wext: Fix 32 bit iwpriv compatibility issue with 64 bit Kernel
[cascardo/linux.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "ctree.h"
17 #include "btrfs_inode.h"
18 #include "volumes.h"
19 #include "check-integrity.h"
20 #include "locking.h"
21 #include "rcu-string.h"
22 #include "backref.h"
23
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26 static struct bio_set *btrfs_bioset;
27
28 static inline bool extent_state_in_tree(const struct extent_state *state)
29 {
30         return !RB_EMPTY_NODE(&state->rb_node);
31 }
32
33 #ifdef CONFIG_BTRFS_DEBUG
34 static LIST_HEAD(buffers);
35 static LIST_HEAD(states);
36
37 static DEFINE_SPINLOCK(leak_lock);
38
39 static inline
40 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
41 {
42         unsigned long flags;
43
44         spin_lock_irqsave(&leak_lock, flags);
45         list_add(new, head);
46         spin_unlock_irqrestore(&leak_lock, flags);
47 }
48
49 static inline
50 void btrfs_leak_debug_del(struct list_head *entry)
51 {
52         unsigned long flags;
53
54         spin_lock_irqsave(&leak_lock, flags);
55         list_del(entry);
56         spin_unlock_irqrestore(&leak_lock, flags);
57 }
58
59 static inline
60 void btrfs_leak_debug_check(void)
61 {
62         struct extent_state *state;
63         struct extent_buffer *eb;
64
65         while (!list_empty(&states)) {
66                 state = list_entry(states.next, struct extent_state, leak_list);
67                 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
68                        state->start, state->end, state->state,
69                        extent_state_in_tree(state),
70                        atomic_read(&state->refs));
71                 list_del(&state->leak_list);
72                 kmem_cache_free(extent_state_cache, state);
73         }
74
75         while (!list_empty(&buffers)) {
76                 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
77                 printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
78                        "refs %d\n",
79                        eb->start, eb->len, atomic_read(&eb->refs));
80                 list_del(&eb->leak_list);
81                 kmem_cache_free(extent_buffer_cache, eb);
82         }
83 }
84
85 #define btrfs_debug_check_extent_io_range(tree, start, end)             \
86         __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
87 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
88                 struct extent_io_tree *tree, u64 start, u64 end)
89 {
90         struct inode *inode;
91         u64 isize;
92
93         if (!tree->mapping)
94                 return;
95
96         inode = tree->mapping->host;
97         isize = i_size_read(inode);
98         if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
99                 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
100                     "%s: ino %llu isize %llu odd range [%llu,%llu]",
101                                 caller, btrfs_ino(inode), isize, start, end);
102         }
103 }
104 #else
105 #define btrfs_leak_debug_add(new, head) do {} while (0)
106 #define btrfs_leak_debug_del(entry)     do {} while (0)
107 #define btrfs_leak_debug_check()        do {} while (0)
108 #define btrfs_debug_check_extent_io_range(c, s, e)      do {} while (0)
109 #endif
110
111 #define BUFFER_LRU_MAX 64
112
113 struct tree_entry {
114         u64 start;
115         u64 end;
116         struct rb_node rb_node;
117 };
118
119 struct extent_page_data {
120         struct bio *bio;
121         struct extent_io_tree *tree;
122         get_extent_t *get_extent;
123         unsigned long bio_flags;
124
125         /* tells writepage not to lock the state bits for this range
126          * it still does the unlocking
127          */
128         unsigned int extent_locked:1;
129
130         /* tells the submit_bio code to use a WRITE_SYNC */
131         unsigned int sync_io:1;
132 };
133
134 static void add_extent_changeset(struct extent_state *state, unsigned bits,
135                                  struct extent_changeset *changeset,
136                                  int set)
137 {
138         int ret;
139
140         if (!changeset)
141                 return;
142         if (set && (state->state & bits) == bits)
143                 return;
144         if (!set && (state->state & bits) == 0)
145                 return;
146         changeset->bytes_changed += state->end - state->start + 1;
147         ret = ulist_add(changeset->range_changed, state->start, state->end,
148                         GFP_ATOMIC);
149         /* ENOMEM */
150         BUG_ON(ret < 0);
151 }
152
153 static noinline void flush_write_bio(void *data);
154 static inline struct btrfs_fs_info *
155 tree_fs_info(struct extent_io_tree *tree)
156 {
157         if (!tree->mapping)
158                 return NULL;
159         return btrfs_sb(tree->mapping->host->i_sb);
160 }
161
162 int __init extent_io_init(void)
163 {
164         extent_state_cache = kmem_cache_create("btrfs_extent_state",
165                         sizeof(struct extent_state), 0,
166                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
167         if (!extent_state_cache)
168                 return -ENOMEM;
169
170         extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
171                         sizeof(struct extent_buffer), 0,
172                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
173         if (!extent_buffer_cache)
174                 goto free_state_cache;
175
176         btrfs_bioset = bioset_create(BIO_POOL_SIZE,
177                                      offsetof(struct btrfs_io_bio, bio));
178         if (!btrfs_bioset)
179                 goto free_buffer_cache;
180
181         if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
182                 goto free_bioset;
183
184         return 0;
185
186 free_bioset:
187         bioset_free(btrfs_bioset);
188         btrfs_bioset = NULL;
189
190 free_buffer_cache:
191         kmem_cache_destroy(extent_buffer_cache);
192         extent_buffer_cache = NULL;
193
194 free_state_cache:
195         kmem_cache_destroy(extent_state_cache);
196         extent_state_cache = NULL;
197         return -ENOMEM;
198 }
199
200 void extent_io_exit(void)
201 {
202         btrfs_leak_debug_check();
203
204         /*
205          * Make sure all delayed rcu free are flushed before we
206          * destroy caches.
207          */
208         rcu_barrier();
209         kmem_cache_destroy(extent_state_cache);
210         kmem_cache_destroy(extent_buffer_cache);
211         if (btrfs_bioset)
212                 bioset_free(btrfs_bioset);
213 }
214
215 void extent_io_tree_init(struct extent_io_tree *tree,
216                          struct address_space *mapping)
217 {
218         tree->state = RB_ROOT;
219         tree->ops = NULL;
220         tree->dirty_bytes = 0;
221         spin_lock_init(&tree->lock);
222         tree->mapping = mapping;
223 }
224
225 static struct extent_state *alloc_extent_state(gfp_t mask)
226 {
227         struct extent_state *state;
228
229         state = kmem_cache_alloc(extent_state_cache, mask);
230         if (!state)
231                 return state;
232         state->state = 0;
233         state->failrec = NULL;
234         RB_CLEAR_NODE(&state->rb_node);
235         btrfs_leak_debug_add(&state->leak_list, &states);
236         atomic_set(&state->refs, 1);
237         init_waitqueue_head(&state->wq);
238         trace_alloc_extent_state(state, mask, _RET_IP_);
239         return state;
240 }
241
242 void free_extent_state(struct extent_state *state)
243 {
244         if (!state)
245                 return;
246         if (atomic_dec_and_test(&state->refs)) {
247                 WARN_ON(extent_state_in_tree(state));
248                 btrfs_leak_debug_del(&state->leak_list);
249                 trace_free_extent_state(state, _RET_IP_);
250                 kmem_cache_free(extent_state_cache, state);
251         }
252 }
253
254 static struct rb_node *tree_insert(struct rb_root *root,
255                                    struct rb_node *search_start,
256                                    u64 offset,
257                                    struct rb_node *node,
258                                    struct rb_node ***p_in,
259                                    struct rb_node **parent_in)
260 {
261         struct rb_node **p;
262         struct rb_node *parent = NULL;
263         struct tree_entry *entry;
264
265         if (p_in && parent_in) {
266                 p = *p_in;
267                 parent = *parent_in;
268                 goto do_insert;
269         }
270
271         p = search_start ? &search_start : &root->rb_node;
272         while (*p) {
273                 parent = *p;
274                 entry = rb_entry(parent, struct tree_entry, rb_node);
275
276                 if (offset < entry->start)
277                         p = &(*p)->rb_left;
278                 else if (offset > entry->end)
279                         p = &(*p)->rb_right;
280                 else
281                         return parent;
282         }
283
284 do_insert:
285         rb_link_node(node, parent, p);
286         rb_insert_color(node, root);
287         return NULL;
288 }
289
290 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
291                                       struct rb_node **prev_ret,
292                                       struct rb_node **next_ret,
293                                       struct rb_node ***p_ret,
294                                       struct rb_node **parent_ret)
295 {
296         struct rb_root *root = &tree->state;
297         struct rb_node **n = &root->rb_node;
298         struct rb_node *prev = NULL;
299         struct rb_node *orig_prev = NULL;
300         struct tree_entry *entry;
301         struct tree_entry *prev_entry = NULL;
302
303         while (*n) {
304                 prev = *n;
305                 entry = rb_entry(prev, struct tree_entry, rb_node);
306                 prev_entry = entry;
307
308                 if (offset < entry->start)
309                         n = &(*n)->rb_left;
310                 else if (offset > entry->end)
311                         n = &(*n)->rb_right;
312                 else
313                         return *n;
314         }
315
316         if (p_ret)
317                 *p_ret = n;
318         if (parent_ret)
319                 *parent_ret = prev;
320
321         if (prev_ret) {
322                 orig_prev = prev;
323                 while (prev && offset > prev_entry->end) {
324                         prev = rb_next(prev);
325                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
326                 }
327                 *prev_ret = prev;
328                 prev = orig_prev;
329         }
330
331         if (next_ret) {
332                 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
333                 while (prev && offset < prev_entry->start) {
334                         prev = rb_prev(prev);
335                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
336                 }
337                 *next_ret = prev;
338         }
339         return NULL;
340 }
341
342 static inline struct rb_node *
343 tree_search_for_insert(struct extent_io_tree *tree,
344                        u64 offset,
345                        struct rb_node ***p_ret,
346                        struct rb_node **parent_ret)
347 {
348         struct rb_node *prev = NULL;
349         struct rb_node *ret;
350
351         ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
352         if (!ret)
353                 return prev;
354         return ret;
355 }
356
357 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
358                                           u64 offset)
359 {
360         return tree_search_for_insert(tree, offset, NULL, NULL);
361 }
362
363 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
364                      struct extent_state *other)
365 {
366         if (tree->ops && tree->ops->merge_extent_hook)
367                 tree->ops->merge_extent_hook(tree->mapping->host, new,
368                                              other);
369 }
370
371 /*
372  * utility function to look for merge candidates inside a given range.
373  * Any extents with matching state are merged together into a single
374  * extent in the tree.  Extents with EXTENT_IO in their state field
375  * are not merged because the end_io handlers need to be able to do
376  * operations on them without sleeping (or doing allocations/splits).
377  *
378  * This should be called with the tree lock held.
379  */
380 static void merge_state(struct extent_io_tree *tree,
381                         struct extent_state *state)
382 {
383         struct extent_state *other;
384         struct rb_node *other_node;
385
386         if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
387                 return;
388
389         other_node = rb_prev(&state->rb_node);
390         if (other_node) {
391                 other = rb_entry(other_node, struct extent_state, rb_node);
392                 if (other->end == state->start - 1 &&
393                     other->state == state->state) {
394                         merge_cb(tree, state, other);
395                         state->start = other->start;
396                         rb_erase(&other->rb_node, &tree->state);
397                         RB_CLEAR_NODE(&other->rb_node);
398                         free_extent_state(other);
399                 }
400         }
401         other_node = rb_next(&state->rb_node);
402         if (other_node) {
403                 other = rb_entry(other_node, struct extent_state, rb_node);
404                 if (other->start == state->end + 1 &&
405                     other->state == state->state) {
406                         merge_cb(tree, state, other);
407                         state->end = other->end;
408                         rb_erase(&other->rb_node, &tree->state);
409                         RB_CLEAR_NODE(&other->rb_node);
410                         free_extent_state(other);
411                 }
412         }
413 }
414
415 static void set_state_cb(struct extent_io_tree *tree,
416                          struct extent_state *state, unsigned *bits)
417 {
418         if (tree->ops && tree->ops->set_bit_hook)
419                 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
420 }
421
422 static void clear_state_cb(struct extent_io_tree *tree,
423                            struct extent_state *state, unsigned *bits)
424 {
425         if (tree->ops && tree->ops->clear_bit_hook)
426                 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
427 }
428
429 static void set_state_bits(struct extent_io_tree *tree,
430                            struct extent_state *state, unsigned *bits,
431                            struct extent_changeset *changeset);
432
433 /*
434  * insert an extent_state struct into the tree.  'bits' are set on the
435  * struct before it is inserted.
436  *
437  * This may return -EEXIST if the extent is already there, in which case the
438  * state struct is freed.
439  *
440  * The tree lock is not taken internally.  This is a utility function and
441  * probably isn't what you want to call (see set/clear_extent_bit).
442  */
443 static int insert_state(struct extent_io_tree *tree,
444                         struct extent_state *state, u64 start, u64 end,
445                         struct rb_node ***p,
446                         struct rb_node **parent,
447                         unsigned *bits, struct extent_changeset *changeset)
448 {
449         struct rb_node *node;
450
451         if (end < start)
452                 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
453                        end, start);
454         state->start = start;
455         state->end = end;
456
457         set_state_bits(tree, state, bits, changeset);
458
459         node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
460         if (node) {
461                 struct extent_state *found;
462                 found = rb_entry(node, struct extent_state, rb_node);
463                 printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
464                        "%llu %llu\n",
465                        found->start, found->end, start, end);
466                 return -EEXIST;
467         }
468         merge_state(tree, state);
469         return 0;
470 }
471
472 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
473                      u64 split)
474 {
475         if (tree->ops && tree->ops->split_extent_hook)
476                 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
477 }
478
479 /*
480  * split a given extent state struct in two, inserting the preallocated
481  * struct 'prealloc' as the newly created second half.  'split' indicates an
482  * offset inside 'orig' where it should be split.
483  *
484  * Before calling,
485  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
486  * are two extent state structs in the tree:
487  * prealloc: [orig->start, split - 1]
488  * orig: [ split, orig->end ]
489  *
490  * The tree locks are not taken by this function. They need to be held
491  * by the caller.
492  */
493 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
494                        struct extent_state *prealloc, u64 split)
495 {
496         struct rb_node *node;
497
498         split_cb(tree, orig, split);
499
500         prealloc->start = orig->start;
501         prealloc->end = split - 1;
502         prealloc->state = orig->state;
503         orig->start = split;
504
505         node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
506                            &prealloc->rb_node, NULL, NULL);
507         if (node) {
508                 free_extent_state(prealloc);
509                 return -EEXIST;
510         }
511         return 0;
512 }
513
514 static struct extent_state *next_state(struct extent_state *state)
515 {
516         struct rb_node *next = rb_next(&state->rb_node);
517         if (next)
518                 return rb_entry(next, struct extent_state, rb_node);
519         else
520                 return NULL;
521 }
522
523 /*
524  * utility function to clear some bits in an extent state struct.
525  * it will optionally wake up any one waiting on this state (wake == 1).
526  *
527  * If no bits are set on the state struct after clearing things, the
528  * struct is freed and removed from the tree
529  */
530 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
531                                             struct extent_state *state,
532                                             unsigned *bits, int wake,
533                                             struct extent_changeset *changeset)
534 {
535         struct extent_state *next;
536         unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
537
538         if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
539                 u64 range = state->end - state->start + 1;
540                 WARN_ON(range > tree->dirty_bytes);
541                 tree->dirty_bytes -= range;
542         }
543         clear_state_cb(tree, state, bits);
544         add_extent_changeset(state, bits_to_clear, changeset, 0);
545         state->state &= ~bits_to_clear;
546         if (wake)
547                 wake_up(&state->wq);
548         if (state->state == 0) {
549                 next = next_state(state);
550                 if (extent_state_in_tree(state)) {
551                         rb_erase(&state->rb_node, &tree->state);
552                         RB_CLEAR_NODE(&state->rb_node);
553                         free_extent_state(state);
554                 } else {
555                         WARN_ON(1);
556                 }
557         } else {
558                 merge_state(tree, state);
559                 next = next_state(state);
560         }
561         return next;
562 }
563
564 static struct extent_state *
565 alloc_extent_state_atomic(struct extent_state *prealloc)
566 {
567         if (!prealloc)
568                 prealloc = alloc_extent_state(GFP_ATOMIC);
569
570         return prealloc;
571 }
572
573 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
574 {
575         btrfs_panic(tree_fs_info(tree), err, "Locking error: "
576                     "Extent tree was modified by another "
577                     "thread while locked.");
578 }
579
580 /*
581  * clear some bits on a range in the tree.  This may require splitting
582  * or inserting elements in the tree, so the gfp mask is used to
583  * indicate which allocations or sleeping are allowed.
584  *
585  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
586  * the given range from the tree regardless of state (ie for truncate).
587  *
588  * the range [start, end] is inclusive.
589  *
590  * This takes the tree lock, and returns 0 on success and < 0 on error.
591  */
592 static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
593                               unsigned bits, int wake, int delete,
594                               struct extent_state **cached_state,
595                               gfp_t mask, struct extent_changeset *changeset)
596 {
597         struct extent_state *state;
598         struct extent_state *cached;
599         struct extent_state *prealloc = NULL;
600         struct rb_node *node;
601         u64 last_end;
602         int err;
603         int clear = 0;
604
605         btrfs_debug_check_extent_io_range(tree, start, end);
606
607         if (bits & EXTENT_DELALLOC)
608                 bits |= EXTENT_NORESERVE;
609
610         if (delete)
611                 bits |= ~EXTENT_CTLBITS;
612         bits |= EXTENT_FIRST_DELALLOC;
613
614         if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
615                 clear = 1;
616 again:
617         if (!prealloc && gfpflags_allow_blocking(mask)) {
618                 /*
619                  * Don't care for allocation failure here because we might end
620                  * up not needing the pre-allocated extent state at all, which
621                  * is the case if we only have in the tree extent states that
622                  * cover our input range and don't cover too any other range.
623                  * If we end up needing a new extent state we allocate it later.
624                  */
625                 prealloc = alloc_extent_state(mask);
626         }
627
628         spin_lock(&tree->lock);
629         if (cached_state) {
630                 cached = *cached_state;
631
632                 if (clear) {
633                         *cached_state = NULL;
634                         cached_state = NULL;
635                 }
636
637                 if (cached && extent_state_in_tree(cached) &&
638                     cached->start <= start && cached->end > start) {
639                         if (clear)
640                                 atomic_dec(&cached->refs);
641                         state = cached;
642                         goto hit_next;
643                 }
644                 if (clear)
645                         free_extent_state(cached);
646         }
647         /*
648          * this search will find the extents that end after
649          * our range starts
650          */
651         node = tree_search(tree, start);
652         if (!node)
653                 goto out;
654         state = rb_entry(node, struct extent_state, rb_node);
655 hit_next:
656         if (state->start > end)
657                 goto out;
658         WARN_ON(state->end < start);
659         last_end = state->end;
660
661         /* the state doesn't have the wanted bits, go ahead */
662         if (!(state->state & bits)) {
663                 state = next_state(state);
664                 goto next;
665         }
666
667         /*
668          *     | ---- desired range ---- |
669          *  | state | or
670          *  | ------------- state -------------- |
671          *
672          * We need to split the extent we found, and may flip
673          * bits on second half.
674          *
675          * If the extent we found extends past our range, we
676          * just split and search again.  It'll get split again
677          * the next time though.
678          *
679          * If the extent we found is inside our range, we clear
680          * the desired bit on it.
681          */
682
683         if (state->start < start) {
684                 prealloc = alloc_extent_state_atomic(prealloc);
685                 BUG_ON(!prealloc);
686                 err = split_state(tree, state, prealloc, start);
687                 if (err)
688                         extent_io_tree_panic(tree, err);
689
690                 prealloc = NULL;
691                 if (err)
692                         goto out;
693                 if (state->end <= end) {
694                         state = clear_state_bit(tree, state, &bits, wake,
695                                                 changeset);
696                         goto next;
697                 }
698                 goto search_again;
699         }
700         /*
701          * | ---- desired range ---- |
702          *                        | state |
703          * We need to split the extent, and clear the bit
704          * on the first half
705          */
706         if (state->start <= end && state->end > end) {
707                 prealloc = alloc_extent_state_atomic(prealloc);
708                 BUG_ON(!prealloc);
709                 err = split_state(tree, state, prealloc, end + 1);
710                 if (err)
711                         extent_io_tree_panic(tree, err);
712
713                 if (wake)
714                         wake_up(&state->wq);
715
716                 clear_state_bit(tree, prealloc, &bits, wake, changeset);
717
718                 prealloc = NULL;
719                 goto out;
720         }
721
722         state = clear_state_bit(tree, state, &bits, wake, changeset);
723 next:
724         if (last_end == (u64)-1)
725                 goto out;
726         start = last_end + 1;
727         if (start <= end && state && !need_resched())
728                 goto hit_next;
729         goto search_again;
730
731 out:
732         spin_unlock(&tree->lock);
733         if (prealloc)
734                 free_extent_state(prealloc);
735
736         return 0;
737
738 search_again:
739         if (start > end)
740                 goto out;
741         spin_unlock(&tree->lock);
742         if (gfpflags_allow_blocking(mask))
743                 cond_resched();
744         goto again;
745 }
746
747 static void wait_on_state(struct extent_io_tree *tree,
748                           struct extent_state *state)
749                 __releases(tree->lock)
750                 __acquires(tree->lock)
751 {
752         DEFINE_WAIT(wait);
753         prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
754         spin_unlock(&tree->lock);
755         schedule();
756         spin_lock(&tree->lock);
757         finish_wait(&state->wq, &wait);
758 }
759
760 /*
761  * waits for one or more bits to clear on a range in the state tree.
762  * The range [start, end] is inclusive.
763  * The tree lock is taken by this function
764  */
765 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
766                             unsigned long bits)
767 {
768         struct extent_state *state;
769         struct rb_node *node;
770
771         btrfs_debug_check_extent_io_range(tree, start, end);
772
773         spin_lock(&tree->lock);
774 again:
775         while (1) {
776                 /*
777                  * this search will find all the extents that end after
778                  * our range starts
779                  */
780                 node = tree_search(tree, start);
781 process_node:
782                 if (!node)
783                         break;
784
785                 state = rb_entry(node, struct extent_state, rb_node);
786
787                 if (state->start > end)
788                         goto out;
789
790                 if (state->state & bits) {
791                         start = state->start;
792                         atomic_inc(&state->refs);
793                         wait_on_state(tree, state);
794                         free_extent_state(state);
795                         goto again;
796                 }
797                 start = state->end + 1;
798
799                 if (start > end)
800                         break;
801
802                 if (!cond_resched_lock(&tree->lock)) {
803                         node = rb_next(node);
804                         goto process_node;
805                 }
806         }
807 out:
808         spin_unlock(&tree->lock);
809 }
810
811 static void set_state_bits(struct extent_io_tree *tree,
812                            struct extent_state *state,
813                            unsigned *bits, struct extent_changeset *changeset)
814 {
815         unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
816
817         set_state_cb(tree, state, bits);
818         if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
819                 u64 range = state->end - state->start + 1;
820                 tree->dirty_bytes += range;
821         }
822         add_extent_changeset(state, bits_to_set, changeset, 1);
823         state->state |= bits_to_set;
824 }
825
826 static void cache_state_if_flags(struct extent_state *state,
827                                  struct extent_state **cached_ptr,
828                                  unsigned flags)
829 {
830         if (cached_ptr && !(*cached_ptr)) {
831                 if (!flags || (state->state & flags)) {
832                         *cached_ptr = state;
833                         atomic_inc(&state->refs);
834                 }
835         }
836 }
837
838 static void cache_state(struct extent_state *state,
839                         struct extent_state **cached_ptr)
840 {
841         return cache_state_if_flags(state, cached_ptr,
842                                     EXTENT_IOBITS | EXTENT_BOUNDARY);
843 }
844
845 /*
846  * set some bits on a range in the tree.  This may require allocations or
847  * sleeping, so the gfp mask is used to indicate what is allowed.
848  *
849  * If any of the exclusive bits are set, this will fail with -EEXIST if some
850  * part of the range already has the desired bits set.  The start of the
851  * existing range is returned in failed_start in this case.
852  *
853  * [start, end] is inclusive This takes the tree lock.
854  */
855
856 static int __must_check
857 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
858                  unsigned bits, unsigned exclusive_bits,
859                  u64 *failed_start, struct extent_state **cached_state,
860                  gfp_t mask, struct extent_changeset *changeset)
861 {
862         struct extent_state *state;
863         struct extent_state *prealloc = NULL;
864         struct rb_node *node;
865         struct rb_node **p;
866         struct rb_node *parent;
867         int err = 0;
868         u64 last_start;
869         u64 last_end;
870
871         btrfs_debug_check_extent_io_range(tree, start, end);
872
873         bits |= EXTENT_FIRST_DELALLOC;
874 again:
875         if (!prealloc && gfpflags_allow_blocking(mask)) {
876                 prealloc = alloc_extent_state(mask);
877                 BUG_ON(!prealloc);
878         }
879
880         spin_lock(&tree->lock);
881         if (cached_state && *cached_state) {
882                 state = *cached_state;
883                 if (state->start <= start && state->end > start &&
884                     extent_state_in_tree(state)) {
885                         node = &state->rb_node;
886                         goto hit_next;
887                 }
888         }
889         /*
890          * this search will find all the extents that end after
891          * our range starts.
892          */
893         node = tree_search_for_insert(tree, start, &p, &parent);
894         if (!node) {
895                 prealloc = alloc_extent_state_atomic(prealloc);
896                 BUG_ON(!prealloc);
897                 err = insert_state(tree, prealloc, start, end,
898                                    &p, &parent, &bits, changeset);
899                 if (err)
900                         extent_io_tree_panic(tree, err);
901
902                 cache_state(prealloc, cached_state);
903                 prealloc = NULL;
904                 goto out;
905         }
906         state = rb_entry(node, struct extent_state, rb_node);
907 hit_next:
908         last_start = state->start;
909         last_end = state->end;
910
911         /*
912          * | ---- desired range ---- |
913          * | state |
914          *
915          * Just lock what we found and keep going
916          */
917         if (state->start == start && state->end <= end) {
918                 if (state->state & exclusive_bits) {
919                         *failed_start = state->start;
920                         err = -EEXIST;
921                         goto out;
922                 }
923
924                 set_state_bits(tree, state, &bits, changeset);
925                 cache_state(state, cached_state);
926                 merge_state(tree, state);
927                 if (last_end == (u64)-1)
928                         goto out;
929                 start = last_end + 1;
930                 state = next_state(state);
931                 if (start < end && state && state->start == start &&
932                     !need_resched())
933                         goto hit_next;
934                 goto search_again;
935         }
936
937         /*
938          *     | ---- desired range ---- |
939          * | state |
940          *   or
941          * | ------------- state -------------- |
942          *
943          * We need to split the extent we found, and may flip bits on
944          * second half.
945          *
946          * If the extent we found extends past our
947          * range, we just split and search again.  It'll get split
948          * again the next time though.
949          *
950          * If the extent we found is inside our range, we set the
951          * desired bit on it.
952          */
953         if (state->start < start) {
954                 if (state->state & exclusive_bits) {
955                         *failed_start = start;
956                         err = -EEXIST;
957                         goto out;
958                 }
959
960                 prealloc = alloc_extent_state_atomic(prealloc);
961                 BUG_ON(!prealloc);
962                 err = split_state(tree, state, prealloc, start);
963                 if (err)
964                         extent_io_tree_panic(tree, err);
965
966                 prealloc = NULL;
967                 if (err)
968                         goto out;
969                 if (state->end <= end) {
970                         set_state_bits(tree, state, &bits, changeset);
971                         cache_state(state, cached_state);
972                         merge_state(tree, state);
973                         if (last_end == (u64)-1)
974                                 goto out;
975                         start = last_end + 1;
976                         state = next_state(state);
977                         if (start < end && state && state->start == start &&
978                             !need_resched())
979                                 goto hit_next;
980                 }
981                 goto search_again;
982         }
983         /*
984          * | ---- desired range ---- |
985          *     | state | or               | state |
986          *
987          * There's a hole, we need to insert something in it and
988          * ignore the extent we found.
989          */
990         if (state->start > start) {
991                 u64 this_end;
992                 if (end < last_start)
993                         this_end = end;
994                 else
995                         this_end = last_start - 1;
996
997                 prealloc = alloc_extent_state_atomic(prealloc);
998                 BUG_ON(!prealloc);
999
1000                 /*
1001                  * Avoid to free 'prealloc' if it can be merged with
1002                  * the later extent.
1003                  */
1004                 err = insert_state(tree, prealloc, start, this_end,
1005                                    NULL, NULL, &bits, changeset);
1006                 if (err)
1007                         extent_io_tree_panic(tree, err);
1008
1009                 cache_state(prealloc, cached_state);
1010                 prealloc = NULL;
1011                 start = this_end + 1;
1012                 goto search_again;
1013         }
1014         /*
1015          * | ---- desired range ---- |
1016          *                        | state |
1017          * We need to split the extent, and set the bit
1018          * on the first half
1019          */
1020         if (state->start <= end && state->end > end) {
1021                 if (state->state & exclusive_bits) {
1022                         *failed_start = start;
1023                         err = -EEXIST;
1024                         goto out;
1025                 }
1026
1027                 prealloc = alloc_extent_state_atomic(prealloc);
1028                 BUG_ON(!prealloc);
1029                 err = split_state(tree, state, prealloc, end + 1);
1030                 if (err)
1031                         extent_io_tree_panic(tree, err);
1032
1033                 set_state_bits(tree, prealloc, &bits, changeset);
1034                 cache_state(prealloc, cached_state);
1035                 merge_state(tree, prealloc);
1036                 prealloc = NULL;
1037                 goto out;
1038         }
1039
1040         goto search_again;
1041
1042 out:
1043         spin_unlock(&tree->lock);
1044         if (prealloc)
1045                 free_extent_state(prealloc);
1046
1047         return err;
1048
1049 search_again:
1050         if (start > end)
1051                 goto out;
1052         spin_unlock(&tree->lock);
1053         if (gfpflags_allow_blocking(mask))
1054                 cond_resched();
1055         goto again;
1056 }
1057
1058 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1059                    unsigned bits, u64 * failed_start,
1060                    struct extent_state **cached_state, gfp_t mask)
1061 {
1062         return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1063                                 cached_state, mask, NULL);
1064 }
1065
1066
1067 /**
1068  * convert_extent_bit - convert all bits in a given range from one bit to
1069  *                      another
1070  * @tree:       the io tree to search
1071  * @start:      the start offset in bytes
1072  * @end:        the end offset in bytes (inclusive)
1073  * @bits:       the bits to set in this range
1074  * @clear_bits: the bits to clear in this range
1075  * @cached_state:       state that we're going to cache
1076  * @mask:       the allocation mask
1077  *
1078  * This will go through and set bits for the given range.  If any states exist
1079  * already in this range they are set with the given bit and cleared of the
1080  * clear_bits.  This is only meant to be used by things that are mergeable, ie
1081  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1082  * boundary bits like LOCK.
1083  */
1084 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1085                        unsigned bits, unsigned clear_bits,
1086                        struct extent_state **cached_state, gfp_t mask)
1087 {
1088         struct extent_state *state;
1089         struct extent_state *prealloc = NULL;
1090         struct rb_node *node;
1091         struct rb_node **p;
1092         struct rb_node *parent;
1093         int err = 0;
1094         u64 last_start;
1095         u64 last_end;
1096         bool first_iteration = true;
1097
1098         btrfs_debug_check_extent_io_range(tree, start, end);
1099
1100 again:
1101         if (!prealloc && gfpflags_allow_blocking(mask)) {
1102                 /*
1103                  * Best effort, don't worry if extent state allocation fails
1104                  * here for the first iteration. We might have a cached state
1105                  * that matches exactly the target range, in which case no
1106                  * extent state allocations are needed. We'll only know this
1107                  * after locking the tree.
1108                  */
1109                 prealloc = alloc_extent_state(mask);
1110                 if (!prealloc && !first_iteration)
1111                         return -ENOMEM;
1112         }
1113
1114         spin_lock(&tree->lock);
1115         if (cached_state && *cached_state) {
1116                 state = *cached_state;
1117                 if (state->start <= start && state->end > start &&
1118                     extent_state_in_tree(state)) {
1119                         node = &state->rb_node;
1120                         goto hit_next;
1121                 }
1122         }
1123
1124         /*
1125          * this search will find all the extents that end after
1126          * our range starts.
1127          */
1128         node = tree_search_for_insert(tree, start, &p, &parent);
1129         if (!node) {
1130                 prealloc = alloc_extent_state_atomic(prealloc);
1131                 if (!prealloc) {
1132                         err = -ENOMEM;
1133                         goto out;
1134                 }
1135                 err = insert_state(tree, prealloc, start, end,
1136                                    &p, &parent, &bits, NULL);
1137                 if (err)
1138                         extent_io_tree_panic(tree, err);
1139                 cache_state(prealloc, cached_state);
1140                 prealloc = NULL;
1141                 goto out;
1142         }
1143         state = rb_entry(node, struct extent_state, rb_node);
1144 hit_next:
1145         last_start = state->start;
1146         last_end = state->end;
1147
1148         /*
1149          * | ---- desired range ---- |
1150          * | state |
1151          *
1152          * Just lock what we found and keep going
1153          */
1154         if (state->start == start && state->end <= end) {
1155                 set_state_bits(tree, state, &bits, NULL);
1156                 cache_state(state, cached_state);
1157                 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1158                 if (last_end == (u64)-1)
1159                         goto out;
1160                 start = last_end + 1;
1161                 if (start < end && state && state->start == start &&
1162                     !need_resched())
1163                         goto hit_next;
1164                 goto search_again;
1165         }
1166
1167         /*
1168          *     | ---- desired range ---- |
1169          * | state |
1170          *   or
1171          * | ------------- state -------------- |
1172          *
1173          * We need to split the extent we found, and may flip bits on
1174          * second half.
1175          *
1176          * If the extent we found extends past our
1177          * range, we just split and search again.  It'll get split
1178          * again the next time though.
1179          *
1180          * If the extent we found is inside our range, we set the
1181          * desired bit on it.
1182          */
1183         if (state->start < start) {
1184                 prealloc = alloc_extent_state_atomic(prealloc);
1185                 if (!prealloc) {
1186                         err = -ENOMEM;
1187                         goto out;
1188                 }
1189                 err = split_state(tree, state, prealloc, start);
1190                 if (err)
1191                         extent_io_tree_panic(tree, err);
1192                 prealloc = NULL;
1193                 if (err)
1194                         goto out;
1195                 if (state->end <= end) {
1196                         set_state_bits(tree, state, &bits, NULL);
1197                         cache_state(state, cached_state);
1198                         state = clear_state_bit(tree, state, &clear_bits, 0,
1199                                                 NULL);
1200                         if (last_end == (u64)-1)
1201                                 goto out;
1202                         start = last_end + 1;
1203                         if (start < end && state && state->start == start &&
1204                             !need_resched())
1205                                 goto hit_next;
1206                 }
1207                 goto search_again;
1208         }
1209         /*
1210          * | ---- desired range ---- |
1211          *     | state | or               | state |
1212          *
1213          * There's a hole, we need to insert something in it and
1214          * ignore the extent we found.
1215          */
1216         if (state->start > start) {
1217                 u64 this_end;
1218                 if (end < last_start)
1219                         this_end = end;
1220                 else
1221                         this_end = last_start - 1;
1222
1223                 prealloc = alloc_extent_state_atomic(prealloc);
1224                 if (!prealloc) {
1225                         err = -ENOMEM;
1226                         goto out;
1227                 }
1228
1229                 /*
1230                  * Avoid to free 'prealloc' if it can be merged with
1231                  * the later extent.
1232                  */
1233                 err = insert_state(tree, prealloc, start, this_end,
1234                                    NULL, NULL, &bits, NULL);
1235                 if (err)
1236                         extent_io_tree_panic(tree, err);
1237                 cache_state(prealloc, cached_state);
1238                 prealloc = NULL;
1239                 start = this_end + 1;
1240                 goto search_again;
1241         }
1242         /*
1243          * | ---- desired range ---- |
1244          *                        | state |
1245          * We need to split the extent, and set the bit
1246          * on the first half
1247          */
1248         if (state->start <= end && state->end > end) {
1249                 prealloc = alloc_extent_state_atomic(prealloc);
1250                 if (!prealloc) {
1251                         err = -ENOMEM;
1252                         goto out;
1253                 }
1254
1255                 err = split_state(tree, state, prealloc, end + 1);
1256                 if (err)
1257                         extent_io_tree_panic(tree, err);
1258
1259                 set_state_bits(tree, prealloc, &bits, NULL);
1260                 cache_state(prealloc, cached_state);
1261                 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1262                 prealloc = NULL;
1263                 goto out;
1264         }
1265
1266         goto search_again;
1267
1268 out:
1269         spin_unlock(&tree->lock);
1270         if (prealloc)
1271                 free_extent_state(prealloc);
1272
1273         return err;
1274
1275 search_again:
1276         if (start > end)
1277                 goto out;
1278         spin_unlock(&tree->lock);
1279         if (gfpflags_allow_blocking(mask))
1280                 cond_resched();
1281         first_iteration = false;
1282         goto again;
1283 }
1284
1285 /* wrappers around set/clear extent bit */
1286 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1287                            unsigned bits, gfp_t mask,
1288                            struct extent_changeset *changeset)
1289 {
1290         /*
1291          * We don't support EXTENT_LOCKED yet, as current changeset will
1292          * record any bits changed, so for EXTENT_LOCKED case, it will
1293          * either fail with -EEXIST or changeset will record the whole
1294          * range.
1295          */
1296         BUG_ON(bits & EXTENT_LOCKED);
1297
1298         return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, mask,
1299                                 changeset);
1300 }
1301
1302 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1303                      unsigned bits, int wake, int delete,
1304                      struct extent_state **cached, gfp_t mask)
1305 {
1306         return __clear_extent_bit(tree, start, end, bits, wake, delete,
1307                                   cached, mask, NULL);
1308 }
1309
1310 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1311                              unsigned bits, gfp_t mask,
1312                              struct extent_changeset *changeset)
1313 {
1314         /*
1315          * Don't support EXTENT_LOCKED case, same reason as
1316          * set_record_extent_bits().
1317          */
1318         BUG_ON(bits & EXTENT_LOCKED);
1319
1320         return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask,
1321                                   changeset);
1322 }
1323
1324 /*
1325  * either insert or lock state struct between start and end use mask to tell
1326  * us if waiting is desired.
1327  */
1328 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1329                      struct extent_state **cached_state)
1330 {
1331         int err;
1332         u64 failed_start;
1333
1334         while (1) {
1335                 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1336                                        EXTENT_LOCKED, &failed_start,
1337                                        cached_state, GFP_NOFS, NULL);
1338                 if (err == -EEXIST) {
1339                         wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1340                         start = failed_start;
1341                 } else
1342                         break;
1343                 WARN_ON(start > end);
1344         }
1345         return err;
1346 }
1347
1348 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1349 {
1350         int err;
1351         u64 failed_start;
1352
1353         err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1354                                &failed_start, NULL, GFP_NOFS, NULL);
1355         if (err == -EEXIST) {
1356                 if (failed_start > start)
1357                         clear_extent_bit(tree, start, failed_start - 1,
1358                                          EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1359                 return 0;
1360         }
1361         return 1;
1362 }
1363
1364 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1365 {
1366         unsigned long index = start >> PAGE_SHIFT;
1367         unsigned long end_index = end >> PAGE_SHIFT;
1368         struct page *page;
1369
1370         while (index <= end_index) {
1371                 page = find_get_page(inode->i_mapping, index);
1372                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1373                 clear_page_dirty_for_io(page);
1374                 put_page(page);
1375                 index++;
1376         }
1377 }
1378
1379 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1380 {
1381         unsigned long index = start >> PAGE_SHIFT;
1382         unsigned long end_index = end >> PAGE_SHIFT;
1383         struct page *page;
1384
1385         while (index <= end_index) {
1386                 page = find_get_page(inode->i_mapping, index);
1387                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1388                 __set_page_dirty_nobuffers(page);
1389                 account_page_redirty(page);
1390                 put_page(page);
1391                 index++;
1392         }
1393 }
1394
1395 /*
1396  * helper function to set both pages and extents in the tree writeback
1397  */
1398 static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1399 {
1400         unsigned long index = start >> PAGE_SHIFT;
1401         unsigned long end_index = end >> PAGE_SHIFT;
1402         struct page *page;
1403
1404         while (index <= end_index) {
1405                 page = find_get_page(tree->mapping, index);
1406                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1407                 set_page_writeback(page);
1408                 put_page(page);
1409                 index++;
1410         }
1411 }
1412
1413 /* find the first state struct with 'bits' set after 'start', and
1414  * return it.  tree->lock must be held.  NULL will returned if
1415  * nothing was found after 'start'
1416  */
1417 static struct extent_state *
1418 find_first_extent_bit_state(struct extent_io_tree *tree,
1419                             u64 start, unsigned bits)
1420 {
1421         struct rb_node *node;
1422         struct extent_state *state;
1423
1424         /*
1425          * this search will find all the extents that end after
1426          * our range starts.
1427          */
1428         node = tree_search(tree, start);
1429         if (!node)
1430                 goto out;
1431
1432         while (1) {
1433                 state = rb_entry(node, struct extent_state, rb_node);
1434                 if (state->end >= start && (state->state & bits))
1435                         return state;
1436
1437                 node = rb_next(node);
1438                 if (!node)
1439                         break;
1440         }
1441 out:
1442         return NULL;
1443 }
1444
1445 /*
1446  * find the first offset in the io tree with 'bits' set. zero is
1447  * returned if we find something, and *start_ret and *end_ret are
1448  * set to reflect the state struct that was found.
1449  *
1450  * If nothing was found, 1 is returned. If found something, return 0.
1451  */
1452 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1453                           u64 *start_ret, u64 *end_ret, unsigned bits,
1454                           struct extent_state **cached_state)
1455 {
1456         struct extent_state *state;
1457         struct rb_node *n;
1458         int ret = 1;
1459
1460         spin_lock(&tree->lock);
1461         if (cached_state && *cached_state) {
1462                 state = *cached_state;
1463                 if (state->end == start - 1 && extent_state_in_tree(state)) {
1464                         n = rb_next(&state->rb_node);
1465                         while (n) {
1466                                 state = rb_entry(n, struct extent_state,
1467                                                  rb_node);
1468                                 if (state->state & bits)
1469                                         goto got_it;
1470                                 n = rb_next(n);
1471                         }
1472                         free_extent_state(*cached_state);
1473                         *cached_state = NULL;
1474                         goto out;
1475                 }
1476                 free_extent_state(*cached_state);
1477                 *cached_state = NULL;
1478         }
1479
1480         state = find_first_extent_bit_state(tree, start, bits);
1481 got_it:
1482         if (state) {
1483                 cache_state_if_flags(state, cached_state, 0);
1484                 *start_ret = state->start;
1485                 *end_ret = state->end;
1486                 ret = 0;
1487         }
1488 out:
1489         spin_unlock(&tree->lock);
1490         return ret;
1491 }
1492
1493 /*
1494  * find a contiguous range of bytes in the file marked as delalloc, not
1495  * more than 'max_bytes'.  start and end are used to return the range,
1496  *
1497  * 1 is returned if we find something, 0 if nothing was in the tree
1498  */
1499 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1500                                         u64 *start, u64 *end, u64 max_bytes,
1501                                         struct extent_state **cached_state)
1502 {
1503         struct rb_node *node;
1504         struct extent_state *state;
1505         u64 cur_start = *start;
1506         u64 found = 0;
1507         u64 total_bytes = 0;
1508
1509         spin_lock(&tree->lock);
1510
1511         /*
1512          * this search will find all the extents that end after
1513          * our range starts.
1514          */
1515         node = tree_search(tree, cur_start);
1516         if (!node) {
1517                 if (!found)
1518                         *end = (u64)-1;
1519                 goto out;
1520         }
1521
1522         while (1) {
1523                 state = rb_entry(node, struct extent_state, rb_node);
1524                 if (found && (state->start != cur_start ||
1525                               (state->state & EXTENT_BOUNDARY))) {
1526                         goto out;
1527                 }
1528                 if (!(state->state & EXTENT_DELALLOC)) {
1529                         if (!found)
1530                                 *end = state->end;
1531                         goto out;
1532                 }
1533                 if (!found) {
1534                         *start = state->start;
1535                         *cached_state = state;
1536                         atomic_inc(&state->refs);
1537                 }
1538                 found++;
1539                 *end = state->end;
1540                 cur_start = state->end + 1;
1541                 node = rb_next(node);
1542                 total_bytes += state->end - state->start + 1;
1543                 if (total_bytes >= max_bytes)
1544                         break;
1545                 if (!node)
1546                         break;
1547         }
1548 out:
1549         spin_unlock(&tree->lock);
1550         return found;
1551 }
1552
1553 static noinline void __unlock_for_delalloc(struct inode *inode,
1554                                            struct page *locked_page,
1555                                            u64 start, u64 end)
1556 {
1557         int ret;
1558         struct page *pages[16];
1559         unsigned long index = start >> PAGE_SHIFT;
1560         unsigned long end_index = end >> PAGE_SHIFT;
1561         unsigned long nr_pages = end_index - index + 1;
1562         int i;
1563
1564         if (index == locked_page->index && end_index == index)
1565                 return;
1566
1567         while (nr_pages > 0) {
1568                 ret = find_get_pages_contig(inode->i_mapping, index,
1569                                      min_t(unsigned long, nr_pages,
1570                                      ARRAY_SIZE(pages)), pages);
1571                 for (i = 0; i < ret; i++) {
1572                         if (pages[i] != locked_page)
1573                                 unlock_page(pages[i]);
1574                         put_page(pages[i]);
1575                 }
1576                 nr_pages -= ret;
1577                 index += ret;
1578                 cond_resched();
1579         }
1580 }
1581
1582 static noinline int lock_delalloc_pages(struct inode *inode,
1583                                         struct page *locked_page,
1584                                         u64 delalloc_start,
1585                                         u64 delalloc_end)
1586 {
1587         unsigned long index = delalloc_start >> PAGE_SHIFT;
1588         unsigned long start_index = index;
1589         unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1590         unsigned long pages_locked = 0;
1591         struct page *pages[16];
1592         unsigned long nrpages;
1593         int ret;
1594         int i;
1595
1596         /* the caller is responsible for locking the start index */
1597         if (index == locked_page->index && index == end_index)
1598                 return 0;
1599
1600         /* skip the page at the start index */
1601         nrpages = end_index - index + 1;
1602         while (nrpages > 0) {
1603                 ret = find_get_pages_contig(inode->i_mapping, index,
1604                                      min_t(unsigned long,
1605                                      nrpages, ARRAY_SIZE(pages)), pages);
1606                 if (ret == 0) {
1607                         ret = -EAGAIN;
1608                         goto done;
1609                 }
1610                 /* now we have an array of pages, lock them all */
1611                 for (i = 0; i < ret; i++) {
1612                         /*
1613                          * the caller is taking responsibility for
1614                          * locked_page
1615                          */
1616                         if (pages[i] != locked_page) {
1617                                 lock_page(pages[i]);
1618                                 if (!PageDirty(pages[i]) ||
1619                                     pages[i]->mapping != inode->i_mapping) {
1620                                         ret = -EAGAIN;
1621                                         unlock_page(pages[i]);
1622                                         put_page(pages[i]);
1623                                         goto done;
1624                                 }
1625                         }
1626                         put_page(pages[i]);
1627                         pages_locked++;
1628                 }
1629                 nrpages -= ret;
1630                 index += ret;
1631                 cond_resched();
1632         }
1633         ret = 0;
1634 done:
1635         if (ret && pages_locked) {
1636                 __unlock_for_delalloc(inode, locked_page,
1637                               delalloc_start,
1638                               ((u64)(start_index + pages_locked - 1)) <<
1639                               PAGE_SHIFT);
1640         }
1641         return ret;
1642 }
1643
1644 /*
1645  * find a contiguous range of bytes in the file marked as delalloc, not
1646  * more than 'max_bytes'.  start and end are used to return the range,
1647  *
1648  * 1 is returned if we find something, 0 if nothing was in the tree
1649  */
1650 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1651                                     struct extent_io_tree *tree,
1652                                     struct page *locked_page, u64 *start,
1653                                     u64 *end, u64 max_bytes)
1654 {
1655         u64 delalloc_start;
1656         u64 delalloc_end;
1657         u64 found;
1658         struct extent_state *cached_state = NULL;
1659         int ret;
1660         int loops = 0;
1661
1662 again:
1663         /* step one, find a bunch of delalloc bytes starting at start */
1664         delalloc_start = *start;
1665         delalloc_end = 0;
1666         found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1667                                     max_bytes, &cached_state);
1668         if (!found || delalloc_end <= *start) {
1669                 *start = delalloc_start;
1670                 *end = delalloc_end;
1671                 free_extent_state(cached_state);
1672                 return 0;
1673         }
1674
1675         /*
1676          * start comes from the offset of locked_page.  We have to lock
1677          * pages in order, so we can't process delalloc bytes before
1678          * locked_page
1679          */
1680         if (delalloc_start < *start)
1681                 delalloc_start = *start;
1682
1683         /*
1684          * make sure to limit the number of pages we try to lock down
1685          */
1686         if (delalloc_end + 1 - delalloc_start > max_bytes)
1687                 delalloc_end = delalloc_start + max_bytes - 1;
1688
1689         /* step two, lock all the pages after the page that has start */
1690         ret = lock_delalloc_pages(inode, locked_page,
1691                                   delalloc_start, delalloc_end);
1692         if (ret == -EAGAIN) {
1693                 /* some of the pages are gone, lets avoid looping by
1694                  * shortening the size of the delalloc range we're searching
1695                  */
1696                 free_extent_state(cached_state);
1697                 cached_state = NULL;
1698                 if (!loops) {
1699                         max_bytes = PAGE_SIZE;
1700                         loops = 1;
1701                         goto again;
1702                 } else {
1703                         found = 0;
1704                         goto out_failed;
1705                 }
1706         }
1707         BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1708
1709         /* step three, lock the state bits for the whole range */
1710         lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1711
1712         /* then test to make sure it is all still delalloc */
1713         ret = test_range_bit(tree, delalloc_start, delalloc_end,
1714                              EXTENT_DELALLOC, 1, cached_state);
1715         if (!ret) {
1716                 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1717                                      &cached_state, GFP_NOFS);
1718                 __unlock_for_delalloc(inode, locked_page,
1719                               delalloc_start, delalloc_end);
1720                 cond_resched();
1721                 goto again;
1722         }
1723         free_extent_state(cached_state);
1724         *start = delalloc_start;
1725         *end = delalloc_end;
1726 out_failed:
1727         return found;
1728 }
1729
1730 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1731                                  struct page *locked_page,
1732                                  unsigned clear_bits,
1733                                  unsigned long page_ops)
1734 {
1735         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1736         int ret;
1737         struct page *pages[16];
1738         unsigned long index = start >> PAGE_SHIFT;
1739         unsigned long end_index = end >> PAGE_SHIFT;
1740         unsigned long nr_pages = end_index - index + 1;
1741         int i;
1742
1743         clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1744         if (page_ops == 0)
1745                 return;
1746
1747         if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1748                 mapping_set_error(inode->i_mapping, -EIO);
1749
1750         while (nr_pages > 0) {
1751                 ret = find_get_pages_contig(inode->i_mapping, index,
1752                                      min_t(unsigned long,
1753                                      nr_pages, ARRAY_SIZE(pages)), pages);
1754                 for (i = 0; i < ret; i++) {
1755
1756                         if (page_ops & PAGE_SET_PRIVATE2)
1757                                 SetPagePrivate2(pages[i]);
1758
1759                         if (pages[i] == locked_page) {
1760                                 put_page(pages[i]);
1761                                 continue;
1762                         }
1763                         if (page_ops & PAGE_CLEAR_DIRTY)
1764                                 clear_page_dirty_for_io(pages[i]);
1765                         if (page_ops & PAGE_SET_WRITEBACK)
1766                                 set_page_writeback(pages[i]);
1767                         if (page_ops & PAGE_SET_ERROR)
1768                                 SetPageError(pages[i]);
1769                         if (page_ops & PAGE_END_WRITEBACK)
1770                                 end_page_writeback(pages[i]);
1771                         if (page_ops & PAGE_UNLOCK)
1772                                 unlock_page(pages[i]);
1773                         put_page(pages[i]);
1774                 }
1775                 nr_pages -= ret;
1776                 index += ret;
1777                 cond_resched();
1778         }
1779 }
1780
1781 /*
1782  * count the number of bytes in the tree that have a given bit(s)
1783  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1784  * cached.  The total number found is returned.
1785  */
1786 u64 count_range_bits(struct extent_io_tree *tree,
1787                      u64 *start, u64 search_end, u64 max_bytes,
1788                      unsigned bits, int contig)
1789 {
1790         struct rb_node *node;
1791         struct extent_state *state;
1792         u64 cur_start = *start;
1793         u64 total_bytes = 0;
1794         u64 last = 0;
1795         int found = 0;
1796
1797         if (WARN_ON(search_end <= cur_start))
1798                 return 0;
1799
1800         spin_lock(&tree->lock);
1801         if (cur_start == 0 && bits == EXTENT_DIRTY) {
1802                 total_bytes = tree->dirty_bytes;
1803                 goto out;
1804         }
1805         /*
1806          * this search will find all the extents that end after
1807          * our range starts.
1808          */
1809         node = tree_search(tree, cur_start);
1810         if (!node)
1811                 goto out;
1812
1813         while (1) {
1814                 state = rb_entry(node, struct extent_state, rb_node);
1815                 if (state->start > search_end)
1816                         break;
1817                 if (contig && found && state->start > last + 1)
1818                         break;
1819                 if (state->end >= cur_start && (state->state & bits) == bits) {
1820                         total_bytes += min(search_end, state->end) + 1 -
1821                                        max(cur_start, state->start);
1822                         if (total_bytes >= max_bytes)
1823                                 break;
1824                         if (!found) {
1825                                 *start = max(cur_start, state->start);
1826                                 found = 1;
1827                         }
1828                         last = state->end;
1829                 } else if (contig && found) {
1830                         break;
1831                 }
1832                 node = rb_next(node);
1833                 if (!node)
1834                         break;
1835         }
1836 out:
1837         spin_unlock(&tree->lock);
1838         return total_bytes;
1839 }
1840
1841 /*
1842  * set the private field for a given byte offset in the tree.  If there isn't
1843  * an extent_state there already, this does nothing.
1844  */
1845 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
1846                 struct io_failure_record *failrec)
1847 {
1848         struct rb_node *node;
1849         struct extent_state *state;
1850         int ret = 0;
1851
1852         spin_lock(&tree->lock);
1853         /*
1854          * this search will find all the extents that end after
1855          * our range starts.
1856          */
1857         node = tree_search(tree, start);
1858         if (!node) {
1859                 ret = -ENOENT;
1860                 goto out;
1861         }
1862         state = rb_entry(node, struct extent_state, rb_node);
1863         if (state->start != start) {
1864                 ret = -ENOENT;
1865                 goto out;
1866         }
1867         state->failrec = failrec;
1868 out:
1869         spin_unlock(&tree->lock);
1870         return ret;
1871 }
1872
1873 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
1874                 struct io_failure_record **failrec)
1875 {
1876         struct rb_node *node;
1877         struct extent_state *state;
1878         int ret = 0;
1879
1880         spin_lock(&tree->lock);
1881         /*
1882          * this search will find all the extents that end after
1883          * our range starts.
1884          */
1885         node = tree_search(tree, start);
1886         if (!node) {
1887                 ret = -ENOENT;
1888                 goto out;
1889         }
1890         state = rb_entry(node, struct extent_state, rb_node);
1891         if (state->start != start) {
1892                 ret = -ENOENT;
1893                 goto out;
1894         }
1895         *failrec = state->failrec;
1896 out:
1897         spin_unlock(&tree->lock);
1898         return ret;
1899 }
1900
1901 /*
1902  * searches a range in the state tree for a given mask.
1903  * If 'filled' == 1, this returns 1 only if every extent in the tree
1904  * has the bits set.  Otherwise, 1 is returned if any bit in the
1905  * range is found set.
1906  */
1907 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1908                    unsigned bits, int filled, struct extent_state *cached)
1909 {
1910         struct extent_state *state = NULL;
1911         struct rb_node *node;
1912         int bitset = 0;
1913
1914         spin_lock(&tree->lock);
1915         if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1916             cached->end > start)
1917                 node = &cached->rb_node;
1918         else
1919                 node = tree_search(tree, start);
1920         while (node && start <= end) {
1921                 state = rb_entry(node, struct extent_state, rb_node);
1922
1923                 if (filled && state->start > start) {
1924                         bitset = 0;
1925                         break;
1926                 }
1927
1928                 if (state->start > end)
1929                         break;
1930
1931                 if (state->state & bits) {
1932                         bitset = 1;
1933                         if (!filled)
1934                                 break;
1935                 } else if (filled) {
1936                         bitset = 0;
1937                         break;
1938                 }
1939
1940                 if (state->end == (u64)-1)
1941                         break;
1942
1943                 start = state->end + 1;
1944                 if (start > end)
1945                         break;
1946                 node = rb_next(node);
1947                 if (!node) {
1948                         if (filled)
1949                                 bitset = 0;
1950                         break;
1951                 }
1952         }
1953         spin_unlock(&tree->lock);
1954         return bitset;
1955 }
1956
1957 /*
1958  * helper function to set a given page up to date if all the
1959  * extents in the tree for that page are up to date
1960  */
1961 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1962 {
1963         u64 start = page_offset(page);
1964         u64 end = start + PAGE_SIZE - 1;
1965         if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1966                 SetPageUptodate(page);
1967 }
1968
1969 int free_io_failure(struct inode *inode, struct io_failure_record *rec)
1970 {
1971         int ret;
1972         int err = 0;
1973         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1974
1975         set_state_failrec(failure_tree, rec->start, NULL);
1976         ret = clear_extent_bits(failure_tree, rec->start,
1977                                 rec->start + rec->len - 1,
1978                                 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1979         if (ret)
1980                 err = ret;
1981
1982         ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1983                                 rec->start + rec->len - 1,
1984                                 EXTENT_DAMAGED, GFP_NOFS);
1985         if (ret && !err)
1986                 err = ret;
1987
1988         kfree(rec);
1989         return err;
1990 }
1991
1992 /*
1993  * this bypasses the standard btrfs submit functions deliberately, as
1994  * the standard behavior is to write all copies in a raid setup. here we only
1995  * want to write the one bad copy. so we do the mapping for ourselves and issue
1996  * submit_bio directly.
1997  * to avoid any synchronization issues, wait for the data after writing, which
1998  * actually prevents the read that triggered the error from finishing.
1999  * currently, there can be no more than two copies of every data bit. thus,
2000  * exactly one rewrite is required.
2001  */
2002 int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical,
2003                       struct page *page, unsigned int pg_offset, int mirror_num)
2004 {
2005         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2006         struct bio *bio;
2007         struct btrfs_device *dev;
2008         u64 map_length = 0;
2009         u64 sector;
2010         struct btrfs_bio *bbio = NULL;
2011         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2012         int ret;
2013
2014         ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
2015         BUG_ON(!mirror_num);
2016
2017         /* we can't repair anything in raid56 yet */
2018         if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2019                 return 0;
2020
2021         bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2022         if (!bio)
2023                 return -EIO;
2024         bio->bi_iter.bi_size = 0;
2025         map_length = length;
2026
2027         ret = btrfs_map_block(fs_info, WRITE, logical,
2028                               &map_length, &bbio, mirror_num);
2029         if (ret) {
2030                 bio_put(bio);
2031                 return -EIO;
2032         }
2033         BUG_ON(mirror_num != bbio->mirror_num);
2034         sector = bbio->stripes[mirror_num-1].physical >> 9;
2035         bio->bi_iter.bi_sector = sector;
2036         dev = bbio->stripes[mirror_num-1].dev;
2037         btrfs_put_bbio(bbio);
2038         if (!dev || !dev->bdev || !dev->writeable) {
2039                 bio_put(bio);
2040                 return -EIO;
2041         }
2042         bio->bi_bdev = dev->bdev;
2043         bio_add_page(bio, page, length, pg_offset);
2044
2045         if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
2046                 /* try to remap that extent elsewhere? */
2047                 bio_put(bio);
2048                 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2049                 return -EIO;
2050         }
2051
2052         btrfs_info_rl_in_rcu(fs_info,
2053                 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2054                                   btrfs_ino(inode), start,
2055                                   rcu_str_deref(dev->name), sector);
2056         bio_put(bio);
2057         return 0;
2058 }
2059
2060 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2061                          int mirror_num)
2062 {
2063         u64 start = eb->start;
2064         unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2065         int ret = 0;
2066
2067         if (root->fs_info->sb->s_flags & MS_RDONLY)
2068                 return -EROFS;
2069
2070         for (i = 0; i < num_pages; i++) {
2071                 struct page *p = eb->pages[i];
2072
2073                 ret = repair_io_failure(root->fs_info->btree_inode, start,
2074                                         PAGE_SIZE, start, p,
2075                                         start - page_offset(p), mirror_num);
2076                 if (ret)
2077                         break;
2078                 start += PAGE_SIZE;
2079         }
2080
2081         return ret;
2082 }
2083
2084 /*
2085  * each time an IO finishes, we do a fast check in the IO failure tree
2086  * to see if we need to process or clean up an io_failure_record
2087  */
2088 int clean_io_failure(struct inode *inode, u64 start, struct page *page,
2089                      unsigned int pg_offset)
2090 {
2091         u64 private;
2092         struct io_failure_record *failrec;
2093         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2094         struct extent_state *state;
2095         int num_copies;
2096         int ret;
2097
2098         private = 0;
2099         ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2100                                 (u64)-1, 1, EXTENT_DIRTY, 0);
2101         if (!ret)
2102                 return 0;
2103
2104         ret = get_state_failrec(&BTRFS_I(inode)->io_failure_tree, start,
2105                         &failrec);
2106         if (ret)
2107                 return 0;
2108
2109         BUG_ON(!failrec->this_mirror);
2110
2111         if (failrec->in_validation) {
2112                 /* there was no real error, just free the record */
2113                 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2114                          failrec->start);
2115                 goto out;
2116         }
2117         if (fs_info->sb->s_flags & MS_RDONLY)
2118                 goto out;
2119
2120         spin_lock(&BTRFS_I(inode)->io_tree.lock);
2121         state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2122                                             failrec->start,
2123                                             EXTENT_LOCKED);
2124         spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2125
2126         if (state && state->start <= failrec->start &&
2127             state->end >= failrec->start + failrec->len - 1) {
2128                 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2129                                               failrec->len);
2130                 if (num_copies > 1)  {
2131                         repair_io_failure(inode, start, failrec->len,
2132                                           failrec->logical, page,
2133                                           pg_offset, failrec->failed_mirror);
2134                 }
2135         }
2136
2137 out:
2138         free_io_failure(inode, failrec);
2139
2140         return 0;
2141 }
2142
2143 /*
2144  * Can be called when
2145  * - hold extent lock
2146  * - under ordered extent
2147  * - the inode is freeing
2148  */
2149 void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end)
2150 {
2151         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2152         struct io_failure_record *failrec;
2153         struct extent_state *state, *next;
2154
2155         if (RB_EMPTY_ROOT(&failure_tree->state))
2156                 return;
2157
2158         spin_lock(&failure_tree->lock);
2159         state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2160         while (state) {
2161                 if (state->start > end)
2162                         break;
2163
2164                 ASSERT(state->end <= end);
2165
2166                 next = next_state(state);
2167
2168                 failrec = state->failrec;
2169                 free_extent_state(state);
2170                 kfree(failrec);
2171
2172                 state = next;
2173         }
2174         spin_unlock(&failure_tree->lock);
2175 }
2176
2177 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2178                 struct io_failure_record **failrec_ret)
2179 {
2180         struct io_failure_record *failrec;
2181         struct extent_map *em;
2182         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2183         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2184         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2185         int ret;
2186         u64 logical;
2187
2188         ret = get_state_failrec(failure_tree, start, &failrec);
2189         if (ret) {
2190                 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2191                 if (!failrec)
2192                         return -ENOMEM;
2193
2194                 failrec->start = start;
2195                 failrec->len = end - start + 1;
2196                 failrec->this_mirror = 0;
2197                 failrec->bio_flags = 0;
2198                 failrec->in_validation = 0;
2199
2200                 read_lock(&em_tree->lock);
2201                 em = lookup_extent_mapping(em_tree, start, failrec->len);
2202                 if (!em) {
2203                         read_unlock(&em_tree->lock);
2204                         kfree(failrec);
2205                         return -EIO;
2206                 }
2207
2208                 if (em->start > start || em->start + em->len <= start) {
2209                         free_extent_map(em);
2210                         em = NULL;
2211                 }
2212                 read_unlock(&em_tree->lock);
2213                 if (!em) {
2214                         kfree(failrec);
2215                         return -EIO;
2216                 }
2217
2218                 logical = start - em->start;
2219                 logical = em->block_start + logical;
2220                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2221                         logical = em->block_start;
2222                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2223                         extent_set_compress_type(&failrec->bio_flags,
2224                                                  em->compress_type);
2225                 }
2226
2227                 pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n",
2228                          logical, start, failrec->len);
2229
2230                 failrec->logical = logical;
2231                 free_extent_map(em);
2232
2233                 /* set the bits in the private failure tree */
2234                 ret = set_extent_bits(failure_tree, start, end,
2235                                         EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2236                 if (ret >= 0)
2237                         ret = set_state_failrec(failure_tree, start, failrec);
2238                 /* set the bits in the inode's tree */
2239                 if (ret >= 0)
2240                         ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2241                                                 GFP_NOFS);
2242                 if (ret < 0) {
2243                         kfree(failrec);
2244                         return ret;
2245                 }
2246         } else {
2247                 pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n",
2248                          failrec->logical, failrec->start, failrec->len,
2249                          failrec->in_validation);
2250                 /*
2251                  * when data can be on disk more than twice, add to failrec here
2252                  * (e.g. with a list for failed_mirror) to make
2253                  * clean_io_failure() clean all those errors at once.
2254                  */
2255         }
2256
2257         *failrec_ret = failrec;
2258
2259         return 0;
2260 }
2261
2262 int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2263                            struct io_failure_record *failrec, int failed_mirror)
2264 {
2265         int num_copies;
2266
2267         num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2268                                       failrec->logical, failrec->len);
2269         if (num_copies == 1) {
2270                 /*
2271                  * we only have a single copy of the data, so don't bother with
2272                  * all the retry and error correction code that follows. no
2273                  * matter what the error is, it is very likely to persist.
2274                  */
2275                 pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2276                          num_copies, failrec->this_mirror, failed_mirror);
2277                 return 0;
2278         }
2279
2280         /*
2281          * there are two premises:
2282          *      a) deliver good data to the caller
2283          *      b) correct the bad sectors on disk
2284          */
2285         if (failed_bio->bi_vcnt > 1) {
2286                 /*
2287                  * to fulfill b), we need to know the exact failing sectors, as
2288                  * we don't want to rewrite any more than the failed ones. thus,
2289                  * we need separate read requests for the failed bio
2290                  *
2291                  * if the following BUG_ON triggers, our validation request got
2292                  * merged. we need separate requests for our algorithm to work.
2293                  */
2294                 BUG_ON(failrec->in_validation);
2295                 failrec->in_validation = 1;
2296                 failrec->this_mirror = failed_mirror;
2297         } else {
2298                 /*
2299                  * we're ready to fulfill a) and b) alongside. get a good copy
2300                  * of the failed sector and if we succeed, we have setup
2301                  * everything for repair_io_failure to do the rest for us.
2302                  */
2303                 if (failrec->in_validation) {
2304                         BUG_ON(failrec->this_mirror != failed_mirror);
2305                         failrec->in_validation = 0;
2306                         failrec->this_mirror = 0;
2307                 }
2308                 failrec->failed_mirror = failed_mirror;
2309                 failrec->this_mirror++;
2310                 if (failrec->this_mirror == failed_mirror)
2311                         failrec->this_mirror++;
2312         }
2313
2314         if (failrec->this_mirror > num_copies) {
2315                 pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
2316                          num_copies, failrec->this_mirror, failed_mirror);
2317                 return 0;
2318         }
2319
2320         return 1;
2321 }
2322
2323
2324 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2325                                     struct io_failure_record *failrec,
2326                                     struct page *page, int pg_offset, int icsum,
2327                                     bio_end_io_t *endio_func, void *data)
2328 {
2329         struct bio *bio;
2330         struct btrfs_io_bio *btrfs_failed_bio;
2331         struct btrfs_io_bio *btrfs_bio;
2332
2333         bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2334         if (!bio)
2335                 return NULL;
2336
2337         bio->bi_end_io = endio_func;
2338         bio->bi_iter.bi_sector = failrec->logical >> 9;
2339         bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2340         bio->bi_iter.bi_size = 0;
2341         bio->bi_private = data;
2342
2343         btrfs_failed_bio = btrfs_io_bio(failed_bio);
2344         if (btrfs_failed_bio->csum) {
2345                 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2346                 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2347
2348                 btrfs_bio = btrfs_io_bio(bio);
2349                 btrfs_bio->csum = btrfs_bio->csum_inline;
2350                 icsum *= csum_size;
2351                 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2352                        csum_size);
2353         }
2354
2355         bio_add_page(bio, page, failrec->len, pg_offset);
2356
2357         return bio;
2358 }
2359
2360 /*
2361  * this is a generic handler for readpage errors (default
2362  * readpage_io_failed_hook). if other copies exist, read those and write back
2363  * good data to the failed position. does not investigate in remapping the
2364  * failed extent elsewhere, hoping the device will be smart enough to do this as
2365  * needed
2366  */
2367
2368 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2369                               struct page *page, u64 start, u64 end,
2370                               int failed_mirror)
2371 {
2372         struct io_failure_record *failrec;
2373         struct inode *inode = page->mapping->host;
2374         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2375         struct bio *bio;
2376         int read_mode;
2377         int ret;
2378
2379         BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2380
2381         ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2382         if (ret)
2383                 return ret;
2384
2385         ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2386         if (!ret) {
2387                 free_io_failure(inode, failrec);
2388                 return -EIO;
2389         }
2390
2391         if (failed_bio->bi_vcnt > 1)
2392                 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2393         else
2394                 read_mode = READ_SYNC;
2395
2396         phy_offset >>= inode->i_sb->s_blocksize_bits;
2397         bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2398                                       start - page_offset(page),
2399                                       (int)phy_offset, failed_bio->bi_end_io,
2400                                       NULL);
2401         if (!bio) {
2402                 free_io_failure(inode, failrec);
2403                 return -EIO;
2404         }
2405
2406         pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n",
2407                  read_mode, failrec->this_mirror, failrec->in_validation);
2408
2409         ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2410                                          failrec->this_mirror,
2411                                          failrec->bio_flags, 0);
2412         if (ret) {
2413                 free_io_failure(inode, failrec);
2414                 bio_put(bio);
2415         }
2416
2417         return ret;
2418 }
2419
2420 /* lots and lots of room for performance fixes in the end_bio funcs */
2421
2422 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2423 {
2424         int uptodate = (err == 0);
2425         struct extent_io_tree *tree;
2426         int ret = 0;
2427
2428         tree = &BTRFS_I(page->mapping->host)->io_tree;
2429
2430         if (tree->ops && tree->ops->writepage_end_io_hook) {
2431                 ret = tree->ops->writepage_end_io_hook(page, start,
2432                                                end, NULL, uptodate);
2433                 if (ret)
2434                         uptodate = 0;
2435         }
2436
2437         if (!uptodate) {
2438                 ClearPageUptodate(page);
2439                 SetPageError(page);
2440                 ret = ret < 0 ? ret : -EIO;
2441                 mapping_set_error(page->mapping, ret);
2442         }
2443 }
2444
2445 /*
2446  * after a writepage IO is done, we need to:
2447  * clear the uptodate bits on error
2448  * clear the writeback bits in the extent tree for this IO
2449  * end_page_writeback if the page has no more pending IO
2450  *
2451  * Scheduling is not allowed, so the extent state tree is expected
2452  * to have one and only one object corresponding to this IO.
2453  */
2454 static void end_bio_extent_writepage(struct bio *bio)
2455 {
2456         struct bio_vec *bvec;
2457         u64 start;
2458         u64 end;
2459         int i;
2460
2461         bio_for_each_segment_all(bvec, bio, i) {
2462                 struct page *page = bvec->bv_page;
2463
2464                 /* We always issue full-page reads, but if some block
2465                  * in a page fails to read, blk_update_request() will
2466                  * advance bv_offset and adjust bv_len to compensate.
2467                  * Print a warning for nonzero offsets, and an error
2468                  * if they don't add up to a full page.  */
2469                 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2470                         if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2471                                 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2472                                    "partial page write in btrfs with offset %u and length %u",
2473                                         bvec->bv_offset, bvec->bv_len);
2474                         else
2475                                 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2476                                    "incomplete page write in btrfs with offset %u and "
2477                                    "length %u",
2478                                         bvec->bv_offset, bvec->bv_len);
2479                 }
2480
2481                 start = page_offset(page);
2482                 end = start + bvec->bv_offset + bvec->bv_len - 1;
2483
2484                 end_extent_writepage(page, bio->bi_error, start, end);
2485                 end_page_writeback(page);
2486         }
2487
2488         bio_put(bio);
2489 }
2490
2491 static void
2492 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2493                               int uptodate)
2494 {
2495         struct extent_state *cached = NULL;
2496         u64 end = start + len - 1;
2497
2498         if (uptodate && tree->track_uptodate)
2499                 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2500         unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2501 }
2502
2503 /*
2504  * after a readpage IO is done, we need to:
2505  * clear the uptodate bits on error
2506  * set the uptodate bits if things worked
2507  * set the page up to date if all extents in the tree are uptodate
2508  * clear the lock bit in the extent tree
2509  * unlock the page if there are no other extents locked for it
2510  *
2511  * Scheduling is not allowed, so the extent state tree is expected
2512  * to have one and only one object corresponding to this IO.
2513  */
2514 static void end_bio_extent_readpage(struct bio *bio)
2515 {
2516         struct bio_vec *bvec;
2517         int uptodate = !bio->bi_error;
2518         struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2519         struct extent_io_tree *tree;
2520         u64 offset = 0;
2521         u64 start;
2522         u64 end;
2523         u64 len;
2524         u64 extent_start = 0;
2525         u64 extent_len = 0;
2526         int mirror;
2527         int ret;
2528         int i;
2529
2530         bio_for_each_segment_all(bvec, bio, i) {
2531                 struct page *page = bvec->bv_page;
2532                 struct inode *inode = page->mapping->host;
2533
2534                 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2535                          "mirror=%u\n", (u64)bio->bi_iter.bi_sector,
2536                          bio->bi_error, io_bio->mirror_num);
2537                 tree = &BTRFS_I(inode)->io_tree;
2538
2539                 /* We always issue full-page reads, but if some block
2540                  * in a page fails to read, blk_update_request() will
2541                  * advance bv_offset and adjust bv_len to compensate.
2542                  * Print a warning for nonzero offsets, and an error
2543                  * if they don't add up to a full page.  */
2544                 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2545                         if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2546                                 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2547                                    "partial page read in btrfs with offset %u and length %u",
2548                                         bvec->bv_offset, bvec->bv_len);
2549                         else
2550                                 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2551                                    "incomplete page read in btrfs with offset %u and "
2552                                    "length %u",
2553                                         bvec->bv_offset, bvec->bv_len);
2554                 }
2555
2556                 start = page_offset(page);
2557                 end = start + bvec->bv_offset + bvec->bv_len - 1;
2558                 len = bvec->bv_len;
2559
2560                 mirror = io_bio->mirror_num;
2561                 if (likely(uptodate && tree->ops &&
2562                            tree->ops->readpage_end_io_hook)) {
2563                         ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2564                                                               page, start, end,
2565                                                               mirror);
2566                         if (ret)
2567                                 uptodate = 0;
2568                         else
2569                                 clean_io_failure(inode, start, page, 0);
2570                 }
2571
2572                 if (likely(uptodate))
2573                         goto readpage_ok;
2574
2575                 if (tree->ops && tree->ops->readpage_io_failed_hook) {
2576                         ret = tree->ops->readpage_io_failed_hook(page, mirror);
2577                         if (!ret && !bio->bi_error)
2578                                 uptodate = 1;
2579                 } else {
2580                         /*
2581                          * The generic bio_readpage_error handles errors the
2582                          * following way: If possible, new read requests are
2583                          * created and submitted and will end up in
2584                          * end_bio_extent_readpage as well (if we're lucky, not
2585                          * in the !uptodate case). In that case it returns 0 and
2586                          * we just go on with the next page in our bio. If it
2587                          * can't handle the error it will return -EIO and we
2588                          * remain responsible for that page.
2589                          */
2590                         ret = bio_readpage_error(bio, offset, page, start, end,
2591                                                  mirror);
2592                         if (ret == 0) {
2593                                 uptodate = !bio->bi_error;
2594                                 offset += len;
2595                                 continue;
2596                         }
2597                 }
2598 readpage_ok:
2599                 if (likely(uptodate)) {
2600                         loff_t i_size = i_size_read(inode);
2601                         pgoff_t end_index = i_size >> PAGE_SHIFT;
2602                         unsigned off;
2603
2604                         /* Zero out the end if this page straddles i_size */
2605                         off = i_size & (PAGE_SIZE-1);
2606                         if (page->index == end_index && off)
2607                                 zero_user_segment(page, off, PAGE_SIZE);
2608                         SetPageUptodate(page);
2609                 } else {
2610                         ClearPageUptodate(page);
2611                         SetPageError(page);
2612                 }
2613                 unlock_page(page);
2614                 offset += len;
2615
2616                 if (unlikely(!uptodate)) {
2617                         if (extent_len) {
2618                                 endio_readpage_release_extent(tree,
2619                                                               extent_start,
2620                                                               extent_len, 1);
2621                                 extent_start = 0;
2622                                 extent_len = 0;
2623                         }
2624                         endio_readpage_release_extent(tree, start,
2625                                                       end - start + 1, 0);
2626                 } else if (!extent_len) {
2627                         extent_start = start;
2628                         extent_len = end + 1 - start;
2629                 } else if (extent_start + extent_len == start) {
2630                         extent_len += end + 1 - start;
2631                 } else {
2632                         endio_readpage_release_extent(tree, extent_start,
2633                                                       extent_len, uptodate);
2634                         extent_start = start;
2635                         extent_len = end + 1 - start;
2636                 }
2637         }
2638
2639         if (extent_len)
2640                 endio_readpage_release_extent(tree, extent_start, extent_len,
2641                                               uptodate);
2642         if (io_bio->end_io)
2643                 io_bio->end_io(io_bio, bio->bi_error);
2644         bio_put(bio);
2645 }
2646
2647 /*
2648  * this allocates from the btrfs_bioset.  We're returning a bio right now
2649  * but you can call btrfs_io_bio for the appropriate container_of magic
2650  */
2651 struct bio *
2652 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2653                 gfp_t gfp_flags)
2654 {
2655         struct btrfs_io_bio *btrfs_bio;
2656         struct bio *bio;
2657
2658         bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2659
2660         if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2661                 while (!bio && (nr_vecs /= 2)) {
2662                         bio = bio_alloc_bioset(gfp_flags,
2663                                                nr_vecs, btrfs_bioset);
2664                 }
2665         }
2666
2667         if (bio) {
2668                 bio->bi_bdev = bdev;
2669                 bio->bi_iter.bi_sector = first_sector;
2670                 btrfs_bio = btrfs_io_bio(bio);
2671                 btrfs_bio->csum = NULL;
2672                 btrfs_bio->csum_allocated = NULL;
2673                 btrfs_bio->end_io = NULL;
2674         }
2675         return bio;
2676 }
2677
2678 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2679 {
2680         struct btrfs_io_bio *btrfs_bio;
2681         struct bio *new;
2682
2683         new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2684         if (new) {
2685                 btrfs_bio = btrfs_io_bio(new);
2686                 btrfs_bio->csum = NULL;
2687                 btrfs_bio->csum_allocated = NULL;
2688                 btrfs_bio->end_io = NULL;
2689
2690 #ifdef CONFIG_BLK_CGROUP
2691                 /* FIXME, put this into bio_clone_bioset */
2692                 if (bio->bi_css)
2693                         bio_associate_blkcg(new, bio->bi_css);
2694 #endif
2695         }
2696         return new;
2697 }
2698
2699 /* this also allocates from the btrfs_bioset */
2700 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2701 {
2702         struct btrfs_io_bio *btrfs_bio;
2703         struct bio *bio;
2704
2705         bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2706         if (bio) {
2707                 btrfs_bio = btrfs_io_bio(bio);
2708                 btrfs_bio->csum = NULL;
2709                 btrfs_bio->csum_allocated = NULL;
2710                 btrfs_bio->end_io = NULL;
2711         }
2712         return bio;
2713 }
2714
2715
2716 static int __must_check submit_one_bio(int rw, struct bio *bio,
2717                                        int mirror_num, unsigned long bio_flags)
2718 {
2719         int ret = 0;
2720         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2721         struct page *page = bvec->bv_page;
2722         struct extent_io_tree *tree = bio->bi_private;
2723         u64 start;
2724
2725         start = page_offset(page) + bvec->bv_offset;
2726
2727         bio->bi_private = NULL;
2728
2729         bio_get(bio);
2730
2731         if (tree->ops && tree->ops->submit_bio_hook)
2732                 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2733                                            mirror_num, bio_flags, start);
2734         else
2735                 btrfsic_submit_bio(rw, bio);
2736
2737         bio_put(bio);
2738         return ret;
2739 }
2740
2741 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2742                      unsigned long offset, size_t size, struct bio *bio,
2743                      unsigned long bio_flags)
2744 {
2745         int ret = 0;
2746         if (tree->ops && tree->ops->merge_bio_hook)
2747                 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2748                                                 bio_flags);
2749         BUG_ON(ret < 0);
2750         return ret;
2751
2752 }
2753
2754 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2755                               struct writeback_control *wbc,
2756                               struct page *page, sector_t sector,
2757                               size_t size, unsigned long offset,
2758                               struct block_device *bdev,
2759                               struct bio **bio_ret,
2760                               unsigned long max_pages,
2761                               bio_end_io_t end_io_func,
2762                               int mirror_num,
2763                               unsigned long prev_bio_flags,
2764                               unsigned long bio_flags,
2765                               bool force_bio_submit)
2766 {
2767         int ret = 0;
2768         struct bio *bio;
2769         int contig = 0;
2770         int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2771         size_t page_size = min_t(size_t, size, PAGE_SIZE);
2772
2773         if (bio_ret && *bio_ret) {
2774                 bio = *bio_ret;
2775                 if (old_compressed)
2776                         contig = bio->bi_iter.bi_sector == sector;
2777                 else
2778                         contig = bio_end_sector(bio) == sector;
2779
2780                 if (prev_bio_flags != bio_flags || !contig ||
2781                     force_bio_submit ||
2782                     merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2783                     bio_add_page(bio, page, page_size, offset) < page_size) {
2784                         ret = submit_one_bio(rw, bio, mirror_num,
2785                                              prev_bio_flags);
2786                         if (ret < 0) {
2787                                 *bio_ret = NULL;
2788                                 return ret;
2789                         }
2790                         bio = NULL;
2791                 } else {
2792                         if (wbc)
2793                                 wbc_account_io(wbc, page, page_size);
2794                         return 0;
2795                 }
2796         }
2797
2798         bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES,
2799                         GFP_NOFS | __GFP_HIGH);
2800         if (!bio)
2801                 return -ENOMEM;
2802
2803         bio_add_page(bio, page, page_size, offset);
2804         bio->bi_end_io = end_io_func;
2805         bio->bi_private = tree;
2806         if (wbc) {
2807                 wbc_init_bio(wbc, bio);
2808                 wbc_account_io(wbc, page, page_size);
2809         }
2810
2811         if (bio_ret)
2812                 *bio_ret = bio;
2813         else
2814                 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2815
2816         return ret;
2817 }
2818
2819 static void attach_extent_buffer_page(struct extent_buffer *eb,
2820                                       struct page *page)
2821 {
2822         if (!PagePrivate(page)) {
2823                 SetPagePrivate(page);
2824                 get_page(page);
2825                 set_page_private(page, (unsigned long)eb);
2826         } else {
2827                 WARN_ON(page->private != (unsigned long)eb);
2828         }
2829 }
2830
2831 void set_page_extent_mapped(struct page *page)
2832 {
2833         if (!PagePrivate(page)) {
2834                 SetPagePrivate(page);
2835                 get_page(page);
2836                 set_page_private(page, EXTENT_PAGE_PRIVATE);
2837         }
2838 }
2839
2840 static struct extent_map *
2841 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2842                  u64 start, u64 len, get_extent_t *get_extent,
2843                  struct extent_map **em_cached)
2844 {
2845         struct extent_map *em;
2846
2847         if (em_cached && *em_cached) {
2848                 em = *em_cached;
2849                 if (extent_map_in_tree(em) && start >= em->start &&
2850                     start < extent_map_end(em)) {
2851                         atomic_inc(&em->refs);
2852                         return em;
2853                 }
2854
2855                 free_extent_map(em);
2856                 *em_cached = NULL;
2857         }
2858
2859         em = get_extent(inode, page, pg_offset, start, len, 0);
2860         if (em_cached && !IS_ERR_OR_NULL(em)) {
2861                 BUG_ON(*em_cached);
2862                 atomic_inc(&em->refs);
2863                 *em_cached = em;
2864         }
2865         return em;
2866 }
2867 /*
2868  * basic readpage implementation.  Locked extent state structs are inserted
2869  * into the tree that are removed when the IO is done (by the end_io
2870  * handlers)
2871  * XXX JDM: This needs looking at to ensure proper page locking
2872  */
2873 static int __do_readpage(struct extent_io_tree *tree,
2874                          struct page *page,
2875                          get_extent_t *get_extent,
2876                          struct extent_map **em_cached,
2877                          struct bio **bio, int mirror_num,
2878                          unsigned long *bio_flags, int rw,
2879                          u64 *prev_em_start)
2880 {
2881         struct inode *inode = page->mapping->host;
2882         u64 start = page_offset(page);
2883         u64 page_end = start + PAGE_SIZE - 1;
2884         u64 end;
2885         u64 cur = start;
2886         u64 extent_offset;
2887         u64 last_byte = i_size_read(inode);
2888         u64 block_start;
2889         u64 cur_end;
2890         sector_t sector;
2891         struct extent_map *em;
2892         struct block_device *bdev;
2893         int ret;
2894         int nr = 0;
2895         size_t pg_offset = 0;
2896         size_t iosize;
2897         size_t disk_io_size;
2898         size_t blocksize = inode->i_sb->s_blocksize;
2899         unsigned long this_bio_flag = 0;
2900
2901         set_page_extent_mapped(page);
2902
2903         end = page_end;
2904         if (!PageUptodate(page)) {
2905                 if (cleancache_get_page(page) == 0) {
2906                         BUG_ON(blocksize != PAGE_SIZE);
2907                         unlock_extent(tree, start, end);
2908                         goto out;
2909                 }
2910         }
2911
2912         if (page->index == last_byte >> PAGE_SHIFT) {
2913                 char *userpage;
2914                 size_t zero_offset = last_byte & (PAGE_SIZE - 1);
2915
2916                 if (zero_offset) {
2917                         iosize = PAGE_SIZE - zero_offset;
2918                         userpage = kmap_atomic(page);
2919                         memset(userpage + zero_offset, 0, iosize);
2920                         flush_dcache_page(page);
2921                         kunmap_atomic(userpage);
2922                 }
2923         }
2924         while (cur <= end) {
2925                 unsigned long pnr = (last_byte >> PAGE_SHIFT) + 1;
2926                 bool force_bio_submit = false;
2927
2928                 if (cur >= last_byte) {
2929                         char *userpage;
2930                         struct extent_state *cached = NULL;
2931
2932                         iosize = PAGE_SIZE - pg_offset;
2933                         userpage = kmap_atomic(page);
2934                         memset(userpage + pg_offset, 0, iosize);
2935                         flush_dcache_page(page);
2936                         kunmap_atomic(userpage);
2937                         set_extent_uptodate(tree, cur, cur + iosize - 1,
2938                                             &cached, GFP_NOFS);
2939                         unlock_extent_cached(tree, cur,
2940                                              cur + iosize - 1,
2941                                              &cached, GFP_NOFS);
2942                         break;
2943                 }
2944                 em = __get_extent_map(inode, page, pg_offset, cur,
2945                                       end - cur + 1, get_extent, em_cached);
2946                 if (IS_ERR_OR_NULL(em)) {
2947                         SetPageError(page);
2948                         unlock_extent(tree, cur, end);
2949                         break;
2950                 }
2951                 extent_offset = cur - em->start;
2952                 BUG_ON(extent_map_end(em) <= cur);
2953                 BUG_ON(end < cur);
2954
2955                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2956                         this_bio_flag |= EXTENT_BIO_COMPRESSED;
2957                         extent_set_compress_type(&this_bio_flag,
2958                                                  em->compress_type);
2959                 }
2960
2961                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2962                 cur_end = min(extent_map_end(em) - 1, end);
2963                 iosize = ALIGN(iosize, blocksize);
2964                 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2965                         disk_io_size = em->block_len;
2966                         sector = em->block_start >> 9;
2967                 } else {
2968                         sector = (em->block_start + extent_offset) >> 9;
2969                         disk_io_size = iosize;
2970                 }
2971                 bdev = em->bdev;
2972                 block_start = em->block_start;
2973                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2974                         block_start = EXTENT_MAP_HOLE;
2975
2976                 /*
2977                  * If we have a file range that points to a compressed extent
2978                  * and it's followed by a consecutive file range that points to
2979                  * to the same compressed extent (possibly with a different
2980                  * offset and/or length, so it either points to the whole extent
2981                  * or only part of it), we must make sure we do not submit a
2982                  * single bio to populate the pages for the 2 ranges because
2983                  * this makes the compressed extent read zero out the pages
2984                  * belonging to the 2nd range. Imagine the following scenario:
2985                  *
2986                  *  File layout
2987                  *  [0 - 8K]                     [8K - 24K]
2988                  *    |                               |
2989                  *    |                               |
2990                  * points to extent X,         points to extent X,
2991                  * offset 4K, length of 8K     offset 0, length 16K
2992                  *
2993                  * [extent X, compressed length = 4K uncompressed length = 16K]
2994                  *
2995                  * If the bio to read the compressed extent covers both ranges,
2996                  * it will decompress extent X into the pages belonging to the
2997                  * first range and then it will stop, zeroing out the remaining
2998                  * pages that belong to the other range that points to extent X.
2999                  * So here we make sure we submit 2 bios, one for the first
3000                  * range and another one for the third range. Both will target
3001                  * the same physical extent from disk, but we can't currently
3002                  * make the compressed bio endio callback populate the pages
3003                  * for both ranges because each compressed bio is tightly
3004                  * coupled with a single extent map, and each range can have
3005                  * an extent map with a different offset value relative to the
3006                  * uncompressed data of our extent and different lengths. This
3007                  * is a corner case so we prioritize correctness over
3008                  * non-optimal behavior (submitting 2 bios for the same extent).
3009                  */
3010                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3011                     prev_em_start && *prev_em_start != (u64)-1 &&
3012                     *prev_em_start != em->orig_start)
3013                         force_bio_submit = true;
3014
3015                 if (prev_em_start)
3016                         *prev_em_start = em->orig_start;
3017
3018                 free_extent_map(em);
3019                 em = NULL;
3020
3021                 /* we've found a hole, just zero and go on */
3022                 if (block_start == EXTENT_MAP_HOLE) {
3023                         char *userpage;
3024                         struct extent_state *cached = NULL;
3025
3026                         userpage = kmap_atomic(page);
3027                         memset(userpage + pg_offset, 0, iosize);
3028                         flush_dcache_page(page);
3029                         kunmap_atomic(userpage);
3030
3031                         set_extent_uptodate(tree, cur, cur + iosize - 1,
3032                                             &cached, GFP_NOFS);
3033                         unlock_extent_cached(tree, cur,
3034                                              cur + iosize - 1,
3035                                              &cached, GFP_NOFS);
3036                         cur = cur + iosize;
3037                         pg_offset += iosize;
3038                         continue;
3039                 }
3040                 /* the get_extent function already copied into the page */
3041                 if (test_range_bit(tree, cur, cur_end,
3042                                    EXTENT_UPTODATE, 1, NULL)) {
3043                         check_page_uptodate(tree, page);
3044                         unlock_extent(tree, cur, cur + iosize - 1);
3045                         cur = cur + iosize;
3046                         pg_offset += iosize;
3047                         continue;
3048                 }
3049                 /* we have an inline extent but it didn't get marked up
3050                  * to date.  Error out
3051                  */
3052                 if (block_start == EXTENT_MAP_INLINE) {
3053                         SetPageError(page);
3054                         unlock_extent(tree, cur, cur + iosize - 1);
3055                         cur = cur + iosize;
3056                         pg_offset += iosize;
3057                         continue;
3058                 }
3059
3060                 pnr -= page->index;
3061                 ret = submit_extent_page(rw, tree, NULL, page,
3062                                          sector, disk_io_size, pg_offset,
3063                                          bdev, bio, pnr,
3064                                          end_bio_extent_readpage, mirror_num,
3065                                          *bio_flags,
3066                                          this_bio_flag,
3067                                          force_bio_submit);
3068                 if (!ret) {
3069                         nr++;
3070                         *bio_flags = this_bio_flag;
3071                 } else {
3072                         SetPageError(page);
3073                         unlock_extent(tree, cur, cur + iosize - 1);
3074                 }
3075                 cur = cur + iosize;
3076                 pg_offset += iosize;
3077         }
3078 out:
3079         if (!nr) {
3080                 if (!PageError(page))
3081                         SetPageUptodate(page);
3082                 unlock_page(page);
3083         }
3084         return 0;
3085 }
3086
3087 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3088                                              struct page *pages[], int nr_pages,
3089                                              u64 start, u64 end,
3090                                              get_extent_t *get_extent,
3091                                              struct extent_map **em_cached,
3092                                              struct bio **bio, int mirror_num,
3093                                              unsigned long *bio_flags, int rw,
3094                                              u64 *prev_em_start)
3095 {
3096         struct inode *inode;
3097         struct btrfs_ordered_extent *ordered;
3098         int index;
3099
3100         inode = pages[0]->mapping->host;
3101         while (1) {
3102                 lock_extent(tree, start, end);
3103                 ordered = btrfs_lookup_ordered_range(inode, start,
3104                                                      end - start + 1);
3105                 if (!ordered)
3106                         break;
3107                 unlock_extent(tree, start, end);
3108                 btrfs_start_ordered_extent(inode, ordered, 1);
3109                 btrfs_put_ordered_extent(ordered);
3110         }
3111
3112         for (index = 0; index < nr_pages; index++) {
3113                 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
3114                               mirror_num, bio_flags, rw, prev_em_start);
3115                 put_page(pages[index]);
3116         }
3117 }
3118
3119 static void __extent_readpages(struct extent_io_tree *tree,
3120                                struct page *pages[],
3121                                int nr_pages, get_extent_t *get_extent,
3122                                struct extent_map **em_cached,
3123                                struct bio **bio, int mirror_num,
3124                                unsigned long *bio_flags, int rw,
3125                                u64 *prev_em_start)
3126 {
3127         u64 start = 0;
3128         u64 end = 0;
3129         u64 page_start;
3130         int index;
3131         int first_index = 0;
3132
3133         for (index = 0; index < nr_pages; index++) {
3134                 page_start = page_offset(pages[index]);
3135                 if (!end) {
3136                         start = page_start;
3137                         end = start + PAGE_SIZE - 1;
3138                         first_index = index;
3139                 } else if (end + 1 == page_start) {
3140                         end += PAGE_SIZE;
3141                 } else {
3142                         __do_contiguous_readpages(tree, &pages[first_index],
3143                                                   index - first_index, start,
3144                                                   end, get_extent, em_cached,
3145                                                   bio, mirror_num, bio_flags,
3146                                                   rw, prev_em_start);
3147                         start = page_start;
3148                         end = start + PAGE_SIZE - 1;
3149                         first_index = index;
3150                 }
3151         }
3152
3153         if (end)
3154                 __do_contiguous_readpages(tree, &pages[first_index],
3155                                           index - first_index, start,
3156                                           end, get_extent, em_cached, bio,
3157                                           mirror_num, bio_flags, rw,
3158                                           prev_em_start);
3159 }
3160
3161 static int __extent_read_full_page(struct extent_io_tree *tree,
3162                                    struct page *page,
3163                                    get_extent_t *get_extent,
3164                                    struct bio **bio, int mirror_num,
3165                                    unsigned long *bio_flags, int rw)
3166 {
3167         struct inode *inode = page->mapping->host;
3168         struct btrfs_ordered_extent *ordered;
3169         u64 start = page_offset(page);
3170         u64 end = start + PAGE_SIZE - 1;
3171         int ret;
3172
3173         while (1) {
3174                 lock_extent(tree, start, end);
3175                 ordered = btrfs_lookup_ordered_range(inode, start,
3176                                                 PAGE_SIZE);
3177                 if (!ordered)
3178                         break;
3179                 unlock_extent(tree, start, end);
3180                 btrfs_start_ordered_extent(inode, ordered, 1);
3181                 btrfs_put_ordered_extent(ordered);
3182         }
3183
3184         ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3185                             bio_flags, rw, NULL);
3186         return ret;
3187 }
3188
3189 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3190                             get_extent_t *get_extent, int mirror_num)
3191 {
3192         struct bio *bio = NULL;
3193         unsigned long bio_flags = 0;
3194         int ret;
3195
3196         ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3197                                       &bio_flags, READ);
3198         if (bio)
3199                 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3200         return ret;
3201 }
3202
3203 static void update_nr_written(struct page *page, struct writeback_control *wbc,
3204                               unsigned long nr_written)
3205 {
3206         wbc->nr_to_write -= nr_written;
3207 }
3208
3209 /*
3210  * helper for __extent_writepage, doing all of the delayed allocation setup.
3211  *
3212  * This returns 1 if our fill_delalloc function did all the work required
3213  * to write the page (copy into inline extent).  In this case the IO has
3214  * been started and the page is already unlocked.
3215  *
3216  * This returns 0 if all went well (page still locked)
3217  * This returns < 0 if there were errors (page still locked)
3218  */
3219 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3220                               struct page *page, struct writeback_control *wbc,
3221                               struct extent_page_data *epd,
3222                               u64 delalloc_start,
3223                               unsigned long *nr_written)
3224 {
3225         struct extent_io_tree *tree = epd->tree;
3226         u64 page_end = delalloc_start + PAGE_SIZE - 1;
3227         u64 nr_delalloc;
3228         u64 delalloc_to_write = 0;
3229         u64 delalloc_end = 0;
3230         int ret;
3231         int page_started = 0;
3232
3233         if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3234                 return 0;
3235
3236         while (delalloc_end < page_end) {
3237                 nr_delalloc = find_lock_delalloc_range(inode, tree,
3238                                                page,
3239                                                &delalloc_start,
3240                                                &delalloc_end,
3241                                                BTRFS_MAX_EXTENT_SIZE);
3242                 if (nr_delalloc == 0) {
3243                         delalloc_start = delalloc_end + 1;
3244                         continue;
3245                 }
3246                 ret = tree->ops->fill_delalloc(inode, page,
3247                                                delalloc_start,
3248                                                delalloc_end,
3249                                                &page_started,
3250                                                nr_written);
3251                 /* File system has been set read-only */
3252                 if (ret) {
3253                         SetPageError(page);
3254                         /* fill_delalloc should be return < 0 for error
3255                          * but just in case, we use > 0 here meaning the
3256                          * IO is started, so we don't want to return > 0
3257                          * unless things are going well.
3258                          */
3259                         ret = ret < 0 ? ret : -EIO;
3260                         goto done;
3261                 }
3262                 /*
3263                  * delalloc_end is already one less than the total length, so
3264                  * we don't subtract one from PAGE_SIZE
3265                  */
3266                 delalloc_to_write += (delalloc_end - delalloc_start +
3267                                       PAGE_SIZE) >> PAGE_SHIFT;
3268                 delalloc_start = delalloc_end + 1;
3269         }
3270         if (wbc->nr_to_write < delalloc_to_write) {
3271                 int thresh = 8192;
3272
3273                 if (delalloc_to_write < thresh * 2)
3274                         thresh = delalloc_to_write;
3275                 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3276                                          thresh);
3277         }
3278
3279         /* did the fill delalloc function already unlock and start
3280          * the IO?
3281          */
3282         if (page_started) {
3283                 /*
3284                  * we've unlocked the page, so we can't update
3285                  * the mapping's writeback index, just update
3286                  * nr_to_write.
3287                  */
3288                 wbc->nr_to_write -= *nr_written;
3289                 return 1;
3290         }
3291
3292         ret = 0;
3293
3294 done:
3295         return ret;
3296 }
3297
3298 /*
3299  * helper for __extent_writepage.  This calls the writepage start hooks,
3300  * and does the loop to map the page into extents and bios.
3301  *
3302  * We return 1 if the IO is started and the page is unlocked,
3303  * 0 if all went well (page still locked)
3304  * < 0 if there were errors (page still locked)
3305  */
3306 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3307                                  struct page *page,
3308                                  struct writeback_control *wbc,
3309                                  struct extent_page_data *epd,
3310                                  loff_t i_size,
3311                                  unsigned long nr_written,
3312                                  int write_flags, int *nr_ret)
3313 {
3314         struct extent_io_tree *tree = epd->tree;
3315         u64 start = page_offset(page);
3316         u64 page_end = start + PAGE_SIZE - 1;
3317         u64 end;
3318         u64 cur = start;
3319         u64 extent_offset;
3320         u64 block_start;
3321         u64 iosize;
3322         sector_t sector;
3323         struct extent_state *cached_state = NULL;
3324         struct extent_map *em;
3325         struct block_device *bdev;
3326         size_t pg_offset = 0;
3327         size_t blocksize;
3328         int ret = 0;
3329         int nr = 0;
3330         bool compressed;
3331
3332         if (tree->ops && tree->ops->writepage_start_hook) {
3333                 ret = tree->ops->writepage_start_hook(page, start,
3334                                                       page_end);
3335                 if (ret) {
3336                         /* Fixup worker will requeue */
3337                         if (ret == -EBUSY)
3338                                 wbc->pages_skipped++;
3339                         else
3340                                 redirty_page_for_writepage(wbc, page);
3341
3342                         update_nr_written(page, wbc, nr_written);
3343                         unlock_page(page);
3344                         ret = 1;
3345                         goto done_unlocked;
3346                 }
3347         }
3348
3349         /*
3350          * we don't want to touch the inode after unlocking the page,
3351          * so we update the mapping writeback index now
3352          */
3353         update_nr_written(page, wbc, nr_written + 1);
3354
3355         end = page_end;
3356         if (i_size <= start) {
3357                 if (tree->ops && tree->ops->writepage_end_io_hook)
3358                         tree->ops->writepage_end_io_hook(page, start,
3359                                                          page_end, NULL, 1);
3360                 goto done;
3361         }
3362
3363         blocksize = inode->i_sb->s_blocksize;
3364
3365         while (cur <= end) {
3366                 u64 em_end;
3367                 unsigned long max_nr;
3368
3369                 if (cur >= i_size) {
3370                         if (tree->ops && tree->ops->writepage_end_io_hook)
3371                                 tree->ops->writepage_end_io_hook(page, cur,
3372                                                          page_end, NULL, 1);
3373                         break;
3374                 }
3375                 em = epd->get_extent(inode, page, pg_offset, cur,
3376                                      end - cur + 1, 1);
3377                 if (IS_ERR_OR_NULL(em)) {
3378                         SetPageError(page);
3379                         ret = PTR_ERR_OR_ZERO(em);
3380                         break;
3381                 }
3382
3383                 extent_offset = cur - em->start;
3384                 em_end = extent_map_end(em);
3385                 BUG_ON(em_end <= cur);
3386                 BUG_ON(end < cur);
3387                 iosize = min(em_end - cur, end - cur + 1);
3388                 iosize = ALIGN(iosize, blocksize);
3389                 sector = (em->block_start + extent_offset) >> 9;
3390                 bdev = em->bdev;
3391                 block_start = em->block_start;
3392                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3393                 free_extent_map(em);
3394                 em = NULL;
3395
3396                 /*
3397                  * compressed and inline extents are written through other
3398                  * paths in the FS
3399                  */
3400                 if (compressed || block_start == EXTENT_MAP_HOLE ||
3401                     block_start == EXTENT_MAP_INLINE) {
3402                         /*
3403                          * end_io notification does not happen here for
3404                          * compressed extents
3405                          */
3406                         if (!compressed && tree->ops &&
3407                             tree->ops->writepage_end_io_hook)
3408                                 tree->ops->writepage_end_io_hook(page, cur,
3409                                                          cur + iosize - 1,
3410                                                          NULL, 1);
3411                         else if (compressed) {
3412                                 /* we don't want to end_page_writeback on
3413                                  * a compressed extent.  this happens
3414                                  * elsewhere
3415                                  */
3416                                 nr++;
3417                         }
3418
3419                         cur += iosize;
3420                         pg_offset += iosize;
3421                         continue;
3422                 }
3423
3424                 max_nr = (i_size >> PAGE_SHIFT) + 1;
3425
3426                 set_range_writeback(tree, cur, cur + iosize - 1);
3427                 if (!PageWriteback(page)) {
3428                         btrfs_err(BTRFS_I(inode)->root->fs_info,
3429                                    "page %lu not writeback, cur %llu end %llu",
3430                                page->index, cur, end);
3431                 }
3432
3433                 ret = submit_extent_page(write_flags, tree, wbc, page,
3434                                          sector, iosize, pg_offset,
3435                                          bdev, &epd->bio, max_nr,
3436                                          end_bio_extent_writepage,
3437                                          0, 0, 0, false);
3438                 if (ret)
3439                         SetPageError(page);
3440
3441                 cur = cur + iosize;
3442                 pg_offset += iosize;
3443                 nr++;
3444         }
3445 done:
3446         *nr_ret = nr;
3447
3448 done_unlocked:
3449
3450         /* drop our reference on any cached states */
3451         free_extent_state(cached_state);
3452         return ret;
3453 }
3454
3455 /*
3456  * the writepage semantics are similar to regular writepage.  extent
3457  * records are inserted to lock ranges in the tree, and as dirty areas
3458  * are found, they are marked writeback.  Then the lock bits are removed
3459  * and the end_io handler clears the writeback ranges
3460  */
3461 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3462                               void *data)
3463 {
3464         struct inode *inode = page->mapping->host;
3465         struct extent_page_data *epd = data;
3466         u64 start = page_offset(page);
3467         u64 page_end = start + PAGE_SIZE - 1;
3468         int ret;
3469         int nr = 0;
3470         size_t pg_offset = 0;
3471         loff_t i_size = i_size_read(inode);
3472         unsigned long end_index = i_size >> PAGE_SHIFT;
3473         int write_flags;
3474         unsigned long nr_written = 0;
3475
3476         if (wbc->sync_mode == WB_SYNC_ALL)
3477                 write_flags = WRITE_SYNC;
3478         else
3479                 write_flags = WRITE;
3480
3481         trace___extent_writepage(page, inode, wbc);
3482
3483         WARN_ON(!PageLocked(page));
3484
3485         ClearPageError(page);
3486
3487         pg_offset = i_size & (PAGE_SIZE - 1);
3488         if (page->index > end_index ||
3489            (page->index == end_index && !pg_offset)) {
3490                 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3491                 unlock_page(page);
3492                 return 0;
3493         }
3494
3495         if (page->index == end_index) {
3496                 char *userpage;
3497
3498                 userpage = kmap_atomic(page);
3499                 memset(userpage + pg_offset, 0,
3500                        PAGE_SIZE - pg_offset);
3501                 kunmap_atomic(userpage);
3502                 flush_dcache_page(page);
3503         }
3504
3505         pg_offset = 0;
3506
3507         set_page_extent_mapped(page);
3508
3509         ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3510         if (ret == 1)
3511                 goto done_unlocked;
3512         if (ret)
3513                 goto done;
3514
3515         ret = __extent_writepage_io(inode, page, wbc, epd,
3516                                     i_size, nr_written, write_flags, &nr);
3517         if (ret == 1)
3518                 goto done_unlocked;
3519
3520 done:
3521         if (nr == 0) {
3522                 /* make sure the mapping tag for page dirty gets cleared */
3523                 set_page_writeback(page);
3524                 end_page_writeback(page);
3525         }
3526         if (PageError(page)) {
3527                 ret = ret < 0 ? ret : -EIO;
3528                 end_extent_writepage(page, ret, start, page_end);
3529         }
3530         unlock_page(page);
3531         return ret;
3532
3533 done_unlocked:
3534         return 0;
3535 }
3536
3537 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3538 {
3539         wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3540                        TASK_UNINTERRUPTIBLE);
3541 }
3542
3543 static noinline_for_stack int
3544 lock_extent_buffer_for_io(struct extent_buffer *eb,
3545                           struct btrfs_fs_info *fs_info,
3546                           struct extent_page_data *epd)
3547 {
3548         unsigned long i, num_pages;
3549         int flush = 0;
3550         int ret = 0;
3551
3552         if (!btrfs_try_tree_write_lock(eb)) {
3553                 flush = 1;
3554                 flush_write_bio(epd);
3555                 btrfs_tree_lock(eb);
3556         }
3557
3558         if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3559                 btrfs_tree_unlock(eb);
3560                 if (!epd->sync_io)
3561                         return 0;
3562                 if (!flush) {
3563                         flush_write_bio(epd);
3564                         flush = 1;
3565                 }
3566                 while (1) {
3567                         wait_on_extent_buffer_writeback(eb);
3568                         btrfs_tree_lock(eb);
3569                         if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3570                                 break;
3571                         btrfs_tree_unlock(eb);
3572                 }
3573         }
3574
3575         /*
3576          * We need to do this to prevent races in people who check if the eb is
3577          * under IO since we can end up having no IO bits set for a short period
3578          * of time.
3579          */
3580         spin_lock(&eb->refs_lock);
3581         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3582                 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3583                 spin_unlock(&eb->refs_lock);
3584                 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3585                 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3586                                      -eb->len,
3587                                      fs_info->dirty_metadata_batch);
3588                 ret = 1;
3589         } else {
3590                 spin_unlock(&eb->refs_lock);
3591         }
3592
3593         btrfs_tree_unlock(eb);
3594
3595         if (!ret)
3596                 return ret;
3597
3598         num_pages = num_extent_pages(eb->start, eb->len);
3599         for (i = 0; i < num_pages; i++) {
3600                 struct page *p = eb->pages[i];
3601
3602                 if (!trylock_page(p)) {
3603                         if (!flush) {
3604                                 flush_write_bio(epd);
3605                                 flush = 1;
3606                         }
3607                         lock_page(p);
3608                 }
3609         }
3610
3611         return ret;
3612 }
3613
3614 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3615 {
3616         clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3617         smp_mb__after_atomic();
3618         wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3619 }
3620
3621 static void set_btree_ioerr(struct page *page)
3622 {
3623         struct extent_buffer *eb = (struct extent_buffer *)page->private;
3624         struct btrfs_inode *btree_ino = BTRFS_I(eb->fs_info->btree_inode);
3625
3626         SetPageError(page);
3627         if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3628                 return;
3629
3630         /*
3631          * If writeback for a btree extent that doesn't belong to a log tree
3632          * failed, increment the counter transaction->eb_write_errors.
3633          * We do this because while the transaction is running and before it's
3634          * committing (when we call filemap_fdata[write|wait]_range against
3635          * the btree inode), we might have
3636          * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3637          * returns an error or an error happens during writeback, when we're
3638          * committing the transaction we wouldn't know about it, since the pages
3639          * can be no longer dirty nor marked anymore for writeback (if a
3640          * subsequent modification to the extent buffer didn't happen before the
3641          * transaction commit), which makes filemap_fdata[write|wait]_range not
3642          * able to find the pages tagged with SetPageError at transaction
3643          * commit time. So if this happens we must abort the transaction,
3644          * otherwise we commit a super block with btree roots that point to
3645          * btree nodes/leafs whose content on disk is invalid - either garbage
3646          * or the content of some node/leaf from a past generation that got
3647          * cowed or deleted and is no longer valid.
3648          *
3649          * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3650          * not be enough - we need to distinguish between log tree extents vs
3651          * non-log tree extents, and the next filemap_fdatawait_range() call
3652          * will catch and clear such errors in the mapping - and that call might
3653          * be from a log sync and not from a transaction commit. Also, checking
3654          * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3655          * not done and would not be reliable - the eb might have been released
3656          * from memory and reading it back again means that flag would not be
3657          * set (since it's a runtime flag, not persisted on disk).
3658          *
3659          * Using the flags below in the btree inode also makes us achieve the
3660          * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3661          * writeback for all dirty pages and before filemap_fdatawait_range()
3662          * is called, the writeback for all dirty pages had already finished
3663          * with errors - because we were not using AS_EIO/AS_ENOSPC,
3664          * filemap_fdatawait_range() would return success, as it could not know
3665          * that writeback errors happened (the pages were no longer tagged for
3666          * writeback).
3667          */
3668         switch (eb->log_index) {
3669         case -1:
3670                 set_bit(BTRFS_INODE_BTREE_ERR, &btree_ino->runtime_flags);
3671                 break;
3672         case 0:
3673                 set_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
3674                 break;
3675         case 1:
3676                 set_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
3677                 break;
3678         default:
3679                 BUG(); /* unexpected, logic error */
3680         }
3681 }
3682
3683 static void end_bio_extent_buffer_writepage(struct bio *bio)
3684 {
3685         struct bio_vec *bvec;
3686         struct extent_buffer *eb;
3687         int i, done;
3688
3689         bio_for_each_segment_all(bvec, bio, i) {
3690                 struct page *page = bvec->bv_page;
3691
3692                 eb = (struct extent_buffer *)page->private;
3693                 BUG_ON(!eb);
3694                 done = atomic_dec_and_test(&eb->io_pages);
3695
3696                 if (bio->bi_error ||
3697                     test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3698                         ClearPageUptodate(page);
3699                         set_btree_ioerr(page);
3700                 }
3701
3702                 end_page_writeback(page);
3703
3704                 if (!done)
3705                         continue;
3706
3707                 end_extent_buffer_writeback(eb);
3708         }
3709
3710         bio_put(bio);
3711 }
3712
3713 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3714                         struct btrfs_fs_info *fs_info,
3715                         struct writeback_control *wbc,
3716                         struct extent_page_data *epd)
3717 {
3718         struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3719         struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3720         u64 offset = eb->start;
3721         unsigned long i, num_pages;
3722         unsigned long bio_flags = 0;
3723         int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
3724         int ret = 0;
3725
3726         clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3727         num_pages = num_extent_pages(eb->start, eb->len);
3728         atomic_set(&eb->io_pages, num_pages);
3729         if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3730                 bio_flags = EXTENT_BIO_TREE_LOG;
3731
3732         for (i = 0; i < num_pages; i++) {
3733                 struct page *p = eb->pages[i];
3734
3735                 clear_page_dirty_for_io(p);
3736                 set_page_writeback(p);
3737                 ret = submit_extent_page(rw, tree, wbc, p, offset >> 9,
3738                                          PAGE_SIZE, 0, bdev, &epd->bio,
3739                                          -1, end_bio_extent_buffer_writepage,
3740                                          0, epd->bio_flags, bio_flags, false);
3741                 epd->bio_flags = bio_flags;
3742                 if (ret) {
3743                         set_btree_ioerr(p);
3744                         end_page_writeback(p);
3745                         if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3746                                 end_extent_buffer_writeback(eb);
3747                         ret = -EIO;
3748                         break;
3749                 }
3750                 offset += PAGE_SIZE;
3751                 update_nr_written(p, wbc, 1);
3752                 unlock_page(p);
3753         }
3754
3755         if (unlikely(ret)) {
3756                 for (; i < num_pages; i++) {
3757                         struct page *p = eb->pages[i];
3758                         clear_page_dirty_for_io(p);
3759                         unlock_page(p);
3760                 }
3761         }
3762
3763         return ret;
3764 }
3765
3766 int btree_write_cache_pages(struct address_space *mapping,
3767                                    struct writeback_control *wbc)
3768 {
3769         struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3770         struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3771         struct extent_buffer *eb, *prev_eb = NULL;
3772         struct extent_page_data epd = {
3773                 .bio = NULL,
3774                 .tree = tree,
3775                 .extent_locked = 0,
3776                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3777                 .bio_flags = 0,
3778         };
3779         int ret = 0;
3780         int done = 0;
3781         int nr_to_write_done = 0;
3782         struct pagevec pvec;
3783         int nr_pages;
3784         pgoff_t index;
3785         pgoff_t end;            /* Inclusive */
3786         int scanned = 0;
3787         int tag;
3788
3789         pagevec_init(&pvec, 0);
3790         if (wbc->range_cyclic) {
3791                 index = mapping->writeback_index; /* Start from prev offset */
3792                 end = -1;
3793         } else {
3794                 index = wbc->range_start >> PAGE_SHIFT;
3795                 end = wbc->range_end >> PAGE_SHIFT;
3796                 scanned = 1;
3797         }
3798         if (wbc->sync_mode == WB_SYNC_ALL)
3799                 tag = PAGECACHE_TAG_TOWRITE;
3800         else
3801                 tag = PAGECACHE_TAG_DIRTY;
3802 retry:
3803         if (wbc->sync_mode == WB_SYNC_ALL)
3804                 tag_pages_for_writeback(mapping, index, end);
3805         while (!done && !nr_to_write_done && (index <= end) &&
3806                (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3807                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3808                 unsigned i;
3809
3810                 scanned = 1;
3811                 for (i = 0; i < nr_pages; i++) {
3812                         struct page *page = pvec.pages[i];
3813
3814                         if (!PagePrivate(page))
3815                                 continue;
3816
3817                         if (!wbc->range_cyclic && page->index > end) {
3818                                 done = 1;
3819                                 break;
3820                         }
3821
3822                         spin_lock(&mapping->private_lock);
3823                         if (!PagePrivate(page)) {
3824                                 spin_unlock(&mapping->private_lock);
3825                                 continue;
3826                         }
3827
3828                         eb = (struct extent_buffer *)page->private;
3829
3830                         /*
3831                          * Shouldn't happen and normally this would be a BUG_ON
3832                          * but no sense in crashing the users box for something
3833                          * we can survive anyway.
3834                          */
3835                         if (WARN_ON(!eb)) {
3836                                 spin_unlock(&mapping->private_lock);
3837                                 continue;
3838                         }
3839
3840                         if (eb == prev_eb) {
3841                                 spin_unlock(&mapping->private_lock);
3842                                 continue;
3843                         }
3844
3845                         ret = atomic_inc_not_zero(&eb->refs);
3846                         spin_unlock(&mapping->private_lock);
3847                         if (!ret)
3848                                 continue;
3849
3850                         prev_eb = eb;
3851                         ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3852                         if (!ret) {
3853                                 free_extent_buffer(eb);
3854                                 continue;
3855                         }
3856
3857                         ret = write_one_eb(eb, fs_info, wbc, &epd);
3858                         if (ret) {
3859                                 done = 1;
3860                                 free_extent_buffer(eb);
3861                                 break;
3862                         }
3863                         free_extent_buffer(eb);
3864
3865                         /*
3866                          * the filesystem may choose to bump up nr_to_write.
3867                          * We have to make sure to honor the new nr_to_write
3868                          * at any time
3869                          */
3870                         nr_to_write_done = wbc->nr_to_write <= 0;
3871                 }
3872                 pagevec_release(&pvec);
3873                 cond_resched();
3874         }
3875         if (!scanned && !done) {
3876                 /*
3877                  * We hit the last page and there is more work to be done: wrap
3878                  * back to the start of the file
3879                  */
3880                 scanned = 1;
3881                 index = 0;
3882                 goto retry;
3883         }
3884         flush_write_bio(&epd);
3885         return ret;
3886 }
3887
3888 /**
3889  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3890  * @mapping: address space structure to write
3891  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3892  * @writepage: function called for each page
3893  * @data: data passed to writepage function
3894  *
3895  * If a page is already under I/O, write_cache_pages() skips it, even
3896  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3897  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3898  * and msync() need to guarantee that all the data which was dirty at the time
3899  * the call was made get new I/O started against them.  If wbc->sync_mode is
3900  * WB_SYNC_ALL then we were called for data integrity and we must wait for
3901  * existing IO to complete.
3902  */
3903 static int extent_write_cache_pages(struct extent_io_tree *tree,
3904                              struct address_space *mapping,
3905                              struct writeback_control *wbc,
3906                              writepage_t writepage, void *data,
3907                              void (*flush_fn)(void *))
3908 {
3909         struct inode *inode = mapping->host;
3910         int ret = 0;
3911         int done = 0;
3912         int nr_to_write_done = 0;
3913         struct pagevec pvec;
3914         int nr_pages;
3915         pgoff_t index;
3916         pgoff_t end;            /* Inclusive */
3917         pgoff_t done_index;
3918         int range_whole = 0;
3919         int scanned = 0;
3920         int tag;
3921
3922         /*
3923          * We have to hold onto the inode so that ordered extents can do their
3924          * work when the IO finishes.  The alternative to this is failing to add
3925          * an ordered extent if the igrab() fails there and that is a huge pain
3926          * to deal with, so instead just hold onto the inode throughout the
3927          * writepages operation.  If it fails here we are freeing up the inode
3928          * anyway and we'd rather not waste our time writing out stuff that is
3929          * going to be truncated anyway.
3930          */
3931         if (!igrab(inode))
3932                 return 0;
3933
3934         pagevec_init(&pvec, 0);
3935         if (wbc->range_cyclic) {
3936                 index = mapping->writeback_index; /* Start from prev offset */
3937                 end = -1;
3938         } else {
3939                 index = wbc->range_start >> PAGE_SHIFT;
3940                 end = wbc->range_end >> PAGE_SHIFT;
3941                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3942                         range_whole = 1;
3943                 scanned = 1;
3944         }
3945         if (wbc->sync_mode == WB_SYNC_ALL)
3946                 tag = PAGECACHE_TAG_TOWRITE;
3947         else
3948                 tag = PAGECACHE_TAG_DIRTY;
3949 retry:
3950         if (wbc->sync_mode == WB_SYNC_ALL)
3951                 tag_pages_for_writeback(mapping, index, end);
3952         done_index = index;
3953         while (!done && !nr_to_write_done && (index <= end) &&
3954                (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3955                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3956                 unsigned i;
3957
3958                 scanned = 1;
3959                 for (i = 0; i < nr_pages; i++) {
3960                         struct page *page = pvec.pages[i];
3961
3962                         done_index = page->index;
3963                         /*
3964                          * At this point we hold neither mapping->tree_lock nor
3965                          * lock on the page itself: the page may be truncated or
3966                          * invalidated (changing page->mapping to NULL), or even
3967                          * swizzled back from swapper_space to tmpfs file
3968                          * mapping
3969                          */
3970                         if (!trylock_page(page)) {
3971                                 flush_fn(data);
3972                                 lock_page(page);
3973                         }
3974
3975                         if (unlikely(page->mapping != mapping)) {
3976                                 unlock_page(page);
3977                                 continue;
3978                         }
3979
3980                         if (!wbc->range_cyclic && page->index > end) {
3981                                 done = 1;
3982                                 unlock_page(page);
3983                                 continue;
3984                         }
3985
3986                         if (wbc->sync_mode != WB_SYNC_NONE) {
3987                                 if (PageWriteback(page))
3988                                         flush_fn(data);
3989                                 wait_on_page_writeback(page);
3990                         }
3991
3992                         if (PageWriteback(page) ||
3993                             !clear_page_dirty_for_io(page)) {
3994                                 unlock_page(page);
3995                                 continue;
3996                         }
3997
3998                         ret = (*writepage)(page, wbc, data);
3999
4000                         if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4001                                 unlock_page(page);
4002                                 ret = 0;
4003                         }
4004                         if (ret < 0) {
4005                                 /*
4006                                  * done_index is set past this page,
4007                                  * so media errors will not choke
4008                                  * background writeout for the entire
4009                                  * file. This has consequences for
4010                                  * range_cyclic semantics (ie. it may
4011                                  * not be suitable for data integrity
4012                                  * writeout).
4013                                  */
4014                                 done_index = page->index + 1;
4015                                 done = 1;
4016                                 break;
4017                         }
4018
4019                         /*
4020                          * the filesystem may choose to bump up nr_to_write.
4021                          * We have to make sure to honor the new nr_to_write
4022                          * at any time
4023                          */
4024                         nr_to_write_done = wbc->nr_to_write <= 0;
4025                 }
4026                 pagevec_release(&pvec);
4027                 cond_resched();
4028         }
4029         if (!scanned && !done) {
4030                 /*
4031                  * We hit the last page and there is more work to be done: wrap
4032                  * back to the start of the file
4033                  */
4034                 scanned = 1;
4035                 index = 0;
4036                 goto retry;
4037         }
4038
4039         if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4040                 mapping->writeback_index = done_index;
4041
4042         btrfs_add_delayed_iput(inode);
4043         return ret;
4044 }
4045
4046 static void flush_epd_write_bio(struct extent_page_data *epd)
4047 {
4048         if (epd->bio) {
4049                 int rw = WRITE;
4050                 int ret;
4051
4052                 if (epd->sync_io)
4053                         rw = WRITE_SYNC;
4054
4055                 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
4056                 BUG_ON(ret < 0); /* -ENOMEM */
4057                 epd->bio = NULL;
4058         }
4059 }
4060
4061 static noinline void flush_write_bio(void *data)
4062 {
4063         struct extent_page_data *epd = data;
4064         flush_epd_write_bio(epd);
4065 }
4066
4067 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4068                           get_extent_t *get_extent,
4069                           struct writeback_control *wbc)
4070 {
4071         int ret;
4072         struct extent_page_data epd = {
4073                 .bio = NULL,
4074                 .tree = tree,
4075                 .get_extent = get_extent,
4076                 .extent_locked = 0,
4077                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4078                 .bio_flags = 0,
4079         };
4080
4081         ret = __extent_writepage(page, wbc, &epd);
4082
4083         flush_epd_write_bio(&epd);
4084         return ret;
4085 }
4086
4087 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4088                               u64 start, u64 end, get_extent_t *get_extent,
4089                               int mode)
4090 {
4091         int ret = 0;
4092         struct address_space *mapping = inode->i_mapping;
4093         struct page *page;
4094         unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4095                 PAGE_SHIFT;
4096
4097         struct extent_page_data epd = {
4098                 .bio = NULL,
4099                 .tree = tree,
4100                 .get_extent = get_extent,
4101                 .extent_locked = 1,
4102                 .sync_io = mode == WB_SYNC_ALL,
4103                 .bio_flags = 0,
4104         };
4105         struct writeback_control wbc_writepages = {
4106                 .sync_mode      = mode,
4107                 .nr_to_write    = nr_pages * 2,
4108                 .range_start    = start,
4109                 .range_end      = end + 1,
4110         };
4111
4112         while (start <= end) {
4113                 page = find_get_page(mapping, start >> PAGE_SHIFT);
4114                 if (clear_page_dirty_for_io(page))
4115                         ret = __extent_writepage(page, &wbc_writepages, &epd);
4116                 else {
4117                         if (tree->ops && tree->ops->writepage_end_io_hook)
4118                                 tree->ops->writepage_end_io_hook(page, start,
4119                                                  start + PAGE_SIZE - 1,
4120                                                  NULL, 1);
4121                         unlock_page(page);
4122                 }
4123                 put_page(page);
4124                 start += PAGE_SIZE;
4125         }
4126
4127         flush_epd_write_bio(&epd);
4128         return ret;
4129 }
4130
4131 int extent_writepages(struct extent_io_tree *tree,
4132                       struct address_space *mapping,
4133                       get_extent_t *get_extent,
4134                       struct writeback_control *wbc)
4135 {
4136         int ret = 0;
4137         struct extent_page_data epd = {
4138                 .bio = NULL,
4139                 .tree = tree,
4140                 .get_extent = get_extent,
4141                 .extent_locked = 0,
4142                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4143                 .bio_flags = 0,
4144         };
4145
4146         ret = extent_write_cache_pages(tree, mapping, wbc,
4147                                        __extent_writepage, &epd,
4148                                        flush_write_bio);
4149         flush_epd_write_bio(&epd);
4150         return ret;
4151 }
4152
4153 int extent_readpages(struct extent_io_tree *tree,
4154                      struct address_space *mapping,
4155                      struct list_head *pages, unsigned nr_pages,
4156                      get_extent_t get_extent)
4157 {
4158         struct bio *bio = NULL;
4159         unsigned page_idx;
4160         unsigned long bio_flags = 0;
4161         struct page *pagepool[16];
4162         struct page *page;
4163         struct extent_map *em_cached = NULL;
4164         int nr = 0;
4165         u64 prev_em_start = (u64)-1;
4166
4167         for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4168                 page = list_entry(pages->prev, struct page, lru);
4169
4170                 prefetchw(&page->flags);
4171                 list_del(&page->lru);
4172                 if (add_to_page_cache_lru(page, mapping,
4173                                         page->index, GFP_NOFS)) {
4174                         put_page(page);
4175                         continue;
4176                 }
4177
4178                 pagepool[nr++] = page;
4179                 if (nr < ARRAY_SIZE(pagepool))
4180                         continue;
4181                 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4182                                    &bio, 0, &bio_flags, READ, &prev_em_start);
4183                 nr = 0;
4184         }
4185         if (nr)
4186                 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4187                                    &bio, 0, &bio_flags, READ, &prev_em_start);
4188
4189         if (em_cached)
4190                 free_extent_map(em_cached);
4191
4192         BUG_ON(!list_empty(pages));
4193         if (bio)
4194                 return submit_one_bio(READ, bio, 0, bio_flags);
4195         return 0;
4196 }
4197
4198 /*
4199  * basic invalidatepage code, this waits on any locked or writeback
4200  * ranges corresponding to the page, and then deletes any extent state
4201  * records from the tree
4202  */
4203 int extent_invalidatepage(struct extent_io_tree *tree,
4204                           struct page *page, unsigned long offset)
4205 {
4206         struct extent_state *cached_state = NULL;
4207         u64 start = page_offset(page);
4208         u64 end = start + PAGE_SIZE - 1;
4209         size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4210
4211         start += ALIGN(offset, blocksize);
4212         if (start > end)
4213                 return 0;
4214
4215         lock_extent_bits(tree, start, end, &cached_state);
4216         wait_on_page_writeback(page);
4217         clear_extent_bit(tree, start, end,
4218                          EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4219                          EXTENT_DO_ACCOUNTING,
4220                          1, 1, &cached_state, GFP_NOFS);
4221         return 0;
4222 }
4223
4224 /*
4225  * a helper for releasepage, this tests for areas of the page that
4226  * are locked or under IO and drops the related state bits if it is safe
4227  * to drop the page.
4228  */
4229 static int try_release_extent_state(struct extent_map_tree *map,
4230                                     struct extent_io_tree *tree,
4231                                     struct page *page, gfp_t mask)
4232 {
4233         u64 start = page_offset(page);
4234         u64 end = start + PAGE_SIZE - 1;
4235         int ret = 1;
4236
4237         if (test_range_bit(tree, start, end,
4238                            EXTENT_IOBITS, 0, NULL))
4239                 ret = 0;
4240         else {
4241                 if ((mask & GFP_NOFS) == GFP_NOFS)
4242                         mask = GFP_NOFS;
4243                 /*
4244                  * at this point we can safely clear everything except the
4245                  * locked bit and the nodatasum bit
4246                  */
4247                 ret = clear_extent_bit(tree, start, end,
4248                                  ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4249                                  0, 0, NULL, mask);
4250
4251                 /* if clear_extent_bit failed for enomem reasons,
4252                  * we can't allow the release to continue.
4253                  */
4254                 if (ret < 0)
4255                         ret = 0;
4256                 else
4257                         ret = 1;
4258         }
4259         return ret;
4260 }
4261
4262 /*
4263  * a helper for releasepage.  As long as there are no locked extents
4264  * in the range corresponding to the page, both state records and extent
4265  * map records are removed
4266  */
4267 int try_release_extent_mapping(struct extent_map_tree *map,
4268                                struct extent_io_tree *tree, struct page *page,
4269                                gfp_t mask)
4270 {
4271         struct extent_map *em;
4272         u64 start = page_offset(page);
4273         u64 end = start + PAGE_SIZE - 1;
4274
4275         if (gfpflags_allow_blocking(mask) &&
4276             page->mapping->host->i_size > SZ_16M) {
4277                 u64 len;
4278                 while (start <= end) {
4279                         len = end - start + 1;
4280                         write_lock(&map->lock);
4281                         em = lookup_extent_mapping(map, start, len);
4282                         if (!em) {
4283                                 write_unlock(&map->lock);
4284                                 break;
4285                         }
4286                         if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4287                             em->start != start) {
4288                                 write_unlock(&map->lock);
4289                                 free_extent_map(em);
4290                                 break;
4291                         }
4292                         if (!test_range_bit(tree, em->start,
4293                                             extent_map_end(em) - 1,
4294                                             EXTENT_LOCKED | EXTENT_WRITEBACK,
4295                                             0, NULL)) {
4296                                 remove_extent_mapping(map, em);
4297                                 /* once for the rb tree */
4298                                 free_extent_map(em);
4299                         }
4300                         start = extent_map_end(em);
4301                         write_unlock(&map->lock);
4302
4303                         /* once for us */
4304                         free_extent_map(em);
4305                 }
4306         }
4307         return try_release_extent_state(map, tree, page, mask);
4308 }
4309
4310 /*
4311  * helper function for fiemap, which doesn't want to see any holes.
4312  * This maps until we find something past 'last'
4313  */
4314 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4315                                                 u64 offset,
4316                                                 u64 last,
4317                                                 get_extent_t *get_extent)
4318 {
4319         u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4320         struct extent_map *em;
4321         u64 len;
4322
4323         if (offset >= last)
4324                 return NULL;
4325
4326         while (1) {
4327                 len = last - offset;
4328                 if (len == 0)
4329                         break;
4330                 len = ALIGN(len, sectorsize);
4331                 em = get_extent(inode, NULL, 0, offset, len, 0);
4332                 if (IS_ERR_OR_NULL(em))
4333                         return em;
4334
4335                 /* if this isn't a hole return it */
4336                 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4337                     em->block_start != EXTENT_MAP_HOLE) {
4338                         return em;
4339                 }
4340
4341                 /* this is a hole, advance to the next extent */
4342                 offset = extent_map_end(em);
4343                 free_extent_map(em);
4344                 if (offset >= last)
4345                         break;
4346         }
4347         return NULL;
4348 }
4349
4350 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4351                 __u64 start, __u64 len, get_extent_t *get_extent)
4352 {
4353         int ret = 0;
4354         u64 off = start;
4355         u64 max = start + len;
4356         u32 flags = 0;
4357         u32 found_type;
4358         u64 last;
4359         u64 last_for_get_extent = 0;
4360         u64 disko = 0;
4361         u64 isize = i_size_read(inode);
4362         struct btrfs_key found_key;
4363         struct extent_map *em = NULL;
4364         struct extent_state *cached_state = NULL;
4365         struct btrfs_path *path;
4366         struct btrfs_root *root = BTRFS_I(inode)->root;
4367         int end = 0;
4368         u64 em_start = 0;
4369         u64 em_len = 0;
4370         u64 em_end = 0;
4371
4372         if (len == 0)
4373                 return -EINVAL;
4374
4375         path = btrfs_alloc_path();
4376         if (!path)
4377                 return -ENOMEM;
4378         path->leave_spinning = 1;
4379
4380         start = round_down(start, BTRFS_I(inode)->root->sectorsize);
4381         len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start;
4382
4383         /*
4384          * lookup the last file extent.  We're not using i_size here
4385          * because there might be preallocation past i_size
4386          */
4387         ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4388                                        0);
4389         if (ret < 0) {
4390                 btrfs_free_path(path);
4391                 return ret;
4392         }
4393         WARN_ON(!ret);
4394         path->slots[0]--;
4395         btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4396         found_type = found_key.type;
4397
4398         /* No extents, but there might be delalloc bits */
4399         if (found_key.objectid != btrfs_ino(inode) ||
4400             found_type != BTRFS_EXTENT_DATA_KEY) {
4401                 /* have to trust i_size as the end */
4402                 last = (u64)-1;
4403                 last_for_get_extent = isize;
4404         } else {
4405                 /*
4406                  * remember the start of the last extent.  There are a
4407                  * bunch of different factors that go into the length of the
4408                  * extent, so its much less complex to remember where it started
4409                  */
4410                 last = found_key.offset;
4411                 last_for_get_extent = last + 1;
4412         }
4413         btrfs_release_path(path);
4414
4415         /*
4416          * we might have some extents allocated but more delalloc past those
4417          * extents.  so, we trust isize unless the start of the last extent is
4418          * beyond isize
4419          */
4420         if (last < isize) {
4421                 last = (u64)-1;
4422                 last_for_get_extent = isize;
4423         }
4424
4425         lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4426                          &cached_state);
4427
4428         em = get_extent_skip_holes(inode, start, last_for_get_extent,
4429                                    get_extent);
4430         if (!em)
4431                 goto out;
4432         if (IS_ERR(em)) {
4433                 ret = PTR_ERR(em);
4434                 goto out;
4435         }
4436
4437         while (!end) {
4438                 u64 offset_in_extent = 0;
4439
4440                 /* break if the extent we found is outside the range */
4441                 if (em->start >= max || extent_map_end(em) < off)
4442                         break;
4443
4444                 /*
4445                  * get_extent may return an extent that starts before our
4446                  * requested range.  We have to make sure the ranges
4447                  * we return to fiemap always move forward and don't
4448                  * overlap, so adjust the offsets here
4449                  */
4450                 em_start = max(em->start, off);
4451
4452                 /*
4453                  * record the offset from the start of the extent
4454                  * for adjusting the disk offset below.  Only do this if the
4455                  * extent isn't compressed since our in ram offset may be past
4456                  * what we have actually allocated on disk.
4457                  */
4458                 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4459                         offset_in_extent = em_start - em->start;
4460                 em_end = extent_map_end(em);
4461                 em_len = em_end - em_start;
4462                 disko = 0;
4463                 flags = 0;
4464
4465                 /*
4466                  * bump off for our next call to get_extent
4467                  */
4468                 off = extent_map_end(em);
4469                 if (off >= max)
4470                         end = 1;
4471
4472                 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4473                         end = 1;
4474                         flags |= FIEMAP_EXTENT_LAST;
4475                 } else if (em->block_start == EXTENT_MAP_INLINE) {
4476                         flags |= (FIEMAP_EXTENT_DATA_INLINE |
4477                                   FIEMAP_EXTENT_NOT_ALIGNED);
4478                 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4479                         flags |= (FIEMAP_EXTENT_DELALLOC |
4480                                   FIEMAP_EXTENT_UNKNOWN);
4481                 } else if (fieinfo->fi_extents_max) {
4482                         u64 bytenr = em->block_start -
4483                                 (em->start - em->orig_start);
4484
4485                         disko = em->block_start + offset_in_extent;
4486
4487                         /*
4488                          * As btrfs supports shared space, this information
4489                          * can be exported to userspace tools via
4490                          * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
4491                          * then we're just getting a count and we can skip the
4492                          * lookup stuff.
4493                          */
4494                         ret = btrfs_check_shared(NULL, root->fs_info,
4495                                                  root->objectid,
4496                                                  btrfs_ino(inode), bytenr);
4497                         if (ret < 0)
4498                                 goto out_free;
4499                         if (ret)
4500                                 flags |= FIEMAP_EXTENT_SHARED;
4501                         ret = 0;
4502                 }
4503                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4504                         flags |= FIEMAP_EXTENT_ENCODED;
4505                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4506                         flags |= FIEMAP_EXTENT_UNWRITTEN;
4507
4508                 free_extent_map(em);
4509                 em = NULL;
4510                 if ((em_start >= last) || em_len == (u64)-1 ||
4511                    (last == (u64)-1 && isize <= em_end)) {
4512                         flags |= FIEMAP_EXTENT_LAST;
4513                         end = 1;
4514                 }
4515
4516                 /* now scan forward to see if this is really the last extent. */
4517                 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4518                                            get_extent);
4519                 if (IS_ERR(em)) {
4520                         ret = PTR_ERR(em);
4521                         goto out;
4522                 }
4523                 if (!em) {
4524                         flags |= FIEMAP_EXTENT_LAST;
4525                         end = 1;
4526                 }
4527                 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4528                                               em_len, flags);
4529                 if (ret) {
4530                         if (ret == 1)
4531                                 ret = 0;
4532                         goto out_free;
4533                 }
4534         }
4535 out_free:
4536         free_extent_map(em);
4537 out:
4538         btrfs_free_path(path);
4539         unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4540                              &cached_state, GFP_NOFS);
4541         return ret;
4542 }
4543
4544 static void __free_extent_buffer(struct extent_buffer *eb)
4545 {
4546         btrfs_leak_debug_del(&eb->leak_list);
4547         kmem_cache_free(extent_buffer_cache, eb);
4548 }
4549
4550 int extent_buffer_under_io(struct extent_buffer *eb)
4551 {
4552         return (atomic_read(&eb->io_pages) ||
4553                 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4554                 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4555 }
4556
4557 /*
4558  * Helper for releasing extent buffer page.
4559  */
4560 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
4561 {
4562         unsigned long index;
4563         struct page *page;
4564         int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4565
4566         BUG_ON(extent_buffer_under_io(eb));
4567
4568         index = num_extent_pages(eb->start, eb->len);
4569         if (index == 0)
4570                 return;
4571
4572         do {
4573                 index--;
4574                 page = eb->pages[index];
4575                 if (!page)
4576                         continue;
4577                 if (mapped)
4578                         spin_lock(&page->mapping->private_lock);
4579                 /*
4580                  * We do this since we'll remove the pages after we've
4581                  * removed the eb from the radix tree, so we could race
4582                  * and have this page now attached to the new eb.  So
4583                  * only clear page_private if it's still connected to
4584                  * this eb.
4585                  */
4586                 if (PagePrivate(page) &&
4587                     page->private == (unsigned long)eb) {
4588                         BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4589                         BUG_ON(PageDirty(page));
4590                         BUG_ON(PageWriteback(page));
4591                         /*
4592                          * We need to make sure we haven't be attached
4593                          * to a new eb.
4594                          */
4595                         ClearPagePrivate(page);
4596                         set_page_private(page, 0);
4597                         /* One for the page private */
4598                         put_page(page);
4599                 }
4600
4601                 if (mapped)
4602                         spin_unlock(&page->mapping->private_lock);
4603
4604                 /* One for when we alloced the page */
4605                 put_page(page);
4606         } while (index != 0);
4607 }
4608
4609 /*
4610  * Helper for releasing the extent buffer.
4611  */
4612 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4613 {
4614         btrfs_release_extent_buffer_page(eb);
4615         __free_extent_buffer(eb);
4616 }
4617
4618 static struct extent_buffer *
4619 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4620                       unsigned long len)
4621 {
4622         struct extent_buffer *eb = NULL;
4623
4624         eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4625         eb->start = start;
4626         eb->len = len;
4627         eb->fs_info = fs_info;
4628         eb->bflags = 0;
4629         rwlock_init(&eb->lock);
4630         atomic_set(&eb->write_locks, 0);
4631         atomic_set(&eb->read_locks, 0);
4632         atomic_set(&eb->blocking_readers, 0);
4633         atomic_set(&eb->blocking_writers, 0);
4634         atomic_set(&eb->spinning_readers, 0);
4635         atomic_set(&eb->spinning_writers, 0);
4636         eb->lock_nested = 0;
4637         init_waitqueue_head(&eb->write_lock_wq);
4638         init_waitqueue_head(&eb->read_lock_wq);
4639
4640         btrfs_leak_debug_add(&eb->leak_list, &buffers);
4641
4642         spin_lock_init(&eb->refs_lock);
4643         atomic_set(&eb->refs, 1);
4644         atomic_set(&eb->io_pages, 0);
4645
4646         /*
4647          * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4648          */
4649         BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4650                 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4651         BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4652
4653         return eb;
4654 }
4655
4656 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4657 {
4658         unsigned long i;
4659         struct page *p;
4660         struct extent_buffer *new;
4661         unsigned long num_pages = num_extent_pages(src->start, src->len);
4662
4663         new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4664         if (new == NULL)
4665                 return NULL;
4666
4667         for (i = 0; i < num_pages; i++) {
4668                 p = alloc_page(GFP_NOFS);
4669                 if (!p) {
4670                         btrfs_release_extent_buffer(new);
4671                         return NULL;
4672                 }
4673                 attach_extent_buffer_page(new, p);
4674                 WARN_ON(PageDirty(p));
4675                 SetPageUptodate(p);
4676                 new->pages[i] = p;
4677         }
4678
4679         copy_extent_buffer(new, src, 0, 0, src->len);
4680         set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4681         set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4682
4683         return new;
4684 }
4685
4686 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4687                                                   u64 start, unsigned long len)
4688 {
4689         struct extent_buffer *eb;
4690         unsigned long num_pages;
4691         unsigned long i;
4692
4693         num_pages = num_extent_pages(start, len);
4694
4695         eb = __alloc_extent_buffer(fs_info, start, len);
4696         if (!eb)
4697                 return NULL;
4698
4699         for (i = 0; i < num_pages; i++) {
4700                 eb->pages[i] = alloc_page(GFP_NOFS);
4701                 if (!eb->pages[i])
4702                         goto err;
4703         }
4704         set_extent_buffer_uptodate(eb);
4705         btrfs_set_header_nritems(eb, 0);
4706         set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4707
4708         return eb;
4709 err:
4710         for (; i > 0; i--)
4711                 __free_page(eb->pages[i - 1]);
4712         __free_extent_buffer(eb);
4713         return NULL;
4714 }
4715
4716 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4717                                                 u64 start)
4718 {
4719         unsigned long len;
4720
4721         if (!fs_info) {
4722                 /*
4723                  * Called only from tests that don't always have a fs_info
4724                  * available, but we know that nodesize is 4096
4725                  */
4726                 len = 4096;
4727         } else {
4728                 len = fs_info->tree_root->nodesize;
4729         }
4730
4731         return __alloc_dummy_extent_buffer(fs_info, start, len);
4732 }
4733
4734 static void check_buffer_tree_ref(struct extent_buffer *eb)
4735 {
4736         int refs;
4737         /* the ref bit is tricky.  We have to make sure it is set
4738          * if we have the buffer dirty.   Otherwise the
4739          * code to free a buffer can end up dropping a dirty
4740          * page
4741          *
4742          * Once the ref bit is set, it won't go away while the
4743          * buffer is dirty or in writeback, and it also won't
4744          * go away while we have the reference count on the
4745          * eb bumped.
4746          *
4747          * We can't just set the ref bit without bumping the
4748          * ref on the eb because free_extent_buffer might
4749          * see the ref bit and try to clear it.  If this happens
4750          * free_extent_buffer might end up dropping our original
4751          * ref by mistake and freeing the page before we are able
4752          * to add one more ref.
4753          *
4754          * So bump the ref count first, then set the bit.  If someone
4755          * beat us to it, drop the ref we added.
4756          */
4757         refs = atomic_read(&eb->refs);
4758         if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4759                 return;
4760
4761         spin_lock(&eb->refs_lock);
4762         if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4763                 atomic_inc(&eb->refs);
4764         spin_unlock(&eb->refs_lock);
4765 }
4766
4767 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4768                 struct page *accessed)
4769 {
4770         unsigned long num_pages, i;
4771
4772         check_buffer_tree_ref(eb);
4773
4774         num_pages = num_extent_pages(eb->start, eb->len);
4775         for (i = 0; i < num_pages; i++) {
4776                 struct page *p = eb->pages[i];
4777
4778                 if (p != accessed)
4779                         mark_page_accessed(p);
4780         }
4781 }
4782
4783 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4784                                          u64 start)
4785 {
4786         struct extent_buffer *eb;
4787
4788         rcu_read_lock();
4789         eb = radix_tree_lookup(&fs_info->buffer_radix,
4790                                start >> PAGE_SHIFT);
4791         if (eb && atomic_inc_not_zero(&eb->refs)) {
4792                 rcu_read_unlock();
4793                 /*
4794                  * Lock our eb's refs_lock to avoid races with
4795                  * free_extent_buffer. When we get our eb it might be flagged
4796                  * with EXTENT_BUFFER_STALE and another task running
4797                  * free_extent_buffer might have seen that flag set,
4798                  * eb->refs == 2, that the buffer isn't under IO (dirty and
4799                  * writeback flags not set) and it's still in the tree (flag
4800                  * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4801                  * of decrementing the extent buffer's reference count twice.
4802                  * So here we could race and increment the eb's reference count,
4803                  * clear its stale flag, mark it as dirty and drop our reference
4804                  * before the other task finishes executing free_extent_buffer,
4805                  * which would later result in an attempt to free an extent
4806                  * buffer that is dirty.
4807                  */
4808                 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4809                         spin_lock(&eb->refs_lock);
4810                         spin_unlock(&eb->refs_lock);
4811                 }
4812                 mark_extent_buffer_accessed(eb, NULL);
4813                 return eb;
4814         }
4815         rcu_read_unlock();
4816
4817         return NULL;
4818 }
4819
4820 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4821 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4822                                                u64 start)
4823 {
4824         struct extent_buffer *eb, *exists = NULL;
4825         int ret;
4826
4827         eb = find_extent_buffer(fs_info, start);
4828         if (eb)
4829                 return eb;
4830         eb = alloc_dummy_extent_buffer(fs_info, start);
4831         if (!eb)
4832                 return NULL;
4833         eb->fs_info = fs_info;
4834 again:
4835         ret = radix_tree_preload(GFP_NOFS);
4836         if (ret)
4837                 goto free_eb;
4838         spin_lock(&fs_info->buffer_lock);
4839         ret = radix_tree_insert(&fs_info->buffer_radix,
4840                                 start >> PAGE_SHIFT, eb);
4841         spin_unlock(&fs_info->buffer_lock);
4842         radix_tree_preload_end();
4843         if (ret == -EEXIST) {
4844                 exists = find_extent_buffer(fs_info, start);
4845                 if (exists)
4846                         goto free_eb;
4847                 else
4848                         goto again;
4849         }
4850         check_buffer_tree_ref(eb);
4851         set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4852
4853         /*
4854          * We will free dummy extent buffer's if they come into
4855          * free_extent_buffer with a ref count of 2, but if we are using this we
4856          * want the buffers to stay in memory until we're done with them, so
4857          * bump the ref count again.
4858          */
4859         atomic_inc(&eb->refs);
4860         return eb;
4861 free_eb:
4862         btrfs_release_extent_buffer(eb);
4863         return exists;
4864 }
4865 #endif
4866
4867 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4868                                           u64 start)
4869 {
4870         unsigned long len = fs_info->tree_root->nodesize;
4871         unsigned long num_pages = num_extent_pages(start, len);
4872         unsigned long i;
4873         unsigned long index = start >> PAGE_SHIFT;
4874         struct extent_buffer *eb;
4875         struct extent_buffer *exists = NULL;
4876         struct page *p;
4877         struct address_space *mapping = fs_info->btree_inode->i_mapping;
4878         int uptodate = 1;
4879         int ret;
4880
4881         eb = find_extent_buffer(fs_info, start);
4882         if (eb)
4883                 return eb;
4884
4885         eb = __alloc_extent_buffer(fs_info, start, len);
4886         if (!eb)
4887                 return NULL;
4888
4889         for (i = 0; i < num_pages; i++, index++) {
4890                 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4891                 if (!p)
4892                         goto free_eb;
4893
4894                 spin_lock(&mapping->private_lock);
4895                 if (PagePrivate(p)) {
4896                         /*
4897                          * We could have already allocated an eb for this page
4898                          * and attached one so lets see if we can get a ref on
4899                          * the existing eb, and if we can we know it's good and
4900                          * we can just return that one, else we know we can just
4901                          * overwrite page->private.
4902                          */
4903                         exists = (struct extent_buffer *)p->private;
4904                         if (atomic_inc_not_zero(&exists->refs)) {
4905                                 spin_unlock(&mapping->private_lock);
4906                                 unlock_page(p);
4907                                 put_page(p);
4908                                 mark_extent_buffer_accessed(exists, p);
4909                                 goto free_eb;
4910                         }
4911                         exists = NULL;
4912
4913                         /*
4914                          * Do this so attach doesn't complain and we need to
4915                          * drop the ref the old guy had.
4916                          */
4917                         ClearPagePrivate(p);
4918                         WARN_ON(PageDirty(p));
4919                         put_page(p);
4920                 }
4921                 attach_extent_buffer_page(eb, p);
4922                 spin_unlock(&mapping->private_lock);
4923                 WARN_ON(PageDirty(p));
4924                 eb->pages[i] = p;
4925                 if (!PageUptodate(p))
4926                         uptodate = 0;
4927
4928                 /*
4929                  * see below about how we avoid a nasty race with release page
4930                  * and why we unlock later
4931                  */
4932         }
4933         if (uptodate)
4934                 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4935 again:
4936         ret = radix_tree_preload(GFP_NOFS);
4937         if (ret)
4938                 goto free_eb;
4939
4940         spin_lock(&fs_info->buffer_lock);
4941         ret = radix_tree_insert(&fs_info->buffer_radix,
4942                                 start >> PAGE_SHIFT, eb);
4943         spin_unlock(&fs_info->buffer_lock);
4944         radix_tree_preload_end();
4945         if (ret == -EEXIST) {
4946                 exists = find_extent_buffer(fs_info, start);
4947                 if (exists)
4948                         goto free_eb;
4949                 else
4950                         goto again;
4951         }
4952         /* add one reference for the tree */
4953         check_buffer_tree_ref(eb);
4954         set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4955
4956         /*
4957          * there is a race where release page may have
4958          * tried to find this extent buffer in the radix
4959          * but failed.  It will tell the VM it is safe to
4960          * reclaim the, and it will clear the page private bit.
4961          * We must make sure to set the page private bit properly
4962          * after the extent buffer is in the radix tree so
4963          * it doesn't get lost
4964          */
4965         SetPageChecked(eb->pages[0]);
4966         for (i = 1; i < num_pages; i++) {
4967                 p = eb->pages[i];
4968                 ClearPageChecked(p);
4969                 unlock_page(p);
4970         }
4971         unlock_page(eb->pages[0]);
4972         return eb;
4973
4974 free_eb:
4975         WARN_ON(!atomic_dec_and_test(&eb->refs));
4976         for (i = 0; i < num_pages; i++) {
4977                 if (eb->pages[i])
4978                         unlock_page(eb->pages[i]);
4979         }
4980
4981         btrfs_release_extent_buffer(eb);
4982         return exists;
4983 }
4984
4985 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4986 {
4987         struct extent_buffer *eb =
4988                         container_of(head, struct extent_buffer, rcu_head);
4989
4990         __free_extent_buffer(eb);
4991 }
4992
4993 /* Expects to have eb->eb_lock already held */
4994 static int release_extent_buffer(struct extent_buffer *eb)
4995 {
4996         WARN_ON(atomic_read(&eb->refs) == 0);
4997         if (atomic_dec_and_test(&eb->refs)) {
4998                 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
4999                         struct btrfs_fs_info *fs_info = eb->fs_info;
5000
5001                         spin_unlock(&eb->refs_lock);
5002
5003                         spin_lock(&fs_info->buffer_lock);
5004                         radix_tree_delete(&fs_info->buffer_radix,
5005                                           eb->start >> PAGE_SHIFT);
5006                         spin_unlock(&fs_info->buffer_lock);
5007                 } else {
5008                         spin_unlock(&eb->refs_lock);
5009                 }
5010
5011                 /* Should be safe to release our pages at this point */
5012                 btrfs_release_extent_buffer_page(eb);
5013 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5014                 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5015                         __free_extent_buffer(eb);
5016                         return 1;
5017                 }
5018 #endif
5019                 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5020                 return 1;
5021         }
5022         spin_unlock(&eb->refs_lock);
5023
5024         return 0;
5025 }
5026
5027 void free_extent_buffer(struct extent_buffer *eb)
5028 {
5029         int refs;
5030         int old;
5031         if (!eb)
5032                 return;
5033
5034         while (1) {
5035                 refs = atomic_read(&eb->refs);
5036                 if (refs <= 3)
5037                         break;
5038                 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5039                 if (old == refs)
5040                         return;
5041         }
5042
5043         spin_lock(&eb->refs_lock);
5044         if (atomic_read(&eb->refs) == 2 &&
5045             test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5046                 atomic_dec(&eb->refs);
5047
5048         if (atomic_read(&eb->refs) == 2 &&
5049             test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5050             !extent_buffer_under_io(eb) &&
5051             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5052                 atomic_dec(&eb->refs);
5053
5054         /*
5055          * I know this is terrible, but it's temporary until we stop tracking
5056          * the uptodate bits and such for the extent buffers.
5057          */
5058         release_extent_buffer(eb);
5059 }
5060
5061 void free_extent_buffer_stale(struct extent_buffer *eb)
5062 {
5063         if (!eb)
5064                 return;
5065
5066         spin_lock(&eb->refs_lock);
5067         set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5068
5069         if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5070             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5071                 atomic_dec(&eb->refs);
5072         release_extent_buffer(eb);
5073 }
5074
5075 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5076 {
5077         unsigned long i;
5078         unsigned long num_pages;
5079         struct page *page;
5080
5081         num_pages = num_extent_pages(eb->start, eb->len);
5082
5083         for (i = 0; i < num_pages; i++) {
5084                 page = eb->pages[i];
5085                 if (!PageDirty(page))
5086                         continue;
5087
5088                 lock_page(page);
5089                 WARN_ON(!PagePrivate(page));
5090
5091                 clear_page_dirty_for_io(page);
5092                 spin_lock_irq(&page->mapping->tree_lock);
5093                 if (!PageDirty(page)) {
5094                         radix_tree_tag_clear(&page->mapping->page_tree,
5095                                                 page_index(page),
5096                                                 PAGECACHE_TAG_DIRTY);
5097                 }
5098                 spin_unlock_irq(&page->mapping->tree_lock);
5099                 ClearPageError(page);
5100                 unlock_page(page);
5101         }
5102         WARN_ON(atomic_read(&eb->refs) == 0);
5103 }
5104
5105 int set_extent_buffer_dirty(struct extent_buffer *eb)
5106 {
5107         unsigned long i;
5108         unsigned long num_pages;
5109         int was_dirty = 0;
5110
5111         check_buffer_tree_ref(eb);
5112
5113         was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5114
5115         num_pages = num_extent_pages(eb->start, eb->len);
5116         WARN_ON(atomic_read(&eb->refs) == 0);
5117         WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5118
5119         for (i = 0; i < num_pages; i++)
5120                 set_page_dirty(eb->pages[i]);
5121         return was_dirty;
5122 }
5123
5124 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5125 {
5126         unsigned long i;
5127         struct page *page;
5128         unsigned long num_pages;
5129
5130         clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5131         num_pages = num_extent_pages(eb->start, eb->len);
5132         for (i = 0; i < num_pages; i++) {
5133                 page = eb->pages[i];
5134                 if (page)
5135                         ClearPageUptodate(page);
5136         }
5137 }
5138
5139 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5140 {
5141         unsigned long i;
5142         struct page *page;
5143         unsigned long num_pages;
5144
5145         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5146         num_pages = num_extent_pages(eb->start, eb->len);
5147         for (i = 0; i < num_pages; i++) {
5148                 page = eb->pages[i];
5149                 SetPageUptodate(page);
5150         }
5151 }
5152
5153 int extent_buffer_uptodate(struct extent_buffer *eb)
5154 {
5155         return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5156 }
5157
5158 int read_extent_buffer_pages(struct extent_io_tree *tree,
5159                              struct extent_buffer *eb, u64 start, int wait,
5160                              get_extent_t *get_extent, int mirror_num)
5161 {
5162         unsigned long i;
5163         unsigned long start_i;
5164         struct page *page;
5165         int err;
5166         int ret = 0;
5167         int locked_pages = 0;
5168         int all_uptodate = 1;
5169         unsigned long num_pages;
5170         unsigned long num_reads = 0;
5171         struct bio *bio = NULL;
5172         unsigned long bio_flags = 0;
5173
5174         if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5175                 return 0;
5176
5177         if (start) {
5178                 WARN_ON(start < eb->start);
5179                 start_i = (start >> PAGE_SHIFT) -
5180                         (eb->start >> PAGE_SHIFT);
5181         } else {
5182                 start_i = 0;
5183         }
5184
5185         num_pages = num_extent_pages(eb->start, eb->len);
5186         for (i = start_i; i < num_pages; i++) {
5187                 page = eb->pages[i];
5188                 if (wait == WAIT_NONE) {
5189                         if (!trylock_page(page))
5190                                 goto unlock_exit;
5191                 } else {
5192                         lock_page(page);
5193                 }
5194                 locked_pages++;
5195                 if (!PageUptodate(page)) {
5196                         num_reads++;
5197                         all_uptodate = 0;
5198                 }
5199         }
5200         if (all_uptodate) {
5201                 if (start_i == 0)
5202                         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5203                 goto unlock_exit;
5204         }
5205
5206         clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5207         eb->read_mirror = 0;
5208         atomic_set(&eb->io_pages, num_reads);
5209         for (i = start_i; i < num_pages; i++) {
5210                 page = eb->pages[i];
5211                 if (!PageUptodate(page)) {
5212                         ClearPageError(page);
5213                         err = __extent_read_full_page(tree, page,
5214                                                       get_extent, &bio,
5215                                                       mirror_num, &bio_flags,
5216                                                       READ | REQ_META);
5217                         if (err)
5218                                 ret = err;
5219                 } else {
5220                         unlock_page(page);
5221                 }
5222         }
5223
5224         if (bio) {
5225                 err = submit_one_bio(READ | REQ_META, bio, mirror_num,
5226                                      bio_flags);
5227                 if (err)
5228                         return err;
5229         }
5230
5231         if (ret || wait != WAIT_COMPLETE)
5232                 return ret;
5233
5234         for (i = start_i; i < num_pages; i++) {
5235                 page = eb->pages[i];
5236                 wait_on_page_locked(page);
5237                 if (!PageUptodate(page))
5238                         ret = -EIO;
5239         }
5240
5241         return ret;
5242
5243 unlock_exit:
5244         i = start_i;
5245         while (locked_pages > 0) {
5246                 page = eb->pages[i];
5247                 i++;
5248                 unlock_page(page);
5249                 locked_pages--;
5250         }
5251         return ret;
5252 }
5253
5254 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5255                         unsigned long start,
5256                         unsigned long len)
5257 {
5258         size_t cur;
5259         size_t offset;
5260         struct page *page;
5261         char *kaddr;
5262         char *dst = (char *)dstv;
5263         size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5264         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5265
5266         WARN_ON(start > eb->len);
5267         WARN_ON(start + len > eb->start + eb->len);
5268
5269         offset = (start_offset + start) & (PAGE_SIZE - 1);
5270
5271         while (len > 0) {
5272                 page = eb->pages[i];
5273
5274                 cur = min(len, (PAGE_SIZE - offset));
5275                 kaddr = page_address(page);
5276                 memcpy(dst, kaddr + offset, cur);
5277
5278                 dst += cur;
5279                 len -= cur;
5280                 offset = 0;
5281                 i++;
5282         }
5283 }
5284
5285 int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5286                         unsigned long start,
5287                         unsigned long len)
5288 {
5289         size_t cur;
5290         size_t offset;
5291         struct page *page;
5292         char *kaddr;
5293         char __user *dst = (char __user *)dstv;
5294         size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5295         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5296         int ret = 0;
5297
5298         WARN_ON(start > eb->len);
5299         WARN_ON(start + len > eb->start + eb->len);
5300
5301         offset = (start_offset + start) & (PAGE_SIZE - 1);
5302
5303         while (len > 0) {
5304                 page = eb->pages[i];
5305
5306                 cur = min(len, (PAGE_SIZE - offset));
5307                 kaddr = page_address(page);
5308                 if (copy_to_user(dst, kaddr + offset, cur)) {
5309                         ret = -EFAULT;
5310                         break;
5311                 }
5312
5313                 dst += cur;
5314                 len -= cur;
5315                 offset = 0;
5316                 i++;
5317         }
5318
5319         return ret;
5320 }
5321
5322 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
5323                                unsigned long min_len, char **map,
5324                                unsigned long *map_start,
5325                                unsigned long *map_len)
5326 {
5327         size_t offset = start & (PAGE_SIZE - 1);
5328         char *kaddr;
5329         struct page *p;
5330         size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5331         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5332         unsigned long end_i = (start_offset + start + min_len - 1) >>
5333                 PAGE_SHIFT;
5334
5335         if (i != end_i)
5336                 return -EINVAL;
5337
5338         if (i == 0) {
5339                 offset = start_offset;
5340                 *map_start = 0;
5341         } else {
5342                 offset = 0;
5343                 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5344         }
5345
5346         if (start + min_len > eb->len) {
5347                 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
5348                        "wanted %lu %lu\n",
5349                        eb->start, eb->len, start, min_len);
5350                 return -EINVAL;
5351         }
5352
5353         p = eb->pages[i];
5354         kaddr = page_address(p);
5355         *map = kaddr + offset;
5356         *map_len = PAGE_SIZE - offset;
5357         return 0;
5358 }
5359
5360 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5361                           unsigned long start,
5362                           unsigned long len)
5363 {
5364         size_t cur;
5365         size_t offset;
5366         struct page *page;
5367         char *kaddr;
5368         char *ptr = (char *)ptrv;
5369         size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5370         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5371         int ret = 0;
5372
5373         WARN_ON(start > eb->len);
5374         WARN_ON(start + len > eb->start + eb->len);
5375
5376         offset = (start_offset + start) & (PAGE_SIZE - 1);
5377
5378         while (len > 0) {
5379                 page = eb->pages[i];
5380
5381                 cur = min(len, (PAGE_SIZE - offset));
5382
5383                 kaddr = page_address(page);
5384                 ret = memcmp(ptr, kaddr + offset, cur);
5385                 if (ret)
5386                         break;
5387
5388                 ptr += cur;
5389                 len -= cur;
5390                 offset = 0;
5391                 i++;
5392         }
5393         return ret;
5394 }
5395
5396 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5397                          unsigned long start, unsigned long len)
5398 {
5399         size_t cur;
5400         size_t offset;
5401         struct page *page;
5402         char *kaddr;
5403         char *src = (char *)srcv;
5404         size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5405         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5406
5407         WARN_ON(start > eb->len);
5408         WARN_ON(start + len > eb->start + eb->len);
5409
5410         offset = (start_offset + start) & (PAGE_SIZE - 1);
5411
5412         while (len > 0) {
5413                 page = eb->pages[i];
5414                 WARN_ON(!PageUptodate(page));
5415
5416                 cur = min(len, PAGE_SIZE - offset);
5417                 kaddr = page_address(page);
5418                 memcpy(kaddr + offset, src, cur);
5419
5420                 src += cur;
5421                 len -= cur;
5422                 offset = 0;
5423                 i++;
5424         }
5425 }
5426
5427 void memset_extent_buffer(struct extent_buffer *eb, char c,
5428                           unsigned long start, unsigned long len)
5429 {
5430         size_t cur;
5431         size_t offset;
5432         struct page *page;
5433         char *kaddr;
5434         size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5435         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5436
5437         WARN_ON(start > eb->len);
5438         WARN_ON(start + len > eb->start + eb->len);
5439
5440         offset = (start_offset + start) & (PAGE_SIZE - 1);
5441
5442         while (len > 0) {
5443                 page = eb->pages[i];
5444                 WARN_ON(!PageUptodate(page));
5445
5446                 cur = min(len, PAGE_SIZE - offset);
5447                 kaddr = page_address(page);
5448                 memset(kaddr + offset, c, cur);
5449
5450                 len -= cur;
5451                 offset = 0;
5452                 i++;
5453         }
5454 }
5455
5456 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5457                         unsigned long dst_offset, unsigned long src_offset,
5458                         unsigned long len)
5459 {
5460         u64 dst_len = dst->len;
5461         size_t cur;
5462         size_t offset;
5463         struct page *page;
5464         char *kaddr;
5465         size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5466         unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5467
5468         WARN_ON(src->len != dst_len);
5469
5470         offset = (start_offset + dst_offset) &
5471                 (PAGE_SIZE - 1);
5472
5473         while (len > 0) {
5474                 page = dst->pages[i];
5475                 WARN_ON(!PageUptodate(page));
5476
5477                 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5478
5479                 kaddr = page_address(page);
5480                 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5481
5482                 src_offset += cur;
5483                 len -= cur;
5484                 offset = 0;
5485                 i++;
5486         }
5487 }
5488
5489 /*
5490  * The extent buffer bitmap operations are done with byte granularity because
5491  * bitmap items are not guaranteed to be aligned to a word and therefore a
5492  * single word in a bitmap may straddle two pages in the extent buffer.
5493  */
5494 #define BIT_BYTE(nr) ((nr) / BITS_PER_BYTE)
5495 #define BYTE_MASK ((1 << BITS_PER_BYTE) - 1)
5496 #define BITMAP_FIRST_BYTE_MASK(start) \
5497         ((BYTE_MASK << ((start) & (BITS_PER_BYTE - 1))) & BYTE_MASK)
5498 #define BITMAP_LAST_BYTE_MASK(nbits) \
5499         (BYTE_MASK >> (-(nbits) & (BITS_PER_BYTE - 1)))
5500
5501 /*
5502  * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5503  * given bit number
5504  * @eb: the extent buffer
5505  * @start: offset of the bitmap item in the extent buffer
5506  * @nr: bit number
5507  * @page_index: return index of the page in the extent buffer that contains the
5508  * given bit number
5509  * @page_offset: return offset into the page given by page_index
5510  *
5511  * This helper hides the ugliness of finding the byte in an extent buffer which
5512  * contains a given bit.
5513  */
5514 static inline void eb_bitmap_offset(struct extent_buffer *eb,
5515                                     unsigned long start, unsigned long nr,
5516                                     unsigned long *page_index,
5517                                     size_t *page_offset)
5518 {
5519         size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5520         size_t byte_offset = BIT_BYTE(nr);
5521         size_t offset;
5522
5523         /*
5524          * The byte we want is the offset of the extent buffer + the offset of
5525          * the bitmap item in the extent buffer + the offset of the byte in the
5526          * bitmap item.
5527          */
5528         offset = start_offset + start + byte_offset;
5529
5530         *page_index = offset >> PAGE_SHIFT;
5531         *page_offset = offset & (PAGE_SIZE - 1);
5532 }
5533
5534 /**
5535  * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5536  * @eb: the extent buffer
5537  * @start: offset of the bitmap item in the extent buffer
5538  * @nr: bit number to test
5539  */
5540 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5541                            unsigned long nr)
5542 {
5543         char *kaddr;
5544         struct page *page;
5545         unsigned long i;
5546         size_t offset;
5547
5548         eb_bitmap_offset(eb, start, nr, &i, &offset);
5549         page = eb->pages[i];
5550         WARN_ON(!PageUptodate(page));
5551         kaddr = page_address(page);
5552         return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5553 }
5554
5555 /**
5556  * extent_buffer_bitmap_set - set an area of a bitmap
5557  * @eb: the extent buffer
5558  * @start: offset of the bitmap item in the extent buffer
5559  * @pos: bit number of the first bit
5560  * @len: number of bits to set
5561  */
5562 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5563                               unsigned long pos, unsigned long len)
5564 {
5565         char *kaddr;
5566         struct page *page;
5567         unsigned long i;
5568         size_t offset;
5569         const unsigned int size = pos + len;
5570         int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5571         unsigned int mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5572
5573         eb_bitmap_offset(eb, start, pos, &i, &offset);
5574         page = eb->pages[i];
5575         WARN_ON(!PageUptodate(page));
5576         kaddr = page_address(page);
5577
5578         while (len >= bits_to_set) {
5579                 kaddr[offset] |= mask_to_set;
5580                 len -= bits_to_set;
5581                 bits_to_set = BITS_PER_BYTE;
5582                 mask_to_set = ~0U;
5583                 if (++offset >= PAGE_SIZE && len > 0) {
5584                         offset = 0;
5585                         page = eb->pages[++i];
5586                         WARN_ON(!PageUptodate(page));
5587                         kaddr = page_address(page);
5588                 }
5589         }
5590         if (len) {
5591                 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5592                 kaddr[offset] |= mask_to_set;
5593         }
5594 }
5595
5596
5597 /**
5598  * extent_buffer_bitmap_clear - clear an area of a bitmap
5599  * @eb: the extent buffer
5600  * @start: offset of the bitmap item in the extent buffer
5601  * @pos: bit number of the first bit
5602  * @len: number of bits to clear
5603  */
5604 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5605                                 unsigned long pos, unsigned long len)
5606 {
5607         char *kaddr;
5608         struct page *page;
5609         unsigned long i;
5610         size_t offset;
5611         const unsigned int size = pos + len;
5612         int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5613         unsigned int mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5614
5615         eb_bitmap_offset(eb, start, pos, &i, &offset);
5616         page = eb->pages[i];
5617         WARN_ON(!PageUptodate(page));
5618         kaddr = page_address(page);
5619
5620         while (len >= bits_to_clear) {
5621                 kaddr[offset] &= ~mask_to_clear;
5622                 len -= bits_to_clear;
5623                 bits_to_clear = BITS_PER_BYTE;
5624                 mask_to_clear = ~0U;
5625                 if (++offset >= PAGE_SIZE && len > 0) {
5626                         offset = 0;
5627                         page = eb->pages[++i];
5628                         WARN_ON(!PageUptodate(page));
5629                         kaddr = page_address(page);
5630                 }
5631         }
5632         if (len) {
5633                 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5634                 kaddr[offset] &= ~mask_to_clear;
5635         }
5636 }
5637
5638 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5639 {
5640         unsigned long distance = (src > dst) ? src - dst : dst - src;
5641         return distance < len;
5642 }
5643
5644 static void copy_pages(struct page *dst_page, struct page *src_page,
5645                        unsigned long dst_off, unsigned long src_off,
5646                        unsigned long len)
5647 {
5648         char *dst_kaddr = page_address(dst_page);
5649         char *src_kaddr;
5650         int must_memmove = 0;
5651
5652         if (dst_page != src_page) {
5653                 src_kaddr = page_address(src_page);
5654         } else {
5655                 src_kaddr = dst_kaddr;
5656                 if (areas_overlap(src_off, dst_off, len))
5657                         must_memmove = 1;
5658         }
5659
5660         if (must_memmove)
5661                 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5662         else
5663                 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5664 }
5665
5666 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5667                            unsigned long src_offset, unsigned long len)
5668 {
5669         size_t cur;
5670         size_t dst_off_in_page;
5671         size_t src_off_in_page;
5672         size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5673         unsigned long dst_i;
5674         unsigned long src_i;
5675
5676         if (src_offset + len > dst->len) {
5677                 btrfs_err(dst->fs_info,
5678                         "memmove bogus src_offset %lu move "
5679                        "len %lu dst len %lu", src_offset, len, dst->len);
5680                 BUG_ON(1);
5681         }
5682         if (dst_offset + len > dst->len) {
5683                 btrfs_err(dst->fs_info,
5684                         "memmove bogus dst_offset %lu move "
5685                        "len %lu dst len %lu", dst_offset, len, dst->len);
5686                 BUG_ON(1);
5687         }
5688
5689         while (len > 0) {
5690                 dst_off_in_page = (start_offset + dst_offset) &
5691                         (PAGE_SIZE - 1);
5692                 src_off_in_page = (start_offset + src_offset) &
5693                         (PAGE_SIZE - 1);
5694
5695                 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5696                 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5697
5698                 cur = min(len, (unsigned long)(PAGE_SIZE -
5699                                                src_off_in_page));
5700                 cur = min_t(unsigned long, cur,
5701                         (unsigned long)(PAGE_SIZE - dst_off_in_page));
5702
5703                 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5704                            dst_off_in_page, src_off_in_page, cur);
5705
5706                 src_offset += cur;
5707                 dst_offset += cur;
5708                 len -= cur;
5709         }
5710 }
5711
5712 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5713                            unsigned long src_offset, unsigned long len)
5714 {
5715         size_t cur;
5716         size_t dst_off_in_page;
5717         size_t src_off_in_page;
5718         unsigned long dst_end = dst_offset + len - 1;
5719         unsigned long src_end = src_offset + len - 1;
5720         size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5721         unsigned long dst_i;
5722         unsigned long src_i;
5723
5724         if (src_offset + len > dst->len) {
5725                 btrfs_err(dst->fs_info, "memmove bogus src_offset %lu move "
5726                        "len %lu len %lu", src_offset, len, dst->len);
5727                 BUG_ON(1);
5728         }
5729         if (dst_offset + len > dst->len) {
5730                 btrfs_err(dst->fs_info, "memmove bogus dst_offset %lu move "
5731                        "len %lu len %lu", dst_offset, len, dst->len);
5732                 BUG_ON(1);
5733         }
5734         if (dst_offset < src_offset) {
5735                 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5736                 return;
5737         }
5738         while (len > 0) {
5739                 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5740                 src_i = (start_offset + src_end) >> PAGE_SHIFT;
5741
5742                 dst_off_in_page = (start_offset + dst_end) &
5743                         (PAGE_SIZE - 1);
5744                 src_off_in_page = (start_offset + src_end) &
5745                         (PAGE_SIZE - 1);
5746
5747                 cur = min_t(unsigned long, len, src_off_in_page + 1);
5748                 cur = min(cur, dst_off_in_page + 1);
5749                 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5750                            dst_off_in_page - cur + 1,
5751                            src_off_in_page - cur + 1, cur);
5752
5753                 dst_end -= cur;
5754                 src_end -= cur;
5755                 len -= cur;
5756         }
5757 }
5758
5759 int try_release_extent_buffer(struct page *page)
5760 {
5761         struct extent_buffer *eb;
5762
5763         /*
5764          * We need to make sure noboody is attaching this page to an eb right
5765          * now.
5766          */
5767         spin_lock(&page->mapping->private_lock);
5768         if (!PagePrivate(page)) {
5769                 spin_unlock(&page->mapping->private_lock);
5770                 return 1;
5771         }
5772
5773         eb = (struct extent_buffer *)page->private;
5774         BUG_ON(!eb);
5775
5776         /*
5777          * This is a little awful but should be ok, we need to make sure that
5778          * the eb doesn't disappear out from under us while we're looking at
5779          * this page.
5780          */
5781         spin_lock(&eb->refs_lock);
5782         if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5783                 spin_unlock(&eb->refs_lock);
5784                 spin_unlock(&page->mapping->private_lock);
5785                 return 0;
5786         }
5787         spin_unlock(&page->mapping->private_lock);
5788
5789         /*
5790          * If tree ref isn't set then we know the ref on this eb is a real ref,
5791          * so just return, this page will likely be freed soon anyway.
5792          */
5793         if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5794                 spin_unlock(&eb->refs_lock);
5795                 return 0;
5796         }
5797
5798         return release_extent_buffer(eb);
5799 }