Merge remote-tracking branch 'asoc/topic/tlv320aic31xx' into asoc-next
[cascardo/linux.git] / fs / btrfs / file.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/falloc.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/statfs.h>
31 #include <linux/compat.h>
32 #include <linux/slab.h>
33 #include <linux/btrfs.h>
34 #include <linux/uio.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "print-tree.h"
40 #include "tree-log.h"
41 #include "locking.h"
42 #include "volumes.h"
43 #include "qgroup.h"
44 #include "compression.h"
45
46 static struct kmem_cache *btrfs_inode_defrag_cachep;
47 /*
48  * when auto defrag is enabled we
49  * queue up these defrag structs to remember which
50  * inodes need defragging passes
51  */
52 struct inode_defrag {
53         struct rb_node rb_node;
54         /* objectid */
55         u64 ino;
56         /*
57          * transid where the defrag was added, we search for
58          * extents newer than this
59          */
60         u64 transid;
61
62         /* root objectid */
63         u64 root;
64
65         /* last offset we were able to defrag */
66         u64 last_offset;
67
68         /* if we've wrapped around back to zero once already */
69         int cycled;
70 };
71
72 static int __compare_inode_defrag(struct inode_defrag *defrag1,
73                                   struct inode_defrag *defrag2)
74 {
75         if (defrag1->root > defrag2->root)
76                 return 1;
77         else if (defrag1->root < defrag2->root)
78                 return -1;
79         else if (defrag1->ino > defrag2->ino)
80                 return 1;
81         else if (defrag1->ino < defrag2->ino)
82                 return -1;
83         else
84                 return 0;
85 }
86
87 /* pop a record for an inode into the defrag tree.  The lock
88  * must be held already
89  *
90  * If you're inserting a record for an older transid than an
91  * existing record, the transid already in the tree is lowered
92  *
93  * If an existing record is found the defrag item you
94  * pass in is freed
95  */
96 static int __btrfs_add_inode_defrag(struct inode *inode,
97                                     struct inode_defrag *defrag)
98 {
99         struct btrfs_root *root = BTRFS_I(inode)->root;
100         struct inode_defrag *entry;
101         struct rb_node **p;
102         struct rb_node *parent = NULL;
103         int ret;
104
105         p = &root->fs_info->defrag_inodes.rb_node;
106         while (*p) {
107                 parent = *p;
108                 entry = rb_entry(parent, struct inode_defrag, rb_node);
109
110                 ret = __compare_inode_defrag(defrag, entry);
111                 if (ret < 0)
112                         p = &parent->rb_left;
113                 else if (ret > 0)
114                         p = &parent->rb_right;
115                 else {
116                         /* if we're reinserting an entry for
117                          * an old defrag run, make sure to
118                          * lower the transid of our existing record
119                          */
120                         if (defrag->transid < entry->transid)
121                                 entry->transid = defrag->transid;
122                         if (defrag->last_offset > entry->last_offset)
123                                 entry->last_offset = defrag->last_offset;
124                         return -EEXIST;
125                 }
126         }
127         set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
128         rb_link_node(&defrag->rb_node, parent, p);
129         rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
130         return 0;
131 }
132
133 static inline int __need_auto_defrag(struct btrfs_root *root)
134 {
135         if (!btrfs_test_opt(root, AUTO_DEFRAG))
136                 return 0;
137
138         if (btrfs_fs_closing(root->fs_info))
139                 return 0;
140
141         return 1;
142 }
143
144 /*
145  * insert a defrag record for this inode if auto defrag is
146  * enabled
147  */
148 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
149                            struct inode *inode)
150 {
151         struct btrfs_root *root = BTRFS_I(inode)->root;
152         struct inode_defrag *defrag;
153         u64 transid;
154         int ret;
155
156         if (!__need_auto_defrag(root))
157                 return 0;
158
159         if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
160                 return 0;
161
162         if (trans)
163                 transid = trans->transid;
164         else
165                 transid = BTRFS_I(inode)->root->last_trans;
166
167         defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
168         if (!defrag)
169                 return -ENOMEM;
170
171         defrag->ino = btrfs_ino(inode);
172         defrag->transid = transid;
173         defrag->root = root->root_key.objectid;
174
175         spin_lock(&root->fs_info->defrag_inodes_lock);
176         if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
177                 /*
178                  * If we set IN_DEFRAG flag and evict the inode from memory,
179                  * and then re-read this inode, this new inode doesn't have
180                  * IN_DEFRAG flag. At the case, we may find the existed defrag.
181                  */
182                 ret = __btrfs_add_inode_defrag(inode, defrag);
183                 if (ret)
184                         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
185         } else {
186                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
187         }
188         spin_unlock(&root->fs_info->defrag_inodes_lock);
189         return 0;
190 }
191
192 /*
193  * Requeue the defrag object. If there is a defrag object that points to
194  * the same inode in the tree, we will merge them together (by
195  * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
196  */
197 static void btrfs_requeue_inode_defrag(struct inode *inode,
198                                        struct inode_defrag *defrag)
199 {
200         struct btrfs_root *root = BTRFS_I(inode)->root;
201         int ret;
202
203         if (!__need_auto_defrag(root))
204                 goto out;
205
206         /*
207          * Here we don't check the IN_DEFRAG flag, because we need merge
208          * them together.
209          */
210         spin_lock(&root->fs_info->defrag_inodes_lock);
211         ret = __btrfs_add_inode_defrag(inode, defrag);
212         spin_unlock(&root->fs_info->defrag_inodes_lock);
213         if (ret)
214                 goto out;
215         return;
216 out:
217         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
218 }
219
220 /*
221  * pick the defragable inode that we want, if it doesn't exist, we will get
222  * the next one.
223  */
224 static struct inode_defrag *
225 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
226 {
227         struct inode_defrag *entry = NULL;
228         struct inode_defrag tmp;
229         struct rb_node *p;
230         struct rb_node *parent = NULL;
231         int ret;
232
233         tmp.ino = ino;
234         tmp.root = root;
235
236         spin_lock(&fs_info->defrag_inodes_lock);
237         p = fs_info->defrag_inodes.rb_node;
238         while (p) {
239                 parent = p;
240                 entry = rb_entry(parent, struct inode_defrag, rb_node);
241
242                 ret = __compare_inode_defrag(&tmp, entry);
243                 if (ret < 0)
244                         p = parent->rb_left;
245                 else if (ret > 0)
246                         p = parent->rb_right;
247                 else
248                         goto out;
249         }
250
251         if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
252                 parent = rb_next(parent);
253                 if (parent)
254                         entry = rb_entry(parent, struct inode_defrag, rb_node);
255                 else
256                         entry = NULL;
257         }
258 out:
259         if (entry)
260                 rb_erase(parent, &fs_info->defrag_inodes);
261         spin_unlock(&fs_info->defrag_inodes_lock);
262         return entry;
263 }
264
265 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
266 {
267         struct inode_defrag *defrag;
268         struct rb_node *node;
269
270         spin_lock(&fs_info->defrag_inodes_lock);
271         node = rb_first(&fs_info->defrag_inodes);
272         while (node) {
273                 rb_erase(node, &fs_info->defrag_inodes);
274                 defrag = rb_entry(node, struct inode_defrag, rb_node);
275                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
276
277                 cond_resched_lock(&fs_info->defrag_inodes_lock);
278
279                 node = rb_first(&fs_info->defrag_inodes);
280         }
281         spin_unlock(&fs_info->defrag_inodes_lock);
282 }
283
284 #define BTRFS_DEFRAG_BATCH      1024
285
286 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
287                                     struct inode_defrag *defrag)
288 {
289         struct btrfs_root *inode_root;
290         struct inode *inode;
291         struct btrfs_key key;
292         struct btrfs_ioctl_defrag_range_args range;
293         int num_defrag;
294         int index;
295         int ret;
296
297         /* get the inode */
298         key.objectid = defrag->root;
299         key.type = BTRFS_ROOT_ITEM_KEY;
300         key.offset = (u64)-1;
301
302         index = srcu_read_lock(&fs_info->subvol_srcu);
303
304         inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
305         if (IS_ERR(inode_root)) {
306                 ret = PTR_ERR(inode_root);
307                 goto cleanup;
308         }
309
310         key.objectid = defrag->ino;
311         key.type = BTRFS_INODE_ITEM_KEY;
312         key.offset = 0;
313         inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
314         if (IS_ERR(inode)) {
315                 ret = PTR_ERR(inode);
316                 goto cleanup;
317         }
318         srcu_read_unlock(&fs_info->subvol_srcu, index);
319
320         /* do a chunk of defrag */
321         clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
322         memset(&range, 0, sizeof(range));
323         range.len = (u64)-1;
324         range.start = defrag->last_offset;
325
326         sb_start_write(fs_info->sb);
327         num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
328                                        BTRFS_DEFRAG_BATCH);
329         sb_end_write(fs_info->sb);
330         /*
331          * if we filled the whole defrag batch, there
332          * must be more work to do.  Queue this defrag
333          * again
334          */
335         if (num_defrag == BTRFS_DEFRAG_BATCH) {
336                 defrag->last_offset = range.start;
337                 btrfs_requeue_inode_defrag(inode, defrag);
338         } else if (defrag->last_offset && !defrag->cycled) {
339                 /*
340                  * we didn't fill our defrag batch, but
341                  * we didn't start at zero.  Make sure we loop
342                  * around to the start of the file.
343                  */
344                 defrag->last_offset = 0;
345                 defrag->cycled = 1;
346                 btrfs_requeue_inode_defrag(inode, defrag);
347         } else {
348                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
349         }
350
351         iput(inode);
352         return 0;
353 cleanup:
354         srcu_read_unlock(&fs_info->subvol_srcu, index);
355         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
356         return ret;
357 }
358
359 /*
360  * run through the list of inodes in the FS that need
361  * defragging
362  */
363 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
364 {
365         struct inode_defrag *defrag;
366         u64 first_ino = 0;
367         u64 root_objectid = 0;
368
369         atomic_inc(&fs_info->defrag_running);
370         while (1) {
371                 /* Pause the auto defragger. */
372                 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
373                              &fs_info->fs_state))
374                         break;
375
376                 if (!__need_auto_defrag(fs_info->tree_root))
377                         break;
378
379                 /* find an inode to defrag */
380                 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
381                                                  first_ino);
382                 if (!defrag) {
383                         if (root_objectid || first_ino) {
384                                 root_objectid = 0;
385                                 first_ino = 0;
386                                 continue;
387                         } else {
388                                 break;
389                         }
390                 }
391
392                 first_ino = defrag->ino + 1;
393                 root_objectid = defrag->root;
394
395                 __btrfs_run_defrag_inode(fs_info, defrag);
396         }
397         atomic_dec(&fs_info->defrag_running);
398
399         /*
400          * during unmount, we use the transaction_wait queue to
401          * wait for the defragger to stop
402          */
403         wake_up(&fs_info->transaction_wait);
404         return 0;
405 }
406
407 /* simple helper to fault in pages and copy.  This should go away
408  * and be replaced with calls into generic code.
409  */
410 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
411                                          struct page **prepared_pages,
412                                          struct iov_iter *i)
413 {
414         size_t copied = 0;
415         size_t total_copied = 0;
416         int pg = 0;
417         int offset = pos & (PAGE_SIZE - 1);
418
419         while (write_bytes > 0) {
420                 size_t count = min_t(size_t,
421                                      PAGE_SIZE - offset, write_bytes);
422                 struct page *page = prepared_pages[pg];
423                 /*
424                  * Copy data from userspace to the current page
425                  */
426                 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
427
428                 /* Flush processor's dcache for this page */
429                 flush_dcache_page(page);
430
431                 /*
432                  * if we get a partial write, we can end up with
433                  * partially up to date pages.  These add
434                  * a lot of complexity, so make sure they don't
435                  * happen by forcing this copy to be retried.
436                  *
437                  * The rest of the btrfs_file_write code will fall
438                  * back to page at a time copies after we return 0.
439                  */
440                 if (!PageUptodate(page) && copied < count)
441                         copied = 0;
442
443                 iov_iter_advance(i, copied);
444                 write_bytes -= copied;
445                 total_copied += copied;
446
447                 /* Return to btrfs_file_write_iter to fault page */
448                 if (unlikely(copied == 0))
449                         break;
450
451                 if (copied < PAGE_SIZE - offset) {
452                         offset += copied;
453                 } else {
454                         pg++;
455                         offset = 0;
456                 }
457         }
458         return total_copied;
459 }
460
461 /*
462  * unlocks pages after btrfs_file_write is done with them
463  */
464 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
465 {
466         size_t i;
467         for (i = 0; i < num_pages; i++) {
468                 /* page checked is some magic around finding pages that
469                  * have been modified without going through btrfs_set_page_dirty
470                  * clear it here. There should be no need to mark the pages
471                  * accessed as prepare_pages should have marked them accessed
472                  * in prepare_pages via find_or_create_page()
473                  */
474                 ClearPageChecked(pages[i]);
475                 unlock_page(pages[i]);
476                 put_page(pages[i]);
477         }
478 }
479
480 /*
481  * after copy_from_user, pages need to be dirtied and we need to make
482  * sure holes are created between the current EOF and the start of
483  * any next extents (if required).
484  *
485  * this also makes the decision about creating an inline extent vs
486  * doing real data extents, marking pages dirty and delalloc as required.
487  */
488 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
489                              struct page **pages, size_t num_pages,
490                              loff_t pos, size_t write_bytes,
491                              struct extent_state **cached)
492 {
493         int err = 0;
494         int i;
495         u64 num_bytes;
496         u64 start_pos;
497         u64 end_of_last_block;
498         u64 end_pos = pos + write_bytes;
499         loff_t isize = i_size_read(inode);
500
501         start_pos = pos & ~((u64)root->sectorsize - 1);
502         num_bytes = round_up(write_bytes + pos - start_pos, root->sectorsize);
503
504         end_of_last_block = start_pos + num_bytes - 1;
505         err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
506                                         cached);
507         if (err)
508                 return err;
509
510         for (i = 0; i < num_pages; i++) {
511                 struct page *p = pages[i];
512                 SetPageUptodate(p);
513                 ClearPageChecked(p);
514                 set_page_dirty(p);
515         }
516
517         /*
518          * we've only changed i_size in ram, and we haven't updated
519          * the disk i_size.  There is no need to log the inode
520          * at this time.
521          */
522         if (end_pos > isize)
523                 i_size_write(inode, end_pos);
524         return 0;
525 }
526
527 /*
528  * this drops all the extents in the cache that intersect the range
529  * [start, end].  Existing extents are split as required.
530  */
531 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
532                              int skip_pinned)
533 {
534         struct extent_map *em;
535         struct extent_map *split = NULL;
536         struct extent_map *split2 = NULL;
537         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
538         u64 len = end - start + 1;
539         u64 gen;
540         int ret;
541         int testend = 1;
542         unsigned long flags;
543         int compressed = 0;
544         bool modified;
545
546         WARN_ON(end < start);
547         if (end == (u64)-1) {
548                 len = (u64)-1;
549                 testend = 0;
550         }
551         while (1) {
552                 int no_splits = 0;
553
554                 modified = false;
555                 if (!split)
556                         split = alloc_extent_map();
557                 if (!split2)
558                         split2 = alloc_extent_map();
559                 if (!split || !split2)
560                         no_splits = 1;
561
562                 write_lock(&em_tree->lock);
563                 em = lookup_extent_mapping(em_tree, start, len);
564                 if (!em) {
565                         write_unlock(&em_tree->lock);
566                         break;
567                 }
568                 flags = em->flags;
569                 gen = em->generation;
570                 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
571                         if (testend && em->start + em->len >= start + len) {
572                                 free_extent_map(em);
573                                 write_unlock(&em_tree->lock);
574                                 break;
575                         }
576                         start = em->start + em->len;
577                         if (testend)
578                                 len = start + len - (em->start + em->len);
579                         free_extent_map(em);
580                         write_unlock(&em_tree->lock);
581                         continue;
582                 }
583                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
584                 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
585                 clear_bit(EXTENT_FLAG_LOGGING, &flags);
586                 modified = !list_empty(&em->list);
587                 if (no_splits)
588                         goto next;
589
590                 if (em->start < start) {
591                         split->start = em->start;
592                         split->len = start - em->start;
593
594                         if (em->block_start < EXTENT_MAP_LAST_BYTE) {
595                                 split->orig_start = em->orig_start;
596                                 split->block_start = em->block_start;
597
598                                 if (compressed)
599                                         split->block_len = em->block_len;
600                                 else
601                                         split->block_len = split->len;
602                                 split->orig_block_len = max(split->block_len,
603                                                 em->orig_block_len);
604                                 split->ram_bytes = em->ram_bytes;
605                         } else {
606                                 split->orig_start = split->start;
607                                 split->block_len = 0;
608                                 split->block_start = em->block_start;
609                                 split->orig_block_len = 0;
610                                 split->ram_bytes = split->len;
611                         }
612
613                         split->generation = gen;
614                         split->bdev = em->bdev;
615                         split->flags = flags;
616                         split->compress_type = em->compress_type;
617                         replace_extent_mapping(em_tree, em, split, modified);
618                         free_extent_map(split);
619                         split = split2;
620                         split2 = NULL;
621                 }
622                 if (testend && em->start + em->len > start + len) {
623                         u64 diff = start + len - em->start;
624
625                         split->start = start + len;
626                         split->len = em->start + em->len - (start + len);
627                         split->bdev = em->bdev;
628                         split->flags = flags;
629                         split->compress_type = em->compress_type;
630                         split->generation = gen;
631
632                         if (em->block_start < EXTENT_MAP_LAST_BYTE) {
633                                 split->orig_block_len = max(em->block_len,
634                                                     em->orig_block_len);
635
636                                 split->ram_bytes = em->ram_bytes;
637                                 if (compressed) {
638                                         split->block_len = em->block_len;
639                                         split->block_start = em->block_start;
640                                         split->orig_start = em->orig_start;
641                                 } else {
642                                         split->block_len = split->len;
643                                         split->block_start = em->block_start
644                                                 + diff;
645                                         split->orig_start = em->orig_start;
646                                 }
647                         } else {
648                                 split->ram_bytes = split->len;
649                                 split->orig_start = split->start;
650                                 split->block_len = 0;
651                                 split->block_start = em->block_start;
652                                 split->orig_block_len = 0;
653                         }
654
655                         if (extent_map_in_tree(em)) {
656                                 replace_extent_mapping(em_tree, em, split,
657                                                        modified);
658                         } else {
659                                 ret = add_extent_mapping(em_tree, split,
660                                                          modified);
661                                 ASSERT(ret == 0); /* Logic error */
662                         }
663                         free_extent_map(split);
664                         split = NULL;
665                 }
666 next:
667                 if (extent_map_in_tree(em))
668                         remove_extent_mapping(em_tree, em);
669                 write_unlock(&em_tree->lock);
670
671                 /* once for us */
672                 free_extent_map(em);
673                 /* once for the tree*/
674                 free_extent_map(em);
675         }
676         if (split)
677                 free_extent_map(split);
678         if (split2)
679                 free_extent_map(split2);
680 }
681
682 /*
683  * this is very complex, but the basic idea is to drop all extents
684  * in the range start - end.  hint_block is filled in with a block number
685  * that would be a good hint to the block allocator for this file.
686  *
687  * If an extent intersects the range but is not entirely inside the range
688  * it is either truncated or split.  Anything entirely inside the range
689  * is deleted from the tree.
690  */
691 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
692                          struct btrfs_root *root, struct inode *inode,
693                          struct btrfs_path *path, u64 start, u64 end,
694                          u64 *drop_end, int drop_cache,
695                          int replace_extent,
696                          u32 extent_item_size,
697                          int *key_inserted)
698 {
699         struct extent_buffer *leaf;
700         struct btrfs_file_extent_item *fi;
701         struct btrfs_key key;
702         struct btrfs_key new_key;
703         u64 ino = btrfs_ino(inode);
704         u64 search_start = start;
705         u64 disk_bytenr = 0;
706         u64 num_bytes = 0;
707         u64 extent_offset = 0;
708         u64 extent_end = 0;
709         int del_nr = 0;
710         int del_slot = 0;
711         int extent_type;
712         int recow;
713         int ret;
714         int modify_tree = -1;
715         int update_refs;
716         int found = 0;
717         int leafs_visited = 0;
718
719         if (drop_cache)
720                 btrfs_drop_extent_cache(inode, start, end - 1, 0);
721
722         if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
723                 modify_tree = 0;
724
725         update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
726                        root == root->fs_info->tree_root);
727         while (1) {
728                 recow = 0;
729                 ret = btrfs_lookup_file_extent(trans, root, path, ino,
730                                                search_start, modify_tree);
731                 if (ret < 0)
732                         break;
733                 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
734                         leaf = path->nodes[0];
735                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
736                         if (key.objectid == ino &&
737                             key.type == BTRFS_EXTENT_DATA_KEY)
738                                 path->slots[0]--;
739                 }
740                 ret = 0;
741                 leafs_visited++;
742 next_slot:
743                 leaf = path->nodes[0];
744                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
745                         BUG_ON(del_nr > 0);
746                         ret = btrfs_next_leaf(root, path);
747                         if (ret < 0)
748                                 break;
749                         if (ret > 0) {
750                                 ret = 0;
751                                 break;
752                         }
753                         leafs_visited++;
754                         leaf = path->nodes[0];
755                         recow = 1;
756                 }
757
758                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
759
760                 if (key.objectid > ino)
761                         break;
762                 if (WARN_ON_ONCE(key.objectid < ino) ||
763                     key.type < BTRFS_EXTENT_DATA_KEY) {
764                         ASSERT(del_nr == 0);
765                         path->slots[0]++;
766                         goto next_slot;
767                 }
768                 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
769                         break;
770
771                 fi = btrfs_item_ptr(leaf, path->slots[0],
772                                     struct btrfs_file_extent_item);
773                 extent_type = btrfs_file_extent_type(leaf, fi);
774
775                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
776                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
777                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
778                         num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
779                         extent_offset = btrfs_file_extent_offset(leaf, fi);
780                         extent_end = key.offset +
781                                 btrfs_file_extent_num_bytes(leaf, fi);
782                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
783                         extent_end = key.offset +
784                                 btrfs_file_extent_inline_len(leaf,
785                                                      path->slots[0], fi);
786                 } else {
787                         /* can't happen */
788                         BUG();
789                 }
790
791                 /*
792                  * Don't skip extent items representing 0 byte lengths. They
793                  * used to be created (bug) if while punching holes we hit
794                  * -ENOSPC condition. So if we find one here, just ensure we
795                  * delete it, otherwise we would insert a new file extent item
796                  * with the same key (offset) as that 0 bytes length file
797                  * extent item in the call to setup_items_for_insert() later
798                  * in this function.
799                  */
800                 if (extent_end == key.offset && extent_end >= search_start)
801                         goto delete_extent_item;
802
803                 if (extent_end <= search_start) {
804                         path->slots[0]++;
805                         goto next_slot;
806                 }
807
808                 found = 1;
809                 search_start = max(key.offset, start);
810                 if (recow || !modify_tree) {
811                         modify_tree = -1;
812                         btrfs_release_path(path);
813                         continue;
814                 }
815
816                 /*
817                  *     | - range to drop - |
818                  *  | -------- extent -------- |
819                  */
820                 if (start > key.offset && end < extent_end) {
821                         BUG_ON(del_nr > 0);
822                         if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
823                                 ret = -EOPNOTSUPP;
824                                 break;
825                         }
826
827                         memcpy(&new_key, &key, sizeof(new_key));
828                         new_key.offset = start;
829                         ret = btrfs_duplicate_item(trans, root, path,
830                                                    &new_key);
831                         if (ret == -EAGAIN) {
832                                 btrfs_release_path(path);
833                                 continue;
834                         }
835                         if (ret < 0)
836                                 break;
837
838                         leaf = path->nodes[0];
839                         fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
840                                             struct btrfs_file_extent_item);
841                         btrfs_set_file_extent_num_bytes(leaf, fi,
842                                                         start - key.offset);
843
844                         fi = btrfs_item_ptr(leaf, path->slots[0],
845                                             struct btrfs_file_extent_item);
846
847                         extent_offset += start - key.offset;
848                         btrfs_set_file_extent_offset(leaf, fi, extent_offset);
849                         btrfs_set_file_extent_num_bytes(leaf, fi,
850                                                         extent_end - start);
851                         btrfs_mark_buffer_dirty(leaf);
852
853                         if (update_refs && disk_bytenr > 0) {
854                                 ret = btrfs_inc_extent_ref(trans, root,
855                                                 disk_bytenr, num_bytes, 0,
856                                                 root->root_key.objectid,
857                                                 new_key.objectid,
858                                                 start - extent_offset);
859                                 BUG_ON(ret); /* -ENOMEM */
860                         }
861                         key.offset = start;
862                 }
863                 /*
864                  *  | ---- range to drop ----- |
865                  *      | -------- extent -------- |
866                  */
867                 if (start <= key.offset && end < extent_end) {
868                         if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
869                                 ret = -EOPNOTSUPP;
870                                 break;
871                         }
872
873                         memcpy(&new_key, &key, sizeof(new_key));
874                         new_key.offset = end;
875                         btrfs_set_item_key_safe(root->fs_info, path, &new_key);
876
877                         extent_offset += end - key.offset;
878                         btrfs_set_file_extent_offset(leaf, fi, extent_offset);
879                         btrfs_set_file_extent_num_bytes(leaf, fi,
880                                                         extent_end - end);
881                         btrfs_mark_buffer_dirty(leaf);
882                         if (update_refs && disk_bytenr > 0)
883                                 inode_sub_bytes(inode, end - key.offset);
884                         break;
885                 }
886
887                 search_start = extent_end;
888                 /*
889                  *       | ---- range to drop ----- |
890                  *  | -------- extent -------- |
891                  */
892                 if (start > key.offset && end >= extent_end) {
893                         BUG_ON(del_nr > 0);
894                         if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
895                                 ret = -EOPNOTSUPP;
896                                 break;
897                         }
898
899                         btrfs_set_file_extent_num_bytes(leaf, fi,
900                                                         start - key.offset);
901                         btrfs_mark_buffer_dirty(leaf);
902                         if (update_refs && disk_bytenr > 0)
903                                 inode_sub_bytes(inode, extent_end - start);
904                         if (end == extent_end)
905                                 break;
906
907                         path->slots[0]++;
908                         goto next_slot;
909                 }
910
911                 /*
912                  *  | ---- range to drop ----- |
913                  *    | ------ extent ------ |
914                  */
915                 if (start <= key.offset && end >= extent_end) {
916 delete_extent_item:
917                         if (del_nr == 0) {
918                                 del_slot = path->slots[0];
919                                 del_nr = 1;
920                         } else {
921                                 BUG_ON(del_slot + del_nr != path->slots[0]);
922                                 del_nr++;
923                         }
924
925                         if (update_refs &&
926                             extent_type == BTRFS_FILE_EXTENT_INLINE) {
927                                 inode_sub_bytes(inode,
928                                                 extent_end - key.offset);
929                                 extent_end = ALIGN(extent_end,
930                                                    root->sectorsize);
931                         } else if (update_refs && disk_bytenr > 0) {
932                                 ret = btrfs_free_extent(trans, root,
933                                                 disk_bytenr, num_bytes, 0,
934                                                 root->root_key.objectid,
935                                                 key.objectid, key.offset -
936                                                 extent_offset);
937                                 BUG_ON(ret); /* -ENOMEM */
938                                 inode_sub_bytes(inode,
939                                                 extent_end - key.offset);
940                         }
941
942                         if (end == extent_end)
943                                 break;
944
945                         if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
946                                 path->slots[0]++;
947                                 goto next_slot;
948                         }
949
950                         ret = btrfs_del_items(trans, root, path, del_slot,
951                                               del_nr);
952                         if (ret) {
953                                 btrfs_abort_transaction(trans, root, ret);
954                                 break;
955                         }
956
957                         del_nr = 0;
958                         del_slot = 0;
959
960                         btrfs_release_path(path);
961                         continue;
962                 }
963
964                 BUG_ON(1);
965         }
966
967         if (!ret && del_nr > 0) {
968                 /*
969                  * Set path->slots[0] to first slot, so that after the delete
970                  * if items are move off from our leaf to its immediate left or
971                  * right neighbor leafs, we end up with a correct and adjusted
972                  * path->slots[0] for our insertion (if replace_extent != 0).
973                  */
974                 path->slots[0] = del_slot;
975                 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
976                 if (ret)
977                         btrfs_abort_transaction(trans, root, ret);
978         }
979
980         leaf = path->nodes[0];
981         /*
982          * If btrfs_del_items() was called, it might have deleted a leaf, in
983          * which case it unlocked our path, so check path->locks[0] matches a
984          * write lock.
985          */
986         if (!ret && replace_extent && leafs_visited == 1 &&
987             (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
988              path->locks[0] == BTRFS_WRITE_LOCK) &&
989             btrfs_leaf_free_space(root, leaf) >=
990             sizeof(struct btrfs_item) + extent_item_size) {
991
992                 key.objectid = ino;
993                 key.type = BTRFS_EXTENT_DATA_KEY;
994                 key.offset = start;
995                 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
996                         struct btrfs_key slot_key;
997
998                         btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
999                         if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1000                                 path->slots[0]++;
1001                 }
1002                 setup_items_for_insert(root, path, &key,
1003                                        &extent_item_size,
1004                                        extent_item_size,
1005                                        sizeof(struct btrfs_item) +
1006                                        extent_item_size, 1);
1007                 *key_inserted = 1;
1008         }
1009
1010         if (!replace_extent || !(*key_inserted))
1011                 btrfs_release_path(path);
1012         if (drop_end)
1013                 *drop_end = found ? min(end, extent_end) : end;
1014         return ret;
1015 }
1016
1017 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1018                        struct btrfs_root *root, struct inode *inode, u64 start,
1019                        u64 end, int drop_cache)
1020 {
1021         struct btrfs_path *path;
1022         int ret;
1023
1024         path = btrfs_alloc_path();
1025         if (!path)
1026                 return -ENOMEM;
1027         ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1028                                    drop_cache, 0, 0, NULL);
1029         btrfs_free_path(path);
1030         return ret;
1031 }
1032
1033 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1034                             u64 objectid, u64 bytenr, u64 orig_offset,
1035                             u64 *start, u64 *end)
1036 {
1037         struct btrfs_file_extent_item *fi;
1038         struct btrfs_key key;
1039         u64 extent_end;
1040
1041         if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1042                 return 0;
1043
1044         btrfs_item_key_to_cpu(leaf, &key, slot);
1045         if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1046                 return 0;
1047
1048         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1049         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1050             btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1051             btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1052             btrfs_file_extent_compression(leaf, fi) ||
1053             btrfs_file_extent_encryption(leaf, fi) ||
1054             btrfs_file_extent_other_encoding(leaf, fi))
1055                 return 0;
1056
1057         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1058         if ((*start && *start != key.offset) || (*end && *end != extent_end))
1059                 return 0;
1060
1061         *start = key.offset;
1062         *end = extent_end;
1063         return 1;
1064 }
1065
1066 /*
1067  * Mark extent in the range start - end as written.
1068  *
1069  * This changes extent type from 'pre-allocated' to 'regular'. If only
1070  * part of extent is marked as written, the extent will be split into
1071  * two or three.
1072  */
1073 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1074                               struct inode *inode, u64 start, u64 end)
1075 {
1076         struct btrfs_root *root = BTRFS_I(inode)->root;
1077         struct extent_buffer *leaf;
1078         struct btrfs_path *path;
1079         struct btrfs_file_extent_item *fi;
1080         struct btrfs_key key;
1081         struct btrfs_key new_key;
1082         u64 bytenr;
1083         u64 num_bytes;
1084         u64 extent_end;
1085         u64 orig_offset;
1086         u64 other_start;
1087         u64 other_end;
1088         u64 split;
1089         int del_nr = 0;
1090         int del_slot = 0;
1091         int recow;
1092         int ret;
1093         u64 ino = btrfs_ino(inode);
1094
1095         path = btrfs_alloc_path();
1096         if (!path)
1097                 return -ENOMEM;
1098 again:
1099         recow = 0;
1100         split = start;
1101         key.objectid = ino;
1102         key.type = BTRFS_EXTENT_DATA_KEY;
1103         key.offset = split;
1104
1105         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1106         if (ret < 0)
1107                 goto out;
1108         if (ret > 0 && path->slots[0] > 0)
1109                 path->slots[0]--;
1110
1111         leaf = path->nodes[0];
1112         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1113         BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
1114         fi = btrfs_item_ptr(leaf, path->slots[0],
1115                             struct btrfs_file_extent_item);
1116         BUG_ON(btrfs_file_extent_type(leaf, fi) !=
1117                BTRFS_FILE_EXTENT_PREALLOC);
1118         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1119         BUG_ON(key.offset > start || extent_end < end);
1120
1121         bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1122         num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1123         orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1124         memcpy(&new_key, &key, sizeof(new_key));
1125
1126         if (start == key.offset && end < extent_end) {
1127                 other_start = 0;
1128                 other_end = start;
1129                 if (extent_mergeable(leaf, path->slots[0] - 1,
1130                                      ino, bytenr, orig_offset,
1131                                      &other_start, &other_end)) {
1132                         new_key.offset = end;
1133                         btrfs_set_item_key_safe(root->fs_info, path, &new_key);
1134                         fi = btrfs_item_ptr(leaf, path->slots[0],
1135                                             struct btrfs_file_extent_item);
1136                         btrfs_set_file_extent_generation(leaf, fi,
1137                                                          trans->transid);
1138                         btrfs_set_file_extent_num_bytes(leaf, fi,
1139                                                         extent_end - end);
1140                         btrfs_set_file_extent_offset(leaf, fi,
1141                                                      end - orig_offset);
1142                         fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1143                                             struct btrfs_file_extent_item);
1144                         btrfs_set_file_extent_generation(leaf, fi,
1145                                                          trans->transid);
1146                         btrfs_set_file_extent_num_bytes(leaf, fi,
1147                                                         end - other_start);
1148                         btrfs_mark_buffer_dirty(leaf);
1149                         goto out;
1150                 }
1151         }
1152
1153         if (start > key.offset && end == extent_end) {
1154                 other_start = end;
1155                 other_end = 0;
1156                 if (extent_mergeable(leaf, path->slots[0] + 1,
1157                                      ino, bytenr, orig_offset,
1158                                      &other_start, &other_end)) {
1159                         fi = btrfs_item_ptr(leaf, path->slots[0],
1160                                             struct btrfs_file_extent_item);
1161                         btrfs_set_file_extent_num_bytes(leaf, fi,
1162                                                         start - key.offset);
1163                         btrfs_set_file_extent_generation(leaf, fi,
1164                                                          trans->transid);
1165                         path->slots[0]++;
1166                         new_key.offset = start;
1167                         btrfs_set_item_key_safe(root->fs_info, path, &new_key);
1168
1169                         fi = btrfs_item_ptr(leaf, path->slots[0],
1170                                             struct btrfs_file_extent_item);
1171                         btrfs_set_file_extent_generation(leaf, fi,
1172                                                          trans->transid);
1173                         btrfs_set_file_extent_num_bytes(leaf, fi,
1174                                                         other_end - start);
1175                         btrfs_set_file_extent_offset(leaf, fi,
1176                                                      start - orig_offset);
1177                         btrfs_mark_buffer_dirty(leaf);
1178                         goto out;
1179                 }
1180         }
1181
1182         while (start > key.offset || end < extent_end) {
1183                 if (key.offset == start)
1184                         split = end;
1185
1186                 new_key.offset = split;
1187                 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1188                 if (ret == -EAGAIN) {
1189                         btrfs_release_path(path);
1190                         goto again;
1191                 }
1192                 if (ret < 0) {
1193                         btrfs_abort_transaction(trans, root, ret);
1194                         goto out;
1195                 }
1196
1197                 leaf = path->nodes[0];
1198                 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1199                                     struct btrfs_file_extent_item);
1200                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1201                 btrfs_set_file_extent_num_bytes(leaf, fi,
1202                                                 split - key.offset);
1203
1204                 fi = btrfs_item_ptr(leaf, path->slots[0],
1205                                     struct btrfs_file_extent_item);
1206
1207                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1208                 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1209                 btrfs_set_file_extent_num_bytes(leaf, fi,
1210                                                 extent_end - split);
1211                 btrfs_mark_buffer_dirty(leaf);
1212
1213                 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
1214                                            root->root_key.objectid,
1215                                            ino, orig_offset);
1216                 BUG_ON(ret); /* -ENOMEM */
1217
1218                 if (split == start) {
1219                         key.offset = start;
1220                 } else {
1221                         BUG_ON(start != key.offset);
1222                         path->slots[0]--;
1223                         extent_end = end;
1224                 }
1225                 recow = 1;
1226         }
1227
1228         other_start = end;
1229         other_end = 0;
1230         if (extent_mergeable(leaf, path->slots[0] + 1,
1231                              ino, bytenr, orig_offset,
1232                              &other_start, &other_end)) {
1233                 if (recow) {
1234                         btrfs_release_path(path);
1235                         goto again;
1236                 }
1237                 extent_end = other_end;
1238                 del_slot = path->slots[0] + 1;
1239                 del_nr++;
1240                 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1241                                         0, root->root_key.objectid,
1242                                         ino, orig_offset);
1243                 BUG_ON(ret); /* -ENOMEM */
1244         }
1245         other_start = 0;
1246         other_end = start;
1247         if (extent_mergeable(leaf, path->slots[0] - 1,
1248                              ino, bytenr, orig_offset,
1249                              &other_start, &other_end)) {
1250                 if (recow) {
1251                         btrfs_release_path(path);
1252                         goto again;
1253                 }
1254                 key.offset = other_start;
1255                 del_slot = path->slots[0];
1256                 del_nr++;
1257                 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1258                                         0, root->root_key.objectid,
1259                                         ino, orig_offset);
1260                 BUG_ON(ret); /* -ENOMEM */
1261         }
1262         if (del_nr == 0) {
1263                 fi = btrfs_item_ptr(leaf, path->slots[0],
1264                            struct btrfs_file_extent_item);
1265                 btrfs_set_file_extent_type(leaf, fi,
1266                                            BTRFS_FILE_EXTENT_REG);
1267                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1268                 btrfs_mark_buffer_dirty(leaf);
1269         } else {
1270                 fi = btrfs_item_ptr(leaf, del_slot - 1,
1271                            struct btrfs_file_extent_item);
1272                 btrfs_set_file_extent_type(leaf, fi,
1273                                            BTRFS_FILE_EXTENT_REG);
1274                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1275                 btrfs_set_file_extent_num_bytes(leaf, fi,
1276                                                 extent_end - key.offset);
1277                 btrfs_mark_buffer_dirty(leaf);
1278
1279                 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1280                 if (ret < 0) {
1281                         btrfs_abort_transaction(trans, root, ret);
1282                         goto out;
1283                 }
1284         }
1285 out:
1286         btrfs_free_path(path);
1287         return 0;
1288 }
1289
1290 /*
1291  * on error we return an unlocked page and the error value
1292  * on success we return a locked page and 0
1293  */
1294 static int prepare_uptodate_page(struct inode *inode,
1295                                  struct page *page, u64 pos,
1296                                  bool force_uptodate)
1297 {
1298         int ret = 0;
1299
1300         if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1301             !PageUptodate(page)) {
1302                 ret = btrfs_readpage(NULL, page);
1303                 if (ret)
1304                         return ret;
1305                 lock_page(page);
1306                 if (!PageUptodate(page)) {
1307                         unlock_page(page);
1308                         return -EIO;
1309                 }
1310                 if (page->mapping != inode->i_mapping) {
1311                         unlock_page(page);
1312                         return -EAGAIN;
1313                 }
1314         }
1315         return 0;
1316 }
1317
1318 /*
1319  * this just gets pages into the page cache and locks them down.
1320  */
1321 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1322                                   size_t num_pages, loff_t pos,
1323                                   size_t write_bytes, bool force_uptodate)
1324 {
1325         int i;
1326         unsigned long index = pos >> PAGE_SHIFT;
1327         gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1328         int err = 0;
1329         int faili;
1330
1331         for (i = 0; i < num_pages; i++) {
1332 again:
1333                 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1334                                                mask | __GFP_WRITE);
1335                 if (!pages[i]) {
1336                         faili = i - 1;
1337                         err = -ENOMEM;
1338                         goto fail;
1339                 }
1340
1341                 if (i == 0)
1342                         err = prepare_uptodate_page(inode, pages[i], pos,
1343                                                     force_uptodate);
1344                 if (!err && i == num_pages - 1)
1345                         err = prepare_uptodate_page(inode, pages[i],
1346                                                     pos + write_bytes, false);
1347                 if (err) {
1348                         put_page(pages[i]);
1349                         if (err == -EAGAIN) {
1350                                 err = 0;
1351                                 goto again;
1352                         }
1353                         faili = i - 1;
1354                         goto fail;
1355                 }
1356                 wait_on_page_writeback(pages[i]);
1357         }
1358
1359         return 0;
1360 fail:
1361         while (faili >= 0) {
1362                 unlock_page(pages[faili]);
1363                 put_page(pages[faili]);
1364                 faili--;
1365         }
1366         return err;
1367
1368 }
1369
1370 /*
1371  * This function locks the extent and properly waits for data=ordered extents
1372  * to finish before allowing the pages to be modified if need.
1373  *
1374  * The return value:
1375  * 1 - the extent is locked
1376  * 0 - the extent is not locked, and everything is OK
1377  * -EAGAIN - need re-prepare the pages
1378  * the other < 0 number - Something wrong happens
1379  */
1380 static noinline int
1381 lock_and_cleanup_extent_if_need(struct inode *inode, struct page **pages,
1382                                 size_t num_pages, loff_t pos,
1383                                 size_t write_bytes,
1384                                 u64 *lockstart, u64 *lockend,
1385                                 struct extent_state **cached_state)
1386 {
1387         struct btrfs_root *root = BTRFS_I(inode)->root;
1388         u64 start_pos;
1389         u64 last_pos;
1390         int i;
1391         int ret = 0;
1392
1393         start_pos = round_down(pos, root->sectorsize);
1394         last_pos = start_pos
1395                 + round_up(pos + write_bytes - start_pos, root->sectorsize) - 1;
1396
1397         if (start_pos < inode->i_size) {
1398                 struct btrfs_ordered_extent *ordered;
1399                 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1400                                  start_pos, last_pos, cached_state);
1401                 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1402                                                      last_pos - start_pos + 1);
1403                 if (ordered &&
1404                     ordered->file_offset + ordered->len > start_pos &&
1405                     ordered->file_offset <= last_pos) {
1406                         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1407                                              start_pos, last_pos,
1408                                              cached_state, GFP_NOFS);
1409                         for (i = 0; i < num_pages; i++) {
1410                                 unlock_page(pages[i]);
1411                                 put_page(pages[i]);
1412                         }
1413                         btrfs_start_ordered_extent(inode, ordered, 1);
1414                         btrfs_put_ordered_extent(ordered);
1415                         return -EAGAIN;
1416                 }
1417                 if (ordered)
1418                         btrfs_put_ordered_extent(ordered);
1419
1420                 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
1421                                   last_pos, EXTENT_DIRTY | EXTENT_DELALLOC |
1422                                   EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
1423                                   0, 0, cached_state, GFP_NOFS);
1424                 *lockstart = start_pos;
1425                 *lockend = last_pos;
1426                 ret = 1;
1427         }
1428
1429         for (i = 0; i < num_pages; i++) {
1430                 if (clear_page_dirty_for_io(pages[i]))
1431                         account_page_redirty(pages[i]);
1432                 set_page_extent_mapped(pages[i]);
1433                 WARN_ON(!PageLocked(pages[i]));
1434         }
1435
1436         return ret;
1437 }
1438
1439 static noinline int check_can_nocow(struct inode *inode, loff_t pos,
1440                                     size_t *write_bytes)
1441 {
1442         struct btrfs_root *root = BTRFS_I(inode)->root;
1443         struct btrfs_ordered_extent *ordered;
1444         u64 lockstart, lockend;
1445         u64 num_bytes;
1446         int ret;
1447
1448         ret = btrfs_start_write_no_snapshoting(root);
1449         if (!ret)
1450                 return -ENOSPC;
1451
1452         lockstart = round_down(pos, root->sectorsize);
1453         lockend = round_up(pos + *write_bytes, root->sectorsize) - 1;
1454
1455         while (1) {
1456                 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1457                 ordered = btrfs_lookup_ordered_range(inode, lockstart,
1458                                                      lockend - lockstart + 1);
1459                 if (!ordered) {
1460                         break;
1461                 }
1462                 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1463                 btrfs_start_ordered_extent(inode, ordered, 1);
1464                 btrfs_put_ordered_extent(ordered);
1465         }
1466
1467         num_bytes = lockend - lockstart + 1;
1468         ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, NULL, NULL);
1469         if (ret <= 0) {
1470                 ret = 0;
1471                 btrfs_end_write_no_snapshoting(root);
1472         } else {
1473                 *write_bytes = min_t(size_t, *write_bytes ,
1474                                      num_bytes - pos + lockstart);
1475         }
1476
1477         unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1478
1479         return ret;
1480 }
1481
1482 static noinline ssize_t __btrfs_buffered_write(struct file *file,
1483                                                struct iov_iter *i,
1484                                                loff_t pos)
1485 {
1486         struct inode *inode = file_inode(file);
1487         struct btrfs_root *root = BTRFS_I(inode)->root;
1488         struct page **pages = NULL;
1489         struct extent_state *cached_state = NULL;
1490         u64 release_bytes = 0;
1491         u64 lockstart;
1492         u64 lockend;
1493         size_t num_written = 0;
1494         int nrptrs;
1495         int ret = 0;
1496         bool only_release_metadata = false;
1497         bool force_page_uptodate = false;
1498         bool need_unlock;
1499
1500         nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1501                         PAGE_SIZE / (sizeof(struct page *)));
1502         nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1503         nrptrs = max(nrptrs, 8);
1504         pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1505         if (!pages)
1506                 return -ENOMEM;
1507
1508         while (iov_iter_count(i) > 0) {
1509                 size_t offset = pos & (PAGE_SIZE - 1);
1510                 size_t sector_offset;
1511                 size_t write_bytes = min(iov_iter_count(i),
1512                                          nrptrs * (size_t)PAGE_SIZE -
1513                                          offset);
1514                 size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
1515                                                 PAGE_SIZE);
1516                 size_t reserve_bytes;
1517                 size_t dirty_pages;
1518                 size_t copied;
1519                 size_t dirty_sectors;
1520                 size_t num_sectors;
1521
1522                 WARN_ON(num_pages > nrptrs);
1523
1524                 /*
1525                  * Fault pages before locking them in prepare_pages
1526                  * to avoid recursive lock
1527                  */
1528                 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1529                         ret = -EFAULT;
1530                         break;
1531                 }
1532
1533                 sector_offset = pos & (root->sectorsize - 1);
1534                 reserve_bytes = round_up(write_bytes + sector_offset,
1535                                 root->sectorsize);
1536
1537                 if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1538                                               BTRFS_INODE_PREALLOC)) &&
1539                     check_can_nocow(inode, pos, &write_bytes) > 0) {
1540                         /*
1541                          * For nodata cow case, no need to reserve
1542                          * data space.
1543                          */
1544                         only_release_metadata = true;
1545                         /*
1546                          * our prealloc extent may be smaller than
1547                          * write_bytes, so scale down.
1548                          */
1549                         num_pages = DIV_ROUND_UP(write_bytes + offset,
1550                                                  PAGE_SIZE);
1551                         reserve_bytes = round_up(write_bytes + sector_offset,
1552                                         root->sectorsize);
1553                         goto reserve_metadata;
1554                 }
1555
1556                 ret = btrfs_check_data_free_space(inode, pos, write_bytes);
1557                 if (ret < 0)
1558                         break;
1559
1560 reserve_metadata:
1561                 ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes);
1562                 if (ret) {
1563                         if (!only_release_metadata)
1564                                 btrfs_free_reserved_data_space(inode, pos,
1565                                                                write_bytes);
1566                         else
1567                                 btrfs_end_write_no_snapshoting(root);
1568                         break;
1569                 }
1570
1571                 release_bytes = reserve_bytes;
1572                 need_unlock = false;
1573 again:
1574                 /*
1575                  * This is going to setup the pages array with the number of
1576                  * pages we want, so we don't really need to worry about the
1577                  * contents of pages from loop to loop
1578                  */
1579                 ret = prepare_pages(inode, pages, num_pages,
1580                                     pos, write_bytes,
1581                                     force_page_uptodate);
1582                 if (ret)
1583                         break;
1584
1585                 ret = lock_and_cleanup_extent_if_need(inode, pages, num_pages,
1586                                                 pos, write_bytes, &lockstart,
1587                                                 &lockend, &cached_state);
1588                 if (ret < 0) {
1589                         if (ret == -EAGAIN)
1590                                 goto again;
1591                         break;
1592                 } else if (ret > 0) {
1593                         need_unlock = true;
1594                         ret = 0;
1595                 }
1596
1597                 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1598
1599                 /*
1600                  * if we have trouble faulting in the pages, fall
1601                  * back to one page at a time
1602                  */
1603                 if (copied < write_bytes)
1604                         nrptrs = 1;
1605
1606                 if (copied == 0) {
1607                         force_page_uptodate = true;
1608                         dirty_pages = 0;
1609                 } else {
1610                         force_page_uptodate = false;
1611                         dirty_pages = DIV_ROUND_UP(copied + offset,
1612                                                    PAGE_SIZE);
1613                 }
1614
1615                 /*
1616                  * If we had a short copy we need to release the excess delaloc
1617                  * bytes we reserved.  We need to increment outstanding_extents
1618                  * because btrfs_delalloc_release_space will decrement it, but
1619                  * we still have an outstanding extent for the chunk we actually
1620                  * managed to copy.
1621                  */
1622                 num_sectors = BTRFS_BYTES_TO_BLKS(root->fs_info,
1623                                                 reserve_bytes);
1624                 dirty_sectors = round_up(copied + sector_offset,
1625                                         root->sectorsize);
1626                 dirty_sectors = BTRFS_BYTES_TO_BLKS(root->fs_info,
1627                                                 dirty_sectors);
1628
1629                 if (num_sectors > dirty_sectors) {
1630                         release_bytes = (write_bytes - copied)
1631                                 & ~((u64)root->sectorsize - 1);
1632                         if (copied > 0) {
1633                                 spin_lock(&BTRFS_I(inode)->lock);
1634                                 BTRFS_I(inode)->outstanding_extents++;
1635                                 spin_unlock(&BTRFS_I(inode)->lock);
1636                         }
1637                         if (only_release_metadata) {
1638                                 btrfs_delalloc_release_metadata(inode,
1639                                                                 release_bytes);
1640                         } else {
1641                                 u64 __pos;
1642
1643                                 __pos = round_down(pos, root->sectorsize) +
1644                                         (dirty_pages << PAGE_SHIFT);
1645                                 btrfs_delalloc_release_space(inode, __pos,
1646                                                              release_bytes);
1647                         }
1648                 }
1649
1650                 release_bytes = round_up(copied + sector_offset,
1651                                         root->sectorsize);
1652
1653                 if (copied > 0)
1654                         ret = btrfs_dirty_pages(root, inode, pages,
1655                                                 dirty_pages, pos, copied,
1656                                                 NULL);
1657                 if (need_unlock)
1658                         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1659                                              lockstart, lockend, &cached_state,
1660                                              GFP_NOFS);
1661                 if (ret) {
1662                         btrfs_drop_pages(pages, num_pages);
1663                         break;
1664                 }
1665
1666                 release_bytes = 0;
1667                 if (only_release_metadata)
1668                         btrfs_end_write_no_snapshoting(root);
1669
1670                 if (only_release_metadata && copied > 0) {
1671                         lockstart = round_down(pos, root->sectorsize);
1672                         lockend = round_up(pos + copied, root->sectorsize) - 1;
1673
1674                         set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1675                                        lockend, EXTENT_NORESERVE, NULL,
1676                                        NULL, GFP_NOFS);
1677                         only_release_metadata = false;
1678                 }
1679
1680                 btrfs_drop_pages(pages, num_pages);
1681
1682                 cond_resched();
1683
1684                 balance_dirty_pages_ratelimited(inode->i_mapping);
1685                 if (dirty_pages < (root->nodesize >> PAGE_SHIFT) + 1)
1686                         btrfs_btree_balance_dirty(root);
1687
1688                 pos += copied;
1689                 num_written += copied;
1690         }
1691
1692         kfree(pages);
1693
1694         if (release_bytes) {
1695                 if (only_release_metadata) {
1696                         btrfs_end_write_no_snapshoting(root);
1697                         btrfs_delalloc_release_metadata(inode, release_bytes);
1698                 } else {
1699                         btrfs_delalloc_release_space(inode, pos, release_bytes);
1700                 }
1701         }
1702
1703         return num_written ? num_written : ret;
1704 }
1705
1706 static ssize_t __btrfs_direct_write(struct kiocb *iocb,
1707                                     struct iov_iter *from,
1708                                     loff_t pos)
1709 {
1710         struct file *file = iocb->ki_filp;
1711         struct inode *inode = file_inode(file);
1712         ssize_t written;
1713         ssize_t written_buffered;
1714         loff_t endbyte;
1715         int err;
1716
1717         written = generic_file_direct_write(iocb, from, pos);
1718
1719         if (written < 0 || !iov_iter_count(from))
1720                 return written;
1721
1722         pos += written;
1723         written_buffered = __btrfs_buffered_write(file, from, pos);
1724         if (written_buffered < 0) {
1725                 err = written_buffered;
1726                 goto out;
1727         }
1728         /*
1729          * Ensure all data is persisted. We want the next direct IO read to be
1730          * able to read what was just written.
1731          */
1732         endbyte = pos + written_buffered - 1;
1733         err = btrfs_fdatawrite_range(inode, pos, endbyte);
1734         if (err)
1735                 goto out;
1736         err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1737         if (err)
1738                 goto out;
1739         written += written_buffered;
1740         iocb->ki_pos = pos + written_buffered;
1741         invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1742                                  endbyte >> PAGE_SHIFT);
1743 out:
1744         return written ? written : err;
1745 }
1746
1747 static void update_time_for_write(struct inode *inode)
1748 {
1749         struct timespec now;
1750
1751         if (IS_NOCMTIME(inode))
1752                 return;
1753
1754         now = current_fs_time(inode->i_sb);
1755         if (!timespec_equal(&inode->i_mtime, &now))
1756                 inode->i_mtime = now;
1757
1758         if (!timespec_equal(&inode->i_ctime, &now))
1759                 inode->i_ctime = now;
1760
1761         if (IS_I_VERSION(inode))
1762                 inode_inc_iversion(inode);
1763 }
1764
1765 static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1766                                     struct iov_iter *from)
1767 {
1768         struct file *file = iocb->ki_filp;
1769         struct inode *inode = file_inode(file);
1770         struct btrfs_root *root = BTRFS_I(inode)->root;
1771         u64 start_pos;
1772         u64 end_pos;
1773         ssize_t num_written = 0;
1774         bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1775         ssize_t err;
1776         loff_t pos;
1777         size_t count;
1778         loff_t oldsize;
1779         int clean_page = 0;
1780
1781         inode_lock(inode);
1782         err = generic_write_checks(iocb, from);
1783         if (err <= 0) {
1784                 inode_unlock(inode);
1785                 return err;
1786         }
1787
1788         current->backing_dev_info = inode_to_bdi(inode);
1789         err = file_remove_privs(file);
1790         if (err) {
1791                 inode_unlock(inode);
1792                 goto out;
1793         }
1794
1795         /*
1796          * If BTRFS flips readonly due to some impossible error
1797          * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1798          * although we have opened a file as writable, we have
1799          * to stop this write operation to ensure FS consistency.
1800          */
1801         if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1802                 inode_unlock(inode);
1803                 err = -EROFS;
1804                 goto out;
1805         }
1806
1807         /*
1808          * We reserve space for updating the inode when we reserve space for the
1809          * extent we are going to write, so we will enospc out there.  We don't
1810          * need to start yet another transaction to update the inode as we will
1811          * update the inode when we finish writing whatever data we write.
1812          */
1813         update_time_for_write(inode);
1814
1815         pos = iocb->ki_pos;
1816         count = iov_iter_count(from);
1817         start_pos = round_down(pos, root->sectorsize);
1818         oldsize = i_size_read(inode);
1819         if (start_pos > oldsize) {
1820                 /* Expand hole size to cover write data, preventing empty gap */
1821                 end_pos = round_up(pos + count, root->sectorsize);
1822                 err = btrfs_cont_expand(inode, oldsize, end_pos);
1823                 if (err) {
1824                         inode_unlock(inode);
1825                         goto out;
1826                 }
1827                 if (start_pos > round_up(oldsize, root->sectorsize))
1828                         clean_page = 1;
1829         }
1830
1831         if (sync)
1832                 atomic_inc(&BTRFS_I(inode)->sync_writers);
1833
1834         if (iocb->ki_flags & IOCB_DIRECT) {
1835                 num_written = __btrfs_direct_write(iocb, from, pos);
1836         } else {
1837                 num_written = __btrfs_buffered_write(file, from, pos);
1838                 if (num_written > 0)
1839                         iocb->ki_pos = pos + num_written;
1840                 if (clean_page)
1841                         pagecache_isize_extended(inode, oldsize,
1842                                                 i_size_read(inode));
1843         }
1844
1845         inode_unlock(inode);
1846
1847         /*
1848          * We also have to set last_sub_trans to the current log transid,
1849          * otherwise subsequent syncs to a file that's been synced in this
1850          * transaction will appear to have already occurred.
1851          */
1852         spin_lock(&BTRFS_I(inode)->lock);
1853         BTRFS_I(inode)->last_sub_trans = root->log_transid;
1854         spin_unlock(&BTRFS_I(inode)->lock);
1855         if (num_written > 0) {
1856                 err = generic_write_sync(file, pos, num_written);
1857                 if (err < 0)
1858                         num_written = err;
1859         }
1860
1861         if (sync)
1862                 atomic_dec(&BTRFS_I(inode)->sync_writers);
1863 out:
1864         current->backing_dev_info = NULL;
1865         return num_written ? num_written : err;
1866 }
1867
1868 int btrfs_release_file(struct inode *inode, struct file *filp)
1869 {
1870         if (filp->private_data)
1871                 btrfs_ioctl_trans_end(filp);
1872         /*
1873          * ordered_data_close is set by settattr when we are about to truncate
1874          * a file from a non-zero size to a zero size.  This tries to
1875          * flush down new bytes that may have been written if the
1876          * application were using truncate to replace a file in place.
1877          */
1878         if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1879                                &BTRFS_I(inode)->runtime_flags))
1880                         filemap_flush(inode->i_mapping);
1881         return 0;
1882 }
1883
1884 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
1885 {
1886         int ret;
1887
1888         atomic_inc(&BTRFS_I(inode)->sync_writers);
1889         ret = btrfs_fdatawrite_range(inode, start, end);
1890         atomic_dec(&BTRFS_I(inode)->sync_writers);
1891
1892         return ret;
1893 }
1894
1895 /*
1896  * fsync call for both files and directories.  This logs the inode into
1897  * the tree log instead of forcing full commits whenever possible.
1898  *
1899  * It needs to call filemap_fdatawait so that all ordered extent updates are
1900  * in the metadata btree are up to date for copying to the log.
1901  *
1902  * It drops the inode mutex before doing the tree log commit.  This is an
1903  * important optimization for directories because holding the mutex prevents
1904  * new operations on the dir while we write to disk.
1905  */
1906 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1907 {
1908         struct dentry *dentry = file_dentry(file);
1909         struct inode *inode = d_inode(dentry);
1910         struct btrfs_root *root = BTRFS_I(inode)->root;
1911         struct btrfs_trans_handle *trans;
1912         struct btrfs_log_ctx ctx;
1913         int ret = 0;
1914         bool full_sync = 0;
1915         u64 len;
1916
1917         /*
1918          * The range length can be represented by u64, we have to do the typecasts
1919          * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync()
1920          */
1921         len = (u64)end - (u64)start + 1;
1922         trace_btrfs_sync_file(file, datasync);
1923
1924         /*
1925          * We write the dirty pages in the range and wait until they complete
1926          * out of the ->i_mutex. If so, we can flush the dirty pages by
1927          * multi-task, and make the performance up.  See
1928          * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1929          */
1930         ret = start_ordered_ops(inode, start, end);
1931         if (ret)
1932                 return ret;
1933
1934         inode_lock(inode);
1935         atomic_inc(&root->log_batch);
1936         full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1937                              &BTRFS_I(inode)->runtime_flags);
1938         /*
1939          * We might have have had more pages made dirty after calling
1940          * start_ordered_ops and before acquiring the inode's i_mutex.
1941          */
1942         if (full_sync) {
1943                 /*
1944                  * For a full sync, we need to make sure any ordered operations
1945                  * start and finish before we start logging the inode, so that
1946                  * all extents are persisted and the respective file extent
1947                  * items are in the fs/subvol btree.
1948                  */
1949                 ret = btrfs_wait_ordered_range(inode, start, len);
1950         } else {
1951                 /*
1952                  * Start any new ordered operations before starting to log the
1953                  * inode. We will wait for them to finish in btrfs_sync_log().
1954                  *
1955                  * Right before acquiring the inode's mutex, we might have new
1956                  * writes dirtying pages, which won't immediately start the
1957                  * respective ordered operations - that is done through the
1958                  * fill_delalloc callbacks invoked from the writepage and
1959                  * writepages address space operations. So make sure we start
1960                  * all ordered operations before starting to log our inode. Not
1961                  * doing this means that while logging the inode, writeback
1962                  * could start and invoke writepage/writepages, which would call
1963                  * the fill_delalloc callbacks (cow_file_range,
1964                  * submit_compressed_extents). These callbacks add first an
1965                  * extent map to the modified list of extents and then create
1966                  * the respective ordered operation, which means in
1967                  * tree-log.c:btrfs_log_inode() we might capture all existing
1968                  * ordered operations (with btrfs_get_logged_extents()) before
1969                  * the fill_delalloc callback adds its ordered operation, and by
1970                  * the time we visit the modified list of extent maps (with
1971                  * btrfs_log_changed_extents()), we see and process the extent
1972                  * map they created. We then use the extent map to construct a
1973                  * file extent item for logging without waiting for the
1974                  * respective ordered operation to finish - this file extent
1975                  * item points to a disk location that might not have yet been
1976                  * written to, containing random data - so after a crash a log
1977                  * replay will make our inode have file extent items that point
1978                  * to disk locations containing invalid data, as we returned
1979                  * success to userspace without waiting for the respective
1980                  * ordered operation to finish, because it wasn't captured by
1981                  * btrfs_get_logged_extents().
1982                  */
1983                 ret = start_ordered_ops(inode, start, end);
1984         }
1985         if (ret) {
1986                 inode_unlock(inode);
1987                 goto out;
1988         }
1989         atomic_inc(&root->log_batch);
1990
1991         /*
1992          * If the last transaction that changed this file was before the current
1993          * transaction and we have the full sync flag set in our inode, we can
1994          * bail out now without any syncing.
1995          *
1996          * Note that we can't bail out if the full sync flag isn't set. This is
1997          * because when the full sync flag is set we start all ordered extents
1998          * and wait for them to fully complete - when they complete they update
1999          * the inode's last_trans field through:
2000          *
2001          *     btrfs_finish_ordered_io() ->
2002          *         btrfs_update_inode_fallback() ->
2003          *             btrfs_update_inode() ->
2004          *                 btrfs_set_inode_last_trans()
2005          *
2006          * So we are sure that last_trans is up to date and can do this check to
2007          * bail out safely. For the fast path, when the full sync flag is not
2008          * set in our inode, we can not do it because we start only our ordered
2009          * extents and don't wait for them to complete (that is when
2010          * btrfs_finish_ordered_io runs), so here at this point their last_trans
2011          * value might be less than or equals to fs_info->last_trans_committed,
2012          * and setting a speculative last_trans for an inode when a buffered
2013          * write is made (such as fs_info->generation + 1 for example) would not
2014          * be reliable since after setting the value and before fsync is called
2015          * any number of transactions can start and commit (transaction kthread
2016          * commits the current transaction periodically), and a transaction
2017          * commit does not start nor waits for ordered extents to complete.
2018          */
2019         smp_mb();
2020         if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
2021             (full_sync && BTRFS_I(inode)->last_trans <=
2022              root->fs_info->last_trans_committed) ||
2023             (!btrfs_have_ordered_extents_in_range(inode, start, len) &&
2024              BTRFS_I(inode)->last_trans
2025              <= root->fs_info->last_trans_committed)) {
2026                 /*
2027                  * We'v had everything committed since the last time we were
2028                  * modified so clear this flag in case it was set for whatever
2029                  * reason, it's no longer relevant.
2030                  */
2031                 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2032                           &BTRFS_I(inode)->runtime_flags);
2033                 inode_unlock(inode);
2034                 goto out;
2035         }
2036
2037         /*
2038          * ok we haven't committed the transaction yet, lets do a commit
2039          */
2040         if (file->private_data)
2041                 btrfs_ioctl_trans_end(file);
2042
2043         /*
2044          * We use start here because we will need to wait on the IO to complete
2045          * in btrfs_sync_log, which could require joining a transaction (for
2046          * example checking cross references in the nocow path).  If we use join
2047          * here we could get into a situation where we're waiting on IO to
2048          * happen that is blocked on a transaction trying to commit.  With start
2049          * we inc the extwriter counter, so we wait for all extwriters to exit
2050          * before we start blocking join'ers.  This comment is to keep somebody
2051          * from thinking they are super smart and changing this to
2052          * btrfs_join_transaction *cough*Josef*cough*.
2053          */
2054         trans = btrfs_start_transaction(root, 0);
2055         if (IS_ERR(trans)) {
2056                 ret = PTR_ERR(trans);
2057                 inode_unlock(inode);
2058                 goto out;
2059         }
2060         trans->sync = true;
2061
2062         btrfs_init_log_ctx(&ctx);
2063
2064         ret = btrfs_log_dentry_safe(trans, root, dentry, start, end, &ctx);
2065         if (ret < 0) {
2066                 /* Fallthrough and commit/free transaction. */
2067                 ret = 1;
2068         }
2069
2070         /* we've logged all the items and now have a consistent
2071          * version of the file in the log.  It is possible that
2072          * someone will come in and modify the file, but that's
2073          * fine because the log is consistent on disk, and we
2074          * have references to all of the file's extents
2075          *
2076          * It is possible that someone will come in and log the
2077          * file again, but that will end up using the synchronization
2078          * inside btrfs_sync_log to keep things safe.
2079          */
2080         inode_unlock(inode);
2081
2082         /*
2083          * If any of the ordered extents had an error, just return it to user
2084          * space, so that the application knows some writes didn't succeed and
2085          * can take proper action (retry for e.g.). Blindly committing the
2086          * transaction in this case, would fool userspace that everything was
2087          * successful. And we also want to make sure our log doesn't contain
2088          * file extent items pointing to extents that weren't fully written to -
2089          * just like in the non fast fsync path, where we check for the ordered
2090          * operation's error flag before writing to the log tree and return -EIO
2091          * if any of them had this flag set (btrfs_wait_ordered_range) -
2092          * therefore we need to check for errors in the ordered operations,
2093          * which are indicated by ctx.io_err.
2094          */
2095         if (ctx.io_err) {
2096                 btrfs_end_transaction(trans, root);
2097                 ret = ctx.io_err;
2098                 goto out;
2099         }
2100
2101         if (ret != BTRFS_NO_LOG_SYNC) {
2102                 if (!ret) {
2103                         ret = btrfs_sync_log(trans, root, &ctx);
2104                         if (!ret) {
2105                                 ret = btrfs_end_transaction(trans, root);
2106                                 goto out;
2107                         }
2108                 }
2109                 if (!full_sync) {
2110                         ret = btrfs_wait_ordered_range(inode, start, len);
2111                         if (ret) {
2112                                 btrfs_end_transaction(trans, root);
2113                                 goto out;
2114                         }
2115                 }
2116                 ret = btrfs_commit_transaction(trans, root);
2117         } else {
2118                 ret = btrfs_end_transaction(trans, root);
2119         }
2120 out:
2121         return ret > 0 ? -EIO : ret;
2122 }
2123
2124 static const struct vm_operations_struct btrfs_file_vm_ops = {
2125         .fault          = filemap_fault,
2126         .map_pages      = filemap_map_pages,
2127         .page_mkwrite   = btrfs_page_mkwrite,
2128 };
2129
2130 static int btrfs_file_mmap(struct file  *filp, struct vm_area_struct *vma)
2131 {
2132         struct address_space *mapping = filp->f_mapping;
2133
2134         if (!mapping->a_ops->readpage)
2135                 return -ENOEXEC;
2136
2137         file_accessed(filp);
2138         vma->vm_ops = &btrfs_file_vm_ops;
2139
2140         return 0;
2141 }
2142
2143 static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
2144                           int slot, u64 start, u64 end)
2145 {
2146         struct btrfs_file_extent_item *fi;
2147         struct btrfs_key key;
2148
2149         if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2150                 return 0;
2151
2152         btrfs_item_key_to_cpu(leaf, &key, slot);
2153         if (key.objectid != btrfs_ino(inode) ||
2154             key.type != BTRFS_EXTENT_DATA_KEY)
2155                 return 0;
2156
2157         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2158
2159         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2160                 return 0;
2161
2162         if (btrfs_file_extent_disk_bytenr(leaf, fi))
2163                 return 0;
2164
2165         if (key.offset == end)
2166                 return 1;
2167         if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2168                 return 1;
2169         return 0;
2170 }
2171
2172 static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
2173                       struct btrfs_path *path, u64 offset, u64 end)
2174 {
2175         struct btrfs_root *root = BTRFS_I(inode)->root;
2176         struct extent_buffer *leaf;
2177         struct btrfs_file_extent_item *fi;
2178         struct extent_map *hole_em;
2179         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2180         struct btrfs_key key;
2181         int ret;
2182
2183         if (btrfs_fs_incompat(root->fs_info, NO_HOLES))
2184                 goto out;
2185
2186         key.objectid = btrfs_ino(inode);
2187         key.type = BTRFS_EXTENT_DATA_KEY;
2188         key.offset = offset;
2189
2190         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2191         if (ret < 0)
2192                 return ret;
2193         BUG_ON(!ret);
2194
2195         leaf = path->nodes[0];
2196         if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
2197                 u64 num_bytes;
2198
2199                 path->slots[0]--;
2200                 fi = btrfs_item_ptr(leaf, path->slots[0],
2201                                     struct btrfs_file_extent_item);
2202                 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2203                         end - offset;
2204                 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2205                 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2206                 btrfs_set_file_extent_offset(leaf, fi, 0);
2207                 btrfs_mark_buffer_dirty(leaf);
2208                 goto out;
2209         }
2210
2211         if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2212                 u64 num_bytes;
2213
2214                 key.offset = offset;
2215                 btrfs_set_item_key_safe(root->fs_info, path, &key);
2216                 fi = btrfs_item_ptr(leaf, path->slots[0],
2217                                     struct btrfs_file_extent_item);
2218                 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2219                         offset;
2220                 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2221                 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2222                 btrfs_set_file_extent_offset(leaf, fi, 0);
2223                 btrfs_mark_buffer_dirty(leaf);
2224                 goto out;
2225         }
2226         btrfs_release_path(path);
2227
2228         ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
2229                                        0, 0, end - offset, 0, end - offset,
2230                                        0, 0, 0);
2231         if (ret)
2232                 return ret;
2233
2234 out:
2235         btrfs_release_path(path);
2236
2237         hole_em = alloc_extent_map();
2238         if (!hole_em) {
2239                 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2240                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2241                         &BTRFS_I(inode)->runtime_flags);
2242         } else {
2243                 hole_em->start = offset;
2244                 hole_em->len = end - offset;
2245                 hole_em->ram_bytes = hole_em->len;
2246                 hole_em->orig_start = offset;
2247
2248                 hole_em->block_start = EXTENT_MAP_HOLE;
2249                 hole_em->block_len = 0;
2250                 hole_em->orig_block_len = 0;
2251                 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
2252                 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2253                 hole_em->generation = trans->transid;
2254
2255                 do {
2256                         btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2257                         write_lock(&em_tree->lock);
2258                         ret = add_extent_mapping(em_tree, hole_em, 1);
2259                         write_unlock(&em_tree->lock);
2260                 } while (ret == -EEXIST);
2261                 free_extent_map(hole_em);
2262                 if (ret)
2263                         set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2264                                 &BTRFS_I(inode)->runtime_flags);
2265         }
2266
2267         return 0;
2268 }
2269
2270 /*
2271  * Find a hole extent on given inode and change start/len to the end of hole
2272  * extent.(hole/vacuum extent whose em->start <= start &&
2273  *         em->start + em->len > start)
2274  * When a hole extent is found, return 1 and modify start/len.
2275  */
2276 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2277 {
2278         struct extent_map *em;
2279         int ret = 0;
2280
2281         em = btrfs_get_extent(inode, NULL, 0, *start, *len, 0);
2282         if (IS_ERR_OR_NULL(em)) {
2283                 if (!em)
2284                         ret = -ENOMEM;
2285                 else
2286                         ret = PTR_ERR(em);
2287                 return ret;
2288         }
2289
2290         /* Hole or vacuum extent(only exists in no-hole mode) */
2291         if (em->block_start == EXTENT_MAP_HOLE) {
2292                 ret = 1;
2293                 *len = em->start + em->len > *start + *len ?
2294                        0 : *start + *len - em->start - em->len;
2295                 *start = em->start + em->len;
2296         }
2297         free_extent_map(em);
2298         return ret;
2299 }
2300
2301 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2302 {
2303         struct btrfs_root *root = BTRFS_I(inode)->root;
2304         struct extent_state *cached_state = NULL;
2305         struct btrfs_path *path;
2306         struct btrfs_block_rsv *rsv;
2307         struct btrfs_trans_handle *trans;
2308         u64 lockstart;
2309         u64 lockend;
2310         u64 tail_start;
2311         u64 tail_len;
2312         u64 orig_start = offset;
2313         u64 cur_offset;
2314         u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
2315         u64 drop_end;
2316         int ret = 0;
2317         int err = 0;
2318         unsigned int rsv_count;
2319         bool same_block;
2320         bool no_holes = btrfs_fs_incompat(root->fs_info, NO_HOLES);
2321         u64 ino_size;
2322         bool truncated_block = false;
2323         bool updated_inode = false;
2324
2325         ret = btrfs_wait_ordered_range(inode, offset, len);
2326         if (ret)
2327                 return ret;
2328
2329         inode_lock(inode);
2330         ino_size = round_up(inode->i_size, root->sectorsize);
2331         ret = find_first_non_hole(inode, &offset, &len);
2332         if (ret < 0)
2333                 goto out_only_mutex;
2334         if (ret && !len) {
2335                 /* Already in a large hole */
2336                 ret = 0;
2337                 goto out_only_mutex;
2338         }
2339
2340         lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
2341         lockend = round_down(offset + len,
2342                              BTRFS_I(inode)->root->sectorsize) - 1;
2343         same_block = (BTRFS_BYTES_TO_BLKS(root->fs_info, offset))
2344                 == (BTRFS_BYTES_TO_BLKS(root->fs_info, offset + len - 1));
2345         /*
2346          * We needn't truncate any block which is beyond the end of the file
2347          * because we are sure there is no data there.
2348          */
2349         /*
2350          * Only do this if we are in the same block and we aren't doing the
2351          * entire block.
2352          */
2353         if (same_block && len < root->sectorsize) {
2354                 if (offset < ino_size) {
2355                         truncated_block = true;
2356                         ret = btrfs_truncate_block(inode, offset, len, 0);
2357                 } else {
2358                         ret = 0;
2359                 }
2360                 goto out_only_mutex;
2361         }
2362
2363         /* zero back part of the first block */
2364         if (offset < ino_size) {
2365                 truncated_block = true;
2366                 ret = btrfs_truncate_block(inode, offset, 0, 0);
2367                 if (ret) {
2368                         inode_unlock(inode);
2369                         return ret;
2370                 }
2371         }
2372
2373         /* Check the aligned pages after the first unaligned page,
2374          * if offset != orig_start, which means the first unaligned page
2375          * including serveral following pages are already in holes,
2376          * the extra check can be skipped */
2377         if (offset == orig_start) {
2378                 /* after truncate page, check hole again */
2379                 len = offset + len - lockstart;
2380                 offset = lockstart;
2381                 ret = find_first_non_hole(inode, &offset, &len);
2382                 if (ret < 0)
2383                         goto out_only_mutex;
2384                 if (ret && !len) {
2385                         ret = 0;
2386                         goto out_only_mutex;
2387                 }
2388                 lockstart = offset;
2389         }
2390
2391         /* Check the tail unaligned part is in a hole */
2392         tail_start = lockend + 1;
2393         tail_len = offset + len - tail_start;
2394         if (tail_len) {
2395                 ret = find_first_non_hole(inode, &tail_start, &tail_len);
2396                 if (unlikely(ret < 0))
2397                         goto out_only_mutex;
2398                 if (!ret) {
2399                         /* zero the front end of the last page */
2400                         if (tail_start + tail_len < ino_size) {
2401                                 truncated_block = true;
2402                                 ret = btrfs_truncate_block(inode,
2403                                                         tail_start + tail_len,
2404                                                         0, 1);
2405                                 if (ret)
2406                                         goto out_only_mutex;
2407                         }
2408                 }
2409         }
2410
2411         if (lockend < lockstart) {
2412                 ret = 0;
2413                 goto out_only_mutex;
2414         }
2415
2416         while (1) {
2417                 struct btrfs_ordered_extent *ordered;
2418
2419                 truncate_pagecache_range(inode, lockstart, lockend);
2420
2421                 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2422                                  &cached_state);
2423                 ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2424
2425                 /*
2426                  * We need to make sure we have no ordered extents in this range
2427                  * and nobody raced in and read a page in this range, if we did
2428                  * we need to try again.
2429                  */
2430                 if ((!ordered ||
2431                     (ordered->file_offset + ordered->len <= lockstart ||
2432                      ordered->file_offset > lockend)) &&
2433                      !btrfs_page_exists_in_range(inode, lockstart, lockend)) {
2434                         if (ordered)
2435                                 btrfs_put_ordered_extent(ordered);
2436                         break;
2437                 }
2438                 if (ordered)
2439                         btrfs_put_ordered_extent(ordered);
2440                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2441                                      lockend, &cached_state, GFP_NOFS);
2442                 ret = btrfs_wait_ordered_range(inode, lockstart,
2443                                                lockend - lockstart + 1);
2444                 if (ret) {
2445                         inode_unlock(inode);
2446                         return ret;
2447                 }
2448         }
2449
2450         path = btrfs_alloc_path();
2451         if (!path) {
2452                 ret = -ENOMEM;
2453                 goto out;
2454         }
2455
2456         rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2457         if (!rsv) {
2458                 ret = -ENOMEM;
2459                 goto out_free;
2460         }
2461         rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
2462         rsv->failfast = 1;
2463
2464         /*
2465          * 1 - update the inode
2466          * 1 - removing the extents in the range
2467          * 1 - adding the hole extent if no_holes isn't set
2468          */
2469         rsv_count = no_holes ? 2 : 3;
2470         trans = btrfs_start_transaction(root, rsv_count);
2471         if (IS_ERR(trans)) {
2472                 err = PTR_ERR(trans);
2473                 goto out_free;
2474         }
2475
2476         ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
2477                                       min_size);
2478         BUG_ON(ret);
2479         trans->block_rsv = rsv;
2480
2481         cur_offset = lockstart;
2482         len = lockend - cur_offset;
2483         while (cur_offset < lockend) {
2484                 ret = __btrfs_drop_extents(trans, root, inode, path,
2485                                            cur_offset, lockend + 1,
2486                                            &drop_end, 1, 0, 0, NULL);
2487                 if (ret != -ENOSPC)
2488                         break;
2489
2490                 trans->block_rsv = &root->fs_info->trans_block_rsv;
2491
2492                 if (cur_offset < ino_size) {
2493                         ret = fill_holes(trans, inode, path, cur_offset,
2494                                          drop_end);
2495                         if (ret) {
2496                                 err = ret;
2497                                 break;
2498                         }
2499                 }
2500
2501                 cur_offset = drop_end;
2502
2503                 ret = btrfs_update_inode(trans, root, inode);
2504                 if (ret) {
2505                         err = ret;
2506                         break;
2507                 }
2508
2509                 btrfs_end_transaction(trans, root);
2510                 btrfs_btree_balance_dirty(root);
2511
2512                 trans = btrfs_start_transaction(root, rsv_count);
2513                 if (IS_ERR(trans)) {
2514                         ret = PTR_ERR(trans);
2515                         trans = NULL;
2516                         break;
2517                 }
2518
2519                 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
2520                                               rsv, min_size);
2521                 BUG_ON(ret);    /* shouldn't happen */
2522                 trans->block_rsv = rsv;
2523
2524                 ret = find_first_non_hole(inode, &cur_offset, &len);
2525                 if (unlikely(ret < 0))
2526                         break;
2527                 if (ret && !len) {
2528                         ret = 0;
2529                         break;
2530                 }
2531         }
2532
2533         if (ret) {
2534                 err = ret;
2535                 goto out_trans;
2536         }
2537
2538         trans->block_rsv = &root->fs_info->trans_block_rsv;
2539         /*
2540          * If we are using the NO_HOLES feature we might have had already an
2541          * hole that overlaps a part of the region [lockstart, lockend] and
2542          * ends at (or beyond) lockend. Since we have no file extent items to
2543          * represent holes, drop_end can be less than lockend and so we must
2544          * make sure we have an extent map representing the existing hole (the
2545          * call to __btrfs_drop_extents() might have dropped the existing extent
2546          * map representing the existing hole), otherwise the fast fsync path
2547          * will not record the existence of the hole region
2548          * [existing_hole_start, lockend].
2549          */
2550         if (drop_end <= lockend)
2551                 drop_end = lockend + 1;
2552         /*
2553          * Don't insert file hole extent item if it's for a range beyond eof
2554          * (because it's useless) or if it represents a 0 bytes range (when
2555          * cur_offset == drop_end).
2556          */
2557         if (cur_offset < ino_size && cur_offset < drop_end) {
2558                 ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2559                 if (ret) {
2560                         err = ret;
2561                         goto out_trans;
2562                 }
2563         }
2564
2565 out_trans:
2566         if (!trans)
2567                 goto out_free;
2568
2569         inode_inc_iversion(inode);
2570         inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb);
2571
2572         trans->block_rsv = &root->fs_info->trans_block_rsv;
2573         ret = btrfs_update_inode(trans, root, inode);
2574         updated_inode = true;
2575         btrfs_end_transaction(trans, root);
2576         btrfs_btree_balance_dirty(root);
2577 out_free:
2578         btrfs_free_path(path);
2579         btrfs_free_block_rsv(root, rsv);
2580 out:
2581         unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2582                              &cached_state, GFP_NOFS);
2583 out_only_mutex:
2584         if (!updated_inode && truncated_block && !ret && !err) {
2585                 /*
2586                  * If we only end up zeroing part of a page, we still need to
2587                  * update the inode item, so that all the time fields are
2588                  * updated as well as the necessary btrfs inode in memory fields
2589                  * for detecting, at fsync time, if the inode isn't yet in the
2590                  * log tree or it's there but not up to date.
2591                  */
2592                 trans = btrfs_start_transaction(root, 1);
2593                 if (IS_ERR(trans)) {
2594                         err = PTR_ERR(trans);
2595                 } else {
2596                         err = btrfs_update_inode(trans, root, inode);
2597                         ret = btrfs_end_transaction(trans, root);
2598                 }
2599         }
2600         inode_unlock(inode);
2601         if (ret && !err)
2602                 err = ret;
2603         return err;
2604 }
2605
2606 /* Helper structure to record which range is already reserved */
2607 struct falloc_range {
2608         struct list_head list;
2609         u64 start;
2610         u64 len;
2611 };
2612
2613 /*
2614  * Helper function to add falloc range
2615  *
2616  * Caller should have locked the larger range of extent containing
2617  * [start, len)
2618  */
2619 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2620 {
2621         struct falloc_range *prev = NULL;
2622         struct falloc_range *range = NULL;
2623
2624         if (list_empty(head))
2625                 goto insert;
2626
2627         /*
2628          * As fallocate iterate by bytenr order, we only need to check
2629          * the last range.
2630          */
2631         prev = list_entry(head->prev, struct falloc_range, list);
2632         if (prev->start + prev->len == start) {
2633                 prev->len += len;
2634                 return 0;
2635         }
2636 insert:
2637         range = kmalloc(sizeof(*range), GFP_KERNEL);
2638         if (!range)
2639                 return -ENOMEM;
2640         range->start = start;
2641         range->len = len;
2642         list_add_tail(&range->list, head);
2643         return 0;
2644 }
2645
2646 static long btrfs_fallocate(struct file *file, int mode,
2647                             loff_t offset, loff_t len)
2648 {
2649         struct inode *inode = file_inode(file);
2650         struct extent_state *cached_state = NULL;
2651         struct falloc_range *range;
2652         struct falloc_range *tmp;
2653         struct list_head reserve_list;
2654         u64 cur_offset;
2655         u64 last_byte;
2656         u64 alloc_start;
2657         u64 alloc_end;
2658         u64 alloc_hint = 0;
2659         u64 locked_end;
2660         u64 actual_end = 0;
2661         struct extent_map *em;
2662         int blocksize = BTRFS_I(inode)->root->sectorsize;
2663         int ret;
2664
2665         alloc_start = round_down(offset, blocksize);
2666         alloc_end = round_up(offset + len, blocksize);
2667
2668         /* Make sure we aren't being give some crap mode */
2669         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2670                 return -EOPNOTSUPP;
2671
2672         if (mode & FALLOC_FL_PUNCH_HOLE)
2673                 return btrfs_punch_hole(inode, offset, len);
2674
2675         /*
2676          * Only trigger disk allocation, don't trigger qgroup reserve
2677          *
2678          * For qgroup space, it will be checked later.
2679          */
2680         ret = btrfs_alloc_data_chunk_ondemand(inode, alloc_end - alloc_start);
2681         if (ret < 0)
2682                 return ret;
2683
2684         inode_lock(inode);
2685
2686         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
2687                 ret = inode_newsize_ok(inode, offset + len);
2688                 if (ret)
2689                         goto out;
2690         }
2691
2692         /*
2693          * TODO: Move these two operations after we have checked
2694          * accurate reserved space, or fallocate can still fail but
2695          * with page truncated or size expanded.
2696          *
2697          * But that's a minor problem and won't do much harm BTW.
2698          */
2699         if (alloc_start > inode->i_size) {
2700                 ret = btrfs_cont_expand(inode, i_size_read(inode),
2701                                         alloc_start);
2702                 if (ret)
2703                         goto out;
2704         } else if (offset + len > inode->i_size) {
2705                 /*
2706                  * If we are fallocating from the end of the file onward we
2707                  * need to zero out the end of the block if i_size lands in the
2708                  * middle of a block.
2709                  */
2710                 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
2711                 if (ret)
2712                         goto out;
2713         }
2714
2715         /*
2716          * wait for ordered IO before we have any locks.  We'll loop again
2717          * below with the locks held.
2718          */
2719         ret = btrfs_wait_ordered_range(inode, alloc_start,
2720                                        alloc_end - alloc_start);
2721         if (ret)
2722                 goto out;
2723
2724         locked_end = alloc_end - 1;
2725         while (1) {
2726                 struct btrfs_ordered_extent *ordered;
2727
2728                 /* the extent lock is ordered inside the running
2729                  * transaction
2730                  */
2731                 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
2732                                  locked_end, &cached_state);
2733                 ordered = btrfs_lookup_first_ordered_extent(inode,
2734                                                             alloc_end - 1);
2735                 if (ordered &&
2736                     ordered->file_offset + ordered->len > alloc_start &&
2737                     ordered->file_offset < alloc_end) {
2738                         btrfs_put_ordered_extent(ordered);
2739                         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2740                                              alloc_start, locked_end,
2741                                              &cached_state, GFP_KERNEL);
2742                         /*
2743                          * we can't wait on the range with the transaction
2744                          * running or with the extent lock held
2745                          */
2746                         ret = btrfs_wait_ordered_range(inode, alloc_start,
2747                                                        alloc_end - alloc_start);
2748                         if (ret)
2749                                 goto out;
2750                 } else {
2751                         if (ordered)
2752                                 btrfs_put_ordered_extent(ordered);
2753                         break;
2754                 }
2755         }
2756
2757         /* First, check if we exceed the qgroup limit */
2758         INIT_LIST_HEAD(&reserve_list);
2759         cur_offset = alloc_start;
2760         while (1) {
2761                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2762                                       alloc_end - cur_offset, 0);
2763                 if (IS_ERR_OR_NULL(em)) {
2764                         if (!em)
2765                                 ret = -ENOMEM;
2766                         else
2767                                 ret = PTR_ERR(em);
2768                         break;
2769                 }
2770                 last_byte = min(extent_map_end(em), alloc_end);
2771                 actual_end = min_t(u64, extent_map_end(em), offset + len);
2772                 last_byte = ALIGN(last_byte, blocksize);
2773                 if (em->block_start == EXTENT_MAP_HOLE ||
2774                     (cur_offset >= inode->i_size &&
2775                      !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2776                         ret = add_falloc_range(&reserve_list, cur_offset,
2777                                                last_byte - cur_offset);
2778                         if (ret < 0) {
2779                                 free_extent_map(em);
2780                                 break;
2781                         }
2782                         ret = btrfs_qgroup_reserve_data(inode, cur_offset,
2783                                         last_byte - cur_offset);
2784                         if (ret < 0)
2785                                 break;
2786                 }
2787                 free_extent_map(em);
2788                 cur_offset = last_byte;
2789                 if (cur_offset >= alloc_end)
2790                         break;
2791         }
2792
2793         /*
2794          * If ret is still 0, means we're OK to fallocate.
2795          * Or just cleanup the list and exit.
2796          */
2797         list_for_each_entry_safe(range, tmp, &reserve_list, list) {
2798                 if (!ret)
2799                         ret = btrfs_prealloc_file_range(inode, mode,
2800                                         range->start,
2801                                         range->len, 1 << inode->i_blkbits,
2802                                         offset + len, &alloc_hint);
2803                 list_del(&range->list);
2804                 kfree(range);
2805         }
2806         if (ret < 0)
2807                 goto out_unlock;
2808
2809         if (actual_end > inode->i_size &&
2810             !(mode & FALLOC_FL_KEEP_SIZE)) {
2811                 struct btrfs_trans_handle *trans;
2812                 struct btrfs_root *root = BTRFS_I(inode)->root;
2813
2814                 /*
2815                  * We didn't need to allocate any more space, but we
2816                  * still extended the size of the file so we need to
2817                  * update i_size and the inode item.
2818                  */
2819                 trans = btrfs_start_transaction(root, 1);
2820                 if (IS_ERR(trans)) {
2821                         ret = PTR_ERR(trans);
2822                 } else {
2823                         inode->i_ctime = current_fs_time(inode->i_sb);
2824                         i_size_write(inode, actual_end);
2825                         btrfs_ordered_update_i_size(inode, actual_end, NULL);
2826                         ret = btrfs_update_inode(trans, root, inode);
2827                         if (ret)
2828                                 btrfs_end_transaction(trans, root);
2829                         else
2830                                 ret = btrfs_end_transaction(trans, root);
2831                 }
2832         }
2833 out_unlock:
2834         unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
2835                              &cached_state, GFP_KERNEL);
2836 out:
2837         /*
2838          * As we waited the extent range, the data_rsv_map must be empty
2839          * in the range, as written data range will be released from it.
2840          * And for prealloacted extent, it will also be released when
2841          * its metadata is written.
2842          * So this is completely used as cleanup.
2843          */
2844         btrfs_qgroup_free_data(inode, alloc_start, alloc_end - alloc_start);
2845         inode_unlock(inode);
2846         /* Let go of our reservation. */
2847         btrfs_free_reserved_data_space(inode, alloc_start,
2848                                        alloc_end - alloc_start);
2849         return ret;
2850 }
2851
2852 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
2853 {
2854         struct btrfs_root *root = BTRFS_I(inode)->root;
2855         struct extent_map *em = NULL;
2856         struct extent_state *cached_state = NULL;
2857         u64 lockstart;
2858         u64 lockend;
2859         u64 start;
2860         u64 len;
2861         int ret = 0;
2862
2863         if (inode->i_size == 0)
2864                 return -ENXIO;
2865
2866         /*
2867          * *offset can be negative, in this case we start finding DATA/HOLE from
2868          * the very start of the file.
2869          */
2870         start = max_t(loff_t, 0, *offset);
2871
2872         lockstart = round_down(start, root->sectorsize);
2873         lockend = round_up(i_size_read(inode), root->sectorsize);
2874         if (lockend <= lockstart)
2875                 lockend = lockstart + root->sectorsize;
2876         lockend--;
2877         len = lockend - lockstart + 1;
2878
2879         lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2880                          &cached_state);
2881
2882         while (start < inode->i_size) {
2883                 em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
2884                 if (IS_ERR(em)) {
2885                         ret = PTR_ERR(em);
2886                         em = NULL;
2887                         break;
2888                 }
2889
2890                 if (whence == SEEK_HOLE &&
2891                     (em->block_start == EXTENT_MAP_HOLE ||
2892                      test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2893                         break;
2894                 else if (whence == SEEK_DATA &&
2895                            (em->block_start != EXTENT_MAP_HOLE &&
2896                             !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2897                         break;
2898
2899                 start = em->start + em->len;
2900                 free_extent_map(em);
2901                 em = NULL;
2902                 cond_resched();
2903         }
2904         free_extent_map(em);
2905         if (!ret) {
2906                 if (whence == SEEK_DATA && start >= inode->i_size)
2907                         ret = -ENXIO;
2908                 else
2909                         *offset = min_t(loff_t, start, inode->i_size);
2910         }
2911         unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2912                              &cached_state, GFP_NOFS);
2913         return ret;
2914 }
2915
2916 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
2917 {
2918         struct inode *inode = file->f_mapping->host;
2919         int ret;
2920
2921         inode_lock(inode);
2922         switch (whence) {
2923         case SEEK_END:
2924         case SEEK_CUR:
2925                 offset = generic_file_llseek(file, offset, whence);
2926                 goto out;
2927         case SEEK_DATA:
2928         case SEEK_HOLE:
2929                 if (offset >= i_size_read(inode)) {
2930                         inode_unlock(inode);
2931                         return -ENXIO;
2932                 }
2933
2934                 ret = find_desired_extent(inode, &offset, whence);
2935                 if (ret) {
2936                         inode_unlock(inode);
2937                         return ret;
2938                 }
2939         }
2940
2941         offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2942 out:
2943         inode_unlock(inode);
2944         return offset;
2945 }
2946
2947 const struct file_operations btrfs_file_operations = {
2948         .llseek         = btrfs_file_llseek,
2949         .read_iter      = generic_file_read_iter,
2950         .splice_read    = generic_file_splice_read,
2951         .write_iter     = btrfs_file_write_iter,
2952         .mmap           = btrfs_file_mmap,
2953         .open           = generic_file_open,
2954         .release        = btrfs_release_file,
2955         .fsync          = btrfs_sync_file,
2956         .fallocate      = btrfs_fallocate,
2957         .unlocked_ioctl = btrfs_ioctl,
2958 #ifdef CONFIG_COMPAT
2959         .compat_ioctl   = btrfs_ioctl,
2960 #endif
2961         .copy_file_range = btrfs_copy_file_range,
2962         .clone_file_range = btrfs_clone_file_range,
2963         .dedupe_file_range = btrfs_dedupe_file_range,
2964 };
2965
2966 void btrfs_auto_defrag_exit(void)
2967 {
2968         kmem_cache_destroy(btrfs_inode_defrag_cachep);
2969 }
2970
2971 int btrfs_auto_defrag_init(void)
2972 {
2973         btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
2974                                         sizeof(struct inode_defrag), 0,
2975                                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
2976                                         NULL);
2977         if (!btrfs_inode_defrag_cachep)
2978                 return -ENOMEM;
2979
2980         return 0;
2981 }
2982
2983 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
2984 {
2985         int ret;
2986
2987         /*
2988          * So with compression we will find and lock a dirty page and clear the
2989          * first one as dirty, setup an async extent, and immediately return
2990          * with the entire range locked but with nobody actually marked with
2991          * writeback.  So we can't just filemap_write_and_wait_range() and
2992          * expect it to work since it will just kick off a thread to do the
2993          * actual work.  So we need to call filemap_fdatawrite_range _again_
2994          * since it will wait on the page lock, which won't be unlocked until
2995          * after the pages have been marked as writeback and so we're good to go
2996          * from there.  We have to do this otherwise we'll miss the ordered
2997          * extents and that results in badness.  Please Josef, do not think you
2998          * know better and pull this out at some point in the future, it is
2999          * right and you are wrong.
3000          */
3001         ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3002         if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3003                              &BTRFS_I(inode)->runtime_flags))
3004                 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3005
3006         return ret;
3007 }