6acccc4a7f2a20f809c610b28a5a39470ced88fa
[cascardo/linux.git] / fs / btrfs / file.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/aio.h>
28 #include <linux/falloc.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
31 #include <linux/statfs.h>
32 #include <linux/compat.h>
33 #include <linux/slab.h>
34 #include <linux/btrfs.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "print-tree.h"
40 #include "tree-log.h"
41 #include "locking.h"
42 #include "volumes.h"
43
44 static struct kmem_cache *btrfs_inode_defrag_cachep;
45 /*
46  * when auto defrag is enabled we
47  * queue up these defrag structs to remember which
48  * inodes need defragging passes
49  */
50 struct inode_defrag {
51         struct rb_node rb_node;
52         /* objectid */
53         u64 ino;
54         /*
55          * transid where the defrag was added, we search for
56          * extents newer than this
57          */
58         u64 transid;
59
60         /* root objectid */
61         u64 root;
62
63         /* last offset we were able to defrag */
64         u64 last_offset;
65
66         /* if we've wrapped around back to zero once already */
67         int cycled;
68 };
69
70 static int __compare_inode_defrag(struct inode_defrag *defrag1,
71                                   struct inode_defrag *defrag2)
72 {
73         if (defrag1->root > defrag2->root)
74                 return 1;
75         else if (defrag1->root < defrag2->root)
76                 return -1;
77         else if (defrag1->ino > defrag2->ino)
78                 return 1;
79         else if (defrag1->ino < defrag2->ino)
80                 return -1;
81         else
82                 return 0;
83 }
84
85 /* pop a record for an inode into the defrag tree.  The lock
86  * must be held already
87  *
88  * If you're inserting a record for an older transid than an
89  * existing record, the transid already in the tree is lowered
90  *
91  * If an existing record is found the defrag item you
92  * pass in is freed
93  */
94 static int __btrfs_add_inode_defrag(struct inode *inode,
95                                     struct inode_defrag *defrag)
96 {
97         struct btrfs_root *root = BTRFS_I(inode)->root;
98         struct inode_defrag *entry;
99         struct rb_node **p;
100         struct rb_node *parent = NULL;
101         int ret;
102
103         p = &root->fs_info->defrag_inodes.rb_node;
104         while (*p) {
105                 parent = *p;
106                 entry = rb_entry(parent, struct inode_defrag, rb_node);
107
108                 ret = __compare_inode_defrag(defrag, entry);
109                 if (ret < 0)
110                         p = &parent->rb_left;
111                 else if (ret > 0)
112                         p = &parent->rb_right;
113                 else {
114                         /* if we're reinserting an entry for
115                          * an old defrag run, make sure to
116                          * lower the transid of our existing record
117                          */
118                         if (defrag->transid < entry->transid)
119                                 entry->transid = defrag->transid;
120                         if (defrag->last_offset > entry->last_offset)
121                                 entry->last_offset = defrag->last_offset;
122                         return -EEXIST;
123                 }
124         }
125         set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
126         rb_link_node(&defrag->rb_node, parent, p);
127         rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
128         return 0;
129 }
130
131 static inline int __need_auto_defrag(struct btrfs_root *root)
132 {
133         if (!btrfs_test_opt(root, AUTO_DEFRAG))
134                 return 0;
135
136         if (btrfs_fs_closing(root->fs_info))
137                 return 0;
138
139         return 1;
140 }
141
142 /*
143  * insert a defrag record for this inode if auto defrag is
144  * enabled
145  */
146 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
147                            struct inode *inode)
148 {
149         struct btrfs_root *root = BTRFS_I(inode)->root;
150         struct inode_defrag *defrag;
151         u64 transid;
152         int ret;
153
154         if (!__need_auto_defrag(root))
155                 return 0;
156
157         if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
158                 return 0;
159
160         if (trans)
161                 transid = trans->transid;
162         else
163                 transid = BTRFS_I(inode)->root->last_trans;
164
165         defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
166         if (!defrag)
167                 return -ENOMEM;
168
169         defrag->ino = btrfs_ino(inode);
170         defrag->transid = transid;
171         defrag->root = root->root_key.objectid;
172
173         spin_lock(&root->fs_info->defrag_inodes_lock);
174         if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
175                 /*
176                  * If we set IN_DEFRAG flag and evict the inode from memory,
177                  * and then re-read this inode, this new inode doesn't have
178                  * IN_DEFRAG flag. At the case, we may find the existed defrag.
179                  */
180                 ret = __btrfs_add_inode_defrag(inode, defrag);
181                 if (ret)
182                         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
183         } else {
184                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
185         }
186         spin_unlock(&root->fs_info->defrag_inodes_lock);
187         return 0;
188 }
189
190 /*
191  * Requeue the defrag object. If there is a defrag object that points to
192  * the same inode in the tree, we will merge them together (by
193  * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
194  */
195 static void btrfs_requeue_inode_defrag(struct inode *inode,
196                                        struct inode_defrag *defrag)
197 {
198         struct btrfs_root *root = BTRFS_I(inode)->root;
199         int ret;
200
201         if (!__need_auto_defrag(root))
202                 goto out;
203
204         /*
205          * Here we don't check the IN_DEFRAG flag, because we need merge
206          * them together.
207          */
208         spin_lock(&root->fs_info->defrag_inodes_lock);
209         ret = __btrfs_add_inode_defrag(inode, defrag);
210         spin_unlock(&root->fs_info->defrag_inodes_lock);
211         if (ret)
212                 goto out;
213         return;
214 out:
215         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
216 }
217
218 /*
219  * pick the defragable inode that we want, if it doesn't exist, we will get
220  * the next one.
221  */
222 static struct inode_defrag *
223 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
224 {
225         struct inode_defrag *entry = NULL;
226         struct inode_defrag tmp;
227         struct rb_node *p;
228         struct rb_node *parent = NULL;
229         int ret;
230
231         tmp.ino = ino;
232         tmp.root = root;
233
234         spin_lock(&fs_info->defrag_inodes_lock);
235         p = fs_info->defrag_inodes.rb_node;
236         while (p) {
237                 parent = p;
238                 entry = rb_entry(parent, struct inode_defrag, rb_node);
239
240                 ret = __compare_inode_defrag(&tmp, entry);
241                 if (ret < 0)
242                         p = parent->rb_left;
243                 else if (ret > 0)
244                         p = parent->rb_right;
245                 else
246                         goto out;
247         }
248
249         if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
250                 parent = rb_next(parent);
251                 if (parent)
252                         entry = rb_entry(parent, struct inode_defrag, rb_node);
253                 else
254                         entry = NULL;
255         }
256 out:
257         if (entry)
258                 rb_erase(parent, &fs_info->defrag_inodes);
259         spin_unlock(&fs_info->defrag_inodes_lock);
260         return entry;
261 }
262
263 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
264 {
265         struct inode_defrag *defrag;
266         struct rb_node *node;
267
268         spin_lock(&fs_info->defrag_inodes_lock);
269         node = rb_first(&fs_info->defrag_inodes);
270         while (node) {
271                 rb_erase(node, &fs_info->defrag_inodes);
272                 defrag = rb_entry(node, struct inode_defrag, rb_node);
273                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
274
275                 if (need_resched()) {
276                         spin_unlock(&fs_info->defrag_inodes_lock);
277                         cond_resched();
278                         spin_lock(&fs_info->defrag_inodes_lock);
279                 }
280
281                 node = rb_first(&fs_info->defrag_inodes);
282         }
283         spin_unlock(&fs_info->defrag_inodes_lock);
284 }
285
286 #define BTRFS_DEFRAG_BATCH      1024
287
288 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
289                                     struct inode_defrag *defrag)
290 {
291         struct btrfs_root *inode_root;
292         struct inode *inode;
293         struct btrfs_key key;
294         struct btrfs_ioctl_defrag_range_args range;
295         int num_defrag;
296         int index;
297         int ret;
298
299         /* get the inode */
300         key.objectid = defrag->root;
301         btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
302         key.offset = (u64)-1;
303
304         index = srcu_read_lock(&fs_info->subvol_srcu);
305
306         inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
307         if (IS_ERR(inode_root)) {
308                 ret = PTR_ERR(inode_root);
309                 goto cleanup;
310         }
311
312         key.objectid = defrag->ino;
313         btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
314         key.offset = 0;
315         inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
316         if (IS_ERR(inode)) {
317                 ret = PTR_ERR(inode);
318                 goto cleanup;
319         }
320         srcu_read_unlock(&fs_info->subvol_srcu, index);
321
322         /* do a chunk of defrag */
323         clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
324         memset(&range, 0, sizeof(range));
325         range.len = (u64)-1;
326         range.start = defrag->last_offset;
327
328         sb_start_write(fs_info->sb);
329         num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
330                                        BTRFS_DEFRAG_BATCH);
331         sb_end_write(fs_info->sb);
332         /*
333          * if we filled the whole defrag batch, there
334          * must be more work to do.  Queue this defrag
335          * again
336          */
337         if (num_defrag == BTRFS_DEFRAG_BATCH) {
338                 defrag->last_offset = range.start;
339                 btrfs_requeue_inode_defrag(inode, defrag);
340         } else if (defrag->last_offset && !defrag->cycled) {
341                 /*
342                  * we didn't fill our defrag batch, but
343                  * we didn't start at zero.  Make sure we loop
344                  * around to the start of the file.
345                  */
346                 defrag->last_offset = 0;
347                 defrag->cycled = 1;
348                 btrfs_requeue_inode_defrag(inode, defrag);
349         } else {
350                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
351         }
352
353         iput(inode);
354         return 0;
355 cleanup:
356         srcu_read_unlock(&fs_info->subvol_srcu, index);
357         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
358         return ret;
359 }
360
361 /*
362  * run through the list of inodes in the FS that need
363  * defragging
364  */
365 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
366 {
367         struct inode_defrag *defrag;
368         u64 first_ino = 0;
369         u64 root_objectid = 0;
370
371         atomic_inc(&fs_info->defrag_running);
372         while (1) {
373                 /* Pause the auto defragger. */
374                 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
375                              &fs_info->fs_state))
376                         break;
377
378                 if (!__need_auto_defrag(fs_info->tree_root))
379                         break;
380
381                 /* find an inode to defrag */
382                 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
383                                                  first_ino);
384                 if (!defrag) {
385                         if (root_objectid || first_ino) {
386                                 root_objectid = 0;
387                                 first_ino = 0;
388                                 continue;
389                         } else {
390                                 break;
391                         }
392                 }
393
394                 first_ino = defrag->ino + 1;
395                 root_objectid = defrag->root;
396
397                 __btrfs_run_defrag_inode(fs_info, defrag);
398         }
399         atomic_dec(&fs_info->defrag_running);
400
401         /*
402          * during unmount, we use the transaction_wait queue to
403          * wait for the defragger to stop
404          */
405         wake_up(&fs_info->transaction_wait);
406         return 0;
407 }
408
409 /* simple helper to fault in pages and copy.  This should go away
410  * and be replaced with calls into generic code.
411  */
412 static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
413                                          size_t write_bytes,
414                                          struct page **prepared_pages,
415                                          struct iov_iter *i)
416 {
417         size_t copied = 0;
418         size_t total_copied = 0;
419         int pg = 0;
420         int offset = pos & (PAGE_CACHE_SIZE - 1);
421
422         while (write_bytes > 0) {
423                 size_t count = min_t(size_t,
424                                      PAGE_CACHE_SIZE - offset, write_bytes);
425                 struct page *page = prepared_pages[pg];
426                 /*
427                  * Copy data from userspace to the current page
428                  *
429                  * Disable pagefault to avoid recursive lock since
430                  * the pages are already locked
431                  */
432                 pagefault_disable();
433                 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
434                 pagefault_enable();
435
436                 /* Flush processor's dcache for this page */
437                 flush_dcache_page(page);
438
439                 /*
440                  * if we get a partial write, we can end up with
441                  * partially up to date pages.  These add
442                  * a lot of complexity, so make sure they don't
443                  * happen by forcing this copy to be retried.
444                  *
445                  * The rest of the btrfs_file_write code will fall
446                  * back to page at a time copies after we return 0.
447                  */
448                 if (!PageUptodate(page) && copied < count)
449                         copied = 0;
450
451                 iov_iter_advance(i, copied);
452                 write_bytes -= copied;
453                 total_copied += copied;
454
455                 /* Return to btrfs_file_aio_write to fault page */
456                 if (unlikely(copied == 0))
457                         break;
458
459                 if (unlikely(copied < PAGE_CACHE_SIZE - offset)) {
460                         offset += copied;
461                 } else {
462                         pg++;
463                         offset = 0;
464                 }
465         }
466         return total_copied;
467 }
468
469 /*
470  * unlocks pages after btrfs_file_write is done with them
471  */
472 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
473 {
474         size_t i;
475         for (i = 0; i < num_pages; i++) {
476                 /* page checked is some magic around finding pages that
477                  * have been modified without going through btrfs_set_page_dirty
478                  * clear it here
479                  */
480                 ClearPageChecked(pages[i]);
481                 unlock_page(pages[i]);
482                 mark_page_accessed(pages[i]);
483                 page_cache_release(pages[i]);
484         }
485 }
486
487 /*
488  * after copy_from_user, pages need to be dirtied and we need to make
489  * sure holes are created between the current EOF and the start of
490  * any next extents (if required).
491  *
492  * this also makes the decision about creating an inline extent vs
493  * doing real data extents, marking pages dirty and delalloc as required.
494  */
495 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
496                              struct page **pages, size_t num_pages,
497                              loff_t pos, size_t write_bytes,
498                              struct extent_state **cached)
499 {
500         int err = 0;
501         int i;
502         u64 num_bytes;
503         u64 start_pos;
504         u64 end_of_last_block;
505         u64 end_pos = pos + write_bytes;
506         loff_t isize = i_size_read(inode);
507
508         start_pos = pos & ~((u64)root->sectorsize - 1);
509         num_bytes = ALIGN(write_bytes + pos - start_pos, root->sectorsize);
510
511         end_of_last_block = start_pos + num_bytes - 1;
512         err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
513                                         cached);
514         if (err)
515                 return err;
516
517         for (i = 0; i < num_pages; i++) {
518                 struct page *p = pages[i];
519                 SetPageUptodate(p);
520                 ClearPageChecked(p);
521                 set_page_dirty(p);
522         }
523
524         /*
525          * we've only changed i_size in ram, and we haven't updated
526          * the disk i_size.  There is no need to log the inode
527          * at this time.
528          */
529         if (end_pos > isize)
530                 i_size_write(inode, end_pos);
531         return 0;
532 }
533
534 /*
535  * this drops all the extents in the cache that intersect the range
536  * [start, end].  Existing extents are split as required.
537  */
538 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
539                              int skip_pinned)
540 {
541         struct extent_map *em;
542         struct extent_map *split = NULL;
543         struct extent_map *split2 = NULL;
544         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
545         u64 len = end - start + 1;
546         u64 gen;
547         int ret;
548         int testend = 1;
549         unsigned long flags;
550         int compressed = 0;
551         bool modified;
552
553         WARN_ON(end < start);
554         if (end == (u64)-1) {
555                 len = (u64)-1;
556                 testend = 0;
557         }
558         while (1) {
559                 int no_splits = 0;
560
561                 modified = false;
562                 if (!split)
563                         split = alloc_extent_map();
564                 if (!split2)
565                         split2 = alloc_extent_map();
566                 if (!split || !split2)
567                         no_splits = 1;
568
569                 write_lock(&em_tree->lock);
570                 em = lookup_extent_mapping(em_tree, start, len);
571                 if (!em) {
572                         write_unlock(&em_tree->lock);
573                         break;
574                 }
575                 flags = em->flags;
576                 gen = em->generation;
577                 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
578                         if (testend && em->start + em->len >= start + len) {
579                                 free_extent_map(em);
580                                 write_unlock(&em_tree->lock);
581                                 break;
582                         }
583                         start = em->start + em->len;
584                         if (testend)
585                                 len = start + len - (em->start + em->len);
586                         free_extent_map(em);
587                         write_unlock(&em_tree->lock);
588                         continue;
589                 }
590                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
591                 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
592                 clear_bit(EXTENT_FLAG_LOGGING, &flags);
593                 modified = !list_empty(&em->list);
594                 remove_extent_mapping(em_tree, em);
595                 if (no_splits)
596                         goto next;
597
598                 if (em->start < start) {
599                         split->start = em->start;
600                         split->len = start - em->start;
601
602                         if (em->block_start < EXTENT_MAP_LAST_BYTE) {
603                                 split->orig_start = em->orig_start;
604                                 split->block_start = em->block_start;
605
606                                 if (compressed)
607                                         split->block_len = em->block_len;
608                                 else
609                                         split->block_len = split->len;
610                                 split->orig_block_len = max(split->block_len,
611                                                 em->orig_block_len);
612                                 split->ram_bytes = em->ram_bytes;
613                         } else {
614                                 split->orig_start = split->start;
615                                 split->block_len = 0;
616                                 split->block_start = em->block_start;
617                                 split->orig_block_len = 0;
618                                 split->ram_bytes = split->len;
619                         }
620
621                         split->generation = gen;
622                         split->bdev = em->bdev;
623                         split->flags = flags;
624                         split->compress_type = em->compress_type;
625                         ret = add_extent_mapping(em_tree, split, modified);
626                         BUG_ON(ret); /* Logic error */
627                         free_extent_map(split);
628                         split = split2;
629                         split2 = NULL;
630                 }
631                 if (testend && em->start + em->len > start + len) {
632                         u64 diff = start + len - em->start;
633
634                         split->start = start + len;
635                         split->len = em->start + em->len - (start + len);
636                         split->bdev = em->bdev;
637                         split->flags = flags;
638                         split->compress_type = em->compress_type;
639                         split->generation = gen;
640
641                         if (em->block_start < EXTENT_MAP_LAST_BYTE) {
642                                 split->orig_block_len = max(em->block_len,
643                                                     em->orig_block_len);
644
645                                 split->ram_bytes = em->ram_bytes;
646                                 if (compressed) {
647                                         split->block_len = em->block_len;
648                                         split->block_start = em->block_start;
649                                         split->orig_start = em->orig_start;
650                                 } else {
651                                         split->block_len = split->len;
652                                         split->block_start = em->block_start
653                                                 + diff;
654                                         split->orig_start = em->orig_start;
655                                 }
656                         } else {
657                                 split->ram_bytes = split->len;
658                                 split->orig_start = split->start;
659                                 split->block_len = 0;
660                                 split->block_start = em->block_start;
661                                 split->orig_block_len = 0;
662                         }
663
664                         ret = add_extent_mapping(em_tree, split, modified);
665                         BUG_ON(ret); /* Logic error */
666                         free_extent_map(split);
667                         split = NULL;
668                 }
669 next:
670                 write_unlock(&em_tree->lock);
671
672                 /* once for us */
673                 free_extent_map(em);
674                 /* once for the tree*/
675                 free_extent_map(em);
676         }
677         if (split)
678                 free_extent_map(split);
679         if (split2)
680                 free_extent_map(split2);
681 }
682
683 /*
684  * this is very complex, but the basic idea is to drop all extents
685  * in the range start - end.  hint_block is filled in with a block number
686  * that would be a good hint to the block allocator for this file.
687  *
688  * If an extent intersects the range but is not entirely inside the range
689  * it is either truncated or split.  Anything entirely inside the range
690  * is deleted from the tree.
691  */
692 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
693                          struct btrfs_root *root, struct inode *inode,
694                          struct btrfs_path *path, u64 start, u64 end,
695                          u64 *drop_end, int drop_cache,
696                          int replace_extent,
697                          u32 extent_item_size,
698                          int *key_inserted)
699 {
700         struct extent_buffer *leaf;
701         struct btrfs_file_extent_item *fi;
702         struct btrfs_key key;
703         struct btrfs_key new_key;
704         u64 ino = btrfs_ino(inode);
705         u64 search_start = start;
706         u64 disk_bytenr = 0;
707         u64 num_bytes = 0;
708         u64 extent_offset = 0;
709         u64 extent_end = 0;
710         int del_nr = 0;
711         int del_slot = 0;
712         int extent_type;
713         int recow;
714         int ret;
715         int modify_tree = -1;
716         int update_refs = (root->ref_cows || root == root->fs_info->tree_root);
717         int found = 0;
718         int leafs_visited = 0;
719
720         if (drop_cache)
721                 btrfs_drop_extent_cache(inode, start, end - 1, 0);
722
723         if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
724                 modify_tree = 0;
725
726         while (1) {
727                 recow = 0;
728                 ret = btrfs_lookup_file_extent(trans, root, path, ino,
729                                                search_start, modify_tree);
730                 if (ret < 0)
731                         break;
732                 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
733                         leaf = path->nodes[0];
734                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
735                         if (key.objectid == ino &&
736                             key.type == BTRFS_EXTENT_DATA_KEY)
737                                 path->slots[0]--;
738                 }
739                 ret = 0;
740                 leafs_visited++;
741 next_slot:
742                 leaf = path->nodes[0];
743                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
744                         BUG_ON(del_nr > 0);
745                         ret = btrfs_next_leaf(root, path);
746                         if (ret < 0)
747                                 break;
748                         if (ret > 0) {
749                                 ret = 0;
750                                 break;
751                         }
752                         leafs_visited++;
753                         leaf = path->nodes[0];
754                         recow = 1;
755                 }
756
757                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
758                 if (key.objectid > ino ||
759                     key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
760                         break;
761
762                 fi = btrfs_item_ptr(leaf, path->slots[0],
763                                     struct btrfs_file_extent_item);
764                 extent_type = btrfs_file_extent_type(leaf, fi);
765
766                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
767                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
768                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
769                         num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
770                         extent_offset = btrfs_file_extent_offset(leaf, fi);
771                         extent_end = key.offset +
772                                 btrfs_file_extent_num_bytes(leaf, fi);
773                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
774                         extent_end = key.offset +
775                                 btrfs_file_extent_inline_len(leaf,
776                                                      path->slots[0], fi);
777                 } else {
778                         WARN_ON(1);
779                         extent_end = search_start;
780                 }
781
782                 if (extent_end <= search_start) {
783                         path->slots[0]++;
784                         goto next_slot;
785                 }
786
787                 found = 1;
788                 search_start = max(key.offset, start);
789                 if (recow || !modify_tree) {
790                         modify_tree = -1;
791                         btrfs_release_path(path);
792                         continue;
793                 }
794
795                 /*
796                  *     | - range to drop - |
797                  *  | -------- extent -------- |
798                  */
799                 if (start > key.offset && end < extent_end) {
800                         BUG_ON(del_nr > 0);
801                         BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
802
803                         memcpy(&new_key, &key, sizeof(new_key));
804                         new_key.offset = start;
805                         ret = btrfs_duplicate_item(trans, root, path,
806                                                    &new_key);
807                         if (ret == -EAGAIN) {
808                                 btrfs_release_path(path);
809                                 continue;
810                         }
811                         if (ret < 0)
812                                 break;
813
814                         leaf = path->nodes[0];
815                         fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
816                                             struct btrfs_file_extent_item);
817                         btrfs_set_file_extent_num_bytes(leaf, fi,
818                                                         start - key.offset);
819
820                         fi = btrfs_item_ptr(leaf, path->slots[0],
821                                             struct btrfs_file_extent_item);
822
823                         extent_offset += start - key.offset;
824                         btrfs_set_file_extent_offset(leaf, fi, extent_offset);
825                         btrfs_set_file_extent_num_bytes(leaf, fi,
826                                                         extent_end - start);
827                         btrfs_mark_buffer_dirty(leaf);
828
829                         if (update_refs && disk_bytenr > 0) {
830                                 ret = btrfs_inc_extent_ref(trans, root,
831                                                 disk_bytenr, num_bytes, 0,
832                                                 root->root_key.objectid,
833                                                 new_key.objectid,
834                                                 start - extent_offset, 0);
835                                 BUG_ON(ret); /* -ENOMEM */
836                         }
837                         key.offset = start;
838                 }
839                 /*
840                  *  | ---- range to drop ----- |
841                  *      | -------- extent -------- |
842                  */
843                 if (start <= key.offset && end < extent_end) {
844                         BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
845
846                         memcpy(&new_key, &key, sizeof(new_key));
847                         new_key.offset = end;
848                         btrfs_set_item_key_safe(root, path, &new_key);
849
850                         extent_offset += end - key.offset;
851                         btrfs_set_file_extent_offset(leaf, fi, extent_offset);
852                         btrfs_set_file_extent_num_bytes(leaf, fi,
853                                                         extent_end - end);
854                         btrfs_mark_buffer_dirty(leaf);
855                         if (update_refs && disk_bytenr > 0)
856                                 inode_sub_bytes(inode, end - key.offset);
857                         break;
858                 }
859
860                 search_start = extent_end;
861                 /*
862                  *       | ---- range to drop ----- |
863                  *  | -------- extent -------- |
864                  */
865                 if (start > key.offset && end >= extent_end) {
866                         BUG_ON(del_nr > 0);
867                         BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
868
869                         btrfs_set_file_extent_num_bytes(leaf, fi,
870                                                         start - key.offset);
871                         btrfs_mark_buffer_dirty(leaf);
872                         if (update_refs && disk_bytenr > 0)
873                                 inode_sub_bytes(inode, extent_end - start);
874                         if (end == extent_end)
875                                 break;
876
877                         path->slots[0]++;
878                         goto next_slot;
879                 }
880
881                 /*
882                  *  | ---- range to drop ----- |
883                  *    | ------ extent ------ |
884                  */
885                 if (start <= key.offset && end >= extent_end) {
886                         if (del_nr == 0) {
887                                 del_slot = path->slots[0];
888                                 del_nr = 1;
889                         } else {
890                                 BUG_ON(del_slot + del_nr != path->slots[0]);
891                                 del_nr++;
892                         }
893
894                         if (update_refs &&
895                             extent_type == BTRFS_FILE_EXTENT_INLINE) {
896                                 inode_sub_bytes(inode,
897                                                 extent_end - key.offset);
898                                 extent_end = ALIGN(extent_end,
899                                                    root->sectorsize);
900                         } else if (update_refs && disk_bytenr > 0) {
901                                 ret = btrfs_free_extent(trans, root,
902                                                 disk_bytenr, num_bytes, 0,
903                                                 root->root_key.objectid,
904                                                 key.objectid, key.offset -
905                                                 extent_offset, 0);
906                                 BUG_ON(ret); /* -ENOMEM */
907                                 inode_sub_bytes(inode,
908                                                 extent_end - key.offset);
909                         }
910
911                         if (end == extent_end)
912                                 break;
913
914                         if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
915                                 path->slots[0]++;
916                                 goto next_slot;
917                         }
918
919                         ret = btrfs_del_items(trans, root, path, del_slot,
920                                               del_nr);
921                         if (ret) {
922                                 btrfs_abort_transaction(trans, root, ret);
923                                 break;
924                         }
925
926                         del_nr = 0;
927                         del_slot = 0;
928
929                         btrfs_release_path(path);
930                         continue;
931                 }
932
933                 BUG_ON(1);
934         }
935
936         if (!ret && del_nr > 0) {
937                 /*
938                  * Set path->slots[0] to first slot, so that after the delete
939                  * if items are move off from our leaf to its immediate left or
940                  * right neighbor leafs, we end up with a correct and adjusted
941                  * path->slots[0] for our insertion (if replace_extent != 0).
942                  */
943                 path->slots[0] = del_slot;
944                 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
945                 if (ret)
946                         btrfs_abort_transaction(trans, root, ret);
947         }
948
949         leaf = path->nodes[0];
950         /*
951          * If btrfs_del_items() was called, it might have deleted a leaf, in
952          * which case it unlocked our path, so check path->locks[0] matches a
953          * write lock.
954          */
955         if (!ret && replace_extent && leafs_visited == 1 &&
956             (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
957              path->locks[0] == BTRFS_WRITE_LOCK) &&
958             btrfs_leaf_free_space(root, leaf) >=
959             sizeof(struct btrfs_item) + extent_item_size) {
960
961                 key.objectid = ino;
962                 key.type = BTRFS_EXTENT_DATA_KEY;
963                 key.offset = start;
964                 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
965                         struct btrfs_key slot_key;
966
967                         btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
968                         if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
969                                 path->slots[0]++;
970                 }
971                 setup_items_for_insert(root, path, &key,
972                                        &extent_item_size,
973                                        extent_item_size,
974                                        sizeof(struct btrfs_item) +
975                                        extent_item_size, 1);
976                 *key_inserted = 1;
977         }
978
979         if (!replace_extent || !(*key_inserted))
980                 btrfs_release_path(path);
981         if (drop_end)
982                 *drop_end = found ? min(end, extent_end) : end;
983         return ret;
984 }
985
986 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
987                        struct btrfs_root *root, struct inode *inode, u64 start,
988                        u64 end, int drop_cache)
989 {
990         struct btrfs_path *path;
991         int ret;
992
993         path = btrfs_alloc_path();
994         if (!path)
995                 return -ENOMEM;
996         ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
997                                    drop_cache, 0, 0, NULL);
998         btrfs_free_path(path);
999         return ret;
1000 }
1001
1002 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1003                             u64 objectid, u64 bytenr, u64 orig_offset,
1004                             u64 *start, u64 *end)
1005 {
1006         struct btrfs_file_extent_item *fi;
1007         struct btrfs_key key;
1008         u64 extent_end;
1009
1010         if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1011                 return 0;
1012
1013         btrfs_item_key_to_cpu(leaf, &key, slot);
1014         if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1015                 return 0;
1016
1017         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1018         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1019             btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1020             btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1021             btrfs_file_extent_compression(leaf, fi) ||
1022             btrfs_file_extent_encryption(leaf, fi) ||
1023             btrfs_file_extent_other_encoding(leaf, fi))
1024                 return 0;
1025
1026         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1027         if ((*start && *start != key.offset) || (*end && *end != extent_end))
1028                 return 0;
1029
1030         *start = key.offset;
1031         *end = extent_end;
1032         return 1;
1033 }
1034
1035 /*
1036  * Mark extent in the range start - end as written.
1037  *
1038  * This changes extent type from 'pre-allocated' to 'regular'. If only
1039  * part of extent is marked as written, the extent will be split into
1040  * two or three.
1041  */
1042 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1043                               struct inode *inode, u64 start, u64 end)
1044 {
1045         struct btrfs_root *root = BTRFS_I(inode)->root;
1046         struct extent_buffer *leaf;
1047         struct btrfs_path *path;
1048         struct btrfs_file_extent_item *fi;
1049         struct btrfs_key key;
1050         struct btrfs_key new_key;
1051         u64 bytenr;
1052         u64 num_bytes;
1053         u64 extent_end;
1054         u64 orig_offset;
1055         u64 other_start;
1056         u64 other_end;
1057         u64 split;
1058         int del_nr = 0;
1059         int del_slot = 0;
1060         int recow;
1061         int ret;
1062         u64 ino = btrfs_ino(inode);
1063
1064         path = btrfs_alloc_path();
1065         if (!path)
1066                 return -ENOMEM;
1067 again:
1068         recow = 0;
1069         split = start;
1070         key.objectid = ino;
1071         key.type = BTRFS_EXTENT_DATA_KEY;
1072         key.offset = split;
1073
1074         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1075         if (ret < 0)
1076                 goto out;
1077         if (ret > 0 && path->slots[0] > 0)
1078                 path->slots[0]--;
1079
1080         leaf = path->nodes[0];
1081         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1082         BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
1083         fi = btrfs_item_ptr(leaf, path->slots[0],
1084                             struct btrfs_file_extent_item);
1085         BUG_ON(btrfs_file_extent_type(leaf, fi) !=
1086                BTRFS_FILE_EXTENT_PREALLOC);
1087         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1088         BUG_ON(key.offset > start || extent_end < end);
1089
1090         bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1091         num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1092         orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1093         memcpy(&new_key, &key, sizeof(new_key));
1094
1095         if (start == key.offset && end < extent_end) {
1096                 other_start = 0;
1097                 other_end = start;
1098                 if (extent_mergeable(leaf, path->slots[0] - 1,
1099                                      ino, bytenr, orig_offset,
1100                                      &other_start, &other_end)) {
1101                         new_key.offset = end;
1102                         btrfs_set_item_key_safe(root, path, &new_key);
1103                         fi = btrfs_item_ptr(leaf, path->slots[0],
1104                                             struct btrfs_file_extent_item);
1105                         btrfs_set_file_extent_generation(leaf, fi,
1106                                                          trans->transid);
1107                         btrfs_set_file_extent_num_bytes(leaf, fi,
1108                                                         extent_end - end);
1109                         btrfs_set_file_extent_offset(leaf, fi,
1110                                                      end - orig_offset);
1111                         fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1112                                             struct btrfs_file_extent_item);
1113                         btrfs_set_file_extent_generation(leaf, fi,
1114                                                          trans->transid);
1115                         btrfs_set_file_extent_num_bytes(leaf, fi,
1116                                                         end - other_start);
1117                         btrfs_mark_buffer_dirty(leaf);
1118                         goto out;
1119                 }
1120         }
1121
1122         if (start > key.offset && end == extent_end) {
1123                 other_start = end;
1124                 other_end = 0;
1125                 if (extent_mergeable(leaf, path->slots[0] + 1,
1126                                      ino, bytenr, orig_offset,
1127                                      &other_start, &other_end)) {
1128                         fi = btrfs_item_ptr(leaf, path->slots[0],
1129                                             struct btrfs_file_extent_item);
1130                         btrfs_set_file_extent_num_bytes(leaf, fi,
1131                                                         start - key.offset);
1132                         btrfs_set_file_extent_generation(leaf, fi,
1133                                                          trans->transid);
1134                         path->slots[0]++;
1135                         new_key.offset = start;
1136                         btrfs_set_item_key_safe(root, path, &new_key);
1137
1138                         fi = btrfs_item_ptr(leaf, path->slots[0],
1139                                             struct btrfs_file_extent_item);
1140                         btrfs_set_file_extent_generation(leaf, fi,
1141                                                          trans->transid);
1142                         btrfs_set_file_extent_num_bytes(leaf, fi,
1143                                                         other_end - start);
1144                         btrfs_set_file_extent_offset(leaf, fi,
1145                                                      start - orig_offset);
1146                         btrfs_mark_buffer_dirty(leaf);
1147                         goto out;
1148                 }
1149         }
1150
1151         while (start > key.offset || end < extent_end) {
1152                 if (key.offset == start)
1153                         split = end;
1154
1155                 new_key.offset = split;
1156                 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1157                 if (ret == -EAGAIN) {
1158                         btrfs_release_path(path);
1159                         goto again;
1160                 }
1161                 if (ret < 0) {
1162                         btrfs_abort_transaction(trans, root, ret);
1163                         goto out;
1164                 }
1165
1166                 leaf = path->nodes[0];
1167                 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1168                                     struct btrfs_file_extent_item);
1169                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1170                 btrfs_set_file_extent_num_bytes(leaf, fi,
1171                                                 split - key.offset);
1172
1173                 fi = btrfs_item_ptr(leaf, path->slots[0],
1174                                     struct btrfs_file_extent_item);
1175
1176                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1177                 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1178                 btrfs_set_file_extent_num_bytes(leaf, fi,
1179                                                 extent_end - split);
1180                 btrfs_mark_buffer_dirty(leaf);
1181
1182                 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
1183                                            root->root_key.objectid,
1184                                            ino, orig_offset, 0);
1185                 BUG_ON(ret); /* -ENOMEM */
1186
1187                 if (split == start) {
1188                         key.offset = start;
1189                 } else {
1190                         BUG_ON(start != key.offset);
1191                         path->slots[0]--;
1192                         extent_end = end;
1193                 }
1194                 recow = 1;
1195         }
1196
1197         other_start = end;
1198         other_end = 0;
1199         if (extent_mergeable(leaf, path->slots[0] + 1,
1200                              ino, bytenr, orig_offset,
1201                              &other_start, &other_end)) {
1202                 if (recow) {
1203                         btrfs_release_path(path);
1204                         goto again;
1205                 }
1206                 extent_end = other_end;
1207                 del_slot = path->slots[0] + 1;
1208                 del_nr++;
1209                 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1210                                         0, root->root_key.objectid,
1211                                         ino, orig_offset, 0);
1212                 BUG_ON(ret); /* -ENOMEM */
1213         }
1214         other_start = 0;
1215         other_end = start;
1216         if (extent_mergeable(leaf, path->slots[0] - 1,
1217                              ino, bytenr, orig_offset,
1218                              &other_start, &other_end)) {
1219                 if (recow) {
1220                         btrfs_release_path(path);
1221                         goto again;
1222                 }
1223                 key.offset = other_start;
1224                 del_slot = path->slots[0];
1225                 del_nr++;
1226                 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1227                                         0, root->root_key.objectid,
1228                                         ino, orig_offset, 0);
1229                 BUG_ON(ret); /* -ENOMEM */
1230         }
1231         if (del_nr == 0) {
1232                 fi = btrfs_item_ptr(leaf, path->slots[0],
1233                            struct btrfs_file_extent_item);
1234                 btrfs_set_file_extent_type(leaf, fi,
1235                                            BTRFS_FILE_EXTENT_REG);
1236                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1237                 btrfs_mark_buffer_dirty(leaf);
1238         } else {
1239                 fi = btrfs_item_ptr(leaf, del_slot - 1,
1240                            struct btrfs_file_extent_item);
1241                 btrfs_set_file_extent_type(leaf, fi,
1242                                            BTRFS_FILE_EXTENT_REG);
1243                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1244                 btrfs_set_file_extent_num_bytes(leaf, fi,
1245                                                 extent_end - key.offset);
1246                 btrfs_mark_buffer_dirty(leaf);
1247
1248                 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1249                 if (ret < 0) {
1250                         btrfs_abort_transaction(trans, root, ret);
1251                         goto out;
1252                 }
1253         }
1254 out:
1255         btrfs_free_path(path);
1256         return 0;
1257 }
1258
1259 /*
1260  * on error we return an unlocked page and the error value
1261  * on success we return a locked page and 0
1262  */
1263 static int prepare_uptodate_page(struct page *page, u64 pos,
1264                                  bool force_uptodate)
1265 {
1266         int ret = 0;
1267
1268         if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
1269             !PageUptodate(page)) {
1270                 ret = btrfs_readpage(NULL, page);
1271                 if (ret)
1272                         return ret;
1273                 lock_page(page);
1274                 if (!PageUptodate(page)) {
1275                         unlock_page(page);
1276                         return -EIO;
1277                 }
1278         }
1279         return 0;
1280 }
1281
1282 /*
1283  * this just gets pages into the page cache and locks them down.
1284  */
1285 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1286                                   size_t num_pages, loff_t pos,
1287                                   size_t write_bytes, bool force_uptodate)
1288 {
1289         int i;
1290         unsigned long index = pos >> PAGE_CACHE_SHIFT;
1291         gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1292         int err = 0;
1293         int faili;
1294
1295         for (i = 0; i < num_pages; i++) {
1296                 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1297                                                mask | __GFP_WRITE);
1298                 if (!pages[i]) {
1299                         faili = i - 1;
1300                         err = -ENOMEM;
1301                         goto fail;
1302                 }
1303
1304                 if (i == 0)
1305                         err = prepare_uptodate_page(pages[i], pos,
1306                                                     force_uptodate);
1307                 if (i == num_pages - 1)
1308                         err = prepare_uptodate_page(pages[i],
1309                                                     pos + write_bytes, false);
1310                 if (err) {
1311                         page_cache_release(pages[i]);
1312                         faili = i - 1;
1313                         goto fail;
1314                 }
1315                 wait_on_page_writeback(pages[i]);
1316         }
1317
1318         return 0;
1319 fail:
1320         while (faili >= 0) {
1321                 unlock_page(pages[faili]);
1322                 page_cache_release(pages[faili]);
1323                 faili--;
1324         }
1325         return err;
1326
1327 }
1328
1329 /*
1330  * This function locks the extent and properly waits for data=ordered extents
1331  * to finish before allowing the pages to be modified if need.
1332  *
1333  * The return value:
1334  * 1 - the extent is locked
1335  * 0 - the extent is not locked, and everything is OK
1336  * -EAGAIN - need re-prepare the pages
1337  * the other < 0 number - Something wrong happens
1338  */
1339 static noinline int
1340 lock_and_cleanup_extent_if_need(struct inode *inode, struct page **pages,
1341                                 size_t num_pages, loff_t pos,
1342                                 u64 *lockstart, u64 *lockend,
1343                                 struct extent_state **cached_state)
1344 {
1345         u64 start_pos;
1346         u64 last_pos;
1347         int i;
1348         int ret = 0;
1349
1350         start_pos = pos & ~((u64)PAGE_CACHE_SIZE - 1);
1351         last_pos = start_pos + ((u64)num_pages << PAGE_CACHE_SHIFT) - 1;
1352
1353         if (start_pos < inode->i_size) {
1354                 struct btrfs_ordered_extent *ordered;
1355                 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1356                                  start_pos, last_pos, 0, cached_state);
1357                 ordered = btrfs_lookup_first_ordered_extent(inode, last_pos);
1358                 if (ordered &&
1359                     ordered->file_offset + ordered->len > start_pos &&
1360                     ordered->file_offset <= last_pos) {
1361                         btrfs_put_ordered_extent(ordered);
1362                         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1363                                              start_pos, last_pos,
1364                                              cached_state, GFP_NOFS);
1365                         for (i = 0; i < num_pages; i++) {
1366                                 unlock_page(pages[i]);
1367                                 page_cache_release(pages[i]);
1368                         }
1369                         ret = btrfs_wait_ordered_range(inode, start_pos,
1370                                                 last_pos - start_pos + 1);
1371                         if (ret)
1372                                 return ret;
1373                         else
1374                                 return -EAGAIN;
1375                 }
1376                 if (ordered)
1377                         btrfs_put_ordered_extent(ordered);
1378
1379                 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
1380                                   last_pos, EXTENT_DIRTY | EXTENT_DELALLOC |
1381                                   EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
1382                                   0, 0, cached_state, GFP_NOFS);
1383                 *lockstart = start_pos;
1384                 *lockend = last_pos;
1385                 ret = 1;
1386         }
1387
1388         for (i = 0; i < num_pages; i++) {
1389                 if (clear_page_dirty_for_io(pages[i]))
1390                         account_page_redirty(pages[i]);
1391                 set_page_extent_mapped(pages[i]);
1392                 WARN_ON(!PageLocked(pages[i]));
1393         }
1394
1395         return ret;
1396 }
1397
1398 static noinline int check_can_nocow(struct inode *inode, loff_t pos,
1399                                     size_t *write_bytes)
1400 {
1401         struct btrfs_root *root = BTRFS_I(inode)->root;
1402         struct btrfs_ordered_extent *ordered;
1403         u64 lockstart, lockend;
1404         u64 num_bytes;
1405         int ret;
1406
1407         lockstart = round_down(pos, root->sectorsize);
1408         lockend = lockstart + round_up(*write_bytes, root->sectorsize) - 1;
1409
1410         while (1) {
1411                 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1412                 ordered = btrfs_lookup_ordered_range(inode, lockstart,
1413                                                      lockend - lockstart + 1);
1414                 if (!ordered) {
1415                         break;
1416                 }
1417                 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1418                 btrfs_start_ordered_extent(inode, ordered, 1);
1419                 btrfs_put_ordered_extent(ordered);
1420         }
1421
1422         num_bytes = lockend - lockstart + 1;
1423         ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, NULL, NULL);
1424         if (ret <= 0) {
1425                 ret = 0;
1426         } else {
1427                 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
1428                                  EXTENT_DIRTY | EXTENT_DELALLOC |
1429                                  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1430                                  NULL, GFP_NOFS);
1431                 *write_bytes = min_t(size_t, *write_bytes, num_bytes);
1432         }
1433
1434         unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1435
1436         return ret;
1437 }
1438
1439 static noinline ssize_t __btrfs_buffered_write(struct file *file,
1440                                                struct iov_iter *i,
1441                                                loff_t pos)
1442 {
1443         struct inode *inode = file_inode(file);
1444         struct btrfs_root *root = BTRFS_I(inode)->root;
1445         struct page **pages = NULL;
1446         struct extent_state *cached_state = NULL;
1447         u64 release_bytes = 0;
1448         u64 lockstart;
1449         u64 lockend;
1450         unsigned long first_index;
1451         size_t num_written = 0;
1452         int nrptrs;
1453         int ret = 0;
1454         bool only_release_metadata = false;
1455         bool force_page_uptodate = false;
1456         bool need_unlock;
1457
1458         nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) /
1459                      PAGE_CACHE_SIZE, PAGE_CACHE_SIZE /
1460                      (sizeof(struct page *)));
1461         nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1462         nrptrs = max(nrptrs, 8);
1463         pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
1464         if (!pages)
1465                 return -ENOMEM;
1466
1467         first_index = pos >> PAGE_CACHE_SHIFT;
1468
1469         while (iov_iter_count(i) > 0) {
1470                 size_t offset = pos & (PAGE_CACHE_SIZE - 1);
1471                 size_t write_bytes = min(iov_iter_count(i),
1472                                          nrptrs * (size_t)PAGE_CACHE_SIZE -
1473                                          offset);
1474                 size_t num_pages = (write_bytes + offset +
1475                                     PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1476                 size_t reserve_bytes;
1477                 size_t dirty_pages;
1478                 size_t copied;
1479
1480                 WARN_ON(num_pages > nrptrs);
1481
1482                 /*
1483                  * Fault pages before locking them in prepare_pages
1484                  * to avoid recursive lock
1485                  */
1486                 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1487                         ret = -EFAULT;
1488                         break;
1489                 }
1490
1491                 reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1492                 ret = btrfs_check_data_free_space(inode, reserve_bytes);
1493                 if (ret == -ENOSPC &&
1494                     (BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1495                                               BTRFS_INODE_PREALLOC))) {
1496                         ret = check_can_nocow(inode, pos, &write_bytes);
1497                         if (ret > 0) {
1498                                 only_release_metadata = true;
1499                                 /*
1500                                  * our prealloc extent may be smaller than
1501                                  * write_bytes, so scale down.
1502                                  */
1503                                 num_pages = (write_bytes + offset +
1504                                              PAGE_CACHE_SIZE - 1) >>
1505                                         PAGE_CACHE_SHIFT;
1506                                 reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1507                                 ret = 0;
1508                         } else {
1509                                 ret = -ENOSPC;
1510                         }
1511                 }
1512
1513                 if (ret)
1514                         break;
1515
1516                 ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes);
1517                 if (ret) {
1518                         if (!only_release_metadata)
1519                                 btrfs_free_reserved_data_space(inode,
1520                                                                reserve_bytes);
1521                         break;
1522                 }
1523
1524                 release_bytes = reserve_bytes;
1525                 need_unlock = false;
1526 again:
1527                 /*
1528                  * This is going to setup the pages array with the number of
1529                  * pages we want, so we don't really need to worry about the
1530                  * contents of pages from loop to loop
1531                  */
1532                 ret = prepare_pages(inode, pages, num_pages,
1533                                     pos, write_bytes,
1534                                     force_page_uptodate);
1535                 if (ret)
1536                         break;
1537
1538                 ret = lock_and_cleanup_extent_if_need(inode, pages, num_pages,
1539                                                       pos, &lockstart, &lockend,
1540                                                       &cached_state);
1541                 if (ret < 0) {
1542                         if (ret == -EAGAIN)
1543                                 goto again;
1544                         break;
1545                 } else if (ret > 0) {
1546                         need_unlock = true;
1547                         ret = 0;
1548                 }
1549
1550                 copied = btrfs_copy_from_user(pos, num_pages,
1551                                            write_bytes, pages, i);
1552
1553                 /*
1554                  * if we have trouble faulting in the pages, fall
1555                  * back to one page at a time
1556                  */
1557                 if (copied < write_bytes)
1558                         nrptrs = 1;
1559
1560                 if (copied == 0) {
1561                         force_page_uptodate = true;
1562                         dirty_pages = 0;
1563                 } else {
1564                         force_page_uptodate = false;
1565                         dirty_pages = (copied + offset +
1566                                        PAGE_CACHE_SIZE - 1) >>
1567                                        PAGE_CACHE_SHIFT;
1568                 }
1569
1570                 /*
1571                  * If we had a short copy we need to release the excess delaloc
1572                  * bytes we reserved.  We need to increment outstanding_extents
1573                  * because btrfs_delalloc_release_space will decrement it, but
1574                  * we still have an outstanding extent for the chunk we actually
1575                  * managed to copy.
1576                  */
1577                 if (num_pages > dirty_pages) {
1578                         release_bytes = (num_pages - dirty_pages) <<
1579                                 PAGE_CACHE_SHIFT;
1580                         if (copied > 0) {
1581                                 spin_lock(&BTRFS_I(inode)->lock);
1582                                 BTRFS_I(inode)->outstanding_extents++;
1583                                 spin_unlock(&BTRFS_I(inode)->lock);
1584                         }
1585                         if (only_release_metadata)
1586                                 btrfs_delalloc_release_metadata(inode,
1587                                                                 release_bytes);
1588                         else
1589                                 btrfs_delalloc_release_space(inode,
1590                                                              release_bytes);
1591                 }
1592
1593                 release_bytes = dirty_pages << PAGE_CACHE_SHIFT;
1594
1595                 if (copied > 0)
1596                         ret = btrfs_dirty_pages(root, inode, pages,
1597                                                 dirty_pages, pos, copied,
1598                                                 NULL);
1599                 if (need_unlock)
1600                         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1601                                              lockstart, lockend, &cached_state,
1602                                              GFP_NOFS);
1603                 if (ret) {
1604                         btrfs_drop_pages(pages, num_pages);
1605                         break;
1606                 }
1607
1608                 release_bytes = 0;
1609                 if (only_release_metadata && copied > 0) {
1610                         u64 lockstart = round_down(pos, root->sectorsize);
1611                         u64 lockend = lockstart +
1612                                 (dirty_pages << PAGE_CACHE_SHIFT) - 1;
1613
1614                         set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1615                                        lockend, EXTENT_NORESERVE, NULL,
1616                                        NULL, GFP_NOFS);
1617                         only_release_metadata = false;
1618                 }
1619
1620                 btrfs_drop_pages(pages, num_pages);
1621
1622                 cond_resched();
1623
1624                 balance_dirty_pages_ratelimited(inode->i_mapping);
1625                 if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
1626                         btrfs_btree_balance_dirty(root);
1627
1628                 pos += copied;
1629                 num_written += copied;
1630         }
1631
1632         kfree(pages);
1633
1634         if (release_bytes) {
1635                 if (only_release_metadata)
1636                         btrfs_delalloc_release_metadata(inode, release_bytes);
1637                 else
1638                         btrfs_delalloc_release_space(inode, release_bytes);
1639         }
1640
1641         return num_written ? num_written : ret;
1642 }
1643
1644 static ssize_t __btrfs_direct_write(struct kiocb *iocb,
1645                                     const struct iovec *iov,
1646                                     unsigned long nr_segs, loff_t pos,
1647                                     loff_t *ppos, size_t count, size_t ocount)
1648 {
1649         struct file *file = iocb->ki_filp;
1650         struct iov_iter i;
1651         ssize_t written;
1652         ssize_t written_buffered;
1653         loff_t endbyte;
1654         int err;
1655
1656         written = generic_file_direct_write(iocb, iov, &nr_segs, pos, ppos,
1657                                             count, ocount);
1658
1659         if (written < 0 || written == count)
1660                 return written;
1661
1662         pos += written;
1663         count -= written;
1664         iov_iter_init(&i, iov, nr_segs, count, written);
1665         written_buffered = __btrfs_buffered_write(file, &i, pos);
1666         if (written_buffered < 0) {
1667                 err = written_buffered;
1668                 goto out;
1669         }
1670         endbyte = pos + written_buffered - 1;
1671         err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
1672         if (err)
1673                 goto out;
1674         written += written_buffered;
1675         *ppos = pos + written_buffered;
1676         invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
1677                                  endbyte >> PAGE_CACHE_SHIFT);
1678 out:
1679         return written ? written : err;
1680 }
1681
1682 static void update_time_for_write(struct inode *inode)
1683 {
1684         struct timespec now;
1685
1686         if (IS_NOCMTIME(inode))
1687                 return;
1688
1689         now = current_fs_time(inode->i_sb);
1690         if (!timespec_equal(&inode->i_mtime, &now))
1691                 inode->i_mtime = now;
1692
1693         if (!timespec_equal(&inode->i_ctime, &now))
1694                 inode->i_ctime = now;
1695
1696         if (IS_I_VERSION(inode))
1697                 inode_inc_iversion(inode);
1698 }
1699
1700 static ssize_t btrfs_file_aio_write(struct kiocb *iocb,
1701                                     const struct iovec *iov,
1702                                     unsigned long nr_segs, loff_t pos)
1703 {
1704         struct file *file = iocb->ki_filp;
1705         struct inode *inode = file_inode(file);
1706         struct btrfs_root *root = BTRFS_I(inode)->root;
1707         loff_t *ppos = &iocb->ki_pos;
1708         u64 start_pos;
1709         ssize_t num_written = 0;
1710         ssize_t err = 0;
1711         size_t count, ocount;
1712         bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1713
1714         mutex_lock(&inode->i_mutex);
1715
1716         err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
1717         if (err) {
1718                 mutex_unlock(&inode->i_mutex);
1719                 goto out;
1720         }
1721         count = ocount;
1722
1723         current->backing_dev_info = inode->i_mapping->backing_dev_info;
1724         err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
1725         if (err) {
1726                 mutex_unlock(&inode->i_mutex);
1727                 goto out;
1728         }
1729
1730         if (count == 0) {
1731                 mutex_unlock(&inode->i_mutex);
1732                 goto out;
1733         }
1734
1735         err = file_remove_suid(file);
1736         if (err) {
1737                 mutex_unlock(&inode->i_mutex);
1738                 goto out;
1739         }
1740
1741         /*
1742          * If BTRFS flips readonly due to some impossible error
1743          * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1744          * although we have opened a file as writable, we have
1745          * to stop this write operation to ensure FS consistency.
1746          */
1747         if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1748                 mutex_unlock(&inode->i_mutex);
1749                 err = -EROFS;
1750                 goto out;
1751         }
1752
1753         /*
1754          * We reserve space for updating the inode when we reserve space for the
1755          * extent we are going to write, so we will enospc out there.  We don't
1756          * need to start yet another transaction to update the inode as we will
1757          * update the inode when we finish writing whatever data we write.
1758          */
1759         update_time_for_write(inode);
1760
1761         start_pos = round_down(pos, root->sectorsize);
1762         if (start_pos > i_size_read(inode)) {
1763                 err = btrfs_cont_expand(inode, i_size_read(inode), start_pos);
1764                 if (err) {
1765                         mutex_unlock(&inode->i_mutex);
1766                         goto out;
1767                 }
1768         }
1769
1770         if (sync)
1771                 atomic_inc(&BTRFS_I(inode)->sync_writers);
1772
1773         if (unlikely(file->f_flags & O_DIRECT)) {
1774                 num_written = __btrfs_direct_write(iocb, iov, nr_segs,
1775                                                    pos, ppos, count, ocount);
1776         } else {
1777                 struct iov_iter i;
1778
1779                 iov_iter_init(&i, iov, nr_segs, count, num_written);
1780
1781                 num_written = __btrfs_buffered_write(file, &i, pos);
1782                 if (num_written > 0)
1783                         *ppos = pos + num_written;
1784         }
1785
1786         mutex_unlock(&inode->i_mutex);
1787
1788         /*
1789          * we want to make sure fsync finds this change
1790          * but we haven't joined a transaction running right now.
1791          *
1792          * Later on, someone is sure to update the inode and get the
1793          * real transid recorded.
1794          *
1795          * We set last_trans now to the fs_info generation + 1,
1796          * this will either be one more than the running transaction
1797          * or the generation used for the next transaction if there isn't
1798          * one running right now.
1799          *
1800          * We also have to set last_sub_trans to the current log transid,
1801          * otherwise subsequent syncs to a file that's been synced in this
1802          * transaction will appear to have already occured.
1803          */
1804         BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
1805         BTRFS_I(inode)->last_sub_trans = root->log_transid;
1806         if (num_written > 0) {
1807                 err = generic_write_sync(file, pos, num_written);
1808                 if (err < 0 && num_written > 0)
1809                         num_written = err;
1810         }
1811
1812         if (sync)
1813                 atomic_dec(&BTRFS_I(inode)->sync_writers);
1814 out:
1815         current->backing_dev_info = NULL;
1816         return num_written ? num_written : err;
1817 }
1818
1819 int btrfs_release_file(struct inode *inode, struct file *filp)
1820 {
1821         /*
1822          * ordered_data_close is set by settattr when we are about to truncate
1823          * a file from a non-zero size to a zero size.  This tries to
1824          * flush down new bytes that may have been written if the
1825          * application were using truncate to replace a file in place.
1826          */
1827         if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1828                                &BTRFS_I(inode)->runtime_flags)) {
1829                 struct btrfs_trans_handle *trans;
1830                 struct btrfs_root *root = BTRFS_I(inode)->root;
1831
1832                 /*
1833                  * We need to block on a committing transaction to keep us from
1834                  * throwing a ordered operation on to the list and causing
1835                  * something like sync to deadlock trying to flush out this
1836                  * inode.
1837                  */
1838                 trans = btrfs_start_transaction(root, 0);
1839                 if (IS_ERR(trans))
1840                         return PTR_ERR(trans);
1841                 btrfs_add_ordered_operation(trans, BTRFS_I(inode)->root, inode);
1842                 btrfs_end_transaction(trans, root);
1843                 if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
1844                         filemap_flush(inode->i_mapping);
1845         }
1846         if (filp->private_data)
1847                 btrfs_ioctl_trans_end(filp);
1848         return 0;
1849 }
1850
1851 /*
1852  * fsync call for both files and directories.  This logs the inode into
1853  * the tree log instead of forcing full commits whenever possible.
1854  *
1855  * It needs to call filemap_fdatawait so that all ordered extent updates are
1856  * in the metadata btree are up to date for copying to the log.
1857  *
1858  * It drops the inode mutex before doing the tree log commit.  This is an
1859  * important optimization for directories because holding the mutex prevents
1860  * new operations on the dir while we write to disk.
1861  */
1862 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1863 {
1864         struct dentry *dentry = file->f_path.dentry;
1865         struct inode *inode = dentry->d_inode;
1866         struct btrfs_root *root = BTRFS_I(inode)->root;
1867         struct btrfs_trans_handle *trans;
1868         struct btrfs_log_ctx ctx;
1869         int ret = 0;
1870         bool full_sync = 0;
1871
1872         trace_btrfs_sync_file(file, datasync);
1873
1874         /*
1875          * We write the dirty pages in the range and wait until they complete
1876          * out of the ->i_mutex. If so, we can flush the dirty pages by
1877          * multi-task, and make the performance up.  See
1878          * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1879          */
1880         atomic_inc(&BTRFS_I(inode)->sync_writers);
1881         ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
1882         if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1883                              &BTRFS_I(inode)->runtime_flags))
1884                 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
1885         atomic_dec(&BTRFS_I(inode)->sync_writers);
1886         if (ret)
1887                 return ret;
1888
1889         mutex_lock(&inode->i_mutex);
1890
1891         /*
1892          * We flush the dirty pages again to avoid some dirty pages in the
1893          * range being left.
1894          */
1895         atomic_inc(&root->log_batch);
1896         full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1897                              &BTRFS_I(inode)->runtime_flags);
1898         if (full_sync) {
1899                 ret = btrfs_wait_ordered_range(inode, start, end - start + 1);
1900                 if (ret) {
1901                         mutex_unlock(&inode->i_mutex);
1902                         goto out;
1903                 }
1904         }
1905         atomic_inc(&root->log_batch);
1906
1907         /*
1908          * check the transaction that last modified this inode
1909          * and see if its already been committed
1910          */
1911         if (!BTRFS_I(inode)->last_trans) {
1912                 mutex_unlock(&inode->i_mutex);
1913                 goto out;
1914         }
1915
1916         /*
1917          * if the last transaction that changed this file was before
1918          * the current transaction, we can bail out now without any
1919          * syncing
1920          */
1921         smp_mb();
1922         if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
1923             BTRFS_I(inode)->last_trans <=
1924             root->fs_info->last_trans_committed) {
1925                 BTRFS_I(inode)->last_trans = 0;
1926
1927                 /*
1928                  * We'v had everything committed since the last time we were
1929                  * modified so clear this flag in case it was set for whatever
1930                  * reason, it's no longer relevant.
1931                  */
1932                 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1933                           &BTRFS_I(inode)->runtime_flags);
1934                 mutex_unlock(&inode->i_mutex);
1935                 goto out;
1936         }
1937
1938         /*
1939          * ok we haven't committed the transaction yet, lets do a commit
1940          */
1941         if (file->private_data)
1942                 btrfs_ioctl_trans_end(file);
1943
1944         /*
1945          * We use start here because we will need to wait on the IO to complete
1946          * in btrfs_sync_log, which could require joining a transaction (for
1947          * example checking cross references in the nocow path).  If we use join
1948          * here we could get into a situation where we're waiting on IO to
1949          * happen that is blocked on a transaction trying to commit.  With start
1950          * we inc the extwriter counter, so we wait for all extwriters to exit
1951          * before we start blocking join'ers.  This comment is to keep somebody
1952          * from thinking they are super smart and changing this to
1953          * btrfs_join_transaction *cough*Josef*cough*.
1954          */
1955         trans = btrfs_start_transaction(root, 0);
1956         if (IS_ERR(trans)) {
1957                 ret = PTR_ERR(trans);
1958                 mutex_unlock(&inode->i_mutex);
1959                 goto out;
1960         }
1961         trans->sync = true;
1962
1963         btrfs_init_log_ctx(&ctx);
1964
1965         ret = btrfs_log_dentry_safe(trans, root, dentry, &ctx);
1966         if (ret < 0) {
1967                 /* Fallthrough and commit/free transaction. */
1968                 ret = 1;
1969         }
1970
1971         /* we've logged all the items and now have a consistent
1972          * version of the file in the log.  It is possible that
1973          * someone will come in and modify the file, but that's
1974          * fine because the log is consistent on disk, and we
1975          * have references to all of the file's extents
1976          *
1977          * It is possible that someone will come in and log the
1978          * file again, but that will end up using the synchronization
1979          * inside btrfs_sync_log to keep things safe.
1980          */
1981         mutex_unlock(&inode->i_mutex);
1982
1983         if (ret != BTRFS_NO_LOG_SYNC) {
1984                 if (!ret) {
1985                         ret = btrfs_sync_log(trans, root, &ctx);
1986                         if (!ret) {
1987                                 ret = btrfs_end_transaction(trans, root);
1988                                 goto out;
1989                         }
1990                 }
1991                 if (!full_sync) {
1992                         ret = btrfs_wait_ordered_range(inode, start,
1993                                                        end - start + 1);
1994                         if (ret)
1995                                 goto out;
1996                 }
1997                 ret = btrfs_commit_transaction(trans, root);
1998         } else {
1999                 ret = btrfs_end_transaction(trans, root);
2000         }
2001 out:
2002         return ret > 0 ? -EIO : ret;
2003 }
2004
2005 static const struct vm_operations_struct btrfs_file_vm_ops = {
2006         .fault          = filemap_fault,
2007         .page_mkwrite   = btrfs_page_mkwrite,
2008         .remap_pages    = generic_file_remap_pages,
2009 };
2010
2011 static int btrfs_file_mmap(struct file  *filp, struct vm_area_struct *vma)
2012 {
2013         struct address_space *mapping = filp->f_mapping;
2014
2015         if (!mapping->a_ops->readpage)
2016                 return -ENOEXEC;
2017
2018         file_accessed(filp);
2019         vma->vm_ops = &btrfs_file_vm_ops;
2020
2021         return 0;
2022 }
2023
2024 static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
2025                           int slot, u64 start, u64 end)
2026 {
2027         struct btrfs_file_extent_item *fi;
2028         struct btrfs_key key;
2029
2030         if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2031                 return 0;
2032
2033         btrfs_item_key_to_cpu(leaf, &key, slot);
2034         if (key.objectid != btrfs_ino(inode) ||
2035             key.type != BTRFS_EXTENT_DATA_KEY)
2036                 return 0;
2037
2038         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2039
2040         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2041                 return 0;
2042
2043         if (btrfs_file_extent_disk_bytenr(leaf, fi))
2044                 return 0;
2045
2046         if (key.offset == end)
2047                 return 1;
2048         if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2049                 return 1;
2050         return 0;
2051 }
2052
2053 static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
2054                       struct btrfs_path *path, u64 offset, u64 end)
2055 {
2056         struct btrfs_root *root = BTRFS_I(inode)->root;
2057         struct extent_buffer *leaf;
2058         struct btrfs_file_extent_item *fi;
2059         struct extent_map *hole_em;
2060         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2061         struct btrfs_key key;
2062         int ret;
2063
2064         if (btrfs_fs_incompat(root->fs_info, NO_HOLES))
2065                 goto out;
2066
2067         key.objectid = btrfs_ino(inode);
2068         key.type = BTRFS_EXTENT_DATA_KEY;
2069         key.offset = offset;
2070
2071         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2072         if (ret < 0)
2073                 return ret;
2074         BUG_ON(!ret);
2075
2076         leaf = path->nodes[0];
2077         if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
2078                 u64 num_bytes;
2079
2080                 path->slots[0]--;
2081                 fi = btrfs_item_ptr(leaf, path->slots[0],
2082                                     struct btrfs_file_extent_item);
2083                 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2084                         end - offset;
2085                 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2086                 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2087                 btrfs_set_file_extent_offset(leaf, fi, 0);
2088                 btrfs_mark_buffer_dirty(leaf);
2089                 goto out;
2090         }
2091
2092         if (hole_mergeable(inode, leaf, path->slots[0]+1, offset, end)) {
2093                 u64 num_bytes;
2094
2095                 path->slots[0]++;
2096                 key.offset = offset;
2097                 btrfs_set_item_key_safe(root, path, &key);
2098                 fi = btrfs_item_ptr(leaf, path->slots[0],
2099                                     struct btrfs_file_extent_item);
2100                 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2101                         offset;
2102                 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2103                 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2104                 btrfs_set_file_extent_offset(leaf, fi, 0);
2105                 btrfs_mark_buffer_dirty(leaf);
2106                 goto out;
2107         }
2108         btrfs_release_path(path);
2109
2110         ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
2111                                        0, 0, end - offset, 0, end - offset,
2112                                        0, 0, 0);
2113         if (ret)
2114                 return ret;
2115
2116 out:
2117         btrfs_release_path(path);
2118
2119         hole_em = alloc_extent_map();
2120         if (!hole_em) {
2121                 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2122                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2123                         &BTRFS_I(inode)->runtime_flags);
2124         } else {
2125                 hole_em->start = offset;
2126                 hole_em->len = end - offset;
2127                 hole_em->ram_bytes = hole_em->len;
2128                 hole_em->orig_start = offset;
2129
2130                 hole_em->block_start = EXTENT_MAP_HOLE;
2131                 hole_em->block_len = 0;
2132                 hole_em->orig_block_len = 0;
2133                 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
2134                 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2135                 hole_em->generation = trans->transid;
2136
2137                 do {
2138                         btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2139                         write_lock(&em_tree->lock);
2140                         ret = add_extent_mapping(em_tree, hole_em, 1);
2141                         write_unlock(&em_tree->lock);
2142                 } while (ret == -EEXIST);
2143                 free_extent_map(hole_em);
2144                 if (ret)
2145                         set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2146                                 &BTRFS_I(inode)->runtime_flags);
2147         }
2148
2149         return 0;
2150 }
2151
2152 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2153 {
2154         struct btrfs_root *root = BTRFS_I(inode)->root;
2155         struct extent_state *cached_state = NULL;
2156         struct btrfs_path *path;
2157         struct btrfs_block_rsv *rsv;
2158         struct btrfs_trans_handle *trans;
2159         u64 lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
2160         u64 lockend = round_down(offset + len,
2161                                  BTRFS_I(inode)->root->sectorsize) - 1;
2162         u64 cur_offset = lockstart;
2163         u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
2164         u64 drop_end;
2165         int ret = 0;
2166         int err = 0;
2167         int rsv_count;
2168         bool same_page = ((offset >> PAGE_CACHE_SHIFT) ==
2169                           ((offset + len - 1) >> PAGE_CACHE_SHIFT));
2170         bool no_holes = btrfs_fs_incompat(root->fs_info, NO_HOLES);
2171
2172         ret = btrfs_wait_ordered_range(inode, offset, len);
2173         if (ret)
2174                 return ret;
2175
2176         mutex_lock(&inode->i_mutex);
2177         /*
2178          * We needn't truncate any page which is beyond the end of the file
2179          * because we are sure there is no data there.
2180          */
2181         /*
2182          * Only do this if we are in the same page and we aren't doing the
2183          * entire page.
2184          */
2185         if (same_page && len < PAGE_CACHE_SIZE) {
2186                 if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE))
2187                         ret = btrfs_truncate_page(inode, offset, len, 0);
2188                 mutex_unlock(&inode->i_mutex);
2189                 return ret;
2190         }
2191
2192         /* zero back part of the first page */
2193         if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE)) {
2194                 ret = btrfs_truncate_page(inode, offset, 0, 0);
2195                 if (ret) {
2196                         mutex_unlock(&inode->i_mutex);
2197                         return ret;
2198                 }
2199         }
2200
2201         /* zero the front end of the last page */
2202         if (offset + len < round_up(inode->i_size, PAGE_CACHE_SIZE)) {
2203                 ret = btrfs_truncate_page(inode, offset + len, 0, 1);
2204                 if (ret) {
2205                         mutex_unlock(&inode->i_mutex);
2206                         return ret;
2207                 }
2208         }
2209
2210         if (lockend < lockstart) {
2211                 mutex_unlock(&inode->i_mutex);
2212                 return 0;
2213         }
2214
2215         while (1) {
2216                 struct btrfs_ordered_extent *ordered;
2217
2218                 truncate_pagecache_range(inode, lockstart, lockend);
2219
2220                 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2221                                  0, &cached_state);
2222                 ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2223
2224                 /*
2225                  * We need to make sure we have no ordered extents in this range
2226                  * and nobody raced in and read a page in this range, if we did
2227                  * we need to try again.
2228                  */
2229                 if ((!ordered ||
2230                     (ordered->file_offset + ordered->len <= lockstart ||
2231                      ordered->file_offset > lockend)) &&
2232                      !test_range_bit(&BTRFS_I(inode)->io_tree, lockstart,
2233                                      lockend, EXTENT_UPTODATE, 0,
2234                                      cached_state)) {
2235                         if (ordered)
2236                                 btrfs_put_ordered_extent(ordered);
2237                         break;
2238                 }
2239                 if (ordered)
2240                         btrfs_put_ordered_extent(ordered);
2241                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2242                                      lockend, &cached_state, GFP_NOFS);
2243                 ret = btrfs_wait_ordered_range(inode, lockstart,
2244                                                lockend - lockstart + 1);
2245                 if (ret) {
2246                         mutex_unlock(&inode->i_mutex);
2247                         return ret;
2248                 }
2249         }
2250
2251         path = btrfs_alloc_path();
2252         if (!path) {
2253                 ret = -ENOMEM;
2254                 goto out;
2255         }
2256
2257         rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2258         if (!rsv) {
2259                 ret = -ENOMEM;
2260                 goto out_free;
2261         }
2262         rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
2263         rsv->failfast = 1;
2264
2265         /*
2266          * 1 - update the inode
2267          * 1 - removing the extents in the range
2268          * 1 - adding the hole extent if no_holes isn't set
2269          */
2270         rsv_count = no_holes ? 2 : 3;
2271         trans = btrfs_start_transaction(root, rsv_count);
2272         if (IS_ERR(trans)) {
2273                 err = PTR_ERR(trans);
2274                 goto out_free;
2275         }
2276
2277         ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
2278                                       min_size);
2279         BUG_ON(ret);
2280         trans->block_rsv = rsv;
2281
2282         while (cur_offset < lockend) {
2283                 ret = __btrfs_drop_extents(trans, root, inode, path,
2284                                            cur_offset, lockend + 1,
2285                                            &drop_end, 1, 0, 0, NULL);
2286                 if (ret != -ENOSPC)
2287                         break;
2288
2289                 trans->block_rsv = &root->fs_info->trans_block_rsv;
2290
2291                 ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2292                 if (ret) {
2293                         err = ret;
2294                         break;
2295                 }
2296
2297                 cur_offset = drop_end;
2298
2299                 ret = btrfs_update_inode(trans, root, inode);
2300                 if (ret) {
2301                         err = ret;
2302                         break;
2303                 }
2304
2305                 btrfs_end_transaction(trans, root);
2306                 btrfs_btree_balance_dirty(root);
2307
2308                 trans = btrfs_start_transaction(root, rsv_count);
2309                 if (IS_ERR(trans)) {
2310                         ret = PTR_ERR(trans);
2311                         trans = NULL;
2312                         break;
2313                 }
2314
2315                 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
2316                                               rsv, min_size);
2317                 BUG_ON(ret);    /* shouldn't happen */
2318                 trans->block_rsv = rsv;
2319         }
2320
2321         if (ret) {
2322                 err = ret;
2323                 goto out_trans;
2324         }
2325
2326         trans->block_rsv = &root->fs_info->trans_block_rsv;
2327         ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2328         if (ret) {
2329                 err = ret;
2330                 goto out_trans;
2331         }
2332
2333 out_trans:
2334         if (!trans)
2335                 goto out_free;
2336
2337         inode_inc_iversion(inode);
2338         inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2339
2340         trans->block_rsv = &root->fs_info->trans_block_rsv;
2341         ret = btrfs_update_inode(trans, root, inode);
2342         btrfs_end_transaction(trans, root);
2343         btrfs_btree_balance_dirty(root);
2344 out_free:
2345         btrfs_free_path(path);
2346         btrfs_free_block_rsv(root, rsv);
2347 out:
2348         unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2349                              &cached_state, GFP_NOFS);
2350         mutex_unlock(&inode->i_mutex);
2351         if (ret && !err)
2352                 err = ret;
2353         return err;
2354 }
2355
2356 static long btrfs_fallocate(struct file *file, int mode,
2357                             loff_t offset, loff_t len)
2358 {
2359         struct inode *inode = file_inode(file);
2360         struct extent_state *cached_state = NULL;
2361         struct btrfs_root *root = BTRFS_I(inode)->root;
2362         u64 cur_offset;
2363         u64 last_byte;
2364         u64 alloc_start;
2365         u64 alloc_end;
2366         u64 alloc_hint = 0;
2367         u64 locked_end;
2368         struct extent_map *em;
2369         int blocksize = BTRFS_I(inode)->root->sectorsize;
2370         int ret;
2371
2372         alloc_start = round_down(offset, blocksize);
2373         alloc_end = round_up(offset + len, blocksize);
2374
2375         /* Make sure we aren't being give some crap mode */
2376         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2377                 return -EOPNOTSUPP;
2378
2379         if (mode & FALLOC_FL_PUNCH_HOLE)
2380                 return btrfs_punch_hole(inode, offset, len);
2381
2382         /*
2383          * Make sure we have enough space before we do the
2384          * allocation.
2385          */
2386         ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
2387         if (ret)
2388                 return ret;
2389         if (root->fs_info->quota_enabled) {
2390                 ret = btrfs_qgroup_reserve(root, alloc_end - alloc_start);
2391                 if (ret)
2392                         goto out_reserve_fail;
2393         }
2394
2395         mutex_lock(&inode->i_mutex);
2396         ret = inode_newsize_ok(inode, alloc_end);
2397         if (ret)
2398                 goto out;
2399
2400         if (alloc_start > inode->i_size) {
2401                 ret = btrfs_cont_expand(inode, i_size_read(inode),
2402                                         alloc_start);
2403                 if (ret)
2404                         goto out;
2405         } else {
2406                 /*
2407                  * If we are fallocating from the end of the file onward we
2408                  * need to zero out the end of the page if i_size lands in the
2409                  * middle of a page.
2410                  */
2411                 ret = btrfs_truncate_page(inode, inode->i_size, 0, 0);
2412                 if (ret)
2413                         goto out;
2414         }
2415
2416         /*
2417          * wait for ordered IO before we have any locks.  We'll loop again
2418          * below with the locks held.
2419          */
2420         ret = btrfs_wait_ordered_range(inode, alloc_start,
2421                                        alloc_end - alloc_start);
2422         if (ret)
2423                 goto out;
2424
2425         locked_end = alloc_end - 1;
2426         while (1) {
2427                 struct btrfs_ordered_extent *ordered;
2428
2429                 /* the extent lock is ordered inside the running
2430                  * transaction
2431                  */
2432                 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
2433                                  locked_end, 0, &cached_state);
2434                 ordered = btrfs_lookup_first_ordered_extent(inode,
2435                                                             alloc_end - 1);
2436                 if (ordered &&
2437                     ordered->file_offset + ordered->len > alloc_start &&
2438                     ordered->file_offset < alloc_end) {
2439                         btrfs_put_ordered_extent(ordered);
2440                         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2441                                              alloc_start, locked_end,
2442                                              &cached_state, GFP_NOFS);
2443                         /*
2444                          * we can't wait on the range with the transaction
2445                          * running or with the extent lock held
2446                          */
2447                         ret = btrfs_wait_ordered_range(inode, alloc_start,
2448                                                        alloc_end - alloc_start);
2449                         if (ret)
2450                                 goto out;
2451                 } else {
2452                         if (ordered)
2453                                 btrfs_put_ordered_extent(ordered);
2454                         break;
2455                 }
2456         }
2457
2458         cur_offset = alloc_start;
2459         while (1) {
2460                 u64 actual_end;
2461
2462                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2463                                       alloc_end - cur_offset, 0);
2464                 if (IS_ERR_OR_NULL(em)) {
2465                         if (!em)
2466                                 ret = -ENOMEM;
2467                         else
2468                                 ret = PTR_ERR(em);
2469                         break;
2470                 }
2471                 last_byte = min(extent_map_end(em), alloc_end);
2472                 actual_end = min_t(u64, extent_map_end(em), offset + len);
2473                 last_byte = ALIGN(last_byte, blocksize);
2474
2475                 if (em->block_start == EXTENT_MAP_HOLE ||
2476                     (cur_offset >= inode->i_size &&
2477                      !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2478                         ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
2479                                                         last_byte - cur_offset,
2480                                                         1 << inode->i_blkbits,
2481                                                         offset + len,
2482                                                         &alloc_hint);
2483
2484                         if (ret < 0) {
2485                                 free_extent_map(em);
2486                                 break;
2487                         }
2488                 } else if (actual_end > inode->i_size &&
2489                            !(mode & FALLOC_FL_KEEP_SIZE)) {
2490                         /*
2491                          * We didn't need to allocate any more space, but we
2492                          * still extended the size of the file so we need to
2493                          * update i_size.
2494                          */
2495                         inode->i_ctime = CURRENT_TIME;
2496                         i_size_write(inode, actual_end);
2497                         btrfs_ordered_update_i_size(inode, actual_end, NULL);
2498                 }
2499                 free_extent_map(em);
2500
2501                 cur_offset = last_byte;
2502                 if (cur_offset >= alloc_end) {
2503                         ret = 0;
2504                         break;
2505                 }
2506         }
2507         unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
2508                              &cached_state, GFP_NOFS);
2509 out:
2510         mutex_unlock(&inode->i_mutex);
2511         if (root->fs_info->quota_enabled)
2512                 btrfs_qgroup_free(root, alloc_end - alloc_start);
2513 out_reserve_fail:
2514         /* Let go of our reservation. */
2515         btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
2516         return ret;
2517 }
2518
2519 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
2520 {
2521         struct btrfs_root *root = BTRFS_I(inode)->root;
2522         struct extent_map *em = NULL;
2523         struct extent_state *cached_state = NULL;
2524         u64 lockstart = *offset;
2525         u64 lockend = i_size_read(inode);
2526         u64 start = *offset;
2527         u64 len = i_size_read(inode);
2528         int ret = 0;
2529
2530         lockend = max_t(u64, root->sectorsize, lockend);
2531         if (lockend <= lockstart)
2532                 lockend = lockstart + root->sectorsize;
2533
2534         lockend--;
2535         len = lockend - lockstart + 1;
2536
2537         len = max_t(u64, len, root->sectorsize);
2538         if (inode->i_size == 0)
2539                 return -ENXIO;
2540
2541         lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
2542                          &cached_state);
2543
2544         while (start < inode->i_size) {
2545                 em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
2546                 if (IS_ERR(em)) {
2547                         ret = PTR_ERR(em);
2548                         em = NULL;
2549                         break;
2550                 }
2551
2552                 if (whence == SEEK_HOLE &&
2553                     (em->block_start == EXTENT_MAP_HOLE ||
2554                      test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2555                         break;
2556                 else if (whence == SEEK_DATA &&
2557                            (em->block_start != EXTENT_MAP_HOLE &&
2558                             !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2559                         break;
2560
2561                 start = em->start + em->len;
2562                 free_extent_map(em);
2563                 em = NULL;
2564                 cond_resched();
2565         }
2566         free_extent_map(em);
2567         if (!ret) {
2568                 if (whence == SEEK_DATA && start >= inode->i_size)
2569                         ret = -ENXIO;
2570                 else
2571                         *offset = min_t(loff_t, start, inode->i_size);
2572         }
2573         unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2574                              &cached_state, GFP_NOFS);
2575         return ret;
2576 }
2577
2578 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
2579 {
2580         struct inode *inode = file->f_mapping->host;
2581         int ret;
2582
2583         mutex_lock(&inode->i_mutex);
2584         switch (whence) {
2585         case SEEK_END:
2586         case SEEK_CUR:
2587                 offset = generic_file_llseek(file, offset, whence);
2588                 goto out;
2589         case SEEK_DATA:
2590         case SEEK_HOLE:
2591                 if (offset >= i_size_read(inode)) {
2592                         mutex_unlock(&inode->i_mutex);
2593                         return -ENXIO;
2594                 }
2595
2596                 ret = find_desired_extent(inode, &offset, whence);
2597                 if (ret) {
2598                         mutex_unlock(&inode->i_mutex);
2599                         return ret;
2600                 }
2601         }
2602
2603         offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2604 out:
2605         mutex_unlock(&inode->i_mutex);
2606         return offset;
2607 }
2608
2609 const struct file_operations btrfs_file_operations = {
2610         .llseek         = btrfs_file_llseek,
2611         .read           = do_sync_read,
2612         .write          = do_sync_write,
2613         .aio_read       = generic_file_aio_read,
2614         .splice_read    = generic_file_splice_read,
2615         .aio_write      = btrfs_file_aio_write,
2616         .mmap           = btrfs_file_mmap,
2617         .open           = generic_file_open,
2618         .release        = btrfs_release_file,
2619         .fsync          = btrfs_sync_file,
2620         .fallocate      = btrfs_fallocate,
2621         .unlocked_ioctl = btrfs_ioctl,
2622 #ifdef CONFIG_COMPAT
2623         .compat_ioctl   = btrfs_ioctl,
2624 #endif
2625 };
2626
2627 void btrfs_auto_defrag_exit(void)
2628 {
2629         if (btrfs_inode_defrag_cachep)
2630                 kmem_cache_destroy(btrfs_inode_defrag_cachep);
2631 }
2632
2633 int btrfs_auto_defrag_init(void)
2634 {
2635         btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
2636                                         sizeof(struct inode_defrag), 0,
2637                                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
2638                                         NULL);
2639         if (!btrfs_inode_defrag_cachep)
2640                 return -ENOMEM;
2641
2642         return 0;
2643 }