Merge tag 'mac80211-for-davem-2016-06-09' of git://git.kernel.org/pub/scm/linux/kerne...
[cascardo/linux.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "ctree.h"
17 #include "btrfs_inode.h"
18 #include "volumes.h"
19 #include "check-integrity.h"
20 #include "locking.h"
21 #include "rcu-string.h"
22 #include "backref.h"
23
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26 static struct bio_set *btrfs_bioset;
27
28 static inline bool extent_state_in_tree(const struct extent_state *state)
29 {
30         return !RB_EMPTY_NODE(&state->rb_node);
31 }
32
33 #ifdef CONFIG_BTRFS_DEBUG
34 static LIST_HEAD(buffers);
35 static LIST_HEAD(states);
36
37 static DEFINE_SPINLOCK(leak_lock);
38
39 static inline
40 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
41 {
42         unsigned long flags;
43
44         spin_lock_irqsave(&leak_lock, flags);
45         list_add(new, head);
46         spin_unlock_irqrestore(&leak_lock, flags);
47 }
48
49 static inline
50 void btrfs_leak_debug_del(struct list_head *entry)
51 {
52         unsigned long flags;
53
54         spin_lock_irqsave(&leak_lock, flags);
55         list_del(entry);
56         spin_unlock_irqrestore(&leak_lock, flags);
57 }
58
59 static inline
60 void btrfs_leak_debug_check(void)
61 {
62         struct extent_state *state;
63         struct extent_buffer *eb;
64
65         while (!list_empty(&states)) {
66                 state = list_entry(states.next, struct extent_state, leak_list);
67                 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
68                        state->start, state->end, state->state,
69                        extent_state_in_tree(state),
70                        atomic_read(&state->refs));
71                 list_del(&state->leak_list);
72                 kmem_cache_free(extent_state_cache, state);
73         }
74
75         while (!list_empty(&buffers)) {
76                 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
77                 printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
78                        "refs %d\n",
79                        eb->start, eb->len, atomic_read(&eb->refs));
80                 list_del(&eb->leak_list);
81                 kmem_cache_free(extent_buffer_cache, eb);
82         }
83 }
84
85 #define btrfs_debug_check_extent_io_range(tree, start, end)             \
86         __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
87 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
88                 struct extent_io_tree *tree, u64 start, u64 end)
89 {
90         struct inode *inode;
91         u64 isize;
92
93         if (!tree->mapping)
94                 return;
95
96         inode = tree->mapping->host;
97         isize = i_size_read(inode);
98         if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
99                 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
100                     "%s: ino %llu isize %llu odd range [%llu,%llu]",
101                                 caller, btrfs_ino(inode), isize, start, end);
102         }
103 }
104 #else
105 #define btrfs_leak_debug_add(new, head) do {} while (0)
106 #define btrfs_leak_debug_del(entry)     do {} while (0)
107 #define btrfs_leak_debug_check()        do {} while (0)
108 #define btrfs_debug_check_extent_io_range(c, s, e)      do {} while (0)
109 #endif
110
111 #define BUFFER_LRU_MAX 64
112
113 struct tree_entry {
114         u64 start;
115         u64 end;
116         struct rb_node rb_node;
117 };
118
119 struct extent_page_data {
120         struct bio *bio;
121         struct extent_io_tree *tree;
122         get_extent_t *get_extent;
123         unsigned long bio_flags;
124
125         /* tells writepage not to lock the state bits for this range
126          * it still does the unlocking
127          */
128         unsigned int extent_locked:1;
129
130         /* tells the submit_bio code to use a WRITE_SYNC */
131         unsigned int sync_io:1;
132 };
133
134 static void add_extent_changeset(struct extent_state *state, unsigned bits,
135                                  struct extent_changeset *changeset,
136                                  int set)
137 {
138         int ret;
139
140         if (!changeset)
141                 return;
142         if (set && (state->state & bits) == bits)
143                 return;
144         if (!set && (state->state & bits) == 0)
145                 return;
146         changeset->bytes_changed += state->end - state->start + 1;
147         ret = ulist_add(changeset->range_changed, state->start, state->end,
148                         GFP_ATOMIC);
149         /* ENOMEM */
150         BUG_ON(ret < 0);
151 }
152
153 static noinline void flush_write_bio(void *data);
154 static inline struct btrfs_fs_info *
155 tree_fs_info(struct extent_io_tree *tree)
156 {
157         if (!tree->mapping)
158                 return NULL;
159         return btrfs_sb(tree->mapping->host->i_sb);
160 }
161
162 int __init extent_io_init(void)
163 {
164         extent_state_cache = kmem_cache_create("btrfs_extent_state",
165                         sizeof(struct extent_state), 0,
166                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
167         if (!extent_state_cache)
168                 return -ENOMEM;
169
170         extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
171                         sizeof(struct extent_buffer), 0,
172                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
173         if (!extent_buffer_cache)
174                 goto free_state_cache;
175
176         btrfs_bioset = bioset_create(BIO_POOL_SIZE,
177                                      offsetof(struct btrfs_io_bio, bio));
178         if (!btrfs_bioset)
179                 goto free_buffer_cache;
180
181         if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
182                 goto free_bioset;
183
184         return 0;
185
186 free_bioset:
187         bioset_free(btrfs_bioset);
188         btrfs_bioset = NULL;
189
190 free_buffer_cache:
191         kmem_cache_destroy(extent_buffer_cache);
192         extent_buffer_cache = NULL;
193
194 free_state_cache:
195         kmem_cache_destroy(extent_state_cache);
196         extent_state_cache = NULL;
197         return -ENOMEM;
198 }
199
200 void extent_io_exit(void)
201 {
202         btrfs_leak_debug_check();
203
204         /*
205          * Make sure all delayed rcu free are flushed before we
206          * destroy caches.
207          */
208         rcu_barrier();
209         kmem_cache_destroy(extent_state_cache);
210         kmem_cache_destroy(extent_buffer_cache);
211         if (btrfs_bioset)
212                 bioset_free(btrfs_bioset);
213 }
214
215 void extent_io_tree_init(struct extent_io_tree *tree,
216                          struct address_space *mapping)
217 {
218         tree->state = RB_ROOT;
219         tree->ops = NULL;
220         tree->dirty_bytes = 0;
221         spin_lock_init(&tree->lock);
222         tree->mapping = mapping;
223 }
224
225 static struct extent_state *alloc_extent_state(gfp_t mask)
226 {
227         struct extent_state *state;
228
229         state = kmem_cache_alloc(extent_state_cache, mask);
230         if (!state)
231                 return state;
232         state->state = 0;
233         state->failrec = NULL;
234         RB_CLEAR_NODE(&state->rb_node);
235         btrfs_leak_debug_add(&state->leak_list, &states);
236         atomic_set(&state->refs, 1);
237         init_waitqueue_head(&state->wq);
238         trace_alloc_extent_state(state, mask, _RET_IP_);
239         return state;
240 }
241
242 void free_extent_state(struct extent_state *state)
243 {
244         if (!state)
245                 return;
246         if (atomic_dec_and_test(&state->refs)) {
247                 WARN_ON(extent_state_in_tree(state));
248                 btrfs_leak_debug_del(&state->leak_list);
249                 trace_free_extent_state(state, _RET_IP_);
250                 kmem_cache_free(extent_state_cache, state);
251         }
252 }
253
254 static struct rb_node *tree_insert(struct rb_root *root,
255                                    struct rb_node *search_start,
256                                    u64 offset,
257                                    struct rb_node *node,
258                                    struct rb_node ***p_in,
259                                    struct rb_node **parent_in)
260 {
261         struct rb_node **p;
262         struct rb_node *parent = NULL;
263         struct tree_entry *entry;
264
265         if (p_in && parent_in) {
266                 p = *p_in;
267                 parent = *parent_in;
268                 goto do_insert;
269         }
270
271         p = search_start ? &search_start : &root->rb_node;
272         while (*p) {
273                 parent = *p;
274                 entry = rb_entry(parent, struct tree_entry, rb_node);
275
276                 if (offset < entry->start)
277                         p = &(*p)->rb_left;
278                 else if (offset > entry->end)
279                         p = &(*p)->rb_right;
280                 else
281                         return parent;
282         }
283
284 do_insert:
285         rb_link_node(node, parent, p);
286         rb_insert_color(node, root);
287         return NULL;
288 }
289
290 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
291                                       struct rb_node **prev_ret,
292                                       struct rb_node **next_ret,
293                                       struct rb_node ***p_ret,
294                                       struct rb_node **parent_ret)
295 {
296         struct rb_root *root = &tree->state;
297         struct rb_node **n = &root->rb_node;
298         struct rb_node *prev = NULL;
299         struct rb_node *orig_prev = NULL;
300         struct tree_entry *entry;
301         struct tree_entry *prev_entry = NULL;
302
303         while (*n) {
304                 prev = *n;
305                 entry = rb_entry(prev, struct tree_entry, rb_node);
306                 prev_entry = entry;
307
308                 if (offset < entry->start)
309                         n = &(*n)->rb_left;
310                 else if (offset > entry->end)
311                         n = &(*n)->rb_right;
312                 else
313                         return *n;
314         }
315
316         if (p_ret)
317                 *p_ret = n;
318         if (parent_ret)
319                 *parent_ret = prev;
320
321         if (prev_ret) {
322                 orig_prev = prev;
323                 while (prev && offset > prev_entry->end) {
324                         prev = rb_next(prev);
325                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
326                 }
327                 *prev_ret = prev;
328                 prev = orig_prev;
329         }
330
331         if (next_ret) {
332                 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
333                 while (prev && offset < prev_entry->start) {
334                         prev = rb_prev(prev);
335                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
336                 }
337                 *next_ret = prev;
338         }
339         return NULL;
340 }
341
342 static inline struct rb_node *
343 tree_search_for_insert(struct extent_io_tree *tree,
344                        u64 offset,
345                        struct rb_node ***p_ret,
346                        struct rb_node **parent_ret)
347 {
348         struct rb_node *prev = NULL;
349         struct rb_node *ret;
350
351         ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
352         if (!ret)
353                 return prev;
354         return ret;
355 }
356
357 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
358                                           u64 offset)
359 {
360         return tree_search_for_insert(tree, offset, NULL, NULL);
361 }
362
363 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
364                      struct extent_state *other)
365 {
366         if (tree->ops && tree->ops->merge_extent_hook)
367                 tree->ops->merge_extent_hook(tree->mapping->host, new,
368                                              other);
369 }
370
371 /*
372  * utility function to look for merge candidates inside a given range.
373  * Any extents with matching state are merged together into a single
374  * extent in the tree.  Extents with EXTENT_IO in their state field
375  * are not merged because the end_io handlers need to be able to do
376  * operations on them without sleeping (or doing allocations/splits).
377  *
378  * This should be called with the tree lock held.
379  */
380 static void merge_state(struct extent_io_tree *tree,
381                         struct extent_state *state)
382 {
383         struct extent_state *other;
384         struct rb_node *other_node;
385
386         if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
387                 return;
388
389         other_node = rb_prev(&state->rb_node);
390         if (other_node) {
391                 other = rb_entry(other_node, struct extent_state, rb_node);
392                 if (other->end == state->start - 1 &&
393                     other->state == state->state) {
394                         merge_cb(tree, state, other);
395                         state->start = other->start;
396                         rb_erase(&other->rb_node, &tree->state);
397                         RB_CLEAR_NODE(&other->rb_node);
398                         free_extent_state(other);
399                 }
400         }
401         other_node = rb_next(&state->rb_node);
402         if (other_node) {
403                 other = rb_entry(other_node, struct extent_state, rb_node);
404                 if (other->start == state->end + 1 &&
405                     other->state == state->state) {
406                         merge_cb(tree, state, other);
407                         state->end = other->end;
408                         rb_erase(&other->rb_node, &tree->state);
409                         RB_CLEAR_NODE(&other->rb_node);
410                         free_extent_state(other);
411                 }
412         }
413 }
414
415 static void set_state_cb(struct extent_io_tree *tree,
416                          struct extent_state *state, unsigned *bits)
417 {
418         if (tree->ops && tree->ops->set_bit_hook)
419                 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
420 }
421
422 static void clear_state_cb(struct extent_io_tree *tree,
423                            struct extent_state *state, unsigned *bits)
424 {
425         if (tree->ops && tree->ops->clear_bit_hook)
426                 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
427 }
428
429 static void set_state_bits(struct extent_io_tree *tree,
430                            struct extent_state *state, unsigned *bits,
431                            struct extent_changeset *changeset);
432
433 /*
434  * insert an extent_state struct into the tree.  'bits' are set on the
435  * struct before it is inserted.
436  *
437  * This may return -EEXIST if the extent is already there, in which case the
438  * state struct is freed.
439  *
440  * The tree lock is not taken internally.  This is a utility function and
441  * probably isn't what you want to call (see set/clear_extent_bit).
442  */
443 static int insert_state(struct extent_io_tree *tree,
444                         struct extent_state *state, u64 start, u64 end,
445                         struct rb_node ***p,
446                         struct rb_node **parent,
447                         unsigned *bits, struct extent_changeset *changeset)
448 {
449         struct rb_node *node;
450
451         if (end < start)
452                 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
453                        end, start);
454         state->start = start;
455         state->end = end;
456
457         set_state_bits(tree, state, bits, changeset);
458
459         node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
460         if (node) {
461                 struct extent_state *found;
462                 found = rb_entry(node, struct extent_state, rb_node);
463                 printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
464                        "%llu %llu\n",
465                        found->start, found->end, start, end);
466                 return -EEXIST;
467         }
468         merge_state(tree, state);
469         return 0;
470 }
471
472 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
473                      u64 split)
474 {
475         if (tree->ops && tree->ops->split_extent_hook)
476                 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
477 }
478
479 /*
480  * split a given extent state struct in two, inserting the preallocated
481  * struct 'prealloc' as the newly created second half.  'split' indicates an
482  * offset inside 'orig' where it should be split.
483  *
484  * Before calling,
485  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
486  * are two extent state structs in the tree:
487  * prealloc: [orig->start, split - 1]
488  * orig: [ split, orig->end ]
489  *
490  * The tree locks are not taken by this function. They need to be held
491  * by the caller.
492  */
493 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
494                        struct extent_state *prealloc, u64 split)
495 {
496         struct rb_node *node;
497
498         split_cb(tree, orig, split);
499
500         prealloc->start = orig->start;
501         prealloc->end = split - 1;
502         prealloc->state = orig->state;
503         orig->start = split;
504
505         node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
506                            &prealloc->rb_node, NULL, NULL);
507         if (node) {
508                 free_extent_state(prealloc);
509                 return -EEXIST;
510         }
511         return 0;
512 }
513
514 static struct extent_state *next_state(struct extent_state *state)
515 {
516         struct rb_node *next = rb_next(&state->rb_node);
517         if (next)
518                 return rb_entry(next, struct extent_state, rb_node);
519         else
520                 return NULL;
521 }
522
523 /*
524  * utility function to clear some bits in an extent state struct.
525  * it will optionally wake up any one waiting on this state (wake == 1).
526  *
527  * If no bits are set on the state struct after clearing things, the
528  * struct is freed and removed from the tree
529  */
530 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
531                                             struct extent_state *state,
532                                             unsigned *bits, int wake,
533                                             struct extent_changeset *changeset)
534 {
535         struct extent_state *next;
536         unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
537
538         if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
539                 u64 range = state->end - state->start + 1;
540                 WARN_ON(range > tree->dirty_bytes);
541                 tree->dirty_bytes -= range;
542         }
543         clear_state_cb(tree, state, bits);
544         add_extent_changeset(state, bits_to_clear, changeset, 0);
545         state->state &= ~bits_to_clear;
546         if (wake)
547                 wake_up(&state->wq);
548         if (state->state == 0) {
549                 next = next_state(state);
550                 if (extent_state_in_tree(state)) {
551                         rb_erase(&state->rb_node, &tree->state);
552                         RB_CLEAR_NODE(&state->rb_node);
553                         free_extent_state(state);
554                 } else {
555                         WARN_ON(1);
556                 }
557         } else {
558                 merge_state(tree, state);
559                 next = next_state(state);
560         }
561         return next;
562 }
563
564 static struct extent_state *
565 alloc_extent_state_atomic(struct extent_state *prealloc)
566 {
567         if (!prealloc)
568                 prealloc = alloc_extent_state(GFP_ATOMIC);
569
570         return prealloc;
571 }
572
573 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
574 {
575         btrfs_panic(tree_fs_info(tree), err, "Locking error: "
576                     "Extent tree was modified by another "
577                     "thread while locked.");
578 }
579
580 /*
581  * clear some bits on a range in the tree.  This may require splitting
582  * or inserting elements in the tree, so the gfp mask is used to
583  * indicate which allocations or sleeping are allowed.
584  *
585  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
586  * the given range from the tree regardless of state (ie for truncate).
587  *
588  * the range [start, end] is inclusive.
589  *
590  * This takes the tree lock, and returns 0 on success and < 0 on error.
591  */
592 static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
593                               unsigned bits, int wake, int delete,
594                               struct extent_state **cached_state,
595                               gfp_t mask, struct extent_changeset *changeset)
596 {
597         struct extent_state *state;
598         struct extent_state *cached;
599         struct extent_state *prealloc = NULL;
600         struct rb_node *node;
601         u64 last_end;
602         int err;
603         int clear = 0;
604
605         btrfs_debug_check_extent_io_range(tree, start, end);
606
607         if (bits & EXTENT_DELALLOC)
608                 bits |= EXTENT_NORESERVE;
609
610         if (delete)
611                 bits |= ~EXTENT_CTLBITS;
612         bits |= EXTENT_FIRST_DELALLOC;
613
614         if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
615                 clear = 1;
616 again:
617         if (!prealloc && gfpflags_allow_blocking(mask)) {
618                 /*
619                  * Don't care for allocation failure here because we might end
620                  * up not needing the pre-allocated extent state at all, which
621                  * is the case if we only have in the tree extent states that
622                  * cover our input range and don't cover too any other range.
623                  * If we end up needing a new extent state we allocate it later.
624                  */
625                 prealloc = alloc_extent_state(mask);
626         }
627
628         spin_lock(&tree->lock);
629         if (cached_state) {
630                 cached = *cached_state;
631
632                 if (clear) {
633                         *cached_state = NULL;
634                         cached_state = NULL;
635                 }
636
637                 if (cached && extent_state_in_tree(cached) &&
638                     cached->start <= start && cached->end > start) {
639                         if (clear)
640                                 atomic_dec(&cached->refs);
641                         state = cached;
642                         goto hit_next;
643                 }
644                 if (clear)
645                         free_extent_state(cached);
646         }
647         /*
648          * this search will find the extents that end after
649          * our range starts
650          */
651         node = tree_search(tree, start);
652         if (!node)
653                 goto out;
654         state = rb_entry(node, struct extent_state, rb_node);
655 hit_next:
656         if (state->start > end)
657                 goto out;
658         WARN_ON(state->end < start);
659         last_end = state->end;
660
661         /* the state doesn't have the wanted bits, go ahead */
662         if (!(state->state & bits)) {
663                 state = next_state(state);
664                 goto next;
665         }
666
667         /*
668          *     | ---- desired range ---- |
669          *  | state | or
670          *  | ------------- state -------------- |
671          *
672          * We need to split the extent we found, and may flip
673          * bits on second half.
674          *
675          * If the extent we found extends past our range, we
676          * just split and search again.  It'll get split again
677          * the next time though.
678          *
679          * If the extent we found is inside our range, we clear
680          * the desired bit on it.
681          */
682
683         if (state->start < start) {
684                 prealloc = alloc_extent_state_atomic(prealloc);
685                 BUG_ON(!prealloc);
686                 err = split_state(tree, state, prealloc, start);
687                 if (err)
688                         extent_io_tree_panic(tree, err);
689
690                 prealloc = NULL;
691                 if (err)
692                         goto out;
693                 if (state->end <= end) {
694                         state = clear_state_bit(tree, state, &bits, wake,
695                                                 changeset);
696                         goto next;
697                 }
698                 goto search_again;
699         }
700         /*
701          * | ---- desired range ---- |
702          *                        | state |
703          * We need to split the extent, and clear the bit
704          * on the first half
705          */
706         if (state->start <= end && state->end > end) {
707                 prealloc = alloc_extent_state_atomic(prealloc);
708                 BUG_ON(!prealloc);
709                 err = split_state(tree, state, prealloc, end + 1);
710                 if (err)
711                         extent_io_tree_panic(tree, err);
712
713                 if (wake)
714                         wake_up(&state->wq);
715
716                 clear_state_bit(tree, prealloc, &bits, wake, changeset);
717
718                 prealloc = NULL;
719                 goto out;
720         }
721
722         state = clear_state_bit(tree, state, &bits, wake, changeset);
723 next:
724         if (last_end == (u64)-1)
725                 goto out;
726         start = last_end + 1;
727         if (start <= end && state && !need_resched())
728                 goto hit_next;
729
730 search_again:
731         if (start > end)
732                 goto out;
733         spin_unlock(&tree->lock);
734         if (gfpflags_allow_blocking(mask))
735                 cond_resched();
736         goto again;
737
738 out:
739         spin_unlock(&tree->lock);
740         if (prealloc)
741                 free_extent_state(prealloc);
742
743         return 0;
744
745 }
746
747 static void wait_on_state(struct extent_io_tree *tree,
748                           struct extent_state *state)
749                 __releases(tree->lock)
750                 __acquires(tree->lock)
751 {
752         DEFINE_WAIT(wait);
753         prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
754         spin_unlock(&tree->lock);
755         schedule();
756         spin_lock(&tree->lock);
757         finish_wait(&state->wq, &wait);
758 }
759
760 /*
761  * waits for one or more bits to clear on a range in the state tree.
762  * The range [start, end] is inclusive.
763  * The tree lock is taken by this function
764  */
765 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
766                             unsigned long bits)
767 {
768         struct extent_state *state;
769         struct rb_node *node;
770
771         btrfs_debug_check_extent_io_range(tree, start, end);
772
773         spin_lock(&tree->lock);
774 again:
775         while (1) {
776                 /*
777                  * this search will find all the extents that end after
778                  * our range starts
779                  */
780                 node = tree_search(tree, start);
781 process_node:
782                 if (!node)
783                         break;
784
785                 state = rb_entry(node, struct extent_state, rb_node);
786
787                 if (state->start > end)
788                         goto out;
789
790                 if (state->state & bits) {
791                         start = state->start;
792                         atomic_inc(&state->refs);
793                         wait_on_state(tree, state);
794                         free_extent_state(state);
795                         goto again;
796                 }
797                 start = state->end + 1;
798
799                 if (start > end)
800                         break;
801
802                 if (!cond_resched_lock(&tree->lock)) {
803                         node = rb_next(node);
804                         goto process_node;
805                 }
806         }
807 out:
808         spin_unlock(&tree->lock);
809 }
810
811 static void set_state_bits(struct extent_io_tree *tree,
812                            struct extent_state *state,
813                            unsigned *bits, struct extent_changeset *changeset)
814 {
815         unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
816
817         set_state_cb(tree, state, bits);
818         if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
819                 u64 range = state->end - state->start + 1;
820                 tree->dirty_bytes += range;
821         }
822         add_extent_changeset(state, bits_to_set, changeset, 1);
823         state->state |= bits_to_set;
824 }
825
826 static void cache_state_if_flags(struct extent_state *state,
827                                  struct extent_state **cached_ptr,
828                                  unsigned flags)
829 {
830         if (cached_ptr && !(*cached_ptr)) {
831                 if (!flags || (state->state & flags)) {
832                         *cached_ptr = state;
833                         atomic_inc(&state->refs);
834                 }
835         }
836 }
837
838 static void cache_state(struct extent_state *state,
839                         struct extent_state **cached_ptr)
840 {
841         return cache_state_if_flags(state, cached_ptr,
842                                     EXTENT_IOBITS | EXTENT_BOUNDARY);
843 }
844
845 /*
846  * set some bits on a range in the tree.  This may require allocations or
847  * sleeping, so the gfp mask is used to indicate what is allowed.
848  *
849  * If any of the exclusive bits are set, this will fail with -EEXIST if some
850  * part of the range already has the desired bits set.  The start of the
851  * existing range is returned in failed_start in this case.
852  *
853  * [start, end] is inclusive This takes the tree lock.
854  */
855
856 static int __must_check
857 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
858                  unsigned bits, unsigned exclusive_bits,
859                  u64 *failed_start, struct extent_state **cached_state,
860                  gfp_t mask, struct extent_changeset *changeset)
861 {
862         struct extent_state *state;
863         struct extent_state *prealloc = NULL;
864         struct rb_node *node;
865         struct rb_node **p;
866         struct rb_node *parent;
867         int err = 0;
868         u64 last_start;
869         u64 last_end;
870
871         btrfs_debug_check_extent_io_range(tree, start, end);
872
873         bits |= EXTENT_FIRST_DELALLOC;
874 again:
875         if (!prealloc && gfpflags_allow_blocking(mask)) {
876                 /*
877                  * Don't care for allocation failure here because we might end
878                  * up not needing the pre-allocated extent state at all, which
879                  * is the case if we only have in the tree extent states that
880                  * cover our input range and don't cover too any other range.
881                  * If we end up needing a new extent state we allocate it later.
882                  */
883                 prealloc = alloc_extent_state(mask);
884         }
885
886         spin_lock(&tree->lock);
887         if (cached_state && *cached_state) {
888                 state = *cached_state;
889                 if (state->start <= start && state->end > start &&
890                     extent_state_in_tree(state)) {
891                         node = &state->rb_node;
892                         goto hit_next;
893                 }
894         }
895         /*
896          * this search will find all the extents that end after
897          * our range starts.
898          */
899         node = tree_search_for_insert(tree, start, &p, &parent);
900         if (!node) {
901                 prealloc = alloc_extent_state_atomic(prealloc);
902                 BUG_ON(!prealloc);
903                 err = insert_state(tree, prealloc, start, end,
904                                    &p, &parent, &bits, changeset);
905                 if (err)
906                         extent_io_tree_panic(tree, err);
907
908                 cache_state(prealloc, cached_state);
909                 prealloc = NULL;
910                 goto out;
911         }
912         state = rb_entry(node, struct extent_state, rb_node);
913 hit_next:
914         last_start = state->start;
915         last_end = state->end;
916
917         /*
918          * | ---- desired range ---- |
919          * | state |
920          *
921          * Just lock what we found and keep going
922          */
923         if (state->start == start && state->end <= end) {
924                 if (state->state & exclusive_bits) {
925                         *failed_start = state->start;
926                         err = -EEXIST;
927                         goto out;
928                 }
929
930                 set_state_bits(tree, state, &bits, changeset);
931                 cache_state(state, cached_state);
932                 merge_state(tree, state);
933                 if (last_end == (u64)-1)
934                         goto out;
935                 start = last_end + 1;
936                 state = next_state(state);
937                 if (start < end && state && state->start == start &&
938                     !need_resched())
939                         goto hit_next;
940                 goto search_again;
941         }
942
943         /*
944          *     | ---- desired range ---- |
945          * | state |
946          *   or
947          * | ------------- state -------------- |
948          *
949          * We need to split the extent we found, and may flip bits on
950          * second half.
951          *
952          * If the extent we found extends past our
953          * range, we just split and search again.  It'll get split
954          * again the next time though.
955          *
956          * If the extent we found is inside our range, we set the
957          * desired bit on it.
958          */
959         if (state->start < start) {
960                 if (state->state & exclusive_bits) {
961                         *failed_start = start;
962                         err = -EEXIST;
963                         goto out;
964                 }
965
966                 prealloc = alloc_extent_state_atomic(prealloc);
967                 BUG_ON(!prealloc);
968                 err = split_state(tree, state, prealloc, start);
969                 if (err)
970                         extent_io_tree_panic(tree, err);
971
972                 prealloc = NULL;
973                 if (err)
974                         goto out;
975                 if (state->end <= end) {
976                         set_state_bits(tree, state, &bits, changeset);
977                         cache_state(state, cached_state);
978                         merge_state(tree, state);
979                         if (last_end == (u64)-1)
980                                 goto out;
981                         start = last_end + 1;
982                         state = next_state(state);
983                         if (start < end && state && state->start == start &&
984                             !need_resched())
985                                 goto hit_next;
986                 }
987                 goto search_again;
988         }
989         /*
990          * | ---- desired range ---- |
991          *     | state | or               | state |
992          *
993          * There's a hole, we need to insert something in it and
994          * ignore the extent we found.
995          */
996         if (state->start > start) {
997                 u64 this_end;
998                 if (end < last_start)
999                         this_end = end;
1000                 else
1001                         this_end = last_start - 1;
1002
1003                 prealloc = alloc_extent_state_atomic(prealloc);
1004                 BUG_ON(!prealloc);
1005
1006                 /*
1007                  * Avoid to free 'prealloc' if it can be merged with
1008                  * the later extent.
1009                  */
1010                 err = insert_state(tree, prealloc, start, this_end,
1011                                    NULL, NULL, &bits, changeset);
1012                 if (err)
1013                         extent_io_tree_panic(tree, err);
1014
1015                 cache_state(prealloc, cached_state);
1016                 prealloc = NULL;
1017                 start = this_end + 1;
1018                 goto search_again;
1019         }
1020         /*
1021          * | ---- desired range ---- |
1022          *                        | state |
1023          * We need to split the extent, and set the bit
1024          * on the first half
1025          */
1026         if (state->start <= end && state->end > end) {
1027                 if (state->state & exclusive_bits) {
1028                         *failed_start = start;
1029                         err = -EEXIST;
1030                         goto out;
1031                 }
1032
1033                 prealloc = alloc_extent_state_atomic(prealloc);
1034                 BUG_ON(!prealloc);
1035                 err = split_state(tree, state, prealloc, end + 1);
1036                 if (err)
1037                         extent_io_tree_panic(tree, err);
1038
1039                 set_state_bits(tree, prealloc, &bits, changeset);
1040                 cache_state(prealloc, cached_state);
1041                 merge_state(tree, prealloc);
1042                 prealloc = NULL;
1043                 goto out;
1044         }
1045
1046 search_again:
1047         if (start > end)
1048                 goto out;
1049         spin_unlock(&tree->lock);
1050         if (gfpflags_allow_blocking(mask))
1051                 cond_resched();
1052         goto again;
1053
1054 out:
1055         spin_unlock(&tree->lock);
1056         if (prealloc)
1057                 free_extent_state(prealloc);
1058
1059         return err;
1060
1061 }
1062
1063 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1064                    unsigned bits, u64 * failed_start,
1065                    struct extent_state **cached_state, gfp_t mask)
1066 {
1067         return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1068                                 cached_state, mask, NULL);
1069 }
1070
1071
1072 /**
1073  * convert_extent_bit - convert all bits in a given range from one bit to
1074  *                      another
1075  * @tree:       the io tree to search
1076  * @start:      the start offset in bytes
1077  * @end:        the end offset in bytes (inclusive)
1078  * @bits:       the bits to set in this range
1079  * @clear_bits: the bits to clear in this range
1080  * @cached_state:       state that we're going to cache
1081  *
1082  * This will go through and set bits for the given range.  If any states exist
1083  * already in this range they are set with the given bit and cleared of the
1084  * clear_bits.  This is only meant to be used by things that are mergeable, ie
1085  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1086  * boundary bits like LOCK.
1087  *
1088  * All allocations are done with GFP_NOFS.
1089  */
1090 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1091                        unsigned bits, unsigned clear_bits,
1092                        struct extent_state **cached_state)
1093 {
1094         struct extent_state *state;
1095         struct extent_state *prealloc = NULL;
1096         struct rb_node *node;
1097         struct rb_node **p;
1098         struct rb_node *parent;
1099         int err = 0;
1100         u64 last_start;
1101         u64 last_end;
1102         bool first_iteration = true;
1103
1104         btrfs_debug_check_extent_io_range(tree, start, end);
1105
1106 again:
1107         if (!prealloc) {
1108                 /*
1109                  * Best effort, don't worry if extent state allocation fails
1110                  * here for the first iteration. We might have a cached state
1111                  * that matches exactly the target range, in which case no
1112                  * extent state allocations are needed. We'll only know this
1113                  * after locking the tree.
1114                  */
1115                 prealloc = alloc_extent_state(GFP_NOFS);
1116                 if (!prealloc && !first_iteration)
1117                         return -ENOMEM;
1118         }
1119
1120         spin_lock(&tree->lock);
1121         if (cached_state && *cached_state) {
1122                 state = *cached_state;
1123                 if (state->start <= start && state->end > start &&
1124                     extent_state_in_tree(state)) {
1125                         node = &state->rb_node;
1126                         goto hit_next;
1127                 }
1128         }
1129
1130         /*
1131          * this search will find all the extents that end after
1132          * our range starts.
1133          */
1134         node = tree_search_for_insert(tree, start, &p, &parent);
1135         if (!node) {
1136                 prealloc = alloc_extent_state_atomic(prealloc);
1137                 if (!prealloc) {
1138                         err = -ENOMEM;
1139                         goto out;
1140                 }
1141                 err = insert_state(tree, prealloc, start, end,
1142                                    &p, &parent, &bits, NULL);
1143                 if (err)
1144                         extent_io_tree_panic(tree, err);
1145                 cache_state(prealloc, cached_state);
1146                 prealloc = NULL;
1147                 goto out;
1148         }
1149         state = rb_entry(node, struct extent_state, rb_node);
1150 hit_next:
1151         last_start = state->start;
1152         last_end = state->end;
1153
1154         /*
1155          * | ---- desired range ---- |
1156          * | state |
1157          *
1158          * Just lock what we found and keep going
1159          */
1160         if (state->start == start && state->end <= end) {
1161                 set_state_bits(tree, state, &bits, NULL);
1162                 cache_state(state, cached_state);
1163                 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1164                 if (last_end == (u64)-1)
1165                         goto out;
1166                 start = last_end + 1;
1167                 if (start < end && state && state->start == start &&
1168                     !need_resched())
1169                         goto hit_next;
1170                 goto search_again;
1171         }
1172
1173         /*
1174          *     | ---- desired range ---- |
1175          * | state |
1176          *   or
1177          * | ------------- state -------------- |
1178          *
1179          * We need to split the extent we found, and may flip bits on
1180          * second half.
1181          *
1182          * If the extent we found extends past our
1183          * range, we just split and search again.  It'll get split
1184          * again the next time though.
1185          *
1186          * If the extent we found is inside our range, we set the
1187          * desired bit on it.
1188          */
1189         if (state->start < start) {
1190                 prealloc = alloc_extent_state_atomic(prealloc);
1191                 if (!prealloc) {
1192                         err = -ENOMEM;
1193                         goto out;
1194                 }
1195                 err = split_state(tree, state, prealloc, start);
1196                 if (err)
1197                         extent_io_tree_panic(tree, err);
1198                 prealloc = NULL;
1199                 if (err)
1200                         goto out;
1201                 if (state->end <= end) {
1202                         set_state_bits(tree, state, &bits, NULL);
1203                         cache_state(state, cached_state);
1204                         state = clear_state_bit(tree, state, &clear_bits, 0,
1205                                                 NULL);
1206                         if (last_end == (u64)-1)
1207                                 goto out;
1208                         start = last_end + 1;
1209                         if (start < end && state && state->start == start &&
1210                             !need_resched())
1211                                 goto hit_next;
1212                 }
1213                 goto search_again;
1214         }
1215         /*
1216          * | ---- desired range ---- |
1217          *     | state | or               | state |
1218          *
1219          * There's a hole, we need to insert something in it and
1220          * ignore the extent we found.
1221          */
1222         if (state->start > start) {
1223                 u64 this_end;
1224                 if (end < last_start)
1225                         this_end = end;
1226                 else
1227                         this_end = last_start - 1;
1228
1229                 prealloc = alloc_extent_state_atomic(prealloc);
1230                 if (!prealloc) {
1231                         err = -ENOMEM;
1232                         goto out;
1233                 }
1234
1235                 /*
1236                  * Avoid to free 'prealloc' if it can be merged with
1237                  * the later extent.
1238                  */
1239                 err = insert_state(tree, prealloc, start, this_end,
1240                                    NULL, NULL, &bits, NULL);
1241                 if (err)
1242                         extent_io_tree_panic(tree, err);
1243                 cache_state(prealloc, cached_state);
1244                 prealloc = NULL;
1245                 start = this_end + 1;
1246                 goto search_again;
1247         }
1248         /*
1249          * | ---- desired range ---- |
1250          *                        | state |
1251          * We need to split the extent, and set the bit
1252          * on the first half
1253          */
1254         if (state->start <= end && state->end > end) {
1255                 prealloc = alloc_extent_state_atomic(prealloc);
1256                 if (!prealloc) {
1257                         err = -ENOMEM;
1258                         goto out;
1259                 }
1260
1261                 err = split_state(tree, state, prealloc, end + 1);
1262                 if (err)
1263                         extent_io_tree_panic(tree, err);
1264
1265                 set_state_bits(tree, prealloc, &bits, NULL);
1266                 cache_state(prealloc, cached_state);
1267                 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1268                 prealloc = NULL;
1269                 goto out;
1270         }
1271
1272 search_again:
1273         if (start > end)
1274                 goto out;
1275         spin_unlock(&tree->lock);
1276         cond_resched();
1277         first_iteration = false;
1278         goto again;
1279
1280 out:
1281         spin_unlock(&tree->lock);
1282         if (prealloc)
1283                 free_extent_state(prealloc);
1284
1285         return err;
1286 }
1287
1288 /* wrappers around set/clear extent bit */
1289 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1290                            unsigned bits, struct extent_changeset *changeset)
1291 {
1292         /*
1293          * We don't support EXTENT_LOCKED yet, as current changeset will
1294          * record any bits changed, so for EXTENT_LOCKED case, it will
1295          * either fail with -EEXIST or changeset will record the whole
1296          * range.
1297          */
1298         BUG_ON(bits & EXTENT_LOCKED);
1299
1300         return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1301                                 changeset);
1302 }
1303
1304 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1305                      unsigned bits, int wake, int delete,
1306                      struct extent_state **cached, gfp_t mask)
1307 {
1308         return __clear_extent_bit(tree, start, end, bits, wake, delete,
1309                                   cached, mask, NULL);
1310 }
1311
1312 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1313                 unsigned bits, struct extent_changeset *changeset)
1314 {
1315         /*
1316          * Don't support EXTENT_LOCKED case, same reason as
1317          * set_record_extent_bits().
1318          */
1319         BUG_ON(bits & EXTENT_LOCKED);
1320
1321         return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1322                                   changeset);
1323 }
1324
1325 /*
1326  * either insert or lock state struct between start and end use mask to tell
1327  * us if waiting is desired.
1328  */
1329 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1330                      struct extent_state **cached_state)
1331 {
1332         int err;
1333         u64 failed_start;
1334
1335         while (1) {
1336                 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1337                                        EXTENT_LOCKED, &failed_start,
1338                                        cached_state, GFP_NOFS, NULL);
1339                 if (err == -EEXIST) {
1340                         wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1341                         start = failed_start;
1342                 } else
1343                         break;
1344                 WARN_ON(start > end);
1345         }
1346         return err;
1347 }
1348
1349 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1350 {
1351         int err;
1352         u64 failed_start;
1353
1354         err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1355                                &failed_start, NULL, GFP_NOFS, NULL);
1356         if (err == -EEXIST) {
1357                 if (failed_start > start)
1358                         clear_extent_bit(tree, start, failed_start - 1,
1359                                          EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1360                 return 0;
1361         }
1362         return 1;
1363 }
1364
1365 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1366 {
1367         unsigned long index = start >> PAGE_SHIFT;
1368         unsigned long end_index = end >> PAGE_SHIFT;
1369         struct page *page;
1370
1371         while (index <= end_index) {
1372                 page = find_get_page(inode->i_mapping, index);
1373                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1374                 clear_page_dirty_for_io(page);
1375                 put_page(page);
1376                 index++;
1377         }
1378 }
1379
1380 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1381 {
1382         unsigned long index = start >> PAGE_SHIFT;
1383         unsigned long end_index = end >> PAGE_SHIFT;
1384         struct page *page;
1385
1386         while (index <= end_index) {
1387                 page = find_get_page(inode->i_mapping, index);
1388                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1389                 __set_page_dirty_nobuffers(page);
1390                 account_page_redirty(page);
1391                 put_page(page);
1392                 index++;
1393         }
1394 }
1395
1396 /*
1397  * helper function to set both pages and extents in the tree writeback
1398  */
1399 static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1400 {
1401         unsigned long index = start >> PAGE_SHIFT;
1402         unsigned long end_index = end >> PAGE_SHIFT;
1403         struct page *page;
1404
1405         while (index <= end_index) {
1406                 page = find_get_page(tree->mapping, index);
1407                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1408                 set_page_writeback(page);
1409                 put_page(page);
1410                 index++;
1411         }
1412 }
1413
1414 /* find the first state struct with 'bits' set after 'start', and
1415  * return it.  tree->lock must be held.  NULL will returned if
1416  * nothing was found after 'start'
1417  */
1418 static struct extent_state *
1419 find_first_extent_bit_state(struct extent_io_tree *tree,
1420                             u64 start, unsigned bits)
1421 {
1422         struct rb_node *node;
1423         struct extent_state *state;
1424
1425         /*
1426          * this search will find all the extents that end after
1427          * our range starts.
1428          */
1429         node = tree_search(tree, start);
1430         if (!node)
1431                 goto out;
1432
1433         while (1) {
1434                 state = rb_entry(node, struct extent_state, rb_node);
1435                 if (state->end >= start && (state->state & bits))
1436                         return state;
1437
1438                 node = rb_next(node);
1439                 if (!node)
1440                         break;
1441         }
1442 out:
1443         return NULL;
1444 }
1445
1446 /*
1447  * find the first offset in the io tree with 'bits' set. zero is
1448  * returned if we find something, and *start_ret and *end_ret are
1449  * set to reflect the state struct that was found.
1450  *
1451  * If nothing was found, 1 is returned. If found something, return 0.
1452  */
1453 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1454                           u64 *start_ret, u64 *end_ret, unsigned bits,
1455                           struct extent_state **cached_state)
1456 {
1457         struct extent_state *state;
1458         struct rb_node *n;
1459         int ret = 1;
1460
1461         spin_lock(&tree->lock);
1462         if (cached_state && *cached_state) {
1463                 state = *cached_state;
1464                 if (state->end == start - 1 && extent_state_in_tree(state)) {
1465                         n = rb_next(&state->rb_node);
1466                         while (n) {
1467                                 state = rb_entry(n, struct extent_state,
1468                                                  rb_node);
1469                                 if (state->state & bits)
1470                                         goto got_it;
1471                                 n = rb_next(n);
1472                         }
1473                         free_extent_state(*cached_state);
1474                         *cached_state = NULL;
1475                         goto out;
1476                 }
1477                 free_extent_state(*cached_state);
1478                 *cached_state = NULL;
1479         }
1480
1481         state = find_first_extent_bit_state(tree, start, bits);
1482 got_it:
1483         if (state) {
1484                 cache_state_if_flags(state, cached_state, 0);
1485                 *start_ret = state->start;
1486                 *end_ret = state->end;
1487                 ret = 0;
1488         }
1489 out:
1490         spin_unlock(&tree->lock);
1491         return ret;
1492 }
1493
1494 /*
1495  * find a contiguous range of bytes in the file marked as delalloc, not
1496  * more than 'max_bytes'.  start and end are used to return the range,
1497  *
1498  * 1 is returned if we find something, 0 if nothing was in the tree
1499  */
1500 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1501                                         u64 *start, u64 *end, u64 max_bytes,
1502                                         struct extent_state **cached_state)
1503 {
1504         struct rb_node *node;
1505         struct extent_state *state;
1506         u64 cur_start = *start;
1507         u64 found = 0;
1508         u64 total_bytes = 0;
1509
1510         spin_lock(&tree->lock);
1511
1512         /*
1513          * this search will find all the extents that end after
1514          * our range starts.
1515          */
1516         node = tree_search(tree, cur_start);
1517         if (!node) {
1518                 if (!found)
1519                         *end = (u64)-1;
1520                 goto out;
1521         }
1522
1523         while (1) {
1524                 state = rb_entry(node, struct extent_state, rb_node);
1525                 if (found && (state->start != cur_start ||
1526                               (state->state & EXTENT_BOUNDARY))) {
1527                         goto out;
1528                 }
1529                 if (!(state->state & EXTENT_DELALLOC)) {
1530                         if (!found)
1531                                 *end = state->end;
1532                         goto out;
1533                 }
1534                 if (!found) {
1535                         *start = state->start;
1536                         *cached_state = state;
1537                         atomic_inc(&state->refs);
1538                 }
1539                 found++;
1540                 *end = state->end;
1541                 cur_start = state->end + 1;
1542                 node = rb_next(node);
1543                 total_bytes += state->end - state->start + 1;
1544                 if (total_bytes >= max_bytes)
1545                         break;
1546                 if (!node)
1547                         break;
1548         }
1549 out:
1550         spin_unlock(&tree->lock);
1551         return found;
1552 }
1553
1554 static noinline void __unlock_for_delalloc(struct inode *inode,
1555                                            struct page *locked_page,
1556                                            u64 start, u64 end)
1557 {
1558         int ret;
1559         struct page *pages[16];
1560         unsigned long index = start >> PAGE_SHIFT;
1561         unsigned long end_index = end >> PAGE_SHIFT;
1562         unsigned long nr_pages = end_index - index + 1;
1563         int i;
1564
1565         if (index == locked_page->index && end_index == index)
1566                 return;
1567
1568         while (nr_pages > 0) {
1569                 ret = find_get_pages_contig(inode->i_mapping, index,
1570                                      min_t(unsigned long, nr_pages,
1571                                      ARRAY_SIZE(pages)), pages);
1572                 for (i = 0; i < ret; i++) {
1573                         if (pages[i] != locked_page)
1574                                 unlock_page(pages[i]);
1575                         put_page(pages[i]);
1576                 }
1577                 nr_pages -= ret;
1578                 index += ret;
1579                 cond_resched();
1580         }
1581 }
1582
1583 static noinline int lock_delalloc_pages(struct inode *inode,
1584                                         struct page *locked_page,
1585                                         u64 delalloc_start,
1586                                         u64 delalloc_end)
1587 {
1588         unsigned long index = delalloc_start >> PAGE_SHIFT;
1589         unsigned long start_index = index;
1590         unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1591         unsigned long pages_locked = 0;
1592         struct page *pages[16];
1593         unsigned long nrpages;
1594         int ret;
1595         int i;
1596
1597         /* the caller is responsible for locking the start index */
1598         if (index == locked_page->index && index == end_index)
1599                 return 0;
1600
1601         /* skip the page at the start index */
1602         nrpages = end_index - index + 1;
1603         while (nrpages > 0) {
1604                 ret = find_get_pages_contig(inode->i_mapping, index,
1605                                      min_t(unsigned long,
1606                                      nrpages, ARRAY_SIZE(pages)), pages);
1607                 if (ret == 0) {
1608                         ret = -EAGAIN;
1609                         goto done;
1610                 }
1611                 /* now we have an array of pages, lock them all */
1612                 for (i = 0; i < ret; i++) {
1613                         /*
1614                          * the caller is taking responsibility for
1615                          * locked_page
1616                          */
1617                         if (pages[i] != locked_page) {
1618                                 lock_page(pages[i]);
1619                                 if (!PageDirty(pages[i]) ||
1620                                     pages[i]->mapping != inode->i_mapping) {
1621                                         ret = -EAGAIN;
1622                                         unlock_page(pages[i]);
1623                                         put_page(pages[i]);
1624                                         goto done;
1625                                 }
1626                         }
1627                         put_page(pages[i]);
1628                         pages_locked++;
1629                 }
1630                 nrpages -= ret;
1631                 index += ret;
1632                 cond_resched();
1633         }
1634         ret = 0;
1635 done:
1636         if (ret && pages_locked) {
1637                 __unlock_for_delalloc(inode, locked_page,
1638                               delalloc_start,
1639                               ((u64)(start_index + pages_locked - 1)) <<
1640                               PAGE_SHIFT);
1641         }
1642         return ret;
1643 }
1644
1645 /*
1646  * find a contiguous range of bytes in the file marked as delalloc, not
1647  * more than 'max_bytes'.  start and end are used to return the range,
1648  *
1649  * 1 is returned if we find something, 0 if nothing was in the tree
1650  */
1651 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1652                                     struct extent_io_tree *tree,
1653                                     struct page *locked_page, u64 *start,
1654                                     u64 *end, u64 max_bytes)
1655 {
1656         u64 delalloc_start;
1657         u64 delalloc_end;
1658         u64 found;
1659         struct extent_state *cached_state = NULL;
1660         int ret;
1661         int loops = 0;
1662
1663 again:
1664         /* step one, find a bunch of delalloc bytes starting at start */
1665         delalloc_start = *start;
1666         delalloc_end = 0;
1667         found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1668                                     max_bytes, &cached_state);
1669         if (!found || delalloc_end <= *start) {
1670                 *start = delalloc_start;
1671                 *end = delalloc_end;
1672                 free_extent_state(cached_state);
1673                 return 0;
1674         }
1675
1676         /*
1677          * start comes from the offset of locked_page.  We have to lock
1678          * pages in order, so we can't process delalloc bytes before
1679          * locked_page
1680          */
1681         if (delalloc_start < *start)
1682                 delalloc_start = *start;
1683
1684         /*
1685          * make sure to limit the number of pages we try to lock down
1686          */
1687         if (delalloc_end + 1 - delalloc_start > max_bytes)
1688                 delalloc_end = delalloc_start + max_bytes - 1;
1689
1690         /* step two, lock all the pages after the page that has start */
1691         ret = lock_delalloc_pages(inode, locked_page,
1692                                   delalloc_start, delalloc_end);
1693         if (ret == -EAGAIN) {
1694                 /* some of the pages are gone, lets avoid looping by
1695                  * shortening the size of the delalloc range we're searching
1696                  */
1697                 free_extent_state(cached_state);
1698                 cached_state = NULL;
1699                 if (!loops) {
1700                         max_bytes = PAGE_SIZE;
1701                         loops = 1;
1702                         goto again;
1703                 } else {
1704                         found = 0;
1705                         goto out_failed;
1706                 }
1707         }
1708         BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1709
1710         /* step three, lock the state bits for the whole range */
1711         lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1712
1713         /* then test to make sure it is all still delalloc */
1714         ret = test_range_bit(tree, delalloc_start, delalloc_end,
1715                              EXTENT_DELALLOC, 1, cached_state);
1716         if (!ret) {
1717                 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1718                                      &cached_state, GFP_NOFS);
1719                 __unlock_for_delalloc(inode, locked_page,
1720                               delalloc_start, delalloc_end);
1721                 cond_resched();
1722                 goto again;
1723         }
1724         free_extent_state(cached_state);
1725         *start = delalloc_start;
1726         *end = delalloc_end;
1727 out_failed:
1728         return found;
1729 }
1730
1731 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1732                                  struct page *locked_page,
1733                                  unsigned clear_bits,
1734                                  unsigned long page_ops)
1735 {
1736         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1737         int ret;
1738         struct page *pages[16];
1739         unsigned long index = start >> PAGE_SHIFT;
1740         unsigned long end_index = end >> PAGE_SHIFT;
1741         unsigned long nr_pages = end_index - index + 1;
1742         int i;
1743
1744         clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1745         if (page_ops == 0)
1746                 return;
1747
1748         if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1749                 mapping_set_error(inode->i_mapping, -EIO);
1750
1751         while (nr_pages > 0) {
1752                 ret = find_get_pages_contig(inode->i_mapping, index,
1753                                      min_t(unsigned long,
1754                                      nr_pages, ARRAY_SIZE(pages)), pages);
1755                 for (i = 0; i < ret; i++) {
1756
1757                         if (page_ops & PAGE_SET_PRIVATE2)
1758                                 SetPagePrivate2(pages[i]);
1759
1760                         if (pages[i] == locked_page) {
1761                                 put_page(pages[i]);
1762                                 continue;
1763                         }
1764                         if (page_ops & PAGE_CLEAR_DIRTY)
1765                                 clear_page_dirty_for_io(pages[i]);
1766                         if (page_ops & PAGE_SET_WRITEBACK)
1767                                 set_page_writeback(pages[i]);
1768                         if (page_ops & PAGE_SET_ERROR)
1769                                 SetPageError(pages[i]);
1770                         if (page_ops & PAGE_END_WRITEBACK)
1771                                 end_page_writeback(pages[i]);
1772                         if (page_ops & PAGE_UNLOCK)
1773                                 unlock_page(pages[i]);
1774                         put_page(pages[i]);
1775                 }
1776                 nr_pages -= ret;
1777                 index += ret;
1778                 cond_resched();
1779         }
1780 }
1781
1782 /*
1783  * count the number of bytes in the tree that have a given bit(s)
1784  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1785  * cached.  The total number found is returned.
1786  */
1787 u64 count_range_bits(struct extent_io_tree *tree,
1788                      u64 *start, u64 search_end, u64 max_bytes,
1789                      unsigned bits, int contig)
1790 {
1791         struct rb_node *node;
1792         struct extent_state *state;
1793         u64 cur_start = *start;
1794         u64 total_bytes = 0;
1795         u64 last = 0;
1796         int found = 0;
1797
1798         if (WARN_ON(search_end <= cur_start))
1799                 return 0;
1800
1801         spin_lock(&tree->lock);
1802         if (cur_start == 0 && bits == EXTENT_DIRTY) {
1803                 total_bytes = tree->dirty_bytes;
1804                 goto out;
1805         }
1806         /*
1807          * this search will find all the extents that end after
1808          * our range starts.
1809          */
1810         node = tree_search(tree, cur_start);
1811         if (!node)
1812                 goto out;
1813
1814         while (1) {
1815                 state = rb_entry(node, struct extent_state, rb_node);
1816                 if (state->start > search_end)
1817                         break;
1818                 if (contig && found && state->start > last + 1)
1819                         break;
1820                 if (state->end >= cur_start && (state->state & bits) == bits) {
1821                         total_bytes += min(search_end, state->end) + 1 -
1822                                        max(cur_start, state->start);
1823                         if (total_bytes >= max_bytes)
1824                                 break;
1825                         if (!found) {
1826                                 *start = max(cur_start, state->start);
1827                                 found = 1;
1828                         }
1829                         last = state->end;
1830                 } else if (contig && found) {
1831                         break;
1832                 }
1833                 node = rb_next(node);
1834                 if (!node)
1835                         break;
1836         }
1837 out:
1838         spin_unlock(&tree->lock);
1839         return total_bytes;
1840 }
1841
1842 /*
1843  * set the private field for a given byte offset in the tree.  If there isn't
1844  * an extent_state there already, this does nothing.
1845  */
1846 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
1847                 struct io_failure_record *failrec)
1848 {
1849         struct rb_node *node;
1850         struct extent_state *state;
1851         int ret = 0;
1852
1853         spin_lock(&tree->lock);
1854         /*
1855          * this search will find all the extents that end after
1856          * our range starts.
1857          */
1858         node = tree_search(tree, start);
1859         if (!node) {
1860                 ret = -ENOENT;
1861                 goto out;
1862         }
1863         state = rb_entry(node, struct extent_state, rb_node);
1864         if (state->start != start) {
1865                 ret = -ENOENT;
1866                 goto out;
1867         }
1868         state->failrec = failrec;
1869 out:
1870         spin_unlock(&tree->lock);
1871         return ret;
1872 }
1873
1874 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
1875                 struct io_failure_record **failrec)
1876 {
1877         struct rb_node *node;
1878         struct extent_state *state;
1879         int ret = 0;
1880
1881         spin_lock(&tree->lock);
1882         /*
1883          * this search will find all the extents that end after
1884          * our range starts.
1885          */
1886         node = tree_search(tree, start);
1887         if (!node) {
1888                 ret = -ENOENT;
1889                 goto out;
1890         }
1891         state = rb_entry(node, struct extent_state, rb_node);
1892         if (state->start != start) {
1893                 ret = -ENOENT;
1894                 goto out;
1895         }
1896         *failrec = state->failrec;
1897 out:
1898         spin_unlock(&tree->lock);
1899         return ret;
1900 }
1901
1902 /*
1903  * searches a range in the state tree for a given mask.
1904  * If 'filled' == 1, this returns 1 only if every extent in the tree
1905  * has the bits set.  Otherwise, 1 is returned if any bit in the
1906  * range is found set.
1907  */
1908 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1909                    unsigned bits, int filled, struct extent_state *cached)
1910 {
1911         struct extent_state *state = NULL;
1912         struct rb_node *node;
1913         int bitset = 0;
1914
1915         spin_lock(&tree->lock);
1916         if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1917             cached->end > start)
1918                 node = &cached->rb_node;
1919         else
1920                 node = tree_search(tree, start);
1921         while (node && start <= end) {
1922                 state = rb_entry(node, struct extent_state, rb_node);
1923
1924                 if (filled && state->start > start) {
1925                         bitset = 0;
1926                         break;
1927                 }
1928
1929                 if (state->start > end)
1930                         break;
1931
1932                 if (state->state & bits) {
1933                         bitset = 1;
1934                         if (!filled)
1935                                 break;
1936                 } else if (filled) {
1937                         bitset = 0;
1938                         break;
1939                 }
1940
1941                 if (state->end == (u64)-1)
1942                         break;
1943
1944                 start = state->end + 1;
1945                 if (start > end)
1946                         break;
1947                 node = rb_next(node);
1948                 if (!node) {
1949                         if (filled)
1950                                 bitset = 0;
1951                         break;
1952                 }
1953         }
1954         spin_unlock(&tree->lock);
1955         return bitset;
1956 }
1957
1958 /*
1959  * helper function to set a given page up to date if all the
1960  * extents in the tree for that page are up to date
1961  */
1962 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1963 {
1964         u64 start = page_offset(page);
1965         u64 end = start + PAGE_SIZE - 1;
1966         if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1967                 SetPageUptodate(page);
1968 }
1969
1970 int free_io_failure(struct inode *inode, struct io_failure_record *rec)
1971 {
1972         int ret;
1973         int err = 0;
1974         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1975
1976         set_state_failrec(failure_tree, rec->start, NULL);
1977         ret = clear_extent_bits(failure_tree, rec->start,
1978                                 rec->start + rec->len - 1,
1979                                 EXTENT_LOCKED | EXTENT_DIRTY);
1980         if (ret)
1981                 err = ret;
1982
1983         ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1984                                 rec->start + rec->len - 1,
1985                                 EXTENT_DAMAGED);
1986         if (ret && !err)
1987                 err = ret;
1988
1989         kfree(rec);
1990         return err;
1991 }
1992
1993 /*
1994  * this bypasses the standard btrfs submit functions deliberately, as
1995  * the standard behavior is to write all copies in a raid setup. here we only
1996  * want to write the one bad copy. so we do the mapping for ourselves and issue
1997  * submit_bio directly.
1998  * to avoid any synchronization issues, wait for the data after writing, which
1999  * actually prevents the read that triggered the error from finishing.
2000  * currently, there can be no more than two copies of every data bit. thus,
2001  * exactly one rewrite is required.
2002  */
2003 int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical,
2004                       struct page *page, unsigned int pg_offset, int mirror_num)
2005 {
2006         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2007         struct bio *bio;
2008         struct btrfs_device *dev;
2009         u64 map_length = 0;
2010         u64 sector;
2011         struct btrfs_bio *bbio = NULL;
2012         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2013         int ret;
2014
2015         ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
2016         BUG_ON(!mirror_num);
2017
2018         /* we can't repair anything in raid56 yet */
2019         if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2020                 return 0;
2021
2022         bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2023         if (!bio)
2024                 return -EIO;
2025         bio->bi_iter.bi_size = 0;
2026         map_length = length;
2027
2028         ret = btrfs_map_block(fs_info, WRITE, logical,
2029                               &map_length, &bbio, mirror_num);
2030         if (ret) {
2031                 bio_put(bio);
2032                 return -EIO;
2033         }
2034         BUG_ON(mirror_num != bbio->mirror_num);
2035         sector = bbio->stripes[mirror_num-1].physical >> 9;
2036         bio->bi_iter.bi_sector = sector;
2037         dev = bbio->stripes[mirror_num-1].dev;
2038         btrfs_put_bbio(bbio);
2039         if (!dev || !dev->bdev || !dev->writeable) {
2040                 bio_put(bio);
2041                 return -EIO;
2042         }
2043         bio->bi_bdev = dev->bdev;
2044         bio_add_page(bio, page, length, pg_offset);
2045
2046         if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
2047                 /* try to remap that extent elsewhere? */
2048                 bio_put(bio);
2049                 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2050                 return -EIO;
2051         }
2052
2053         btrfs_info_rl_in_rcu(fs_info,
2054                 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2055                                   btrfs_ino(inode), start,
2056                                   rcu_str_deref(dev->name), sector);
2057         bio_put(bio);
2058         return 0;
2059 }
2060
2061 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2062                          int mirror_num)
2063 {
2064         u64 start = eb->start;
2065         unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2066         int ret = 0;
2067
2068         if (root->fs_info->sb->s_flags & MS_RDONLY)
2069                 return -EROFS;
2070
2071         for (i = 0; i < num_pages; i++) {
2072                 struct page *p = eb->pages[i];
2073
2074                 ret = repair_io_failure(root->fs_info->btree_inode, start,
2075                                         PAGE_SIZE, start, p,
2076                                         start - page_offset(p), mirror_num);
2077                 if (ret)
2078                         break;
2079                 start += PAGE_SIZE;
2080         }
2081
2082         return ret;
2083 }
2084
2085 /*
2086  * each time an IO finishes, we do a fast check in the IO failure tree
2087  * to see if we need to process or clean up an io_failure_record
2088  */
2089 int clean_io_failure(struct inode *inode, u64 start, struct page *page,
2090                      unsigned int pg_offset)
2091 {
2092         u64 private;
2093         struct io_failure_record *failrec;
2094         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2095         struct extent_state *state;
2096         int num_copies;
2097         int ret;
2098
2099         private = 0;
2100         ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2101                                 (u64)-1, 1, EXTENT_DIRTY, 0);
2102         if (!ret)
2103                 return 0;
2104
2105         ret = get_state_failrec(&BTRFS_I(inode)->io_failure_tree, start,
2106                         &failrec);
2107         if (ret)
2108                 return 0;
2109
2110         BUG_ON(!failrec->this_mirror);
2111
2112         if (failrec->in_validation) {
2113                 /* there was no real error, just free the record */
2114                 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2115                          failrec->start);
2116                 goto out;
2117         }
2118         if (fs_info->sb->s_flags & MS_RDONLY)
2119                 goto out;
2120
2121         spin_lock(&BTRFS_I(inode)->io_tree.lock);
2122         state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2123                                             failrec->start,
2124                                             EXTENT_LOCKED);
2125         spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2126
2127         if (state && state->start <= failrec->start &&
2128             state->end >= failrec->start + failrec->len - 1) {
2129                 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2130                                               failrec->len);
2131                 if (num_copies > 1)  {
2132                         repair_io_failure(inode, start, failrec->len,
2133                                           failrec->logical, page,
2134                                           pg_offset, failrec->failed_mirror);
2135                 }
2136         }
2137
2138 out:
2139         free_io_failure(inode, failrec);
2140
2141         return 0;
2142 }
2143
2144 /*
2145  * Can be called when
2146  * - hold extent lock
2147  * - under ordered extent
2148  * - the inode is freeing
2149  */
2150 void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end)
2151 {
2152         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2153         struct io_failure_record *failrec;
2154         struct extent_state *state, *next;
2155
2156         if (RB_EMPTY_ROOT(&failure_tree->state))
2157                 return;
2158
2159         spin_lock(&failure_tree->lock);
2160         state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2161         while (state) {
2162                 if (state->start > end)
2163                         break;
2164
2165                 ASSERT(state->end <= end);
2166
2167                 next = next_state(state);
2168
2169                 failrec = state->failrec;
2170                 free_extent_state(state);
2171                 kfree(failrec);
2172
2173                 state = next;
2174         }
2175         spin_unlock(&failure_tree->lock);
2176 }
2177
2178 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2179                 struct io_failure_record **failrec_ret)
2180 {
2181         struct io_failure_record *failrec;
2182         struct extent_map *em;
2183         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2184         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2185         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2186         int ret;
2187         u64 logical;
2188
2189         ret = get_state_failrec(failure_tree, start, &failrec);
2190         if (ret) {
2191                 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2192                 if (!failrec)
2193                         return -ENOMEM;
2194
2195                 failrec->start = start;
2196                 failrec->len = end - start + 1;
2197                 failrec->this_mirror = 0;
2198                 failrec->bio_flags = 0;
2199                 failrec->in_validation = 0;
2200
2201                 read_lock(&em_tree->lock);
2202                 em = lookup_extent_mapping(em_tree, start, failrec->len);
2203                 if (!em) {
2204                         read_unlock(&em_tree->lock);
2205                         kfree(failrec);
2206                         return -EIO;
2207                 }
2208
2209                 if (em->start > start || em->start + em->len <= start) {
2210                         free_extent_map(em);
2211                         em = NULL;
2212                 }
2213                 read_unlock(&em_tree->lock);
2214                 if (!em) {
2215                         kfree(failrec);
2216                         return -EIO;
2217                 }
2218
2219                 logical = start - em->start;
2220                 logical = em->block_start + logical;
2221                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2222                         logical = em->block_start;
2223                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2224                         extent_set_compress_type(&failrec->bio_flags,
2225                                                  em->compress_type);
2226                 }
2227
2228                 pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n",
2229                          logical, start, failrec->len);
2230
2231                 failrec->logical = logical;
2232                 free_extent_map(em);
2233
2234                 /* set the bits in the private failure tree */
2235                 ret = set_extent_bits(failure_tree, start, end,
2236                                         EXTENT_LOCKED | EXTENT_DIRTY);
2237                 if (ret >= 0)
2238                         ret = set_state_failrec(failure_tree, start, failrec);
2239                 /* set the bits in the inode's tree */
2240                 if (ret >= 0)
2241                         ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2242                 if (ret < 0) {
2243                         kfree(failrec);
2244                         return ret;
2245                 }
2246         } else {
2247                 pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n",
2248                          failrec->logical, failrec->start, failrec->len,
2249                          failrec->in_validation);
2250                 /*
2251                  * when data can be on disk more than twice, add to failrec here
2252                  * (e.g. with a list for failed_mirror) to make
2253                  * clean_io_failure() clean all those errors at once.
2254                  */
2255         }
2256
2257         *failrec_ret = failrec;
2258
2259         return 0;
2260 }
2261
2262 int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2263                            struct io_failure_record *failrec, int failed_mirror)
2264 {
2265         int num_copies;
2266
2267         num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2268                                       failrec->logical, failrec->len);
2269         if (num_copies == 1) {
2270                 /*
2271                  * we only have a single copy of the data, so don't bother with
2272                  * all the retry and error correction code that follows. no
2273                  * matter what the error is, it is very likely to persist.
2274                  */
2275                 pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2276                          num_copies, failrec->this_mirror, failed_mirror);
2277                 return 0;
2278         }
2279
2280         /*
2281          * there are two premises:
2282          *      a) deliver good data to the caller
2283          *      b) correct the bad sectors on disk
2284          */
2285         if (failed_bio->bi_vcnt > 1) {
2286                 /*
2287                  * to fulfill b), we need to know the exact failing sectors, as
2288                  * we don't want to rewrite any more than the failed ones. thus,
2289                  * we need separate read requests for the failed bio
2290                  *
2291                  * if the following BUG_ON triggers, our validation request got
2292                  * merged. we need separate requests for our algorithm to work.
2293                  */
2294                 BUG_ON(failrec->in_validation);
2295                 failrec->in_validation = 1;
2296                 failrec->this_mirror = failed_mirror;
2297         } else {
2298                 /*
2299                  * we're ready to fulfill a) and b) alongside. get a good copy
2300                  * of the failed sector and if we succeed, we have setup
2301                  * everything for repair_io_failure to do the rest for us.
2302                  */
2303                 if (failrec->in_validation) {
2304                         BUG_ON(failrec->this_mirror != failed_mirror);
2305                         failrec->in_validation = 0;
2306                         failrec->this_mirror = 0;
2307                 }
2308                 failrec->failed_mirror = failed_mirror;
2309                 failrec->this_mirror++;
2310                 if (failrec->this_mirror == failed_mirror)
2311                         failrec->this_mirror++;
2312         }
2313
2314         if (failrec->this_mirror > num_copies) {
2315                 pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
2316                          num_copies, failrec->this_mirror, failed_mirror);
2317                 return 0;
2318         }
2319
2320         return 1;
2321 }
2322
2323
2324 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2325                                     struct io_failure_record *failrec,
2326                                     struct page *page, int pg_offset, int icsum,
2327                                     bio_end_io_t *endio_func, void *data)
2328 {
2329         struct bio *bio;
2330         struct btrfs_io_bio *btrfs_failed_bio;
2331         struct btrfs_io_bio *btrfs_bio;
2332
2333         bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2334         if (!bio)
2335                 return NULL;
2336
2337         bio->bi_end_io = endio_func;
2338         bio->bi_iter.bi_sector = failrec->logical >> 9;
2339         bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2340         bio->bi_iter.bi_size = 0;
2341         bio->bi_private = data;
2342
2343         btrfs_failed_bio = btrfs_io_bio(failed_bio);
2344         if (btrfs_failed_bio->csum) {
2345                 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2346                 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2347
2348                 btrfs_bio = btrfs_io_bio(bio);
2349                 btrfs_bio->csum = btrfs_bio->csum_inline;
2350                 icsum *= csum_size;
2351                 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2352                        csum_size);
2353         }
2354
2355         bio_add_page(bio, page, failrec->len, pg_offset);
2356
2357         return bio;
2358 }
2359
2360 /*
2361  * this is a generic handler for readpage errors (default
2362  * readpage_io_failed_hook). if other copies exist, read those and write back
2363  * good data to the failed position. does not investigate in remapping the
2364  * failed extent elsewhere, hoping the device will be smart enough to do this as
2365  * needed
2366  */
2367
2368 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2369                               struct page *page, u64 start, u64 end,
2370                               int failed_mirror)
2371 {
2372         struct io_failure_record *failrec;
2373         struct inode *inode = page->mapping->host;
2374         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2375         struct bio *bio;
2376         int read_mode;
2377         int ret;
2378
2379         BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2380
2381         ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2382         if (ret)
2383                 return ret;
2384
2385         ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2386         if (!ret) {
2387                 free_io_failure(inode, failrec);
2388                 return -EIO;
2389         }
2390
2391         if (failed_bio->bi_vcnt > 1)
2392                 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2393         else
2394                 read_mode = READ_SYNC;
2395
2396         phy_offset >>= inode->i_sb->s_blocksize_bits;
2397         bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2398                                       start - page_offset(page),
2399                                       (int)phy_offset, failed_bio->bi_end_io,
2400                                       NULL);
2401         if (!bio) {
2402                 free_io_failure(inode, failrec);
2403                 return -EIO;
2404         }
2405
2406         pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n",
2407                  read_mode, failrec->this_mirror, failrec->in_validation);
2408
2409         ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2410                                          failrec->this_mirror,
2411                                          failrec->bio_flags, 0);
2412         if (ret) {
2413                 free_io_failure(inode, failrec);
2414                 bio_put(bio);
2415         }
2416
2417         return ret;
2418 }
2419
2420 /* lots and lots of room for performance fixes in the end_bio funcs */
2421
2422 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2423 {
2424         int uptodate = (err == 0);
2425         struct extent_io_tree *tree;
2426         int ret = 0;
2427
2428         tree = &BTRFS_I(page->mapping->host)->io_tree;
2429
2430         if (tree->ops && tree->ops->writepage_end_io_hook) {
2431                 ret = tree->ops->writepage_end_io_hook(page, start,
2432                                                end, NULL, uptodate);
2433                 if (ret)
2434                         uptodate = 0;
2435         }
2436
2437         if (!uptodate) {
2438                 ClearPageUptodate(page);
2439                 SetPageError(page);
2440                 ret = ret < 0 ? ret : -EIO;
2441                 mapping_set_error(page->mapping, ret);
2442         }
2443 }
2444
2445 /*
2446  * after a writepage IO is done, we need to:
2447  * clear the uptodate bits on error
2448  * clear the writeback bits in the extent tree for this IO
2449  * end_page_writeback if the page has no more pending IO
2450  *
2451  * Scheduling is not allowed, so the extent state tree is expected
2452  * to have one and only one object corresponding to this IO.
2453  */
2454 static void end_bio_extent_writepage(struct bio *bio)
2455 {
2456         struct bio_vec *bvec;
2457         u64 start;
2458         u64 end;
2459         int i;
2460
2461         bio_for_each_segment_all(bvec, bio, i) {
2462                 struct page *page = bvec->bv_page;
2463
2464                 /* We always issue full-page reads, but if some block
2465                  * in a page fails to read, blk_update_request() will
2466                  * advance bv_offset and adjust bv_len to compensate.
2467                  * Print a warning for nonzero offsets, and an error
2468                  * if they don't add up to a full page.  */
2469                 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2470                         if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2471                                 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2472                                    "partial page write in btrfs with offset %u and length %u",
2473                                         bvec->bv_offset, bvec->bv_len);
2474                         else
2475                                 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2476                                    "incomplete page write in btrfs with offset %u and "
2477                                    "length %u",
2478                                         bvec->bv_offset, bvec->bv_len);
2479                 }
2480
2481                 start = page_offset(page);
2482                 end = start + bvec->bv_offset + bvec->bv_len - 1;
2483
2484                 end_extent_writepage(page, bio->bi_error, start, end);
2485                 end_page_writeback(page);
2486         }
2487
2488         bio_put(bio);
2489 }
2490
2491 static void
2492 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2493                               int uptodate)
2494 {
2495         struct extent_state *cached = NULL;
2496         u64 end = start + len - 1;
2497
2498         if (uptodate && tree->track_uptodate)
2499                 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2500         unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2501 }
2502
2503 /*
2504  * after a readpage IO is done, we need to:
2505  * clear the uptodate bits on error
2506  * set the uptodate bits if things worked
2507  * set the page up to date if all extents in the tree are uptodate
2508  * clear the lock bit in the extent tree
2509  * unlock the page if there are no other extents locked for it
2510  *
2511  * Scheduling is not allowed, so the extent state tree is expected
2512  * to have one and only one object corresponding to this IO.
2513  */
2514 static void end_bio_extent_readpage(struct bio *bio)
2515 {
2516         struct bio_vec *bvec;
2517         int uptodate = !bio->bi_error;
2518         struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2519         struct extent_io_tree *tree;
2520         u64 offset = 0;
2521         u64 start;
2522         u64 end;
2523         u64 len;
2524         u64 extent_start = 0;
2525         u64 extent_len = 0;
2526         int mirror;
2527         int ret;
2528         int i;
2529
2530         bio_for_each_segment_all(bvec, bio, i) {
2531                 struct page *page = bvec->bv_page;
2532                 struct inode *inode = page->mapping->host;
2533
2534                 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2535                          "mirror=%u\n", (u64)bio->bi_iter.bi_sector,
2536                          bio->bi_error, io_bio->mirror_num);
2537                 tree = &BTRFS_I(inode)->io_tree;
2538
2539                 /* We always issue full-page reads, but if some block
2540                  * in a page fails to read, blk_update_request() will
2541                  * advance bv_offset and adjust bv_len to compensate.
2542                  * Print a warning for nonzero offsets, and an error
2543                  * if they don't add up to a full page.  */
2544                 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2545                         if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2546                                 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2547                                    "partial page read in btrfs with offset %u and length %u",
2548                                         bvec->bv_offset, bvec->bv_len);
2549                         else
2550                                 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2551                                    "incomplete page read in btrfs with offset %u and "
2552                                    "length %u",
2553                                         bvec->bv_offset, bvec->bv_len);
2554                 }
2555
2556                 start = page_offset(page);
2557                 end = start + bvec->bv_offset + bvec->bv_len - 1;
2558                 len = bvec->bv_len;
2559
2560                 mirror = io_bio->mirror_num;
2561                 if (likely(uptodate && tree->ops &&
2562                            tree->ops->readpage_end_io_hook)) {
2563                         ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2564                                                               page, start, end,
2565                                                               mirror);
2566                         if (ret)
2567                                 uptodate = 0;
2568                         else
2569                                 clean_io_failure(inode, start, page, 0);
2570                 }
2571
2572                 if (likely(uptodate))
2573                         goto readpage_ok;
2574
2575                 if (tree->ops && tree->ops->readpage_io_failed_hook) {
2576                         ret = tree->ops->readpage_io_failed_hook(page, mirror);
2577                         if (!ret && !bio->bi_error)
2578                                 uptodate = 1;
2579                 } else {
2580                         /*
2581                          * The generic bio_readpage_error handles errors the
2582                          * following way: If possible, new read requests are
2583                          * created and submitted and will end up in
2584                          * end_bio_extent_readpage as well (if we're lucky, not
2585                          * in the !uptodate case). In that case it returns 0 and
2586                          * we just go on with the next page in our bio. If it
2587                          * can't handle the error it will return -EIO and we
2588                          * remain responsible for that page.
2589                          */
2590                         ret = bio_readpage_error(bio, offset, page, start, end,
2591                                                  mirror);
2592                         if (ret == 0) {
2593                                 uptodate = !bio->bi_error;
2594                                 offset += len;
2595                                 continue;
2596                         }
2597                 }
2598 readpage_ok:
2599                 if (likely(uptodate)) {
2600                         loff_t i_size = i_size_read(inode);
2601                         pgoff_t end_index = i_size >> PAGE_SHIFT;
2602                         unsigned off;
2603
2604                         /* Zero out the end if this page straddles i_size */
2605                         off = i_size & (PAGE_SIZE-1);
2606                         if (page->index == end_index && off)
2607                                 zero_user_segment(page, off, PAGE_SIZE);
2608                         SetPageUptodate(page);
2609                 } else {
2610                         ClearPageUptodate(page);
2611                         SetPageError(page);
2612                 }
2613                 unlock_page(page);
2614                 offset += len;
2615
2616                 if (unlikely(!uptodate)) {
2617                         if (extent_len) {
2618                                 endio_readpage_release_extent(tree,
2619                                                               extent_start,
2620                                                               extent_len, 1);
2621                                 extent_start = 0;
2622                                 extent_len = 0;
2623                         }
2624                         endio_readpage_release_extent(tree, start,
2625                                                       end - start + 1, 0);
2626                 } else if (!extent_len) {
2627                         extent_start = start;
2628                         extent_len = end + 1 - start;
2629                 } else if (extent_start + extent_len == start) {
2630                         extent_len += end + 1 - start;
2631                 } else {
2632                         endio_readpage_release_extent(tree, extent_start,
2633                                                       extent_len, uptodate);
2634                         extent_start = start;
2635                         extent_len = end + 1 - start;
2636                 }
2637         }
2638
2639         if (extent_len)
2640                 endio_readpage_release_extent(tree, extent_start, extent_len,
2641                                               uptodate);
2642         if (io_bio->end_io)
2643                 io_bio->end_io(io_bio, bio->bi_error);
2644         bio_put(bio);
2645 }
2646
2647 /*
2648  * this allocates from the btrfs_bioset.  We're returning a bio right now
2649  * but you can call btrfs_io_bio for the appropriate container_of magic
2650  */
2651 struct bio *
2652 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2653                 gfp_t gfp_flags)
2654 {
2655         struct btrfs_io_bio *btrfs_bio;
2656         struct bio *bio;
2657
2658         bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2659
2660         if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2661                 while (!bio && (nr_vecs /= 2)) {
2662                         bio = bio_alloc_bioset(gfp_flags,
2663                                                nr_vecs, btrfs_bioset);
2664                 }
2665         }
2666
2667         if (bio) {
2668                 bio->bi_bdev = bdev;
2669                 bio->bi_iter.bi_sector = first_sector;
2670                 btrfs_bio = btrfs_io_bio(bio);
2671                 btrfs_bio->csum = NULL;
2672                 btrfs_bio->csum_allocated = NULL;
2673                 btrfs_bio->end_io = NULL;
2674         }
2675         return bio;
2676 }
2677
2678 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2679 {
2680         struct btrfs_io_bio *btrfs_bio;
2681         struct bio *new;
2682
2683         new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2684         if (new) {
2685                 btrfs_bio = btrfs_io_bio(new);
2686                 btrfs_bio->csum = NULL;
2687                 btrfs_bio->csum_allocated = NULL;
2688                 btrfs_bio->end_io = NULL;
2689
2690 #ifdef CONFIG_BLK_CGROUP
2691                 /* FIXME, put this into bio_clone_bioset */
2692                 if (bio->bi_css)
2693                         bio_associate_blkcg(new, bio->bi_css);
2694 #endif
2695         }
2696         return new;
2697 }
2698
2699 /* this also allocates from the btrfs_bioset */
2700 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2701 {
2702         struct btrfs_io_bio *btrfs_bio;
2703         struct bio *bio;
2704
2705         bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2706         if (bio) {
2707                 btrfs_bio = btrfs_io_bio(bio);
2708                 btrfs_bio->csum = NULL;
2709                 btrfs_bio->csum_allocated = NULL;
2710                 btrfs_bio->end_io = NULL;
2711         }
2712         return bio;
2713 }
2714
2715
2716 static int __must_check submit_one_bio(int rw, struct bio *bio,
2717                                        int mirror_num, unsigned long bio_flags)
2718 {
2719         int ret = 0;
2720         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2721         struct page *page = bvec->bv_page;
2722         struct extent_io_tree *tree = bio->bi_private;
2723         u64 start;
2724
2725         start = page_offset(page) + bvec->bv_offset;
2726
2727         bio->bi_private = NULL;
2728
2729         bio_get(bio);
2730
2731         if (tree->ops && tree->ops->submit_bio_hook)
2732                 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2733                                            mirror_num, bio_flags, start);
2734         else
2735                 btrfsic_submit_bio(rw, bio);
2736
2737         bio_put(bio);
2738         return ret;
2739 }
2740
2741 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2742                      unsigned long offset, size_t size, struct bio *bio,
2743                      unsigned long bio_flags)
2744 {
2745         int ret = 0;
2746         if (tree->ops && tree->ops->merge_bio_hook)
2747                 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2748                                                 bio_flags);
2749         BUG_ON(ret < 0);
2750         return ret;
2751
2752 }
2753
2754 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2755                               struct writeback_control *wbc,
2756                               struct page *page, sector_t sector,
2757                               size_t size, unsigned long offset,
2758                               struct block_device *bdev,
2759                               struct bio **bio_ret,
2760                               unsigned long max_pages,
2761                               bio_end_io_t end_io_func,
2762                               int mirror_num,
2763                               unsigned long prev_bio_flags,
2764                               unsigned long bio_flags,
2765                               bool force_bio_submit)
2766 {
2767         int ret = 0;
2768         struct bio *bio;
2769         int contig = 0;
2770         int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2771         size_t page_size = min_t(size_t, size, PAGE_SIZE);
2772
2773         if (bio_ret && *bio_ret) {
2774                 bio = *bio_ret;
2775                 if (old_compressed)
2776                         contig = bio->bi_iter.bi_sector == sector;
2777                 else
2778                         contig = bio_end_sector(bio) == sector;
2779
2780                 if (prev_bio_flags != bio_flags || !contig ||
2781                     force_bio_submit ||
2782                     merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2783                     bio_add_page(bio, page, page_size, offset) < page_size) {
2784                         ret = submit_one_bio(rw, bio, mirror_num,
2785                                              prev_bio_flags);
2786                         if (ret < 0) {
2787                                 *bio_ret = NULL;
2788                                 return ret;
2789                         }
2790                         bio = NULL;
2791                 } else {
2792                         if (wbc)
2793                                 wbc_account_io(wbc, page, page_size);
2794                         return 0;
2795                 }
2796         }
2797
2798         bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES,
2799                         GFP_NOFS | __GFP_HIGH);
2800         if (!bio)
2801                 return -ENOMEM;
2802
2803         bio_add_page(bio, page, page_size, offset);
2804         bio->bi_end_io = end_io_func;
2805         bio->bi_private = tree;
2806         if (wbc) {
2807                 wbc_init_bio(wbc, bio);
2808                 wbc_account_io(wbc, page, page_size);
2809         }
2810
2811         if (bio_ret)
2812                 *bio_ret = bio;
2813         else
2814                 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2815
2816         return ret;
2817 }
2818
2819 static void attach_extent_buffer_page(struct extent_buffer *eb,
2820                                       struct page *page)
2821 {
2822         if (!PagePrivate(page)) {
2823                 SetPagePrivate(page);
2824                 get_page(page);
2825                 set_page_private(page, (unsigned long)eb);
2826         } else {
2827                 WARN_ON(page->private != (unsigned long)eb);
2828         }
2829 }
2830
2831 void set_page_extent_mapped(struct page *page)
2832 {
2833         if (!PagePrivate(page)) {
2834                 SetPagePrivate(page);
2835                 get_page(page);
2836                 set_page_private(page, EXTENT_PAGE_PRIVATE);
2837         }
2838 }
2839
2840 static struct extent_map *
2841 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2842                  u64 start, u64 len, get_extent_t *get_extent,
2843                  struct extent_map **em_cached)
2844 {
2845         struct extent_map *em;
2846
2847         if (em_cached && *em_cached) {
2848                 em = *em_cached;
2849                 if (extent_map_in_tree(em) && start >= em->start &&
2850                     start < extent_map_end(em)) {
2851                         atomic_inc(&em->refs);
2852                         return em;
2853                 }
2854
2855                 free_extent_map(em);
2856                 *em_cached = NULL;
2857         }
2858
2859         em = get_extent(inode, page, pg_offset, start, len, 0);
2860         if (em_cached && !IS_ERR_OR_NULL(em)) {
2861                 BUG_ON(*em_cached);
2862                 atomic_inc(&em->refs);
2863                 *em_cached = em;
2864         }
2865         return em;
2866 }
2867 /*
2868  * basic readpage implementation.  Locked extent state structs are inserted
2869  * into the tree that are removed when the IO is done (by the end_io
2870  * handlers)
2871  * XXX JDM: This needs looking at to ensure proper page locking
2872  */
2873 static int __do_readpage(struct extent_io_tree *tree,
2874                          struct page *page,
2875                          get_extent_t *get_extent,
2876                          struct extent_map **em_cached,
2877                          struct bio **bio, int mirror_num,
2878                          unsigned long *bio_flags, int rw,
2879                          u64 *prev_em_start)
2880 {
2881         struct inode *inode = page->mapping->host;
2882         u64 start = page_offset(page);
2883         u64 page_end = start + PAGE_SIZE - 1;
2884         u64 end;
2885         u64 cur = start;
2886         u64 extent_offset;
2887         u64 last_byte = i_size_read(inode);
2888         u64 block_start;
2889         u64 cur_end;
2890         sector_t sector;
2891         struct extent_map *em;
2892         struct block_device *bdev;
2893         int ret;
2894         int nr = 0;
2895         size_t pg_offset = 0;
2896         size_t iosize;
2897         size_t disk_io_size;
2898         size_t blocksize = inode->i_sb->s_blocksize;
2899         unsigned long this_bio_flag = 0;
2900
2901         set_page_extent_mapped(page);
2902
2903         end = page_end;
2904         if (!PageUptodate(page)) {
2905                 if (cleancache_get_page(page) == 0) {
2906                         BUG_ON(blocksize != PAGE_SIZE);
2907                         unlock_extent(tree, start, end);
2908                         goto out;
2909                 }
2910         }
2911
2912         if (page->index == last_byte >> PAGE_SHIFT) {
2913                 char *userpage;
2914                 size_t zero_offset = last_byte & (PAGE_SIZE - 1);
2915
2916                 if (zero_offset) {
2917                         iosize = PAGE_SIZE - zero_offset;
2918                         userpage = kmap_atomic(page);
2919                         memset(userpage + zero_offset, 0, iosize);
2920                         flush_dcache_page(page);
2921                         kunmap_atomic(userpage);
2922                 }
2923         }
2924         while (cur <= end) {
2925                 unsigned long pnr = (last_byte >> PAGE_SHIFT) + 1;
2926                 bool force_bio_submit = false;
2927
2928                 if (cur >= last_byte) {
2929                         char *userpage;
2930                         struct extent_state *cached = NULL;
2931
2932                         iosize = PAGE_SIZE - pg_offset;
2933                         userpage = kmap_atomic(page);
2934                         memset(userpage + pg_offset, 0, iosize);
2935                         flush_dcache_page(page);
2936                         kunmap_atomic(userpage);
2937                         set_extent_uptodate(tree, cur, cur + iosize - 1,
2938                                             &cached, GFP_NOFS);
2939                         unlock_extent_cached(tree, cur,
2940                                              cur + iosize - 1,
2941                                              &cached, GFP_NOFS);
2942                         break;
2943                 }
2944                 em = __get_extent_map(inode, page, pg_offset, cur,
2945                                       end - cur + 1, get_extent, em_cached);
2946                 if (IS_ERR_OR_NULL(em)) {
2947                         SetPageError(page);
2948                         unlock_extent(tree, cur, end);
2949                         break;
2950                 }
2951                 extent_offset = cur - em->start;
2952                 BUG_ON(extent_map_end(em) <= cur);
2953                 BUG_ON(end < cur);
2954
2955                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2956                         this_bio_flag |= EXTENT_BIO_COMPRESSED;
2957                         extent_set_compress_type(&this_bio_flag,
2958                                                  em->compress_type);
2959                 }
2960
2961                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2962                 cur_end = min(extent_map_end(em) - 1, end);
2963                 iosize = ALIGN(iosize, blocksize);
2964                 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2965                         disk_io_size = em->block_len;
2966                         sector = em->block_start >> 9;
2967                 } else {
2968                         sector = (em->block_start + extent_offset) >> 9;
2969                         disk_io_size = iosize;
2970                 }
2971                 bdev = em->bdev;
2972                 block_start = em->block_start;
2973                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2974                         block_start = EXTENT_MAP_HOLE;
2975
2976                 /*
2977                  * If we have a file range that points to a compressed extent
2978                  * and it's followed by a consecutive file range that points to
2979                  * to the same compressed extent (possibly with a different
2980                  * offset and/or length, so it either points to the whole extent
2981                  * or only part of it), we must make sure we do not submit a
2982                  * single bio to populate the pages for the 2 ranges because
2983                  * this makes the compressed extent read zero out the pages
2984                  * belonging to the 2nd range. Imagine the following scenario:
2985                  *
2986                  *  File layout
2987                  *  [0 - 8K]                     [8K - 24K]
2988                  *    |                               |
2989                  *    |                               |
2990                  * points to extent X,         points to extent X,
2991                  * offset 4K, length of 8K     offset 0, length 16K
2992                  *
2993                  * [extent X, compressed length = 4K uncompressed length = 16K]
2994                  *
2995                  * If the bio to read the compressed extent covers both ranges,
2996                  * it will decompress extent X into the pages belonging to the
2997                  * first range and then it will stop, zeroing out the remaining
2998                  * pages that belong to the other range that points to extent X.
2999                  * So here we make sure we submit 2 bios, one for the first
3000                  * range and another one for the third range. Both will target
3001                  * the same physical extent from disk, but we can't currently
3002                  * make the compressed bio endio callback populate the pages
3003                  * for both ranges because each compressed bio is tightly
3004                  * coupled with a single extent map, and each range can have
3005                  * an extent map with a different offset value relative to the
3006                  * uncompressed data of our extent and different lengths. This
3007                  * is a corner case so we prioritize correctness over
3008                  * non-optimal behavior (submitting 2 bios for the same extent).
3009                  */
3010                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3011                     prev_em_start && *prev_em_start != (u64)-1 &&
3012                     *prev_em_start != em->orig_start)
3013                         force_bio_submit = true;
3014
3015                 if (prev_em_start)
3016                         *prev_em_start = em->orig_start;
3017
3018                 free_extent_map(em);
3019                 em = NULL;
3020
3021                 /* we've found a hole, just zero and go on */
3022                 if (block_start == EXTENT_MAP_HOLE) {
3023                         char *userpage;
3024                         struct extent_state *cached = NULL;
3025
3026                         userpage = kmap_atomic(page);
3027                         memset(userpage + pg_offset, 0, iosize);
3028                         flush_dcache_page(page);
3029                         kunmap_atomic(userpage);
3030
3031                         set_extent_uptodate(tree, cur, cur + iosize - 1,
3032                                             &cached, GFP_NOFS);
3033                         unlock_extent_cached(tree, cur,
3034                                              cur + iosize - 1,
3035                                              &cached, GFP_NOFS);
3036                         cur = cur + iosize;
3037                         pg_offset += iosize;
3038                         continue;
3039                 }
3040                 /* the get_extent function already copied into the page */
3041                 if (test_range_bit(tree, cur, cur_end,
3042                                    EXTENT_UPTODATE, 1, NULL)) {
3043                         check_page_uptodate(tree, page);
3044                         unlock_extent(tree, cur, cur + iosize - 1);
3045                         cur = cur + iosize;
3046                         pg_offset += iosize;
3047                         continue;
3048                 }
3049                 /* we have an inline extent but it didn't get marked up
3050                  * to date.  Error out
3051                  */
3052                 if (block_start == EXTENT_MAP_INLINE) {
3053                         SetPageError(page);
3054                         unlock_extent(tree, cur, cur + iosize - 1);
3055                         cur = cur + iosize;
3056                         pg_offset += iosize;
3057                         continue;
3058                 }
3059
3060                 pnr -= page->index;
3061                 ret = submit_extent_page(rw, tree, NULL, page,
3062                                          sector, disk_io_size, pg_offset,
3063                                          bdev, bio, pnr,
3064                                          end_bio_extent_readpage, mirror_num,
3065                                          *bio_flags,
3066                                          this_bio_flag,
3067                                          force_bio_submit);
3068                 if (!ret) {
3069                         nr++;
3070                         *bio_flags = this_bio_flag;
3071                 } else {
3072                         SetPageError(page);
3073                         unlock_extent(tree, cur, cur + iosize - 1);
3074                 }
3075                 cur = cur + iosize;
3076                 pg_offset += iosize;
3077         }
3078 out:
3079         if (!nr) {
3080                 if (!PageError(page))
3081                         SetPageUptodate(page);
3082                 unlock_page(page);
3083         }
3084         return 0;
3085 }
3086
3087 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3088                                              struct page *pages[], int nr_pages,
3089                                              u64 start, u64 end,
3090                                              get_extent_t *get_extent,
3091                                              struct extent_map **em_cached,
3092                                              struct bio **bio, int mirror_num,
3093                                              unsigned long *bio_flags, int rw,
3094                                              u64 *prev_em_start)
3095 {
3096         struct inode *inode;
3097         struct btrfs_ordered_extent *ordered;
3098         int index;
3099
3100         inode = pages[0]->mapping->host;
3101         while (1) {
3102                 lock_extent(tree, start, end);
3103                 ordered = btrfs_lookup_ordered_range(inode, start,
3104                                                      end - start + 1);
3105                 if (!ordered)
3106                         break;
3107                 unlock_extent(tree, start, end);
3108                 btrfs_start_ordered_extent(inode, ordered, 1);
3109                 btrfs_put_ordered_extent(ordered);
3110         }
3111
3112         for (index = 0; index < nr_pages; index++) {
3113                 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
3114                               mirror_num, bio_flags, rw, prev_em_start);
3115                 put_page(pages[index]);
3116         }
3117 }
3118
3119 static void __extent_readpages(struct extent_io_tree *tree,
3120                                struct page *pages[],
3121                                int nr_pages, get_extent_t *get_extent,
3122                                struct extent_map **em_cached,
3123                                struct bio **bio, int mirror_num,
3124                                unsigned long *bio_flags, int rw,
3125                                u64 *prev_em_start)
3126 {
3127         u64 start = 0;
3128         u64 end = 0;
3129         u64 page_start;
3130         int index;
3131         int first_index = 0;
3132
3133         for (index = 0; index < nr_pages; index++) {
3134                 page_start = page_offset(pages[index]);
3135                 if (!end) {
3136                         start = page_start;
3137                         end = start + PAGE_SIZE - 1;
3138                         first_index = index;
3139                 } else if (end + 1 == page_start) {
3140                         end += PAGE_SIZE;
3141                 } else {
3142                         __do_contiguous_readpages(tree, &pages[first_index],
3143                                                   index - first_index, start,
3144                                                   end, get_extent, em_cached,
3145                                                   bio, mirror_num, bio_flags,
3146                                                   rw, prev_em_start);
3147                         start = page_start;
3148                         end = start + PAGE_SIZE - 1;
3149                         first_index = index;
3150                 }
3151         }
3152
3153         if (end)
3154                 __do_contiguous_readpages(tree, &pages[first_index],
3155                                           index - first_index, start,
3156                                           end, get_extent, em_cached, bio,
3157                                           mirror_num, bio_flags, rw,
3158                                           prev_em_start);
3159 }
3160
3161 static int __extent_read_full_page(struct extent_io_tree *tree,
3162                                    struct page *page,
3163                                    get_extent_t *get_extent,
3164                                    struct bio **bio, int mirror_num,
3165                                    unsigned long *bio_flags, int rw)
3166 {
3167         struct inode *inode = page->mapping->host;
3168         struct btrfs_ordered_extent *ordered;
3169         u64 start = page_offset(page);
3170         u64 end = start + PAGE_SIZE - 1;
3171         int ret;
3172
3173         while (1) {
3174                 lock_extent(tree, start, end);
3175                 ordered = btrfs_lookup_ordered_range(inode, start,
3176                                                 PAGE_SIZE);
3177                 if (!ordered)
3178                         break;
3179                 unlock_extent(tree, start, end);
3180                 btrfs_start_ordered_extent(inode, ordered, 1);
3181                 btrfs_put_ordered_extent(ordered);
3182         }
3183
3184         ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3185                             bio_flags, rw, NULL);
3186         return ret;
3187 }
3188
3189 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3190                             get_extent_t *get_extent, int mirror_num)
3191 {
3192         struct bio *bio = NULL;
3193         unsigned long bio_flags = 0;
3194         int ret;
3195
3196         ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3197                                       &bio_flags, READ);
3198         if (bio)
3199                 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3200         return ret;
3201 }
3202
3203 static void update_nr_written(struct page *page, struct writeback_control *wbc,
3204                               unsigned long nr_written)
3205 {
3206         wbc->nr_to_write -= nr_written;
3207 }
3208
3209 /*
3210  * helper for __extent_writepage, doing all of the delayed allocation setup.
3211  *
3212  * This returns 1 if our fill_delalloc function did all the work required
3213  * to write the page (copy into inline extent).  In this case the IO has
3214  * been started and the page is already unlocked.
3215  *
3216  * This returns 0 if all went well (page still locked)
3217  * This returns < 0 if there were errors (page still locked)
3218  */
3219 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3220                               struct page *page, struct writeback_control *wbc,
3221                               struct extent_page_data *epd,
3222                               u64 delalloc_start,
3223                               unsigned long *nr_written)
3224 {
3225         struct extent_io_tree *tree = epd->tree;
3226         u64 page_end = delalloc_start + PAGE_SIZE - 1;
3227         u64 nr_delalloc;
3228         u64 delalloc_to_write = 0;
3229         u64 delalloc_end = 0;
3230         int ret;
3231         int page_started = 0;
3232
3233         if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3234                 return 0;
3235
3236         while (delalloc_end < page_end) {
3237                 nr_delalloc = find_lock_delalloc_range(inode, tree,
3238                                                page,
3239                                                &delalloc_start,
3240                                                &delalloc_end,
3241                                                BTRFS_MAX_EXTENT_SIZE);
3242                 if (nr_delalloc == 0) {
3243                         delalloc_start = delalloc_end + 1;
3244                         continue;
3245                 }
3246                 ret = tree->ops->fill_delalloc(inode, page,
3247                                                delalloc_start,
3248                                                delalloc_end,
3249                                                &page_started,
3250                                                nr_written);
3251                 /* File system has been set read-only */
3252                 if (ret) {
3253                         SetPageError(page);
3254                         /* fill_delalloc should be return < 0 for error
3255                          * but just in case, we use > 0 here meaning the
3256                          * IO is started, so we don't want to return > 0
3257                          * unless things are going well.
3258                          */
3259                         ret = ret < 0 ? ret : -EIO;
3260                         goto done;
3261                 }
3262                 /*
3263                  * delalloc_end is already one less than the total length, so
3264                  * we don't subtract one from PAGE_SIZE
3265                  */
3266                 delalloc_to_write += (delalloc_end - delalloc_start +
3267                                       PAGE_SIZE) >> PAGE_SHIFT;
3268                 delalloc_start = delalloc_end + 1;
3269         }
3270         if (wbc->nr_to_write < delalloc_to_write) {
3271                 int thresh = 8192;
3272
3273                 if (delalloc_to_write < thresh * 2)
3274                         thresh = delalloc_to_write;
3275                 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3276                                          thresh);
3277         }
3278
3279         /* did the fill delalloc function already unlock and start
3280          * the IO?
3281          */
3282         if (page_started) {
3283                 /*
3284                  * we've unlocked the page, so we can't update
3285                  * the mapping's writeback index, just update
3286                  * nr_to_write.
3287                  */
3288                 wbc->nr_to_write -= *nr_written;
3289                 return 1;
3290         }
3291
3292         ret = 0;
3293
3294 done:
3295         return ret;
3296 }
3297
3298 /*
3299  * helper for __extent_writepage.  This calls the writepage start hooks,
3300  * and does the loop to map the page into extents and bios.
3301  *
3302  * We return 1 if the IO is started and the page is unlocked,
3303  * 0 if all went well (page still locked)
3304  * < 0 if there were errors (page still locked)
3305  */
3306 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3307                                  struct page *page,
3308                                  struct writeback_control *wbc,
3309                                  struct extent_page_data *epd,
3310                                  loff_t i_size,
3311                                  unsigned long nr_written,
3312                                  int write_flags, int *nr_ret)
3313 {
3314         struct extent_io_tree *tree = epd->tree;
3315         u64 start = page_offset(page);
3316         u64 page_end = start + PAGE_SIZE - 1;
3317         u64 end;
3318         u64 cur = start;
3319         u64 extent_offset;
3320         u64 block_start;
3321         u64 iosize;
3322         sector_t sector;
3323         struct extent_state *cached_state = NULL;
3324         struct extent_map *em;
3325         struct block_device *bdev;
3326         size_t pg_offset = 0;
3327         size_t blocksize;
3328         int ret = 0;
3329         int nr = 0;
3330         bool compressed;
3331
3332         if (tree->ops && tree->ops->writepage_start_hook) {
3333                 ret = tree->ops->writepage_start_hook(page, start,
3334                                                       page_end);
3335                 if (ret) {
3336                         /* Fixup worker will requeue */
3337                         if (ret == -EBUSY)
3338                                 wbc->pages_skipped++;
3339                         else
3340                                 redirty_page_for_writepage(wbc, page);
3341
3342                         update_nr_written(page, wbc, nr_written);
3343                         unlock_page(page);
3344                         ret = 1;
3345                         goto done_unlocked;
3346                 }
3347         }
3348
3349         /*
3350          * we don't want to touch the inode after unlocking the page,
3351          * so we update the mapping writeback index now
3352          */
3353         update_nr_written(page, wbc, nr_written + 1);
3354
3355         end = page_end;
3356         if (i_size <= start) {
3357                 if (tree->ops && tree->ops->writepage_end_io_hook)
3358                         tree->ops->writepage_end_io_hook(page, start,
3359                                                          page_end, NULL, 1);
3360                 goto done;
3361         }
3362
3363         blocksize = inode->i_sb->s_blocksize;
3364
3365         while (cur <= end) {
3366                 u64 em_end;
3367                 unsigned long max_nr;
3368
3369                 if (cur >= i_size) {
3370                         if (tree->ops && tree->ops->writepage_end_io_hook)
3371                                 tree->ops->writepage_end_io_hook(page, cur,
3372                                                          page_end, NULL, 1);
3373                         break;
3374                 }
3375                 em = epd->get_extent(inode, page, pg_offset, cur,
3376                                      end - cur + 1, 1);
3377                 if (IS_ERR_OR_NULL(em)) {
3378                         SetPageError(page);
3379                         ret = PTR_ERR_OR_ZERO(em);
3380                         break;
3381                 }
3382
3383                 extent_offset = cur - em->start;
3384                 em_end = extent_map_end(em);
3385                 BUG_ON(em_end <= cur);
3386                 BUG_ON(end < cur);
3387                 iosize = min(em_end - cur, end - cur + 1);
3388                 iosize = ALIGN(iosize, blocksize);
3389                 sector = (em->block_start + extent_offset) >> 9;
3390                 bdev = em->bdev;
3391                 block_start = em->block_start;
3392                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3393                 free_extent_map(em);
3394                 em = NULL;
3395
3396                 /*
3397                  * compressed and inline extents are written through other
3398                  * paths in the FS
3399                  */
3400                 if (compressed || block_start == EXTENT_MAP_HOLE ||
3401                     block_start == EXTENT_MAP_INLINE) {
3402                         /*
3403                          * end_io notification does not happen here for
3404                          * compressed extents
3405                          */
3406                         if (!compressed && tree->ops &&
3407                             tree->ops->writepage_end_io_hook)
3408                                 tree->ops->writepage_end_io_hook(page, cur,
3409                                                          cur + iosize - 1,
3410                                                          NULL, 1);
3411                         else if (compressed) {
3412                                 /* we don't want to end_page_writeback on
3413                                  * a compressed extent.  this happens
3414                                  * elsewhere
3415                                  */
3416                                 nr++;
3417                         }
3418
3419                         cur += iosize;
3420                         pg_offset += iosize;
3421                         continue;
3422                 }
3423
3424                 max_nr = (i_size >> PAGE_SHIFT) + 1;
3425
3426                 set_range_writeback(tree, cur, cur + iosize - 1);
3427                 if (!PageWriteback(page)) {
3428                         btrfs_err(BTRFS_I(inode)->root->fs_info,
3429                                    "page %lu not writeback, cur %llu end %llu",
3430                                page->index, cur, end);
3431                 }
3432
3433                 ret = submit_extent_page(write_flags, tree, wbc, page,
3434                                          sector, iosize, pg_offset,
3435                                          bdev, &epd->bio, max_nr,
3436                                          end_bio_extent_writepage,
3437                                          0, 0, 0, false);
3438                 if (ret)
3439                         SetPageError(page);
3440
3441                 cur = cur + iosize;
3442                 pg_offset += iosize;
3443                 nr++;
3444         }
3445 done:
3446         *nr_ret = nr;
3447
3448 done_unlocked:
3449
3450         /* drop our reference on any cached states */
3451         free_extent_state(cached_state);
3452         return ret;
3453 }
3454
3455 /*
3456  * the writepage semantics are similar to regular writepage.  extent
3457  * records are inserted to lock ranges in the tree, and as dirty areas
3458  * are found, they are marked writeback.  Then the lock bits are removed
3459  * and the end_io handler clears the writeback ranges
3460  */
3461 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3462                               void *data)
3463 {
3464         struct inode *inode = page->mapping->host;
3465         struct extent_page_data *epd = data;
3466         u64 start = page_offset(page);
3467         u64 page_end = start + PAGE_SIZE - 1;
3468         int ret;
3469         int nr = 0;
3470         size_t pg_offset = 0;
3471         loff_t i_size = i_size_read(inode);
3472         unsigned long end_index = i_size >> PAGE_SHIFT;
3473         int write_flags;
3474         unsigned long nr_written = 0;
3475
3476         if (wbc->sync_mode == WB_SYNC_ALL)
3477                 write_flags = WRITE_SYNC;
3478         else
3479                 write_flags = WRITE;
3480
3481         trace___extent_writepage(page, inode, wbc);
3482
3483         WARN_ON(!PageLocked(page));
3484
3485         ClearPageError(page);
3486
3487         pg_offset = i_size & (PAGE_SIZE - 1);
3488         if (page->index > end_index ||
3489            (page->index == end_index && !pg_offset)) {
3490                 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3491                 unlock_page(page);
3492                 return 0;
3493         }
3494
3495         if (page->index == end_index) {
3496                 char *userpage;
3497
3498                 userpage = kmap_atomic(page);
3499                 memset(userpage + pg_offset, 0,
3500                        PAGE_SIZE - pg_offset);
3501                 kunmap_atomic(userpage);
3502                 flush_dcache_page(page);
3503         }
3504
3505         pg_offset = 0;
3506
3507         set_page_extent_mapped(page);
3508
3509         ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3510         if (ret == 1)
3511                 goto done_unlocked;
3512         if (ret)
3513                 goto done;
3514
3515         ret = __extent_writepage_io(inode, page, wbc, epd,
3516                                     i_size, nr_written, write_flags, &nr);
3517         if (ret == 1)
3518                 goto done_unlocked;
3519
3520 done:
3521         if (nr == 0) {
3522                 /* make sure the mapping tag for page dirty gets cleared */
3523                 set_page_writeback(page);
3524                 end_page_writeback(page);
3525         }
3526         if (PageError(page)) {
3527                 ret = ret < 0 ? ret : -EIO;
3528                 end_extent_writepage(page, ret, start, page_end);
3529         }
3530         unlock_page(page);
3531         return ret;
3532
3533 done_unlocked:
3534         return 0;
3535 }
3536
3537 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3538 {
3539         wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3540                        TASK_UNINTERRUPTIBLE);
3541 }
3542
3543 static noinline_for_stack int
3544 lock_extent_buffer_for_io(struct extent_buffer *eb,
3545                           struct btrfs_fs_info *fs_info,
3546                           struct extent_page_data *epd)
3547 {
3548         unsigned long i, num_pages;
3549         int flush = 0;
3550         int ret = 0;
3551
3552         if (!btrfs_try_tree_write_lock(eb)) {
3553                 flush = 1;
3554                 flush_write_bio(epd);
3555                 btrfs_tree_lock(eb);
3556         }
3557
3558         if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3559                 btrfs_tree_unlock(eb);
3560                 if (!epd->sync_io)
3561                         return 0;
3562                 if (!flush) {
3563                         flush_write_bio(epd);
3564                         flush = 1;
3565                 }
3566                 while (1) {
3567                         wait_on_extent_buffer_writeback(eb);
3568                         btrfs_tree_lock(eb);
3569                         if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3570                                 break;
3571                         btrfs_tree_unlock(eb);
3572                 }
3573         }
3574
3575         /*
3576          * We need to do this to prevent races in people who check if the eb is
3577          * under IO since we can end up having no IO bits set for a short period
3578          * of time.
3579          */
3580         spin_lock(&eb->refs_lock);
3581         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3582                 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3583                 spin_unlock(&eb->refs_lock);
3584                 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3585                 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3586                                      -eb->len,
3587                                      fs_info->dirty_metadata_batch);
3588                 ret = 1;
3589         } else {
3590                 spin_unlock(&eb->refs_lock);
3591         }
3592
3593         btrfs_tree_unlock(eb);
3594
3595         if (!ret)
3596                 return ret;
3597
3598         num_pages = num_extent_pages(eb->start, eb->len);
3599         for (i = 0; i < num_pages; i++) {
3600                 struct page *p = eb->pages[i];
3601
3602                 if (!trylock_page(p)) {
3603                         if (!flush) {
3604                                 flush_write_bio(epd);
3605                                 flush = 1;
3606                         }
3607                         lock_page(p);
3608                 }
3609         }
3610
3611         return ret;
3612 }
3613
3614 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3615 {
3616         clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3617         smp_mb__after_atomic();
3618         wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3619 }
3620
3621 static void set_btree_ioerr(struct page *page)
3622 {
3623         struct extent_buffer *eb = (struct extent_buffer *)page->private;
3624         struct btrfs_inode *btree_ino = BTRFS_I(eb->fs_info->btree_inode);
3625
3626         SetPageError(page);
3627         if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3628                 return;
3629
3630         /*
3631          * If writeback for a btree extent that doesn't belong to a log tree
3632          * failed, increment the counter transaction->eb_write_errors.
3633          * We do this because while the transaction is running and before it's
3634          * committing (when we call filemap_fdata[write|wait]_range against
3635          * the btree inode), we might have
3636          * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3637          * returns an error or an error happens during writeback, when we're
3638          * committing the transaction we wouldn't know about it, since the pages
3639          * can be no longer dirty nor marked anymore for writeback (if a
3640          * subsequent modification to the extent buffer didn't happen before the
3641          * transaction commit), which makes filemap_fdata[write|wait]_range not
3642          * able to find the pages tagged with SetPageError at transaction
3643          * commit time. So if this happens we must abort the transaction,
3644          * otherwise we commit a super block with btree roots that point to
3645          * btree nodes/leafs whose content on disk is invalid - either garbage
3646          * or the content of some node/leaf from a past generation that got
3647          * cowed or deleted and is no longer valid.
3648          *
3649          * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3650          * not be enough - we need to distinguish between log tree extents vs
3651          * non-log tree extents, and the next filemap_fdatawait_range() call
3652          * will catch and clear such errors in the mapping - and that call might
3653          * be from a log sync and not from a transaction commit. Also, checking
3654          * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3655          * not done and would not be reliable - the eb might have been released
3656          * from memory and reading it back again means that flag would not be
3657          * set (since it's a runtime flag, not persisted on disk).
3658          *
3659          * Using the flags below in the btree inode also makes us achieve the
3660          * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3661          * writeback for all dirty pages and before filemap_fdatawait_range()
3662          * is called, the writeback for all dirty pages had already finished
3663          * with errors - because we were not using AS_EIO/AS_ENOSPC,
3664          * filemap_fdatawait_range() would return success, as it could not know
3665          * that writeback errors happened (the pages were no longer tagged for
3666          * writeback).
3667          */
3668         switch (eb->log_index) {
3669         case -1:
3670                 set_bit(BTRFS_INODE_BTREE_ERR, &btree_ino->runtime_flags);
3671                 break;
3672         case 0:
3673                 set_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
3674                 break;
3675         case 1:
3676                 set_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
3677                 break;
3678         default:
3679                 BUG(); /* unexpected, logic error */
3680         }
3681 }
3682
3683 static void end_bio_extent_buffer_writepage(struct bio *bio)
3684 {
3685         struct bio_vec *bvec;
3686         struct extent_buffer *eb;
3687         int i, done;
3688
3689         bio_for_each_segment_all(bvec, bio, i) {
3690                 struct page *page = bvec->bv_page;
3691
3692                 eb = (struct extent_buffer *)page->private;
3693                 BUG_ON(!eb);
3694                 done = atomic_dec_and_test(&eb->io_pages);
3695
3696                 if (bio->bi_error ||
3697                     test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3698                         ClearPageUptodate(page);
3699                         set_btree_ioerr(page);
3700                 }
3701
3702                 end_page_writeback(page);
3703
3704                 if (!done)
3705                         continue;
3706
3707                 end_extent_buffer_writeback(eb);
3708         }
3709
3710         bio_put(bio);
3711 }
3712
3713 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3714                         struct btrfs_fs_info *fs_info,
3715                         struct writeback_control *wbc,
3716                         struct extent_page_data *epd)
3717 {
3718         struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3719         struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3720         u64 offset = eb->start;
3721         unsigned long i, num_pages;
3722         unsigned long bio_flags = 0;
3723         int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
3724         int ret = 0;
3725
3726         clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3727         num_pages = num_extent_pages(eb->start, eb->len);
3728         atomic_set(&eb->io_pages, num_pages);
3729         if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3730                 bio_flags = EXTENT_BIO_TREE_LOG;
3731
3732         for (i = 0; i < num_pages; i++) {
3733                 struct page *p = eb->pages[i];
3734
3735                 clear_page_dirty_for_io(p);
3736                 set_page_writeback(p);
3737                 ret = submit_extent_page(rw, tree, wbc, p, offset >> 9,
3738                                          PAGE_SIZE, 0, bdev, &epd->bio,
3739                                          -1, end_bio_extent_buffer_writepage,
3740                                          0, epd->bio_flags, bio_flags, false);
3741                 epd->bio_flags = bio_flags;
3742                 if (ret) {
3743                         set_btree_ioerr(p);
3744                         end_page_writeback(p);
3745                         if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3746                                 end_extent_buffer_writeback(eb);
3747                         ret = -EIO;
3748                         break;
3749                 }
3750                 offset += PAGE_SIZE;
3751                 update_nr_written(p, wbc, 1);
3752                 unlock_page(p);
3753         }
3754
3755         if (unlikely(ret)) {
3756                 for (; i < num_pages; i++) {
3757                         struct page *p = eb->pages[i];
3758                         clear_page_dirty_for_io(p);
3759                         unlock_page(p);
3760                 }
3761         }
3762
3763         return ret;
3764 }
3765
3766 int btree_write_cache_pages(struct address_space *mapping,
3767                                    struct writeback_control *wbc)
3768 {
3769         struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3770         struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3771         struct extent_buffer *eb, *prev_eb = NULL;
3772         struct extent_page_data epd = {
3773                 .bio = NULL,
3774                 .tree = tree,
3775                 .extent_locked = 0,
3776                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3777                 .bio_flags = 0,
3778         };
3779         int ret = 0;
3780         int done = 0;
3781         int nr_to_write_done = 0;
3782         struct pagevec pvec;
3783         int nr_pages;
3784         pgoff_t index;
3785         pgoff_t end;            /* Inclusive */
3786         int scanned = 0;
3787         int tag;
3788
3789         pagevec_init(&pvec, 0);
3790         if (wbc->range_cyclic) {
3791                 index = mapping->writeback_index; /* Start from prev offset */
3792                 end = -1;
3793         } else {
3794                 index = wbc->range_start >> PAGE_SHIFT;
3795                 end = wbc->range_end >> PAGE_SHIFT;
3796                 scanned = 1;
3797         }
3798         if (wbc->sync_mode == WB_SYNC_ALL)
3799                 tag = PAGECACHE_TAG_TOWRITE;
3800         else
3801                 tag = PAGECACHE_TAG_DIRTY;
3802 retry:
3803         if (wbc->sync_mode == WB_SYNC_ALL)
3804                 tag_pages_for_writeback(mapping, index, end);
3805         while (!done && !nr_to_write_done && (index <= end) &&
3806                (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3807                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3808                 unsigned i;
3809
3810                 scanned = 1;
3811                 for (i = 0; i < nr_pages; i++) {
3812                         struct page *page = pvec.pages[i];
3813
3814                         if (!PagePrivate(page))
3815                                 continue;
3816
3817                         if (!wbc->range_cyclic && page->index > end) {
3818                                 done = 1;
3819                                 break;
3820                         }
3821
3822                         spin_lock(&mapping->private_lock);
3823                         if (!PagePrivate(page)) {
3824                                 spin_unlock(&mapping->private_lock);
3825                                 continue;
3826                         }
3827
3828                         eb = (struct extent_buffer *)page->private;
3829
3830                         /*
3831                          * Shouldn't happen and normally this would be a BUG_ON
3832                          * but no sense in crashing the users box for something
3833                          * we can survive anyway.
3834                          */
3835                         if (WARN_ON(!eb)) {
3836                                 spin_unlock(&mapping->private_lock);
3837                                 continue;
3838                         }
3839
3840                         if (eb == prev_eb) {
3841                                 spin_unlock(&mapping->private_lock);
3842                                 continue;
3843                         }
3844
3845                         ret = atomic_inc_not_zero(&eb->refs);
3846                         spin_unlock(&mapping->private_lock);
3847                         if (!ret)
3848                                 continue;
3849
3850                         prev_eb = eb;
3851                         ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3852                         if (!ret) {
3853                                 free_extent_buffer(eb);
3854                                 continue;
3855                         }
3856
3857                         ret = write_one_eb(eb, fs_info, wbc, &epd);
3858                         if (ret) {
3859                                 done = 1;
3860                                 free_extent_buffer(eb);
3861                                 break;
3862                         }
3863                         free_extent_buffer(eb);
3864
3865                         /*
3866                          * the filesystem may choose to bump up nr_to_write.
3867                          * We have to make sure to honor the new nr_to_write
3868                          * at any time
3869                          */
3870                         nr_to_write_done = wbc->nr_to_write <= 0;
3871                 }
3872                 pagevec_release(&pvec);
3873                 cond_resched();
3874         }
3875         if (!scanned && !done) {
3876                 /*
3877                  * We hit the last page and there is more work to be done: wrap
3878                  * back to the start of the file
3879                  */
3880                 scanned = 1;
3881                 index = 0;
3882                 goto retry;
3883         }
3884         flush_write_bio(&epd);
3885         return ret;
3886 }
3887
3888 /**
3889  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3890  * @mapping: address space structure to write
3891  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3892  * @writepage: function called for each page
3893  * @data: data passed to writepage function
3894  *
3895  * If a page is already under I/O, write_cache_pages() skips it, even
3896  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3897  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3898  * and msync() need to guarantee that all the data which was dirty at the time
3899  * the call was made get new I/O started against them.  If wbc->sync_mode is
3900  * WB_SYNC_ALL then we were called for data integrity and we must wait for
3901  * existing IO to complete.
3902  */
3903 static int extent_write_cache_pages(struct extent_io_tree *tree,
3904                              struct address_space *mapping,
3905                              struct writeback_control *wbc,
3906                              writepage_t writepage, void *data,
3907                              void (*flush_fn)(void *))
3908 {
3909         struct inode *inode = mapping->host;
3910         int ret = 0;
3911         int done = 0;
3912         int nr_to_write_done = 0;
3913         struct pagevec pvec;
3914         int nr_pages;
3915         pgoff_t index;
3916         pgoff_t end;            /* Inclusive */
3917         pgoff_t done_index;
3918         int range_whole = 0;
3919         int scanned = 0;
3920         int tag;
3921
3922         /*
3923          * We have to hold onto the inode so that ordered extents can do their
3924          * work when the IO finishes.  The alternative to this is failing to add
3925          * an ordered extent if the igrab() fails there and that is a huge pain
3926          * to deal with, so instead just hold onto the inode throughout the
3927          * writepages operation.  If it fails here we are freeing up the inode
3928          * anyway and we'd rather not waste our time writing out stuff that is
3929          * going to be truncated anyway.
3930          */
3931         if (!igrab(inode))
3932                 return 0;
3933
3934         pagevec_init(&pvec, 0);
3935         if (wbc->range_cyclic) {
3936                 index = mapping->writeback_index; /* Start from prev offset */
3937                 end = -1;
3938         } else {
3939                 index = wbc->range_start >> PAGE_SHIFT;
3940                 end = wbc->range_end >> PAGE_SHIFT;
3941                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3942                         range_whole = 1;
3943                 scanned = 1;
3944         }
3945         if (wbc->sync_mode == WB_SYNC_ALL)
3946                 tag = PAGECACHE_TAG_TOWRITE;
3947         else
3948                 tag = PAGECACHE_TAG_DIRTY;
3949 retry:
3950         if (wbc->sync_mode == WB_SYNC_ALL)
3951                 tag_pages_for_writeback(mapping, index, end);
3952         done_index = index;
3953         while (!done && !nr_to_write_done && (index <= end) &&
3954                (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3955                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3956                 unsigned i;
3957
3958                 scanned = 1;
3959                 for (i = 0; i < nr_pages; i++) {
3960                         struct page *page = pvec.pages[i];
3961
3962                         done_index = page->index;
3963                         /*
3964                          * At this point we hold neither mapping->tree_lock nor
3965                          * lock on the page itself: the page may be truncated or
3966                          * invalidated (changing page->mapping to NULL), or even
3967                          * swizzled back from swapper_space to tmpfs file
3968                          * mapping
3969                          */
3970                         if (!trylock_page(page)) {
3971                                 flush_fn(data);
3972                                 lock_page(page);
3973                         }
3974
3975                         if (unlikely(page->mapping != mapping)) {
3976                                 unlock_page(page);
3977                                 continue;
3978                         }
3979
3980                         if (!wbc->range_cyclic && page->index > end) {
3981                                 done = 1;
3982                                 unlock_page(page);
3983                                 continue;
3984                         }
3985
3986                         if (wbc->sync_mode != WB_SYNC_NONE) {
3987                                 if (PageWriteback(page))
3988                                         flush_fn(data);
3989                                 wait_on_page_writeback(page);
3990                         }
3991
3992                         if (PageWriteback(page) ||
3993                             !clear_page_dirty_for_io(page)) {
3994                                 unlock_page(page);
3995                                 continue;
3996                         }
3997
3998                         ret = (*writepage)(page, wbc, data);
3999
4000                         if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4001                                 unlock_page(page);
4002                                 ret = 0;
4003                         }
4004                         if (ret < 0) {
4005                                 /*
4006                                  * done_index is set past this page,
4007                                  * so media errors will not choke
4008                                  * background writeout for the entire
4009                                  * file. This has consequences for
4010                                  * range_cyclic semantics (ie. it may
4011                                  * not be suitable for data integrity
4012                                  * writeout).
4013                                  */
4014                                 done_index = page->index + 1;
4015                                 done = 1;
4016                                 break;
4017                         }
4018
4019                         /*
4020                          * the filesystem may choose to bump up nr_to_write.
4021                          * We have to make sure to honor the new nr_to_write
4022                          * at any time
4023                          */
4024                         nr_to_write_done = wbc->nr_to_write <= 0;
4025                 }
4026                 pagevec_release(&pvec);
4027                 cond_resched();
4028         }
4029         if (!scanned && !done) {
4030                 /*
4031                  * We hit the last page and there is more work to be done: wrap
4032                  * back to the start of the file
4033                  */
4034                 scanned = 1;
4035                 index = 0;
4036                 goto retry;
4037         }
4038
4039         if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4040                 mapping->writeback_index = done_index;
4041
4042         btrfs_add_delayed_iput(inode);
4043         return ret;
4044 }
4045
4046 static void flush_epd_write_bio(struct extent_page_data *epd)
4047 {
4048         if (epd->bio) {
4049                 int rw = WRITE;
4050                 int ret;
4051
4052                 if (epd->sync_io)
4053                         rw = WRITE_SYNC;
4054
4055                 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
4056                 BUG_ON(ret < 0); /* -ENOMEM */
4057                 epd->bio = NULL;
4058         }
4059 }
4060
4061 static noinline void flush_write_bio(void *data)
4062 {
4063         struct extent_page_data *epd = data;
4064         flush_epd_write_bio(epd);
4065 }
4066
4067 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4068                           get_extent_t *get_extent,
4069                           struct writeback_control *wbc)
4070 {
4071         int ret;
4072         struct extent_page_data epd = {
4073                 .bio = NULL,
4074                 .tree = tree,
4075                 .get_extent = get_extent,
4076                 .extent_locked = 0,
4077                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4078                 .bio_flags = 0,
4079         };
4080
4081         ret = __extent_writepage(page, wbc, &epd);
4082
4083         flush_epd_write_bio(&epd);
4084         return ret;
4085 }
4086
4087 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4088                               u64 start, u64 end, get_extent_t *get_extent,
4089                               int mode)
4090 {
4091         int ret = 0;
4092         struct address_space *mapping = inode->i_mapping;
4093         struct page *page;
4094         unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4095                 PAGE_SHIFT;
4096
4097         struct extent_page_data epd = {
4098                 .bio = NULL,
4099                 .tree = tree,
4100                 .get_extent = get_extent,
4101                 .extent_locked = 1,
4102                 .sync_io = mode == WB_SYNC_ALL,
4103                 .bio_flags = 0,
4104         };
4105         struct writeback_control wbc_writepages = {
4106                 .sync_mode      = mode,
4107                 .nr_to_write    = nr_pages * 2,
4108                 .range_start    = start,
4109                 .range_end      = end + 1,
4110         };
4111
4112         while (start <= end) {
4113                 page = find_get_page(mapping, start >> PAGE_SHIFT);
4114                 if (clear_page_dirty_for_io(page))
4115                         ret = __extent_writepage(page, &wbc_writepages, &epd);
4116                 else {
4117                         if (tree->ops && tree->ops->writepage_end_io_hook)
4118                                 tree->ops->writepage_end_io_hook(page, start,
4119                                                  start + PAGE_SIZE - 1,
4120                                                  NULL, 1);
4121                         unlock_page(page);
4122                 }
4123                 put_page(page);
4124                 start += PAGE_SIZE;
4125         }
4126
4127         flush_epd_write_bio(&epd);
4128         return ret;
4129 }
4130
4131 int extent_writepages(struct extent_io_tree *tree,
4132                       struct address_space *mapping,
4133                       get_extent_t *get_extent,
4134                       struct writeback_control *wbc)
4135 {
4136         int ret = 0;
4137         struct extent_page_data epd = {
4138                 .bio = NULL,
4139                 .tree = tree,
4140                 .get_extent = get_extent,
4141                 .extent_locked = 0,
4142                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4143                 .bio_flags = 0,
4144         };
4145
4146         ret = extent_write_cache_pages(tree, mapping, wbc,
4147                                        __extent_writepage, &epd,
4148                                        flush_write_bio);
4149         flush_epd_write_bio(&epd);
4150         return ret;
4151 }
4152
4153 int extent_readpages(struct extent_io_tree *tree,
4154                      struct address_space *mapping,
4155                      struct list_head *pages, unsigned nr_pages,
4156                      get_extent_t get_extent)
4157 {
4158         struct bio *bio = NULL;
4159         unsigned page_idx;
4160         unsigned long bio_flags = 0;
4161         struct page *pagepool[16];
4162         struct page *page;
4163         struct extent_map *em_cached = NULL;
4164         int nr = 0;
4165         u64 prev_em_start = (u64)-1;
4166
4167         for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4168                 page = list_entry(pages->prev, struct page, lru);
4169
4170                 prefetchw(&page->flags);
4171                 list_del(&page->lru);
4172                 if (add_to_page_cache_lru(page, mapping,
4173                                         page->index, GFP_NOFS)) {
4174                         put_page(page);
4175                         continue;
4176                 }
4177
4178                 pagepool[nr++] = page;
4179                 if (nr < ARRAY_SIZE(pagepool))
4180                         continue;
4181                 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4182                                    &bio, 0, &bio_flags, READ, &prev_em_start);
4183                 nr = 0;
4184         }
4185         if (nr)
4186                 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4187                                    &bio, 0, &bio_flags, READ, &prev_em_start);
4188
4189         if (em_cached)
4190                 free_extent_map(em_cached);
4191
4192         BUG_ON(!list_empty(pages));
4193         if (bio)
4194                 return submit_one_bio(READ, bio, 0, bio_flags);
4195         return 0;
4196 }
4197
4198 /*
4199  * basic invalidatepage code, this waits on any locked or writeback
4200  * ranges corresponding to the page, and then deletes any extent state
4201  * records from the tree
4202  */
4203 int extent_invalidatepage(struct extent_io_tree *tree,
4204                           struct page *page, unsigned long offset)
4205 {
4206         struct extent_state *cached_state = NULL;
4207         u64 start = page_offset(page);
4208         u64 end = start + PAGE_SIZE - 1;
4209         size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4210
4211         start += ALIGN(offset, blocksize);
4212         if (start > end)
4213                 return 0;
4214
4215         lock_extent_bits(tree, start, end, &cached_state);
4216         wait_on_page_writeback(page);
4217         clear_extent_bit(tree, start, end,
4218                          EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4219                          EXTENT_DO_ACCOUNTING,
4220                          1, 1, &cached_state, GFP_NOFS);
4221         return 0;
4222 }
4223
4224 /*
4225  * a helper for releasepage, this tests for areas of the page that
4226  * are locked or under IO and drops the related state bits if it is safe
4227  * to drop the page.
4228  */
4229 static int try_release_extent_state(struct extent_map_tree *map,
4230                                     struct extent_io_tree *tree,
4231                                     struct page *page, gfp_t mask)
4232 {
4233         u64 start = page_offset(page);
4234         u64 end = start + PAGE_SIZE - 1;
4235         int ret = 1;
4236
4237         if (test_range_bit(tree, start, end,
4238                            EXTENT_IOBITS, 0, NULL))
4239                 ret = 0;
4240         else {
4241                 if ((mask & GFP_NOFS) == GFP_NOFS)
4242                         mask = GFP_NOFS;
4243                 /*
4244                  * at this point we can safely clear everything except the
4245                  * locked bit and the nodatasum bit
4246                  */
4247                 ret = clear_extent_bit(tree, start, end,
4248                                  ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4249                                  0, 0, NULL, mask);
4250
4251                 /* if clear_extent_bit failed for enomem reasons,
4252                  * we can't allow the release to continue.
4253                  */
4254                 if (ret < 0)
4255                         ret = 0;
4256                 else
4257                         ret = 1;
4258         }
4259         return ret;
4260 }
4261
4262 /*
4263  * a helper for releasepage.  As long as there are no locked extents
4264  * in the range corresponding to the page, both state records and extent
4265  * map records are removed
4266  */
4267 int try_release_extent_mapping(struct extent_map_tree *map,
4268                                struct extent_io_tree *tree, struct page *page,
4269                                gfp_t mask)
4270 {
4271         struct extent_map *em;
4272         u64 start = page_offset(page);
4273         u64 end = start + PAGE_SIZE - 1;
4274
4275         if (gfpflags_allow_blocking(mask) &&
4276             page->mapping->host->i_size > SZ_16M) {
4277                 u64 len;
4278                 while (start <= end) {
4279                         len = end - start + 1;
4280                         write_lock(&map->lock);
4281                         em = lookup_extent_mapping(map, start, len);
4282                         if (!em) {
4283                                 write_unlock(&map->lock);
4284                                 break;
4285                         }
4286                         if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4287                             em->start != start) {
4288                                 write_unlock(&map->lock);
4289                                 free_extent_map(em);
4290                                 break;
4291                         }
4292                         if (!test_range_bit(tree, em->start,
4293                                             extent_map_end(em) - 1,
4294                                             EXTENT_LOCKED | EXTENT_WRITEBACK,
4295                                             0, NULL)) {
4296                                 remove_extent_mapping(map, em);
4297                                 /* once for the rb tree */
4298                                 free_extent_map(em);
4299                         }
4300                         start = extent_map_end(em);
4301                         write_unlock(&map->lock);
4302
4303                         /* once for us */
4304                         free_extent_map(em);
4305                 }
4306         }
4307         return try_release_extent_state(map, tree, page, mask);
4308 }
4309
4310 /*
4311  * helper function for fiemap, which doesn't want to see any holes.
4312  * This maps until we find something past 'last'
4313  */
4314 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4315                                                 u64 offset,
4316                                                 u64 last,
4317                                                 get_extent_t *get_extent)
4318 {
4319         u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4320         struct extent_map *em;
4321         u64 len;
4322
4323         if (offset >= last)
4324                 return NULL;
4325
4326         while (1) {
4327                 len = last - offset;
4328                 if (len == 0)
4329                         break;
4330                 len = ALIGN(len, sectorsize);
4331                 em = get_extent(inode, NULL, 0, offset, len, 0);
4332                 if (IS_ERR_OR_NULL(em))
4333                         return em;
4334
4335                 /* if this isn't a hole return it */
4336                 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4337                     em->block_start != EXTENT_MAP_HOLE) {
4338                         return em;
4339                 }
4340
4341                 /* this is a hole, advance to the next extent */
4342                 offset = extent_map_end(em);
4343                 free_extent_map(em);
4344                 if (offset >= last)
4345                         break;
4346         }
4347         return NULL;
4348 }
4349
4350 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4351                 __u64 start, __u64 len, get_extent_t *get_extent)
4352 {
4353         int ret = 0;
4354         u64 off = start;
4355         u64 max = start + len;
4356         u32 flags = 0;
4357         u32 found_type;
4358         u64 last;
4359         u64 last_for_get_extent = 0;
4360         u64 disko = 0;
4361         u64 isize = i_size_read(inode);
4362         struct btrfs_key found_key;
4363         struct extent_map *em = NULL;
4364         struct extent_state *cached_state = NULL;
4365         struct btrfs_path *path;
4366         struct btrfs_root *root = BTRFS_I(inode)->root;
4367         int end = 0;
4368         u64 em_start = 0;
4369         u64 em_len = 0;
4370         u64 em_end = 0;
4371
4372         if (len == 0)
4373                 return -EINVAL;
4374
4375         path = btrfs_alloc_path();
4376         if (!path)
4377                 return -ENOMEM;
4378         path->leave_spinning = 1;
4379
4380         start = round_down(start, BTRFS_I(inode)->root->sectorsize);
4381         len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start;
4382
4383         /*
4384          * lookup the last file extent.  We're not using i_size here
4385          * because there might be preallocation past i_size
4386          */
4387         ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4388                                        0);
4389         if (ret < 0) {
4390                 btrfs_free_path(path);
4391                 return ret;
4392         } else {
4393                 WARN_ON(!ret);
4394                 if (ret == 1)
4395                         ret = 0;
4396         }
4397
4398         path->slots[0]--;
4399         btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4400         found_type = found_key.type;
4401
4402         /* No extents, but there might be delalloc bits */
4403         if (found_key.objectid != btrfs_ino(inode) ||
4404             found_type != BTRFS_EXTENT_DATA_KEY) {
4405                 /* have to trust i_size as the end */
4406                 last = (u64)-1;
4407                 last_for_get_extent = isize;
4408         } else {
4409                 /*
4410                  * remember the start of the last extent.  There are a
4411                  * bunch of different factors that go into the length of the
4412                  * extent, so its much less complex to remember where it started
4413                  */
4414                 last = found_key.offset;
4415                 last_for_get_extent = last + 1;
4416         }
4417         btrfs_release_path(path);
4418
4419         /*
4420          * we might have some extents allocated but more delalloc past those
4421          * extents.  so, we trust isize unless the start of the last extent is
4422          * beyond isize
4423          */
4424         if (last < isize) {
4425                 last = (u64)-1;
4426                 last_for_get_extent = isize;
4427         }
4428
4429         lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4430                          &cached_state);
4431
4432         em = get_extent_skip_holes(inode, start, last_for_get_extent,
4433                                    get_extent);
4434         if (!em)
4435                 goto out;
4436         if (IS_ERR(em)) {
4437                 ret = PTR_ERR(em);
4438                 goto out;
4439         }
4440
4441         while (!end) {
4442                 u64 offset_in_extent = 0;
4443
4444                 /* break if the extent we found is outside the range */
4445                 if (em->start >= max || extent_map_end(em) < off)
4446                         break;
4447
4448                 /*
4449                  * get_extent may return an extent that starts before our
4450                  * requested range.  We have to make sure the ranges
4451                  * we return to fiemap always move forward and don't
4452                  * overlap, so adjust the offsets here
4453                  */
4454                 em_start = max(em->start, off);
4455
4456                 /*
4457                  * record the offset from the start of the extent
4458                  * for adjusting the disk offset below.  Only do this if the
4459                  * extent isn't compressed since our in ram offset may be past
4460                  * what we have actually allocated on disk.
4461                  */
4462                 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4463                         offset_in_extent = em_start - em->start;
4464                 em_end = extent_map_end(em);
4465                 em_len = em_end - em_start;
4466                 disko = 0;
4467                 flags = 0;
4468
4469                 /*
4470                  * bump off for our next call to get_extent
4471                  */
4472                 off = extent_map_end(em);
4473                 if (off >= max)
4474                         end = 1;
4475
4476                 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4477                         end = 1;
4478                         flags |= FIEMAP_EXTENT_LAST;
4479                 } else if (em->block_start == EXTENT_MAP_INLINE) {
4480                         flags |= (FIEMAP_EXTENT_DATA_INLINE |
4481                                   FIEMAP_EXTENT_NOT_ALIGNED);
4482                 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4483                         flags |= (FIEMAP_EXTENT_DELALLOC |
4484                                   FIEMAP_EXTENT_UNKNOWN);
4485                 } else if (fieinfo->fi_extents_max) {
4486                         u64 bytenr = em->block_start -
4487                                 (em->start - em->orig_start);
4488
4489                         disko = em->block_start + offset_in_extent;
4490
4491                         /*
4492                          * As btrfs supports shared space, this information
4493                          * can be exported to userspace tools via
4494                          * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
4495                          * then we're just getting a count and we can skip the
4496                          * lookup stuff.
4497                          */
4498                         ret = btrfs_check_shared(NULL, root->fs_info,
4499                                                  root->objectid,
4500                                                  btrfs_ino(inode), bytenr);
4501                         if (ret < 0)
4502                                 goto out_free;
4503                         if (ret)
4504                                 flags |= FIEMAP_EXTENT_SHARED;
4505                         ret = 0;
4506                 }
4507                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4508                         flags |= FIEMAP_EXTENT_ENCODED;
4509                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4510                         flags |= FIEMAP_EXTENT_UNWRITTEN;
4511
4512                 free_extent_map(em);
4513                 em = NULL;
4514                 if ((em_start >= last) || em_len == (u64)-1 ||
4515                    (last == (u64)-1 && isize <= em_end)) {
4516                         flags |= FIEMAP_EXTENT_LAST;
4517                         end = 1;
4518                 }
4519
4520                 /* now scan forward to see if this is really the last extent. */
4521                 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4522                                            get_extent);
4523                 if (IS_ERR(em)) {
4524                         ret = PTR_ERR(em);
4525                         goto out;
4526                 }
4527                 if (!em) {
4528                         flags |= FIEMAP_EXTENT_LAST;
4529                         end = 1;
4530                 }
4531                 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4532                                               em_len, flags);
4533                 if (ret) {
4534                         if (ret == 1)
4535                                 ret = 0;
4536                         goto out_free;
4537                 }
4538         }
4539 out_free:
4540         free_extent_map(em);
4541 out:
4542         btrfs_free_path(path);
4543         unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4544                              &cached_state, GFP_NOFS);
4545         return ret;
4546 }
4547
4548 static void __free_extent_buffer(struct extent_buffer *eb)
4549 {
4550         btrfs_leak_debug_del(&eb->leak_list);
4551         kmem_cache_free(extent_buffer_cache, eb);
4552 }
4553
4554 int extent_buffer_under_io(struct extent_buffer *eb)
4555 {
4556         return (atomic_read(&eb->io_pages) ||
4557                 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4558                 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4559 }
4560
4561 /*
4562  * Helper for releasing extent buffer page.
4563  */
4564 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
4565 {
4566         unsigned long index;
4567         struct page *page;
4568         int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4569
4570         BUG_ON(extent_buffer_under_io(eb));
4571
4572         index = num_extent_pages(eb->start, eb->len);
4573         if (index == 0)
4574                 return;
4575
4576         do {
4577                 index--;
4578                 page = eb->pages[index];
4579                 if (!page)
4580                         continue;
4581                 if (mapped)
4582                         spin_lock(&page->mapping->private_lock);
4583                 /*
4584                  * We do this since we'll remove the pages after we've
4585                  * removed the eb from the radix tree, so we could race
4586                  * and have this page now attached to the new eb.  So
4587                  * only clear page_private if it's still connected to
4588                  * this eb.
4589                  */
4590                 if (PagePrivate(page) &&
4591                     page->private == (unsigned long)eb) {
4592                         BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4593                         BUG_ON(PageDirty(page));
4594                         BUG_ON(PageWriteback(page));
4595                         /*
4596                          * We need to make sure we haven't be attached
4597                          * to a new eb.
4598                          */
4599                         ClearPagePrivate(page);
4600                         set_page_private(page, 0);
4601                         /* One for the page private */
4602                         put_page(page);
4603                 }
4604
4605                 if (mapped)
4606                         spin_unlock(&page->mapping->private_lock);
4607
4608                 /* One for when we allocated the page */
4609                 put_page(page);
4610         } while (index != 0);
4611 }
4612
4613 /*
4614  * Helper for releasing the extent buffer.
4615  */
4616 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4617 {
4618         btrfs_release_extent_buffer_page(eb);
4619         __free_extent_buffer(eb);
4620 }
4621
4622 static struct extent_buffer *
4623 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4624                       unsigned long len)
4625 {
4626         struct extent_buffer *eb = NULL;
4627
4628         eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4629         eb->start = start;
4630         eb->len = len;
4631         eb->fs_info = fs_info;
4632         eb->bflags = 0;
4633         rwlock_init(&eb->lock);
4634         atomic_set(&eb->write_locks, 0);
4635         atomic_set(&eb->read_locks, 0);
4636         atomic_set(&eb->blocking_readers, 0);
4637         atomic_set(&eb->blocking_writers, 0);
4638         atomic_set(&eb->spinning_readers, 0);
4639         atomic_set(&eb->spinning_writers, 0);
4640         eb->lock_nested = 0;
4641         init_waitqueue_head(&eb->write_lock_wq);
4642         init_waitqueue_head(&eb->read_lock_wq);
4643
4644         btrfs_leak_debug_add(&eb->leak_list, &buffers);
4645
4646         spin_lock_init(&eb->refs_lock);
4647         atomic_set(&eb->refs, 1);
4648         atomic_set(&eb->io_pages, 0);
4649
4650         /*
4651          * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4652          */
4653         BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4654                 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4655         BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4656
4657         return eb;
4658 }
4659
4660 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4661 {
4662         unsigned long i;
4663         struct page *p;
4664         struct extent_buffer *new;
4665         unsigned long num_pages = num_extent_pages(src->start, src->len);
4666
4667         new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4668         if (new == NULL)
4669                 return NULL;
4670
4671         for (i = 0; i < num_pages; i++) {
4672                 p = alloc_page(GFP_NOFS);
4673                 if (!p) {
4674                         btrfs_release_extent_buffer(new);
4675                         return NULL;
4676                 }
4677                 attach_extent_buffer_page(new, p);
4678                 WARN_ON(PageDirty(p));
4679                 SetPageUptodate(p);
4680                 new->pages[i] = p;
4681         }
4682
4683         copy_extent_buffer(new, src, 0, 0, src->len);
4684         set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4685         set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4686
4687         return new;
4688 }
4689
4690 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4691                                                   u64 start, unsigned long len)
4692 {
4693         struct extent_buffer *eb;
4694         unsigned long num_pages;
4695         unsigned long i;
4696
4697         num_pages = num_extent_pages(start, len);
4698
4699         eb = __alloc_extent_buffer(fs_info, start, len);
4700         if (!eb)
4701                 return NULL;
4702
4703         for (i = 0; i < num_pages; i++) {
4704                 eb->pages[i] = alloc_page(GFP_NOFS);
4705                 if (!eb->pages[i])
4706                         goto err;
4707         }
4708         set_extent_buffer_uptodate(eb);
4709         btrfs_set_header_nritems(eb, 0);
4710         set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4711
4712         return eb;
4713 err:
4714         for (; i > 0; i--)
4715                 __free_page(eb->pages[i - 1]);
4716         __free_extent_buffer(eb);
4717         return NULL;
4718 }
4719
4720 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4721                                                 u64 start)
4722 {
4723         unsigned long len;
4724
4725         if (!fs_info) {
4726                 /*
4727                  * Called only from tests that don't always have a fs_info
4728                  * available, but we know that nodesize is 4096
4729                  */
4730                 len = 4096;
4731         } else {
4732                 len = fs_info->tree_root->nodesize;
4733         }
4734
4735         return __alloc_dummy_extent_buffer(fs_info, start, len);
4736 }
4737
4738 static void check_buffer_tree_ref(struct extent_buffer *eb)
4739 {
4740         int refs;
4741         /* the ref bit is tricky.  We have to make sure it is set
4742          * if we have the buffer dirty.   Otherwise the
4743          * code to free a buffer can end up dropping a dirty
4744          * page
4745          *
4746          * Once the ref bit is set, it won't go away while the
4747          * buffer is dirty or in writeback, and it also won't
4748          * go away while we have the reference count on the
4749          * eb bumped.
4750          *
4751          * We can't just set the ref bit without bumping the
4752          * ref on the eb because free_extent_buffer might
4753          * see the ref bit and try to clear it.  If this happens
4754          * free_extent_buffer might end up dropping our original
4755          * ref by mistake and freeing the page before we are able
4756          * to add one more ref.
4757          *
4758          * So bump the ref count first, then set the bit.  If someone
4759          * beat us to it, drop the ref we added.
4760          */
4761         refs = atomic_read(&eb->refs);
4762         if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4763                 return;
4764
4765         spin_lock(&eb->refs_lock);
4766         if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4767                 atomic_inc(&eb->refs);
4768         spin_unlock(&eb->refs_lock);
4769 }
4770
4771 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4772                 struct page *accessed)
4773 {
4774         unsigned long num_pages, i;
4775
4776         check_buffer_tree_ref(eb);
4777
4778         num_pages = num_extent_pages(eb->start, eb->len);
4779         for (i = 0; i < num_pages; i++) {
4780                 struct page *p = eb->pages[i];
4781
4782                 if (p != accessed)
4783                         mark_page_accessed(p);
4784         }
4785 }
4786
4787 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4788                                          u64 start)
4789 {
4790         struct extent_buffer *eb;
4791
4792         rcu_read_lock();
4793         eb = radix_tree_lookup(&fs_info->buffer_radix,
4794                                start >> PAGE_SHIFT);
4795         if (eb && atomic_inc_not_zero(&eb->refs)) {
4796                 rcu_read_unlock();
4797                 /*
4798                  * Lock our eb's refs_lock to avoid races with
4799                  * free_extent_buffer. When we get our eb it might be flagged
4800                  * with EXTENT_BUFFER_STALE and another task running
4801                  * free_extent_buffer might have seen that flag set,
4802                  * eb->refs == 2, that the buffer isn't under IO (dirty and
4803                  * writeback flags not set) and it's still in the tree (flag
4804                  * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4805                  * of decrementing the extent buffer's reference count twice.
4806                  * So here we could race and increment the eb's reference count,
4807                  * clear its stale flag, mark it as dirty and drop our reference
4808                  * before the other task finishes executing free_extent_buffer,
4809                  * which would later result in an attempt to free an extent
4810                  * buffer that is dirty.
4811                  */
4812                 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4813                         spin_lock(&eb->refs_lock);
4814                         spin_unlock(&eb->refs_lock);
4815                 }
4816                 mark_extent_buffer_accessed(eb, NULL);
4817                 return eb;
4818         }
4819         rcu_read_unlock();
4820
4821         return NULL;
4822 }
4823
4824 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4825 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4826                                                u64 start)
4827 {
4828         struct extent_buffer *eb, *exists = NULL;
4829         int ret;
4830
4831         eb = find_extent_buffer(fs_info, start);
4832         if (eb)
4833                 return eb;
4834         eb = alloc_dummy_extent_buffer(fs_info, start);
4835         if (!eb)
4836                 return NULL;
4837         eb->fs_info = fs_info;
4838 again:
4839         ret = radix_tree_preload(GFP_NOFS);
4840         if (ret)
4841                 goto free_eb;
4842         spin_lock(&fs_info->buffer_lock);
4843         ret = radix_tree_insert(&fs_info->buffer_radix,
4844                                 start >> PAGE_SHIFT, eb);
4845         spin_unlock(&fs_info->buffer_lock);
4846         radix_tree_preload_end();
4847         if (ret == -EEXIST) {
4848                 exists = find_extent_buffer(fs_info, start);
4849                 if (exists)
4850                         goto free_eb;
4851                 else
4852                         goto again;
4853         }
4854         check_buffer_tree_ref(eb);
4855         set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4856
4857         /*
4858          * We will free dummy extent buffer's if they come into
4859          * free_extent_buffer with a ref count of 2, but if we are using this we
4860          * want the buffers to stay in memory until we're done with them, so
4861          * bump the ref count again.
4862          */
4863         atomic_inc(&eb->refs);
4864         return eb;
4865 free_eb:
4866         btrfs_release_extent_buffer(eb);
4867         return exists;
4868 }
4869 #endif
4870
4871 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4872                                           u64 start)
4873 {
4874         unsigned long len = fs_info->tree_root->nodesize;
4875         unsigned long num_pages = num_extent_pages(start, len);
4876         unsigned long i;
4877         unsigned long index = start >> PAGE_SHIFT;
4878         struct extent_buffer *eb;
4879         struct extent_buffer *exists = NULL;
4880         struct page *p;
4881         struct address_space *mapping = fs_info->btree_inode->i_mapping;
4882         int uptodate = 1;
4883         int ret;
4884
4885         eb = find_extent_buffer(fs_info, start);
4886         if (eb)
4887                 return eb;
4888
4889         eb = __alloc_extent_buffer(fs_info, start, len);
4890         if (!eb)
4891                 return NULL;
4892
4893         for (i = 0; i < num_pages; i++, index++) {
4894                 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4895                 if (!p)
4896                         goto free_eb;
4897
4898                 spin_lock(&mapping->private_lock);
4899                 if (PagePrivate(p)) {
4900                         /*
4901                          * We could have already allocated an eb for this page
4902                          * and attached one so lets see if we can get a ref on
4903                          * the existing eb, and if we can we know it's good and
4904                          * we can just return that one, else we know we can just
4905                          * overwrite page->private.
4906                          */
4907                         exists = (struct extent_buffer *)p->private;
4908                         if (atomic_inc_not_zero(&exists->refs)) {
4909                                 spin_unlock(&mapping->private_lock);
4910                                 unlock_page(p);
4911                                 put_page(p);
4912                                 mark_extent_buffer_accessed(exists, p);
4913                                 goto free_eb;
4914                         }
4915                         exists = NULL;
4916
4917                         /*
4918                          * Do this so attach doesn't complain and we need to
4919                          * drop the ref the old guy had.
4920                          */
4921                         ClearPagePrivate(p);
4922                         WARN_ON(PageDirty(p));
4923                         put_page(p);
4924                 }
4925                 attach_extent_buffer_page(eb, p);
4926                 spin_unlock(&mapping->private_lock);
4927                 WARN_ON(PageDirty(p));
4928                 eb->pages[i] = p;
4929                 if (!PageUptodate(p))
4930                         uptodate = 0;
4931
4932                 /*
4933                  * see below about how we avoid a nasty race with release page
4934                  * and why we unlock later
4935                  */
4936         }
4937         if (uptodate)
4938                 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4939 again:
4940         ret = radix_tree_preload(GFP_NOFS);
4941         if (ret)
4942                 goto free_eb;
4943
4944         spin_lock(&fs_info->buffer_lock);
4945         ret = radix_tree_insert(&fs_info->buffer_radix,
4946                                 start >> PAGE_SHIFT, eb);
4947         spin_unlock(&fs_info->buffer_lock);
4948         radix_tree_preload_end();
4949         if (ret == -EEXIST) {
4950                 exists = find_extent_buffer(fs_info, start);
4951                 if (exists)
4952                         goto free_eb;
4953                 else
4954                         goto again;
4955         }
4956         /* add one reference for the tree */
4957         check_buffer_tree_ref(eb);
4958         set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4959
4960         /*
4961          * there is a race where release page may have
4962          * tried to find this extent buffer in the radix
4963          * but failed.  It will tell the VM it is safe to
4964          * reclaim the, and it will clear the page private bit.
4965          * We must make sure to set the page private bit properly
4966          * after the extent buffer is in the radix tree so
4967          * it doesn't get lost
4968          */
4969         SetPageChecked(eb->pages[0]);
4970         for (i = 1; i < num_pages; i++) {
4971                 p = eb->pages[i];
4972                 ClearPageChecked(p);
4973                 unlock_page(p);
4974         }
4975         unlock_page(eb->pages[0]);
4976         return eb;
4977
4978 free_eb:
4979         WARN_ON(!atomic_dec_and_test(&eb->refs));
4980         for (i = 0; i < num_pages; i++) {
4981                 if (eb->pages[i])
4982                         unlock_page(eb->pages[i]);
4983         }
4984
4985         btrfs_release_extent_buffer(eb);
4986         return exists;
4987 }
4988
4989 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4990 {
4991         struct extent_buffer *eb =
4992                         container_of(head, struct extent_buffer, rcu_head);
4993
4994         __free_extent_buffer(eb);
4995 }
4996
4997 /* Expects to have eb->eb_lock already held */
4998 static int release_extent_buffer(struct extent_buffer *eb)
4999 {
5000         WARN_ON(atomic_read(&eb->refs) == 0);
5001         if (atomic_dec_and_test(&eb->refs)) {
5002                 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5003                         struct btrfs_fs_info *fs_info = eb->fs_info;
5004
5005                         spin_unlock(&eb->refs_lock);
5006
5007                         spin_lock(&fs_info->buffer_lock);
5008                         radix_tree_delete(&fs_info->buffer_radix,
5009                                           eb->start >> PAGE_SHIFT);
5010                         spin_unlock(&fs_info->buffer_lock);
5011                 } else {
5012                         spin_unlock(&eb->refs_lock);
5013                 }
5014
5015                 /* Should be safe to release our pages at this point */
5016                 btrfs_release_extent_buffer_page(eb);
5017 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5018                 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5019                         __free_extent_buffer(eb);
5020                         return 1;
5021                 }
5022 #endif
5023                 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5024                 return 1;
5025         }
5026         spin_unlock(&eb->refs_lock);
5027
5028         return 0;
5029 }
5030
5031 void free_extent_buffer(struct extent_buffer *eb)
5032 {
5033         int refs;
5034         int old;
5035         if (!eb)
5036                 return;
5037
5038         while (1) {
5039                 refs = atomic_read(&eb->refs);
5040                 if (refs <= 3)
5041                         break;
5042                 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5043                 if (old == refs)
5044                         return;
5045         }
5046
5047         spin_lock(&eb->refs_lock);
5048         if (atomic_read(&eb->refs) == 2 &&
5049             test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5050                 atomic_dec(&eb->refs);
5051
5052         if (atomic_read(&eb->refs) == 2 &&
5053             test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5054             !extent_buffer_under_io(eb) &&
5055             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5056                 atomic_dec(&eb->refs);
5057
5058         /*
5059          * I know this is terrible, but it's temporary until we stop tracking
5060          * the uptodate bits and such for the extent buffers.
5061          */
5062         release_extent_buffer(eb);
5063 }
5064
5065 void free_extent_buffer_stale(struct extent_buffer *eb)
5066 {
5067         if (!eb)
5068                 return;
5069
5070         spin_lock(&eb->refs_lock);
5071         set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5072
5073         if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5074             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5075                 atomic_dec(&eb->refs);
5076         release_extent_buffer(eb);
5077 }
5078
5079 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5080 {
5081         unsigned long i;
5082         unsigned long num_pages;
5083         struct page *page;
5084
5085         num_pages = num_extent_pages(eb->start, eb->len);
5086
5087         for (i = 0; i < num_pages; i++) {
5088                 page = eb->pages[i];
5089                 if (!PageDirty(page))
5090                         continue;
5091
5092                 lock_page(page);
5093                 WARN_ON(!PagePrivate(page));
5094
5095                 clear_page_dirty_for_io(page);
5096                 spin_lock_irq(&page->mapping->tree_lock);
5097                 if (!PageDirty(page)) {
5098                         radix_tree_tag_clear(&page->mapping->page_tree,
5099                                                 page_index(page),
5100                                                 PAGECACHE_TAG_DIRTY);
5101                 }
5102                 spin_unlock_irq(&page->mapping->tree_lock);
5103                 ClearPageError(page);
5104                 unlock_page(page);
5105         }
5106         WARN_ON(atomic_read(&eb->refs) == 0);
5107 }
5108
5109 int set_extent_buffer_dirty(struct extent_buffer *eb)
5110 {
5111         unsigned long i;
5112         unsigned long num_pages;
5113         int was_dirty = 0;
5114
5115         check_buffer_tree_ref(eb);
5116
5117         was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5118
5119         num_pages = num_extent_pages(eb->start, eb->len);
5120         WARN_ON(atomic_read(&eb->refs) == 0);
5121         WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5122
5123         for (i = 0; i < num_pages; i++)
5124                 set_page_dirty(eb->pages[i]);
5125         return was_dirty;
5126 }
5127
5128 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5129 {
5130         unsigned long i;
5131         struct page *page;
5132         unsigned long num_pages;
5133
5134         clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5135         num_pages = num_extent_pages(eb->start, eb->len);
5136         for (i = 0; i < num_pages; i++) {
5137                 page = eb->pages[i];
5138                 if (page)
5139                         ClearPageUptodate(page);
5140         }
5141 }
5142
5143 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5144 {
5145         unsigned long i;
5146         struct page *page;
5147         unsigned long num_pages;
5148
5149         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5150         num_pages = num_extent_pages(eb->start, eb->len);
5151         for (i = 0; i < num_pages; i++) {
5152                 page = eb->pages[i];
5153                 SetPageUptodate(page);
5154         }
5155 }
5156
5157 int extent_buffer_uptodate(struct extent_buffer *eb)
5158 {
5159         return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5160 }
5161
5162 int read_extent_buffer_pages(struct extent_io_tree *tree,
5163                              struct extent_buffer *eb, u64 start, int wait,
5164                              get_extent_t *get_extent, int mirror_num)
5165 {
5166         unsigned long i;
5167         unsigned long start_i;
5168         struct page *page;
5169         int err;
5170         int ret = 0;
5171         int locked_pages = 0;
5172         int all_uptodate = 1;
5173         unsigned long num_pages;
5174         unsigned long num_reads = 0;
5175         struct bio *bio = NULL;
5176         unsigned long bio_flags = 0;
5177
5178         if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5179                 return 0;
5180
5181         if (start) {
5182                 WARN_ON(start < eb->start);
5183                 start_i = (start >> PAGE_SHIFT) -
5184                         (eb->start >> PAGE_SHIFT);
5185         } else {
5186                 start_i = 0;
5187         }
5188
5189         num_pages = num_extent_pages(eb->start, eb->len);
5190         for (i = start_i; i < num_pages; i++) {
5191                 page = eb->pages[i];
5192                 if (wait == WAIT_NONE) {
5193                         if (!trylock_page(page))
5194                                 goto unlock_exit;
5195                 } else {
5196                         lock_page(page);
5197                 }
5198                 locked_pages++;
5199                 if (!PageUptodate(page)) {
5200                         num_reads++;
5201                         all_uptodate = 0;
5202                 }
5203         }
5204         if (all_uptodate) {
5205                 if (start_i == 0)
5206                         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5207                 goto unlock_exit;
5208         }
5209
5210         clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5211         eb->read_mirror = 0;
5212         atomic_set(&eb->io_pages, num_reads);
5213         for (i = start_i; i < num_pages; i++) {
5214                 page = eb->pages[i];
5215                 if (!PageUptodate(page)) {
5216                         ClearPageError(page);
5217                         err = __extent_read_full_page(tree, page,
5218                                                       get_extent, &bio,
5219                                                       mirror_num, &bio_flags,
5220                                                       READ | REQ_META);
5221                         if (err)
5222                                 ret = err;
5223                 } else {
5224                         unlock_page(page);
5225                 }
5226         }
5227
5228         if (bio) {
5229                 err = submit_one_bio(READ | REQ_META, bio, mirror_num,
5230                                      bio_flags);
5231                 if (err)
5232                         return err;
5233         }
5234
5235         if (ret || wait != WAIT_COMPLETE)
5236                 return ret;
5237
5238         for (i = start_i; i < num_pages; i++) {
5239                 page = eb->pages[i];
5240                 wait_on_page_locked(page);
5241                 if (!PageUptodate(page))
5242                         ret = -EIO;
5243         }
5244
5245         return ret;
5246
5247 unlock_exit:
5248         i = start_i;
5249         while (locked_pages > 0) {
5250                 page = eb->pages[i];
5251                 i++;
5252                 unlock_page(page);
5253                 locked_pages--;
5254         }
5255         return ret;
5256 }
5257
5258 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5259                         unsigned long start,
5260                         unsigned long len)
5261 {
5262         size_t cur;
5263         size_t offset;
5264         struct page *page;
5265         char *kaddr;
5266         char *dst = (char *)dstv;
5267         size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5268         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5269
5270         WARN_ON(start > eb->len);
5271         WARN_ON(start + len > eb->start + eb->len);
5272
5273         offset = (start_offset + start) & (PAGE_SIZE - 1);
5274
5275         while (len > 0) {
5276                 page = eb->pages[i];
5277
5278                 cur = min(len, (PAGE_SIZE - offset));
5279                 kaddr = page_address(page);
5280                 memcpy(dst, kaddr + offset, cur);
5281
5282                 dst += cur;
5283                 len -= cur;
5284                 offset = 0;
5285                 i++;
5286         }
5287 }
5288
5289 int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5290                         unsigned long start,
5291                         unsigned long len)
5292 {
5293         size_t cur;
5294         size_t offset;
5295         struct page *page;
5296         char *kaddr;
5297         char __user *dst = (char __user *)dstv;
5298         size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5299         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5300         int ret = 0;
5301
5302         WARN_ON(start > eb->len);
5303         WARN_ON(start + len > eb->start + eb->len);
5304
5305         offset = (start_offset + start) & (PAGE_SIZE - 1);
5306
5307         while (len > 0) {
5308                 page = eb->pages[i];
5309
5310                 cur = min(len, (PAGE_SIZE - offset));
5311                 kaddr = page_address(page);
5312                 if (copy_to_user(dst, kaddr + offset, cur)) {
5313                         ret = -EFAULT;
5314                         break;
5315                 }
5316
5317                 dst += cur;
5318                 len -= cur;
5319                 offset = 0;
5320                 i++;
5321         }
5322
5323         return ret;
5324 }
5325
5326 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
5327                                unsigned long min_len, char **map,
5328                                unsigned long *map_start,
5329                                unsigned long *map_len)
5330 {
5331         size_t offset = start & (PAGE_SIZE - 1);
5332         char *kaddr;
5333         struct page *p;
5334         size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5335         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5336         unsigned long end_i = (start_offset + start + min_len - 1) >>
5337                 PAGE_SHIFT;
5338
5339         if (i != end_i)
5340                 return -EINVAL;
5341
5342         if (i == 0) {
5343                 offset = start_offset;
5344                 *map_start = 0;
5345         } else {
5346                 offset = 0;
5347                 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5348         }
5349
5350         if (start + min_len > eb->len) {
5351                 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
5352                        "wanted %lu %lu\n",
5353                        eb->start, eb->len, start, min_len);
5354                 return -EINVAL;
5355         }
5356
5357         p = eb->pages[i];
5358         kaddr = page_address(p);
5359         *map = kaddr + offset;
5360         *map_len = PAGE_SIZE - offset;
5361         return 0;
5362 }
5363
5364 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5365                           unsigned long start,
5366                           unsigned long len)
5367 {
5368         size_t cur;
5369         size_t offset;
5370         struct page *page;
5371         char *kaddr;
5372         char *ptr = (char *)ptrv;
5373         size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5374         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5375         int ret = 0;
5376
5377         WARN_ON(start > eb->len);
5378         WARN_ON(start + len > eb->start + eb->len);
5379
5380         offset = (start_offset + start) & (PAGE_SIZE - 1);
5381
5382         while (len > 0) {
5383                 page = eb->pages[i];
5384
5385                 cur = min(len, (PAGE_SIZE - offset));
5386
5387                 kaddr = page_address(page);
5388                 ret = memcmp(ptr, kaddr + offset, cur);
5389                 if (ret)
5390                         break;
5391
5392                 ptr += cur;
5393                 len -= cur;
5394                 offset = 0;
5395                 i++;
5396         }
5397         return ret;
5398 }
5399
5400 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5401                          unsigned long start, unsigned long len)
5402 {
5403         size_t cur;
5404         size_t offset;
5405         struct page *page;
5406         char *kaddr;
5407         char *src = (char *)srcv;
5408         size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5409         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5410
5411         WARN_ON(start > eb->len);
5412         WARN_ON(start + len > eb->start + eb->len);
5413
5414         offset = (start_offset + start) & (PAGE_SIZE - 1);
5415
5416         while (len > 0) {
5417                 page = eb->pages[i];
5418                 WARN_ON(!PageUptodate(page));
5419
5420                 cur = min(len, PAGE_SIZE - offset);
5421                 kaddr = page_address(page);
5422                 memcpy(kaddr + offset, src, cur);
5423
5424                 src += cur;
5425                 len -= cur;
5426                 offset = 0;
5427                 i++;
5428         }
5429 }
5430
5431 void memset_extent_buffer(struct extent_buffer *eb, char c,
5432                           unsigned long start, unsigned long len)
5433 {
5434         size_t cur;
5435         size_t offset;
5436         struct page *page;
5437         char *kaddr;
5438         size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5439         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5440
5441         WARN_ON(start > eb->len);
5442         WARN_ON(start + len > eb->start + eb->len);
5443
5444         offset = (start_offset + start) & (PAGE_SIZE - 1);
5445
5446         while (len > 0) {
5447                 page = eb->pages[i];
5448                 WARN_ON(!PageUptodate(page));
5449
5450                 cur = min(len, PAGE_SIZE - offset);
5451                 kaddr = page_address(page);
5452                 memset(kaddr + offset, c, cur);
5453
5454                 len -= cur;
5455                 offset = 0;
5456                 i++;
5457         }
5458 }
5459
5460 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5461                         unsigned long dst_offset, unsigned long src_offset,
5462                         unsigned long len)
5463 {
5464         u64 dst_len = dst->len;
5465         size_t cur;
5466         size_t offset;
5467         struct page *page;
5468         char *kaddr;
5469         size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5470         unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5471
5472         WARN_ON(src->len != dst_len);
5473
5474         offset = (start_offset + dst_offset) &
5475                 (PAGE_SIZE - 1);
5476
5477         while (len > 0) {
5478                 page = dst->pages[i];
5479                 WARN_ON(!PageUptodate(page));
5480
5481                 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5482
5483                 kaddr = page_address(page);
5484                 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5485
5486                 src_offset += cur;
5487                 len -= cur;
5488                 offset = 0;
5489                 i++;
5490         }
5491 }
5492
5493 /*
5494  * The extent buffer bitmap operations are done with byte granularity because
5495  * bitmap items are not guaranteed to be aligned to a word and therefore a
5496  * single word in a bitmap may straddle two pages in the extent buffer.
5497  */
5498 #define BIT_BYTE(nr) ((nr) / BITS_PER_BYTE)
5499 #define BYTE_MASK ((1 << BITS_PER_BYTE) - 1)
5500 #define BITMAP_FIRST_BYTE_MASK(start) \
5501         ((BYTE_MASK << ((start) & (BITS_PER_BYTE - 1))) & BYTE_MASK)
5502 #define BITMAP_LAST_BYTE_MASK(nbits) \
5503         (BYTE_MASK >> (-(nbits) & (BITS_PER_BYTE - 1)))
5504
5505 /*
5506  * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5507  * given bit number
5508  * @eb: the extent buffer
5509  * @start: offset of the bitmap item in the extent buffer
5510  * @nr: bit number
5511  * @page_index: return index of the page in the extent buffer that contains the
5512  * given bit number
5513  * @page_offset: return offset into the page given by page_index
5514  *
5515  * This helper hides the ugliness of finding the byte in an extent buffer which
5516  * contains a given bit.
5517  */
5518 static inline void eb_bitmap_offset(struct extent_buffer *eb,
5519                                     unsigned long start, unsigned long nr,
5520                                     unsigned long *page_index,
5521                                     size_t *page_offset)
5522 {
5523         size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5524         size_t byte_offset = BIT_BYTE(nr);
5525         size_t offset;
5526
5527         /*
5528          * The byte we want is the offset of the extent buffer + the offset of
5529          * the bitmap item in the extent buffer + the offset of the byte in the
5530          * bitmap item.
5531          */
5532         offset = start_offset + start + byte_offset;
5533
5534         *page_index = offset >> PAGE_SHIFT;
5535         *page_offset = offset & (PAGE_SIZE - 1);
5536 }
5537
5538 /**
5539  * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5540  * @eb: the extent buffer
5541  * @start: offset of the bitmap item in the extent buffer
5542  * @nr: bit number to test
5543  */
5544 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5545                            unsigned long nr)
5546 {
5547         char *kaddr;
5548         struct page *page;
5549         unsigned long i;
5550         size_t offset;
5551
5552         eb_bitmap_offset(eb, start, nr, &i, &offset);
5553         page = eb->pages[i];
5554         WARN_ON(!PageUptodate(page));
5555         kaddr = page_address(page);
5556         return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5557 }
5558
5559 /**
5560  * extent_buffer_bitmap_set - set an area of a bitmap
5561  * @eb: the extent buffer
5562  * @start: offset of the bitmap item in the extent buffer
5563  * @pos: bit number of the first bit
5564  * @len: number of bits to set
5565  */
5566 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5567                               unsigned long pos, unsigned long len)
5568 {
5569         char *kaddr;
5570         struct page *page;
5571         unsigned long i;
5572         size_t offset;
5573         const unsigned int size = pos + len;
5574         int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5575         unsigned int mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5576
5577         eb_bitmap_offset(eb, start, pos, &i, &offset);
5578         page = eb->pages[i];
5579         WARN_ON(!PageUptodate(page));
5580         kaddr = page_address(page);
5581
5582         while (len >= bits_to_set) {
5583                 kaddr[offset] |= mask_to_set;
5584                 len -= bits_to_set;
5585                 bits_to_set = BITS_PER_BYTE;
5586                 mask_to_set = ~0U;
5587                 if (++offset >= PAGE_SIZE && len > 0) {
5588                         offset = 0;
5589                         page = eb->pages[++i];
5590                         WARN_ON(!PageUptodate(page));
5591                         kaddr = page_address(page);
5592                 }
5593         }
5594         if (len) {
5595                 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5596                 kaddr[offset] |= mask_to_set;
5597         }
5598 }
5599
5600
5601 /**
5602  * extent_buffer_bitmap_clear - clear an area of a bitmap
5603  * @eb: the extent buffer
5604  * @start: offset of the bitmap item in the extent buffer
5605  * @pos: bit number of the first bit
5606  * @len: number of bits to clear
5607  */
5608 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5609                                 unsigned long pos, unsigned long len)
5610 {
5611         char *kaddr;
5612         struct page *page;
5613         unsigned long i;
5614         size_t offset;
5615         const unsigned int size = pos + len;
5616         int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5617         unsigned int mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5618
5619         eb_bitmap_offset(eb, start, pos, &i, &offset);
5620         page = eb->pages[i];
5621         WARN_ON(!PageUptodate(page));
5622         kaddr = page_address(page);
5623
5624         while (len >= bits_to_clear) {
5625                 kaddr[offset] &= ~mask_to_clear;
5626                 len -= bits_to_clear;
5627                 bits_to_clear = BITS_PER_BYTE;
5628                 mask_to_clear = ~0U;
5629                 if (++offset >= PAGE_SIZE && len > 0) {
5630                         offset = 0;
5631                         page = eb->pages[++i];
5632                         WARN_ON(!PageUptodate(page));
5633                         kaddr = page_address(page);
5634                 }
5635         }
5636         if (len) {
5637                 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5638                 kaddr[offset] &= ~mask_to_clear;
5639         }
5640 }
5641
5642 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5643 {
5644         unsigned long distance = (src > dst) ? src - dst : dst - src;
5645         return distance < len;
5646 }
5647
5648 static void copy_pages(struct page *dst_page, struct page *src_page,
5649                        unsigned long dst_off, unsigned long src_off,
5650                        unsigned long len)
5651 {
5652         char *dst_kaddr = page_address(dst_page);
5653         char *src_kaddr;
5654         int must_memmove = 0;
5655
5656         if (dst_page != src_page) {
5657                 src_kaddr = page_address(src_page);
5658         } else {
5659                 src_kaddr = dst_kaddr;
5660                 if (areas_overlap(src_off, dst_off, len))
5661                         must_memmove = 1;
5662         }
5663
5664         if (must_memmove)
5665                 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5666         else
5667                 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5668 }
5669
5670 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5671                            unsigned long src_offset, unsigned long len)
5672 {
5673         size_t cur;
5674         size_t dst_off_in_page;
5675         size_t src_off_in_page;
5676         size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5677         unsigned long dst_i;
5678         unsigned long src_i;
5679
5680         if (src_offset + len > dst->len) {
5681                 btrfs_err(dst->fs_info,
5682                         "memmove bogus src_offset %lu move "
5683                        "len %lu dst len %lu", src_offset, len, dst->len);
5684                 BUG_ON(1);
5685         }
5686         if (dst_offset + len > dst->len) {
5687                 btrfs_err(dst->fs_info,
5688                         "memmove bogus dst_offset %lu move "
5689                        "len %lu dst len %lu", dst_offset, len, dst->len);
5690                 BUG_ON(1);
5691         }
5692
5693         while (len > 0) {
5694                 dst_off_in_page = (start_offset + dst_offset) &
5695                         (PAGE_SIZE - 1);
5696                 src_off_in_page = (start_offset + src_offset) &
5697                         (PAGE_SIZE - 1);
5698
5699                 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5700                 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5701
5702                 cur = min(len, (unsigned long)(PAGE_SIZE -
5703                                                src_off_in_page));
5704                 cur = min_t(unsigned long, cur,
5705                         (unsigned long)(PAGE_SIZE - dst_off_in_page));
5706
5707                 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5708                            dst_off_in_page, src_off_in_page, cur);
5709
5710                 src_offset += cur;
5711                 dst_offset += cur;
5712                 len -= cur;
5713         }
5714 }
5715
5716 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5717                            unsigned long src_offset, unsigned long len)
5718 {
5719         size_t cur;
5720         size_t dst_off_in_page;
5721         size_t src_off_in_page;
5722         unsigned long dst_end = dst_offset + len - 1;
5723         unsigned long src_end = src_offset + len - 1;
5724         size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5725         unsigned long dst_i;
5726         unsigned long src_i;
5727
5728         if (src_offset + len > dst->len) {
5729                 btrfs_err(dst->fs_info, "memmove bogus src_offset %lu move "
5730                        "len %lu len %lu", src_offset, len, dst->len);
5731                 BUG_ON(1);
5732         }
5733         if (dst_offset + len > dst->len) {
5734                 btrfs_err(dst->fs_info, "memmove bogus dst_offset %lu move "
5735                        "len %lu len %lu", dst_offset, len, dst->len);
5736                 BUG_ON(1);
5737         }
5738         if (dst_offset < src_offset) {
5739                 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5740                 return;
5741         }
5742         while (len > 0) {
5743                 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5744                 src_i = (start_offset + src_end) >> PAGE_SHIFT;
5745
5746                 dst_off_in_page = (start_offset + dst_end) &
5747                         (PAGE_SIZE - 1);
5748                 src_off_in_page = (start_offset + src_end) &
5749                         (PAGE_SIZE - 1);
5750
5751                 cur = min_t(unsigned long, len, src_off_in_page + 1);
5752                 cur = min(cur, dst_off_in_page + 1);
5753                 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5754                            dst_off_in_page - cur + 1,
5755                            src_off_in_page - cur + 1, cur);
5756
5757                 dst_end -= cur;
5758                 src_end -= cur;
5759                 len -= cur;
5760         }
5761 }
5762
5763 int try_release_extent_buffer(struct page *page)
5764 {
5765         struct extent_buffer *eb;
5766
5767         /*
5768          * We need to make sure nobody is attaching this page to an eb right
5769          * now.
5770          */
5771         spin_lock(&page->mapping->private_lock);
5772         if (!PagePrivate(page)) {
5773                 spin_unlock(&page->mapping->private_lock);
5774                 return 1;
5775         }
5776
5777         eb = (struct extent_buffer *)page->private;
5778         BUG_ON(!eb);
5779
5780         /*
5781          * This is a little awful but should be ok, we need to make sure that
5782          * the eb doesn't disappear out from under us while we're looking at
5783          * this page.
5784          */
5785         spin_lock(&eb->refs_lock);
5786         if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5787                 spin_unlock(&eb->refs_lock);
5788                 spin_unlock(&page->mapping->private_lock);
5789                 return 0;
5790         }
5791         spin_unlock(&page->mapping->private_lock);
5792
5793         /*
5794          * If tree ref isn't set then we know the ref on this eb is a real ref,
5795          * so just return, this page will likely be freed soon anyway.
5796          */
5797         if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5798                 spin_unlock(&eb->refs_lock);
5799                 return 0;
5800         }
5801
5802         return release_extent_buffer(eb);
5803 }