }
10618
10619                 /*
10620                  * Want to do this before we do anything else so we can recover
10621                  * properly if we fail to join the transaction.
10622                  */
10623                 trans = btrfs_start_trans_remove_block_group(fs_info,
10624                                                      block_group->key.objectid);
10625                 if (IS_ERR(trans)) {
10626                         btrfs_dec_block_group_ro(root, block_group);
10627                         ret = PTR_ERR(trans);
10628                         goto next;
10629                 }
10630
10631                 /*
10632                  * We could have pending pinned extents for this block group,
10633                  * just delete them, we don't care about them anymore.
10634                  */
10635                 start = block_group->key.objectid;
10636                 end = start + block_group->key.offset - 1;
10637                 /*
10638                  * Hold the unused_bg_unpin_mutex lock to avoid racing with
10639                  * btrfs_finish_extent_commit(). If we are at transaction N,
10640                  * another task might be running finish_extent_commit() for the
10641                  * previous transaction N - 1, and have seen a range belonging
10642                  * to the block group in freed_extents[] before we were able to
10643                  * clear the whole block group range from freed_extents[]. This
10644                  * means that task can lookup for the block group after we
10645                  * unpinned it from freed_extents[] and removed it, leading to
10646                  * a BUG_ON() at btrfs_unpin_extent_range().
10647                  */
10648                 mutex_lock(&fs_info->unused_bg_unpin_mutex);
10649                 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10650                                   EXTENT_DIRTY);
10651                 if (ret) {
10652                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10653                         btrfs_dec_block_group_ro(root, block_group);
10654                         goto end_trans;
10655                 }
10656                 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10657                                   EXTENT_DIRTY);
10658                 if (ret) {
10659                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10660                         btrfs_dec_block_group_ro(root, block_group);
10661                         goto end_trans;
10662                 }
10663                 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10664
10665                 /* Reset pinned so btrfs_put_block_group doesn't complain */
10666                 spin_lock(&space_info->lock);
10667                 spin_lock(&block_group->lock);
10668
10669                 space_info->bytes_pinned -= block_group->pinned;
10670                 space_info->bytes_readonly += block_group->pinned;
10671                 percpu_counter_add(&space_info->total_bytes_pinned,
10672                                    -block_group->pinned);
10673                 block_group->pinned = 0;
10674
10675                 spin_unlock(&block_group->lock);
10676                 spin_unlock(&space_info->lock);
10677
10678                 /* DISCARD can flip during remount */
10679                 trimming = btrfs_test_opt(root, DISCARD);
10680
10681                 /* Implicit trim during transaction commit. */
10682                 if (trimming)
10683                         btrfs_get_block_group_trimming(block_group);
10684
10685                 /*
10686                  * Btrfs_remove_chunk will abort the transaction if things go
10687                  * horribly wrong.
10688                  */
10689                 ret = btrfs_remove_chunk(trans, root,
10690                                          block_group->key.objectid);
10691
10692                 if (ret) {
10693                         if (trimming)
10694                                 btrfs_put_block_group_trimming(block_group);
10695                         goto end_trans;
10696                 }
10697
10698                 /*
10699                  * If we're not mounted with -odiscard, we can just forget
10700                  * about this block group. Otherwise we'll need to wait
10701                  * until transaction commit to do the actual discard.
10702                  */
10703                 if (trimming) {
10704                         spin_lock(&fs_info->unused_bgs_lock);
10705                         /*
10706                          * A concurrent scrub might have added us to the list
10707                          * fs_info->unused_bgs, so use a list_move operation
10708                          * to add the block group to the deleted_bgs list.
10709                          */
10710                         list_move(&block_group->bg_list,
10711                                   &trans->transaction->deleted_bgs);
10712                         spin_unlock(&fs_info->unused_bgs_lock);
10713                         btrfs_get_block_group(block_group);
10714                 }
10715 end_trans:
10716                 btrfs_end_transaction(trans, root);
10717 next:
10718                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10719                 btrfs_put_block_group(block_group);
10720                 spin_lock(&fs_info->unused_bgs_lock);
10721         }
10722         spin_unlock(&fs_info->unused_bgs_lock);
10723 }
10724
10725 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10726 {
10727         struct btrfs_space_info *space_info;
10728         struct btrfs_super_block *disk_super;
10729         u64 features;
10730         u64 flags;
10731         int mixed = 0;
10732         int ret;
10733
10734         disk_super = fs_info->super_copy;
10735         if (!btrfs_super_root(disk_super))
10736                 return -EINVAL;
10737
10738         features = btrfs_super_incompat_flags(disk_super);
10739         if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10740                 mixed = 1;
10741
10742         flags = BTRFS_BLOCK_GROUP_SYSTEM;
10743         ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10744         if (ret)
10745                 goto out;
10746
10747         if (mixed) {
10748                 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10749                 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10750         } else {
10751                 flags = BTRFS_BLOCK_GROUP_METADATA;
10752                 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10753                 if (ret)
10754                         goto out;
10755
10756                 flags = BTRFS_BLOCK_GROUP_DATA;
10757                 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10758         }
10759 out:
10760         return ret;
10761 }
10762
10763 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10764 {
10765         return unpin_extent_range(root, start, end, false);
10766 }
10767
10768 /*
10769  * It used to be that old block groups would be left around forever.
10770  * Iterating over them would be enough to trim unused space.  Since we
10771  * now automatically remove them, we also need to iterate over unallocated
10772  * space.
10773  *
10774  * We don't want a transaction for this since the discard may take a
10775  * substantial amount of time.  We don't require that a transaction be
10776  * running, but we do need to take a running transaction into account
10777  * to ensure that we're not discarding chunks that were released in
10778  * the current transaction.
10779  *
10780  * Holding the chunks lock will prevent other threads from allocating
10781  * or releasing chunks, but it won't prevent a running transaction
10782  * from committing and releasing the memory that the pending chunks
10783  * list head uses.  For that, we need to take a reference to the
10784  * transaction.
10785  */
10786 static int btrfs_trim_free_extents(struct btrfs_device *device,
10787                                    u64 minlen, u64 *trimmed)
10788 {
10789         u64 start = 0, len = 0;
10790         int ret;
10791
10792         *trimmed = 0;
10793
10794         /* Not writeable = nothing to do. */
10795         if (!device->writeable)
10796                 return 0;
10797
10798         /* No free space = nothing to do. */
10799         if (device->total_bytes <= device->bytes_used)
10800                 return 0;
10801
10802         ret = 0;
10803
10804         while (1) {
10805                 struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
10806                 struct btrfs_transaction *trans;
10807                 u64 bytes;
10808
10809                 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10810                 if (ret)
10811                         return ret;
10812
10813                 down_read(&fs_info->commit_root_sem);
10814
10815                 spin_lock(&fs_info->trans_lock);
10816                 trans = fs_info->running_transaction;
10817                 if (trans)
10818                         atomic_inc(&trans->use_count);
10819                 spin_unlock(&fs_info->trans_lock);
10820
10821                 ret = find_free_dev_extent_start(trans, device, minlen, start,
10822                                                  &start, &len);
10823                 if (trans)
10824                         btrfs_put_transaction(trans);
10825
10826                 if (ret) {
10827                         up_read(&fs_info->commit_root_sem);
10828                         mutex_unlock(&fs_info->chunk_mutex);
10829                         if (ret == -ENOSPC)
10830                                 ret = 0;
10831                         break;
10832                 }
10833
10834                 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10835                 up_read(&fs_info->commit_root_sem);
10836                 mutex_unlock(&fs_info->chunk_mutex);
10837
10838                 if (ret)
10839                         break;
10840
10841                 start += len;
10842                 *trimmed += bytes;
10843
10844                 if (fatal_signal_pending(current)) {
10845                         ret = -ERESTARTSYS;
10846                         break;
10847                 }
10848
10849                 cond_resched();
10850         }
10851
10852         return ret;
10853 }
10854
10855 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
10856 {
10857         struct btrfs_fs_info *fs_info = root->fs_info;
10858         struct btrfs_block_group_cache *cache = NULL;
10859         struct btrfs_device *device;
10860         struct list_head *devices;
10861         u64 group_trimmed;
10862         u64 start;
10863         u64 end;
10864         u64 trimmed = 0;
10865         u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
10866         int ret = 0;
10867
10868         /*
10869          * try to trim all FS space, our block group may start from non-zero.
10870          */
10871         if (range->len == total_bytes)
10872                 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10873         else
10874                 cache = btrfs_lookup_block_group(fs_info, range->start);
10875
10876         while (cache) {
10877                 if (cache->key.objectid >= (range->start + range->len)) {
10878                         btrfs_put_block_group(cache);
10879                         break;
10880                 }
10881
10882                 start = max(range->start, cache->key.objectid);
10883                 end = min(range->start + range->len,
10884                                 cache->key.objectid + cache->key.offset);
10885
10886                 if (end - start >= range->minlen) {
10887                         if (!block_group_cache_done(cache)) {
10888                                 ret = cache_block_group(cache, 0);
10889                                 if (ret) {
10890                                         btrfs_put_block_group(cache);
10891                                         break;
10892                                 }
10893                                 ret = wait_block_group_cache_done(cache);
10894                                 if (ret) {
10895                                         btrfs_put_block_group(cache);
10896                                         break;
10897                                 }
10898                         }
10899                         ret = btrfs_trim_block_group(cache,
10900                                                      &group_trimmed,
10901                                                      start,
10902                                                      end,
10903                                                      range->minlen);
10904
10905                         trimmed += group_trimmed;
10906                         if (ret) {
10907                                 btrfs_put_block_group(cache);
10908                                 break;
10909                         }
10910                 }
10911
10912                 cache = next_block_group(fs_info->tree_root, cache);
10913         }
10914
10915         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
10916         devices = &root->fs_info->fs_devices->alloc_list;
10917         list_for_each_entry(device, devices, dev_alloc_list) {
10918                 ret = btrfs_trim_free_extents(device, range->minlen,
10919                                               &group_trimmed);
10920                 if (ret)
10921                         break;
10922
10923                 trimmed += group_trimmed;
10924         }
10925         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
10926
10927         range->len = trimmed;
10928         return ret;
10929 }
10930
10931 /*
10932  * btrfs_{start,end}_write_no_snapshoting() are similar to
10933  * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10934  * data into the page cache through nocow before the subvolume is snapshoted,
10935  * but flush the data into disk after the snapshot creation, or to prevent
10936  * operations while snapshoting is ongoing and that cause the snapshot to be
10937  * inconsistent (writes followed by expanding truncates for example).
10938  */
10939 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
10940 {
10941         percpu_counter_dec(&root->subv_writers->counter);
10942         /*
10943          * Make sure counter is updated before we wake up waiters.
10944          */
10945         smp_mb();
10946         if (waitqueue_active(&root->subv_writers->wait))
10947                 wake_up(&root->subv_writers->wait);
10948 }
10949
10950 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
10951 {
10952         if (atomic_read(&root->will_be_snapshoted))
10953                 return 0;
10954
10955         percpu_counter_inc(&root->subv_writers->counter);
10956         /*
10957          * Make sure counter is updated before we check for snapshot creation.
10958          */
10959         smp_mb();
10960         if (atomic_read(&root->will_be_snapshoted)) {
10961                 btrfs_end_write_no_snapshoting(root);
10962                 return 0;
10963         }
10964         return 1;
10965 }
10966
10967 static int wait_snapshoting_atomic_t(atomic_t *a)
10968 {
10969         schedule();
10970         return 0;
10971 }
10972
10973 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
10974 {
10975         while (true) {
10976                 int ret;
10977
10978                 ret = btrfs_start_write_no_snapshoting(root);
10979                 if (ret)
10980                         break;
10981                 wait_on_atomic_t(&root->will_be_snapshoted,
10982                                  wait_snapshoting_atomic_t,
10983                                  TASK_UNINTERRUPTIBLE);
10984         }
10985 }