Btrfs: cleanup the same name in end_bio_extent_readpage
[cascardo/linux.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "ctree.h"
17 #include "btrfs_inode.h"
18 #include "volumes.h"
19 #include "check-integrity.h"
20 #include "locking.h"
21 #include "rcu-string.h"
22 #include "backref.h"
23
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26 static struct bio_set *btrfs_bioset;
27
28 static inline bool extent_state_in_tree(const struct extent_state *state)
29 {
30         return !RB_EMPTY_NODE(&state->rb_node);
31 }
32
33 #ifdef CONFIG_BTRFS_DEBUG
34 static LIST_HEAD(buffers);
35 static LIST_HEAD(states);
36
37 static DEFINE_SPINLOCK(leak_lock);
38
39 static inline
40 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
41 {
42         unsigned long flags;
43
44         spin_lock_irqsave(&leak_lock, flags);
45         list_add(new, head);
46         spin_unlock_irqrestore(&leak_lock, flags);
47 }
48
49 static inline
50 void btrfs_leak_debug_del(struct list_head *entry)
51 {
52         unsigned long flags;
53
54         spin_lock_irqsave(&leak_lock, flags);
55         list_del(entry);
56         spin_unlock_irqrestore(&leak_lock, flags);
57 }
58
59 static inline
60 void btrfs_leak_debug_check(void)
61 {
62         struct extent_state *state;
63         struct extent_buffer *eb;
64
65         while (!list_empty(&states)) {
66                 state = list_entry(states.next, struct extent_state, leak_list);
67                 pr_err("BTRFS: state leak: start %llu end %llu state %lu in tree %d refs %d\n",
68                        state->start, state->end, state->state,
69                        extent_state_in_tree(state),
70                        atomic_read(&state->refs));
71                 list_del(&state->leak_list);
72                 kmem_cache_free(extent_state_cache, state);
73         }
74
75         while (!list_empty(&buffers)) {
76                 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
77                 printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
78                        "refs %d\n",
79                        eb->start, eb->len, atomic_read(&eb->refs));
80                 list_del(&eb->leak_list);
81                 kmem_cache_free(extent_buffer_cache, eb);
82         }
83 }
84
85 #define btrfs_debug_check_extent_io_range(tree, start, end)             \
86         __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
87 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
88                 struct extent_io_tree *tree, u64 start, u64 end)
89 {
90         struct inode *inode;
91         u64 isize;
92
93         if (!tree->mapping)
94                 return;
95
96         inode = tree->mapping->host;
97         isize = i_size_read(inode);
98         if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
99                 printk_ratelimited(KERN_DEBUG
100                     "BTRFS: %s: ino %llu isize %llu odd range [%llu,%llu]\n",
101                                 caller, btrfs_ino(inode), isize, start, end);
102         }
103 }
104 #else
105 #define btrfs_leak_debug_add(new, head) do {} while (0)
106 #define btrfs_leak_debug_del(entry)     do {} while (0)
107 #define btrfs_leak_debug_check()        do {} while (0)
108 #define btrfs_debug_check_extent_io_range(c, s, e)      do {} while (0)
109 #endif
110
111 #define BUFFER_LRU_MAX 64
112
113 struct tree_entry {
114         u64 start;
115         u64 end;
116         struct rb_node rb_node;
117 };
118
119 struct extent_page_data {
120         struct bio *bio;
121         struct extent_io_tree *tree;
122         get_extent_t *get_extent;
123         unsigned long bio_flags;
124
125         /* tells writepage not to lock the state bits for this range
126          * it still does the unlocking
127          */
128         unsigned int extent_locked:1;
129
130         /* tells the submit_bio code to use a WRITE_SYNC */
131         unsigned int sync_io:1;
132 };
133
134 static noinline void flush_write_bio(void *data);
135 static inline struct btrfs_fs_info *
136 tree_fs_info(struct extent_io_tree *tree)
137 {
138         if (!tree->mapping)
139                 return NULL;
140         return btrfs_sb(tree->mapping->host->i_sb);
141 }
142
143 int __init extent_io_init(void)
144 {
145         extent_state_cache = kmem_cache_create("btrfs_extent_state",
146                         sizeof(struct extent_state), 0,
147                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
148         if (!extent_state_cache)
149                 return -ENOMEM;
150
151         extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
152                         sizeof(struct extent_buffer), 0,
153                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
154         if (!extent_buffer_cache)
155                 goto free_state_cache;
156
157         btrfs_bioset = bioset_create(BIO_POOL_SIZE,
158                                      offsetof(struct btrfs_io_bio, bio));
159         if (!btrfs_bioset)
160                 goto free_buffer_cache;
161
162         if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
163                 goto free_bioset;
164
165         return 0;
166
167 free_bioset:
168         bioset_free(btrfs_bioset);
169         btrfs_bioset = NULL;
170
171 free_buffer_cache:
172         kmem_cache_destroy(extent_buffer_cache);
173         extent_buffer_cache = NULL;
174
175 free_state_cache:
176         kmem_cache_destroy(extent_state_cache);
177         extent_state_cache = NULL;
178         return -ENOMEM;
179 }
180
181 void extent_io_exit(void)
182 {
183         btrfs_leak_debug_check();
184
185         /*
186          * Make sure all delayed rcu free are flushed before we
187          * destroy caches.
188          */
189         rcu_barrier();
190         if (extent_state_cache)
191                 kmem_cache_destroy(extent_state_cache);
192         if (extent_buffer_cache)
193                 kmem_cache_destroy(extent_buffer_cache);
194         if (btrfs_bioset)
195                 bioset_free(btrfs_bioset);
196 }
197
198 void extent_io_tree_init(struct extent_io_tree *tree,
199                          struct address_space *mapping)
200 {
201         tree->state = RB_ROOT;
202         tree->ops = NULL;
203         tree->dirty_bytes = 0;
204         spin_lock_init(&tree->lock);
205         tree->mapping = mapping;
206 }
207
208 static struct extent_state *alloc_extent_state(gfp_t mask)
209 {
210         struct extent_state *state;
211
212         state = kmem_cache_alloc(extent_state_cache, mask);
213         if (!state)
214                 return state;
215         state->state = 0;
216         state->private = 0;
217         RB_CLEAR_NODE(&state->rb_node);
218         btrfs_leak_debug_add(&state->leak_list, &states);
219         atomic_set(&state->refs, 1);
220         init_waitqueue_head(&state->wq);
221         trace_alloc_extent_state(state, mask, _RET_IP_);
222         return state;
223 }
224
225 void free_extent_state(struct extent_state *state)
226 {
227         if (!state)
228                 return;
229         if (atomic_dec_and_test(&state->refs)) {
230                 WARN_ON(extent_state_in_tree(state));
231                 btrfs_leak_debug_del(&state->leak_list);
232                 trace_free_extent_state(state, _RET_IP_);
233                 kmem_cache_free(extent_state_cache, state);
234         }
235 }
236
237 static struct rb_node *tree_insert(struct rb_root *root,
238                                    struct rb_node *search_start,
239                                    u64 offset,
240                                    struct rb_node *node,
241                                    struct rb_node ***p_in,
242                                    struct rb_node **parent_in)
243 {
244         struct rb_node **p;
245         struct rb_node *parent = NULL;
246         struct tree_entry *entry;
247
248         if (p_in && parent_in) {
249                 p = *p_in;
250                 parent = *parent_in;
251                 goto do_insert;
252         }
253
254         p = search_start ? &search_start : &root->rb_node;
255         while (*p) {
256                 parent = *p;
257                 entry = rb_entry(parent, struct tree_entry, rb_node);
258
259                 if (offset < entry->start)
260                         p = &(*p)->rb_left;
261                 else if (offset > entry->end)
262                         p = &(*p)->rb_right;
263                 else
264                         return parent;
265         }
266
267 do_insert:
268         rb_link_node(node, parent, p);
269         rb_insert_color(node, root);
270         return NULL;
271 }
272
273 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
274                                       struct rb_node **prev_ret,
275                                       struct rb_node **next_ret,
276                                       struct rb_node ***p_ret,
277                                       struct rb_node **parent_ret)
278 {
279         struct rb_root *root = &tree->state;
280         struct rb_node **n = &root->rb_node;
281         struct rb_node *prev = NULL;
282         struct rb_node *orig_prev = NULL;
283         struct tree_entry *entry;
284         struct tree_entry *prev_entry = NULL;
285
286         while (*n) {
287                 prev = *n;
288                 entry = rb_entry(prev, struct tree_entry, rb_node);
289                 prev_entry = entry;
290
291                 if (offset < entry->start)
292                         n = &(*n)->rb_left;
293                 else if (offset > entry->end)
294                         n = &(*n)->rb_right;
295                 else
296                         return *n;
297         }
298
299         if (p_ret)
300                 *p_ret = n;
301         if (parent_ret)
302                 *parent_ret = prev;
303
304         if (prev_ret) {
305                 orig_prev = prev;
306                 while (prev && offset > prev_entry->end) {
307                         prev = rb_next(prev);
308                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
309                 }
310                 *prev_ret = prev;
311                 prev = orig_prev;
312         }
313
314         if (next_ret) {
315                 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
316                 while (prev && offset < prev_entry->start) {
317                         prev = rb_prev(prev);
318                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
319                 }
320                 *next_ret = prev;
321         }
322         return NULL;
323 }
324
325 static inline struct rb_node *
326 tree_search_for_insert(struct extent_io_tree *tree,
327                        u64 offset,
328                        struct rb_node ***p_ret,
329                        struct rb_node **parent_ret)
330 {
331         struct rb_node *prev = NULL;
332         struct rb_node *ret;
333
334         ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
335         if (!ret)
336                 return prev;
337         return ret;
338 }
339
340 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
341                                           u64 offset)
342 {
343         return tree_search_for_insert(tree, offset, NULL, NULL);
344 }
345
346 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
347                      struct extent_state *other)
348 {
349         if (tree->ops && tree->ops->merge_extent_hook)
350                 tree->ops->merge_extent_hook(tree->mapping->host, new,
351                                              other);
352 }
353
354 /*
355  * utility function to look for merge candidates inside a given range.
356  * Any extents with matching state are merged together into a single
357  * extent in the tree.  Extents with EXTENT_IO in their state field
358  * are not merged because the end_io handlers need to be able to do
359  * operations on them without sleeping (or doing allocations/splits).
360  *
361  * This should be called with the tree lock held.
362  */
363 static void merge_state(struct extent_io_tree *tree,
364                         struct extent_state *state)
365 {
366         struct extent_state *other;
367         struct rb_node *other_node;
368
369         if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
370                 return;
371
372         other_node = rb_prev(&state->rb_node);
373         if (other_node) {
374                 other = rb_entry(other_node, struct extent_state, rb_node);
375                 if (other->end == state->start - 1 &&
376                     other->state == state->state) {
377                         merge_cb(tree, state, other);
378                         state->start = other->start;
379                         rb_erase(&other->rb_node, &tree->state);
380                         RB_CLEAR_NODE(&other->rb_node);
381                         free_extent_state(other);
382                 }
383         }
384         other_node = rb_next(&state->rb_node);
385         if (other_node) {
386                 other = rb_entry(other_node, struct extent_state, rb_node);
387                 if (other->start == state->end + 1 &&
388                     other->state == state->state) {
389                         merge_cb(tree, state, other);
390                         state->end = other->end;
391                         rb_erase(&other->rb_node, &tree->state);
392                         RB_CLEAR_NODE(&other->rb_node);
393                         free_extent_state(other);
394                 }
395         }
396 }
397
398 static void set_state_cb(struct extent_io_tree *tree,
399                          struct extent_state *state, unsigned long *bits)
400 {
401         if (tree->ops && tree->ops->set_bit_hook)
402                 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
403 }
404
405 static void clear_state_cb(struct extent_io_tree *tree,
406                            struct extent_state *state, unsigned long *bits)
407 {
408         if (tree->ops && tree->ops->clear_bit_hook)
409                 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
410 }
411
412 static void set_state_bits(struct extent_io_tree *tree,
413                            struct extent_state *state, unsigned long *bits);
414
415 /*
416  * insert an extent_state struct into the tree.  'bits' are set on the
417  * struct before it is inserted.
418  *
419  * This may return -EEXIST if the extent is already there, in which case the
420  * state struct is freed.
421  *
422  * The tree lock is not taken internally.  This is a utility function and
423  * probably isn't what you want to call (see set/clear_extent_bit).
424  */
425 static int insert_state(struct extent_io_tree *tree,
426                         struct extent_state *state, u64 start, u64 end,
427                         struct rb_node ***p,
428                         struct rb_node **parent,
429                         unsigned long *bits)
430 {
431         struct rb_node *node;
432
433         if (end < start)
434                 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
435                        end, start);
436         state->start = start;
437         state->end = end;
438
439         set_state_bits(tree, state, bits);
440
441         node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
442         if (node) {
443                 struct extent_state *found;
444                 found = rb_entry(node, struct extent_state, rb_node);
445                 printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
446                        "%llu %llu\n",
447                        found->start, found->end, start, end);
448                 return -EEXIST;
449         }
450         merge_state(tree, state);
451         return 0;
452 }
453
454 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
455                      u64 split)
456 {
457         if (tree->ops && tree->ops->split_extent_hook)
458                 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
459 }
460
461 /*
462  * split a given extent state struct in two, inserting the preallocated
463  * struct 'prealloc' as the newly created second half.  'split' indicates an
464  * offset inside 'orig' where it should be split.
465  *
466  * Before calling,
467  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
468  * are two extent state structs in the tree:
469  * prealloc: [orig->start, split - 1]
470  * orig: [ split, orig->end ]
471  *
472  * The tree locks are not taken by this function. They need to be held
473  * by the caller.
474  */
475 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
476                        struct extent_state *prealloc, u64 split)
477 {
478         struct rb_node *node;
479
480         split_cb(tree, orig, split);
481
482         prealloc->start = orig->start;
483         prealloc->end = split - 1;
484         prealloc->state = orig->state;
485         orig->start = split;
486
487         node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
488                            &prealloc->rb_node, NULL, NULL);
489         if (node) {
490                 free_extent_state(prealloc);
491                 return -EEXIST;
492         }
493         return 0;
494 }
495
496 static struct extent_state *next_state(struct extent_state *state)
497 {
498         struct rb_node *next = rb_next(&state->rb_node);
499         if (next)
500                 return rb_entry(next, struct extent_state, rb_node);
501         else
502                 return NULL;
503 }
504
505 /*
506  * utility function to clear some bits in an extent state struct.
507  * it will optionally wake up any one waiting on this state (wake == 1).
508  *
509  * If no bits are set on the state struct after clearing things, the
510  * struct is freed and removed from the tree
511  */
512 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
513                                             struct extent_state *state,
514                                             unsigned long *bits, int wake)
515 {
516         struct extent_state *next;
517         unsigned long bits_to_clear = *bits & ~EXTENT_CTLBITS;
518
519         if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
520                 u64 range = state->end - state->start + 1;
521                 WARN_ON(range > tree->dirty_bytes);
522                 tree->dirty_bytes -= range;
523         }
524         clear_state_cb(tree, state, bits);
525         state->state &= ~bits_to_clear;
526         if (wake)
527                 wake_up(&state->wq);
528         if (state->state == 0) {
529                 next = next_state(state);
530                 if (extent_state_in_tree(state)) {
531                         rb_erase(&state->rb_node, &tree->state);
532                         RB_CLEAR_NODE(&state->rb_node);
533                         free_extent_state(state);
534                 } else {
535                         WARN_ON(1);
536                 }
537         } else {
538                 merge_state(tree, state);
539                 next = next_state(state);
540         }
541         return next;
542 }
543
544 static struct extent_state *
545 alloc_extent_state_atomic(struct extent_state *prealloc)
546 {
547         if (!prealloc)
548                 prealloc = alloc_extent_state(GFP_ATOMIC);
549
550         return prealloc;
551 }
552
553 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
554 {
555         btrfs_panic(tree_fs_info(tree), err, "Locking error: "
556                     "Extent tree was modified by another "
557                     "thread while locked.");
558 }
559
560 /*
561  * clear some bits on a range in the tree.  This may require splitting
562  * or inserting elements in the tree, so the gfp mask is used to
563  * indicate which allocations or sleeping are allowed.
564  *
565  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
566  * the given range from the tree regardless of state (ie for truncate).
567  *
568  * the range [start, end] is inclusive.
569  *
570  * This takes the tree lock, and returns 0 on success and < 0 on error.
571  */
572 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
573                      unsigned long bits, int wake, int delete,
574                      struct extent_state **cached_state,
575                      gfp_t mask)
576 {
577         struct extent_state *state;
578         struct extent_state *cached;
579         struct extent_state *prealloc = NULL;
580         struct rb_node *node;
581         u64 last_end;
582         int err;
583         int clear = 0;
584
585         btrfs_debug_check_extent_io_range(tree, start, end);
586
587         if (bits & EXTENT_DELALLOC)
588                 bits |= EXTENT_NORESERVE;
589
590         if (delete)
591                 bits |= ~EXTENT_CTLBITS;
592         bits |= EXTENT_FIRST_DELALLOC;
593
594         if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
595                 clear = 1;
596 again:
597         if (!prealloc && (mask & __GFP_WAIT)) {
598                 prealloc = alloc_extent_state(mask);
599                 if (!prealloc)
600                         return -ENOMEM;
601         }
602
603         spin_lock(&tree->lock);
604         if (cached_state) {
605                 cached = *cached_state;
606
607                 if (clear) {
608                         *cached_state = NULL;
609                         cached_state = NULL;
610                 }
611
612                 if (cached && extent_state_in_tree(cached) &&
613                     cached->start <= start && cached->end > start) {
614                         if (clear)
615                                 atomic_dec(&cached->refs);
616                         state = cached;
617                         goto hit_next;
618                 }
619                 if (clear)
620                         free_extent_state(cached);
621         }
622         /*
623          * this search will find the extents that end after
624          * our range starts
625          */
626         node = tree_search(tree, start);
627         if (!node)
628                 goto out;
629         state = rb_entry(node, struct extent_state, rb_node);
630 hit_next:
631         if (state->start > end)
632                 goto out;
633         WARN_ON(state->end < start);
634         last_end = state->end;
635
636         /* the state doesn't have the wanted bits, go ahead */
637         if (!(state->state & bits)) {
638                 state = next_state(state);
639                 goto next;
640         }
641
642         /*
643          *     | ---- desired range ---- |
644          *  | state | or
645          *  | ------------- state -------------- |
646          *
647          * We need to split the extent we found, and may flip
648          * bits on second half.
649          *
650          * If the extent we found extends past our range, we
651          * just split and search again.  It'll get split again
652          * the next time though.
653          *
654          * If the extent we found is inside our range, we clear
655          * the desired bit on it.
656          */
657
658         if (state->start < start) {
659                 prealloc = alloc_extent_state_atomic(prealloc);
660                 BUG_ON(!prealloc);
661                 err = split_state(tree, state, prealloc, start);
662                 if (err)
663                         extent_io_tree_panic(tree, err);
664
665                 prealloc = NULL;
666                 if (err)
667                         goto out;
668                 if (state->end <= end) {
669                         state = clear_state_bit(tree, state, &bits, wake);
670                         goto next;
671                 }
672                 goto search_again;
673         }
674         /*
675          * | ---- desired range ---- |
676          *                        | state |
677          * We need to split the extent, and clear the bit
678          * on the first half
679          */
680         if (state->start <= end && state->end > end) {
681                 prealloc = alloc_extent_state_atomic(prealloc);
682                 BUG_ON(!prealloc);
683                 err = split_state(tree, state, prealloc, end + 1);
684                 if (err)
685                         extent_io_tree_panic(tree, err);
686
687                 if (wake)
688                         wake_up(&state->wq);
689
690                 clear_state_bit(tree, prealloc, &bits, wake);
691
692                 prealloc = NULL;
693                 goto out;
694         }
695
696         state = clear_state_bit(tree, state, &bits, wake);
697 next:
698         if (last_end == (u64)-1)
699                 goto out;
700         start = last_end + 1;
701         if (start <= end && state && !need_resched())
702                 goto hit_next;
703         goto search_again;
704
705 out:
706         spin_unlock(&tree->lock);
707         if (prealloc)
708                 free_extent_state(prealloc);
709
710         return 0;
711
712 search_again:
713         if (start > end)
714                 goto out;
715         spin_unlock(&tree->lock);
716         if (mask & __GFP_WAIT)
717                 cond_resched();
718         goto again;
719 }
720
721 static void wait_on_state(struct extent_io_tree *tree,
722                           struct extent_state *state)
723                 __releases(tree->lock)
724                 __acquires(tree->lock)
725 {
726         DEFINE_WAIT(wait);
727         prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
728         spin_unlock(&tree->lock);
729         schedule();
730         spin_lock(&tree->lock);
731         finish_wait(&state->wq, &wait);
732 }
733
734 /*
735  * waits for one or more bits to clear on a range in the state tree.
736  * The range [start, end] is inclusive.
737  * The tree lock is taken by this function
738  */
739 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
740                             unsigned long bits)
741 {
742         struct extent_state *state;
743         struct rb_node *node;
744
745         btrfs_debug_check_extent_io_range(tree, start, end);
746
747         spin_lock(&tree->lock);
748 again:
749         while (1) {
750                 /*
751                  * this search will find all the extents that end after
752                  * our range starts
753                  */
754                 node = tree_search(tree, start);
755 process_node:
756                 if (!node)
757                         break;
758
759                 state = rb_entry(node, struct extent_state, rb_node);
760
761                 if (state->start > end)
762                         goto out;
763
764                 if (state->state & bits) {
765                         start = state->start;
766                         atomic_inc(&state->refs);
767                         wait_on_state(tree, state);
768                         free_extent_state(state);
769                         goto again;
770                 }
771                 start = state->end + 1;
772
773                 if (start > end)
774                         break;
775
776                 if (!cond_resched_lock(&tree->lock)) {
777                         node = rb_next(node);
778                         goto process_node;
779                 }
780         }
781 out:
782         spin_unlock(&tree->lock);
783 }
784
785 static void set_state_bits(struct extent_io_tree *tree,
786                            struct extent_state *state,
787                            unsigned long *bits)
788 {
789         unsigned long bits_to_set = *bits & ~EXTENT_CTLBITS;
790
791         set_state_cb(tree, state, bits);
792         if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
793                 u64 range = state->end - state->start + 1;
794                 tree->dirty_bytes += range;
795         }
796         state->state |= bits_to_set;
797 }
798
799 static void cache_state(struct extent_state *state,
800                         struct extent_state **cached_ptr)
801 {
802         if (cached_ptr && !(*cached_ptr)) {
803                 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
804                         *cached_ptr = state;
805                         atomic_inc(&state->refs);
806                 }
807         }
808 }
809
810 /*
811  * set some bits on a range in the tree.  This may require allocations or
812  * sleeping, so the gfp mask is used to indicate what is allowed.
813  *
814  * If any of the exclusive bits are set, this will fail with -EEXIST if some
815  * part of the range already has the desired bits set.  The start of the
816  * existing range is returned in failed_start in this case.
817  *
818  * [start, end] is inclusive This takes the tree lock.
819  */
820
821 static int __must_check
822 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
823                  unsigned long bits, unsigned long exclusive_bits,
824                  u64 *failed_start, struct extent_state **cached_state,
825                  gfp_t mask)
826 {
827         struct extent_state *state;
828         struct extent_state *prealloc = NULL;
829         struct rb_node *node;
830         struct rb_node **p;
831         struct rb_node *parent;
832         int err = 0;
833         u64 last_start;
834         u64 last_end;
835
836         btrfs_debug_check_extent_io_range(tree, start, end);
837
838         bits |= EXTENT_FIRST_DELALLOC;
839 again:
840         if (!prealloc && (mask & __GFP_WAIT)) {
841                 prealloc = alloc_extent_state(mask);
842                 BUG_ON(!prealloc);
843         }
844
845         spin_lock(&tree->lock);
846         if (cached_state && *cached_state) {
847                 state = *cached_state;
848                 if (state->start <= start && state->end > start &&
849                     extent_state_in_tree(state)) {
850                         node = &state->rb_node;
851                         goto hit_next;
852                 }
853         }
854         /*
855          * this search will find all the extents that end after
856          * our range starts.
857          */
858         node = tree_search_for_insert(tree, start, &p, &parent);
859         if (!node) {
860                 prealloc = alloc_extent_state_atomic(prealloc);
861                 BUG_ON(!prealloc);
862                 err = insert_state(tree, prealloc, start, end,
863                                    &p, &parent, &bits);
864                 if (err)
865                         extent_io_tree_panic(tree, err);
866
867                 cache_state(prealloc, cached_state);
868                 prealloc = NULL;
869                 goto out;
870         }
871         state = rb_entry(node, struct extent_state, rb_node);
872 hit_next:
873         last_start = state->start;
874         last_end = state->end;
875
876         /*
877          * | ---- desired range ---- |
878          * | state |
879          *
880          * Just lock what we found and keep going
881          */
882         if (state->start == start && state->end <= end) {
883                 if (state->state & exclusive_bits) {
884                         *failed_start = state->start;
885                         err = -EEXIST;
886                         goto out;
887                 }
888
889                 set_state_bits(tree, state, &bits);
890                 cache_state(state, cached_state);
891                 merge_state(tree, state);
892                 if (last_end == (u64)-1)
893                         goto out;
894                 start = last_end + 1;
895                 state = next_state(state);
896                 if (start < end && state && state->start == start &&
897                     !need_resched())
898                         goto hit_next;
899                 goto search_again;
900         }
901
902         /*
903          *     | ---- desired range ---- |
904          * | state |
905          *   or
906          * | ------------- state -------------- |
907          *
908          * We need to split the extent we found, and may flip bits on
909          * second half.
910          *
911          * If the extent we found extends past our
912          * range, we just split and search again.  It'll get split
913          * again the next time though.
914          *
915          * If the extent we found is inside our range, we set the
916          * desired bit on it.
917          */
918         if (state->start < start) {
919                 if (state->state & exclusive_bits) {
920                         *failed_start = start;
921                         err = -EEXIST;
922                         goto out;
923                 }
924
925                 prealloc = alloc_extent_state_atomic(prealloc);
926                 BUG_ON(!prealloc);
927                 err = split_state(tree, state, prealloc, start);
928                 if (err)
929                         extent_io_tree_panic(tree, err);
930
931                 prealloc = NULL;
932                 if (err)
933                         goto out;
934                 if (state->end <= end) {
935                         set_state_bits(tree, state, &bits);
936                         cache_state(state, cached_state);
937                         merge_state(tree, state);
938                         if (last_end == (u64)-1)
939                                 goto out;
940                         start = last_end + 1;
941                         state = next_state(state);
942                         if (start < end && state && state->start == start &&
943                             !need_resched())
944                                 goto hit_next;
945                 }
946                 goto search_again;
947         }
948         /*
949          * | ---- desired range ---- |
950          *     | state | or               | state |
951          *
952          * There's a hole, we need to insert something in it and
953          * ignore the extent we found.
954          */
955         if (state->start > start) {
956                 u64 this_end;
957                 if (end < last_start)
958                         this_end = end;
959                 else
960                         this_end = last_start - 1;
961
962                 prealloc = alloc_extent_state_atomic(prealloc);
963                 BUG_ON(!prealloc);
964
965                 /*
966                  * Avoid to free 'prealloc' if it can be merged with
967                  * the later extent.
968                  */
969                 err = insert_state(tree, prealloc, start, this_end,
970                                    NULL, NULL, &bits);
971                 if (err)
972                         extent_io_tree_panic(tree, err);
973
974                 cache_state(prealloc, cached_state);
975                 prealloc = NULL;
976                 start = this_end + 1;
977                 goto search_again;
978         }
979         /*
980          * | ---- desired range ---- |
981          *                        | state |
982          * We need to split the extent, and set the bit
983          * on the first half
984          */
985         if (state->start <= end && state->end > end) {
986                 if (state->state & exclusive_bits) {
987                         *failed_start = start;
988                         err = -EEXIST;
989                         goto out;
990                 }
991
992                 prealloc = alloc_extent_state_atomic(prealloc);
993                 BUG_ON(!prealloc);
994                 err = split_state(tree, state, prealloc, end + 1);
995                 if (err)
996                         extent_io_tree_panic(tree, err);
997
998                 set_state_bits(tree, prealloc, &bits);
999                 cache_state(prealloc, cached_state);
1000                 merge_state(tree, prealloc);
1001                 prealloc = NULL;
1002                 goto out;
1003         }
1004
1005         goto search_again;
1006
1007 out:
1008         spin_unlock(&tree->lock);
1009         if (prealloc)
1010                 free_extent_state(prealloc);
1011
1012         return err;
1013
1014 search_again:
1015         if (start > end)
1016                 goto out;
1017         spin_unlock(&tree->lock);
1018         if (mask & __GFP_WAIT)
1019                 cond_resched();
1020         goto again;
1021 }
1022
1023 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1024                    unsigned long bits, u64 * failed_start,
1025                    struct extent_state **cached_state, gfp_t mask)
1026 {
1027         return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1028                                 cached_state, mask);
1029 }
1030
1031
1032 /**
1033  * convert_extent_bit - convert all bits in a given range from one bit to
1034  *                      another
1035  * @tree:       the io tree to search
1036  * @start:      the start offset in bytes
1037  * @end:        the end offset in bytes (inclusive)
1038  * @bits:       the bits to set in this range
1039  * @clear_bits: the bits to clear in this range
1040  * @cached_state:       state that we're going to cache
1041  * @mask:       the allocation mask
1042  *
1043  * This will go through and set bits for the given range.  If any states exist
1044  * already in this range they are set with the given bit and cleared of the
1045  * clear_bits.  This is only meant to be used by things that are mergeable, ie
1046  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1047  * boundary bits like LOCK.
1048  */
1049 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1050                        unsigned long bits, unsigned long clear_bits,
1051                        struct extent_state **cached_state, gfp_t mask)
1052 {
1053         struct extent_state *state;
1054         struct extent_state *prealloc = NULL;
1055         struct rb_node *node;
1056         struct rb_node **p;
1057         struct rb_node *parent;
1058         int err = 0;
1059         u64 last_start;
1060         u64 last_end;
1061
1062         btrfs_debug_check_extent_io_range(tree, start, end);
1063
1064 again:
1065         if (!prealloc && (mask & __GFP_WAIT)) {
1066                 prealloc = alloc_extent_state(mask);
1067                 if (!prealloc)
1068                         return -ENOMEM;
1069         }
1070
1071         spin_lock(&tree->lock);
1072         if (cached_state && *cached_state) {
1073                 state = *cached_state;
1074                 if (state->start <= start && state->end > start &&
1075                     extent_state_in_tree(state)) {
1076                         node = &state->rb_node;
1077                         goto hit_next;
1078                 }
1079         }
1080
1081         /*
1082          * this search will find all the extents that end after
1083          * our range starts.
1084          */
1085         node = tree_search_for_insert(tree, start, &p, &parent);
1086         if (!node) {
1087                 prealloc = alloc_extent_state_atomic(prealloc);
1088                 if (!prealloc) {
1089                         err = -ENOMEM;
1090                         goto out;
1091                 }
1092                 err = insert_state(tree, prealloc, start, end,
1093                                    &p, &parent, &bits);
1094                 if (err)
1095                         extent_io_tree_panic(tree, err);
1096                 cache_state(prealloc, cached_state);
1097                 prealloc = NULL;
1098                 goto out;
1099         }
1100         state = rb_entry(node, struct extent_state, rb_node);
1101 hit_next:
1102         last_start = state->start;
1103         last_end = state->end;
1104
1105         /*
1106          * | ---- desired range ---- |
1107          * | state |
1108          *
1109          * Just lock what we found and keep going
1110          */
1111         if (state->start == start && state->end <= end) {
1112                 set_state_bits(tree, state, &bits);
1113                 cache_state(state, cached_state);
1114                 state = clear_state_bit(tree, state, &clear_bits, 0);
1115                 if (last_end == (u64)-1)
1116                         goto out;
1117                 start = last_end + 1;
1118                 if (start < end && state && state->start == start &&
1119                     !need_resched())
1120                         goto hit_next;
1121                 goto search_again;
1122         }
1123
1124         /*
1125          *     | ---- desired range ---- |
1126          * | state |
1127          *   or
1128          * | ------------- state -------------- |
1129          *
1130          * We need to split the extent we found, and may flip bits on
1131          * second half.
1132          *
1133          * If the extent we found extends past our
1134          * range, we just split and search again.  It'll get split
1135          * again the next time though.
1136          *
1137          * If the extent we found is inside our range, we set the
1138          * desired bit on it.
1139          */
1140         if (state->start < start) {
1141                 prealloc = alloc_extent_state_atomic(prealloc);
1142                 if (!prealloc) {
1143                         err = -ENOMEM;
1144                         goto out;
1145                 }
1146                 err = split_state(tree, state, prealloc, start);
1147                 if (err)
1148                         extent_io_tree_panic(tree, err);
1149                 prealloc = NULL;
1150                 if (err)
1151                         goto out;
1152                 if (state->end <= end) {
1153                         set_state_bits(tree, state, &bits);
1154                         cache_state(state, cached_state);
1155                         state = clear_state_bit(tree, state, &clear_bits, 0);
1156                         if (last_end == (u64)-1)
1157                                 goto out;
1158                         start = last_end + 1;
1159                         if (start < end && state && state->start == start &&
1160                             !need_resched())
1161                                 goto hit_next;
1162                 }
1163                 goto search_again;
1164         }
1165         /*
1166          * | ---- desired range ---- |
1167          *     | state | or               | state |
1168          *
1169          * There's a hole, we need to insert something in it and
1170          * ignore the extent we found.
1171          */
1172         if (state->start > start) {
1173                 u64 this_end;
1174                 if (end < last_start)
1175                         this_end = end;
1176                 else
1177                         this_end = last_start - 1;
1178
1179                 prealloc = alloc_extent_state_atomic(prealloc);
1180                 if (!prealloc) {
1181                         err = -ENOMEM;
1182                         goto out;
1183                 }
1184
1185                 /*
1186                  * Avoid to free 'prealloc' if it can be merged with
1187                  * the later extent.
1188                  */
1189                 err = insert_state(tree, prealloc, start, this_end,
1190                                    NULL, NULL, &bits);
1191                 if (err)
1192                         extent_io_tree_panic(tree, err);
1193                 cache_state(prealloc, cached_state);
1194                 prealloc = NULL;
1195                 start = this_end + 1;
1196                 goto search_again;
1197         }
1198         /*
1199          * | ---- desired range ---- |
1200          *                        | state |
1201          * We need to split the extent, and set the bit
1202          * on the first half
1203          */
1204         if (state->start <= end && state->end > end) {
1205                 prealloc = alloc_extent_state_atomic(prealloc);
1206                 if (!prealloc) {
1207                         err = -ENOMEM;
1208                         goto out;
1209                 }
1210
1211                 err = split_state(tree, state, prealloc, end + 1);
1212                 if (err)
1213                         extent_io_tree_panic(tree, err);
1214
1215                 set_state_bits(tree, prealloc, &bits);
1216                 cache_state(prealloc, cached_state);
1217                 clear_state_bit(tree, prealloc, &clear_bits, 0);
1218                 prealloc = NULL;
1219                 goto out;
1220         }
1221
1222         goto search_again;
1223
1224 out:
1225         spin_unlock(&tree->lock);
1226         if (prealloc)
1227                 free_extent_state(prealloc);
1228
1229         return err;
1230
1231 search_again:
1232         if (start > end)
1233                 goto out;
1234         spin_unlock(&tree->lock);
1235         if (mask & __GFP_WAIT)
1236                 cond_resched();
1237         goto again;
1238 }
1239
1240 /* wrappers around set/clear extent bit */
1241 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1242                      gfp_t mask)
1243 {
1244         return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1245                               NULL, mask);
1246 }
1247
1248 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1249                     unsigned long bits, gfp_t mask)
1250 {
1251         return set_extent_bit(tree, start, end, bits, NULL,
1252                               NULL, mask);
1253 }
1254
1255 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1256                       unsigned long bits, gfp_t mask)
1257 {
1258         return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1259 }
1260
1261 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1262                         struct extent_state **cached_state, gfp_t mask)
1263 {
1264         return set_extent_bit(tree, start, end,
1265                               EXTENT_DELALLOC | EXTENT_UPTODATE,
1266                               NULL, cached_state, mask);
1267 }
1268
1269 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1270                       struct extent_state **cached_state, gfp_t mask)
1271 {
1272         return set_extent_bit(tree, start, end,
1273                               EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1274                               NULL, cached_state, mask);
1275 }
1276
1277 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1278                        gfp_t mask)
1279 {
1280         return clear_extent_bit(tree, start, end,
1281                                 EXTENT_DIRTY | EXTENT_DELALLOC |
1282                                 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1283 }
1284
1285 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1286                      gfp_t mask)
1287 {
1288         return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1289                               NULL, mask);
1290 }
1291
1292 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1293                         struct extent_state **cached_state, gfp_t mask)
1294 {
1295         return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
1296                               cached_state, mask);
1297 }
1298
1299 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1300                           struct extent_state **cached_state, gfp_t mask)
1301 {
1302         return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1303                                 cached_state, mask);
1304 }
1305
1306 /*
1307  * either insert or lock state struct between start and end use mask to tell
1308  * us if waiting is desired.
1309  */
1310 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1311                      unsigned long bits, struct extent_state **cached_state)
1312 {
1313         int err;
1314         u64 failed_start;
1315         while (1) {
1316                 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1317                                        EXTENT_LOCKED, &failed_start,
1318                                        cached_state, GFP_NOFS);
1319                 if (err == -EEXIST) {
1320                         wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1321                         start = failed_start;
1322                 } else
1323                         break;
1324                 WARN_ON(start > end);
1325         }
1326         return err;
1327 }
1328
1329 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1330 {
1331         return lock_extent_bits(tree, start, end, 0, NULL);
1332 }
1333
1334 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1335 {
1336         int err;
1337         u64 failed_start;
1338
1339         err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1340                                &failed_start, NULL, GFP_NOFS);
1341         if (err == -EEXIST) {
1342                 if (failed_start > start)
1343                         clear_extent_bit(tree, start, failed_start - 1,
1344                                          EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1345                 return 0;
1346         }
1347         return 1;
1348 }
1349
1350 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1351                          struct extent_state **cached, gfp_t mask)
1352 {
1353         return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1354                                 mask);
1355 }
1356
1357 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1358 {
1359         return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1360                                 GFP_NOFS);
1361 }
1362
1363 int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1364 {
1365         unsigned long index = start >> PAGE_CACHE_SHIFT;
1366         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1367         struct page *page;
1368
1369         while (index <= end_index) {
1370                 page = find_get_page(inode->i_mapping, index);
1371                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1372                 clear_page_dirty_for_io(page);
1373                 page_cache_release(page);
1374                 index++;
1375         }
1376         return 0;
1377 }
1378
1379 int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1380 {
1381         unsigned long index = start >> PAGE_CACHE_SHIFT;
1382         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1383         struct page *page;
1384
1385         while (index <= end_index) {
1386                 page = find_get_page(inode->i_mapping, index);
1387                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1388                 account_page_redirty(page);
1389                 __set_page_dirty_nobuffers(page);
1390                 page_cache_release(page);
1391                 index++;
1392         }
1393         return 0;
1394 }
1395
1396 /*
1397  * helper function to set both pages and extents in the tree writeback
1398  */
1399 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1400 {
1401         unsigned long index = start >> PAGE_CACHE_SHIFT;
1402         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1403         struct page *page;
1404
1405         while (index <= end_index) {
1406                 page = find_get_page(tree->mapping, index);
1407                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1408                 set_page_writeback(page);
1409                 page_cache_release(page);
1410                 index++;
1411         }
1412         return 0;
1413 }
1414
1415 /* find the first state struct with 'bits' set after 'start', and
1416  * return it.  tree->lock must be held.  NULL will returned if
1417  * nothing was found after 'start'
1418  */
1419 static struct extent_state *
1420 find_first_extent_bit_state(struct extent_io_tree *tree,
1421                             u64 start, unsigned long bits)
1422 {
1423         struct rb_node *node;
1424         struct extent_state *state;
1425
1426         /*
1427          * this search will find all the extents that end after
1428          * our range starts.
1429          */
1430         node = tree_search(tree, start);
1431         if (!node)
1432                 goto out;
1433
1434         while (1) {
1435                 state = rb_entry(node, struct extent_state, rb_node);
1436                 if (state->end >= start && (state->state & bits))
1437                         return state;
1438
1439                 node = rb_next(node);
1440                 if (!node)
1441                         break;
1442         }
1443 out:
1444         return NULL;
1445 }
1446
1447 /*
1448  * find the first offset in the io tree with 'bits' set. zero is
1449  * returned if we find something, and *start_ret and *end_ret are
1450  * set to reflect the state struct that was found.
1451  *
1452  * If nothing was found, 1 is returned. If found something, return 0.
1453  */
1454 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1455                           u64 *start_ret, u64 *end_ret, unsigned long bits,
1456                           struct extent_state **cached_state)
1457 {
1458         struct extent_state *state;
1459         struct rb_node *n;
1460         int ret = 1;
1461
1462         spin_lock(&tree->lock);
1463         if (cached_state && *cached_state) {
1464                 state = *cached_state;
1465                 if (state->end == start - 1 && extent_state_in_tree(state)) {
1466                         n = rb_next(&state->rb_node);
1467                         while (n) {
1468                                 state = rb_entry(n, struct extent_state,
1469                                                  rb_node);
1470                                 if (state->state & bits)
1471                                         goto got_it;
1472                                 n = rb_next(n);
1473                         }
1474                         free_extent_state(*cached_state);
1475                         *cached_state = NULL;
1476                         goto out;
1477                 }
1478                 free_extent_state(*cached_state);
1479                 *cached_state = NULL;
1480         }
1481
1482         state = find_first_extent_bit_state(tree, start, bits);
1483 got_it:
1484         if (state) {
1485                 cache_state(state, cached_state);
1486                 *start_ret = state->start;
1487                 *end_ret = state->end;
1488                 ret = 0;
1489         }
1490 out:
1491         spin_unlock(&tree->lock);
1492         return ret;
1493 }
1494
1495 /*
1496  * find a contiguous range of bytes in the file marked as delalloc, not
1497  * more than 'max_bytes'.  start and end are used to return the range,
1498  *
1499  * 1 is returned if we find something, 0 if nothing was in the tree
1500  */
1501 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1502                                         u64 *start, u64 *end, u64 max_bytes,
1503                                         struct extent_state **cached_state)
1504 {
1505         struct rb_node *node;
1506         struct extent_state *state;
1507         u64 cur_start = *start;
1508         u64 found = 0;
1509         u64 total_bytes = 0;
1510
1511         spin_lock(&tree->lock);
1512
1513         /*
1514          * this search will find all the extents that end after
1515          * our range starts.
1516          */
1517         node = tree_search(tree, cur_start);
1518         if (!node) {
1519                 if (!found)
1520                         *end = (u64)-1;
1521                 goto out;
1522         }
1523
1524         while (1) {
1525                 state = rb_entry(node, struct extent_state, rb_node);
1526                 if (found && (state->start != cur_start ||
1527                               (state->state & EXTENT_BOUNDARY))) {
1528                         goto out;
1529                 }
1530                 if (!(state->state & EXTENT_DELALLOC)) {
1531                         if (!found)
1532                                 *end = state->end;
1533                         goto out;
1534                 }
1535                 if (!found) {
1536                         *start = state->start;
1537                         *cached_state = state;
1538                         atomic_inc(&state->refs);
1539                 }
1540                 found++;
1541                 *end = state->end;
1542                 cur_start = state->end + 1;
1543                 node = rb_next(node);
1544                 total_bytes += state->end - state->start + 1;
1545                 if (total_bytes >= max_bytes)
1546                         break;
1547                 if (!node)
1548                         break;
1549         }
1550 out:
1551         spin_unlock(&tree->lock);
1552         return found;
1553 }
1554
1555 static noinline void __unlock_for_delalloc(struct inode *inode,
1556                                            struct page *locked_page,
1557                                            u64 start, u64 end)
1558 {
1559         int ret;
1560         struct page *pages[16];
1561         unsigned long index = start >> PAGE_CACHE_SHIFT;
1562         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1563         unsigned long nr_pages = end_index - index + 1;
1564         int i;
1565
1566         if (index == locked_page->index && end_index == index)
1567                 return;
1568
1569         while (nr_pages > 0) {
1570                 ret = find_get_pages_contig(inode->i_mapping, index,
1571                                      min_t(unsigned long, nr_pages,
1572                                      ARRAY_SIZE(pages)), pages);
1573                 for (i = 0; i < ret; i++) {
1574                         if (pages[i] != locked_page)
1575                                 unlock_page(pages[i]);
1576                         page_cache_release(pages[i]);
1577                 }
1578                 nr_pages -= ret;
1579                 index += ret;
1580                 cond_resched();
1581         }
1582 }
1583
1584 static noinline int lock_delalloc_pages(struct inode *inode,
1585                                         struct page *locked_page,
1586                                         u64 delalloc_start,
1587                                         u64 delalloc_end)
1588 {
1589         unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1590         unsigned long start_index = index;
1591         unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1592         unsigned long pages_locked = 0;
1593         struct page *pages[16];
1594         unsigned long nrpages;
1595         int ret;
1596         int i;
1597
1598         /* the caller is responsible for locking the start index */
1599         if (index == locked_page->index && index == end_index)
1600                 return 0;
1601
1602         /* skip the page at the start index */
1603         nrpages = end_index - index + 1;
1604         while (nrpages > 0) {
1605                 ret = find_get_pages_contig(inode->i_mapping, index,
1606                                      min_t(unsigned long,
1607                                      nrpages, ARRAY_SIZE(pages)), pages);
1608                 if (ret == 0) {
1609                         ret = -EAGAIN;
1610                         goto done;
1611                 }
1612                 /* now we have an array of pages, lock them all */
1613                 for (i = 0; i < ret; i++) {
1614                         /*
1615                          * the caller is taking responsibility for
1616                          * locked_page
1617                          */
1618                         if (pages[i] != locked_page) {
1619                                 lock_page(pages[i]);
1620                                 if (!PageDirty(pages[i]) ||
1621                                     pages[i]->mapping != inode->i_mapping) {
1622                                         ret = -EAGAIN;
1623                                         unlock_page(pages[i]);
1624                                         page_cache_release(pages[i]);
1625                                         goto done;
1626                                 }
1627                         }
1628                         page_cache_release(pages[i]);
1629                         pages_locked++;
1630                 }
1631                 nrpages -= ret;
1632                 index += ret;
1633                 cond_resched();
1634         }
1635         ret = 0;
1636 done:
1637         if (ret && pages_locked) {
1638                 __unlock_for_delalloc(inode, locked_page,
1639                               delalloc_start,
1640                               ((u64)(start_index + pages_locked - 1)) <<
1641                               PAGE_CACHE_SHIFT);
1642         }
1643         return ret;
1644 }
1645
1646 /*
1647  * find a contiguous range of bytes in the file marked as delalloc, not
1648  * more than 'max_bytes'.  start and end are used to return the range,
1649  *
1650  * 1 is returned if we find something, 0 if nothing was in the tree
1651  */
1652 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1653                                     struct extent_io_tree *tree,
1654                                     struct page *locked_page, u64 *start,
1655                                     u64 *end, u64 max_bytes)
1656 {
1657         u64 delalloc_start;
1658         u64 delalloc_end;
1659         u64 found;
1660         struct extent_state *cached_state = NULL;
1661         int ret;
1662         int loops = 0;
1663
1664 again:
1665         /* step one, find a bunch of delalloc bytes starting at start */
1666         delalloc_start = *start;
1667         delalloc_end = 0;
1668         found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1669                                     max_bytes, &cached_state);
1670         if (!found || delalloc_end <= *start) {
1671                 *start = delalloc_start;
1672                 *end = delalloc_end;
1673                 free_extent_state(cached_state);
1674                 return 0;
1675         }
1676
1677         /*
1678          * start comes from the offset of locked_page.  We have to lock
1679          * pages in order, so we can't process delalloc bytes before
1680          * locked_page
1681          */
1682         if (delalloc_start < *start)
1683                 delalloc_start = *start;
1684
1685         /*
1686          * make sure to limit the number of pages we try to lock down
1687          */
1688         if (delalloc_end + 1 - delalloc_start > max_bytes)
1689                 delalloc_end = delalloc_start + max_bytes - 1;
1690
1691         /* step two, lock all the pages after the page that has start */
1692         ret = lock_delalloc_pages(inode, locked_page,
1693                                   delalloc_start, delalloc_end);
1694         if (ret == -EAGAIN) {
1695                 /* some of the pages are gone, lets avoid looping by
1696                  * shortening the size of the delalloc range we're searching
1697                  */
1698                 free_extent_state(cached_state);
1699                 cached_state = NULL;
1700                 if (!loops) {
1701                         max_bytes = PAGE_CACHE_SIZE;
1702                         loops = 1;
1703                         goto again;
1704                 } else {
1705                         found = 0;
1706                         goto out_failed;
1707                 }
1708         }
1709         BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1710
1711         /* step three, lock the state bits for the whole range */
1712         lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1713
1714         /* then test to make sure it is all still delalloc */
1715         ret = test_range_bit(tree, delalloc_start, delalloc_end,
1716                              EXTENT_DELALLOC, 1, cached_state);
1717         if (!ret) {
1718                 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1719                                      &cached_state, GFP_NOFS);
1720                 __unlock_for_delalloc(inode, locked_page,
1721                               delalloc_start, delalloc_end);
1722                 cond_resched();
1723                 goto again;
1724         }
1725         free_extent_state(cached_state);
1726         *start = delalloc_start;
1727         *end = delalloc_end;
1728 out_failed:
1729         return found;
1730 }
1731
1732 int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1733                                  struct page *locked_page,
1734                                  unsigned long clear_bits,
1735                                  unsigned long page_ops)
1736 {
1737         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1738         int ret;
1739         struct page *pages[16];
1740         unsigned long index = start >> PAGE_CACHE_SHIFT;
1741         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1742         unsigned long nr_pages = end_index - index + 1;
1743         int i;
1744
1745         clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1746         if (page_ops == 0)
1747                 return 0;
1748
1749         while (nr_pages > 0) {
1750                 ret = find_get_pages_contig(inode->i_mapping, index,
1751                                      min_t(unsigned long,
1752                                      nr_pages, ARRAY_SIZE(pages)), pages);
1753                 for (i = 0; i < ret; i++) {
1754
1755                         if (page_ops & PAGE_SET_PRIVATE2)
1756                                 SetPagePrivate2(pages[i]);
1757
1758                         if (pages[i] == locked_page) {
1759                                 page_cache_release(pages[i]);
1760                                 continue;
1761                         }
1762                         if (page_ops & PAGE_CLEAR_DIRTY)
1763                                 clear_page_dirty_for_io(pages[i]);
1764                         if (page_ops & PAGE_SET_WRITEBACK)
1765                                 set_page_writeback(pages[i]);
1766                         if (page_ops & PAGE_END_WRITEBACK)
1767                                 end_page_writeback(pages[i]);
1768                         if (page_ops & PAGE_UNLOCK)
1769                                 unlock_page(pages[i]);
1770                         page_cache_release(pages[i]);
1771                 }
1772                 nr_pages -= ret;
1773                 index += ret;
1774                 cond_resched();
1775         }
1776         return 0;
1777 }
1778
1779 /*
1780  * count the number of bytes in the tree that have a given bit(s)
1781  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1782  * cached.  The total number found is returned.
1783  */
1784 u64 count_range_bits(struct extent_io_tree *tree,
1785                      u64 *start, u64 search_end, u64 max_bytes,
1786                      unsigned long bits, int contig)
1787 {
1788         struct rb_node *node;
1789         struct extent_state *state;
1790         u64 cur_start = *start;
1791         u64 total_bytes = 0;
1792         u64 last = 0;
1793         int found = 0;
1794
1795         if (WARN_ON(search_end <= cur_start))
1796                 return 0;
1797
1798         spin_lock(&tree->lock);
1799         if (cur_start == 0 && bits == EXTENT_DIRTY) {
1800                 total_bytes = tree->dirty_bytes;
1801                 goto out;
1802         }
1803         /*
1804          * this search will find all the extents that end after
1805          * our range starts.
1806          */
1807         node = tree_search(tree, cur_start);
1808         if (!node)
1809                 goto out;
1810
1811         while (1) {
1812                 state = rb_entry(node, struct extent_state, rb_node);
1813                 if (state->start > search_end)
1814                         break;
1815                 if (contig && found && state->start > last + 1)
1816                         break;
1817                 if (state->end >= cur_start && (state->state & bits) == bits) {
1818                         total_bytes += min(search_end, state->end) + 1 -
1819                                        max(cur_start, state->start);
1820                         if (total_bytes >= max_bytes)
1821                                 break;
1822                         if (!found) {
1823                                 *start = max(cur_start, state->start);
1824                                 found = 1;
1825                         }
1826                         last = state->end;
1827                 } else if (contig && found) {
1828                         break;
1829                 }
1830                 node = rb_next(node);
1831                 if (!node)
1832                         break;
1833         }
1834 out:
1835         spin_unlock(&tree->lock);
1836         return total_bytes;
1837 }
1838
1839 /*
1840  * set the private field for a given byte offset in the tree.  If there isn't
1841  * an extent_state there already, this does nothing.
1842  */
1843 static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1844 {
1845         struct rb_node *node;
1846         struct extent_state *state;
1847         int ret = 0;
1848
1849         spin_lock(&tree->lock);
1850         /*
1851          * this search will find all the extents that end after
1852          * our range starts.
1853          */
1854         node = tree_search(tree, start);
1855         if (!node) {
1856                 ret = -ENOENT;
1857                 goto out;
1858         }
1859         state = rb_entry(node, struct extent_state, rb_node);
1860         if (state->start != start) {
1861                 ret = -ENOENT;
1862                 goto out;
1863         }
1864         state->private = private;
1865 out:
1866         spin_unlock(&tree->lock);
1867         return ret;
1868 }
1869
1870 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1871 {
1872         struct rb_node *node;
1873         struct extent_state *state;
1874         int ret = 0;
1875
1876         spin_lock(&tree->lock);
1877         /*
1878          * this search will find all the extents that end after
1879          * our range starts.
1880          */
1881         node = tree_search(tree, start);
1882         if (!node) {
1883                 ret = -ENOENT;
1884                 goto out;
1885         }
1886         state = rb_entry(node, struct extent_state, rb_node);
1887         if (state->start != start) {
1888                 ret = -ENOENT;
1889                 goto out;
1890         }
1891         *private = state->private;
1892 out:
1893         spin_unlock(&tree->lock);
1894         return ret;
1895 }
1896
1897 /*
1898  * searches a range in the state tree for a given mask.
1899  * If 'filled' == 1, this returns 1 only if every extent in the tree
1900  * has the bits set.  Otherwise, 1 is returned if any bit in the
1901  * range is found set.
1902  */
1903 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1904                    unsigned long bits, int filled, struct extent_state *cached)
1905 {
1906         struct extent_state *state = NULL;
1907         struct rb_node *node;
1908         int bitset = 0;
1909
1910         spin_lock(&tree->lock);
1911         if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1912             cached->end > start)
1913                 node = &cached->rb_node;
1914         else
1915                 node = tree_search(tree, start);
1916         while (node && start <= end) {
1917                 state = rb_entry(node, struct extent_state, rb_node);
1918
1919                 if (filled && state->start > start) {
1920                         bitset = 0;
1921                         break;
1922                 }
1923
1924                 if (state->start > end)
1925                         break;
1926
1927                 if (state->state & bits) {
1928                         bitset = 1;
1929                         if (!filled)
1930                                 break;
1931                 } else if (filled) {
1932                         bitset = 0;
1933                         break;
1934                 }
1935
1936                 if (state->end == (u64)-1)
1937                         break;
1938
1939                 start = state->end + 1;
1940                 if (start > end)
1941                         break;
1942                 node = rb_next(node);
1943                 if (!node) {
1944                         if (filled)
1945                                 bitset = 0;
1946                         break;
1947                 }
1948         }
1949         spin_unlock(&tree->lock);
1950         return bitset;
1951 }
1952
1953 /*
1954  * helper function to set a given page up to date if all the
1955  * extents in the tree for that page are up to date
1956  */
1957 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1958 {
1959         u64 start = page_offset(page);
1960         u64 end = start + PAGE_CACHE_SIZE - 1;
1961         if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1962                 SetPageUptodate(page);
1963 }
1964
1965 /*
1966  * When IO fails, either with EIO or csum verification fails, we
1967  * try other mirrors that might have a good copy of the data.  This
1968  * io_failure_record is used to record state as we go through all the
1969  * mirrors.  If another mirror has good data, the page is set up to date
1970  * and things continue.  If a good mirror can't be found, the original
1971  * bio end_io callback is called to indicate things have failed.
1972  */
1973 struct io_failure_record {
1974         struct page *page;
1975         u64 start;
1976         u64 len;
1977         u64 logical;
1978         unsigned long bio_flags;
1979         int this_mirror;
1980         int failed_mirror;
1981         int in_validation;
1982 };
1983
1984 static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1985                                 int did_repair)
1986 {
1987         int ret;
1988         int err = 0;
1989         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1990
1991         set_state_private(failure_tree, rec->start, 0);
1992         ret = clear_extent_bits(failure_tree, rec->start,
1993                                 rec->start + rec->len - 1,
1994                                 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1995         if (ret)
1996                 err = ret;
1997
1998         ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1999                                 rec->start + rec->len - 1,
2000                                 EXTENT_DAMAGED, GFP_NOFS);
2001         if (ret && !err)
2002                 err = ret;
2003
2004         kfree(rec);
2005         return err;
2006 }
2007
2008 /*
2009  * this bypasses the standard btrfs submit functions deliberately, as
2010  * the standard behavior is to write all copies in a raid setup. here we only
2011  * want to write the one bad copy. so we do the mapping for ourselves and issue
2012  * submit_bio directly.
2013  * to avoid any synchronization issues, wait for the data after writing, which
2014  * actually prevents the read that triggered the error from finishing.
2015  * currently, there can be no more than two copies of every data bit. thus,
2016  * exactly one rewrite is required.
2017  */
2018 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 start,
2019                         u64 length, u64 logical, struct page *page,
2020                         int mirror_num)
2021 {
2022         struct bio *bio;
2023         struct btrfs_device *dev;
2024         u64 map_length = 0;
2025         u64 sector;
2026         struct btrfs_bio *bbio = NULL;
2027         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2028         int ret;
2029
2030         ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
2031         BUG_ON(!mirror_num);
2032
2033         /* we can't repair anything in raid56 yet */
2034         if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2035                 return 0;
2036
2037         bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2038         if (!bio)
2039                 return -EIO;
2040         bio->bi_iter.bi_size = 0;
2041         map_length = length;
2042
2043         ret = btrfs_map_block(fs_info, WRITE, logical,
2044                               &map_length, &bbio, mirror_num);
2045         if (ret) {
2046                 bio_put(bio);
2047                 return -EIO;
2048         }
2049         BUG_ON(mirror_num != bbio->mirror_num);
2050         sector = bbio->stripes[mirror_num-1].physical >> 9;
2051         bio->bi_iter.bi_sector = sector;
2052         dev = bbio->stripes[mirror_num-1].dev;
2053         kfree(bbio);
2054         if (!dev || !dev->bdev || !dev->writeable) {
2055                 bio_put(bio);
2056                 return -EIO;
2057         }
2058         bio->bi_bdev = dev->bdev;
2059         bio_add_page(bio, page, length, start - page_offset(page));
2060
2061         if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
2062                 /* try to remap that extent elsewhere? */
2063                 bio_put(bio);
2064                 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2065                 return -EIO;
2066         }
2067
2068         printk_ratelimited_in_rcu(KERN_INFO
2069                         "BTRFS: read error corrected: ino %lu off %llu "
2070                     "(dev %s sector %llu)\n", page->mapping->host->i_ino,
2071                     start, rcu_str_deref(dev->name), sector);
2072
2073         bio_put(bio);
2074         return 0;
2075 }
2076
2077 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2078                          int mirror_num)
2079 {
2080         u64 start = eb->start;
2081         unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2082         int ret = 0;
2083
2084         if (root->fs_info->sb->s_flags & MS_RDONLY)
2085                 return -EROFS;
2086
2087         for (i = 0; i < num_pages; i++) {
2088                 struct page *p = extent_buffer_page(eb, i);
2089                 ret = repair_io_failure(root->fs_info, start, PAGE_CACHE_SIZE,
2090                                         start, p, mirror_num);
2091                 if (ret)
2092                         break;
2093                 start += PAGE_CACHE_SIZE;
2094         }
2095
2096         return ret;
2097 }
2098
2099 /*
2100  * each time an IO finishes, we do a fast check in the IO failure tree
2101  * to see if we need to process or clean up an io_failure_record
2102  */
2103 static int clean_io_failure(u64 start, struct page *page)
2104 {
2105         u64 private;
2106         u64 private_failure;
2107         struct io_failure_record *failrec;
2108         struct inode *inode = page->mapping->host;
2109         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2110         struct extent_state *state;
2111         int num_copies;
2112         int did_repair = 0;
2113         int ret;
2114
2115         private = 0;
2116         ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2117                                 (u64)-1, 1, EXTENT_DIRTY, 0);
2118         if (!ret)
2119                 return 0;
2120
2121         ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2122                                 &private_failure);
2123         if (ret)
2124                 return 0;
2125
2126         failrec = (struct io_failure_record *)(unsigned long) private_failure;
2127         BUG_ON(!failrec->this_mirror);
2128
2129         if (failrec->in_validation) {
2130                 /* there was no real error, just free the record */
2131                 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2132                          failrec->start);
2133                 did_repair = 1;
2134                 goto out;
2135         }
2136         if (fs_info->sb->s_flags & MS_RDONLY)
2137                 goto out;
2138
2139         spin_lock(&BTRFS_I(inode)->io_tree.lock);
2140         state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2141                                             failrec->start,
2142                                             EXTENT_LOCKED);
2143         spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2144
2145         if (state && state->start <= failrec->start &&
2146             state->end >= failrec->start + failrec->len - 1) {
2147                 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2148                                               failrec->len);
2149                 if (num_copies > 1)  {
2150                         ret = repair_io_failure(fs_info, start, failrec->len,
2151                                                 failrec->logical, page,
2152                                                 failrec->failed_mirror);
2153                         did_repair = !ret;
2154                 }
2155                 ret = 0;
2156         }
2157
2158 out:
2159         if (!ret)
2160                 ret = free_io_failure(inode, failrec, did_repair);
2161
2162         return ret;
2163 }
2164
2165 /*
2166  * this is a generic handler for readpage errors (default
2167  * readpage_io_failed_hook). if other copies exist, read those and write back
2168  * good data to the failed position. does not investigate in remapping the
2169  * failed extent elsewhere, hoping the device will be smart enough to do this as
2170  * needed
2171  */
2172
2173 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2174                               struct page *page, u64 start, u64 end,
2175                               int failed_mirror)
2176 {
2177         struct io_failure_record *failrec = NULL;
2178         u64 private;
2179         struct extent_map *em;
2180         struct inode *inode = page->mapping->host;
2181         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2182         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2183         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2184         struct bio *bio;
2185         struct btrfs_io_bio *btrfs_failed_bio;
2186         struct btrfs_io_bio *btrfs_bio;
2187         int num_copies;
2188         int ret;
2189         int read_mode;
2190         u64 logical;
2191
2192         BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2193
2194         ret = get_state_private(failure_tree, start, &private);
2195         if (ret) {
2196                 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2197                 if (!failrec)
2198                         return -ENOMEM;
2199                 failrec->start = start;
2200                 failrec->len = end - start + 1;
2201                 failrec->this_mirror = 0;
2202                 failrec->bio_flags = 0;
2203                 failrec->in_validation = 0;
2204
2205                 read_lock(&em_tree->lock);
2206                 em = lookup_extent_mapping(em_tree, start, failrec->len);
2207                 if (!em) {
2208                         read_unlock(&em_tree->lock);
2209                         kfree(failrec);
2210                         return -EIO;
2211                 }
2212
2213                 if (em->start > start || em->start + em->len <= start) {
2214                         free_extent_map(em);
2215                         em = NULL;
2216                 }
2217                 read_unlock(&em_tree->lock);
2218
2219                 if (!em) {
2220                         kfree(failrec);
2221                         return -EIO;
2222                 }
2223                 logical = start - em->start;
2224                 logical = em->block_start + logical;
2225                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2226                         logical = em->block_start;
2227                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2228                         extent_set_compress_type(&failrec->bio_flags,
2229                                                  em->compress_type);
2230                 }
2231                 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2232                          "len=%llu\n", logical, start, failrec->len);
2233                 failrec->logical = logical;
2234                 free_extent_map(em);
2235
2236                 /* set the bits in the private failure tree */
2237                 ret = set_extent_bits(failure_tree, start, end,
2238                                         EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2239                 if (ret >= 0)
2240                         ret = set_state_private(failure_tree, start,
2241                                                 (u64)(unsigned long)failrec);
2242                 /* set the bits in the inode's tree */
2243                 if (ret >= 0)
2244                         ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2245                                                 GFP_NOFS);
2246                 if (ret < 0) {
2247                         kfree(failrec);
2248                         return ret;
2249                 }
2250         } else {
2251                 failrec = (struct io_failure_record *)(unsigned long)private;
2252                 pr_debug("bio_readpage_error: (found) logical=%llu, "
2253                          "start=%llu, len=%llu, validation=%d\n",
2254                          failrec->logical, failrec->start, failrec->len,
2255                          failrec->in_validation);
2256                 /*
2257                  * when data can be on disk more than twice, add to failrec here
2258                  * (e.g. with a list for failed_mirror) to make
2259                  * clean_io_failure() clean all those errors at once.
2260                  */
2261         }
2262         num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2263                                       failrec->logical, failrec->len);
2264         if (num_copies == 1) {
2265                 /*
2266                  * we only have a single copy of the data, so don't bother with
2267                  * all the retry and error correction code that follows. no
2268                  * matter what the error is, it is very likely to persist.
2269                  */
2270                 pr_debug("bio_readpage_error: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2271                          num_copies, failrec->this_mirror, failed_mirror);
2272                 free_io_failure(inode, failrec, 0);
2273                 return -EIO;
2274         }
2275
2276         /*
2277          * there are two premises:
2278          *      a) deliver good data to the caller
2279          *      b) correct the bad sectors on disk
2280          */
2281         if (failed_bio->bi_vcnt > 1) {
2282                 /*
2283                  * to fulfill b), we need to know the exact failing sectors, as
2284                  * we don't want to rewrite any more than the failed ones. thus,
2285                  * we need separate read requests for the failed bio
2286                  *
2287                  * if the following BUG_ON triggers, our validation request got
2288                  * merged. we need separate requests for our algorithm to work.
2289                  */
2290                 BUG_ON(failrec->in_validation);
2291                 failrec->in_validation = 1;
2292                 failrec->this_mirror = failed_mirror;
2293                 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2294         } else {
2295                 /*
2296                  * we're ready to fulfill a) and b) alongside. get a good copy
2297                  * of the failed sector and if we succeed, we have setup
2298                  * everything for repair_io_failure to do the rest for us.
2299                  */
2300                 if (failrec->in_validation) {
2301                         BUG_ON(failrec->this_mirror != failed_mirror);
2302                         failrec->in_validation = 0;
2303                         failrec->this_mirror = 0;
2304                 }
2305                 failrec->failed_mirror = failed_mirror;
2306                 failrec->this_mirror++;
2307                 if (failrec->this_mirror == failed_mirror)
2308                         failrec->this_mirror++;
2309                 read_mode = READ_SYNC;
2310         }
2311
2312         if (failrec->this_mirror > num_copies) {
2313                 pr_debug("bio_readpage_error: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
2314                          num_copies, failrec->this_mirror, failed_mirror);
2315                 free_io_failure(inode, failrec, 0);
2316                 return -EIO;
2317         }
2318
2319         bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2320         if (!bio) {
2321                 free_io_failure(inode, failrec, 0);
2322                 return -EIO;
2323         }
2324         bio->bi_end_io = failed_bio->bi_end_io;
2325         bio->bi_iter.bi_sector = failrec->logical >> 9;
2326         bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2327         bio->bi_iter.bi_size = 0;
2328
2329         btrfs_failed_bio = btrfs_io_bio(failed_bio);
2330         if (btrfs_failed_bio->csum) {
2331                 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2332                 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2333
2334                 btrfs_bio = btrfs_io_bio(bio);
2335                 btrfs_bio->csum = btrfs_bio->csum_inline;
2336                 phy_offset >>= inode->i_sb->s_blocksize_bits;
2337                 phy_offset *= csum_size;
2338                 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + phy_offset,
2339                        csum_size);
2340         }
2341
2342         bio_add_page(bio, page, failrec->len, start - page_offset(page));
2343
2344         pr_debug("bio_readpage_error: submitting new read[%#x] to "
2345                  "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2346                  failrec->this_mirror, num_copies, failrec->in_validation);
2347
2348         ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2349                                          failrec->this_mirror,
2350                                          failrec->bio_flags, 0);
2351         return ret;
2352 }
2353
2354 /* lots and lots of room for performance fixes in the end_bio funcs */
2355
2356 int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2357 {
2358         int uptodate = (err == 0);
2359         struct extent_io_tree *tree;
2360         int ret = 0;
2361
2362         tree = &BTRFS_I(page->mapping->host)->io_tree;
2363
2364         if (tree->ops && tree->ops->writepage_end_io_hook) {
2365                 ret = tree->ops->writepage_end_io_hook(page, start,
2366                                                end, NULL, uptodate);
2367                 if (ret)
2368                         uptodate = 0;
2369         }
2370
2371         if (!uptodate) {
2372                 ClearPageUptodate(page);
2373                 SetPageError(page);
2374                 ret = ret < 0 ? ret : -EIO;
2375                 mapping_set_error(page->mapping, ret);
2376         }
2377         return 0;
2378 }
2379
2380 /*
2381  * after a writepage IO is done, we need to:
2382  * clear the uptodate bits on error
2383  * clear the writeback bits in the extent tree for this IO
2384  * end_page_writeback if the page has no more pending IO
2385  *
2386  * Scheduling is not allowed, so the extent state tree is expected
2387  * to have one and only one object corresponding to this IO.
2388  */
2389 static void end_bio_extent_writepage(struct bio *bio, int err)
2390 {
2391         struct bio_vec *bvec;
2392         u64 start;
2393         u64 end;
2394         int i;
2395
2396         bio_for_each_segment_all(bvec, bio, i) {
2397                 struct page *page = bvec->bv_page;
2398
2399                 /* We always issue full-page reads, but if some block
2400                  * in a page fails to read, blk_update_request() will
2401                  * advance bv_offset and adjust bv_len to compensate.
2402                  * Print a warning for nonzero offsets, and an error
2403                  * if they don't add up to a full page.  */
2404                 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2405                         if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2406                                 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2407                                    "partial page write in btrfs with offset %u and length %u",
2408                                         bvec->bv_offset, bvec->bv_len);
2409                         else
2410                                 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2411                                    "incomplete page write in btrfs with offset %u and "
2412                                    "length %u",
2413                                         bvec->bv_offset, bvec->bv_len);
2414                 }
2415
2416                 start = page_offset(page);
2417                 end = start + bvec->bv_offset + bvec->bv_len - 1;
2418
2419                 if (end_extent_writepage(page, err, start, end))
2420                         continue;
2421
2422                 end_page_writeback(page);
2423         }
2424
2425         bio_put(bio);
2426 }
2427
2428 static void
2429 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2430                               int uptodate)
2431 {
2432         struct extent_state *cached = NULL;
2433         u64 end = start + len - 1;
2434
2435         if (uptodate && tree->track_uptodate)
2436                 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2437         unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2438 }
2439
2440 /*
2441  * after a readpage IO is done, we need to:
2442  * clear the uptodate bits on error
2443  * set the uptodate bits if things worked
2444  * set the page up to date if all extents in the tree are uptodate
2445  * clear the lock bit in the extent tree
2446  * unlock the page if there are no other extents locked for it
2447  *
2448  * Scheduling is not allowed, so the extent state tree is expected
2449  * to have one and only one object corresponding to this IO.
2450  */
2451 static void end_bio_extent_readpage(struct bio *bio, int err)
2452 {
2453         struct bio_vec *bvec;
2454         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2455         struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2456         struct extent_io_tree *tree;
2457         u64 offset = 0;
2458         u64 start;
2459         u64 end;
2460         u64 len;
2461         u64 extent_start = 0;
2462         u64 extent_len = 0;
2463         int mirror;
2464         int ret;
2465         int i;
2466
2467         if (err)
2468                 uptodate = 0;
2469
2470         bio_for_each_segment_all(bvec, bio, i) {
2471                 struct page *page = bvec->bv_page;
2472                 struct inode *inode = page->mapping->host;
2473
2474                 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2475                          "mirror=%lu\n", (u64)bio->bi_iter.bi_sector, err,
2476                          io_bio->mirror_num);
2477                 tree = &BTRFS_I(inode)->io_tree;
2478
2479                 /* We always issue full-page reads, but if some block
2480                  * in a page fails to read, blk_update_request() will
2481                  * advance bv_offset and adjust bv_len to compensate.
2482                  * Print a warning for nonzero offsets, and an error
2483                  * if they don't add up to a full page.  */
2484                 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2485                         if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2486                                 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2487                                    "partial page read in btrfs with offset %u and length %u",
2488                                         bvec->bv_offset, bvec->bv_len);
2489                         else
2490                                 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2491                                    "incomplete page read in btrfs with offset %u and "
2492                                    "length %u",
2493                                         bvec->bv_offset, bvec->bv_len);
2494                 }
2495
2496                 start = page_offset(page);
2497                 end = start + bvec->bv_offset + bvec->bv_len - 1;
2498                 len = bvec->bv_len;
2499
2500                 mirror = io_bio->mirror_num;
2501                 if (likely(uptodate && tree->ops &&
2502                            tree->ops->readpage_end_io_hook)) {
2503                         ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2504                                                               page, start, end,
2505                                                               mirror);
2506                         if (ret)
2507                                 uptodate = 0;
2508                         else
2509                                 clean_io_failure(start, page);
2510                 }
2511
2512                 if (likely(uptodate))
2513                         goto readpage_ok;
2514
2515                 if (tree->ops && tree->ops->readpage_io_failed_hook) {
2516                         ret = tree->ops->readpage_io_failed_hook(page, mirror);
2517                         if (!ret && !err &&
2518                             test_bit(BIO_UPTODATE, &bio->bi_flags))
2519                                 uptodate = 1;
2520                 } else {
2521                         /*
2522                          * The generic bio_readpage_error handles errors the
2523                          * following way: If possible, new read requests are
2524                          * created and submitted and will end up in
2525                          * end_bio_extent_readpage as well (if we're lucky, not
2526                          * in the !uptodate case). In that case it returns 0 and
2527                          * we just go on with the next page in our bio. If it
2528                          * can't handle the error it will return -EIO and we
2529                          * remain responsible for that page.
2530                          */
2531                         ret = bio_readpage_error(bio, offset, page, start, end,
2532                                                  mirror);
2533                         if (ret == 0) {
2534                                 uptodate =
2535                                         test_bit(BIO_UPTODATE, &bio->bi_flags);
2536                                 if (err)
2537                                         uptodate = 0;
2538                                 offset += len;
2539                                 continue;
2540                         }
2541                 }
2542 readpage_ok:
2543                 if (likely(uptodate)) {
2544                         loff_t i_size = i_size_read(inode);
2545                         pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2546                         unsigned off;
2547
2548                         /* Zero out the end if this page straddles i_size */
2549                         off = i_size & (PAGE_CACHE_SIZE-1);
2550                         if (page->index == end_index && off)
2551                                 zero_user_segment(page, off, PAGE_CACHE_SIZE);
2552                         SetPageUptodate(page);
2553                 } else {
2554                         ClearPageUptodate(page);
2555                         SetPageError(page);
2556                 }
2557                 unlock_page(page);
2558                 offset += len;
2559
2560                 if (unlikely(!uptodate)) {
2561                         if (extent_len) {
2562                                 endio_readpage_release_extent(tree,
2563                                                               extent_start,
2564                                                               extent_len, 1);
2565                                 extent_start = 0;
2566                                 extent_len = 0;
2567                         }
2568                         endio_readpage_release_extent(tree, start,
2569                                                       end - start + 1, 0);
2570                 } else if (!extent_len) {
2571                         extent_start = start;
2572                         extent_len = end + 1 - start;
2573                 } else if (extent_start + extent_len == start) {
2574                         extent_len += end + 1 - start;
2575                 } else {
2576                         endio_readpage_release_extent(tree, extent_start,
2577                                                       extent_len, uptodate);
2578                         extent_start = start;
2579                         extent_len = end + 1 - start;
2580                 }
2581         }
2582
2583         if (extent_len)
2584                 endio_readpage_release_extent(tree, extent_start, extent_len,
2585                                               uptodate);
2586         if (io_bio->end_io)
2587                 io_bio->end_io(io_bio, err);
2588         bio_put(bio);
2589 }
2590
2591 /*
2592  * this allocates from the btrfs_bioset.  We're returning a bio right now
2593  * but you can call btrfs_io_bio for the appropriate container_of magic
2594  */
2595 struct bio *
2596 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2597                 gfp_t gfp_flags)
2598 {
2599         struct btrfs_io_bio *btrfs_bio;
2600         struct bio *bio;
2601
2602         bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2603
2604         if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2605                 while (!bio && (nr_vecs /= 2)) {
2606                         bio = bio_alloc_bioset(gfp_flags,
2607                                                nr_vecs, btrfs_bioset);
2608                 }
2609         }
2610
2611         if (bio) {
2612                 bio->bi_bdev = bdev;
2613                 bio->bi_iter.bi_sector = first_sector;
2614                 btrfs_bio = btrfs_io_bio(bio);
2615                 btrfs_bio->csum = NULL;
2616                 btrfs_bio->csum_allocated = NULL;
2617                 btrfs_bio->end_io = NULL;
2618         }
2619         return bio;
2620 }
2621
2622 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2623 {
2624         return bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2625 }
2626
2627
2628 /* this also allocates from the btrfs_bioset */
2629 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2630 {
2631         struct btrfs_io_bio *btrfs_bio;
2632         struct bio *bio;
2633
2634         bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2635         if (bio) {
2636                 btrfs_bio = btrfs_io_bio(bio);
2637                 btrfs_bio->csum = NULL;
2638                 btrfs_bio->csum_allocated = NULL;
2639                 btrfs_bio->end_io = NULL;
2640         }
2641         return bio;
2642 }
2643
2644
2645 static int __must_check submit_one_bio(int rw, struct bio *bio,
2646                                        int mirror_num, unsigned long bio_flags)
2647 {
2648         int ret = 0;
2649         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2650         struct page *page = bvec->bv_page;
2651         struct extent_io_tree *tree = bio->bi_private;
2652         u64 start;
2653
2654         start = page_offset(page) + bvec->bv_offset;
2655
2656         bio->bi_private = NULL;
2657
2658         bio_get(bio);
2659
2660         if (tree->ops && tree->ops->submit_bio_hook)
2661                 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2662                                            mirror_num, bio_flags, start);
2663         else
2664                 btrfsic_submit_bio(rw, bio);
2665
2666         if (bio_flagged(bio, BIO_EOPNOTSUPP))
2667                 ret = -EOPNOTSUPP;
2668         bio_put(bio);
2669         return ret;
2670 }
2671
2672 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2673                      unsigned long offset, size_t size, struct bio *bio,
2674                      unsigned long bio_flags)
2675 {
2676         int ret = 0;
2677         if (tree->ops && tree->ops->merge_bio_hook)
2678                 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2679                                                 bio_flags);
2680         BUG_ON(ret < 0);
2681         return ret;
2682
2683 }
2684
2685 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2686                               struct page *page, sector_t sector,
2687                               size_t size, unsigned long offset,
2688                               struct block_device *bdev,
2689                               struct bio **bio_ret,
2690                               unsigned long max_pages,
2691                               bio_end_io_t end_io_func,
2692                               int mirror_num,
2693                               unsigned long prev_bio_flags,
2694                               unsigned long bio_flags)
2695 {
2696         int ret = 0;
2697         struct bio *bio;
2698         int nr;
2699         int contig = 0;
2700         int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2701         int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2702         size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2703
2704         if (bio_ret && *bio_ret) {
2705                 bio = *bio_ret;
2706                 if (old_compressed)
2707                         contig = bio->bi_iter.bi_sector == sector;
2708                 else
2709                         contig = bio_end_sector(bio) == sector;
2710
2711                 if (prev_bio_flags != bio_flags || !contig ||
2712                     merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2713                     bio_add_page(bio, page, page_size, offset) < page_size) {
2714                         ret = submit_one_bio(rw, bio, mirror_num,
2715                                              prev_bio_flags);
2716                         if (ret < 0)
2717                                 return ret;
2718                         bio = NULL;
2719                 } else {
2720                         return 0;
2721                 }
2722         }
2723         if (this_compressed)
2724                 nr = BIO_MAX_PAGES;
2725         else
2726                 nr = bio_get_nr_vecs(bdev);
2727
2728         bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2729         if (!bio)
2730                 return -ENOMEM;
2731
2732         bio_add_page(bio, page, page_size, offset);
2733         bio->bi_end_io = end_io_func;
2734         bio->bi_private = tree;
2735
2736         if (bio_ret)
2737                 *bio_ret = bio;
2738         else
2739                 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2740
2741         return ret;
2742 }
2743
2744 static void attach_extent_buffer_page(struct extent_buffer *eb,
2745                                       struct page *page)
2746 {
2747         if (!PagePrivate(page)) {
2748                 SetPagePrivate(page);
2749                 page_cache_get(page);
2750                 set_page_private(page, (unsigned long)eb);
2751         } else {
2752                 WARN_ON(page->private != (unsigned long)eb);
2753         }
2754 }
2755
2756 void set_page_extent_mapped(struct page *page)
2757 {
2758         if (!PagePrivate(page)) {
2759                 SetPagePrivate(page);
2760                 page_cache_get(page);
2761                 set_page_private(page, EXTENT_PAGE_PRIVATE);
2762         }
2763 }
2764
2765 static struct extent_map *
2766 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2767                  u64 start, u64 len, get_extent_t *get_extent,
2768                  struct extent_map **em_cached)
2769 {
2770         struct extent_map *em;
2771
2772         if (em_cached && *em_cached) {
2773                 em = *em_cached;
2774                 if (extent_map_in_tree(em) && start >= em->start &&
2775                     start < extent_map_end(em)) {
2776                         atomic_inc(&em->refs);
2777                         return em;
2778                 }
2779
2780                 free_extent_map(em);
2781                 *em_cached = NULL;
2782         }
2783
2784         em = get_extent(inode, page, pg_offset, start, len, 0);
2785         if (em_cached && !IS_ERR_OR_NULL(em)) {
2786                 BUG_ON(*em_cached);
2787                 atomic_inc(&em->refs);
2788                 *em_cached = em;
2789         }
2790         return em;
2791 }
2792 /*
2793  * basic readpage implementation.  Locked extent state structs are inserted
2794  * into the tree that are removed when the IO is done (by the end_io
2795  * handlers)
2796  * XXX JDM: This needs looking at to ensure proper page locking
2797  */
2798 static int __do_readpage(struct extent_io_tree *tree,
2799                          struct page *page,
2800                          get_extent_t *get_extent,
2801                          struct extent_map **em_cached,
2802                          struct bio **bio, int mirror_num,
2803                          unsigned long *bio_flags, int rw)
2804 {
2805         struct inode *inode = page->mapping->host;
2806         u64 start = page_offset(page);
2807         u64 page_end = start + PAGE_CACHE_SIZE - 1;
2808         u64 end;
2809         u64 cur = start;
2810         u64 extent_offset;
2811         u64 last_byte = i_size_read(inode);
2812         u64 block_start;
2813         u64 cur_end;
2814         sector_t sector;
2815         struct extent_map *em;
2816         struct block_device *bdev;
2817         int ret;
2818         int nr = 0;
2819         int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2820         size_t pg_offset = 0;
2821         size_t iosize;
2822         size_t disk_io_size;
2823         size_t blocksize = inode->i_sb->s_blocksize;
2824         unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2825
2826         set_page_extent_mapped(page);
2827
2828         end = page_end;
2829         if (!PageUptodate(page)) {
2830                 if (cleancache_get_page(page) == 0) {
2831                         BUG_ON(blocksize != PAGE_SIZE);
2832                         unlock_extent(tree, start, end);
2833                         goto out;
2834                 }
2835         }
2836
2837         if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2838                 char *userpage;
2839                 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2840
2841                 if (zero_offset) {
2842                         iosize = PAGE_CACHE_SIZE - zero_offset;
2843                         userpage = kmap_atomic(page);
2844                         memset(userpage + zero_offset, 0, iosize);
2845                         flush_dcache_page(page);
2846                         kunmap_atomic(userpage);
2847                 }
2848         }
2849         while (cur <= end) {
2850                 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2851
2852                 if (cur >= last_byte) {
2853                         char *userpage;
2854                         struct extent_state *cached = NULL;
2855
2856                         iosize = PAGE_CACHE_SIZE - pg_offset;
2857                         userpage = kmap_atomic(page);
2858                         memset(userpage + pg_offset, 0, iosize);
2859                         flush_dcache_page(page);
2860                         kunmap_atomic(userpage);
2861                         set_extent_uptodate(tree, cur, cur + iosize - 1,
2862                                             &cached, GFP_NOFS);
2863                         if (!parent_locked)
2864                                 unlock_extent_cached(tree, cur,
2865                                                      cur + iosize - 1,
2866                                                      &cached, GFP_NOFS);
2867                         break;
2868                 }
2869                 em = __get_extent_map(inode, page, pg_offset, cur,
2870                                       end - cur + 1, get_extent, em_cached);
2871                 if (IS_ERR_OR_NULL(em)) {
2872                         SetPageError(page);
2873                         if (!parent_locked)
2874                                 unlock_extent(tree, cur, end);
2875                         break;
2876                 }
2877                 extent_offset = cur - em->start;
2878                 BUG_ON(extent_map_end(em) <= cur);
2879                 BUG_ON(end < cur);
2880
2881                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2882                         this_bio_flag |= EXTENT_BIO_COMPRESSED;
2883                         extent_set_compress_type(&this_bio_flag,
2884                                                  em->compress_type);
2885                 }
2886
2887                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2888                 cur_end = min(extent_map_end(em) - 1, end);
2889                 iosize = ALIGN(iosize, blocksize);
2890                 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2891                         disk_io_size = em->block_len;
2892                         sector = em->block_start >> 9;
2893                 } else {
2894                         sector = (em->block_start + extent_offset) >> 9;
2895                         disk_io_size = iosize;
2896                 }
2897                 bdev = em->bdev;
2898                 block_start = em->block_start;
2899                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2900                         block_start = EXTENT_MAP_HOLE;
2901                 free_extent_map(em);
2902                 em = NULL;
2903
2904                 /* we've found a hole, just zero and go on */
2905                 if (block_start == EXTENT_MAP_HOLE) {
2906                         char *userpage;
2907                         struct extent_state *cached = NULL;
2908
2909                         userpage = kmap_atomic(page);
2910                         memset(userpage + pg_offset, 0, iosize);
2911                         flush_dcache_page(page);
2912                         kunmap_atomic(userpage);
2913
2914                         set_extent_uptodate(tree, cur, cur + iosize - 1,
2915                                             &cached, GFP_NOFS);
2916                         unlock_extent_cached(tree, cur, cur + iosize - 1,
2917                                              &cached, GFP_NOFS);
2918                         cur = cur + iosize;
2919                         pg_offset += iosize;
2920                         continue;
2921                 }
2922                 /* the get_extent function already copied into the page */
2923                 if (test_range_bit(tree, cur, cur_end,
2924                                    EXTENT_UPTODATE, 1, NULL)) {
2925                         check_page_uptodate(tree, page);
2926                         if (!parent_locked)
2927                                 unlock_extent(tree, cur, cur + iosize - 1);
2928                         cur = cur + iosize;
2929                         pg_offset += iosize;
2930                         continue;
2931                 }
2932                 /* we have an inline extent but it didn't get marked up
2933                  * to date.  Error out
2934                  */
2935                 if (block_start == EXTENT_MAP_INLINE) {
2936                         SetPageError(page);
2937                         if (!parent_locked)
2938                                 unlock_extent(tree, cur, cur + iosize - 1);
2939                         cur = cur + iosize;
2940                         pg_offset += iosize;
2941                         continue;
2942                 }
2943
2944                 pnr -= page->index;
2945                 ret = submit_extent_page(rw, tree, page,
2946                                          sector, disk_io_size, pg_offset,
2947                                          bdev, bio, pnr,
2948                                          end_bio_extent_readpage, mirror_num,
2949                                          *bio_flags,
2950                                          this_bio_flag);
2951                 if (!ret) {
2952                         nr++;
2953                         *bio_flags = this_bio_flag;
2954                 } else {
2955                         SetPageError(page);
2956                         if (!parent_locked)
2957                                 unlock_extent(tree, cur, cur + iosize - 1);
2958                 }
2959                 cur = cur + iosize;
2960                 pg_offset += iosize;
2961         }
2962 out:
2963         if (!nr) {
2964                 if (!PageError(page))
2965                         SetPageUptodate(page);
2966                 unlock_page(page);
2967         }
2968         return 0;
2969 }
2970
2971 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
2972                                              struct page *pages[], int nr_pages,
2973                                              u64 start, u64 end,
2974                                              get_extent_t *get_extent,
2975                                              struct extent_map **em_cached,
2976                                              struct bio **bio, int mirror_num,
2977                                              unsigned long *bio_flags, int rw)
2978 {
2979         struct inode *inode;
2980         struct btrfs_ordered_extent *ordered;
2981         int index;
2982
2983         inode = pages[0]->mapping->host;
2984         while (1) {
2985                 lock_extent(tree, start, end);
2986                 ordered = btrfs_lookup_ordered_range(inode, start,
2987                                                      end - start + 1);
2988                 if (!ordered)
2989                         break;
2990                 unlock_extent(tree, start, end);
2991                 btrfs_start_ordered_extent(inode, ordered, 1);
2992                 btrfs_put_ordered_extent(ordered);
2993         }
2994
2995         for (index = 0; index < nr_pages; index++) {
2996                 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
2997                               mirror_num, bio_flags, rw);
2998                 page_cache_release(pages[index]);
2999         }
3000 }
3001
3002 static void __extent_readpages(struct extent_io_tree *tree,
3003                                struct page *pages[],
3004                                int nr_pages, get_extent_t *get_extent,
3005                                struct extent_map **em_cached,
3006                                struct bio **bio, int mirror_num,
3007                                unsigned long *bio_flags, int rw)
3008 {
3009         u64 start = 0;
3010         u64 end = 0;
3011         u64 page_start;
3012         int index;
3013         int first_index = 0;
3014
3015         for (index = 0; index < nr_pages; index++) {
3016                 page_start = page_offset(pages[index]);
3017                 if (!end) {
3018                         start = page_start;
3019                         end = start + PAGE_CACHE_SIZE - 1;
3020                         first_index = index;
3021                 } else if (end + 1 == page_start) {
3022                         end += PAGE_CACHE_SIZE;
3023                 } else {
3024                         __do_contiguous_readpages(tree, &pages[first_index],
3025                                                   index - first_index, start,
3026                                                   end, get_extent, em_cached,
3027                                                   bio, mirror_num, bio_flags,
3028                                                   rw);
3029                         start = page_start;
3030                         end = start + PAGE_CACHE_SIZE - 1;
3031                         first_index = index;
3032                 }
3033         }
3034
3035         if (end)
3036                 __do_contiguous_readpages(tree, &pages[first_index],
3037                                           index - first_index, start,
3038                                           end, get_extent, em_cached, bio,
3039                                           mirror_num, bio_flags, rw);
3040 }
3041
3042 static int __extent_read_full_page(struct extent_io_tree *tree,
3043                                    struct page *page,
3044                                    get_extent_t *get_extent,
3045                                    struct bio **bio, int mirror_num,
3046                                    unsigned long *bio_flags, int rw)
3047 {
3048         struct inode *inode = page->mapping->host;
3049         struct btrfs_ordered_extent *ordered;
3050         u64 start = page_offset(page);
3051         u64 end = start + PAGE_CACHE_SIZE - 1;
3052         int ret;
3053
3054         while (1) {
3055                 lock_extent(tree, start, end);
3056                 ordered = btrfs_lookup_ordered_extent(inode, start);
3057                 if (!ordered)
3058                         break;
3059                 unlock_extent(tree, start, end);
3060                 btrfs_start_ordered_extent(inode, ordered, 1);
3061                 btrfs_put_ordered_extent(ordered);
3062         }
3063
3064         ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3065                             bio_flags, rw);
3066         return ret;
3067 }
3068
3069 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3070                             get_extent_t *get_extent, int mirror_num)
3071 {
3072         struct bio *bio = NULL;
3073         unsigned long bio_flags = 0;
3074         int ret;
3075
3076         ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3077                                       &bio_flags, READ);
3078         if (bio)
3079                 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3080         return ret;
3081 }
3082
3083 int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page,
3084                                  get_extent_t *get_extent, int mirror_num)
3085 {
3086         struct bio *bio = NULL;
3087         unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED;
3088         int ret;
3089
3090         ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num,
3091                                       &bio_flags, READ);
3092         if (bio)
3093                 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3094         return ret;
3095 }
3096
3097 static noinline void update_nr_written(struct page *page,
3098                                       struct writeback_control *wbc,
3099                                       unsigned long nr_written)
3100 {
3101         wbc->nr_to_write -= nr_written;
3102         if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3103             wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3104                 page->mapping->writeback_index = page->index + nr_written;
3105 }
3106
3107 /*
3108  * helper for __extent_writepage, doing all of the delayed allocation setup.
3109  *
3110  * This returns 1 if our fill_delalloc function did all the work required
3111  * to write the page (copy into inline extent).  In this case the IO has
3112  * been started and the page is already unlocked.
3113  *
3114  * This returns 0 if all went well (page still locked)
3115  * This returns < 0 if there were errors (page still locked)
3116  */
3117 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3118                               struct page *page, struct writeback_control *wbc,
3119                               struct extent_page_data *epd,
3120                               u64 delalloc_start,
3121                               unsigned long *nr_written)
3122 {
3123         struct extent_io_tree *tree = epd->tree;
3124         u64 page_end = delalloc_start + PAGE_CACHE_SIZE - 1;
3125         u64 nr_delalloc;
3126         u64 delalloc_to_write = 0;
3127         u64 delalloc_end = 0;
3128         int ret;
3129         int page_started = 0;
3130
3131         if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3132                 return 0;
3133
3134         while (delalloc_end < page_end) {
3135                 nr_delalloc = find_lock_delalloc_range(inode, tree,
3136                                                page,
3137                                                &delalloc_start,
3138                                                &delalloc_end,
3139                                                128 * 1024 * 1024);
3140                 if (nr_delalloc == 0) {
3141                         delalloc_start = delalloc_end + 1;
3142                         continue;
3143                 }
3144                 ret = tree->ops->fill_delalloc(inode, page,
3145                                                delalloc_start,
3146                                                delalloc_end,
3147                                                &page_started,
3148                                                nr_written);
3149                 /* File system has been set read-only */
3150                 if (ret) {
3151                         SetPageError(page);
3152                         /* fill_delalloc should be return < 0 for error
3153                          * but just in case, we use > 0 here meaning the
3154                          * IO is started, so we don't want to return > 0
3155                          * unless things are going well.
3156                          */
3157                         ret = ret < 0 ? ret : -EIO;
3158                         goto done;
3159                 }
3160                 /*
3161                  * delalloc_end is already one less than the total
3162                  * length, so we don't subtract one from
3163                  * PAGE_CACHE_SIZE
3164                  */
3165                 delalloc_to_write += (delalloc_end - delalloc_start +
3166                                       PAGE_CACHE_SIZE) >>
3167                                       PAGE_CACHE_SHIFT;
3168                 delalloc_start = delalloc_end + 1;
3169         }
3170         if (wbc->nr_to_write < delalloc_to_write) {
3171                 int thresh = 8192;
3172
3173                 if (delalloc_to_write < thresh * 2)
3174                         thresh = delalloc_to_write;
3175                 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3176                                          thresh);
3177         }
3178
3179         /* did the fill delalloc function already unlock and start
3180          * the IO?
3181          */
3182         if (page_started) {
3183                 /*
3184                  * we've unlocked the page, so we can't update
3185                  * the mapping's writeback index, just update
3186                  * nr_to_write.
3187                  */
3188                 wbc->nr_to_write -= *nr_written;
3189                 return 1;
3190         }
3191
3192         ret = 0;
3193
3194 done:
3195         return ret;
3196 }
3197
3198 /*
3199  * helper for __extent_writepage.  This calls the writepage start hooks,
3200  * and does the loop to map the page into extents and bios.
3201  *
3202  * We return 1 if the IO is started and the page is unlocked,
3203  * 0 if all went well (page still locked)
3204  * < 0 if there were errors (page still locked)
3205  */
3206 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3207                                  struct page *page,
3208                                  struct writeback_control *wbc,
3209                                  struct extent_page_data *epd,
3210                                  loff_t i_size,
3211                                  unsigned long nr_written,
3212                                  int write_flags, int *nr_ret)
3213 {
3214         struct extent_io_tree *tree = epd->tree;
3215         u64 start = page_offset(page);
3216         u64 page_end = start + PAGE_CACHE_SIZE - 1;
3217         u64 end;
3218         u64 cur = start;
3219         u64 extent_offset;
3220         u64 block_start;
3221         u64 iosize;
3222         sector_t sector;
3223         struct extent_state *cached_state = NULL;
3224         struct extent_map *em;
3225         struct block_device *bdev;
3226         size_t pg_offset = 0;
3227         size_t blocksize;
3228         int ret = 0;
3229         int nr = 0;
3230         bool compressed;
3231
3232         if (tree->ops && tree->ops->writepage_start_hook) {
3233                 ret = tree->ops->writepage_start_hook(page, start,
3234                                                       page_end);
3235                 if (ret) {
3236                         /* Fixup worker will requeue */
3237                         if (ret == -EBUSY)
3238                                 wbc->pages_skipped++;
3239                         else
3240                                 redirty_page_for_writepage(wbc, page);
3241
3242                         update_nr_written(page, wbc, nr_written);
3243                         unlock_page(page);
3244                         ret = 1;
3245                         goto done_unlocked;
3246                 }
3247         }
3248
3249         /*
3250          * we don't want to touch the inode after unlocking the page,
3251          * so we update the mapping writeback index now
3252          */
3253         update_nr_written(page, wbc, nr_written + 1);
3254
3255         end = page_end;
3256         if (i_size <= start) {
3257                 if (tree->ops && tree->ops->writepage_end_io_hook)
3258                         tree->ops->writepage_end_io_hook(page, start,
3259                                                          page_end, NULL, 1);
3260                 goto done;
3261         }
3262
3263         blocksize = inode->i_sb->s_blocksize;
3264
3265         while (cur <= end) {
3266                 u64 em_end;
3267                 if (cur >= i_size) {
3268                         if (tree->ops && tree->ops->writepage_end_io_hook)
3269                                 tree->ops->writepage_end_io_hook(page, cur,
3270                                                          page_end, NULL, 1);
3271                         break;
3272                 }
3273                 em = epd->get_extent(inode, page, pg_offset, cur,
3274                                      end - cur + 1, 1);
3275                 if (IS_ERR_OR_NULL(em)) {
3276                         SetPageError(page);
3277                         ret = PTR_ERR_OR_ZERO(em);
3278                         break;
3279                 }
3280
3281                 extent_offset = cur - em->start;
3282                 em_end = extent_map_end(em);
3283                 BUG_ON(em_end <= cur);
3284                 BUG_ON(end < cur);
3285                 iosize = min(em_end - cur, end - cur + 1);
3286                 iosize = ALIGN(iosize, blocksize);
3287                 sector = (em->block_start + extent_offset) >> 9;
3288                 bdev = em->bdev;
3289                 block_start = em->block_start;
3290                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3291                 free_extent_map(em);
3292                 em = NULL;
3293
3294                 /*
3295                  * compressed and inline extents are written through other
3296                  * paths in the FS
3297                  */
3298                 if (compressed || block_start == EXTENT_MAP_HOLE ||
3299                     block_start == EXTENT_MAP_INLINE) {
3300                         /*
3301                          * end_io notification does not happen here for
3302                          * compressed extents
3303                          */
3304                         if (!compressed && tree->ops &&
3305                             tree->ops->writepage_end_io_hook)
3306                                 tree->ops->writepage_end_io_hook(page, cur,
3307                                                          cur + iosize - 1,
3308                                                          NULL, 1);
3309                         else if (compressed) {
3310                                 /* we don't want to end_page_writeback on
3311                                  * a compressed extent.  this happens
3312                                  * elsewhere
3313                                  */
3314                                 nr++;
3315                         }
3316
3317                         cur += iosize;
3318                         pg_offset += iosize;
3319                         continue;
3320                 }
3321
3322                 if (tree->ops && tree->ops->writepage_io_hook) {
3323                         ret = tree->ops->writepage_io_hook(page, cur,
3324                                                 cur + iosize - 1);
3325                 } else {
3326                         ret = 0;
3327                 }
3328                 if (ret) {
3329                         SetPageError(page);
3330                 } else {
3331                         unsigned long max_nr = (i_size >> PAGE_CACHE_SHIFT) + 1;
3332
3333                         set_range_writeback(tree, cur, cur + iosize - 1);
3334                         if (!PageWriteback(page)) {
3335                                 btrfs_err(BTRFS_I(inode)->root->fs_info,
3336                                            "page %lu not writeback, cur %llu end %llu",
3337                                        page->index, cur, end);
3338                         }
3339
3340                         ret = submit_extent_page(write_flags, tree, page,
3341                                                  sector, iosize, pg_offset,
3342                                                  bdev, &epd->bio, max_nr,
3343                                                  end_bio_extent_writepage,
3344                                                  0, 0, 0);
3345                         if (ret)
3346                                 SetPageError(page);
3347                 }
3348                 cur = cur + iosize;
3349                 pg_offset += iosize;
3350                 nr++;
3351         }
3352 done:
3353         *nr_ret = nr;
3354
3355 done_unlocked:
3356
3357         /* drop our reference on any cached states */
3358         free_extent_state(cached_state);
3359         return ret;
3360 }
3361
3362 /*
3363  * the writepage semantics are similar to regular writepage.  extent
3364  * records are inserted to lock ranges in the tree, and as dirty areas
3365  * are found, they are marked writeback.  Then the lock bits are removed
3366  * and the end_io handler clears the writeback ranges
3367  */
3368 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3369                               void *data)
3370 {
3371         struct inode *inode = page->mapping->host;
3372         struct extent_page_data *epd = data;
3373         u64 start = page_offset(page);
3374         u64 page_end = start + PAGE_CACHE_SIZE - 1;
3375         int ret;
3376         int nr = 0;
3377         size_t pg_offset = 0;
3378         loff_t i_size = i_size_read(inode);
3379         unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
3380         int write_flags;
3381         unsigned long nr_written = 0;
3382
3383         if (wbc->sync_mode == WB_SYNC_ALL)
3384                 write_flags = WRITE_SYNC;
3385         else
3386                 write_flags = WRITE;
3387
3388         trace___extent_writepage(page, inode, wbc);
3389
3390         WARN_ON(!PageLocked(page));
3391
3392         ClearPageError(page);
3393
3394         pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
3395         if (page->index > end_index ||
3396            (page->index == end_index && !pg_offset)) {
3397                 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
3398                 unlock_page(page);
3399                 return 0;
3400         }
3401
3402         if (page->index == end_index) {
3403                 char *userpage;
3404
3405                 userpage = kmap_atomic(page);
3406                 memset(userpage + pg_offset, 0,
3407                        PAGE_CACHE_SIZE - pg_offset);
3408                 kunmap_atomic(userpage);
3409                 flush_dcache_page(page);
3410         }
3411
3412         pg_offset = 0;
3413
3414         set_page_extent_mapped(page);
3415
3416         ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3417         if (ret == 1)
3418                 goto done_unlocked;
3419         if (ret)
3420                 goto done;
3421
3422         ret = __extent_writepage_io(inode, page, wbc, epd,
3423                                     i_size, nr_written, write_flags, &nr);
3424         if (ret == 1)
3425                 goto done_unlocked;
3426
3427 done:
3428         if (nr == 0) {
3429                 /* make sure the mapping tag for page dirty gets cleared */
3430                 set_page_writeback(page);
3431                 end_page_writeback(page);
3432         }
3433         if (PageError(page)) {
3434                 ret = ret < 0 ? ret : -EIO;
3435                 end_extent_writepage(page, ret, start, page_end);
3436         }
3437         unlock_page(page);
3438         return ret;
3439
3440 done_unlocked:
3441         return 0;
3442 }
3443
3444 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3445 {
3446         wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3447                        TASK_UNINTERRUPTIBLE);
3448 }
3449
3450 static noinline_for_stack int
3451 lock_extent_buffer_for_io(struct extent_buffer *eb,
3452                           struct btrfs_fs_info *fs_info,
3453                           struct extent_page_data *epd)
3454 {
3455         unsigned long i, num_pages;
3456         int flush = 0;
3457         int ret = 0;
3458
3459         if (!btrfs_try_tree_write_lock(eb)) {
3460                 flush = 1;
3461                 flush_write_bio(epd);
3462                 btrfs_tree_lock(eb);
3463         }
3464
3465         if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3466                 btrfs_tree_unlock(eb);
3467                 if (!epd->sync_io)
3468                         return 0;
3469                 if (!flush) {
3470                         flush_write_bio(epd);
3471                         flush = 1;
3472                 }
3473                 while (1) {
3474                         wait_on_extent_buffer_writeback(eb);
3475                         btrfs_tree_lock(eb);
3476                         if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3477                                 break;
3478                         btrfs_tree_unlock(eb);
3479                 }
3480         }
3481
3482         /*
3483          * We need to do this to prevent races in people who check if the eb is
3484          * under IO since we can end up having no IO bits set for a short period
3485          * of time.
3486          */
3487         spin_lock(&eb->refs_lock);
3488         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3489                 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3490                 spin_unlock(&eb->refs_lock);
3491                 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3492                 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3493                                      -eb->len,
3494                                      fs_info->dirty_metadata_batch);
3495                 ret = 1;
3496         } else {
3497                 spin_unlock(&eb->refs_lock);
3498         }
3499
3500         btrfs_tree_unlock(eb);
3501
3502         if (!ret)
3503                 return ret;
3504
3505         num_pages = num_extent_pages(eb->start, eb->len);
3506         for (i = 0; i < num_pages; i++) {
3507                 struct page *p = extent_buffer_page(eb, i);
3508
3509                 if (!trylock_page(p)) {
3510                         if (!flush) {
3511                                 flush_write_bio(epd);
3512                                 flush = 1;
3513                         }
3514                         lock_page(p);
3515                 }
3516         }
3517
3518         return ret;
3519 }
3520
3521 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3522 {
3523         clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3524         smp_mb__after_atomic();
3525         wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3526 }
3527
3528 static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3529 {
3530         struct bio_vec *bvec;
3531         struct extent_buffer *eb;
3532         int i, done;
3533
3534         bio_for_each_segment_all(bvec, bio, i) {
3535                 struct page *page = bvec->bv_page;
3536
3537                 eb = (struct extent_buffer *)page->private;
3538                 BUG_ON(!eb);
3539                 done = atomic_dec_and_test(&eb->io_pages);
3540
3541                 if (err || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3542                         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3543                         ClearPageUptodate(page);
3544                         SetPageError(page);
3545                 }
3546
3547                 end_page_writeback(page);
3548
3549                 if (!done)
3550                         continue;
3551
3552                 end_extent_buffer_writeback(eb);
3553         }
3554
3555         bio_put(bio);
3556 }
3557
3558 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3559                         struct btrfs_fs_info *fs_info,
3560                         struct writeback_control *wbc,
3561                         struct extent_page_data *epd)
3562 {
3563         struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3564         struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3565         u64 offset = eb->start;
3566         unsigned long i, num_pages;
3567         unsigned long bio_flags = 0;
3568         int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
3569         int ret = 0;
3570
3571         clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3572         num_pages = num_extent_pages(eb->start, eb->len);
3573         atomic_set(&eb->io_pages, num_pages);
3574         if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3575                 bio_flags = EXTENT_BIO_TREE_LOG;
3576
3577         for (i = 0; i < num_pages; i++) {
3578                 struct page *p = extent_buffer_page(eb, i);
3579
3580                 clear_page_dirty_for_io(p);
3581                 set_page_writeback(p);
3582                 ret = submit_extent_page(rw, tree, p, offset >> 9,
3583                                          PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3584                                          -1, end_bio_extent_buffer_writepage,
3585                                          0, epd->bio_flags, bio_flags);
3586                 epd->bio_flags = bio_flags;
3587                 if (ret) {
3588                         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3589                         SetPageError(p);
3590                         if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3591                                 end_extent_buffer_writeback(eb);
3592                         ret = -EIO;
3593                         break;
3594                 }
3595                 offset += PAGE_CACHE_SIZE;
3596                 update_nr_written(p, wbc, 1);
3597                 unlock_page(p);
3598         }
3599
3600         if (unlikely(ret)) {
3601                 for (; i < num_pages; i++) {
3602                         struct page *p = extent_buffer_page(eb, i);
3603                         unlock_page(p);
3604                 }
3605         }
3606
3607         return ret;
3608 }
3609
3610 int btree_write_cache_pages(struct address_space *mapping,
3611                                    struct writeback_control *wbc)
3612 {
3613         struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3614         struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3615         struct extent_buffer *eb, *prev_eb = NULL;
3616         struct extent_page_data epd = {
3617                 .bio = NULL,
3618                 .tree = tree,
3619                 .extent_locked = 0,
3620                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3621                 .bio_flags = 0,
3622         };
3623         int ret = 0;
3624         int done = 0;
3625         int nr_to_write_done = 0;
3626         struct pagevec pvec;
3627         int nr_pages;
3628         pgoff_t index;
3629         pgoff_t end;            /* Inclusive */
3630         int scanned = 0;
3631         int tag;
3632
3633         pagevec_init(&pvec, 0);
3634         if (wbc->range_cyclic) {
3635                 index = mapping->writeback_index; /* Start from prev offset */
3636                 end = -1;
3637         } else {
3638                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3639                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3640                 scanned = 1;
3641         }
3642         if (wbc->sync_mode == WB_SYNC_ALL)
3643                 tag = PAGECACHE_TAG_TOWRITE;
3644         else
3645                 tag = PAGECACHE_TAG_DIRTY;
3646 retry:
3647         if (wbc->sync_mode == WB_SYNC_ALL)
3648                 tag_pages_for_writeback(mapping, index, end);
3649         while (!done && !nr_to_write_done && (index <= end) &&
3650                (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3651                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3652                 unsigned i;
3653
3654                 scanned = 1;
3655                 for (i = 0; i < nr_pages; i++) {
3656                         struct page *page = pvec.pages[i];
3657
3658                         if (!PagePrivate(page))
3659                                 continue;
3660
3661                         if (!wbc->range_cyclic && page->index > end) {
3662                                 done = 1;
3663                                 break;
3664                         }
3665
3666                         spin_lock(&mapping->private_lock);
3667                         if (!PagePrivate(page)) {
3668                                 spin_unlock(&mapping->private_lock);
3669                                 continue;
3670                         }
3671
3672                         eb = (struct extent_buffer *)page->private;
3673
3674                         /*
3675                          * Shouldn't happen and normally this would be a BUG_ON
3676                          * but no sense in crashing the users box for something
3677                          * we can survive anyway.
3678                          */
3679                         if (WARN_ON(!eb)) {
3680                                 spin_unlock(&mapping->private_lock);
3681                                 continue;
3682                         }
3683
3684                         if (eb == prev_eb) {
3685                                 spin_unlock(&mapping->private_lock);
3686                                 continue;
3687                         }
3688
3689                         ret = atomic_inc_not_zero(&eb->refs);
3690                         spin_unlock(&mapping->private_lock);
3691                         if (!ret)
3692                                 continue;
3693
3694                         prev_eb = eb;
3695                         ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3696                         if (!ret) {
3697                                 free_extent_buffer(eb);
3698                                 continue;
3699                         }
3700
3701                         ret = write_one_eb(eb, fs_info, wbc, &epd);
3702                         if (ret) {
3703                                 done = 1;
3704                                 free_extent_buffer(eb);
3705                                 break;
3706                         }
3707                         free_extent_buffer(eb);
3708
3709                         /*
3710                          * the filesystem may choose to bump up nr_to_write.
3711                          * We have to make sure to honor the new nr_to_write
3712                          * at any time
3713                          */
3714                         nr_to_write_done = wbc->nr_to_write <= 0;
3715                 }
3716                 pagevec_release(&pvec);
3717                 cond_resched();
3718         }
3719         if (!scanned && !done) {
3720                 /*
3721                  * We hit the last page and there is more work to be done: wrap
3722                  * back to the start of the file
3723                  */
3724                 scanned = 1;
3725                 index = 0;
3726                 goto retry;
3727         }
3728         flush_write_bio(&epd);
3729         return ret;
3730 }
3731
3732 /**
3733  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3734  * @mapping: address space structure to write
3735  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3736  * @writepage: function called for each page
3737  * @data: data passed to writepage function
3738  *
3739  * If a page is already under I/O, write_cache_pages() skips it, even
3740  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3741  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3742  * and msync() need to guarantee that all the data which was dirty at the time
3743  * the call was made get new I/O started against them.  If wbc->sync_mode is
3744  * WB_SYNC_ALL then we were called for data integrity and we must wait for
3745  * existing IO to complete.
3746  */
3747 static int extent_write_cache_pages(struct extent_io_tree *tree,
3748                              struct address_space *mapping,
3749                              struct writeback_control *wbc,
3750                              writepage_t writepage, void *data,
3751                              void (*flush_fn)(void *))
3752 {
3753         struct inode *inode = mapping->host;
3754         int ret = 0;
3755         int done = 0;
3756         int err = 0;
3757         int nr_to_write_done = 0;
3758         struct pagevec pvec;
3759         int nr_pages;
3760         pgoff_t index;
3761         pgoff_t end;            /* Inclusive */
3762         int scanned = 0;
3763         int tag;
3764
3765         /*
3766          * We have to hold onto the inode so that ordered extents can do their
3767          * work when the IO finishes.  The alternative to this is failing to add
3768          * an ordered extent if the igrab() fails there and that is a huge pain
3769          * to deal with, so instead just hold onto the inode throughout the
3770          * writepages operation.  If it fails here we are freeing up the inode
3771          * anyway and we'd rather not waste our time writing out stuff that is
3772          * going to be truncated anyway.
3773          */
3774         if (!igrab(inode))
3775                 return 0;
3776
3777         pagevec_init(&pvec, 0);
3778         if (wbc->range_cyclic) {
3779                 index = mapping->writeback_index; /* Start from prev offset */
3780                 end = -1;
3781         } else {
3782                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3783                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3784                 scanned = 1;
3785         }
3786         if (wbc->sync_mode == WB_SYNC_ALL)
3787                 tag = PAGECACHE_TAG_TOWRITE;
3788         else
3789                 tag = PAGECACHE_TAG_DIRTY;
3790 retry:
3791         if (wbc->sync_mode == WB_SYNC_ALL)
3792                 tag_pages_for_writeback(mapping, index, end);
3793         while (!done && !nr_to_write_done && (index <= end) &&
3794                (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3795                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3796                 unsigned i;
3797
3798                 scanned = 1;
3799                 for (i = 0; i < nr_pages; i++) {
3800                         struct page *page = pvec.pages[i];
3801
3802                         /*
3803                          * At this point we hold neither mapping->tree_lock nor
3804                          * lock on the page itself: the page may be truncated or
3805                          * invalidated (changing page->mapping to NULL), or even
3806                          * swizzled back from swapper_space to tmpfs file
3807                          * mapping
3808                          */
3809                         if (!trylock_page(page)) {
3810                                 flush_fn(data);
3811                                 lock_page(page);
3812                         }
3813
3814                         if (unlikely(page->mapping != mapping)) {
3815                                 unlock_page(page);
3816                                 continue;
3817                         }
3818
3819                         if (!wbc->range_cyclic && page->index > end) {
3820                                 done = 1;
3821                                 unlock_page(page);
3822                                 continue;
3823                         }
3824
3825                         if (wbc->sync_mode != WB_SYNC_NONE) {
3826                                 if (PageWriteback(page))
3827                                         flush_fn(data);
3828                                 wait_on_page_writeback(page);
3829                         }
3830
3831                         if (PageWriteback(page) ||
3832                             !clear_page_dirty_for_io(page)) {
3833                                 unlock_page(page);
3834                                 continue;
3835                         }
3836
3837                         ret = (*writepage)(page, wbc, data);
3838
3839                         if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3840                                 unlock_page(page);
3841                                 ret = 0;
3842                         }
3843                         if (!err && ret < 0)
3844                                 err = ret;
3845
3846                         /*
3847                          * the filesystem may choose to bump up nr_to_write.
3848                          * We have to make sure to honor the new nr_to_write
3849                          * at any time
3850                          */
3851                         nr_to_write_done = wbc->nr_to_write <= 0;
3852                 }
3853                 pagevec_release(&pvec);
3854                 cond_resched();
3855         }
3856         if (!scanned && !done && !err) {
3857                 /*
3858                  * We hit the last page and there is more work to be done: wrap
3859                  * back to the start of the file
3860                  */
3861                 scanned = 1;
3862                 index = 0;
3863                 goto retry;
3864         }
3865         btrfs_add_delayed_iput(inode);
3866         return err;
3867 }
3868
3869 static void flush_epd_write_bio(struct extent_page_data *epd)
3870 {
3871         if (epd->bio) {
3872                 int rw = WRITE;
3873                 int ret;
3874
3875                 if (epd->sync_io)
3876                         rw = WRITE_SYNC;
3877
3878                 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
3879                 BUG_ON(ret < 0); /* -ENOMEM */
3880                 epd->bio = NULL;
3881         }
3882 }
3883
3884 static noinline void flush_write_bio(void *data)
3885 {
3886         struct extent_page_data *epd = data;
3887         flush_epd_write_bio(epd);
3888 }
3889
3890 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3891                           get_extent_t *get_extent,
3892                           struct writeback_control *wbc)
3893 {
3894         int ret;
3895         struct extent_page_data epd = {
3896                 .bio = NULL,
3897                 .tree = tree,
3898                 .get_extent = get_extent,
3899                 .extent_locked = 0,
3900                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3901                 .bio_flags = 0,
3902         };
3903
3904         ret = __extent_writepage(page, wbc, &epd);
3905
3906         flush_epd_write_bio(&epd);
3907         return ret;
3908 }
3909
3910 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3911                               u64 start, u64 end, get_extent_t *get_extent,
3912                               int mode)
3913 {
3914         int ret = 0;
3915         struct address_space *mapping = inode->i_mapping;
3916         struct page *page;
3917         unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3918                 PAGE_CACHE_SHIFT;
3919
3920         struct extent_page_data epd = {
3921                 .bio = NULL,
3922                 .tree = tree,
3923                 .get_extent = get_extent,
3924                 .extent_locked = 1,
3925                 .sync_io = mode == WB_SYNC_ALL,
3926                 .bio_flags = 0,
3927         };
3928         struct writeback_control wbc_writepages = {
3929                 .sync_mode      = mode,
3930                 .nr_to_write    = nr_pages * 2,
3931                 .range_start    = start,
3932                 .range_end      = end + 1,
3933         };
3934
3935         while (start <= end) {
3936                 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3937                 if (clear_page_dirty_for_io(page))
3938                         ret = __extent_writepage(page, &wbc_writepages, &epd);
3939                 else {
3940                         if (tree->ops && tree->ops->writepage_end_io_hook)
3941                                 tree->ops->writepage_end_io_hook(page, start,
3942                                                  start + PAGE_CACHE_SIZE - 1,
3943                                                  NULL, 1);
3944                         unlock_page(page);
3945                 }
3946                 page_cache_release(page);
3947                 start += PAGE_CACHE_SIZE;
3948         }
3949
3950         flush_epd_write_bio(&epd);
3951         return ret;
3952 }
3953
3954 int extent_writepages(struct extent_io_tree *tree,
3955                       struct address_space *mapping,
3956                       get_extent_t *get_extent,
3957                       struct writeback_control *wbc)
3958 {
3959         int ret = 0;
3960         struct extent_page_data epd = {
3961                 .bio = NULL,
3962                 .tree = tree,
3963                 .get_extent = get_extent,
3964                 .extent_locked = 0,
3965                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3966                 .bio_flags = 0,
3967         };
3968
3969         ret = extent_write_cache_pages(tree, mapping, wbc,
3970                                        __extent_writepage, &epd,
3971                                        flush_write_bio);
3972         flush_epd_write_bio(&epd);
3973         return ret;
3974 }
3975
3976 int extent_readpages(struct extent_io_tree *tree,
3977                      struct address_space *mapping,
3978                      struct list_head *pages, unsigned nr_pages,
3979                      get_extent_t get_extent)
3980 {
3981         struct bio *bio = NULL;
3982         unsigned page_idx;
3983         unsigned long bio_flags = 0;
3984         struct page *pagepool[16];
3985         struct page *page;
3986         struct extent_map *em_cached = NULL;
3987         int nr = 0;
3988
3989         for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3990                 page = list_entry(pages->prev, struct page, lru);
3991
3992                 prefetchw(&page->flags);
3993                 list_del(&page->lru);
3994                 if (add_to_page_cache_lru(page, mapping,
3995                                         page->index, GFP_NOFS)) {
3996                         page_cache_release(page);
3997                         continue;
3998                 }
3999
4000                 pagepool[nr++] = page;
4001                 if (nr < ARRAY_SIZE(pagepool))
4002                         continue;
4003                 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4004                                    &bio, 0, &bio_flags, READ);
4005                 nr = 0;
4006         }
4007         if (nr)
4008                 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4009                                    &bio, 0, &bio_flags, READ);
4010
4011         if (em_cached)
4012                 free_extent_map(em_cached);
4013
4014         BUG_ON(!list_empty(pages));
4015         if (bio)
4016                 return submit_one_bio(READ, bio, 0, bio_flags);
4017         return 0;
4018 }
4019
4020 /*
4021  * basic invalidatepage code, this waits on any locked or writeback
4022  * ranges corresponding to the page, and then deletes any extent state
4023  * records from the tree
4024  */
4025 int extent_invalidatepage(struct extent_io_tree *tree,
4026                           struct page *page, unsigned long offset)
4027 {
4028         struct extent_state *cached_state = NULL;
4029         u64 start = page_offset(page);
4030         u64 end = start + PAGE_CACHE_SIZE - 1;
4031         size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4032
4033         start += ALIGN(offset, blocksize);
4034         if (start > end)
4035                 return 0;
4036
4037         lock_extent_bits(tree, start, end, 0, &cached_state);
4038         wait_on_page_writeback(page);
4039         clear_extent_bit(tree, start, end,
4040                          EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4041                          EXTENT_DO_ACCOUNTING,
4042                          1, 1, &cached_state, GFP_NOFS);
4043         return 0;
4044 }
4045
4046 /*
4047  * a helper for releasepage, this tests for areas of the page that
4048  * are locked or under IO and drops the related state bits if it is safe
4049  * to drop the page.
4050  */
4051 static int try_release_extent_state(struct extent_map_tree *map,
4052                                     struct extent_io_tree *tree,
4053                                     struct page *page, gfp_t mask)
4054 {
4055         u64 start = page_offset(page);
4056         u64 end = start + PAGE_CACHE_SIZE - 1;
4057         int ret = 1;
4058
4059         if (test_range_bit(tree, start, end,
4060                            EXTENT_IOBITS, 0, NULL))
4061                 ret = 0;
4062         else {
4063                 if ((mask & GFP_NOFS) == GFP_NOFS)
4064                         mask = GFP_NOFS;
4065                 /*
4066                  * at this point we can safely clear everything except the
4067                  * locked bit and the nodatasum bit
4068                  */
4069                 ret = clear_extent_bit(tree, start, end,
4070                                  ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4071                                  0, 0, NULL, mask);
4072
4073                 /* if clear_extent_bit failed for enomem reasons,
4074                  * we can't allow the release to continue.
4075                  */
4076                 if (ret < 0)
4077                         ret = 0;
4078                 else
4079                         ret = 1;
4080         }
4081         return ret;
4082 }
4083
4084 /*
4085  * a helper for releasepage.  As long as there are no locked extents
4086  * in the range corresponding to the page, both state records and extent
4087  * map records are removed
4088  */
4089 int try_release_extent_mapping(struct extent_map_tree *map,
4090                                struct extent_io_tree *tree, struct page *page,
4091                                gfp_t mask)
4092 {
4093         struct extent_map *em;
4094         u64 start = page_offset(page);
4095         u64 end = start + PAGE_CACHE_SIZE - 1;
4096
4097         if ((mask & __GFP_WAIT) &&
4098             page->mapping->host->i_size > 16 * 1024 * 1024) {
4099                 u64 len;
4100                 while (start <= end) {
4101                         len = end - start + 1;
4102                         write_lock(&map->lock);
4103                         em = lookup_extent_mapping(map, start, len);
4104                         if (!em) {
4105                                 write_unlock(&map->lock);
4106                                 break;
4107                         }
4108                         if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4109                             em->start != start) {
4110                                 write_unlock(&map->lock);
4111                                 free_extent_map(em);
4112                                 break;
4113                         }
4114                         if (!test_range_bit(tree, em->start,
4115                                             extent_map_end(em) - 1,
4116                                             EXTENT_LOCKED | EXTENT_WRITEBACK,
4117                                             0, NULL)) {
4118                                 remove_extent_mapping(map, em);
4119                                 /* once for the rb tree */
4120                                 free_extent_map(em);
4121                         }
4122                         start = extent_map_end(em);
4123                         write_unlock(&map->lock);
4124
4125                         /* once for us */
4126                         free_extent_map(em);
4127                 }
4128         }
4129         return try_release_extent_state(map, tree, page, mask);
4130 }
4131
4132 /*
4133  * helper function for fiemap, which doesn't want to see any holes.
4134  * This maps until we find something past 'last'
4135  */
4136 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4137                                                 u64 offset,
4138                                                 u64 last,
4139                                                 get_extent_t *get_extent)
4140 {
4141         u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4142         struct extent_map *em;
4143         u64 len;
4144
4145         if (offset >= last)
4146                 return NULL;
4147
4148         while (1) {
4149                 len = last - offset;
4150                 if (len == 0)
4151                         break;
4152                 len = ALIGN(len, sectorsize);
4153                 em = get_extent(inode, NULL, 0, offset, len, 0);
4154                 if (IS_ERR_OR_NULL(em))
4155                         return em;
4156
4157                 /* if this isn't a hole return it */
4158                 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4159                     em->block_start != EXTENT_MAP_HOLE) {
4160                         return em;
4161                 }
4162
4163                 /* this is a hole, advance to the next extent */
4164                 offset = extent_map_end(em);
4165                 free_extent_map(em);
4166                 if (offset >= last)
4167                         break;
4168         }
4169         return NULL;
4170 }
4171
4172 static noinline int count_ext_ref(u64 inum, u64 offset, u64 root_id, void *ctx)
4173 {
4174         unsigned long cnt = *((unsigned long *)ctx);
4175
4176         cnt++;
4177         *((unsigned long *)ctx) = cnt;
4178
4179         /* Now we're sure that the extent is shared. */
4180         if (cnt > 1)
4181                 return 1;
4182         return 0;
4183 }
4184
4185 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4186                 __u64 start, __u64 len, get_extent_t *get_extent)
4187 {
4188         int ret = 0;
4189         u64 off = start;
4190         u64 max = start + len;
4191         u32 flags = 0;
4192         u32 found_type;
4193         u64 last;
4194         u64 last_for_get_extent = 0;
4195         u64 disko = 0;
4196         u64 isize = i_size_read(inode);
4197         struct btrfs_key found_key;
4198         struct extent_map *em = NULL;
4199         struct extent_state *cached_state = NULL;
4200         struct btrfs_path *path;
4201         int end = 0;
4202         u64 em_start = 0;
4203         u64 em_len = 0;
4204         u64 em_end = 0;
4205
4206         if (len == 0)
4207                 return -EINVAL;
4208
4209         path = btrfs_alloc_path();
4210         if (!path)
4211                 return -ENOMEM;
4212         path->leave_spinning = 1;
4213
4214         start = round_down(start, BTRFS_I(inode)->root->sectorsize);
4215         len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start;
4216
4217         /*
4218          * lookup the last file extent.  We're not using i_size here
4219          * because there might be preallocation past i_size
4220          */
4221         ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
4222                                        path, btrfs_ino(inode), -1, 0);
4223         if (ret < 0) {
4224                 btrfs_free_path(path);
4225                 return ret;
4226         }
4227         WARN_ON(!ret);
4228         path->slots[0]--;
4229         btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4230         found_type = found_key.type;
4231
4232         /* No extents, but there might be delalloc bits */
4233         if (found_key.objectid != btrfs_ino(inode) ||
4234             found_type != BTRFS_EXTENT_DATA_KEY) {
4235                 /* have to trust i_size as the end */
4236                 last = (u64)-1;
4237                 last_for_get_extent = isize;
4238         } else {
4239                 /*
4240                  * remember the start of the last extent.  There are a
4241                  * bunch of different factors that go into the length of the
4242                  * extent, so its much less complex to remember where it started
4243                  */
4244                 last = found_key.offset;
4245                 last_for_get_extent = last + 1;
4246         }
4247         btrfs_release_path(path);
4248
4249         /*
4250          * we might have some extents allocated but more delalloc past those
4251          * extents.  so, we trust isize unless the start of the last extent is
4252          * beyond isize
4253          */
4254         if (last < isize) {
4255                 last = (u64)-1;
4256                 last_for_get_extent = isize;
4257         }
4258
4259         lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
4260                          &cached_state);
4261
4262         em = get_extent_skip_holes(inode, start, last_for_get_extent,
4263                                    get_extent);
4264         if (!em)
4265                 goto out;
4266         if (IS_ERR(em)) {
4267                 ret = PTR_ERR(em);
4268                 goto out;
4269         }
4270
4271         while (!end) {
4272                 u64 offset_in_extent = 0;
4273
4274                 /* break if the extent we found is outside the range */
4275                 if (em->start >= max || extent_map_end(em) < off)
4276                         break;
4277
4278                 /*
4279                  * get_extent may return an extent that starts before our
4280                  * requested range.  We have to make sure the ranges
4281                  * we return to fiemap always move forward and don't
4282                  * overlap, so adjust the offsets here
4283                  */
4284                 em_start = max(em->start, off);
4285
4286                 /*
4287                  * record the offset from the start of the extent
4288                  * for adjusting the disk offset below.  Only do this if the
4289                  * extent isn't compressed since our in ram offset may be past
4290                  * what we have actually allocated on disk.
4291                  */
4292                 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4293                         offset_in_extent = em_start - em->start;
4294                 em_end = extent_map_end(em);
4295                 em_len = em_end - em_start;
4296                 disko = 0;
4297                 flags = 0;
4298
4299                 /*
4300                  * bump off for our next call to get_extent
4301                  */
4302                 off = extent_map_end(em);
4303                 if (off >= max)
4304                         end = 1;
4305
4306                 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4307                         end = 1;
4308                         flags |= FIEMAP_EXTENT_LAST;
4309                 } else if (em->block_start == EXTENT_MAP_INLINE) {
4310                         flags |= (FIEMAP_EXTENT_DATA_INLINE |
4311                                   FIEMAP_EXTENT_NOT_ALIGNED);
4312                 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4313                         flags |= (FIEMAP_EXTENT_DELALLOC |
4314                                   FIEMAP_EXTENT_UNKNOWN);
4315                 } else {
4316                         unsigned long ref_cnt = 0;
4317
4318                         disko = em->block_start + offset_in_extent;
4319
4320                         /*
4321                          * As btrfs supports shared space, this information
4322                          * can be exported to userspace tools via
4323                          * flag FIEMAP_EXTENT_SHARED.
4324                          */
4325                         ret = iterate_inodes_from_logical(
4326                                         em->block_start,
4327                                         BTRFS_I(inode)->root->fs_info,
4328                                         path, count_ext_ref, &ref_cnt);
4329                         if (ret < 0 && ret != -ENOENT)
4330                                 goto out_free;
4331
4332                         if (ref_cnt > 1)
4333                                 flags |= FIEMAP_EXTENT_SHARED;
4334                 }
4335                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4336                         flags |= FIEMAP_EXTENT_ENCODED;
4337
4338                 free_extent_map(em);
4339                 em = NULL;
4340                 if ((em_start >= last) || em_len == (u64)-1 ||
4341                    (last == (u64)-1 && isize <= em_end)) {
4342                         flags |= FIEMAP_EXTENT_LAST;
4343                         end = 1;
4344                 }
4345
4346                 /* now scan forward to see if this is really the last extent. */
4347                 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4348                                            get_extent);
4349                 if (IS_ERR(em)) {
4350                         ret = PTR_ERR(em);
4351                         goto out;
4352                 }
4353                 if (!em) {
4354                         flags |= FIEMAP_EXTENT_LAST;
4355                         end = 1;
4356                 }
4357                 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4358                                               em_len, flags);
4359                 if (ret)
4360                         goto out_free;
4361         }
4362 out_free:
4363         free_extent_map(em);
4364 out:
4365         btrfs_free_path(path);
4366         unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4367                              &cached_state, GFP_NOFS);
4368         return ret;
4369 }
4370
4371 static void __free_extent_buffer(struct extent_buffer *eb)
4372 {
4373         btrfs_leak_debug_del(&eb->leak_list);
4374         kmem_cache_free(extent_buffer_cache, eb);
4375 }
4376
4377 int extent_buffer_under_io(struct extent_buffer *eb)
4378 {
4379         return (atomic_read(&eb->io_pages) ||
4380                 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4381                 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4382 }
4383
4384 /*
4385  * Helper for releasing extent buffer page.
4386  */
4387 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4388                                                 unsigned long start_idx)
4389 {
4390         unsigned long index;
4391         unsigned long num_pages;
4392         struct page *page;
4393         int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4394
4395         BUG_ON(extent_buffer_under_io(eb));
4396
4397         num_pages = num_extent_pages(eb->start, eb->len);
4398         index = start_idx + num_pages;
4399         if (start_idx >= index)
4400                 return;
4401
4402         do {
4403                 index--;
4404                 page = extent_buffer_page(eb, index);
4405                 if (page && mapped) {
4406                         spin_lock(&page->mapping->private_lock);
4407                         /*
4408                          * We do this since we'll remove the pages after we've
4409                          * removed the eb from the radix tree, so we could race
4410                          * and have this page now attached to the new eb.  So
4411                          * only clear page_private if it's still connected to
4412                          * this eb.
4413                          */
4414                         if (PagePrivate(page) &&
4415                             page->private == (unsigned long)eb) {
4416                                 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4417                                 BUG_ON(PageDirty(page));
4418                                 BUG_ON(PageWriteback(page));
4419                                 /*
4420                                  * We need to make sure we haven't be attached
4421                                  * to a new eb.
4422                                  */
4423                                 ClearPagePrivate(page);
4424                                 set_page_private(page, 0);
4425                                 /* One for the page private */
4426                                 page_cache_release(page);
4427                         }
4428                         spin_unlock(&page->mapping->private_lock);
4429
4430                 }
4431                 if (page) {
4432                         /* One for when we alloced the page */
4433                         page_cache_release(page);
4434                 }
4435         } while (index != start_idx);
4436 }
4437
4438 /*
4439  * Helper for releasing the extent buffer.
4440  */
4441 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4442 {
4443         btrfs_release_extent_buffer_page(eb, 0);
4444         __free_extent_buffer(eb);
4445 }
4446
4447 static struct extent_buffer *
4448 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4449                       unsigned long len, gfp_t mask)
4450 {
4451         struct extent_buffer *eb = NULL;
4452
4453         eb = kmem_cache_zalloc(extent_buffer_cache, mask);
4454         if (eb == NULL)
4455                 return NULL;
4456         eb->start = start;
4457         eb->len = len;
4458         eb->fs_info = fs_info;
4459         eb->bflags = 0;
4460         rwlock_init(&eb->lock);
4461         atomic_set(&eb->write_locks, 0);
4462         atomic_set(&eb->read_locks, 0);
4463         atomic_set(&eb->blocking_readers, 0);
4464         atomic_set(&eb->blocking_writers, 0);
4465         atomic_set(&eb->spinning_readers, 0);
4466         atomic_set(&eb->spinning_writers, 0);
4467         eb->lock_nested = 0;
4468         init_waitqueue_head(&eb->write_lock_wq);
4469         init_waitqueue_head(&eb->read_lock_wq);
4470
4471         btrfs_leak_debug_add(&eb->leak_list, &buffers);
4472
4473         spin_lock_init(&eb->refs_lock);
4474         atomic_set(&eb->refs, 1);
4475         atomic_set(&eb->io_pages, 0);
4476
4477         /*
4478          * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4479          */
4480         BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4481                 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4482         BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4483
4484         return eb;
4485 }
4486
4487 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4488 {
4489         unsigned long i;
4490         struct page *p;
4491         struct extent_buffer *new;
4492         unsigned long num_pages = num_extent_pages(src->start, src->len);
4493
4494         new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_NOFS);
4495         if (new == NULL)
4496                 return NULL;
4497
4498         for (i = 0; i < num_pages; i++) {
4499                 p = alloc_page(GFP_NOFS);
4500                 if (!p) {
4501                         btrfs_release_extent_buffer(new);
4502                         return NULL;
4503                 }
4504                 attach_extent_buffer_page(new, p);
4505                 WARN_ON(PageDirty(p));
4506                 SetPageUptodate(p);
4507                 new->pages[i] = p;
4508         }
4509
4510         copy_extent_buffer(new, src, 0, 0, src->len);
4511         set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4512         set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4513
4514         return new;
4515 }
4516
4517 struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4518 {
4519         struct extent_buffer *eb;
4520         unsigned long num_pages = num_extent_pages(0, len);
4521         unsigned long i;
4522
4523         eb = __alloc_extent_buffer(NULL, start, len, GFP_NOFS);
4524         if (!eb)
4525                 return NULL;
4526
4527         for (i = 0; i < num_pages; i++) {
4528                 eb->pages[i] = alloc_page(GFP_NOFS);
4529                 if (!eb->pages[i])
4530                         goto err;
4531         }
4532         set_extent_buffer_uptodate(eb);
4533         btrfs_set_header_nritems(eb, 0);
4534         set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4535
4536         return eb;
4537 err:
4538         for (; i > 0; i--)
4539                 __free_page(eb->pages[i - 1]);
4540         __free_extent_buffer(eb);
4541         return NULL;
4542 }
4543
4544 static void check_buffer_tree_ref(struct extent_buffer *eb)
4545 {
4546         int refs;
4547         /* the ref bit is tricky.  We have to make sure it is set
4548          * if we have the buffer dirty.   Otherwise the
4549          * code to free a buffer can end up dropping a dirty
4550          * page
4551          *
4552          * Once the ref bit is set, it won't go away while the
4553          * buffer is dirty or in writeback, and it also won't
4554          * go away while we have the reference count on the
4555          * eb bumped.
4556          *
4557          * We can't just set the ref bit without bumping the
4558          * ref on the eb because free_extent_buffer might
4559          * see the ref bit and try to clear it.  If this happens
4560          * free_extent_buffer might end up dropping our original
4561          * ref by mistake and freeing the page before we are able
4562          * to add one more ref.
4563          *
4564          * So bump the ref count first, then set the bit.  If someone
4565          * beat us to it, drop the ref we added.
4566          */
4567         refs = atomic_read(&eb->refs);
4568         if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4569                 return;
4570
4571         spin_lock(&eb->refs_lock);
4572         if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4573                 atomic_inc(&eb->refs);
4574         spin_unlock(&eb->refs_lock);
4575 }
4576
4577 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4578                 struct page *accessed)
4579 {
4580         unsigned long num_pages, i;
4581
4582         check_buffer_tree_ref(eb);
4583
4584         num_pages = num_extent_pages(eb->start, eb->len);
4585         for (i = 0; i < num_pages; i++) {
4586                 struct page *p = extent_buffer_page(eb, i);
4587                 if (p != accessed)
4588                         mark_page_accessed(p);
4589         }
4590 }
4591
4592 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4593                                          u64 start)
4594 {
4595         struct extent_buffer *eb;
4596
4597         rcu_read_lock();
4598         eb = radix_tree_lookup(&fs_info->buffer_radix,
4599                                start >> PAGE_CACHE_SHIFT);
4600         if (eb && atomic_inc_not_zero(&eb->refs)) {
4601                 rcu_read_unlock();
4602                 mark_extent_buffer_accessed(eb, NULL);
4603                 return eb;
4604         }
4605         rcu_read_unlock();
4606
4607         return NULL;
4608 }
4609
4610 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4611 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4612                                                u64 start, unsigned long len)
4613 {
4614         struct extent_buffer *eb, *exists = NULL;
4615         int ret;
4616
4617         eb = find_extent_buffer(fs_info, start);
4618         if (eb)
4619                 return eb;
4620         eb = alloc_dummy_extent_buffer(start, len);
4621         if (!eb)
4622                 return NULL;
4623         eb->fs_info = fs_info;
4624 again:
4625         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4626         if (ret)
4627                 goto free_eb;
4628         spin_lock(&fs_info->buffer_lock);
4629         ret = radix_tree_insert(&fs_info->buffer_radix,
4630                                 start >> PAGE_CACHE_SHIFT, eb);
4631         spin_unlock(&fs_info->buffer_lock);
4632         radix_tree_preload_end();
4633         if (ret == -EEXIST) {
4634                 exists = find_extent_buffer(fs_info, start);
4635                 if (exists)
4636                         goto free_eb;
4637                 else
4638                         goto again;
4639         }
4640         check_buffer_tree_ref(eb);
4641         set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4642
4643         /*
4644          * We will free dummy extent buffer's if they come into
4645          * free_extent_buffer with a ref count of 2, but if we are using this we
4646          * want the buffers to stay in memory until we're done with them, so
4647          * bump the ref count again.
4648          */
4649         atomic_inc(&eb->refs);
4650         return eb;
4651 free_eb:
4652         btrfs_release_extent_buffer(eb);
4653         return exists;
4654 }
4655 #endif
4656
4657 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4658                                           u64 start, unsigned long len)
4659 {
4660         unsigned long num_pages = num_extent_pages(start, len);
4661         unsigned long i;
4662         unsigned long index = start >> PAGE_CACHE_SHIFT;
4663         struct extent_buffer *eb;
4664         struct extent_buffer *exists = NULL;
4665         struct page *p;
4666         struct address_space *mapping = fs_info->btree_inode->i_mapping;
4667         int uptodate = 1;
4668         int ret;
4669
4670         eb = find_extent_buffer(fs_info, start);
4671         if (eb)
4672                 return eb;
4673
4674         eb = __alloc_extent_buffer(fs_info, start, len, GFP_NOFS);
4675         if (!eb)
4676                 return NULL;
4677
4678         for (i = 0; i < num_pages; i++, index++) {
4679                 p = find_or_create_page(mapping, index, GFP_NOFS);
4680                 if (!p)
4681                         goto free_eb;
4682
4683                 spin_lock(&mapping->private_lock);
4684                 if (PagePrivate(p)) {
4685                         /*
4686                          * We could have already allocated an eb for this page
4687                          * and attached one so lets see if we can get a ref on
4688                          * the existing eb, and if we can we know it's good and
4689                          * we can just return that one, else we know we can just
4690                          * overwrite page->private.
4691                          */
4692                         exists = (struct extent_buffer *)p->private;
4693                         if (atomic_inc_not_zero(&exists->refs)) {
4694                                 spin_unlock(&mapping->private_lock);
4695                                 unlock_page(p);
4696                                 page_cache_release(p);
4697                                 mark_extent_buffer_accessed(exists, p);
4698                                 goto free_eb;
4699                         }
4700
4701                         /*
4702                          * Do this so attach doesn't complain and we need to
4703                          * drop the ref the old guy had.
4704                          */
4705                         ClearPagePrivate(p);
4706                         WARN_ON(PageDirty(p));
4707                         page_cache_release(p);
4708                 }
4709                 attach_extent_buffer_page(eb, p);
4710                 spin_unlock(&mapping->private_lock);
4711                 WARN_ON(PageDirty(p));
4712                 eb->pages[i] = p;
4713                 if (!PageUptodate(p))
4714                         uptodate = 0;
4715
4716                 /*
4717                  * see below about how we avoid a nasty race with release page
4718                  * and why we unlock later
4719                  */
4720         }
4721         if (uptodate)
4722                 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4723 again:
4724         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4725         if (ret)
4726                 goto free_eb;
4727
4728         spin_lock(&fs_info->buffer_lock);
4729         ret = radix_tree_insert(&fs_info->buffer_radix,
4730                                 start >> PAGE_CACHE_SHIFT, eb);
4731         spin_unlock(&fs_info->buffer_lock);
4732         radix_tree_preload_end();
4733         if (ret == -EEXIST) {
4734                 exists = find_extent_buffer(fs_info, start);
4735                 if (exists)
4736                         goto free_eb;
4737                 else
4738                         goto again;
4739         }
4740         /* add one reference for the tree */
4741         check_buffer_tree_ref(eb);
4742         set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4743
4744         /*
4745          * there is a race where release page may have
4746          * tried to find this extent buffer in the radix
4747          * but failed.  It will tell the VM it is safe to
4748          * reclaim the, and it will clear the page private bit.
4749          * We must make sure to set the page private bit properly
4750          * after the extent buffer is in the radix tree so
4751          * it doesn't get lost
4752          */
4753         SetPageChecked(eb->pages[0]);
4754         for (i = 1; i < num_pages; i++) {
4755                 p = extent_buffer_page(eb, i);
4756                 ClearPageChecked(p);
4757                 unlock_page(p);
4758         }
4759         unlock_page(eb->pages[0]);
4760         return eb;
4761
4762 free_eb:
4763         for (i = 0; i < num_pages; i++) {
4764                 if (eb->pages[i])
4765                         unlock_page(eb->pages[i]);
4766         }
4767
4768         WARN_ON(!atomic_dec_and_test(&eb->refs));
4769         btrfs_release_extent_buffer(eb);
4770         return exists;
4771 }
4772
4773 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4774 {
4775         struct extent_buffer *eb =
4776                         container_of(head, struct extent_buffer, rcu_head);
4777
4778         __free_extent_buffer(eb);
4779 }
4780
4781 /* Expects to have eb->eb_lock already held */
4782 static int release_extent_buffer(struct extent_buffer *eb)
4783 {
4784         WARN_ON(atomic_read(&eb->refs) == 0);
4785         if (atomic_dec_and_test(&eb->refs)) {
4786                 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
4787                         struct btrfs_fs_info *fs_info = eb->fs_info;
4788
4789                         spin_unlock(&eb->refs_lock);
4790
4791                         spin_lock(&fs_info->buffer_lock);
4792                         radix_tree_delete(&fs_info->buffer_radix,
4793                                           eb->start >> PAGE_CACHE_SHIFT);
4794                         spin_unlock(&fs_info->buffer_lock);
4795                 } else {
4796                         spin_unlock(&eb->refs_lock);
4797                 }
4798
4799                 /* Should be safe to release our pages at this point */
4800                 btrfs_release_extent_buffer_page(eb, 0);
4801                 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4802                 return 1;
4803         }
4804         spin_unlock(&eb->refs_lock);
4805
4806         return 0;
4807 }
4808
4809 void free_extent_buffer(struct extent_buffer *eb)
4810 {
4811         int refs;
4812         int old;
4813         if (!eb)
4814                 return;
4815
4816         while (1) {
4817                 refs = atomic_read(&eb->refs);
4818                 if (refs <= 3)
4819                         break;
4820                 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
4821                 if (old == refs)
4822                         return;
4823         }
4824
4825         spin_lock(&eb->refs_lock);
4826         if (atomic_read(&eb->refs) == 2 &&
4827             test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4828                 atomic_dec(&eb->refs);
4829
4830         if (atomic_read(&eb->refs) == 2 &&
4831             test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4832             !extent_buffer_under_io(eb) &&
4833             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4834                 atomic_dec(&eb->refs);
4835
4836         /*
4837          * I know this is terrible, but it's temporary until we stop tracking
4838          * the uptodate bits and such for the extent buffers.
4839          */
4840         release_extent_buffer(eb);
4841 }
4842
4843 void free_extent_buffer_stale(struct extent_buffer *eb)
4844 {
4845         if (!eb)
4846                 return;
4847
4848         spin_lock(&eb->refs_lock);
4849         set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4850
4851         if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4852             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4853                 atomic_dec(&eb->refs);
4854         release_extent_buffer(eb);
4855 }
4856
4857 void clear_extent_buffer_dirty(struct extent_buffer *eb)
4858 {
4859         unsigned long i;
4860         unsigned long num_pages;
4861         struct page *page;
4862
4863         num_pages = num_extent_pages(eb->start, eb->len);
4864
4865         for (i = 0; i < num_pages; i++) {
4866                 page = extent_buffer_page(eb, i);
4867                 if (!PageDirty(page))
4868                         continue;
4869
4870                 lock_page(page);
4871                 WARN_ON(!PagePrivate(page));
4872
4873                 clear_page_dirty_for_io(page);
4874                 spin_lock_irq(&page->mapping->tree_lock);
4875                 if (!PageDirty(page)) {
4876                         radix_tree_tag_clear(&page->mapping->page_tree,
4877                                                 page_index(page),
4878                                                 PAGECACHE_TAG_DIRTY);
4879                 }
4880                 spin_unlock_irq(&page->mapping->tree_lock);
4881                 ClearPageError(page);
4882                 unlock_page(page);
4883         }
4884         WARN_ON(atomic_read(&eb->refs) == 0);
4885 }
4886
4887 int set_extent_buffer_dirty(struct extent_buffer *eb)
4888 {
4889         unsigned long i;
4890         unsigned long num_pages;
4891         int was_dirty = 0;
4892
4893         check_buffer_tree_ref(eb);
4894
4895         was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4896
4897         num_pages = num_extent_pages(eb->start, eb->len);
4898         WARN_ON(atomic_read(&eb->refs) == 0);
4899         WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4900
4901         for (i = 0; i < num_pages; i++)
4902                 set_page_dirty(extent_buffer_page(eb, i));
4903         return was_dirty;
4904 }
4905
4906 int clear_extent_buffer_uptodate(struct extent_buffer *eb)
4907 {
4908         unsigned long i;
4909         struct page *page;
4910         unsigned long num_pages;
4911
4912         clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4913         num_pages = num_extent_pages(eb->start, eb->len);
4914         for (i = 0; i < num_pages; i++) {
4915                 page = extent_buffer_page(eb, i);
4916                 if (page)
4917                         ClearPageUptodate(page);
4918         }
4919         return 0;
4920 }
4921
4922 int set_extent_buffer_uptodate(struct extent_buffer *eb)
4923 {
4924         unsigned long i;
4925         struct page *page;
4926         unsigned long num_pages;
4927
4928         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4929         num_pages = num_extent_pages(eb->start, eb->len);
4930         for (i = 0; i < num_pages; i++) {
4931                 page = extent_buffer_page(eb, i);
4932                 SetPageUptodate(page);
4933         }
4934         return 0;
4935 }
4936
4937 int extent_buffer_uptodate(struct extent_buffer *eb)
4938 {
4939         return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4940 }
4941
4942 int read_extent_buffer_pages(struct extent_io_tree *tree,
4943                              struct extent_buffer *eb, u64 start, int wait,
4944                              get_extent_t *get_extent, int mirror_num)
4945 {
4946         unsigned long i;
4947         unsigned long start_i;
4948         struct page *page;
4949         int err;
4950         int ret = 0;
4951         int locked_pages = 0;
4952         int all_uptodate = 1;
4953         unsigned long num_pages;
4954         unsigned long num_reads = 0;
4955         struct bio *bio = NULL;
4956         unsigned long bio_flags = 0;
4957
4958         if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4959                 return 0;
4960
4961         if (start) {
4962                 WARN_ON(start < eb->start);
4963                 start_i = (start >> PAGE_CACHE_SHIFT) -
4964                         (eb->start >> PAGE_CACHE_SHIFT);
4965         } else {
4966                 start_i = 0;
4967         }
4968
4969         num_pages = num_extent_pages(eb->start, eb->len);
4970         for (i = start_i; i < num_pages; i++) {
4971                 page = extent_buffer_page(eb, i);
4972                 if (wait == WAIT_NONE) {
4973                         if (!trylock_page(page))
4974                                 goto unlock_exit;
4975                 } else {
4976                         lock_page(page);
4977                 }
4978                 locked_pages++;
4979                 if (!PageUptodate(page)) {
4980                         num_reads++;
4981                         all_uptodate = 0;
4982                 }
4983         }
4984         if (all_uptodate) {
4985                 if (start_i == 0)
4986                         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4987                 goto unlock_exit;
4988         }
4989
4990         clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
4991         eb->read_mirror = 0;
4992         atomic_set(&eb->io_pages, num_reads);
4993         for (i = start_i; i < num_pages; i++) {
4994                 page = extent_buffer_page(eb, i);
4995                 if (!PageUptodate(page)) {
4996                         ClearPageError(page);
4997                         err = __extent_read_full_page(tree, page,
4998                                                       get_extent, &bio,
4999                                                       mirror_num, &bio_flags,
5000                                                       READ | REQ_META);
5001                         if (err)
5002                                 ret = err;
5003                 } else {
5004                         unlock_page(page);
5005                 }
5006         }
5007
5008         if (bio) {
5009                 err = submit_one_bio(READ | REQ_META, bio, mirror_num,
5010                                      bio_flags);
5011                 if (err)
5012                         return err;
5013         }
5014
5015         if (ret || wait != WAIT_COMPLETE)
5016                 return ret;
5017
5018         for (i = start_i; i < num_pages; i++) {
5019                 page = extent_buffer_page(eb, i);
5020                 wait_on_page_locked(page);
5021                 if (!PageUptodate(page))
5022                         ret = -EIO;
5023         }
5024
5025         return ret;
5026
5027 unlock_exit:
5028         i = start_i;
5029         while (locked_pages > 0) {
5030                 page = extent_buffer_page(eb, i);
5031                 i++;
5032                 unlock_page(page);
5033                 locked_pages--;
5034         }
5035         return ret;
5036 }
5037
5038 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5039                         unsigned long start,
5040                         unsigned long len)
5041 {
5042         size_t cur;
5043         size_t offset;
5044         struct page *page;
5045         char *kaddr;
5046         char *dst = (char *)dstv;
5047         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5048         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5049
5050         WARN_ON(start > eb->len);
5051         WARN_ON(start + len > eb->start + eb->len);
5052
5053         offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5054
5055         while (len > 0) {
5056                 page = extent_buffer_page(eb, i);
5057
5058                 cur = min(len, (PAGE_CACHE_SIZE - offset));
5059                 kaddr = page_address(page);
5060                 memcpy(dst, kaddr + offset, cur);
5061
5062                 dst += cur;
5063                 len -= cur;
5064                 offset = 0;
5065                 i++;
5066         }
5067 }
5068
5069 int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5070                         unsigned long start,
5071                         unsigned long len)
5072 {
5073         size_t cur;
5074         size_t offset;
5075         struct page *page;
5076         char *kaddr;
5077         char __user *dst = (char __user *)dstv;
5078         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5079         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5080         int ret = 0;
5081
5082         WARN_ON(start > eb->len);
5083         WARN_ON(start + len > eb->start + eb->len);
5084
5085         offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5086
5087         while (len > 0) {
5088                 page = extent_buffer_page(eb, i);
5089
5090                 cur = min(len, (PAGE_CACHE_SIZE - offset));
5091                 kaddr = page_address(page);
5092                 if (copy_to_user(dst, kaddr + offset, cur)) {
5093                         ret = -EFAULT;
5094                         break;
5095                 }
5096
5097                 dst += cur;
5098                 len -= cur;
5099                 offset = 0;
5100                 i++;
5101         }
5102
5103         return ret;
5104 }
5105
5106 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
5107                                unsigned long min_len, char **map,
5108                                unsigned long *map_start,
5109                                unsigned long *map_len)
5110 {
5111         size_t offset = start & (PAGE_CACHE_SIZE - 1);
5112         char *kaddr;
5113         struct page *p;
5114         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5115         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5116         unsigned long end_i = (start_offset + start + min_len - 1) >>
5117                 PAGE_CACHE_SHIFT;
5118
5119         if (i != end_i)
5120                 return -EINVAL;
5121
5122         if (i == 0) {
5123                 offset = start_offset;
5124                 *map_start = 0;
5125         } else {
5126                 offset = 0;
5127                 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
5128         }
5129
5130         if (start + min_len > eb->len) {
5131                 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
5132                        "wanted %lu %lu\n",
5133                        eb->start, eb->len, start, min_len);
5134                 return -EINVAL;
5135         }
5136
5137         p = extent_buffer_page(eb, i);
5138         kaddr = page_address(p);
5139         *map = kaddr + offset;
5140         *map_len = PAGE_CACHE_SIZE - offset;
5141         return 0;
5142 }
5143
5144 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5145                           unsigned long start,
5146                           unsigned long len)
5147 {
5148         size_t cur;
5149         size_t offset;
5150         struct page *page;
5151         char *kaddr;
5152         char *ptr = (char *)ptrv;
5153         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5154         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5155         int ret = 0;
5156
5157         WARN_ON(start > eb->len);
5158         WARN_ON(start + len > eb->start + eb->len);
5159
5160         offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5161
5162         while (len > 0) {
5163                 page = extent_buffer_page(eb, i);
5164
5165                 cur = min(len, (PAGE_CACHE_SIZE - offset));
5166
5167                 kaddr = page_address(page);
5168                 ret = memcmp(ptr, kaddr + offset, cur);
5169                 if (ret)
5170                         break;
5171
5172                 ptr += cur;
5173                 len -= cur;
5174                 offset = 0;
5175                 i++;
5176         }
5177         return ret;
5178 }
5179
5180 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5181                          unsigned long start, unsigned long len)
5182 {
5183         size_t cur;
5184         size_t offset;
5185         struct page *page;
5186         char *kaddr;
5187         char *src = (char *)srcv;
5188         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5189         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5190
5191         WARN_ON(start > eb->len);
5192         WARN_ON(start + len > eb->start + eb->len);
5193
5194         offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5195
5196         while (len > 0) {
5197                 page = extent_buffer_page(eb, i);
5198                 WARN_ON(!PageUptodate(page));
5199
5200                 cur = min(len, PAGE_CACHE_SIZE - offset);
5201                 kaddr = page_address(page);
5202                 memcpy(kaddr + offset, src, cur);
5203
5204                 src += cur;
5205                 len -= cur;
5206                 offset = 0;
5207                 i++;
5208         }
5209 }
5210
5211 void memset_extent_buffer(struct extent_buffer *eb, char c,
5212                           unsigned long start, unsigned long len)
5213 {
5214         size_t cur;
5215         size_t offset;
5216         struct page *page;
5217         char *kaddr;
5218         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5219         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5220
5221         WARN_ON(start > eb->len);
5222         WARN_ON(start + len > eb->start + eb->len);
5223
5224         offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5225
5226         while (len > 0) {
5227                 page = extent_buffer_page(eb, i);
5228                 WARN_ON(!PageUptodate(page));
5229
5230                 cur = min(len, PAGE_CACHE_SIZE - offset);
5231                 kaddr = page_address(page);
5232                 memset(kaddr + offset, c, cur);
5233
5234                 len -= cur;
5235                 offset = 0;
5236                 i++;
5237         }
5238 }
5239
5240 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5241                         unsigned long dst_offset, unsigned long src_offset,
5242                         unsigned long len)
5243 {
5244         u64 dst_len = dst->len;
5245         size_t cur;
5246         size_t offset;
5247         struct page *page;
5248         char *kaddr;
5249         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5250         unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5251
5252         WARN_ON(src->len != dst_len);
5253
5254         offset = (start_offset + dst_offset) &
5255                 (PAGE_CACHE_SIZE - 1);
5256
5257         while (len > 0) {
5258                 page = extent_buffer_page(dst, i);
5259                 WARN_ON(!PageUptodate(page));
5260
5261                 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
5262
5263                 kaddr = page_address(page);
5264                 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5265
5266                 src_offset += cur;
5267                 len -= cur;
5268                 offset = 0;
5269                 i++;
5270         }
5271 }
5272
5273 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5274 {
5275         unsigned long distance = (src > dst) ? src - dst : dst - src;
5276         return distance < len;
5277 }
5278
5279 static void copy_pages(struct page *dst_page, struct page *src_page,
5280                        unsigned long dst_off, unsigned long src_off,
5281                        unsigned long len)
5282 {
5283         char *dst_kaddr = page_address(dst_page);
5284         char *src_kaddr;
5285         int must_memmove = 0;
5286
5287         if (dst_page != src_page) {
5288                 src_kaddr = page_address(src_page);
5289         } else {
5290                 src_kaddr = dst_kaddr;
5291                 if (areas_overlap(src_off, dst_off, len))
5292                         must_memmove = 1;
5293         }
5294
5295         if (must_memmove)
5296                 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5297         else
5298                 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5299 }
5300
5301 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5302                            unsigned long src_offset, unsigned long len)
5303 {
5304         size_t cur;
5305         size_t dst_off_in_page;
5306         size_t src_off_in_page;
5307         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5308         unsigned long dst_i;
5309         unsigned long src_i;
5310
5311         if (src_offset + len > dst->len) {
5312                 printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move "
5313                        "len %lu dst len %lu\n", src_offset, len, dst->len);
5314                 BUG_ON(1);
5315         }
5316         if (dst_offset + len > dst->len) {
5317                 printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move "
5318                        "len %lu dst len %lu\n", dst_offset, len, dst->len);
5319                 BUG_ON(1);
5320         }
5321
5322         while (len > 0) {
5323                 dst_off_in_page = (start_offset + dst_offset) &
5324                         (PAGE_CACHE_SIZE - 1);
5325                 src_off_in_page = (start_offset + src_offset) &
5326                         (PAGE_CACHE_SIZE - 1);
5327
5328                 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5329                 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5330
5331                 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5332                                                src_off_in_page));
5333                 cur = min_t(unsigned long, cur,
5334                         (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5335
5336                 copy_pages(extent_buffer_page(dst, dst_i),
5337                            extent_buffer_page(dst, src_i),
5338                            dst_off_in_page, src_off_in_page, cur);
5339
5340                 src_offset += cur;
5341                 dst_offset += cur;
5342                 len -= cur;
5343         }
5344 }
5345
5346 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5347                            unsigned long src_offset, unsigned long len)
5348 {
5349         size_t cur;
5350         size_t dst_off_in_page;
5351         size_t src_off_in_page;
5352         unsigned long dst_end = dst_offset + len - 1;
5353         unsigned long src_end = src_offset + len - 1;
5354         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5355         unsigned long dst_i;
5356         unsigned long src_i;
5357
5358         if (src_offset + len > dst->len) {
5359                 printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move "
5360                        "len %lu len %lu\n", src_offset, len, dst->len);
5361                 BUG_ON(1);
5362         }
5363         if (dst_offset + len > dst->len) {
5364                 printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move "
5365                        "len %lu len %lu\n", dst_offset, len, dst->len);
5366                 BUG_ON(1);
5367         }
5368         if (dst_offset < src_offset) {
5369                 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5370                 return;
5371         }
5372         while (len > 0) {
5373                 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5374                 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5375
5376                 dst_off_in_page = (start_offset + dst_end) &
5377                         (PAGE_CACHE_SIZE - 1);
5378                 src_off_in_page = (start_offset + src_end) &
5379                         (PAGE_CACHE_SIZE - 1);
5380
5381                 cur = min_t(unsigned long, len, src_off_in_page + 1);
5382                 cur = min(cur, dst_off_in_page + 1);
5383                 copy_pages(extent_buffer_page(dst, dst_i),
5384                            extent_buffer_page(dst, src_i),
5385                            dst_off_in_page - cur + 1,
5386                            src_off_in_page - cur + 1, cur);
5387
5388                 dst_end -= cur;
5389                 src_end -= cur;
5390                 len -= cur;
5391         }
5392 }
5393
5394 int try_release_extent_buffer(struct page *page)
5395 {
5396         struct extent_buffer *eb;
5397
5398         /*
5399          * We need to make sure noboody is attaching this page to an eb right
5400          * now.
5401          */
5402         spin_lock(&page->mapping->private_lock);
5403         if (!PagePrivate(page)) {
5404                 spin_unlock(&page->mapping->private_lock);
5405                 return 1;
5406         }
5407
5408         eb = (struct extent_buffer *)page->private;
5409         BUG_ON(!eb);
5410
5411         /*
5412          * This is a little awful but should be ok, we need to make sure that
5413          * the eb doesn't disappear out from under us while we're looking at
5414          * this page.
5415          */
5416         spin_lock(&eb->refs_lock);
5417         if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5418                 spin_unlock(&eb->refs_lock);
5419                 spin_unlock(&page->mapping->private_lock);
5420                 return 0;
5421         }
5422         spin_unlock(&page->mapping->private_lock);
5423
5424         /*
5425          * If tree ref isn't set then we know the ref on this eb is a real ref,
5426          * so just return, this page will likely be freed soon anyway.
5427          */
5428         if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5429                 spin_unlock(&eb->refs_lock);
5430                 return 0;
5431         }
5432
5433         return release_extent_buffer(eb);
5434 }