3991d8a74f61232cfceadd0bf94160315b00eaae
[cascardo/linux.git] / fs / btrfs / inode.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include <linux/mount.h>
42 #include <linux/btrfs.h>
43 #include <linux/blkdev.h>
44 #include <linux/posix_acl_xattr.h>
45 #include <linux/uio.h>
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "ordered-data.h"
52 #include "xattr.h"
53 #include "tree-log.h"
54 #include "volumes.h"
55 #include "compression.h"
56 #include "locking.h"
57 #include "free-space-cache.h"
58 #include "inode-map.h"
59 #include "backref.h"
60 #include "hash.h"
61 #include "props.h"
62 #include "qgroup.h"
63
64 struct btrfs_iget_args {
65         struct btrfs_key *location;
66         struct btrfs_root *root;
67 };
68
69 struct btrfs_dio_data {
70         u64 outstanding_extents;
71         u64 reserve;
72         u64 unsubmitted_oe_range_start;
73         u64 unsubmitted_oe_range_end;
74 };
75
76 static const struct inode_operations btrfs_dir_inode_operations;
77 static const struct inode_operations btrfs_symlink_inode_operations;
78 static const struct inode_operations btrfs_dir_ro_inode_operations;
79 static const struct inode_operations btrfs_special_inode_operations;
80 static const struct inode_operations btrfs_file_inode_operations;
81 static const struct address_space_operations btrfs_aops;
82 static const struct address_space_operations btrfs_symlink_aops;
83 static const struct file_operations btrfs_dir_file_operations;
84 static const struct extent_io_ops btrfs_extent_io_ops;
85
86 static struct kmem_cache *btrfs_inode_cachep;
87 struct kmem_cache *btrfs_trans_handle_cachep;
88 struct kmem_cache *btrfs_transaction_cachep;
89 struct kmem_cache *btrfs_path_cachep;
90 struct kmem_cache *btrfs_free_space_cachep;
91
92 #define S_SHIFT 12
93 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
94         [S_IFREG >> S_SHIFT]    = BTRFS_FT_REG_FILE,
95         [S_IFDIR >> S_SHIFT]    = BTRFS_FT_DIR,
96         [S_IFCHR >> S_SHIFT]    = BTRFS_FT_CHRDEV,
97         [S_IFBLK >> S_SHIFT]    = BTRFS_FT_BLKDEV,
98         [S_IFIFO >> S_SHIFT]    = BTRFS_FT_FIFO,
99         [S_IFSOCK >> S_SHIFT]   = BTRFS_FT_SOCK,
100         [S_IFLNK >> S_SHIFT]    = BTRFS_FT_SYMLINK,
101 };
102
103 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
104 static int btrfs_truncate(struct inode *inode);
105 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
106 static noinline int cow_file_range(struct inode *inode,
107                                    struct page *locked_page,
108                                    u64 start, u64 end, int *page_started,
109                                    unsigned long *nr_written, int unlock);
110 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
111                                            u64 len, u64 orig_start,
112                                            u64 block_start, u64 block_len,
113                                            u64 orig_block_len, u64 ram_bytes,
114                                            int type);
115
116 static int btrfs_dirty_inode(struct inode *inode);
117
118 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
119 void btrfs_test_inode_set_ops(struct inode *inode)
120 {
121         BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
122 }
123 #endif
124
125 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
126                                      struct inode *inode,  struct inode *dir,
127                                      const struct qstr *qstr)
128 {
129         int err;
130
131         err = btrfs_init_acl(trans, inode, dir);
132         if (!err)
133                 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
134         return err;
135 }
136
137 /*
138  * this does all the hard work for inserting an inline extent into
139  * the btree.  The caller should have done a btrfs_drop_extents so that
140  * no overlapping inline items exist in the btree
141  */
142 static int insert_inline_extent(struct btrfs_trans_handle *trans,
143                                 struct btrfs_path *path, int extent_inserted,
144                                 struct btrfs_root *root, struct inode *inode,
145                                 u64 start, size_t size, size_t compressed_size,
146                                 int compress_type,
147                                 struct page **compressed_pages)
148 {
149         struct extent_buffer *leaf;
150         struct page *page = NULL;
151         char *kaddr;
152         unsigned long ptr;
153         struct btrfs_file_extent_item *ei;
154         int err = 0;
155         int ret;
156         size_t cur_size = size;
157         unsigned long offset;
158
159         if (compressed_size && compressed_pages)
160                 cur_size = compressed_size;
161
162         inode_add_bytes(inode, size);
163
164         if (!extent_inserted) {
165                 struct btrfs_key key;
166                 size_t datasize;
167
168                 key.objectid = btrfs_ino(inode);
169                 key.offset = start;
170                 key.type = BTRFS_EXTENT_DATA_KEY;
171
172                 datasize = btrfs_file_extent_calc_inline_size(cur_size);
173                 path->leave_spinning = 1;
174                 ret = btrfs_insert_empty_item(trans, root, path, &key,
175                                               datasize);
176                 if (ret) {
177                         err = ret;
178                         goto fail;
179                 }
180         }
181         leaf = path->nodes[0];
182         ei = btrfs_item_ptr(leaf, path->slots[0],
183                             struct btrfs_file_extent_item);
184         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
185         btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
186         btrfs_set_file_extent_encryption(leaf, ei, 0);
187         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
188         btrfs_set_file_extent_ram_bytes(leaf, ei, size);
189         ptr = btrfs_file_extent_inline_start(ei);
190
191         if (compress_type != BTRFS_COMPRESS_NONE) {
192                 struct page *cpage;
193                 int i = 0;
194                 while (compressed_size > 0) {
195                         cpage = compressed_pages[i];
196                         cur_size = min_t(unsigned long, compressed_size,
197                                        PAGE_SIZE);
198
199                         kaddr = kmap_atomic(cpage);
200                         write_extent_buffer(leaf, kaddr, ptr, cur_size);
201                         kunmap_atomic(kaddr);
202
203                         i++;
204                         ptr += cur_size;
205                         compressed_size -= cur_size;
206                 }
207                 btrfs_set_file_extent_compression(leaf, ei,
208                                                   compress_type);
209         } else {
210                 page = find_get_page(inode->i_mapping,
211                                      start >> PAGE_SHIFT);
212                 btrfs_set_file_extent_compression(leaf, ei, 0);
213                 kaddr = kmap_atomic(page);
214                 offset = start & (PAGE_SIZE - 1);
215                 write_extent_buffer(leaf, kaddr + offset, ptr, size);
216                 kunmap_atomic(kaddr);
217                 put_page(page);
218         }
219         btrfs_mark_buffer_dirty(leaf);
220         btrfs_release_path(path);
221
222         /*
223          * we're an inline extent, so nobody can
224          * extend the file past i_size without locking
225          * a page we already have locked.
226          *
227          * We must do any isize and inode updates
228          * before we unlock the pages.  Otherwise we
229          * could end up racing with unlink.
230          */
231         BTRFS_I(inode)->disk_i_size = inode->i_size;
232         ret = btrfs_update_inode(trans, root, inode);
233
234         return ret;
235 fail:
236         return err;
237 }
238
239
240 /*
241  * conditionally insert an inline extent into the file.  This
242  * does the checks required to make sure the data is small enough
243  * to fit as an inline extent.
244  */
245 static noinline int cow_file_range_inline(struct btrfs_root *root,
246                                           struct inode *inode, u64 start,
247                                           u64 end, size_t compressed_size,
248                                           int compress_type,
249                                           struct page **compressed_pages)
250 {
251         struct btrfs_trans_handle *trans;
252         u64 isize = i_size_read(inode);
253         u64 actual_end = min(end + 1, isize);
254         u64 inline_len = actual_end - start;
255         u64 aligned_end = ALIGN(end, root->sectorsize);
256         u64 data_len = inline_len;
257         int ret;
258         struct btrfs_path *path;
259         int extent_inserted = 0;
260         u32 extent_item_size;
261
262         if (compressed_size)
263                 data_len = compressed_size;
264
265         if (start > 0 ||
266             actual_end > root->sectorsize ||
267             data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) ||
268             (!compressed_size &&
269             (actual_end & (root->sectorsize - 1)) == 0) ||
270             end + 1 < isize ||
271             data_len > root->fs_info->max_inline) {
272                 return 1;
273         }
274
275         path = btrfs_alloc_path();
276         if (!path)
277                 return -ENOMEM;
278
279         trans = btrfs_join_transaction(root);
280         if (IS_ERR(trans)) {
281                 btrfs_free_path(path);
282                 return PTR_ERR(trans);
283         }
284         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
285
286         if (compressed_size && compressed_pages)
287                 extent_item_size = btrfs_file_extent_calc_inline_size(
288                    compressed_size);
289         else
290                 extent_item_size = btrfs_file_extent_calc_inline_size(
291                     inline_len);
292
293         ret = __btrfs_drop_extents(trans, root, inode, path,
294                                    start, aligned_end, NULL,
295                                    1, 1, extent_item_size, &extent_inserted);
296         if (ret) {
297                 btrfs_abort_transaction(trans, root, ret);
298                 goto out;
299         }
300
301         if (isize > actual_end)
302                 inline_len = min_t(u64, isize, actual_end);
303         ret = insert_inline_extent(trans, path, extent_inserted,
304                                    root, inode, start,
305                                    inline_len, compressed_size,
306                                    compress_type, compressed_pages);
307         if (ret && ret != -ENOSPC) {
308                 btrfs_abort_transaction(trans, root, ret);
309                 goto out;
310         } else if (ret == -ENOSPC) {
311                 ret = 1;
312                 goto out;
313         }
314
315         set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
316         btrfs_delalloc_release_metadata(inode, end + 1 - start);
317         btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
318 out:
319         /*
320          * Don't forget to free the reserved space, as for inlined extent
321          * it won't count as data extent, free them directly here.
322          * And at reserve time, it's always aligned to page size, so
323          * just free one page here.
324          */
325         btrfs_qgroup_free_data(inode, 0, PAGE_SIZE);
326         btrfs_free_path(path);
327         btrfs_end_transaction(trans, root);
328         return ret;
329 }
330
331 struct async_extent {
332         u64 start;
333         u64 ram_size;
334         u64 compressed_size;
335         struct page **pages;
336         unsigned long nr_pages;
337         int compress_type;
338         struct list_head list;
339 };
340
341 struct async_cow {
342         struct inode *inode;
343         struct btrfs_root *root;
344         struct page *locked_page;
345         u64 start;
346         u64 end;
347         struct list_head extents;
348         struct btrfs_work work;
349 };
350
351 static noinline int add_async_extent(struct async_cow *cow,
352                                      u64 start, u64 ram_size,
353                                      u64 compressed_size,
354                                      struct page **pages,
355                                      unsigned long nr_pages,
356                                      int compress_type)
357 {
358         struct async_extent *async_extent;
359
360         async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
361         BUG_ON(!async_extent); /* -ENOMEM */
362         async_extent->start = start;
363         async_extent->ram_size = ram_size;
364         async_extent->compressed_size = compressed_size;
365         async_extent->pages = pages;
366         async_extent->nr_pages = nr_pages;
367         async_extent->compress_type = compress_type;
368         list_add_tail(&async_extent->list, &cow->extents);
369         return 0;
370 }
371
372 static inline int inode_need_compress(struct inode *inode)
373 {
374         struct btrfs_root *root = BTRFS_I(inode)->root;
375
376         /* force compress */
377         if (btrfs_test_opt(root, FORCE_COMPRESS))
378                 return 1;
379         /* bad compression ratios */
380         if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
381                 return 0;
382         if (btrfs_test_opt(root, COMPRESS) ||
383             BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
384             BTRFS_I(inode)->force_compress)
385                 return 1;
386         return 0;
387 }
388
389 /*
390  * we create compressed extents in two phases.  The first
391  * phase compresses a range of pages that have already been
392  * locked (both pages and state bits are locked).
393  *
394  * This is done inside an ordered work queue, and the compression
395  * is spread across many cpus.  The actual IO submission is step
396  * two, and the ordered work queue takes care of making sure that
397  * happens in the same order things were put onto the queue by
398  * writepages and friends.
399  *
400  * If this code finds it can't get good compression, it puts an
401  * entry onto the work queue to write the uncompressed bytes.  This
402  * makes sure that both compressed inodes and uncompressed inodes
403  * are written in the same order that the flusher thread sent them
404  * down.
405  */
406 static noinline void compress_file_range(struct inode *inode,
407                                         struct page *locked_page,
408                                         u64 start, u64 end,
409                                         struct async_cow *async_cow,
410                                         int *num_added)
411 {
412         struct btrfs_root *root = BTRFS_I(inode)->root;
413         u64 num_bytes;
414         u64 blocksize = root->sectorsize;
415         u64 actual_end;
416         u64 isize = i_size_read(inode);
417         int ret = 0;
418         struct page **pages = NULL;
419         unsigned long nr_pages;
420         unsigned long nr_pages_ret = 0;
421         unsigned long total_compressed = 0;
422         unsigned long total_in = 0;
423         unsigned long max_compressed = SZ_128K;
424         unsigned long max_uncompressed = SZ_128K;
425         int i;
426         int will_compress;
427         int compress_type = root->fs_info->compress_type;
428         int redirty = 0;
429
430         /* if this is a small write inside eof, kick off a defrag */
431         if ((end - start + 1) < SZ_16K &&
432             (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
433                 btrfs_add_inode_defrag(NULL, inode);
434
435         actual_end = min_t(u64, isize, end + 1);
436 again:
437         will_compress = 0;
438         nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
439         nr_pages = min_t(unsigned long, nr_pages, SZ_128K / PAGE_SIZE);
440
441         /*
442          * we don't want to send crud past the end of i_size through
443          * compression, that's just a waste of CPU time.  So, if the
444          * end of the file is before the start of our current
445          * requested range of bytes, we bail out to the uncompressed
446          * cleanup code that can deal with all of this.
447          *
448          * It isn't really the fastest way to fix things, but this is a
449          * very uncommon corner.
450          */
451         if (actual_end <= start)
452                 goto cleanup_and_bail_uncompressed;
453
454         total_compressed = actual_end - start;
455
456         /*
457          * skip compression for a small file range(<=blocksize) that
458          * isn't an inline extent, since it dosen't save disk space at all.
459          */
460         if (total_compressed <= blocksize &&
461            (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
462                 goto cleanup_and_bail_uncompressed;
463
464         /* we want to make sure that amount of ram required to uncompress
465          * an extent is reasonable, so we limit the total size in ram
466          * of a compressed extent to 128k.  This is a crucial number
467          * because it also controls how easily we can spread reads across
468          * cpus for decompression.
469          *
470          * We also want to make sure the amount of IO required to do
471          * a random read is reasonably small, so we limit the size of
472          * a compressed extent to 128k.
473          */
474         total_compressed = min(total_compressed, max_uncompressed);
475         num_bytes = ALIGN(end - start + 1, blocksize);
476         num_bytes = max(blocksize,  num_bytes);
477         total_in = 0;
478         ret = 0;
479
480         /*
481          * we do compression for mount -o compress and when the
482          * inode has not been flagged as nocompress.  This flag can
483          * change at any time if we discover bad compression ratios.
484          */
485         if (inode_need_compress(inode)) {
486                 WARN_ON(pages);
487                 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
488                 if (!pages) {
489                         /* just bail out to the uncompressed code */
490                         goto cont;
491                 }
492
493                 if (BTRFS_I(inode)->force_compress)
494                         compress_type = BTRFS_I(inode)->force_compress;
495
496                 /*
497                  * we need to call clear_page_dirty_for_io on each
498                  * page in the range.  Otherwise applications with the file
499                  * mmap'd can wander in and change the page contents while
500                  * we are compressing them.
501                  *
502                  * If the compression fails for any reason, we set the pages
503                  * dirty again later on.
504                  */
505                 extent_range_clear_dirty_for_io(inode, start, end);
506                 redirty = 1;
507                 ret = btrfs_compress_pages(compress_type,
508                                            inode->i_mapping, start,
509                                            total_compressed, pages,
510                                            nr_pages, &nr_pages_ret,
511                                            &total_in,
512                                            &total_compressed,
513                                            max_compressed);
514
515                 if (!ret) {
516                         unsigned long offset = total_compressed &
517                                 (PAGE_SIZE - 1);
518                         struct page *page = pages[nr_pages_ret - 1];
519                         char *kaddr;
520
521                         /* zero the tail end of the last page, we might be
522                          * sending it down to disk
523                          */
524                         if (offset) {
525                                 kaddr = kmap_atomic(page);
526                                 memset(kaddr + offset, 0,
527                                        PAGE_SIZE - offset);
528                                 kunmap_atomic(kaddr);
529                         }
530                         will_compress = 1;
531                 }
532         }
533 cont:
534         if (start == 0) {
535                 /* lets try to make an inline extent */
536                 if (ret || total_in < (actual_end - start)) {
537                         /* we didn't compress the entire range, try
538                          * to make an uncompressed inline extent.
539                          */
540                         ret = cow_file_range_inline(root, inode, start, end,
541                                                     0, 0, NULL);
542                 } else {
543                         /* try making a compressed inline extent */
544                         ret = cow_file_range_inline(root, inode, start, end,
545                                                     total_compressed,
546                                                     compress_type, pages);
547                 }
548                 if (ret <= 0) {
549                         unsigned long clear_flags = EXTENT_DELALLOC |
550                                 EXTENT_DEFRAG;
551                         unsigned long page_error_op;
552
553                         clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
554                         page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
555
556                         /*
557                          * inline extent creation worked or returned error,
558                          * we don't need to create any more async work items.
559                          * Unlock and free up our temp pages.
560                          */
561                         extent_clear_unlock_delalloc(inode, start, end, NULL,
562                                                      clear_flags, PAGE_UNLOCK |
563                                                      PAGE_CLEAR_DIRTY |
564                                                      PAGE_SET_WRITEBACK |
565                                                      page_error_op |
566                                                      PAGE_END_WRITEBACK);
567                         goto free_pages_out;
568                 }
569         }
570
571         if (will_compress) {
572                 /*
573                  * we aren't doing an inline extent round the compressed size
574                  * up to a block size boundary so the allocator does sane
575                  * things
576                  */
577                 total_compressed = ALIGN(total_compressed, blocksize);
578
579                 /*
580                  * one last check to make sure the compression is really a
581                  * win, compare the page count read with the blocks on disk
582                  */
583                 total_in = ALIGN(total_in, PAGE_SIZE);
584                 if (total_compressed >= total_in) {
585                         will_compress = 0;
586                 } else {
587                         num_bytes = total_in;
588                 }
589         }
590         if (!will_compress && pages) {
591                 /*
592                  * the compression code ran but failed to make things smaller,
593                  * free any pages it allocated and our page pointer array
594                  */
595                 for (i = 0; i < nr_pages_ret; i++) {
596                         WARN_ON(pages[i]->mapping);
597                         put_page(pages[i]);
598                 }
599                 kfree(pages);
600                 pages = NULL;
601                 total_compressed = 0;
602                 nr_pages_ret = 0;
603
604                 /* flag the file so we don't compress in the future */
605                 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
606                     !(BTRFS_I(inode)->force_compress)) {
607                         BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
608                 }
609         }
610         if (will_compress) {
611                 *num_added += 1;
612
613                 /* the async work queues will take care of doing actual
614                  * allocation on disk for these compressed pages,
615                  * and will submit them to the elevator.
616                  */
617                 add_async_extent(async_cow, start, num_bytes,
618                                  total_compressed, pages, nr_pages_ret,
619                                  compress_type);
620
621                 if (start + num_bytes < end) {
622                         start += num_bytes;
623                         pages = NULL;
624                         cond_resched();
625                         goto again;
626                 }
627         } else {
628 cleanup_and_bail_uncompressed:
629                 /*
630                  * No compression, but we still need to write the pages in
631                  * the file we've been given so far.  redirty the locked
632                  * page if it corresponds to our extent and set things up
633                  * for the async work queue to run cow_file_range to do
634                  * the normal delalloc dance
635                  */
636                 if (page_offset(locked_page) >= start &&
637                     page_offset(locked_page) <= end) {
638                         __set_page_dirty_nobuffers(locked_page);
639                         /* unlocked later on in the async handlers */
640                 }
641                 if (redirty)
642                         extent_range_redirty_for_io(inode, start, end);
643                 add_async_extent(async_cow, start, end - start + 1,
644                                  0, NULL, 0, BTRFS_COMPRESS_NONE);
645                 *num_added += 1;
646         }
647
648         return;
649
650 free_pages_out:
651         for (i = 0; i < nr_pages_ret; i++) {
652                 WARN_ON(pages[i]->mapping);
653                 put_page(pages[i]);
654         }
655         kfree(pages);
656 }
657
658 static void free_async_extent_pages(struct async_extent *async_extent)
659 {
660         int i;
661
662         if (!async_extent->pages)
663                 return;
664
665         for (i = 0; i < async_extent->nr_pages; i++) {
666                 WARN_ON(async_extent->pages[i]->mapping);
667                 put_page(async_extent->pages[i]);
668         }
669         kfree(async_extent->pages);
670         async_extent->nr_pages = 0;
671         async_extent->pages = NULL;
672 }
673
674 /*
675  * phase two of compressed writeback.  This is the ordered portion
676  * of the code, which only gets called in the order the work was
677  * queued.  We walk all the async extents created by compress_file_range
678  * and send them down to the disk.
679  */
680 static noinline void submit_compressed_extents(struct inode *inode,
681                                               struct async_cow *async_cow)
682 {
683         struct async_extent *async_extent;
684         u64 alloc_hint = 0;
685         struct btrfs_key ins;
686         struct extent_map *em;
687         struct btrfs_root *root = BTRFS_I(inode)->root;
688         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
689         struct extent_io_tree *io_tree;
690         int ret = 0;
691
692 again:
693         while (!list_empty(&async_cow->extents)) {
694                 async_extent = list_entry(async_cow->extents.next,
695                                           struct async_extent, list);
696                 list_del(&async_extent->list);
697
698                 io_tree = &BTRFS_I(inode)->io_tree;
699
700 retry:
701                 /* did the compression code fall back to uncompressed IO? */
702                 if (!async_extent->pages) {
703                         int page_started = 0;
704                         unsigned long nr_written = 0;
705
706                         lock_extent(io_tree, async_extent->start,
707                                          async_extent->start +
708                                          async_extent->ram_size - 1);
709
710                         /* allocate blocks */
711                         ret = cow_file_range(inode, async_cow->locked_page,
712                                              async_extent->start,
713                                              async_extent->start +
714                                              async_extent->ram_size - 1,
715                                              &page_started, &nr_written, 0);
716
717                         /* JDM XXX */
718
719                         /*
720                          * if page_started, cow_file_range inserted an
721                          * inline extent and took care of all the unlocking
722                          * and IO for us.  Otherwise, we need to submit
723                          * all those pages down to the drive.
724                          */
725                         if (!page_started && !ret)
726                                 extent_write_locked_range(io_tree,
727                                                   inode, async_extent->start,
728                                                   async_extent->start +
729                                                   async_extent->ram_size - 1,
730                                                   btrfs_get_extent,
731                                                   WB_SYNC_ALL);
732                         else if (ret)
733                                 unlock_page(async_cow->locked_page);
734                         kfree(async_extent);
735                         cond_resched();
736                         continue;
737                 }
738
739                 lock_extent(io_tree, async_extent->start,
740                             async_extent->start + async_extent->ram_size - 1);
741
742                 ret = btrfs_reserve_extent(root,
743                                            async_extent->compressed_size,
744                                            async_extent->compressed_size,
745                                            0, alloc_hint, &ins, 1, 1);
746                 if (ret) {
747                         free_async_extent_pages(async_extent);
748
749                         if (ret == -ENOSPC) {
750                                 unlock_extent(io_tree, async_extent->start,
751                                               async_extent->start +
752                                               async_extent->ram_size - 1);
753
754                                 /*
755                                  * we need to redirty the pages if we decide to
756                                  * fallback to uncompressed IO, otherwise we
757                                  * will not submit these pages down to lower
758                                  * layers.
759                                  */
760                                 extent_range_redirty_for_io(inode,
761                                                 async_extent->start,
762                                                 async_extent->start +
763                                                 async_extent->ram_size - 1);
764
765                                 goto retry;
766                         }
767                         goto out_free;
768                 }
769                 /*
770                  * here we're doing allocation and writeback of the
771                  * compressed pages
772                  */
773                 btrfs_drop_extent_cache(inode, async_extent->start,
774                                         async_extent->start +
775                                         async_extent->ram_size - 1, 0);
776
777                 em = alloc_extent_map();
778                 if (!em) {
779                         ret = -ENOMEM;
780                         goto out_free_reserve;
781                 }
782                 em->start = async_extent->start;
783                 em->len = async_extent->ram_size;
784                 em->orig_start = em->start;
785                 em->mod_start = em->start;
786                 em->mod_len = em->len;
787
788                 em->block_start = ins.objectid;
789                 em->block_len = ins.offset;
790                 em->orig_block_len = ins.offset;
791                 em->ram_bytes = async_extent->ram_size;
792                 em->bdev = root->fs_info->fs_devices->latest_bdev;
793                 em->compress_type = async_extent->compress_type;
794                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
795                 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
796                 em->generation = -1;
797
798                 while (1) {
799                         write_lock(&em_tree->lock);
800                         ret = add_extent_mapping(em_tree, em, 1);
801                         write_unlock(&em_tree->lock);
802                         if (ret != -EEXIST) {
803                                 free_extent_map(em);
804                                 break;
805                         }
806                         btrfs_drop_extent_cache(inode, async_extent->start,
807                                                 async_extent->start +
808                                                 async_extent->ram_size - 1, 0);
809                 }
810
811                 if (ret)
812                         goto out_free_reserve;
813
814                 ret = btrfs_add_ordered_extent_compress(inode,
815                                                 async_extent->start,
816                                                 ins.objectid,
817                                                 async_extent->ram_size,
818                                                 ins.offset,
819                                                 BTRFS_ORDERED_COMPRESSED,
820                                                 async_extent->compress_type);
821                 if (ret) {
822                         btrfs_drop_extent_cache(inode, async_extent->start,
823                                                 async_extent->start +
824                                                 async_extent->ram_size - 1, 0);
825                         goto out_free_reserve;
826                 }
827                 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
828
829                 /*
830                  * clear dirty, set writeback and unlock the pages.
831                  */
832                 extent_clear_unlock_delalloc(inode, async_extent->start,
833                                 async_extent->start +
834                                 async_extent->ram_size - 1,
835                                 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
836                                 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
837                                 PAGE_SET_WRITEBACK);
838                 ret = btrfs_submit_compressed_write(inode,
839                                     async_extent->start,
840                                     async_extent->ram_size,
841                                     ins.objectid,
842                                     ins.offset, async_extent->pages,
843                                     async_extent->nr_pages);
844                 if (ret) {
845                         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
846                         struct page *p = async_extent->pages[0];
847                         const u64 start = async_extent->start;
848                         const u64 end = start + async_extent->ram_size - 1;
849
850                         p->mapping = inode->i_mapping;
851                         tree->ops->writepage_end_io_hook(p, start, end,
852                                                          NULL, 0);
853                         p->mapping = NULL;
854                         extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
855                                                      PAGE_END_WRITEBACK |
856                                                      PAGE_SET_ERROR);
857                         free_async_extent_pages(async_extent);
858                 }
859                 alloc_hint = ins.objectid + ins.offset;
860                 kfree(async_extent);
861                 cond_resched();
862         }
863         return;
864 out_free_reserve:
865         btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
866         btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
867 out_free:
868         extent_clear_unlock_delalloc(inode, async_extent->start,
869                                      async_extent->start +
870                                      async_extent->ram_size - 1,
871                                      NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
872                                      EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
873                                      PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
874                                      PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
875                                      PAGE_SET_ERROR);
876         free_async_extent_pages(async_extent);
877         kfree(async_extent);
878         goto again;
879 }
880
881 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
882                                       u64 num_bytes)
883 {
884         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
885         struct extent_map *em;
886         u64 alloc_hint = 0;
887
888         read_lock(&em_tree->lock);
889         em = search_extent_mapping(em_tree, start, num_bytes);
890         if (em) {
891                 /*
892                  * if block start isn't an actual block number then find the
893                  * first block in this inode and use that as a hint.  If that
894                  * block is also bogus then just don't worry about it.
895                  */
896                 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
897                         free_extent_map(em);
898                         em = search_extent_mapping(em_tree, 0, 0);
899                         if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
900                                 alloc_hint = em->block_start;
901                         if (em)
902                                 free_extent_map(em);
903                 } else {
904                         alloc_hint = em->block_start;
905                         free_extent_map(em);
906                 }
907         }
908         read_unlock(&em_tree->lock);
909
910         return alloc_hint;
911 }
912
913 /*
914  * when extent_io.c finds a delayed allocation range in the file,
915  * the call backs end up in this code.  The basic idea is to
916  * allocate extents on disk for the range, and create ordered data structs
917  * in ram to track those extents.
918  *
919  * locked_page is the page that writepage had locked already.  We use
920  * it to make sure we don't do extra locks or unlocks.
921  *
922  * *page_started is set to one if we unlock locked_page and do everything
923  * required to start IO on it.  It may be clean and already done with
924  * IO when we return.
925  */
926 static noinline int cow_file_range(struct inode *inode,
927                                    struct page *locked_page,
928                                    u64 start, u64 end, int *page_started,
929                                    unsigned long *nr_written,
930                                    int unlock)
931 {
932         struct btrfs_root *root = BTRFS_I(inode)->root;
933         u64 alloc_hint = 0;
934         u64 num_bytes;
935         unsigned long ram_size;
936         u64 disk_num_bytes;
937         u64 cur_alloc_size;
938         u64 blocksize = root->sectorsize;
939         struct btrfs_key ins;
940         struct extent_map *em;
941         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
942         int ret = 0;
943
944         if (btrfs_is_free_space_inode(inode)) {
945                 WARN_ON_ONCE(1);
946                 ret = -EINVAL;
947                 goto out_unlock;
948         }
949
950         num_bytes = ALIGN(end - start + 1, blocksize);
951         num_bytes = max(blocksize,  num_bytes);
952         disk_num_bytes = num_bytes;
953
954         /* if this is a small write inside eof, kick off defrag */
955         if (num_bytes < SZ_64K &&
956             (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
957                 btrfs_add_inode_defrag(NULL, inode);
958
959         if (start == 0) {
960                 /* lets try to make an inline extent */
961                 ret = cow_file_range_inline(root, inode, start, end, 0, 0,
962                                             NULL);
963                 if (ret == 0) {
964                         extent_clear_unlock_delalloc(inode, start, end, NULL,
965                                      EXTENT_LOCKED | EXTENT_DELALLOC |
966                                      EXTENT_DEFRAG, PAGE_UNLOCK |
967                                      PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
968                                      PAGE_END_WRITEBACK);
969
970                         *nr_written = *nr_written +
971                              (end - start + PAGE_SIZE) / PAGE_SIZE;
972                         *page_started = 1;
973                         goto out;
974                 } else if (ret < 0) {
975                         goto out_unlock;
976                 }
977         }
978
979         BUG_ON(disk_num_bytes >
980                btrfs_super_total_bytes(root->fs_info->super_copy));
981
982         alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
983         btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
984
985         while (disk_num_bytes > 0) {
986                 unsigned long op;
987
988                 cur_alloc_size = disk_num_bytes;
989                 ret = btrfs_reserve_extent(root, cur_alloc_size,
990                                            root->sectorsize, 0, alloc_hint,
991                                            &ins, 1, 1);
992                 if (ret < 0)
993                         goto out_unlock;
994
995                 em = alloc_extent_map();
996                 if (!em) {
997                         ret = -ENOMEM;
998                         goto out_reserve;
999                 }
1000                 em->start = start;
1001                 em->orig_start = em->start;
1002                 ram_size = ins.offset;
1003                 em->len = ins.offset;
1004                 em->mod_start = em->start;
1005                 em->mod_len = em->len;
1006
1007                 em->block_start = ins.objectid;
1008                 em->block_len = ins.offset;
1009                 em->orig_block_len = ins.offset;
1010                 em->ram_bytes = ram_size;
1011                 em->bdev = root->fs_info->fs_devices->latest_bdev;
1012                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1013                 em->generation = -1;
1014
1015                 while (1) {
1016                         write_lock(&em_tree->lock);
1017                         ret = add_extent_mapping(em_tree, em, 1);
1018                         write_unlock(&em_tree->lock);
1019                         if (ret != -EEXIST) {
1020                                 free_extent_map(em);
1021                                 break;
1022                         }
1023                         btrfs_drop_extent_cache(inode, start,
1024                                                 start + ram_size - 1, 0);
1025                 }
1026                 if (ret)
1027                         goto out_reserve;
1028
1029                 cur_alloc_size = ins.offset;
1030                 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1031                                                ram_size, cur_alloc_size, 0);
1032                 if (ret)
1033                         goto out_drop_extent_cache;
1034
1035                 if (root->root_key.objectid ==
1036                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
1037                         ret = btrfs_reloc_clone_csums(inode, start,
1038                                                       cur_alloc_size);
1039                         if (ret)
1040                                 goto out_drop_extent_cache;
1041                 }
1042
1043                 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
1044
1045                 if (disk_num_bytes < cur_alloc_size)
1046                         break;
1047
1048                 /* we're not doing compressed IO, don't unlock the first
1049                  * page (which the caller expects to stay locked), don't
1050                  * clear any dirty bits and don't set any writeback bits
1051                  *
1052                  * Do set the Private2 bit so we know this page was properly
1053                  * setup for writepage
1054                  */
1055                 op = unlock ? PAGE_UNLOCK : 0;
1056                 op |= PAGE_SET_PRIVATE2;
1057
1058                 extent_clear_unlock_delalloc(inode, start,
1059                                              start + ram_size - 1, locked_page,
1060                                              EXTENT_LOCKED | EXTENT_DELALLOC,
1061                                              op);
1062                 disk_num_bytes -= cur_alloc_size;
1063                 num_bytes -= cur_alloc_size;
1064                 alloc_hint = ins.objectid + ins.offset;
1065                 start += cur_alloc_size;
1066         }
1067 out:
1068         return ret;
1069
1070 out_drop_extent_cache:
1071         btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1072 out_reserve:
1073         btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
1074         btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
1075 out_unlock:
1076         extent_clear_unlock_delalloc(inode, start, end, locked_page,
1077                                      EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1078                                      EXTENT_DELALLOC | EXTENT_DEFRAG,
1079                                      PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1080                                      PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
1081         goto out;
1082 }
1083
1084 /*
1085  * work queue call back to started compression on a file and pages
1086  */
1087 static noinline void async_cow_start(struct btrfs_work *work)
1088 {
1089         struct async_cow *async_cow;
1090         int num_added = 0;
1091         async_cow = container_of(work, struct async_cow, work);
1092
1093         compress_file_range(async_cow->inode, async_cow->locked_page,
1094                             async_cow->start, async_cow->end, async_cow,
1095                             &num_added);
1096         if (num_added == 0) {
1097                 btrfs_add_delayed_iput(async_cow->inode);
1098                 async_cow->inode = NULL;
1099         }
1100 }
1101
1102 /*
1103  * work queue call back to submit previously compressed pages
1104  */
1105 static noinline void async_cow_submit(struct btrfs_work *work)
1106 {
1107         struct async_cow *async_cow;
1108         struct btrfs_root *root;
1109         unsigned long nr_pages;
1110
1111         async_cow = container_of(work, struct async_cow, work);
1112
1113         root = async_cow->root;
1114         nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1115                 PAGE_SHIFT;
1116
1117         /*
1118          * atomic_sub_return implies a barrier for waitqueue_active
1119          */
1120         if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1121             5 * SZ_1M &&
1122             waitqueue_active(&root->fs_info->async_submit_wait))
1123                 wake_up(&root->fs_info->async_submit_wait);
1124
1125         if (async_cow->inode)
1126                 submit_compressed_extents(async_cow->inode, async_cow);
1127 }
1128
1129 static noinline void async_cow_free(struct btrfs_work *work)
1130 {
1131         struct async_cow *async_cow;
1132         async_cow = container_of(work, struct async_cow, work);
1133         if (async_cow->inode)
1134                 btrfs_add_delayed_iput(async_cow->inode);
1135         kfree(async_cow);
1136 }
1137
1138 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1139                                 u64 start, u64 end, int *page_started,
1140                                 unsigned long *nr_written)
1141 {
1142         struct async_cow *async_cow;
1143         struct btrfs_root *root = BTRFS_I(inode)->root;
1144         unsigned long nr_pages;
1145         u64 cur_end;
1146         int limit = 10 * SZ_1M;
1147
1148         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1149                          1, 0, NULL, GFP_NOFS);
1150         while (start < end) {
1151                 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1152                 BUG_ON(!async_cow); /* -ENOMEM */
1153                 async_cow->inode = igrab(inode);
1154                 async_cow->root = root;
1155                 async_cow->locked_page = locked_page;
1156                 async_cow->start = start;
1157
1158                 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1159                     !btrfs_test_opt(root, FORCE_COMPRESS))
1160                         cur_end = end;
1161                 else
1162                         cur_end = min(end, start + SZ_512K - 1);
1163
1164                 async_cow->end = cur_end;
1165                 INIT_LIST_HEAD(&async_cow->extents);
1166
1167                 btrfs_init_work(&async_cow->work,
1168                                 btrfs_delalloc_helper,
1169                                 async_cow_start, async_cow_submit,
1170                                 async_cow_free);
1171
1172                 nr_pages = (cur_end - start + PAGE_SIZE) >>
1173                         PAGE_SHIFT;
1174                 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1175
1176                 btrfs_queue_work(root->fs_info->delalloc_workers,
1177                                  &async_cow->work);
1178
1179                 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1180                         wait_event(root->fs_info->async_submit_wait,
1181                            (atomic_read(&root->fs_info->async_delalloc_pages) <
1182                             limit));
1183                 }
1184
1185                 while (atomic_read(&root->fs_info->async_submit_draining) &&
1186                       atomic_read(&root->fs_info->async_delalloc_pages)) {
1187                         wait_event(root->fs_info->async_submit_wait,
1188                           (atomic_read(&root->fs_info->async_delalloc_pages) ==
1189                            0));
1190                 }
1191
1192                 *nr_written += nr_pages;
1193                 start = cur_end + 1;
1194         }
1195         *page_started = 1;
1196         return 0;
1197 }
1198
1199 static noinline int csum_exist_in_range(struct btrfs_root *root,
1200                                         u64 bytenr, u64 num_bytes)
1201 {
1202         int ret;
1203         struct btrfs_ordered_sum *sums;
1204         LIST_HEAD(list);
1205
1206         ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1207                                        bytenr + num_bytes - 1, &list, 0);
1208         if (ret == 0 && list_empty(&list))
1209                 return 0;
1210
1211         while (!list_empty(&list)) {
1212                 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1213                 list_del(&sums->list);
1214                 kfree(sums);
1215         }
1216         return 1;
1217 }
1218
1219 /*
1220  * when nowcow writeback call back.  This checks for snapshots or COW copies
1221  * of the extents that exist in the file, and COWs the file as required.
1222  *
1223  * If no cow copies or snapshots exist, we write directly to the existing
1224  * blocks on disk
1225  */
1226 static noinline int run_delalloc_nocow(struct inode *inode,
1227                                        struct page *locked_page,
1228                               u64 start, u64 end, int *page_started, int force,
1229                               unsigned long *nr_written)
1230 {
1231         struct btrfs_root *root = BTRFS_I(inode)->root;
1232         struct btrfs_trans_handle *trans;
1233         struct extent_buffer *leaf;
1234         struct btrfs_path *path;
1235         struct btrfs_file_extent_item *fi;
1236         struct btrfs_key found_key;
1237         u64 cow_start;
1238         u64 cur_offset;
1239         u64 extent_end;
1240         u64 extent_offset;
1241         u64 disk_bytenr;
1242         u64 num_bytes;
1243         u64 disk_num_bytes;
1244         u64 ram_bytes;
1245         int extent_type;
1246         int ret, err;
1247         int type;
1248         int nocow;
1249         int check_prev = 1;
1250         bool nolock;
1251         u64 ino = btrfs_ino(inode);
1252
1253         path = btrfs_alloc_path();
1254         if (!path) {
1255                 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1256                                              EXTENT_LOCKED | EXTENT_DELALLOC |
1257                                              EXTENT_DO_ACCOUNTING |
1258                                              EXTENT_DEFRAG, PAGE_UNLOCK |
1259                                              PAGE_CLEAR_DIRTY |
1260                                              PAGE_SET_WRITEBACK |
1261                                              PAGE_END_WRITEBACK);
1262                 return -ENOMEM;
1263         }
1264
1265         nolock = btrfs_is_free_space_inode(inode);
1266
1267         if (nolock)
1268                 trans = btrfs_join_transaction_nolock(root);
1269         else
1270                 trans = btrfs_join_transaction(root);
1271
1272         if (IS_ERR(trans)) {
1273                 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1274                                              EXTENT_LOCKED | EXTENT_DELALLOC |
1275                                              EXTENT_DO_ACCOUNTING |
1276                                              EXTENT_DEFRAG, PAGE_UNLOCK |
1277                                              PAGE_CLEAR_DIRTY |
1278                                              PAGE_SET_WRITEBACK |
1279                                              PAGE_END_WRITEBACK);
1280                 btrfs_free_path(path);
1281                 return PTR_ERR(trans);
1282         }
1283
1284         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1285
1286         cow_start = (u64)-1;
1287         cur_offset = start;
1288         while (1) {
1289                 ret = btrfs_lookup_file_extent(trans, root, path, ino,
1290                                                cur_offset, 0);
1291                 if (ret < 0)
1292                         goto error;
1293                 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1294                         leaf = path->nodes[0];
1295                         btrfs_item_key_to_cpu(leaf, &found_key,
1296                                               path->slots[0] - 1);
1297                         if (found_key.objectid == ino &&
1298                             found_key.type == BTRFS_EXTENT_DATA_KEY)
1299                                 path->slots[0]--;
1300                 }
1301                 check_prev = 0;
1302 next_slot:
1303                 leaf = path->nodes[0];
1304                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1305                         ret = btrfs_next_leaf(root, path);
1306                         if (ret < 0)
1307                                 goto error;
1308                         if (ret > 0)
1309                                 break;
1310                         leaf = path->nodes[0];
1311                 }
1312
1313                 nocow = 0;
1314                 disk_bytenr = 0;
1315                 num_bytes = 0;
1316                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1317
1318                 if (found_key.objectid > ino)
1319                         break;
1320                 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1321                     found_key.type < BTRFS_EXTENT_DATA_KEY) {
1322                         path->slots[0]++;
1323                         goto next_slot;
1324                 }
1325                 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1326                     found_key.offset > end)
1327                         break;
1328
1329                 if (found_key.offset > cur_offset) {
1330                         extent_end = found_key.offset;
1331                         extent_type = 0;
1332                         goto out_check;
1333                 }
1334
1335                 fi = btrfs_item_ptr(leaf, path->slots[0],
1336                                     struct btrfs_file_extent_item);
1337                 extent_type = btrfs_file_extent_type(leaf, fi);
1338
1339                 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1340                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1341                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1342                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1343                         extent_offset = btrfs_file_extent_offset(leaf, fi);
1344                         extent_end = found_key.offset +
1345                                 btrfs_file_extent_num_bytes(leaf, fi);
1346                         disk_num_bytes =
1347                                 btrfs_file_extent_disk_num_bytes(leaf, fi);
1348                         if (extent_end <= start) {
1349                                 path->slots[0]++;
1350                                 goto next_slot;
1351                         }
1352                         if (disk_bytenr == 0)
1353                                 goto out_check;
1354                         if (btrfs_file_extent_compression(leaf, fi) ||
1355                             btrfs_file_extent_encryption(leaf, fi) ||
1356                             btrfs_file_extent_other_encoding(leaf, fi))
1357                                 goto out_check;
1358                         if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1359                                 goto out_check;
1360                         if (btrfs_extent_readonly(root, disk_bytenr))
1361                                 goto out_check;
1362                         if (btrfs_cross_ref_exist(trans, root, ino,
1363                                                   found_key.offset -
1364                                                   extent_offset, disk_bytenr))
1365                                 goto out_check;
1366                         disk_bytenr += extent_offset;
1367                         disk_bytenr += cur_offset - found_key.offset;
1368                         num_bytes = min(end + 1, extent_end) - cur_offset;
1369                         /*
1370                          * if there are pending snapshots for this root,
1371                          * we fall into common COW way.
1372                          */
1373                         if (!nolock) {
1374                                 err = btrfs_start_write_no_snapshoting(root);
1375                                 if (!err)
1376                                         goto out_check;
1377                         }
1378                         /*
1379                          * force cow if csum exists in the range.
1380                          * this ensure that csum for a given extent are
1381                          * either valid or do not exist.
1382                          */
1383                         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1384                                 goto out_check;
1385                         nocow = 1;
1386                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1387                         extent_end = found_key.offset +
1388                                 btrfs_file_extent_inline_len(leaf,
1389                                                      path->slots[0], fi);
1390                         extent_end = ALIGN(extent_end, root->sectorsize);
1391                 } else {
1392                         BUG_ON(1);
1393                 }
1394 out_check:
1395                 if (extent_end <= start) {
1396                         path->slots[0]++;
1397                         if (!nolock && nocow)
1398                                 btrfs_end_write_no_snapshoting(root);
1399                         goto next_slot;
1400                 }
1401                 if (!nocow) {
1402                         if (cow_start == (u64)-1)
1403                                 cow_start = cur_offset;
1404                         cur_offset = extent_end;
1405                         if (cur_offset > end)
1406                                 break;
1407                         path->slots[0]++;
1408                         goto next_slot;
1409                 }
1410
1411                 btrfs_release_path(path);
1412                 if (cow_start != (u64)-1) {
1413                         ret = cow_file_range(inode, locked_page,
1414                                              cow_start, found_key.offset - 1,
1415                                              page_started, nr_written, 1);
1416                         if (ret) {
1417                                 if (!nolock && nocow)
1418                                         btrfs_end_write_no_snapshoting(root);
1419                                 goto error;
1420                         }
1421                         cow_start = (u64)-1;
1422                 }
1423
1424                 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1425                         struct extent_map *em;
1426                         struct extent_map_tree *em_tree;
1427                         em_tree = &BTRFS_I(inode)->extent_tree;
1428                         em = alloc_extent_map();
1429                         BUG_ON(!em); /* -ENOMEM */
1430                         em->start = cur_offset;
1431                         em->orig_start = found_key.offset - extent_offset;
1432                         em->len = num_bytes;
1433                         em->block_len = num_bytes;
1434                         em->block_start = disk_bytenr;
1435                         em->orig_block_len = disk_num_bytes;
1436                         em->ram_bytes = ram_bytes;
1437                         em->bdev = root->fs_info->fs_devices->latest_bdev;
1438                         em->mod_start = em->start;
1439                         em->mod_len = em->len;
1440                         set_bit(EXTENT_FLAG_PINNED, &em->flags);
1441                         set_bit(EXTENT_FLAG_FILLING, &em->flags);
1442                         em->generation = -1;
1443                         while (1) {
1444                                 write_lock(&em_tree->lock);
1445                                 ret = add_extent_mapping(em_tree, em, 1);
1446                                 write_unlock(&em_tree->lock);
1447                                 if (ret != -EEXIST) {
1448                                         free_extent_map(em);
1449                                         break;
1450                                 }
1451                                 btrfs_drop_extent_cache(inode, em->start,
1452                                                 em->start + em->len - 1, 0);
1453                         }
1454                         type = BTRFS_ORDERED_PREALLOC;
1455                 } else {
1456                         type = BTRFS_ORDERED_NOCOW;
1457                 }
1458
1459                 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1460                                                num_bytes, num_bytes, type);
1461                 BUG_ON(ret); /* -ENOMEM */
1462
1463                 if (root->root_key.objectid ==
1464                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
1465                         ret = btrfs_reloc_clone_csums(inode, cur_offset,
1466                                                       num_bytes);
1467                         if (ret) {
1468                                 if (!nolock && nocow)
1469                                         btrfs_end_write_no_snapshoting(root);
1470                                 goto error;
1471                         }
1472                 }
1473
1474                 extent_clear_unlock_delalloc(inode, cur_offset,
1475                                              cur_offset + num_bytes - 1,
1476                                              locked_page, EXTENT_LOCKED |
1477                                              EXTENT_DELALLOC, PAGE_UNLOCK |
1478                                              PAGE_SET_PRIVATE2);
1479                 if (!nolock && nocow)
1480                         btrfs_end_write_no_snapshoting(root);
1481                 cur_offset = extent_end;
1482                 if (cur_offset > end)
1483                         break;
1484         }
1485         btrfs_release_path(path);
1486
1487         if (cur_offset <= end && cow_start == (u64)-1) {
1488                 cow_start = cur_offset;
1489                 cur_offset = end;
1490         }
1491
1492         if (cow_start != (u64)-1) {
1493                 ret = cow_file_range(inode, locked_page, cow_start, end,
1494                                      page_started, nr_written, 1);
1495                 if (ret)
1496                         goto error;
1497         }
1498
1499 error:
1500         err = btrfs_end_transaction(trans, root);
1501         if (!ret)
1502                 ret = err;
1503
1504         if (ret && cur_offset < end)
1505                 extent_clear_unlock_delalloc(inode, cur_offset, end,
1506                                              locked_page, EXTENT_LOCKED |
1507                                              EXTENT_DELALLOC | EXTENT_DEFRAG |
1508                                              EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1509                                              PAGE_CLEAR_DIRTY |
1510                                              PAGE_SET_WRITEBACK |
1511                                              PAGE_END_WRITEBACK);
1512         btrfs_free_path(path);
1513         return ret;
1514 }
1515
1516 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1517 {
1518
1519         if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1520             !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1521                 return 0;
1522
1523         /*
1524          * @defrag_bytes is a hint value, no spinlock held here,
1525          * if is not zero, it means the file is defragging.
1526          * Force cow if given extent needs to be defragged.
1527          */
1528         if (BTRFS_I(inode)->defrag_bytes &&
1529             test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1530                            EXTENT_DEFRAG, 0, NULL))
1531                 return 1;
1532
1533         return 0;
1534 }
1535
1536 /*
1537  * extent_io.c call back to do delayed allocation processing
1538  */
1539 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1540                               u64 start, u64 end, int *page_started,
1541                               unsigned long *nr_written)
1542 {
1543         int ret;
1544         int force_cow = need_force_cow(inode, start, end);
1545
1546         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1547                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1548                                          page_started, 1, nr_written);
1549         } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1550                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1551                                          page_started, 0, nr_written);
1552         } else if (!inode_need_compress(inode)) {
1553                 ret = cow_file_range(inode, locked_page, start, end,
1554                                       page_started, nr_written, 1);
1555         } else {
1556                 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1557                         &BTRFS_I(inode)->runtime_flags);
1558                 ret = cow_file_range_async(inode, locked_page, start, end,
1559                                            page_started, nr_written);
1560         }
1561         return ret;
1562 }
1563
1564 static void btrfs_split_extent_hook(struct inode *inode,
1565                                     struct extent_state *orig, u64 split)
1566 {
1567         u64 size;
1568
1569         /* not delalloc, ignore it */
1570         if (!(orig->state & EXTENT_DELALLOC))
1571                 return;
1572
1573         size = orig->end - orig->start + 1;
1574         if (size > BTRFS_MAX_EXTENT_SIZE) {
1575                 u64 num_extents;
1576                 u64 new_size;
1577
1578                 /*
1579                  * See the explanation in btrfs_merge_extent_hook, the same
1580                  * applies here, just in reverse.
1581                  */
1582                 new_size = orig->end - split + 1;
1583                 num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1584                                         BTRFS_MAX_EXTENT_SIZE);
1585                 new_size = split - orig->start;
1586                 num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1587                                         BTRFS_MAX_EXTENT_SIZE);
1588                 if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1,
1589                               BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1590                         return;
1591         }
1592
1593         spin_lock(&BTRFS_I(inode)->lock);
1594         BTRFS_I(inode)->outstanding_extents++;
1595         spin_unlock(&BTRFS_I(inode)->lock);
1596 }
1597
1598 /*
1599  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1600  * extents so we can keep track of new extents that are just merged onto old
1601  * extents, such as when we are doing sequential writes, so we can properly
1602  * account for the metadata space we'll need.
1603  */
1604 static void btrfs_merge_extent_hook(struct inode *inode,
1605                                     struct extent_state *new,
1606                                     struct extent_state *other)
1607 {
1608         u64 new_size, old_size;
1609         u64 num_extents;
1610
1611         /* not delalloc, ignore it */
1612         if (!(other->state & EXTENT_DELALLOC))
1613                 return;
1614
1615         if (new->start > other->start)
1616                 new_size = new->end - other->start + 1;
1617         else
1618                 new_size = other->end - new->start + 1;
1619
1620         /* we're not bigger than the max, unreserve the space and go */
1621         if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1622                 spin_lock(&BTRFS_I(inode)->lock);
1623                 BTRFS_I(inode)->outstanding_extents--;
1624                 spin_unlock(&BTRFS_I(inode)->lock);
1625                 return;
1626         }
1627
1628         /*
1629          * We have to add up either side to figure out how many extents were
1630          * accounted for before we merged into one big extent.  If the number of
1631          * extents we accounted for is <= the amount we need for the new range
1632          * then we can return, otherwise drop.  Think of it like this
1633          *
1634          * [ 4k][MAX_SIZE]
1635          *
1636          * So we've grown the extent by a MAX_SIZE extent, this would mean we
1637          * need 2 outstanding extents, on one side we have 1 and the other side
1638          * we have 1 so they are == and we can return.  But in this case
1639          *
1640          * [MAX_SIZE+4k][MAX_SIZE+4k]
1641          *
1642          * Each range on their own accounts for 2 extents, but merged together
1643          * they are only 3 extents worth of accounting, so we need to drop in
1644          * this case.
1645          */
1646         old_size = other->end - other->start + 1;
1647         num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1648                                 BTRFS_MAX_EXTENT_SIZE);
1649         old_size = new->end - new->start + 1;
1650         num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1651                                  BTRFS_MAX_EXTENT_SIZE);
1652
1653         if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1654                       BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1655                 return;
1656
1657         spin_lock(&BTRFS_I(inode)->lock);
1658         BTRFS_I(inode)->outstanding_extents--;
1659         spin_unlock(&BTRFS_I(inode)->lock);
1660 }
1661
1662 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1663                                       struct inode *inode)
1664 {
1665         spin_lock(&root->delalloc_lock);
1666         if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1667                 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1668                               &root->delalloc_inodes);
1669                 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1670                         &BTRFS_I(inode)->runtime_flags);
1671                 root->nr_delalloc_inodes++;
1672                 if (root->nr_delalloc_inodes == 1) {
1673                         spin_lock(&root->fs_info->delalloc_root_lock);
1674                         BUG_ON(!list_empty(&root->delalloc_root));
1675                         list_add_tail(&root->delalloc_root,
1676                                       &root->fs_info->delalloc_roots);
1677                         spin_unlock(&root->fs_info->delalloc_root_lock);
1678                 }
1679         }
1680         spin_unlock(&root->delalloc_lock);
1681 }
1682
1683 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1684                                      struct inode *inode)
1685 {
1686         spin_lock(&root->delalloc_lock);
1687         if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1688                 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1689                 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1690                           &BTRFS_I(inode)->runtime_flags);
1691                 root->nr_delalloc_inodes--;
1692                 if (!root->nr_delalloc_inodes) {
1693                         spin_lock(&root->fs_info->delalloc_root_lock);
1694                         BUG_ON(list_empty(&root->delalloc_root));
1695                         list_del_init(&root->delalloc_root);
1696                         spin_unlock(&root->fs_info->delalloc_root_lock);
1697                 }
1698         }
1699         spin_unlock(&root->delalloc_lock);
1700 }
1701
1702 /*
1703  * extent_io.c set_bit_hook, used to track delayed allocation
1704  * bytes in this file, and to maintain the list of inodes that
1705  * have pending delalloc work to be done.
1706  */
1707 static void btrfs_set_bit_hook(struct inode *inode,
1708                                struct extent_state *state, unsigned *bits)
1709 {
1710
1711         if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1712                 WARN_ON(1);
1713         /*
1714          * set_bit and clear bit hooks normally require _irqsave/restore
1715          * but in this case, we are only testing for the DELALLOC
1716          * bit, which is only set or cleared with irqs on
1717          */
1718         if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1719                 struct btrfs_root *root = BTRFS_I(inode)->root;
1720                 u64 len = state->end + 1 - state->start;
1721                 bool do_list = !btrfs_is_free_space_inode(inode);
1722
1723                 if (*bits & EXTENT_FIRST_DELALLOC) {
1724                         *bits &= ~EXTENT_FIRST_DELALLOC;
1725                 } else {
1726                         spin_lock(&BTRFS_I(inode)->lock);
1727                         BTRFS_I(inode)->outstanding_extents++;
1728                         spin_unlock(&BTRFS_I(inode)->lock);
1729                 }
1730
1731                 /* For sanity tests */
1732                 if (btrfs_test_is_dummy_root(root))
1733                         return;
1734
1735                 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1736                                      root->fs_info->delalloc_batch);
1737                 spin_lock(&BTRFS_I(inode)->lock);
1738                 BTRFS_I(inode)->delalloc_bytes += len;
1739                 if (*bits & EXTENT_DEFRAG)
1740                         BTRFS_I(inode)->defrag_bytes += len;
1741                 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1742                                          &BTRFS_I(inode)->runtime_flags))
1743                         btrfs_add_delalloc_inodes(root, inode);
1744                 spin_unlock(&BTRFS_I(inode)->lock);
1745         }
1746 }
1747
1748 /*
1749  * extent_io.c clear_bit_hook, see set_bit_hook for why
1750  */
1751 static void btrfs_clear_bit_hook(struct inode *inode,
1752                                  struct extent_state *state,
1753                                  unsigned *bits)
1754 {
1755         u64 len = state->end + 1 - state->start;
1756         u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1,
1757                                     BTRFS_MAX_EXTENT_SIZE);
1758
1759         spin_lock(&BTRFS_I(inode)->lock);
1760         if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1761                 BTRFS_I(inode)->defrag_bytes -= len;
1762         spin_unlock(&BTRFS_I(inode)->lock);
1763
1764         /*
1765          * set_bit and clear bit hooks normally require _irqsave/restore
1766          * but in this case, we are only testing for the DELALLOC
1767          * bit, which is only set or cleared with irqs on
1768          */
1769         if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1770                 struct btrfs_root *root = BTRFS_I(inode)->root;
1771                 bool do_list = !btrfs_is_free_space_inode(inode);
1772
1773                 if (*bits & EXTENT_FIRST_DELALLOC) {
1774                         *bits &= ~EXTENT_FIRST_DELALLOC;
1775                 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1776                         spin_lock(&BTRFS_I(inode)->lock);
1777                         BTRFS_I(inode)->outstanding_extents -= num_extents;
1778                         spin_unlock(&BTRFS_I(inode)->lock);
1779                 }
1780
1781                 /*
1782                  * We don't reserve metadata space for space cache inodes so we
1783                  * don't need to call dellalloc_release_metadata if there is an
1784                  * error.
1785                  */
1786                 if (*bits & EXTENT_DO_ACCOUNTING &&
1787                     root != root->fs_info->tree_root)
1788                         btrfs_delalloc_release_metadata(inode, len);
1789
1790                 /* For sanity tests. */
1791                 if (btrfs_test_is_dummy_root(root))
1792                         return;
1793
1794                 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1795                     && do_list && !(state->state & EXTENT_NORESERVE))
1796                         btrfs_free_reserved_data_space_noquota(inode,
1797                                         state->start, len);
1798
1799                 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1800                                      root->fs_info->delalloc_batch);
1801                 spin_lock(&BTRFS_I(inode)->lock);
1802                 BTRFS_I(inode)->delalloc_bytes -= len;
1803                 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1804                     test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1805                              &BTRFS_I(inode)->runtime_flags))
1806                         btrfs_del_delalloc_inode(root, inode);
1807                 spin_unlock(&BTRFS_I(inode)->lock);
1808         }
1809 }
1810
1811 /*
1812  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1813  * we don't create bios that span stripes or chunks
1814  */
1815 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
1816                          size_t size, struct bio *bio,
1817                          unsigned long bio_flags)
1818 {
1819         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1820         u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1821         u64 length = 0;
1822         u64 map_length;
1823         int ret;
1824
1825         if (bio_flags & EXTENT_BIO_COMPRESSED)
1826                 return 0;
1827
1828         length = bio->bi_iter.bi_size;
1829         map_length = length;
1830         ret = btrfs_map_block(root->fs_info, rw, logical,
1831                               &map_length, NULL, 0);
1832         /* Will always return 0 with map_multi == NULL */
1833         BUG_ON(ret < 0);
1834         if (map_length < length + size)
1835                 return 1;
1836         return 0;
1837 }
1838
1839 /*
1840  * in order to insert checksums into the metadata in large chunks,
1841  * we wait until bio submission time.   All the pages in the bio are
1842  * checksummed and sums are attached onto the ordered extent record.
1843  *
1844  * At IO completion time the cums attached on the ordered extent record
1845  * are inserted into the btree
1846  */
1847 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1848                                     struct bio *bio, int mirror_num,
1849                                     unsigned long bio_flags,
1850                                     u64 bio_offset)
1851 {
1852         struct btrfs_root *root = BTRFS_I(inode)->root;
1853         int ret = 0;
1854
1855         ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1856         BUG_ON(ret); /* -ENOMEM */
1857         return 0;
1858 }
1859
1860 /*
1861  * in order to insert checksums into the metadata in large chunks,
1862  * we wait until bio submission time.   All the pages in the bio are
1863  * checksummed and sums are attached onto the ordered extent record.
1864  *
1865  * At IO completion time the cums attached on the ordered extent record
1866  * are inserted into the btree
1867  */
1868 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1869                           int mirror_num, unsigned long bio_flags,
1870                           u64 bio_offset)
1871 {
1872         struct btrfs_root *root = BTRFS_I(inode)->root;
1873         int ret;
1874
1875         ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1876         if (ret) {
1877                 bio->bi_error = ret;
1878                 bio_endio(bio);
1879         }
1880         return ret;
1881 }
1882
1883 /*
1884  * extent_io.c submission hook. This does the right thing for csum calculation
1885  * on write, or reading the csums from the tree before a read
1886  */
1887 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1888                           int mirror_num, unsigned long bio_flags,
1889                           u64 bio_offset)
1890 {
1891         struct btrfs_root *root = BTRFS_I(inode)->root;
1892         enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
1893         int ret = 0;
1894         int skip_sum;
1895         int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1896
1897         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1898
1899         if (btrfs_is_free_space_inode(inode))
1900                 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
1901
1902         if (!(rw & REQ_WRITE)) {
1903                 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1904                 if (ret)
1905                         goto out;
1906
1907                 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1908                         ret = btrfs_submit_compressed_read(inode, bio,
1909                                                            mirror_num,
1910                                                            bio_flags);
1911                         goto out;
1912                 } else if (!skip_sum) {
1913                         ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1914                         if (ret)
1915                                 goto out;
1916                 }
1917                 goto mapit;
1918         } else if (async && !skip_sum) {
1919                 /* csum items have already been cloned */
1920                 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1921                         goto mapit;
1922                 /* we're doing a write, do the async checksumming */
1923                 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1924                                    inode, rw, bio, mirror_num,
1925                                    bio_flags, bio_offset,
1926                                    __btrfs_submit_bio_start,
1927                                    __btrfs_submit_bio_done);
1928                 goto out;
1929         } else if (!skip_sum) {
1930                 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1931                 if (ret)
1932                         goto out;
1933         }
1934
1935 mapit:
1936         ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1937
1938 out:
1939         if (ret < 0) {
1940                 bio->bi_error = ret;
1941                 bio_endio(bio);
1942         }
1943         return ret;
1944 }
1945
1946 /*
1947  * given a list of ordered sums record them in the inode.  This happens
1948  * at IO completion time based on sums calculated at bio submission time.
1949  */
1950 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1951                              struct inode *inode, u64 file_offset,
1952                              struct list_head *list)
1953 {
1954         struct btrfs_ordered_sum *sum;
1955
1956         list_for_each_entry(sum, list, list) {
1957                 trans->adding_csums = 1;
1958                 btrfs_csum_file_blocks(trans,
1959                        BTRFS_I(inode)->root->fs_info->csum_root, sum);
1960                 trans->adding_csums = 0;
1961         }
1962         return 0;
1963 }
1964
1965 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1966                               struct extent_state **cached_state)
1967 {
1968         WARN_ON((end & (PAGE_SIZE - 1)) == 0);
1969         return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1970                                    cached_state, GFP_NOFS);
1971 }
1972
1973 /* see btrfs_writepage_start_hook for details on why this is required */
1974 struct btrfs_writepage_fixup {
1975         struct page *page;
1976         struct btrfs_work work;
1977 };
1978
1979 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1980 {
1981         struct btrfs_writepage_fixup *fixup;
1982         struct btrfs_ordered_extent *ordered;
1983         struct extent_state *cached_state = NULL;
1984         struct page *page;
1985         struct inode *inode;
1986         u64 page_start;
1987         u64 page_end;
1988         int ret;
1989
1990         fixup = container_of(work, struct btrfs_writepage_fixup, work);
1991         page = fixup->page;
1992 again:
1993         lock_page(page);
1994         if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1995                 ClearPageChecked(page);
1996                 goto out_page;
1997         }
1998
1999         inode = page->mapping->host;
2000         page_start = page_offset(page);
2001         page_end = page_offset(page) + PAGE_SIZE - 1;
2002
2003         lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
2004                          &cached_state);
2005
2006         /* already ordered? We're done */
2007         if (PagePrivate2(page))
2008                 goto out;
2009
2010         ordered = btrfs_lookup_ordered_range(inode, page_start,
2011                                         PAGE_SIZE);
2012         if (ordered) {
2013                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2014                                      page_end, &cached_state, GFP_NOFS);
2015                 unlock_page(page);
2016                 btrfs_start_ordered_extent(inode, ordered, 1);
2017                 btrfs_put_ordered_extent(ordered);
2018                 goto again;
2019         }
2020
2021         ret = btrfs_delalloc_reserve_space(inode, page_start,
2022                                            PAGE_SIZE);
2023         if (ret) {
2024                 mapping_set_error(page->mapping, ret);
2025                 end_extent_writepage(page, ret, page_start, page_end);
2026                 ClearPageChecked(page);
2027                 goto out;
2028          }
2029
2030         btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
2031         ClearPageChecked(page);
2032         set_page_dirty(page);
2033 out:
2034         unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2035                              &cached_state, GFP_NOFS);
2036 out_page:
2037         unlock_page(page);
2038         put_page(page);
2039         kfree(fixup);
2040 }
2041
2042 /*
2043  * There are a few paths in the higher layers of the kernel that directly
2044  * set the page dirty bit without asking the filesystem if it is a
2045  * good idea.  This causes problems because we want to make sure COW
2046  * properly happens and the data=ordered rules are followed.
2047  *
2048  * In our case any range that doesn't have the ORDERED bit set
2049  * hasn't been properly setup for IO.  We kick off an async process
2050  * to fix it up.  The async helper will wait for ordered extents, set
2051  * the delalloc bit and make it safe to write the page.
2052  */
2053 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
2054 {
2055         struct inode *inode = page->mapping->host;
2056         struct btrfs_writepage_fixup *fixup;
2057         struct btrfs_root *root = BTRFS_I(inode)->root;
2058
2059         /* this page is properly in the ordered list */
2060         if (TestClearPagePrivate2(page))
2061                 return 0;
2062
2063         if (PageChecked(page))
2064                 return -EAGAIN;
2065
2066         fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2067         if (!fixup)
2068                 return -EAGAIN;
2069
2070         SetPageChecked(page);
2071         get_page(page);
2072         btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2073                         btrfs_writepage_fixup_worker, NULL, NULL);
2074         fixup->page = page;
2075         btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
2076         return -EBUSY;
2077 }
2078
2079 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2080                                        struct inode *inode, u64 file_pos,
2081                                        u64 disk_bytenr, u64 disk_num_bytes,
2082                                        u64 num_bytes, u64 ram_bytes,
2083                                        u8 compression, u8 encryption,
2084                                        u16 other_encoding, int extent_type)
2085 {
2086         struct btrfs_root *root = BTRFS_I(inode)->root;
2087         struct btrfs_file_extent_item *fi;
2088         struct btrfs_path *path;
2089         struct extent_buffer *leaf;
2090         struct btrfs_key ins;
2091         int extent_inserted = 0;
2092         int ret;
2093
2094         path = btrfs_alloc_path();
2095         if (!path)
2096                 return -ENOMEM;
2097
2098         /*
2099          * we may be replacing one extent in the tree with another.
2100          * The new extent is pinned in the extent map, and we don't want
2101          * to drop it from the cache until it is completely in the btree.
2102          *
2103          * So, tell btrfs_drop_extents to leave this extent in the cache.
2104          * the caller is expected to unpin it and allow it to be merged
2105          * with the others.
2106          */
2107         ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2108                                    file_pos + num_bytes, NULL, 0,
2109                                    1, sizeof(*fi), &extent_inserted);
2110         if (ret)
2111                 goto out;
2112
2113         if (!extent_inserted) {
2114                 ins.objectid = btrfs_ino(inode);
2115                 ins.offset = file_pos;
2116                 ins.type = BTRFS_EXTENT_DATA_KEY;
2117
2118                 path->leave_spinning = 1;
2119                 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2120                                               sizeof(*fi));
2121                 if (ret)
2122                         goto out;
2123         }
2124         leaf = path->nodes[0];
2125         fi = btrfs_item_ptr(leaf, path->slots[0],
2126                             struct btrfs_file_extent_item);
2127         btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2128         btrfs_set_file_extent_type(leaf, fi, extent_type);
2129         btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2130         btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2131         btrfs_set_file_extent_offset(leaf, fi, 0);
2132         btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2133         btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2134         btrfs_set_file_extent_compression(leaf, fi, compression);
2135         btrfs_set_file_extent_encryption(leaf, fi, encryption);
2136         btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2137
2138         btrfs_mark_buffer_dirty(leaf);
2139         btrfs_release_path(path);
2140
2141         inode_add_bytes(inode, num_bytes);
2142
2143         ins.objectid = disk_bytenr;
2144         ins.offset = disk_num_bytes;
2145         ins.type = BTRFS_EXTENT_ITEM_KEY;
2146         ret = btrfs_alloc_reserved_file_extent(trans, root,
2147                                         root->root_key.objectid,
2148                                         btrfs_ino(inode), file_pos,
2149                                         ram_bytes, &ins);
2150         /*
2151          * Release the reserved range from inode dirty range map, as it is
2152          * already moved into delayed_ref_head
2153          */
2154         btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2155 out:
2156         btrfs_free_path(path);
2157
2158         return ret;
2159 }
2160
2161 /* snapshot-aware defrag */
2162 struct sa_defrag_extent_backref {
2163         struct rb_node node;
2164         struct old_sa_defrag_extent *old;
2165         u64 root_id;
2166         u64 inum;
2167         u64 file_pos;
2168         u64 extent_offset;
2169         u64 num_bytes;
2170         u64 generation;
2171 };
2172
2173 struct old_sa_defrag_extent {
2174         struct list_head list;
2175         struct new_sa_defrag_extent *new;
2176
2177         u64 extent_offset;
2178         u64 bytenr;
2179         u64 offset;
2180         u64 len;
2181         int count;
2182 };
2183
2184 struct new_sa_defrag_extent {
2185         struct rb_root root;
2186         struct list_head head;
2187         struct btrfs_path *path;
2188         struct inode *inode;
2189         u64 file_pos;
2190         u64 len;
2191         u64 bytenr;
2192         u64 disk_len;
2193         u8 compress_type;
2194 };
2195
2196 static int backref_comp(struct sa_defrag_extent_backref *b1,
2197                         struct sa_defrag_extent_backref *b2)
2198 {
2199         if (b1->root_id < b2->root_id)
2200                 return -1;
2201         else if (b1->root_id > b2->root_id)
2202                 return 1;
2203
2204         if (b1->inum < b2->inum)
2205                 return -1;
2206         else if (b1->inum > b2->inum)
2207                 return 1;
2208
2209         if (b1->file_pos < b2->file_pos)
2210                 return -1;
2211         else if (b1->file_pos > b2->file_pos)
2212                 return 1;
2213
2214         /*
2215          * [------------------------------] ===> (a range of space)
2216          *     |<--->|   |<---->| =============> (fs/file tree A)
2217          * |<---------------------------->| ===> (fs/file tree B)
2218          *
2219          * A range of space can refer to two file extents in one tree while
2220          * refer to only one file extent in another tree.
2221          *
2222          * So we may process a disk offset more than one time(two extents in A)
2223          * and locate at the same extent(one extent in B), then insert two same
2224          * backrefs(both refer to the extent in B).
2225          */
2226         return 0;
2227 }
2228
2229 static void backref_insert(struct rb_root *root,
2230                            struct sa_defrag_extent_backref *backref)
2231 {
2232         struct rb_node **p = &root->rb_node;
2233         struct rb_node *parent = NULL;
2234         struct sa_defrag_extent_backref *entry;
2235         int ret;
2236
2237         while (*p) {
2238                 parent = *p;
2239                 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2240
2241                 ret = backref_comp(backref, entry);
2242                 if (ret < 0)
2243                         p = &(*p)->rb_left;
2244                 else
2245                         p = &(*p)->rb_right;
2246         }
2247
2248         rb_link_node(&backref->node, parent, p);
2249         rb_insert_color(&backref->node, root);
2250 }
2251
2252 /*
2253  * Note the backref might has changed, and in this case we just return 0.
2254  */
2255 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2256                                        void *ctx)
2257 {
2258         struct btrfs_file_extent_item *extent;
2259         struct btrfs_fs_info *fs_info;
2260         struct old_sa_defrag_extent *old = ctx;
2261         struct new_sa_defrag_extent *new = old->new;
2262         struct btrfs_path *path = new->path;
2263         struct btrfs_key key;
2264         struct btrfs_root *root;
2265         struct sa_defrag_extent_backref *backref;
2266         struct extent_buffer *leaf;
2267         struct inode *inode = new->inode;
2268         int slot;
2269         int ret;
2270         u64 extent_offset;
2271         u64 num_bytes;
2272
2273         if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2274             inum == btrfs_ino(inode))
2275                 return 0;
2276
2277         key.objectid = root_id;
2278         key.type = BTRFS_ROOT_ITEM_KEY;
2279         key.offset = (u64)-1;
2280
2281         fs_info = BTRFS_I(inode)->root->fs_info;
2282         root = btrfs_read_fs_root_no_name(fs_info, &key);
2283         if (IS_ERR(root)) {
2284                 if (PTR_ERR(root) == -ENOENT)
2285                         return 0;
2286                 WARN_ON(1);
2287                 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2288                          inum, offset, root_id);
2289                 return PTR_ERR(root);
2290         }
2291
2292         key.objectid = inum;
2293         key.type = BTRFS_EXTENT_DATA_KEY;
2294         if (offset > (u64)-1 << 32)
2295                 key.offset = 0;
2296         else
2297                 key.offset = offset;
2298
2299         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2300         if (WARN_ON(ret < 0))
2301                 return ret;
2302         ret = 0;
2303
2304         while (1) {
2305                 cond_resched();
2306
2307                 leaf = path->nodes[0];
2308                 slot = path->slots[0];
2309
2310                 if (slot >= btrfs_header_nritems(leaf)) {
2311                         ret = btrfs_next_leaf(root, path);
2312                         if (ret < 0) {
2313                                 goto out;
2314                         } else if (ret > 0) {
2315                                 ret = 0;
2316                                 goto out;
2317                         }
2318                         continue;
2319                 }
2320
2321                 path->slots[0]++;
2322
2323                 btrfs_item_key_to_cpu(leaf, &key, slot);
2324
2325                 if (key.objectid > inum)
2326                         goto out;
2327
2328                 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2329                         continue;
2330
2331                 extent = btrfs_item_ptr(leaf, slot,
2332                                         struct btrfs_file_extent_item);
2333
2334                 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2335                         continue;
2336
2337                 /*
2338                  * 'offset' refers to the exact key.offset,
2339                  * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2340                  * (key.offset - extent_offset).
2341                  */
2342                 if (key.offset != offset)
2343                         continue;
2344
2345                 extent_offset = btrfs_file_extent_offset(leaf, extent);
2346                 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2347
2348                 if (extent_offset >= old->extent_offset + old->offset +
2349                     old->len || extent_offset + num_bytes <=
2350                     old->extent_offset + old->offset)
2351                         continue;
2352                 break;
2353         }
2354
2355         backref = kmalloc(sizeof(*backref), GFP_NOFS);
2356         if (!backref) {
2357                 ret = -ENOENT;
2358                 goto out;
2359         }
2360
2361         backref->root_id = root_id;
2362         backref->inum = inum;
2363         backref->file_pos = offset;
2364         backref->num_bytes = num_bytes;
2365         backref->extent_offset = extent_offset;
2366         backref->generation = btrfs_file_extent_generation(leaf, extent);
2367         backref->old = old;
2368         backref_insert(&new->root, backref);
2369         old->count++;
2370 out:
2371         btrfs_release_path(path);
2372         WARN_ON(ret);
2373         return ret;
2374 }
2375
2376 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2377                                    struct new_sa_defrag_extent *new)
2378 {
2379         struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2380         struct old_sa_defrag_extent *old, *tmp;
2381         int ret;
2382
2383         new->path = path;
2384
2385         list_for_each_entry_safe(old, tmp, &new->head, list) {
2386                 ret = iterate_inodes_from_logical(old->bytenr +
2387                                                   old->extent_offset, fs_info,
2388                                                   path, record_one_backref,
2389                                                   old);
2390                 if (ret < 0 && ret != -ENOENT)
2391                         return false;
2392
2393                 /* no backref to be processed for this extent */
2394                 if (!old->count) {
2395                         list_del(&old->list);
2396                         kfree(old);
2397                 }
2398         }
2399
2400         if (list_empty(&new->head))
2401                 return false;
2402
2403         return true;
2404 }
2405
2406 static int relink_is_mergable(struct extent_buffer *leaf,
2407                               struct btrfs_file_extent_item *fi,
2408                               struct new_sa_defrag_extent *new)
2409 {
2410         if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2411                 return 0;
2412
2413         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2414                 return 0;
2415
2416         if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2417                 return 0;
2418
2419         if (btrfs_file_extent_encryption(leaf, fi) ||
2420             btrfs_file_extent_other_encoding(leaf, fi))
2421                 return 0;
2422
2423         return 1;
2424 }
2425
2426 /*
2427  * Note the backref might has changed, and in this case we just return 0.
2428  */
2429 static noinline int relink_extent_backref(struct btrfs_path *path,
2430                                  struct sa_defrag_extent_backref *prev,
2431                                  struct sa_defrag_extent_backref *backref)
2432 {
2433         struct btrfs_file_extent_item *extent;
2434         struct btrfs_file_extent_item *item;
2435         struct btrfs_ordered_extent *ordered;
2436         struct btrfs_trans_handle *trans;
2437         struct btrfs_fs_info *fs_info;
2438         struct btrfs_root *root;
2439         struct btrfs_key key;
2440         struct extent_buffer *leaf;
2441         struct old_sa_defrag_extent *old = backref->old;
2442         struct new_sa_defrag_extent *new = old->new;
2443         struct inode *src_inode = new->inode;
2444         struct inode *inode;
2445         struct extent_state *cached = NULL;
2446         int ret = 0;
2447         u64 start;
2448         u64 len;
2449         u64 lock_start;
2450         u64 lock_end;
2451         bool merge = false;
2452         int index;
2453
2454         if (prev && prev->root_id == backref->root_id &&
2455             prev->inum == backref->inum &&
2456             prev->file_pos + prev->num_bytes == backref->file_pos)
2457                 merge = true;
2458
2459         /* step 1: get root */
2460         key.objectid = backref->root_id;
2461         key.type = BTRFS_ROOT_ITEM_KEY;
2462         key.offset = (u64)-1;
2463
2464         fs_info = BTRFS_I(src_inode)->root->fs_info;
2465         index = srcu_read_lock(&fs_info->subvol_srcu);
2466
2467         root = btrfs_read_fs_root_no_name(fs_info, &key);
2468         if (IS_ERR(root)) {
2469                 srcu_read_unlock(&fs_info->subvol_srcu, index);
2470                 if (PTR_ERR(root) == -ENOENT)
2471                         return 0;
2472                 return PTR_ERR(root);
2473         }
2474
2475         if (btrfs_root_readonly(root)) {
2476                 srcu_read_unlock(&fs_info->subvol_srcu, index);
2477                 return 0;
2478         }
2479
2480         /* step 2: get inode */
2481         key.objectid = backref->inum;
2482         key.type = BTRFS_INODE_ITEM_KEY;
2483         key.offset = 0;
2484
2485         inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2486         if (IS_ERR(inode)) {
2487                 srcu_read_unlock(&fs_info->subvol_srcu, index);
2488                 return 0;
2489         }
2490
2491         srcu_read_unlock(&fs_info->subvol_srcu, index);
2492
2493         /* step 3: relink backref */
2494         lock_start = backref->file_pos;
2495         lock_end = backref->file_pos + backref->num_bytes - 1;
2496         lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2497                          &cached);
2498
2499         ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2500         if (ordered) {
2501                 btrfs_put_ordered_extent(ordered);
2502                 goto out_unlock;
2503         }
2504
2505         trans = btrfs_join_transaction(root);
2506         if (IS_ERR(trans)) {
2507                 ret = PTR_ERR(trans);
2508                 goto out_unlock;
2509         }
2510
2511         key.objectid = backref->inum;
2512         key.type = BTRFS_EXTENT_DATA_KEY;
2513         key.offset = backref->file_pos;
2514
2515         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2516         if (ret < 0) {
2517                 goto out_free_path;
2518         } else if (ret > 0) {
2519                 ret = 0;
2520                 goto out_free_path;
2521         }
2522
2523         extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2524                                 struct btrfs_file_extent_item);
2525
2526         if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2527             backref->generation)
2528                 goto out_free_path;
2529
2530         btrfs_release_path(path);
2531
2532         start = backref->file_pos;
2533         if (backref->extent_offset < old->extent_offset + old->offset)
2534                 start += old->extent_offset + old->offset -
2535                          backref->extent_offset;
2536
2537         len = min(backref->extent_offset + backref->num_bytes,
2538                   old->extent_offset + old->offset + old->len);
2539         len -= max(backref->extent_offset, old->extent_offset + old->offset);
2540
2541         ret = btrfs_drop_extents(trans, root, inode, start,
2542                                  start + len, 1);
2543         if (ret)
2544                 goto out_free_path;
2545 again:
2546         key.objectid = btrfs_ino(inode);
2547         key.type = BTRFS_EXTENT_DATA_KEY;
2548         key.offset = start;
2549
2550         path->leave_spinning = 1;
2551         if (merge) {
2552                 struct btrfs_file_extent_item *fi;
2553                 u64 extent_len;
2554                 struct btrfs_key found_key;
2555
2556                 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2557                 if (ret < 0)
2558                         goto out_free_path;
2559
2560                 path->slots[0]--;
2561                 leaf = path->nodes[0];
2562                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2563
2564                 fi = btrfs_item_ptr(leaf, path->slots[0],
2565                                     struct btrfs_file_extent_item);
2566                 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2567
2568                 if (extent_len + found_key.offset == start &&
2569                     relink_is_mergable(leaf, fi, new)) {
2570                         btrfs_set_file_extent_num_bytes(leaf, fi,
2571                                                         extent_len + len);
2572                         btrfs_mark_buffer_dirty(leaf);
2573                         inode_add_bytes(inode, len);
2574
2575                         ret = 1;
2576                         goto out_free_path;
2577                 } else {
2578                         merge = false;
2579                         btrfs_release_path(path);
2580                         goto again;
2581                 }
2582         }
2583
2584         ret = btrfs_insert_empty_item(trans, root, path, &key,
2585                                         sizeof(*extent));
2586         if (ret) {
2587                 btrfs_abort_transaction(trans, root, ret);
2588                 goto out_free_path;
2589         }
2590
2591         leaf = path->nodes[0];
2592         item = btrfs_item_ptr(leaf, path->slots[0],
2593                                 struct btrfs_file_extent_item);
2594         btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2595         btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2596         btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2597         btrfs_set_file_extent_num_bytes(leaf, item, len);
2598         btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2599         btrfs_set_file_extent_generation(leaf, item, trans->transid);
2600         btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2601         btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2602         btrfs_set_file_extent_encryption(leaf, item, 0);
2603         btrfs_set_file_extent_other_encoding(leaf, item, 0);
2604
2605         btrfs_mark_buffer_dirty(leaf);
2606         inode_add_bytes(inode, len);
2607         btrfs_release_path(path);
2608
2609         ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2610                         new->disk_len, 0,
2611                         backref->root_id, backref->inum,
2612                         new->file_pos); /* start - extent_offset */
2613         if (ret) {
2614                 btrfs_abort_transaction(trans, root, ret);
2615                 goto out_free_path;
2616         }
2617
2618         ret = 1;
2619 out_free_path:
2620         btrfs_release_path(path);
2621         path->leave_spinning = 0;
2622         btrfs_end_transaction(trans, root);
2623 out_unlock:
2624         unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2625                              &cached, GFP_NOFS);
2626         iput(inode);
2627         return ret;
2628 }
2629
2630 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2631 {
2632         struct old_sa_defrag_extent *old, *tmp;
2633
2634         if (!new)
2635                 return;
2636
2637         list_for_each_entry_safe(old, tmp, &new->head, list) {
2638                 kfree(old);
2639         }
2640         kfree(new);
2641 }
2642
2643 static void relink_file_extents(struct new_sa_defrag_extent *new)
2644 {
2645         struct btrfs_path *path;
2646         struct sa_defrag_extent_backref *backref;
2647         struct sa_defrag_extent_backref *prev = NULL;
2648         struct inode *inode;
2649         struct btrfs_root *root;
2650         struct rb_node *node;
2651         int ret;
2652
2653         inode = new->inode;
2654         root = BTRFS_I(inode)->root;
2655
2656         path = btrfs_alloc_path();
2657         if (!path)
2658                 return;
2659
2660         if (!record_extent_backrefs(path, new)) {
2661                 btrfs_free_path(path);
2662                 goto out;
2663         }
2664         btrfs_release_path(path);
2665
2666         while (1) {
2667                 node = rb_first(&new->root);
2668                 if (!node)
2669                         break;
2670                 rb_erase(node, &new->root);
2671
2672                 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2673
2674                 ret = relink_extent_backref(path, prev, backref);
2675                 WARN_ON(ret < 0);
2676
2677                 kfree(prev);
2678
2679                 if (ret == 1)
2680                         prev = backref;
2681                 else
2682                         prev = NULL;
2683                 cond_resched();
2684         }
2685         kfree(prev);
2686
2687         btrfs_free_path(path);
2688 out:
2689         free_sa_defrag_extent(new);
2690
2691         atomic_dec(&root->fs_info->defrag_running);
2692         wake_up(&root->fs_info->transaction_wait);
2693 }
2694
2695 static struct new_sa_defrag_extent *
2696 record_old_file_extents(struct inode *inode,
2697                         struct btrfs_ordered_extent *ordered)
2698 {
2699         struct btrfs_root *root = BTRFS_I(inode)->root;
2700         struct btrfs_path *path;
2701         struct btrfs_key key;
2702         struct old_sa_defrag_extent *old;
2703         struct new_sa_defrag_extent *new;
2704         int ret;
2705
2706         new = kmalloc(sizeof(*new), GFP_NOFS);
2707         if (!new)
2708                 return NULL;
2709
2710         new->inode = inode;
2711         new->file_pos = ordered->file_offset;
2712         new->len = ordered->len;
2713         new->bytenr = ordered->start;
2714         new->disk_len = ordered->disk_len;
2715         new->compress_type = ordered->compress_type;
2716         new->root = RB_ROOT;
2717         INIT_LIST_HEAD(&new->head);
2718
2719         path = btrfs_alloc_path();
2720         if (!path)
2721                 goto out_kfree;
2722
2723         key.objectid = btrfs_ino(inode);
2724         key.type = BTRFS_EXTENT_DATA_KEY;
2725         key.offset = new->file_pos;
2726
2727         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2728         if (ret < 0)
2729                 goto out_free_path;
2730         if (ret > 0 && path->slots[0] > 0)
2731                 path->slots[0]--;
2732
2733         /* find out all the old extents for the file range */
2734         while (1) {
2735                 struct btrfs_file_extent_item *extent;
2736                 struct extent_buffer *l;
2737                 int slot;
2738                 u64 num_bytes;
2739                 u64 offset;
2740                 u64 end;
2741                 u64 disk_bytenr;
2742                 u64 extent_offset;
2743
2744                 l = path->nodes[0];
2745                 slot = path->slots[0];
2746
2747                 if (slot >= btrfs_header_nritems(l)) {
2748                         ret = btrfs_next_leaf(root, path);
2749                         if (ret < 0)
2750                                 goto out_free_path;
2751                         else if (ret > 0)
2752                                 break;
2753                         continue;
2754                 }
2755
2756                 btrfs_item_key_to_cpu(l, &key, slot);
2757
2758                 if (key.objectid != btrfs_ino(inode))
2759                         break;
2760                 if (key.type != BTRFS_EXTENT_DATA_KEY)
2761                         break;
2762                 if (key.offset >= new->file_pos + new->len)
2763                         break;
2764
2765                 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2766
2767                 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2768                 if (key.offset + num_bytes < new->file_pos)
2769                         goto next;
2770
2771                 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2772                 if (!disk_bytenr)
2773                         goto next;
2774
2775                 extent_offset = btrfs_file_extent_offset(l, extent);
2776
2777                 old = kmalloc(sizeof(*old), GFP_NOFS);
2778                 if (!old)
2779                         goto out_free_path;
2780
2781                 offset = max(new->file_pos, key.offset);
2782                 end = min(new->file_pos + new->len, key.offset + num_bytes);
2783
2784                 old->bytenr = disk_bytenr;
2785                 old->extent_offset = extent_offset;
2786                 old->offset = offset - key.offset;
2787                 old->len = end - offset;
2788                 old->new = new;
2789                 old->count = 0;
2790                 list_add_tail(&old->list, &new->head);
2791 next:
2792                 path->slots[0]++;
2793                 cond_resched();
2794         }
2795
2796         btrfs_free_path(path);
2797         atomic_inc(&root->fs_info->defrag_running);
2798
2799         return new;
2800
2801 out_free_path:
2802         btrfs_free_path(path);
2803 out_kfree:
2804         free_sa_defrag_extent(new);
2805         return NULL;
2806 }
2807
2808 static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2809                                          u64 start, u64 len)
2810 {
2811         struct btrfs_block_group_cache *cache;
2812
2813         cache = btrfs_lookup_block_group(root->fs_info, start);
2814         ASSERT(cache);
2815
2816         spin_lock(&cache->lock);
2817         cache->delalloc_bytes -= len;
2818         spin_unlock(&cache->lock);
2819
2820         btrfs_put_block_group(cache);
2821 }
2822
2823 /* as ordered data IO finishes, this gets called so we can finish
2824  * an ordered extent if the range of bytes in the file it covers are
2825  * fully written.
2826  */
2827 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2828 {
2829         struct inode *inode = ordered_extent->inode;
2830         struct btrfs_root *root = BTRFS_I(inode)->root;
2831         struct btrfs_trans_handle *trans = NULL;
2832         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2833         struct extent_state *cached_state = NULL;
2834         struct new_sa_defrag_extent *new = NULL;
2835         int compress_type = 0;
2836         int ret = 0;
2837         u64 logical_len = ordered_extent->len;
2838         bool nolock;
2839         bool truncated = false;
2840
2841         nolock = btrfs_is_free_space_inode(inode);
2842
2843         if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2844                 ret = -EIO;
2845                 goto out;
2846         }
2847
2848         btrfs_free_io_failure_record(inode, ordered_extent->file_offset,
2849                                      ordered_extent->file_offset +
2850                                      ordered_extent->len - 1);
2851
2852         if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2853                 truncated = true;
2854                 logical_len = ordered_extent->truncated_len;
2855                 /* Truncated the entire extent, don't bother adding */
2856                 if (!logical_len)
2857                         goto out;
2858         }
2859
2860         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2861                 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2862
2863                 /*
2864                  * For mwrite(mmap + memset to write) case, we still reserve
2865                  * space for NOCOW range.
2866                  * As NOCOW won't cause a new delayed ref, just free the space
2867                  */
2868                 btrfs_qgroup_free_data(inode, ordered_extent->file_offset,
2869                                        ordered_extent->len);
2870                 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2871                 if (nolock)
2872                         trans = btrfs_join_transaction_nolock(root);
2873                 else
2874                         trans = btrfs_join_transaction(root);
2875                 if (IS_ERR(trans)) {
2876                         ret = PTR_ERR(trans);
2877                         trans = NULL;
2878                         goto out;
2879                 }
2880                 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2881                 ret = btrfs_update_inode_fallback(trans, root, inode);
2882                 if (ret) /* -ENOMEM or corruption */
2883                         btrfs_abort_transaction(trans, root, ret);
2884                 goto out;
2885         }
2886
2887         lock_extent_bits(io_tree, ordered_extent->file_offset,
2888                          ordered_extent->file_offset + ordered_extent->len - 1,
2889                          &cached_state);
2890
2891         ret = test_range_bit(io_tree, ordered_extent->file_offset,
2892                         ordered_extent->file_offset + ordered_extent->len - 1,
2893                         EXTENT_DEFRAG, 1, cached_state);
2894         if (ret) {
2895                 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2896                 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
2897                         /* the inode is shared */
2898                         new = record_old_file_extents(inode, ordered_extent);
2899
2900                 clear_extent_bit(io_tree, ordered_extent->file_offset,
2901                         ordered_extent->file_offset + ordered_extent->len - 1,
2902                         EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2903         }
2904
2905         if (nolock)
2906                 trans = btrfs_join_transaction_nolock(root);
2907         else
2908                 trans = btrfs_join_transaction(root);
2909         if (IS_ERR(trans)) {
2910                 ret = PTR_ERR(trans);
2911                 trans = NULL;
2912                 goto out_unlock;
2913         }
2914
2915         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2916
2917         if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2918                 compress_type = ordered_extent->compress_type;
2919         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2920                 BUG_ON(compress_type);
2921                 ret = btrfs_mark_extent_written(trans, inode,
2922                                                 ordered_extent->file_offset,
2923                                                 ordered_extent->file_offset +
2924                                                 logical_len);
2925         } else {
2926                 BUG_ON(root == root->fs_info->tree_root);
2927                 ret = insert_reserved_file_extent(trans, inode,
2928                                                 ordered_extent->file_offset,
2929                                                 ordered_extent->start,
2930                                                 ordered_extent->disk_len,
2931                                                 logical_len, logical_len,
2932                                                 compress_type, 0, 0,
2933                                                 BTRFS_FILE_EXTENT_REG);
2934                 if (!ret)
2935                         btrfs_release_delalloc_bytes(root,
2936                                                      ordered_extent->start,
2937                                                      ordered_extent->disk_len);
2938         }
2939         unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2940                            ordered_extent->file_offset, ordered_extent->len,
2941                            trans->transid);
2942         if (ret < 0) {
2943                 btrfs_abort_transaction(trans, root, ret);
2944                 goto out_unlock;
2945         }
2946
2947         add_pending_csums(trans, inode, ordered_extent->file_offset,
2948                           &ordered_extent->list);
2949
2950         btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2951         ret = btrfs_update_inode_fallback(trans, root, inode);
2952         if (ret) { /* -ENOMEM or corruption */
2953                 btrfs_abort_transaction(trans, root, ret);
2954                 goto out_unlock;
2955         }
2956         ret = 0;
2957 out_unlock:
2958         unlock_extent_cached(io_tree, ordered_extent->file_offset,
2959                              ordered_extent->file_offset +
2960                              ordered_extent->len - 1, &cached_state, GFP_NOFS);
2961 out:
2962         if (root != root->fs_info->tree_root)
2963                 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
2964         if (trans)
2965                 btrfs_end_transaction(trans, root);
2966
2967         if (ret || truncated) {
2968                 u64 start, end;
2969
2970                 if (truncated)
2971                         start = ordered_extent->file_offset + logical_len;
2972                 else
2973                         start = ordered_extent->file_offset;
2974                 end = ordered_extent->file_offset + ordered_extent->len - 1;
2975                 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2976
2977                 /* Drop the cache for the part of the extent we didn't write. */
2978                 btrfs_drop_extent_cache(inode, start, end, 0);
2979
2980                 /*
2981                  * If the ordered extent had an IOERR or something else went
2982                  * wrong we need to return the space for this ordered extent
2983                  * back to the allocator.  We only free the extent in the
2984                  * truncated case if we didn't write out the extent at all.
2985                  */
2986                 if ((ret || !logical_len) &&
2987                     !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2988                     !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2989                         btrfs_free_reserved_extent(root, ordered_extent->start,
2990                                                    ordered_extent->disk_len, 1);
2991         }
2992
2993
2994         /*
2995          * This needs to be done to make sure anybody waiting knows we are done
2996          * updating everything for this ordered extent.
2997          */
2998         btrfs_remove_ordered_extent(inode, ordered_extent);
2999
3000         /* for snapshot-aware defrag */
3001         if (new) {
3002                 if (ret) {
3003                         free_sa_defrag_extent(new);
3004                         atomic_dec(&root->fs_info->defrag_running);
3005                 } else {
3006                         relink_file_extents(new);
3007                 }
3008         }
3009
3010         /* once for us */
3011         btrfs_put_ordered_extent(ordered_extent);
3012         /* once for the tree */
3013         btrfs_put_ordered_extent(ordered_extent);
3014
3015         return ret;
3016 }
3017
3018 static void finish_ordered_fn(struct btrfs_work *work)
3019 {
3020         struct btrfs_ordered_extent *ordered_extent;
3021         ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3022         btrfs_finish_ordered_io(ordered_extent);
3023 }
3024
3025 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
3026                                 struct extent_state *state, int uptodate)
3027 {
3028         struct inode *inode = page->mapping->host;
3029         struct btrfs_root *root = BTRFS_I(inode)->root;
3030         struct btrfs_ordered_extent *ordered_extent = NULL;
3031         struct btrfs_workqueue *wq;
3032         btrfs_work_func_t func;
3033
3034         trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3035
3036         ClearPagePrivate2(page);
3037         if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3038                                             end - start + 1, uptodate))
3039                 return 0;
3040
3041         if (btrfs_is_free_space_inode(inode)) {
3042                 wq = root->fs_info->endio_freespace_worker;
3043                 func = btrfs_freespace_write_helper;
3044         } else {
3045                 wq = root->fs_info->endio_write_workers;
3046                 func = btrfs_endio_write_helper;
3047         }
3048
3049         btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3050                         NULL);
3051         btrfs_queue_work(wq, &ordered_extent->work);
3052
3053         return 0;
3054 }
3055
3056 static int __readpage_endio_check(struct inode *inode,
3057                                   struct btrfs_io_bio *io_bio,
3058                                   int icsum, struct page *page,
3059                                   int pgoff, u64 start, size_t len)
3060 {
3061         char *kaddr;
3062         u32 csum_expected;
3063         u32 csum = ~(u32)0;
3064
3065         csum_expected = *(((u32 *)io_bio->csum) + icsum);
3066
3067         kaddr = kmap_atomic(page);
3068         csum = btrfs_csum_data(kaddr + pgoff, csum,  len);
3069         btrfs_csum_final(csum, (char *)&csum);
3070         if (csum != csum_expected)
3071                 goto zeroit;
3072
3073         kunmap_atomic(kaddr);
3074         return 0;
3075 zeroit:
3076         btrfs_warn_rl(BTRFS_I(inode)->root->fs_info,
3077                 "csum failed ino %llu off %llu csum %u expected csum %u",
3078                            btrfs_ino(inode), start, csum, csum_expected);
3079         memset(kaddr + pgoff, 1, len);
3080         flush_dcache_page(page);
3081         kunmap_atomic(kaddr);
3082         if (csum_expected == 0)
3083                 return 0;
3084         return -EIO;
3085 }
3086
3087 /*
3088  * when reads are done, we need to check csums to verify the data is correct
3089  * if there's a match, we allow the bio to finish.  If not, the code in
3090  * extent_io.c will try to find good copies for us.
3091  */
3092 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3093                                       u64 phy_offset, struct page *page,
3094                                       u64 start, u64 end, int mirror)
3095 {
3096         size_t offset = start - page_offset(page);
3097         struct inode *inode = page->mapping->host;
3098         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3099         struct btrfs_root *root = BTRFS_I(inode)->root;
3100
3101         if (PageChecked(page)) {
3102                 ClearPageChecked(page);
3103                 return 0;
3104         }
3105
3106         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3107                 return 0;
3108
3109         if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3110             test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3111                 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
3112                                   GFP_NOFS);
3113                 return 0;
3114         }
3115
3116         phy_offset >>= inode->i_sb->s_blocksize_bits;
3117         return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3118                                       start, (size_t)(end - start + 1));
3119 }
3120
3121 void btrfs_add_delayed_iput(struct inode *inode)
3122 {
3123         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3124         struct btrfs_inode *binode = BTRFS_I(inode);
3125
3126         if (atomic_add_unless(&inode->i_count, -1, 1))
3127                 return;
3128
3129         spin_lock(&fs_info->delayed_iput_lock);
3130         if (binode->delayed_iput_count == 0) {
3131                 ASSERT(list_empty(&binode->delayed_iput));
3132                 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3133         } else {
3134                 binode->delayed_iput_count++;
3135         }
3136         spin_unlock(&fs_info->delayed_iput_lock);
3137 }
3138
3139 void btrfs_run_delayed_iputs(struct btrfs_root *root)
3140 {
3141         struct btrfs_fs_info *fs_info = root->fs_info;
3142
3143         spin_lock(&fs_info->delayed_iput_lock);
3144         while (!list_empty(&fs_info->delayed_iputs)) {
3145                 struct btrfs_inode *inode;
3146
3147                 inode = list_first_entry(&fs_info->delayed_iputs,
3148                                 struct btrfs_inode, delayed_iput);
3149                 if (inode->delayed_iput_count) {
3150                         inode->delayed_iput_count--;
3151                         list_move_tail(&inode->delayed_iput,
3152                                         &fs_info->delayed_iputs);
3153                 } else {
3154                         list_del_init(&inode->delayed_iput);
3155                 }
3156                 spin_unlock(&fs_info->delayed_iput_lock);
3157                 iput(&inode->vfs_inode);
3158                 spin_lock(&fs_info->delayed_iput_lock);
3159         }
3160         spin_unlock(&fs_info->delayed_iput_lock);
3161 }
3162
3163 /*
3164  * This is called in transaction commit time. If there are no orphan
3165  * files in the subvolume, it removes orphan item and frees block_rsv
3166  * structure.
3167  */
3168 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3169                               struct btrfs_root *root)
3170 {
3171         struct btrfs_block_rsv *block_rsv;
3172         int ret;
3173
3174         if (atomic_read(&root->orphan_inodes) ||
3175             root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3176                 return;
3177
3178         spin_lock(&root->orphan_lock);
3179         if (atomic_read(&root->orphan_inodes)) {
3180                 spin_unlock(&root->orphan_lock);
3181                 return;
3182         }
3183
3184         if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3185                 spin_unlock(&root->orphan_lock);
3186                 return;
3187         }
3188
3189         block_rsv = root->orphan_block_rsv;
3190         root->orphan_block_rsv = NULL;
3191         spin_unlock(&root->orphan_lock);
3192
3193         if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
3194             btrfs_root_refs(&root->root_item) > 0) {
3195                 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
3196                                             root->root_key.objectid);
3197                 if (ret)
3198                         btrfs_abort_transaction(trans, root, ret);
3199                 else
3200                         clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3201                                   &root->state);
3202         }
3203
3204         if (block_rsv) {
3205                 WARN_ON(block_rsv->size > 0);
3206                 btrfs_free_block_rsv(root, block_rsv);
3207         }
3208 }
3209
3210 /*
3211  * This creates an orphan entry for the given inode in case something goes
3212  * wrong in the middle of an unlink/truncate.
3213  *
3214  * NOTE: caller of this function should reserve 5 units of metadata for
3215  *       this function.
3216  */
3217 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3218 {
3219         struct btrfs_root *root = BTRFS_I(inode)->root;
3220         struct btrfs_block_rsv *block_rsv = NULL;
3221         int reserve = 0;
3222         int insert = 0;
3223         int ret;
3224
3225         if (!root->orphan_block_rsv) {
3226                 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
3227                 if (!block_rsv)
3228                         return -ENOMEM;
3229         }
3230
3231         spin_lock(&root->orphan_lock);
3232         if (!root->orphan_block_rsv) {
3233                 root->orphan_block_rsv = block_rsv;
3234         } else if (block_rsv) {
3235                 btrfs_free_block_rsv(root, block_rsv);
3236                 block_rsv = NULL;
3237         }
3238
3239         if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3240                               &BTRFS_I(inode)->runtime_flags)) {
3241 #if 0
3242                 /*
3243                  * For proper ENOSPC handling, we should do orphan
3244                  * cleanup when mounting. But this introduces backward
3245                  * compatibility issue.
3246                  */
3247                 if (!xchg(&root->orphan_item_inserted, 1))
3248                         insert = 2;
3249                 else
3250                         insert = 1;
3251 #endif
3252                 insert = 1;
3253                 atomic_inc(&root->orphan_inodes);
3254         }
3255
3256         if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3257                               &BTRFS_I(inode)->runtime_flags))
3258                 reserve = 1;
3259         spin_unlock(&root->orphan_lock);
3260
3261         /* grab metadata reservation from transaction handle */
3262         if (reserve) {
3263                 ret = btrfs_orphan_reserve_metadata(trans, inode);
3264                 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
3265         }
3266
3267         /* insert an orphan item to track this unlinked/truncated file */
3268         if (insert >= 1) {
3269                 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3270                 if (ret) {
3271                         atomic_dec(&root->orphan_inodes);
3272                         if (reserve) {
3273                                 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3274                                           &BTRFS_I(inode)->runtime_flags);
3275                                 btrfs_orphan_release_metadata(inode);
3276                         }
3277                         if (ret != -EEXIST) {
3278                                 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3279                                           &BTRFS_I(inode)->runtime_flags);
3280                                 btrfs_abort_transaction(trans, root, ret);
3281                                 return ret;
3282                         }
3283                 }
3284                 ret = 0;
3285         }
3286
3287         /* insert an orphan item to track subvolume contains orphan files */
3288         if (insert >= 2) {
3289                 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3290                                                root->root_key.objectid);
3291                 if (ret && ret != -EEXIST) {
3292                         btrfs_abort_transaction(trans, root, ret);
3293                         return ret;
3294                 }
3295         }
3296         return 0;
3297 }
3298
3299 /*
3300  * We have done the truncate/delete so we can go ahead and remove the orphan
3301  * item for this particular inode.
3302  */
3303 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3304                             struct inode *inode)
3305 {
3306         struct btrfs_root *root = BTRFS_I(inode)->root;
3307         int delete_item = 0;
3308         int release_rsv = 0;
3309         int ret = 0;
3310
3311         spin_lock(&root->orphan_lock);
3312         if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3313                                &BTRFS_I(inode)->runtime_flags))
3314                 delete_item = 1;
3315
3316         if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3317                                &BTRFS_I(inode)->runtime_flags))
3318                 release_rsv = 1;
3319         spin_unlock(&root->orphan_lock);
3320
3321         if (delete_item) {
3322                 atomic_dec(&root->orphan_inodes);
3323                 if (trans)
3324                         ret = btrfs_del_orphan_item(trans, root,
3325                                                     btrfs_ino(inode));
3326         }
3327
3328         if (release_rsv)
3329                 btrfs_orphan_release_metadata(inode);
3330
3331         return ret;
3332 }
3333
3334 /*
3335  * this cleans up any orphans that may be left on the list from the last use
3336  * of this root.
3337  */
3338 int btrfs_orphan_cleanup(struct btrfs_root *root)
3339 {
3340         struct btrfs_path *path;
3341         struct extent_buffer *leaf;
3342         struct btrfs_key key, found_key;
3343         struct btrfs_trans_handle *trans;
3344         struct inode *inode;
3345         u64 last_objectid = 0;
3346         int ret = 0, nr_unlink = 0, nr_truncate = 0;
3347
3348         if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3349                 return 0;
3350
3351         path = btrfs_alloc_path();
3352         if (!path) {
3353                 ret = -ENOMEM;
3354                 goto out;
3355         }
3356         path->reada = READA_BACK;
3357
3358         key.objectid = BTRFS_ORPHAN_OBJECTID;
3359         key.type = BTRFS_ORPHAN_ITEM_KEY;
3360         key.offset = (u64)-1;
3361
3362         while (1) {
3363                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3364                 if (ret < 0)
3365                         goto out;
3366
3367                 /*
3368                  * if ret == 0 means we found what we were searching for, which
3369                  * is weird, but possible, so only screw with path if we didn't
3370                  * find the key and see if we have stuff that matches
3371                  */
3372                 if (ret > 0) {
3373                         ret = 0;
3374                         if (path->slots[0] == 0)
3375                                 break;
3376                         path->slots[0]--;
3377                 }
3378
3379                 /* pull out the item */
3380                 leaf = path->nodes[0];
3381                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3382
3383                 /* make sure the item matches what we want */
3384                 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3385                         break;
3386                 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3387                         break;
3388
3389                 /* release the path since we're done with it */
3390                 btrfs_release_path(path);
3391
3392                 /*
3393                  * this is where we are basically btrfs_lookup, without the
3394                  * crossing root thing.  we store the inode number in the
3395                  * offset of the orphan item.
3396                  */
3397
3398                 if (found_key.offset == last_objectid) {
3399                         btrfs_err(root->fs_info,
3400                                 "Error removing orphan entry, stopping orphan cleanup");
3401                         ret = -EINVAL;
3402                         goto out;
3403                 }
3404
3405                 last_objectid = found_key.offset;
3406
3407                 found_key.objectid = found_key.offset;
3408                 found_key.type = BTRFS_INODE_ITEM_KEY;
3409                 found_key.offset = 0;
3410                 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
3411                 ret = PTR_ERR_OR_ZERO(inode);
3412                 if (ret && ret != -ESTALE)
3413                         goto out;
3414
3415                 if (ret == -ESTALE && root == root->fs_info->tree_root) {
3416                         struct btrfs_root *dead_root;
3417                         struct btrfs_fs_info *fs_info = root->fs_info;
3418                         int is_dead_root = 0;
3419
3420                         /*
3421                          * this is an orphan in the tree root. Currently these
3422                          * could come from 2 sources:
3423                          *  a) a snapshot deletion in progress
3424                          *  b) a free space cache inode
3425                          * We need to distinguish those two, as the snapshot
3426                          * orphan must not get deleted.
3427                          * find_dead_roots already ran before us, so if this
3428                          * is a snapshot deletion, we should find the root
3429                          * in the dead_roots list
3430                          */
3431                         spin_lock(&fs_info->trans_lock);
3432                         list_for_each_entry(dead_root, &fs_info->dead_roots,
3433                                             root_list) {
3434                                 if (dead_root->root_key.objectid ==
3435                                     found_key.objectid) {
3436                                         is_dead_root = 1;
3437                                         break;
3438                                 }
3439                         }
3440                         spin_unlock(&fs_info->trans_lock);
3441                         if (is_dead_root) {
3442                                 /* prevent this orphan from being found again */
3443                                 key.offset = found_key.objectid - 1;
3444                                 continue;
3445                         }
3446                 }
3447                 /*
3448                  * Inode is already gone but the orphan item is still there,
3449                  * kill the orphan item.
3450                  */
3451                 if (ret == -ESTALE) {
3452                         trans = btrfs_start_transaction(root, 1);
3453                         if (IS_ERR(trans)) {
3454                                 ret = PTR_ERR(trans);
3455                                 goto out;
3456                         }
3457                         btrfs_debug(root->fs_info, "auto deleting %Lu",
3458                                 found_key.objectid);
3459                         ret = btrfs_del_orphan_item(trans, root,
3460                                                     found_key.objectid);
3461                         btrfs_end_transaction(trans, root);
3462                         if (ret)
3463                                 goto out;
3464                         continue;
3465                 }
3466
3467                 /*
3468                  * add this inode to the orphan list so btrfs_orphan_del does
3469                  * the proper thing when we hit it
3470                  */
3471                 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3472                         &BTRFS_I(inode)->runtime_flags);
3473                 atomic_inc(&root->orphan_inodes);
3474
3475                 /* if we have links, this was a truncate, lets do that */
3476                 if (inode->i_nlink) {
3477                         if (WARN_ON(!S_ISREG(inode->i_mode))) {
3478                                 iput(inode);
3479                                 continue;
3480                         }
3481                         nr_truncate++;
3482
3483                         /* 1 for the orphan item deletion. */
3484                         trans = btrfs_start_transaction(root, 1);
3485                         if (IS_ERR(trans)) {
3486                                 iput(inode);
3487                                 ret = PTR_ERR(trans);
3488                                 goto out;
3489                         }
3490                         ret = btrfs_orphan_add(trans, inode);
3491                         btrfs_end_transaction(trans, root);
3492                         if (ret) {
3493                                 iput(inode);
3494                                 goto out;
3495                         }
3496
3497                         ret = btrfs_truncate(inode);
3498                         if (ret)
3499                                 btrfs_orphan_del(NULL, inode);
3500                 } else {
3501                         nr_unlink++;
3502                 }
3503
3504                 /* this will do delete_inode and everything for us */
3505                 iput(inode);
3506                 if (ret)
3507                         goto out;
3508         }
3509         /* release the path since we're done with it */
3510         btrfs_release_path(path);
3511
3512         root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3513
3514         if (root->orphan_block_rsv)
3515                 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3516                                         (u64)-1);
3517
3518         if (root->orphan_block_rsv ||
3519             test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3520                 trans = btrfs_join_transaction(root);
3521                 if (!IS_ERR(trans))
3522                         btrfs_end_transaction(trans, root);
3523         }
3524
3525         if (nr_unlink)
3526                 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
3527         if (nr_truncate)
3528                 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
3529
3530 out:
3531         if (ret)
3532                 btrfs_err(root->fs_info,
3533                         "could not do orphan cleanup %d", ret);
3534         btrfs_free_path(path);
3535         return ret;
3536 }
3537
3538 /*
3539  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3540  * don't find any xattrs, we know there can't be any acls.
3541  *
3542  * slot is the slot the inode is in, objectid is the objectid of the inode
3543  */
3544 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3545                                           int slot, u64 objectid,
3546                                           int *first_xattr_slot)
3547 {
3548         u32 nritems = btrfs_header_nritems(leaf);
3549         struct btrfs_key found_key;
3550         static u64 xattr_access = 0;
3551         static u64 xattr_default = 0;
3552         int scanned = 0;
3553
3554         if (!xattr_access) {
3555                 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3556                                         strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3557                 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3558                                         strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3559         }
3560
3561         slot++;
3562         *first_xattr_slot = -1;
3563         while (slot < nritems) {
3564                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3565
3566                 /* we found a different objectid, there must not be acls */
3567                 if (found_key.objectid != objectid)
3568                         return 0;
3569
3570                 /* we found an xattr, assume we've got an acl */
3571                 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3572                         if (*first_xattr_slot == -1)
3573                                 *first_xattr_slot = slot;
3574                         if (found_key.offset == xattr_access ||
3575                             found_key.offset == xattr_default)
3576                                 return 1;
3577                 }
3578
3579                 /*
3580                  * we found a key greater than an xattr key, there can't
3581                  * be any acls later on
3582                  */
3583                 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3584                         return 0;
3585
3586                 slot++;
3587                 scanned++;
3588
3589                 /*
3590                  * it goes inode, inode backrefs, xattrs, extents,
3591                  * so if there are a ton of hard links to an inode there can
3592                  * be a lot of backrefs.  Don't waste time searching too hard,
3593                  * this is just an optimization
3594                  */
3595                 if (scanned >= 8)
3596                         break;
3597         }
3598         /* we hit the end of the leaf before we found an xattr or
3599          * something larger than an xattr.  We have to assume the inode
3600          * has acls
3601          */
3602         if (*first_xattr_slot == -1)
3603                 *first_xattr_slot = slot;
3604         return 1;
3605 }
3606
3607 /*
3608  * read an inode from the btree into the in-memory inode
3609  */
3610 static void btrfs_read_locked_inode(struct inode *inode)
3611 {
3612         struct btrfs_path *path;
3613         struct extent_buffer *leaf;
3614         struct btrfs_inode_item *inode_item;
3615         struct btrfs_root *root = BTRFS_I(inode)->root;
3616         struct btrfs_key location;
3617         unsigned long ptr;
3618         int maybe_acls;
3619         u32 rdev;
3620         int ret;
3621         bool filled = false;
3622         int first_xattr_slot;
3623
3624         ret = btrfs_fill_inode(inode, &rdev);
3625         if (!ret)
3626                 filled = true;
3627
3628         path = btrfs_alloc_path();
3629         if (!path)
3630                 goto make_bad;
3631
3632         memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3633
3634         ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3635         if (ret)
3636                 goto make_bad;
3637
3638         leaf = path->nodes[0];
3639
3640         if (filled)
3641                 goto cache_index;
3642
3643         inode_item = btrfs_item_ptr(leaf, path->slots[0],
3644                                     struct btrfs_inode_item);
3645         inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3646         set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3647         i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3648         i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3649         btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
3650
3651         inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3652         inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3653
3654         inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3655         inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3656
3657         inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3658         inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3659
3660         BTRFS_I(inode)->i_otime.tv_sec =
3661                 btrfs_timespec_sec(leaf, &inode_item->otime);
3662         BTRFS_I(inode)->i_otime.tv_nsec =
3663                 btrfs_timespec_nsec(leaf, &inode_item->otime);
3664
3665         inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3666         BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3667         BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3668
3669         inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3670         inode->i_generation = BTRFS_I(inode)->generation;
3671         inode->i_rdev = 0;
3672         rdev = btrfs_inode_rdev(leaf, inode_item);
3673
3674         BTRFS_I(inode)->index_cnt = (u64)-1;
3675         BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3676
3677 cache_index:
3678         /*
3679          * If we were modified in the current generation and evicted from memory
3680          * and then re-read we need to do a full sync since we don't have any
3681          * idea about which extents were modified before we were evicted from
3682          * cache.
3683          *
3684          * This is required for both inode re-read from disk and delayed inode
3685          * in delayed_nodes_tree.
3686          */
3687         if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3688                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3689                         &BTRFS_I(inode)->runtime_flags);
3690
3691         /*
3692          * We don't persist the id of the transaction where an unlink operation
3693          * against the inode was last made. So here we assume the inode might
3694          * have been evicted, and therefore the exact value of last_unlink_trans
3695          * lost, and set it to last_trans to avoid metadata inconsistencies
3696          * between the inode and its parent if the inode is fsync'ed and the log
3697          * replayed. For example, in the scenario:
3698          *
3699          * touch mydir/foo
3700          * ln mydir/foo mydir/bar
3701          * sync
3702          * unlink mydir/bar
3703          * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3704          * xfs_io -c fsync mydir/foo
3705          * <power failure>
3706          * mount fs, triggers fsync log replay
3707          *
3708          * We must make sure that when we fsync our inode foo we also log its
3709          * parent inode, otherwise after log replay the parent still has the
3710          * dentry with the "bar" name but our inode foo has a link count of 1
3711          * and doesn't have an inode ref with the name "bar" anymore.
3712          *
3713          * Setting last_unlink_trans to last_trans is a pessimistic approach,
3714          * but it guarantees correctness at the expense of ocassional full
3715          * transaction commits on fsync if our inode is a directory, or if our
3716          * inode is not a directory, logging its parent unnecessarily.
3717          */
3718         BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3719
3720         path->slots[0]++;
3721         if (inode->i_nlink != 1 ||
3722             path->slots[0] >= btrfs_header_nritems(leaf))
3723                 goto cache_acl;
3724
3725         btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3726         if (location.objectid != btrfs_ino(inode))
3727                 goto cache_acl;
3728
3729         ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3730         if (location.type == BTRFS_INODE_REF_KEY) {
3731                 struct btrfs_inode_ref *ref;
3732
3733                 ref = (struct btrfs_inode_ref *)ptr;
3734                 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3735         } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3736                 struct btrfs_inode_extref *extref;
3737
3738                 extref = (struct btrfs_inode_extref *)ptr;
3739                 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3740                                                                      extref);
3741         }
3742 cache_acl:
3743         /*
3744          * try to precache a NULL acl entry for files that don't have
3745          * any xattrs or acls
3746          */
3747         maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3748                                            btrfs_ino(inode), &first_xattr_slot);
3749         if (first_xattr_slot != -1) {
3750                 path->slots[0] = first_xattr_slot;
3751                 ret = btrfs_load_inode_props(inode, path);
3752                 if (ret)
3753                         btrfs_err(root->fs_info,
3754                                   "error loading props for ino %llu (root %llu): %d",
3755                                   btrfs_ino(inode),
3756                                   root->root_key.objectid, ret);
3757         }
3758         btrfs_free_path(path);
3759
3760         if (!maybe_acls)
3761                 cache_no_acl(inode);
3762
3763         switch (inode->i_mode & S_IFMT) {
3764         case S_IFREG:
3765                 inode->i_mapping->a_ops = &btrfs_aops;
3766                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3767                 inode->i_fop = &btrfs_file_operations;
3768                 inode->i_op = &btrfs_file_inode_operations;
3769                 break;
3770         case S_IFDIR:
3771                 inode->i_fop = &btrfs_dir_file_operations;
3772                 if (root == root->fs_info->tree_root)
3773                         inode->i_op = &btrfs_dir_ro_inode_operations;
3774                 else
3775                         inode->i_op = &btrfs_dir_inode_operations;
3776                 break;
3777         case S_IFLNK:
3778                 inode->i_op = &btrfs_symlink_inode_operations;
3779                 inode_nohighmem(inode);
3780                 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3781                 break;
3782         default:
3783                 inode->i_op = &btrfs_special_inode_operations;
3784                 init_special_inode(inode, inode->i_mode, rdev);
3785                 break;
3786         }
3787
3788         btrfs_update_iflags(inode);
3789         return;
3790
3791 make_bad:
3792         btrfs_free_path(path);
3793         make_bad_inode(inode);
3794 }
3795
3796 /*
3797  * given a leaf and an inode, copy the inode fields into the leaf
3798  */
3799 static void fill_inode_item(struct btrfs_trans_handle *trans,
3800                             struct extent_buffer *leaf,
3801                             struct btrfs_inode_item *item,
3802                             struct inode *inode)
3803 {
3804         struct btrfs_map_token token;
3805
3806         btrfs_init_map_token(&token);
3807
3808         btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3809         btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3810         btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3811                                    &token);
3812         btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3813         btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3814
3815         btrfs_set_token_timespec_sec(leaf, &item->atime,
3816                                      inode->i_atime.tv_sec, &token);
3817         btrfs_set_token_timespec_nsec(leaf, &item->atime,
3818                                       inode->i_atime.tv_nsec, &token);
3819
3820         btrfs_set_token_timespec_sec(leaf, &item->mtime,
3821                                      inode->i_mtime.tv_sec, &token);
3822         btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3823                                       inode->i_mtime.tv_nsec, &token);
3824
3825         btrfs_set_token_timespec_sec(leaf, &item->ctime,
3826                                      inode->i_ctime.tv_sec, &token);
3827         btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3828                                       inode->i_ctime.tv_nsec, &token);
3829
3830         btrfs_set_token_timespec_sec(leaf, &item->otime,
3831                                      BTRFS_I(inode)->i_otime.tv_sec, &token);
3832         btrfs_set_token_timespec_nsec(leaf, &item->otime,
3833                                       BTRFS_I(inode)->i_otime.tv_nsec, &token);
3834
3835         btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3836                                      &token);
3837         btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3838                                          &token);
3839         btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3840         btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3841         btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3842         btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3843         btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3844 }
3845
3846 /*
3847  * copy everything in the in-memory inode into the btree.
3848  */
3849 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3850                                 struct btrfs_root *root, struct inode *inode)
3851 {
3852         struct btrfs_inode_item *inode_item;
3853         struct btrfs_path *path;
3854         struct extent_buffer *leaf;
3855         int ret;
3856
3857         path = btrfs_alloc_path();
3858         if (!path)
3859                 return -ENOMEM;
3860
3861         path->leave_spinning = 1;
3862         ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3863                                  1);
3864         if (ret) {
3865                 if (ret > 0)
3866                         ret = -ENOENT;
3867                 goto failed;
3868         }
3869
3870         leaf = path->nodes[0];
3871         inode_item = btrfs_item_ptr(leaf, path->slots[0],
3872                                     struct btrfs_inode_item);
3873
3874         fill_inode_item(trans, leaf, inode_item, inode);
3875         btrfs_mark_buffer_dirty(leaf);
3876         btrfs_set_inode_last_trans(trans, inode);
3877         ret = 0;
3878 failed:
3879         btrfs_free_path(path);
3880         return ret;
3881 }
3882
3883 /*
3884  * copy everything in the in-memory inode into the btree.
3885  */
3886 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3887                                 struct btrfs_root *root, struct inode *inode)
3888 {
3889         int ret;
3890
3891         /*
3892          * If the inode is a free space inode, we can deadlock during commit
3893          * if we put it into the delayed code.
3894          *
3895          * The data relocation inode should also be directly updated
3896          * without delay
3897          */
3898         if (!btrfs_is_free_space_inode(inode)
3899             && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3900             && !root->fs_info->log_root_recovering) {
3901                 btrfs_update_root_times(trans, root);
3902
3903                 ret = btrfs_delayed_update_inode(trans, root, inode);
3904                 if (!ret)
3905                         btrfs_set_inode_last_trans(trans, inode);
3906                 return ret;
3907         }
3908
3909         return btrfs_update_inode_item(trans, root, inode);
3910 }
3911
3912 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3913                                          struct btrfs_root *root,
3914                                          struct inode *inode)
3915 {
3916         int ret;
3917
3918         ret = btrfs_update_inode(trans, root, inode);
3919         if (ret == -ENOSPC)
3920                 return btrfs_update_inode_item(trans, root, inode);
3921         return ret;
3922 }
3923
3924 /*
3925  * unlink helper that gets used here in inode.c and in the tree logging
3926  * recovery code.  It remove a link in a directory with a given name, and
3927  * also drops the back refs in the inode to the directory
3928  */
3929 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3930                                 struct btrfs_root *root,
3931                                 struct inode *dir, struct inode *inode,
3932                                 const char *name, int name_len)
3933 {
3934         struct btrfs_path *path;
3935         int ret = 0;
3936         struct extent_buffer *leaf;
3937         struct btrfs_dir_item *di;
3938         struct btrfs_key key;
3939         u64 index;
3940         u64 ino = btrfs_ino(inode);
3941         u64 dir_ino = btrfs_ino(dir);
3942
3943         path = btrfs_alloc_path();
3944         if (!path) {
3945                 ret = -ENOMEM;
3946                 goto out;
3947         }
3948
3949         path->leave_spinning = 1;
3950         di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3951                                     name, name_len, -1);
3952         if (IS_ERR(di)) {
3953                 ret = PTR_ERR(di);
3954                 goto err;
3955         }
3956         if (!di) {
3957                 ret = -ENOENT;
3958                 goto err;
3959         }
3960         leaf = path->nodes[0];
3961         btrfs_dir_item_key_to_cpu(leaf, di, &key);
3962         ret = btrfs_delete_one_dir_name(trans, root, path, di);
3963         if (ret)
3964                 goto err;
3965         btrfs_release_path(path);
3966
3967         /*
3968          * If we don't have dir index, we have to get it by looking up
3969          * the inode ref, since we get the inode ref, remove it directly,
3970          * it is unnecessary to do delayed deletion.
3971          *
3972          * But if we have dir index, needn't search inode ref to get it.
3973          * Since the inode ref is close to the inode item, it is better
3974          * that we delay to delete it, and just do this deletion when
3975          * we update the inode item.
3976          */
3977         if (BTRFS_I(inode)->dir_index) {
3978                 ret = btrfs_delayed_delete_inode_ref(inode);
3979                 if (!ret) {
3980                         index = BTRFS_I(inode)->dir_index;
3981                         goto skip_backref;
3982                 }
3983         }
3984
3985         ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3986                                   dir_ino, &index);
3987         if (ret) {
3988                 btrfs_info(root->fs_info,
3989                         "failed to delete reference to %.*s, inode %llu parent %llu",
3990                         name_len, name, ino, dir_ino);
3991                 btrfs_abort_transaction(trans, root, ret);
3992                 goto err;
3993         }
3994 skip_backref:
3995         ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3996         if (ret) {
3997                 btrfs_abort_transaction(trans, root, ret);
3998                 goto err;
3999         }
4000
4001         ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
4002                                          inode, dir_ino);
4003         if (ret != 0 && ret != -ENOENT) {
4004                 btrfs_abort_transaction(trans, root, ret);
4005                 goto err;
4006         }
4007
4008         ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
4009                                            dir, index);
4010         if (ret == -ENOENT)
4011                 ret = 0;
4012         else if (ret)
4013                 btrfs_abort_transaction(trans, root, ret);
4014 err:
4015         btrfs_free_path(path);
4016         if (ret)
4017                 goto out;
4018
4019         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
4020         inode_inc_iversion(inode);
4021         inode_inc_iversion(dir);
4022         inode->i_ctime = dir->i_mtime =
4023                 dir->i_ctime = current_fs_time(inode->i_sb);
4024         ret = btrfs_update_inode(trans, root, dir);
4025 out:
4026         return ret;
4027 }
4028
4029 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4030                        struct btrfs_root *root,
4031                        struct inode *dir, struct inode *inode,
4032                        const char *name, int name_len)
4033 {
4034         int ret;
4035         ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4036         if (!ret) {
4037                 drop_nlink(inode);
4038                 ret = btrfs_update_inode(trans, root, inode);
4039         }
4040         return ret;
4041 }
4042
4043 /*
4044  * helper to start transaction for unlink and rmdir.
4045  *
4046  * unlink and rmdir are special in btrfs, they do not always free space, so
4047  * if we cannot make our reservations the normal way try and see if there is
4048  * plenty of slack room in the global reserve to migrate, otherwise we cannot
4049  * allow the unlink to occur.
4050  */
4051 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4052 {
4053         struct btrfs_root *root = BTRFS_I(dir)->root;
4054
4055         /*
4056          * 1 for the possible orphan item
4057          * 1 for the dir item
4058          * 1 for the dir index
4059          * 1 for the inode ref
4060          * 1 for the inode
4061          */
4062         return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
4063 }
4064
4065 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4066 {
4067         struct btrfs_root *root = BTRFS_I(dir)->root;
4068         struct btrfs_trans_handle *trans;
4069         struct inode *inode = d_inode(dentry);
4070         int ret;
4071
4072         trans = __unlink_start_trans(dir);
4073         if (IS_ERR(trans))
4074                 return PTR_ERR(trans);
4075
4076         btrfs_record_unlink_dir(trans, dir, d_inode(dentry), 0);
4077
4078         ret = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
4079                                  dentry->d_name.name, dentry->d_name.len);
4080         if (ret)
4081                 goto out;
4082
4083         if (inode->i_nlink == 0) {
4084                 ret = btrfs_orphan_add(trans, inode);
4085                 if (ret)
4086                         goto out;
4087         }
4088
4089 out:
4090         btrfs_end_transaction(trans, root);
4091         btrfs_btree_balance_dirty(root);
4092         return ret;
4093 }
4094
4095 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4096                         struct btrfs_root *root,
4097                         struct inode *dir, u64 objectid,
4098                         const char *name, int name_len)
4099 {
4100         struct btrfs_path *path;
4101         struct extent_buffer *leaf;
4102         struct btrfs_dir_item *di;
4103         struct btrfs_key key;
4104         u64 index;
4105         int ret;
4106         u64 dir_ino = btrfs_ino(dir);
4107
4108         path = btrfs_alloc_path();
4109         if (!path)
4110                 return -ENOMEM;
4111
4112         di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4113                                    name, name_len, -1);
4114         if (IS_ERR_OR_NULL(di)) {
4115                 if (!di)
4116                         ret = -ENOENT;
4117                 else
4118                         ret = PTR_ERR(di);
4119                 goto out;
4120         }
4121
4122         leaf = path->nodes[0];
4123         btrfs_dir_item_key_to_cpu(leaf, di, &key);
4124         WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4125         ret = btrfs_delete_one_dir_name(trans, root, path, di);
4126         if (ret) {
4127                 btrfs_abort_transaction(trans, root, ret);
4128                 goto out;
4129         }
4130         btrfs_release_path(path);
4131
4132         ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4133                                  objectid, root->root_key.objectid,
4134                                  dir_ino, &index, name, name_len);
4135         if (ret < 0) {
4136                 if (ret != -ENOENT) {
4137                         btrfs_abort_transaction(trans, root, ret);
4138                         goto out;
4139                 }
4140                 di = btrfs_search_dir_index_item(root, path, dir_ino,
4141                                                  name, name_len);
4142                 if (IS_ERR_OR_NULL(di)) {
4143                         if (!di)
4144                                 ret = -ENOENT;
4145                         else
4146                                 ret = PTR_ERR(di);
4147                         btrfs_abort_transaction(trans, root, ret);
4148                         goto out;
4149                 }
4150
4151                 leaf = path->nodes[0];
4152                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4153                 btrfs_release_path(path);
4154                 index = key.offset;
4155         }
4156         btrfs_release_path(path);
4157
4158         ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4159         if (ret) {
4160                 btrfs_abort_transaction(trans, root, ret);
4161                 goto out;
4162         }
4163
4164         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
4165         inode_inc_iversion(dir);
4166         dir->i_mtime = dir->i_ctime = current_fs_time(dir->i_sb);
4167         ret = btrfs_update_inode_fallback(trans, root, dir);
4168         if (ret)
4169                 btrfs_abort_transaction(trans, root, ret);
4170 out:
4171         btrfs_free_path(path);
4172         return ret;
4173 }
4174
4175 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4176 {
4177         struct inode *inode = d_inode(dentry);
4178         int err = 0;
4179         struct btrfs_root *root = BTRFS_I(dir)->root;
4180         struct btrfs_trans_handle *trans;
4181
4182         if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4183                 return -ENOTEMPTY;
4184         if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
4185                 return -EPERM;
4186
4187         trans = __unlink_start_trans(dir);
4188         if (IS_ERR(trans))
4189                 return PTR_ERR(trans);
4190
4191         if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4192                 err = btrfs_unlink_subvol(trans, root, dir,
4193                                           BTRFS_I(inode)->location.objectid,
4194                                           dentry->d_name.name,
4195                                           dentry->d_name.len);
4196                 goto out;
4197         }
4198
4199         err = btrfs_orphan_add(trans, inode);
4200         if (err)
4201                 goto out;
4202
4203         /* now the directory is empty */
4204         err = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
4205                                  dentry->d_name.name, dentry->d_name.len);
4206         if (!err)
4207                 btrfs_i_size_write(inode, 0);
4208 out:
4209         btrfs_end_transaction(trans, root);
4210         btrfs_btree_balance_dirty(root);
4211
4212         return err;
4213 }
4214
4215 static int truncate_space_check(struct btrfs_trans_handle *trans,
4216                                 struct btrfs_root *root,
4217                                 u64 bytes_deleted)
4218 {
4219         int ret;
4220
4221         /*
4222          * This is only used to apply pressure to the enospc system, we don't
4223          * intend to use this reservation at all.
4224          */
4225         bytes_deleted = btrfs_csum_bytes_to_leaves(root, bytes_deleted);
4226         bytes_deleted *= root->nodesize;
4227         ret = btrfs_block_rsv_add(root, &root->fs_info->trans_block_rsv,
4228                                   bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
4229         if (!ret) {
4230                 trace_btrfs_space_reservation(root->fs_info, "transaction",
4231                                               trans->transid,
4232                                               bytes_deleted, 1);
4233                 trans->bytes_reserved += bytes_deleted;
4234         }
4235         return ret;
4236
4237 }
4238
4239 static int truncate_inline_extent(struct inode *inode,
4240                                   struct btrfs_path *path,
4241                                   struct btrfs_key *found_key,
4242                                   const u64 item_end,
4243                                   const u64 new_size)
4244 {
4245         struct extent_buffer *leaf = path->nodes[0];
4246         int slot = path->slots[0];
4247         struct btrfs_file_extent_item *fi;
4248         u32 size = (u32)(new_size - found_key->offset);
4249         struct btrfs_root *root = BTRFS_I(inode)->root;
4250
4251         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4252
4253         if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) {
4254                 loff_t offset = new_size;
4255                 loff_t page_end = ALIGN(offset, PAGE_SIZE);
4256
4257                 /*
4258                  * Zero out the remaining of the last page of our inline extent,
4259                  * instead of directly truncating our inline extent here - that
4260                  * would be much more complex (decompressing all the data, then
4261                  * compressing the truncated data, which might be bigger than
4262                  * the size of the inline extent, resize the extent, etc).
4263                  * We release the path because to get the page we might need to
4264                  * read the extent item from disk (data not in the page cache).
4265                  */
4266                 btrfs_release_path(path);
4267                 return btrfs_truncate_block(inode, offset, page_end - offset,
4268                                         0);
4269         }
4270
4271         btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4272         size = btrfs_file_extent_calc_inline_size(size);
4273         btrfs_truncate_item(root, path, size, 1);
4274
4275         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4276                 inode_sub_bytes(inode, item_end + 1 - new_size);
4277
4278         return 0;
4279 }
4280
4281 /*
4282  * this can truncate away extent items, csum items and directory items.
4283  * It starts at a high offset and removes keys until it can't find
4284  * any higher than new_size
4285  *
4286  * csum items that cross the new i_size are truncated to the new size
4287  * as well.
4288  *
4289  * min_type is the minimum key type to truncate down to.  If set to 0, this
4290  * will kill all the items on this inode, including the INODE_ITEM_KEY.
4291  */
4292 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4293                                struct btrfs_root *root,
4294                                struct inode *inode,
4295                                u64 new_size, u32 min_type)
4296 {
4297         struct btrfs_path *path;
4298         struct extent_buffer *leaf;
4299         struct btrfs_file_extent_item *fi;
4300         struct btrfs_key key;
4301         struct btrfs_key found_key;
4302         u64 extent_start = 0;
4303         u64 extent_num_bytes = 0;
4304         u64 extent_offset = 0;
4305         u64 item_end = 0;
4306         u64 last_size = new_size;
4307         u32 found_type = (u8)-1;
4308         int found_extent;
4309         int del_item;
4310         int pending_del_nr = 0;
4311         int pending_del_slot = 0;
4312         int extent_type = -1;
4313         int ret;
4314         int err = 0;
4315         u64 ino = btrfs_ino(inode);
4316         u64 bytes_deleted = 0;
4317         bool be_nice = 0;
4318         bool should_throttle = 0;
4319         bool should_end = 0;
4320
4321         BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4322
4323         /*
4324          * for non-free space inodes and ref cows, we want to back off from
4325          * time to time
4326          */
4327         if (!btrfs_is_free_space_inode(inode) &&
4328             test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4329                 be_nice = 1;
4330
4331         path = btrfs_alloc_path();
4332         if (!path)
4333                 return -ENOMEM;
4334         path->reada = READA_BACK;
4335
4336         /*
4337          * We want to drop from the next block forward in case this new size is
4338          * not block aligned since we will be keeping the last block of the
4339          * extent just the way it is.
4340          */
4341         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4342             root == root->fs_info->tree_root)
4343                 btrfs_drop_extent_cache(inode, ALIGN(new_size,
4344                                         root->sectorsize), (u64)-1, 0);
4345
4346         /*
4347          * This function is also used to drop the items in the log tree before
4348          * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4349          * it is used to drop the loged items. So we shouldn't kill the delayed
4350          * items.
4351          */
4352         if (min_type == 0 && root == BTRFS_I(inode)->root)
4353                 btrfs_kill_delayed_inode_items(inode);
4354
4355         key.objectid = ino;
4356         key.offset = (u64)-1;
4357         key.type = (u8)-1;
4358
4359 search_again:
4360         /*
4361          * with a 16K leaf size and 128MB extents, you can actually queue
4362          * up a huge file in a single leaf.  Most of the time that
4363          * bytes_deleted is > 0, it will be huge by the time we get here
4364          */
4365         if (be_nice && bytes_deleted > SZ_32M) {
4366                 if (btrfs_should_end_transaction(trans, root)) {
4367                         err = -EAGAIN;
4368                         goto error;
4369                 }
4370         }
4371
4372
4373         path->leave_spinning = 1;
4374         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4375         if (ret < 0) {
4376                 err = ret;
4377                 goto out;
4378         }
4379
4380         if (ret > 0) {
4381                 /* there are no items in the tree for us to truncate, we're
4382                  * done
4383                  */
4384                 if (path->slots[0] == 0)
4385                         goto out;
4386                 path->slots[0]--;
4387         }
4388
4389         while (1) {
4390                 fi = NULL;
4391                 leaf = path->nodes[0];
4392                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4393                 found_type = found_key.type;
4394
4395                 if (found_key.objectid != ino)
4396                         break;
4397
4398                 if (found_type < min_type)
4399                         break;
4400
4401                 item_end = found_key.offset;
4402                 if (found_type == BTRFS_EXTENT_DATA_KEY) {
4403                         fi = btrfs_item_ptr(leaf, path->slots[0],
4404                                             struct btrfs_file_extent_item);
4405                         extent_type = btrfs_file_extent_type(leaf, fi);
4406                         if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4407                                 item_end +=
4408                                     btrfs_file_extent_num_bytes(leaf, fi);
4409                         } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4410                                 item_end += btrfs_file_extent_inline_len(leaf,
4411                                                          path->slots[0], fi);
4412                         }
4413                         item_end--;
4414                 }
4415                 if (found_type > min_type) {
4416                         del_item = 1;
4417                 } else {
4418                         if (item_end < new_size)
4419                                 break;
4420                         if (found_key.offset >= new_size)
4421                                 del_item = 1;
4422                         else
4423                                 del_item = 0;
4424                 }
4425                 found_extent = 0;
4426                 /* FIXME, shrink the extent if the ref count is only 1 */
4427                 if (found_type != BTRFS_EXTENT_DATA_KEY)
4428                         goto delete;
4429
4430                 if (del_item)
4431                         last_size = found_key.offset;
4432                 else
4433                         last_size = new_size;
4434
4435                 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4436                         u64 num_dec;
4437                         extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4438                         if (!del_item) {
4439                                 u64 orig_num_bytes =
4440                                         btrfs_file_extent_num_bytes(leaf, fi);
4441                                 extent_num_bytes = ALIGN(new_size -
4442                                                 found_key.offset,
4443                                                 root->sectorsize);
4444                                 btrfs_set_file_extent_num_bytes(leaf, fi,
4445                                                          extent_num_bytes);
4446                                 num_dec = (orig_num_bytes -
4447                                            extent_num_bytes);
4448                                 if (test_bit(BTRFS_ROOT_REF_COWS,
4449                                              &root->state) &&
4450                                     extent_start != 0)
4451                                         inode_sub_bytes(inode, num_dec);
4452                                 btrfs_mark_buffer_dirty(leaf);
4453                         } else {
4454                                 extent_num_bytes =
4455                                         btrfs_file_extent_disk_num_bytes(leaf,
4456                                                                          fi);
4457                                 extent_offset = found_key.offset -
4458                                         btrfs_file_extent_offset(leaf, fi);
4459
4460                                 /* FIXME blocksize != 4096 */
4461                                 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4462                                 if (extent_start != 0) {
4463                                         found_extent = 1;
4464                                         if (test_bit(BTRFS_ROOT_REF_COWS,
4465                                                      &root->state))
4466                                                 inode_sub_bytes(inode, num_dec);
4467                                 }
4468                         }
4469                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4470                         /*
4471                          * we can't truncate inline items that have had
4472                          * special encodings
4473                          */
4474                         if (!del_item &&
4475                             btrfs_file_extent_encryption(leaf, fi) == 0 &&
4476                             btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4477
4478                                 /*
4479                                  * Need to release path in order to truncate a
4480                                  * compressed extent. So delete any accumulated
4481                                  * extent items so far.
4482                                  */
4483                                 if (btrfs_file_extent_compression(leaf, fi) !=
4484                                     BTRFS_COMPRESS_NONE && pending_del_nr) {
4485                                         err = btrfs_del_items(trans, root, path,
4486                                                               pending_del_slot,
4487                                                               pending_del_nr);
4488                                         if (err) {
4489                                                 btrfs_abort_transaction(trans,
4490                                                                         root,
4491                                                                         err);
4492                                                 goto error;
4493                                         }
4494                                         pending_del_nr = 0;
4495                                 }
4496
4497                                 err = truncate_inline_extent(inode, path,
4498                                                              &found_key,
4499                                                              item_end,
4500                                                              new_size);
4501                                 if (err) {
4502                                         btrfs_abort_transaction(trans,
4503                                                                 root, err);
4504                                         goto error;
4505                                 }
4506                         } else if (test_bit(BTRFS_ROOT_REF_COWS,
4507                                             &root->state)) {
4508                                 inode_sub_bytes(inode, item_end + 1 - new_size);
4509                         }
4510                 }
4511 delete:
4512                 if (del_item) {
4513                         if (!pending_del_nr) {
4514                                 /* no pending yet, add ourselves */
4515                                 pending_del_slot = path->slots[0];
4516                                 pending_del_nr = 1;
4517                         } else if (pending_del_nr &&
4518                                    path->slots[0] + 1 == pending_del_slot) {
4519                                 /* hop on the pending chunk */
4520                                 pending_del_nr++;
4521                                 pending_del_slot = path->slots[0];
4522                         } else {
4523                                 BUG();
4524                         }
4525                 } else {
4526                         break;
4527                 }
4528                 should_throttle = 0;
4529
4530                 if (found_extent &&
4531                     (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4532                      root == root->fs_info->tree_root)) {
4533                         btrfs_set_path_blocking(path);
4534                         bytes_deleted += extent_num_bytes;
4535                         ret = btrfs_free_extent(trans, root, extent_start,
4536                                                 extent_num_bytes, 0,
4537                                                 btrfs_header_owner(leaf),
4538                                                 ino, extent_offset);
4539                         BUG_ON(ret);
4540                         if (btrfs_should_throttle_delayed_refs(trans, root))
4541                                 btrfs_async_run_delayed_refs(root,
4542                                         trans->delayed_ref_updates * 2, 0);
4543                         if (be_nice) {
4544                                 if (truncate_space_check(trans, root,
4545                                                          extent_num_bytes)) {
4546                                         should_end = 1;
4547                                 }
4548                                 if (btrfs_should_throttle_delayed_refs(trans,
4549                                                                        root)) {
4550                                         should_throttle = 1;
4551                                 }
4552                         }
4553                 }
4554
4555                 if (found_type == BTRFS_INODE_ITEM_KEY)
4556                         break;
4557
4558                 if (path->slots[0] == 0 ||
4559                     path->slots[0] != pending_del_slot ||
4560                     should_throttle || should_end) {
4561                         if (pending_del_nr) {
4562                                 ret = btrfs_del_items(trans, root, path,
4563                                                 pending_del_slot,
4564                                                 pending_del_nr);
4565                                 if (ret) {
4566                                         btrfs_abort_transaction(trans,
4567                                                                 root, ret);
4568                                         goto error;
4569                                 }
4570                                 pending_del_nr = 0;
4571                         }
4572                         btrfs_release_path(path);
4573                         if (should_throttle) {
4574                                 unsigned long updates = trans->delayed_ref_updates;
4575                                 if (updates) {
4576                                         trans->delayed_ref_updates = 0;
4577                                         ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4578                                         if (ret && !err)
4579                                                 err = ret;
4580                                 }
4581                         }
4582                         /*
4583                          * if we failed to refill our space rsv, bail out
4584                          * and let the transaction restart
4585                          */
4586                         if (should_end) {
4587                                 err = -EAGAIN;
4588                                 goto error;
4589                         }
4590                         goto search_again;
4591                 } else {
4592                         path->slots[0]--;
4593                 }
4594         }
4595 out:
4596         if (pending_del_nr) {
4597                 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4598                                       pending_del_nr);
4599                 if (ret)
4600                         btrfs_abort_transaction(trans, root, ret);
4601         }
4602 error:
4603         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4604                 btrfs_ordered_update_i_size(inode, last_size, NULL);
4605
4606         btrfs_free_path(path);
4607
4608         if (be_nice && bytes_deleted > SZ_32M) {
4609                 unsigned long updates = trans->delayed_ref_updates;
4610                 if (updates) {
4611                         trans->delayed_ref_updates = 0;
4612                         ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4613                         if (ret && !err)
4614                                 err = ret;
4615                 }
4616         }
4617         return err;
4618 }
4619
4620 /*
4621  * btrfs_truncate_block - read, zero a chunk and write a block
4622  * @inode - inode that we're zeroing
4623  * @from - the offset to start zeroing
4624  * @len - the length to zero, 0 to zero the entire range respective to the
4625  *      offset
4626  * @front - zero up to the offset instead of from the offset on
4627  *
4628  * This will find the block for the "from" offset and cow the block and zero the
4629  * part we want to zero.  This is used with truncate and hole punching.
4630  */
4631 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4632                         int front)
4633 {
4634         struct address_space *mapping = inode->i_mapping;
4635         struct btrfs_root *root = BTRFS_I(inode)->root;
4636         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4637         struct btrfs_ordered_extent *ordered;
4638         struct extent_state *cached_state = NULL;
4639         char *kaddr;
4640         u32 blocksize = root->sectorsize;
4641         pgoff_t index = from >> PAGE_SHIFT;
4642         unsigned offset = from & (blocksize - 1);
4643         struct page *page;
4644         gfp_t mask = btrfs_alloc_write_mask(mapping);
4645         int ret = 0;
4646         u64 block_start;
4647         u64 block_end;
4648
4649         if ((offset & (blocksize - 1)) == 0 &&
4650             (!len || ((len & (blocksize - 1)) == 0)))
4651                 goto out;
4652
4653         ret = btrfs_delalloc_reserve_space(inode,
4654                         round_down(from, blocksize), blocksize);
4655         if (ret)
4656                 goto out;
4657
4658 again:
4659         page = find_or_create_page(mapping, index, mask);
4660         if (!page) {
4661                 btrfs_delalloc_release_space(inode,
4662                                 round_down(from, blocksize),
4663                                 blocksize);
4664                 ret = -ENOMEM;
4665                 goto out;
4666         }
4667
4668         block_start = round_down(from, blocksize);
4669         block_end = block_start + blocksize - 1;
4670
4671         if (!PageUptodate(page)) {
4672                 ret = btrfs_readpage(NULL, page);
4673                 lock_page(page);
4674                 if (page->mapping != mapping) {
4675                         unlock_page(page);
4676                         put_page(page);
4677                         goto again;
4678                 }
4679                 if (!PageUptodate(page)) {
4680                         ret = -EIO;
4681                         goto out_unlock;
4682                 }
4683         }
4684         wait_on_page_writeback(page);
4685
4686         lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4687         set_page_extent_mapped(page);
4688
4689         ordered = btrfs_lookup_ordered_extent(inode, block_start);
4690         if (ordered) {
4691                 unlock_extent_cached(io_tree, block_start, block_end,
4692                                      &cached_state, GFP_NOFS);
4693                 unlock_page(page);
4694                 put_page(page);
4695                 btrfs_start_ordered_extent(inode, ordered, 1);
4696                 btrfs_put_ordered_extent(ordered);
4697                 goto again;
4698         }
4699
4700         clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
4701                           EXTENT_DIRTY | EXTENT_DELALLOC |
4702                           EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4703                           0, 0, &cached_state, GFP_NOFS);
4704
4705         ret = btrfs_set_extent_delalloc(inode, block_start, block_end,
4706                                         &cached_state);
4707         if (ret) {
4708                 unlock_extent_cached(io_tree, block_start, block_end,
4709                                      &cached_state, GFP_NOFS);
4710                 goto out_unlock;
4711         }
4712
4713         if (offset != blocksize) {
4714                 if (!len)
4715                         len = blocksize - offset;
4716                 kaddr = kmap(page);
4717                 if (front)
4718                         memset(kaddr + (block_start - page_offset(page)),
4719                                 0, offset);
4720                 else
4721                         memset(kaddr + (block_start - page_offset(page)) +  offset,
4722                                 0, len);
4723                 flush_dcache_page(page);
4724                 kunmap(page);
4725         }
4726         ClearPageChecked(page);
4727         set_page_dirty(page);
4728         unlock_extent_cached(io_tree, block_start, block_end, &cached_state,
4729                              GFP_NOFS);
4730
4731 out_unlock:
4732         if (ret)
4733                 btrfs_delalloc_release_space(inode, block_start,
4734                                              blocksize);
4735         unlock_page(page);
4736         put_page(page);
4737 out:
4738         return ret;
4739 }
4740
4741 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4742                              u64 offset, u64 len)
4743 {
4744         struct btrfs_trans_handle *trans;
4745         int ret;
4746
4747         /*
4748          * Still need to make sure the inode looks like it's been updated so
4749          * that any holes get logged if we fsync.
4750          */
4751         if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4752                 BTRFS_I(inode)->last_trans = root->fs_info->generation;
4753                 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4754                 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4755                 return 0;
4756         }
4757
4758         /*
4759          * 1 - for the one we're dropping
4760          * 1 - for the one we're adding
4761          * 1 - for updating the inode.
4762          */
4763         trans = btrfs_start_transaction(root, 3);
4764         if (IS_ERR(trans))
4765                 return PTR_ERR(trans);
4766
4767         ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4768         if (ret) {
4769                 btrfs_abort_transaction(trans, root, ret);
4770                 btrfs_end_transaction(trans, root);
4771                 return ret;
4772         }
4773
4774         ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4775                                        0, 0, len, 0, len, 0, 0, 0);
4776         if (ret)
4777                 btrfs_abort_transaction(trans, root, ret);
4778         else
4779                 btrfs_update_inode(trans, root, inode);
4780         btrfs_end_transaction(trans, root);
4781         return ret;
4782 }
4783
4784 /*
4785  * This function puts in dummy file extents for the area we're creating a hole
4786  * for.  So if we are truncating this file to a larger size we need to insert
4787  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4788  * the range between oldsize and size
4789  */
4790 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4791 {
4792         struct btrfs_root *root = BTRFS_I(inode)->root;
4793         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4794         struct extent_map *em = NULL;
4795         struct extent_state *cached_state = NULL;
4796         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4797         u64 hole_start = ALIGN(oldsize, root->sectorsize);
4798         u64 block_end = ALIGN(size, root->sectorsize);
4799         u64 last_byte;
4800         u64 cur_offset;
4801         u64 hole_size;
4802         int err = 0;
4803
4804         /*
4805          * If our size started in the middle of a block we need to zero out the
4806          * rest of the block before we expand the i_size, otherwise we could
4807          * expose stale data.
4808          */
4809         err = btrfs_truncate_block(inode, oldsize, 0, 0);
4810         if (err)
4811                 return err;
4812
4813         if (size <= hole_start)
4814                 return 0;
4815
4816         while (1) {
4817                 struct btrfs_ordered_extent *ordered;
4818
4819                 lock_extent_bits(io_tree, hole_start, block_end - 1,
4820                                  &cached_state);
4821                 ordered = btrfs_lookup_ordered_range(inode, hole_start,
4822                                                      block_end - hole_start);
4823                 if (!ordered)
4824                         break;
4825                 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4826                                      &cached_state, GFP_NOFS);
4827                 btrfs_start_ordered_extent(inode, ordered, 1);
4828                 btrfs_put_ordered_extent(ordered);
4829         }
4830
4831         cur_offset = hole_start;
4832         while (1) {
4833                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4834                                 block_end - cur_offset, 0);
4835                 if (IS_ERR(em)) {
4836                         err = PTR_ERR(em);
4837                         em = NULL;
4838                         break;
4839                 }
4840                 last_byte = min(extent_map_end(em), block_end);
4841                 last_byte = ALIGN(last_byte , root->sectorsize);
4842                 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4843                         struct extent_map *hole_em;
4844                         hole_size = last_byte - cur_offset;
4845
4846                         err = maybe_insert_hole(root, inode, cur_offset,
4847                                                 hole_size);
4848                         if (err)
4849                                 break;
4850                         btrfs_drop_extent_cache(inode, cur_offset,
4851                                                 cur_offset + hole_size - 1, 0);
4852                         hole_em = alloc_extent_map();
4853                         if (!hole_em) {
4854                                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4855                                         &BTRFS_I(inode)->runtime_flags);
4856                                 goto next;
4857                         }
4858                         hole_em->start = cur_offset;
4859                         hole_em->len = hole_size;
4860                         hole_em->orig_start = cur_offset;
4861
4862                         hole_em->block_start = EXTENT_MAP_HOLE;
4863                         hole_em->block_len = 0;
4864                         hole_em->orig_block_len = 0;
4865                         hole_em->ram_bytes = hole_size;
4866                         hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4867                         hole_em->compress_type = BTRFS_COMPRESS_NONE;
4868                         hole_em->generation = root->fs_info->generation;
4869
4870                         while (1) {
4871                                 write_lock(&em_tree->lock);
4872                                 err = add_extent_mapping(em_tree, hole_em, 1);
4873                                 write_unlock(&em_tree->lock);
4874                                 if (err != -EEXIST)
4875                                         break;
4876                                 btrfs_drop_extent_cache(inode, cur_offset,
4877                                                         cur_offset +
4878                                                         hole_size - 1, 0);
4879                         }
4880                         free_extent_map(hole_em);
4881                 }
4882 next:
4883                 free_extent_map(em);
4884                 em = NULL;
4885                 cur_offset = last_byte;
4886                 if (cur_offset >= block_end)
4887                         break;
4888         }
4889         free_extent_map(em);
4890         unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4891                              GFP_NOFS);
4892         return err;
4893 }
4894
4895 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4896 {
4897         struct btrfs_root *root = BTRFS_I(inode)->root;
4898         struct btrfs_trans_handle *trans;
4899         loff_t oldsize = i_size_read(inode);
4900         loff_t newsize = attr->ia_size;
4901         int mask = attr->ia_valid;
4902         int ret;
4903
4904         /*
4905          * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4906          * special case where we need to update the times despite not having
4907          * these flags set.  For all other operations the VFS set these flags
4908          * explicitly if it wants a timestamp update.
4909          */
4910         if (newsize != oldsize) {
4911                 inode_inc_iversion(inode);
4912                 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4913                         inode->i_ctime = inode->i_mtime =
4914                                 current_fs_time(inode->i_sb);
4915         }
4916
4917         if (newsize > oldsize) {
4918                 /*
4919                  * Don't do an expanding truncate while snapshoting is ongoing.
4920                  * This is to ensure the snapshot captures a fully consistent
4921                  * state of this file - if the snapshot captures this expanding
4922                  * truncation, it must capture all writes that happened before
4923                  * this truncation.
4924                  */
4925                 btrfs_wait_for_snapshot_creation(root);
4926                 ret = btrfs_cont_expand(inode, oldsize, newsize);
4927                 if (ret) {
4928                         btrfs_end_write_no_snapshoting(root);
4929                         return ret;
4930                 }
4931
4932                 trans = btrfs_start_transaction(root, 1);
4933                 if (IS_ERR(trans)) {
4934                         btrfs_end_write_no_snapshoting(root);
4935                         return PTR_ERR(trans);
4936                 }
4937
4938                 i_size_write(inode, newsize);
4939                 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4940                 pagecache_isize_extended(inode, oldsize, newsize);
4941                 ret = btrfs_update_inode(trans, root, inode);
4942                 btrfs_end_write_no_snapshoting(root);
4943                 btrfs_end_transaction(trans, root);
4944         } else {
4945
4946                 /*
4947                  * We're truncating a file that used to have good data down to
4948                  * zero. Make sure it gets into the ordered flush list so that
4949                  * any new writes get down to disk quickly.
4950                  */
4951                 if (newsize == 0)
4952                         set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4953                                 &BTRFS_I(inode)->runtime_flags);
4954
4955                 /*
4956                  * 1 for the orphan item we're going to add
4957                  * 1 for the orphan item deletion.
4958                  */
4959                 trans = btrfs_start_transaction(root, 2);
4960                 if (IS_ERR(trans))
4961                         return PTR_ERR(trans);
4962
4963                 /*
4964                  * We need to do this in case we fail at _any_ point during the
4965                  * actual truncate.  Once we do the truncate_setsize we could
4966                  * invalidate pages which forces any outstanding ordered io to
4967                  * be instantly completed which will give us extents that need
4968                  * to be truncated.  If we fail to get an orphan inode down we
4969                  * could have left over extents that were never meant to live,
4970                  * so we need to garuntee from this point on that everything
4971                  * will be consistent.
4972                  */
4973                 ret = btrfs_orphan_add(trans, inode);
4974                 btrfs_end_transaction(trans, root);
4975                 if (ret)
4976                         return ret;
4977
4978                 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4979                 truncate_setsize(inode, newsize);
4980
4981                 /* Disable nonlocked read DIO to avoid the end less truncate */
4982                 btrfs_inode_block_unlocked_dio(inode);
4983                 inode_dio_wait(inode);
4984                 btrfs_inode_resume_unlocked_dio(inode);
4985
4986                 ret = btrfs_truncate(inode);
4987                 if (ret && inode->i_nlink) {
4988                         int err;
4989
4990                         /*
4991                          * failed to truncate, disk_i_size is only adjusted down
4992                          * as we remove extents, so it should represent the true
4993                          * size of the inode, so reset the in memory size and
4994                          * delete our orphan entry.
4995                          */
4996                         trans = btrfs_join_transaction(root);
4997                         if (IS_ERR(trans)) {
4998                                 btrfs_orphan_del(NULL, inode);
4999                                 return ret;
5000                         }
5001                         i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5002                         err = btrfs_orphan_del(trans, inode);
5003                         if (err)
5004                                 btrfs_abort_transaction(trans, root, err);
5005                         btrfs_end_transaction(trans, root);
5006                 }
5007         }
5008
5009         return ret;
5010 }
5011
5012 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5013 {
5014         struct inode *inode = d_inode(dentry);
5015         struct btrfs_root *root = BTRFS_I(inode)->root;
5016         int err;
5017
5018         if (btrfs_root_readonly(root))
5019                 return -EROFS;
5020
5021         err = inode_change_ok(inode, attr);
5022         if (err)
5023                 return err;
5024
5025         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5026                 err = btrfs_setsize(inode, attr);
5027                 if (err)
5028                         return err;
5029         }
5030
5031         if (attr->ia_valid) {
5032                 setattr_copy(inode, attr);
5033                 inode_inc_iversion(inode);
5034                 err = btrfs_dirty_inode(inode);
5035
5036                 if (!err && attr->ia_valid & ATTR_MODE)
5037                         err = posix_acl_chmod(inode, inode->i_mode);
5038         }
5039
5040         return err;
5041 }
5042
5043 /*
5044  * While truncating the inode pages during eviction, we get the VFS calling
5045  * btrfs_invalidatepage() against each page of the inode. This is slow because
5046  * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5047  * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5048  * extent_state structures over and over, wasting lots of time.
5049  *
5050  * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5051  * those expensive operations on a per page basis and do only the ordered io
5052  * finishing, while we release here the extent_map and extent_state structures,
5053  * without the excessive merging and splitting.
5054  */
5055 static void evict_inode_truncate_pages(struct inode *inode)
5056 {
5057         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5058         struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5059         struct rb_node *node;
5060
5061         ASSERT(inode->i_state & I_FREEING);
5062         truncate_inode_pages_final(&inode->i_data);
5063
5064         write_lock(&map_tree->lock);
5065         while (!RB_EMPTY_ROOT(&map_tree->map)) {
5066                 struct extent_map *em;
5067
5068                 node = rb_first(&map_tree->map);
5069                 em = rb_entry(node, struct extent_map, rb_node);
5070                 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5071                 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5072                 remove_extent_mapping(map_tree, em);
5073                 free_extent_map(em);
5074                 if (need_resched()) {
5075                         write_unlock(&map_tree->lock);
5076                         cond_resched();
5077                         write_lock(&map_tree->lock);
5078                 }
5079         }
5080         write_unlock(&map_tree->lock);
5081
5082         /*
5083          * Keep looping until we have no more ranges in the io tree.
5084          * We can have ongoing bios started by readpages (called from readahead)
5085          * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5086          * still in progress (unlocked the pages in the bio but did not yet
5087          * unlocked the ranges in the io tree). Therefore this means some
5088          * ranges can still be locked and eviction started because before
5089          * submitting those bios, which are executed by a separate task (work
5090          * queue kthread), inode references (inode->i_count) were not taken
5091          * (which would be dropped in the end io callback of each bio).
5092          * Therefore here we effectively end up waiting for those bios and
5093          * anyone else holding locked ranges without having bumped the inode's
5094          * reference count - if we don't do it, when they access the inode's
5095          * io_tree to unlock a range it may be too late, leading to an
5096          * use-after-free issue.
5097          */
5098         spin_lock(&io_tree->lock);
5099         while (!RB_EMPTY_ROOT(&io_tree->state)) {
5100                 struct extent_state *state;
5101                 struct extent_state *cached_state = NULL;
5102                 u64 start;
5103                 u64 end;
5104
5105                 node = rb_first(&io_tree->state);
5106                 state = rb_entry(node, struct extent_state, rb_node);
5107                 start = state->start;
5108                 end = state->end;
5109                 spin_unlock(&io_tree->lock);
5110
5111                 lock_extent_bits(io_tree, start, end, &cached_state);
5112
5113                 /*
5114                  * If still has DELALLOC flag, the extent didn't reach disk,
5115                  * and its reserved space won't be freed by delayed_ref.
5116                  * So we need to free its reserved space here.
5117                  * (Refer to comment in btrfs_invalidatepage, case 2)
5118                  *
5119                  * Note, end is the bytenr of last byte, so we need + 1 here.
5120                  */
5121                 if (state->state & EXTENT_DELALLOC)
5122                         btrfs_qgroup_free_data(inode, start, end - start + 1);
5123
5124                 clear_extent_bit(io_tree, start, end,
5125                                  EXTENT_LOCKED | EXTENT_DIRTY |
5126                                  EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5127                                  EXTENT_DEFRAG, 1, 1,
5128                                  &cached_state, GFP_NOFS);
5129
5130                 cond_resched();
5131                 spin_lock(&io_tree->lock);
5132         }
5133         spin_unlock(&io_tree->lock);
5134 }
5135
5136 void btrfs_evict_inode(struct inode *inode)
5137 {
5138         struct btrfs_trans_handle *trans;
5139         struct btrfs_root *root = BTRFS_I(inode)->root;
5140         struct btrfs_block_rsv *rsv, *global_rsv;
5141         int steal_from_global = 0;
5142         u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
5143         int ret;
5144
5145         trace_btrfs_inode_evict(inode);
5146
5147         evict_inode_truncate_pages(inode);
5148
5149         if (inode->i_nlink &&
5150             ((btrfs_root_refs(&root->root_item) != 0 &&
5151               root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5152              btrfs_is_free_space_inode(inode)))
5153                 goto no_delete;
5154
5155         if (is_bad_inode(inode)) {
5156                 btrfs_orphan_del(NULL, inode);
5157                 goto no_delete;
5158         }
5159         /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
5160         if (!special_file(inode->i_mode))
5161                 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5162
5163         btrfs_free_io_failure_record(inode, 0, (u64)-1);
5164
5165         if (root->fs_info->log_root_recovering) {
5166                 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
5167                                  &BTRFS_I(inode)->runtime_flags));
5168                 goto no_delete;
5169         }
5170
5171         if (inode->i_nlink > 0) {
5172                 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5173                        root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5174                 goto no_delete;
5175         }
5176
5177         ret = btrfs_commit_inode_delayed_inode(inode);
5178         if (ret) {
5179                 btrfs_orphan_del(NULL, inode);
5180                 goto no_delete;
5181         }
5182
5183         rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
5184         if (!rsv) {
5185                 btrfs_orphan_del(NULL, inode);
5186                 goto no_delete;
5187         }
5188         rsv->size = min_size;
5189         rsv->failfast = 1;
5190         global_rsv = &root->fs_info->global_block_rsv;
5191
5192         btrfs_i_size_write(inode, 0);
5193
5194         /*
5195          * This is a bit simpler than btrfs_truncate since we've already
5196          * reserved our space for our orphan item in the unlink, so we just
5197          * need to reserve some slack space in case we add bytes and update
5198          * inode item when doing the truncate.
5199          */
5200         while (1) {
5201                 ret = btrfs_block_rsv_refill(root, rsv, min_size,
5202                                              BTRFS_RESERVE_FLUSH_LIMIT);
5203
5204                 /*
5205                  * Try and steal from the global reserve since we will
5206                  * likely not use this space anyway, we want to try as
5207                  * hard as possible to get this to work.
5208                  */
5209                 if (ret)
5210                         steal_from_global++;
5211                 else
5212                         steal_from_global = 0;
5213                 ret = 0;
5214
5215                 /*
5216                  * steal_from_global == 0: we reserved stuff, hooray!
5217                  * steal_from_global == 1: we didn't reserve stuff, boo!
5218                  * steal_from_global == 2: we've committed, still not a lot of
5219                  * room but maybe we'll have room in the global reserve this
5220                  * time.
5221                  * steal_from_global == 3: abandon all hope!
5222                  */
5223                 if (steal_from_global > 2) {
5224                         btrfs_warn(root->fs_info,
5225                                 "Could not get space for a delete, will truncate on mount %d",
5226                                 ret);
5227                         btrfs_orphan_del(NULL, inode);
5228                         btrfs_free_block_rsv(root, rsv);
5229                         goto no_delete;
5230                 }
5231
5232                 trans = btrfs_join_transaction(root);
5233                 if (IS_ERR(trans)) {
5234                         btrfs_orphan_del(NULL, inode);
5235                         btrfs_free_block_rsv(root, rsv);
5236                         goto no_delete;
5237                 }
5238
5239                 /*
5240                  * We can't just steal from the global reserve, we need tomake
5241                  * sure there is room to do it, if not we need to commit and try
5242                  * again.
5243                  */
5244                 if (steal_from_global) {
5245                         if (!btrfs_check_space_for_delayed_refs(trans, root))
5246                                 ret = btrfs_block_rsv_migrate(global_rsv, rsv,
5247                                                               min_size);
5248                         else
5249                                 ret = -ENOSPC;
5250                 }
5251
5252                 /*
5253                  * Couldn't steal from the global reserve, we have too much
5254                  * pending stuff built up, commit the transaction and try it
5255                  * again.
5256                  */
5257                 if (ret) {
5258                         ret = btrfs_commit_transaction(trans, root);
5259                         if (ret) {
5260                                 btrfs_orphan_del(NULL, inode);
5261                                 btrfs_free_block_rsv(root, rsv);
5262                                 goto no_delete;
5263                         }
5264                         continue;
5265                 } else {
5266                         steal_from_global = 0;
5267                 }
5268
5269                 trans->block_rsv = rsv;
5270
5271                 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5272                 if (ret != -ENOSPC && ret != -EAGAIN)
5273                         break;
5274
5275                 trans->block_rsv = &root->fs_info->trans_block_rsv;
5276                 btrfs_end_transaction(trans, root);
5277                 trans = NULL;
5278                 btrfs_btree_balance_dirty(root);
5279         }
5280
5281         btrfs_free_block_rsv(root, rsv);
5282
5283         /*
5284          * Errors here aren't a big deal, it just means we leave orphan items
5285          * in the tree.  They will be cleaned up on the next mount.
5286          */
5287         if (ret == 0) {
5288                 trans->block_rsv = root->orphan_block_rsv;
5289                 btrfs_orphan_del(trans, inode);
5290         } else {
5291                 btrfs_orphan_del(NULL, inode);
5292         }
5293
5294         trans->block_rsv = &root->fs_info->trans_block_rsv;
5295         if (!(root == root->fs_info->tree_root ||
5296               root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5297                 btrfs_return_ino(root, btrfs_ino(inode));
5298
5299         btrfs_end_transaction(trans, root);
5300         btrfs_btree_balance_dirty(root);
5301 no_delete:
5302         btrfs_remove_delayed_node(inode);
5303         clear_inode(inode);
5304 }
5305
5306 /*
5307  * this returns the key found in the dir entry in the location pointer.
5308  * If no dir entries were found, location->objectid is 0.
5309  */
5310 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5311                                struct btrfs_key *location)
5312 {
5313         const char *name = dentry->d_name.name;
5314         int namelen = dentry->d_name.len;
5315         struct btrfs_dir_item *di;
5316         struct btrfs_path *path;
5317         struct btrfs_root *root = BTRFS_I(dir)->root;
5318         int ret = 0;
5319
5320         path = btrfs_alloc_path();
5321         if (!path)
5322                 return -ENOMEM;
5323
5324         di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
5325                                     namelen, 0);
5326         if (IS_ERR(di))
5327                 ret = PTR_ERR(di);
5328
5329         if (IS_ERR_OR_NULL(di))
5330                 goto out_err;
5331
5332         btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5333 out:
5334         btrfs_free_path(path);
5335         return ret;
5336 out_err:
5337         location->objectid = 0;
5338         goto out;
5339 }
5340
5341 /*
5342  * when we hit a tree root in a directory, the btrfs part of the inode
5343  * needs to be changed to reflect the root directory of the tree root.  This
5344  * is kind of like crossing a mount point.
5345  */
5346 static int fixup_tree_root_location(struct btrfs_root *root,
5347                                     struct inode *dir,
5348                                     struct dentry *dentry,
5349                                     struct btrfs_key *location,
5350                                     struct btrfs_root **sub_root)
5351 {
5352         struct btrfs_path *path;
5353         struct btrfs_root *new_root;
5354         struct btrfs_root_ref *ref;
5355         struct extent_buffer *leaf;
5356         struct btrfs_key key;
5357         int ret;
5358         int err = 0;
5359
5360         path = btrfs_alloc_path();
5361         if (!path) {
5362                 err = -ENOMEM;
5363                 goto out;
5364         }
5365
5366         err = -ENOENT;
5367         key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5368         key.type = BTRFS_ROOT_REF_KEY;
5369         key.offset = location->objectid;
5370
5371         ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path,
5372                                 0, 0);
5373         if (ret) {
5374                 if (ret < 0)
5375                         err = ret;
5376                 goto out;
5377         }
5378
5379         leaf = path->nodes[0];
5380         ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5381         if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5382             btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5383                 goto out;
5384
5385         ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5386                                    (unsigned long)(ref + 1),
5387                                    dentry->d_name.len);
5388         if (ret)
5389                 goto out;
5390
5391         btrfs_release_path(path);
5392
5393         new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
5394         if (IS_ERR(new_root)) {
5395                 err = PTR_ERR(new_root);
5396                 goto out;
5397         }
5398
5399         *sub_root = new_root;
5400         location->objectid = btrfs_root_dirid(&new_root->root_item);
5401         location->type = BTRFS_INODE_ITEM_KEY;
5402         location->offset = 0;
5403         err = 0;
5404 out:
5405         btrfs_free_path(path);
5406         return err;
5407 }
5408
5409 static void inode_tree_add(struct inode *inode)
5410 {
5411         struct btrfs_root *root = BTRFS_I(inode)->root;
5412         struct btrfs_inode *entry;
5413         struct rb_node **p;
5414         struct rb_node *parent;
5415         struct rb_node *new = &BTRFS_I(inode)->rb_node;
5416         u64 ino = btrfs_ino(inode);
5417
5418         if (inode_unhashed(inode))
5419                 return;
5420         parent = NULL;
5421         spin_lock(&root->inode_lock);
5422         p = &root->inode_tree.rb_node;
5423         while (*p) {
5424                 parent = *p;
5425                 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5426
5427                 if (ino < btrfs_ino(&entry->vfs_inode))
5428                         p = &parent->rb_left;
5429                 else if (ino > btrfs_ino(&entry->vfs_inode))
5430                         p = &parent->rb_right;
5431                 else {
5432                         WARN_ON(!(entry->vfs_inode.i_state &
5433                                   (I_WILL_FREE | I_FREEING)));
5434                         rb_replace_node(parent, new, &root->inode_tree);
5435                         RB_CLEAR_NODE(parent);
5436                         spin_unlock(&root->inode_lock);
5437                         return;
5438                 }
5439         }
5440         rb_link_node(new, parent, p);
5441         rb_insert_color(new, &root->inode_tree);
5442         spin_unlock(&root->inode_lock);
5443 }
5444
5445 static void inode_tree_del(struct inode *inode)
5446 {
5447         struct btrfs_root *root = BTRFS_I(inode)->root;
5448         int empty = 0;
5449
5450         spin_lock(&root->inode_lock);
5451         if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5452                 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5453                 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5454                 empty = RB_EMPTY_ROOT(&root->inode_tree);
5455         }
5456         spin_unlock(&root->inode_lock);
5457
5458         if (empty && btrfs_root_refs(&root->root_item) == 0) {
5459                 synchronize_srcu(&root->fs_info->subvol_srcu);
5460                 spin_lock(&root->inode_lock);
5461                 empty = RB_EMPTY_ROOT(&root->inode_tree);
5462                 spin_unlock(&root->inode_lock);
5463                 if (empty)
5464                         btrfs_add_dead_root(root);
5465         }
5466 }
5467
5468 void btrfs_invalidate_inodes(struct btrfs_root *root)
5469 {
5470         struct rb_node *node;
5471         struct rb_node *prev;
5472         struct btrfs_inode *entry;
5473         struct inode *inode;
5474         u64 objectid = 0;
5475
5476         if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5477                 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
5478
5479         spin_lock(&root->inode_lock);
5480 again:
5481         node = root->inode_tree.rb_node;
5482         prev = NULL;
5483         while (node) {
5484                 prev = node;
5485                 entry = rb_entry(node, struct btrfs_inode, rb_node);
5486
5487                 if (objectid < btrfs_ino(&entry->vfs_inode))
5488                         node = node->rb_left;
5489                 else if (objectid > btrfs_ino(&entry->vfs_inode))
5490                         node = node->rb_right;
5491                 else
5492                         break;
5493         }
5494         if (!node) {
5495                 while (prev) {
5496                         entry = rb_entry(prev, struct btrfs_inode, rb_node);
5497                         if (objectid <= btrfs_ino(&entry->vfs_inode)) {
5498                                 node = prev;
5499                                 break;
5500                         }
5501                         prev = rb_next(prev);
5502                 }
5503         }
5504         while (node) {
5505                 entry = rb_entry(node, struct btrfs_inode, rb_node);
5506                 objectid = btrfs_ino(&entry->vfs_inode) + 1;
5507                 inode = igrab(&entry->vfs_inode);
5508                 if (inode) {
5509                         spin_unlock(&root->inode_lock);
5510                         if (atomic_read(&inode->i_count) > 1)
5511                                 d_prune_aliases(inode);
5512                         /*
5513                          * btrfs_drop_inode will have it removed from
5514                          * the inode cache when its usage count
5515                          * hits zero.
5516                          */
5517                         iput(inode);
5518                         cond_resched();
5519                         spin_lock(&root->inode_lock);
5520                         goto again;
5521                 }
5522
5523                 if (cond_resched_lock(&root->inode_lock))
5524                         goto again;
5525
5526                 node = rb_next(node);
5527         }
5528         spin_unlock(&root->inode_lock);
5529 }
5530
5531 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5532 {
5533         struct btrfs_iget_args *args = p;
5534         inode->i_ino = args->location->objectid;
5535         memcpy(&BTRFS_I(inode)->location, args->location,
5536                sizeof(*args->location));
5537         BTRFS_I(inode)->root = args->root;
5538         return 0;
5539 }
5540
5541 static int btrfs_find_actor(struct inode *inode, void *opaque)
5542 {
5543         struct btrfs_iget_args *args = opaque;
5544         return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5545                 args->root == BTRFS_I(inode)->root;
5546 }
5547
5548 static struct inode *btrfs_iget_locked(struct super_block *s,
5549                                        struct btrfs_key *location,
5550                                        struct btrfs_root *root)
5551 {
5552         struct inode *inode;
5553         struct btrfs_iget_args args;
5554         unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5555
5556         args.location = location;
5557         args.root = root;
5558
5559         inode = iget5_locked(s, hashval, btrfs_find_actor,
5560                              btrfs_init_locked_inode,
5561                              (void *)&args);
5562         return inode;
5563 }
5564
5565 /* Get an inode object given its location and corresponding root.
5566  * Returns in *is_new if the inode was read from disk
5567  */
5568 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5569                          struct btrfs_root *root, int *new)
5570 {
5571         struct inode *inode;
5572
5573         inode = btrfs_iget_locked(s, location, root);
5574         if (!inode)
5575                 return ERR_PTR(-ENOMEM);
5576
5577         if (inode->i_state & I_NEW) {
5578                 btrfs_read_locked_inode(inode);
5579                 if (!is_bad_inode(inode)) {
5580                         inode_tree_add(inode);
5581                         unlock_new_inode(inode);
5582                         if (new)
5583                                 *new = 1;
5584                 } else {
5585                         unlock_new_inode(inode);
5586                         iput(inode);
5587                         inode = ERR_PTR(-ESTALE);
5588                 }
5589         }
5590
5591         return inode;
5592 }
5593
5594 static struct inode *new_simple_dir(struct super_block *s,
5595                                     struct btrfs_key *key,
5596                                     struct btrfs_root *root)
5597 {
5598         struct inode *inode = new_inode(s);
5599
5600         if (!inode)
5601                 return ERR_PTR(-ENOMEM);
5602
5603         BTRFS_I(inode)->root = root;
5604         memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5605         set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5606
5607         inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5608         inode->i_op = &btrfs_dir_ro_inode_operations;
5609         inode->i_fop = &simple_dir_operations;
5610         inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5611         inode->i_mtime = current_fs_time(inode->i_sb);
5612         inode->i_atime = inode->i_mtime;
5613         inode->i_ctime = inode->i_mtime;
5614         BTRFS_I(inode)->i_otime = inode->i_mtime;
5615
5616         return inode;
5617 }
5618
5619 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5620 {
5621         struct inode *inode;
5622         struct btrfs_root *root = BTRFS_I(dir)->root;
5623         struct btrfs_root *sub_root = root;
5624         struct btrfs_key location;
5625         int index;
5626         int ret = 0;
5627
5628         if (dentry->d_name.len > BTRFS_NAME_LEN)
5629                 return ERR_PTR(-ENAMETOOLONG);
5630
5631         ret = btrfs_inode_by_name(dir, dentry, &location);
5632         if (ret < 0)
5633                 return ERR_PTR(ret);
5634
5635         if (location.objectid == 0)
5636                 return ERR_PTR(-ENOENT);
5637
5638         if (location.type == BTRFS_INODE_ITEM_KEY) {
5639                 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5640                 return inode;
5641         }
5642
5643         BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5644
5645         index = srcu_read_lock(&root->fs_info->subvol_srcu);
5646         ret = fixup_tree_root_location(root, dir, dentry,
5647                                        &location, &sub_root);
5648         if (ret < 0) {
5649                 if (ret != -ENOENT)
5650                         inode = ERR_PTR(ret);
5651                 else
5652                         inode = new_simple_dir(dir->i_sb, &location, sub_root);
5653         } else {
5654                 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5655         }
5656         srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5657
5658         if (!IS_ERR(inode) && root != sub_root) {
5659                 down_read(&root->fs_info->cleanup_work_sem);
5660                 if (!(inode->i_sb->s_flags & MS_RDONLY))
5661                         ret = btrfs_orphan_cleanup(sub_root);
5662                 up_read(&root->fs_info->cleanup_work_sem);
5663                 if (ret) {
5664                         iput(inode);
5665                         inode = ERR_PTR(ret);
5666                 }
5667         }
5668
5669         return inode;
5670 }
5671
5672 static int btrfs_dentry_delete(const struct dentry *dentry)
5673 {
5674         struct btrfs_root *root;
5675         struct inode *inode = d_inode(dentry);
5676
5677         if (!inode && !IS_ROOT(dentry))
5678                 inode = d_inode(dentry->d_parent);
5679
5680         if (inode) {
5681                 root = BTRFS_I(inode)->root;
5682                 if (btrfs_root_refs(&root->root_item) == 0)
5683                         return 1;
5684
5685                 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5686                         return 1;
5687         }
5688         return 0;
5689 }
5690
5691 static void btrfs_dentry_release(struct dentry *dentry)
5692 {
5693         kfree(dentry->d_fsdata);
5694 }
5695
5696 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5697                                    unsigned int flags)
5698 {
5699         struct inode *inode;
5700
5701         inode = btrfs_lookup_dentry(dir, dentry);
5702         if (IS_ERR(inode)) {
5703                 if (PTR_ERR(inode) == -ENOENT)
5704                         inode = NULL;
5705                 else
5706                         return ERR_CAST(inode);
5707         }
5708
5709         return d_splice_alias(inode, dentry);
5710 }
5711
5712 unsigned char btrfs_filetype_table[] = {
5713         DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5714 };
5715
5716 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5717 {
5718         struct inode *inode = file_inode(file);
5719         struct btrfs_root *root = BTRFS_I(inode)->root;
5720         struct btrfs_item *item;
5721         struct btrfs_dir_item *di;
5722         struct btrfs_key key;
5723         struct btrfs_key found_key;
5724         struct btrfs_path *path;
5725         struct list_head ins_list;
5726         struct list_head del_list;
5727         int ret;
5728         struct extent_buffer *leaf;
5729         int slot;
5730         unsigned char d_type;
5731         int over = 0;
5732         u32 di_cur;
5733         u32 di_total;
5734         u32 di_len;
5735         int key_type = BTRFS_DIR_INDEX_KEY;
5736         char tmp_name[32];
5737         char *name_ptr;
5738         int name_len;
5739         int is_curr = 0;        /* ctx->pos points to the current index? */
5740         bool emitted;
5741
5742         /* FIXME, use a real flag for deciding about the key type */
5743         if (root->fs_info->tree_root == root)
5744                 key_type = BTRFS_DIR_ITEM_KEY;
5745
5746         if (!dir_emit_dots(file, ctx))
5747                 return 0;
5748
5749         path = btrfs_alloc_path();
5750         if (!path)
5751                 return -ENOMEM;
5752
5753         path->reada = READA_FORWARD;
5754
5755         if (key_type == BTRFS_DIR_INDEX_KEY) {
5756                 INIT_LIST_HEAD(&ins_list);
5757                 INIT_LIST_HEAD(&del_list);
5758                 btrfs_get_delayed_items(inode, &ins_list, &del_list);
5759         }
5760
5761         key.type = key_type;
5762         key.offset = ctx->pos;
5763         key.objectid = btrfs_ino(inode);
5764
5765         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5766         if (ret < 0)
5767                 goto err;
5768
5769         emitted = false;
5770         while (1) {
5771                 leaf = path->nodes[0];
5772                 slot = path->slots[0];
5773                 if (slot >= btrfs_header_nritems(leaf)) {
5774                         ret = btrfs_next_leaf(root, path);
5775                         if (ret < 0)
5776                                 goto err;
5777                         else if (ret > 0)
5778                                 break;
5779                         continue;
5780                 }
5781
5782                 item = btrfs_item_nr(slot);
5783                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5784
5785                 if (found_key.objectid != key.objectid)
5786                         break;
5787                 if (found_key.type != key_type)
5788                         break;
5789                 if (found_key.offset < ctx->pos)
5790                         goto next;
5791                 if (key_type == BTRFS_DIR_INDEX_KEY &&
5792                     btrfs_should_delete_dir_index(&del_list,
5793                                                   found_key.offset))
5794                         goto next;
5795
5796                 ctx->pos = found_key.offset;
5797                 is_curr = 1;
5798
5799                 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5800                 di_cur = 0;
5801                 di_total = btrfs_item_size(leaf, item);
5802
5803                 while (di_cur < di_total) {
5804                         struct btrfs_key location;
5805
5806                         if (verify_dir_item(root, leaf, di))
5807                                 break;
5808
5809                         name_len = btrfs_dir_name_len(leaf, di);
5810                         if (name_len <= sizeof(tmp_name)) {
5811                                 name_ptr = tmp_name;
5812                         } else {
5813                                 name_ptr = kmalloc(name_len, GFP_KERNEL);
5814                                 if (!name_ptr) {
5815                                         ret = -ENOMEM;
5816                                         goto err;
5817                                 }
5818                         }
5819                         read_extent_buffer(leaf, name_ptr,
5820                                            (unsigned long)(di + 1), name_len);
5821
5822                         d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5823                         btrfs_dir_item_key_to_cpu(leaf, di, &location);
5824
5825
5826                         /* is this a reference to our own snapshot? If so
5827                          * skip it.
5828                          *
5829                          * In contrast to old kernels, we insert the snapshot's
5830                          * dir item and dir index after it has been created, so
5831                          * we won't find a reference to our own snapshot. We
5832                          * still keep the following code for backward
5833                          * compatibility.
5834                          */
5835                         if (location.type == BTRFS_ROOT_ITEM_KEY &&
5836                             location.objectid == root->root_key.objectid) {
5837                                 over = 0;
5838                                 goto skip;
5839                         }
5840                         over = !dir_emit(ctx, name_ptr, name_len,
5841                                        location.objectid, d_type);
5842
5843 skip:
5844                         if (name_ptr != tmp_name)
5845                                 kfree(name_ptr);
5846
5847                         if (over)
5848                                 goto nopos;
5849                         emitted = true;
5850                         di_len = btrfs_dir_name_len(leaf, di) +
5851                                  btrfs_dir_data_len(leaf, di) + sizeof(*di);
5852                         di_cur += di_len;
5853                         di = (struct btrfs_dir_item *)((char *)di + di_len);
5854                 }
5855 next:
5856                 path->slots[0]++;
5857         }
5858
5859         if (key_type == BTRFS_DIR_INDEX_KEY) {
5860                 if (is_curr)
5861                         ctx->pos++;
5862                 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list, &emitted);
5863                 if (ret)
5864                         goto nopos;
5865         }
5866
5867         /*
5868          * If we haven't emitted any dir entry, we must not touch ctx->pos as
5869          * it was was set to the termination value in previous call. We assume
5870          * that "." and ".." were emitted if we reach this point and set the
5871          * termination value as well for an empty directory.
5872          */
5873         if (ctx->pos > 2 && !emitted)
5874                 goto nopos;
5875
5876         /* Reached end of directory/root. Bump pos past the last item. */
5877         ctx->pos++;
5878
5879         /*
5880          * Stop new entries from being returned after we return the last
5881          * entry.
5882          *
5883          * New directory entries are assigned a strictly increasing
5884          * offset.  This means that new entries created during readdir
5885          * are *guaranteed* to be seen in the future by that readdir.
5886          * This has broken buggy programs which operate on names as
5887          * they're returned by readdir.  Until we re-use freed offsets
5888          * we have this hack to stop new entries from being returned
5889          * under the assumption that they'll never reach this huge
5890          * offset.
5891          *
5892          * This is being careful not to overflow 32bit loff_t unless the
5893          * last entry requires it because doing so has broken 32bit apps
5894          * in the past.
5895          */
5896         if (key_type == BTRFS_DIR_INDEX_KEY) {
5897                 if (ctx->pos >= INT_MAX)
5898                         ctx->pos = LLONG_MAX;
5899                 else
5900                         ctx->pos = INT_MAX;
5901         }
5902 nopos:
5903         ret = 0;
5904 err:
5905         if (key_type == BTRFS_DIR_INDEX_KEY)
5906                 btrfs_put_delayed_items(&ins_list, &del_list);
5907         btrfs_free_path(path);
5908         return ret;
5909 }
5910
5911 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
5912 {
5913         struct btrfs_root *root = BTRFS_I(inode)->root;
5914         struct btrfs_trans_handle *trans;
5915         int ret = 0;
5916         bool nolock = false;
5917
5918         if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5919                 return 0;
5920
5921         if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
5922                 nolock = true;
5923
5924         if (wbc->sync_mode == WB_SYNC_ALL) {
5925                 if (nolock)
5926                         trans = btrfs_join_transaction_nolock(root);
5927                 else
5928                         trans = btrfs_join_transaction(root);
5929                 if (IS_ERR(trans))
5930                         return PTR_ERR(trans);
5931                 ret = btrfs_commit_transaction(trans, root);
5932         }
5933         return ret;
5934 }
5935
5936 /*
5937  * This is somewhat expensive, updating the tree every time the
5938  * inode changes.  But, it is most likely to find the inode in cache.
5939  * FIXME, needs more benchmarking...there are no reasons other than performance
5940  * to keep or drop this code.
5941  */
5942 static int btrfs_dirty_inode(struct inode *inode)
5943 {
5944         struct btrfs_root *root = BTRFS_I(inode)->root;
5945         struct btrfs_trans_handle *trans;
5946         int ret;
5947
5948         if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5949                 return 0;
5950
5951         trans = btrfs_join_transaction(root);
5952         if (IS_ERR(trans))
5953                 return PTR_ERR(trans);
5954
5955         ret = btrfs_update_inode(trans, root, inode);
5956         if (ret && ret == -ENOSPC) {
5957                 /* whoops, lets try again with the full transaction */
5958                 btrfs_end_transaction(trans, root);
5959                 trans = btrfs_start_transaction(root, 1);
5960                 if (IS_ERR(trans))
5961                         return PTR_ERR(trans);
5962
5963                 ret = btrfs_update_inode(trans, root, inode);
5964         }
5965         btrfs_end_transaction(trans, root);
5966         if (BTRFS_I(inode)->delayed_node)
5967                 btrfs_balance_delayed_items(root);
5968
5969         return ret;
5970 }
5971
5972 /*
5973  * This is a copy of file_update_time.  We need this so we can return error on
5974  * ENOSPC for updating the inode in the case of file write and mmap writes.
5975  */
5976 static int btrfs_update_time(struct inode *inode, struct timespec *now,
5977                              int flags)
5978 {
5979         struct btrfs_root *root = BTRFS_I(inode)->root;
5980
5981         if (btrfs_root_readonly(root))
5982                 return -EROFS;
5983
5984         if (flags & S_VERSION)
5985                 inode_inc_iversion(inode);
5986         if (flags & S_CTIME)
5987                 inode->i_ctime = *now;
5988         if (flags & S_MTIME)
5989                 inode->i_mtime = *now;
5990         if (flags & S_ATIME)
5991                 inode->i_atime = *now;
5992         return btrfs_dirty_inode(inode);
5993 }
5994
5995 /*
5996  * find the highest existing sequence number in a directory
5997  * and then set the in-memory index_cnt variable to reflect
5998  * free sequence numbers
5999  */
6000 static int btrfs_set_inode_index_count(struct inode *inode)
6001 {
6002         struct btrfs_root *root = BTRFS_I(inode)->root;
6003         struct btrfs_key key, found_key;
6004         struct btrfs_path *path;
6005         struct extent_buffer *leaf;
6006         int ret;
6007
6008         key.objectid = btrfs_ino(inode);
6009         key.type = BTRFS_DIR_INDEX_KEY;
6010         key.offset = (u64)-1;
6011
6012         path = btrfs_alloc_path();
6013         if (!path)
6014                 return -ENOMEM;
6015
6016         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6017         if (ret < 0)
6018                 goto out;
6019         /* FIXME: we should be able to handle this */
6020         if (ret == 0)
6021                 goto out;
6022         ret = 0;
6023
6024         /*
6025          * MAGIC NUMBER EXPLANATION:
6026          * since we search a directory based on f_pos we have to start at 2
6027          * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6028          * else has to start at 2
6029          */
6030         if (path->slots[0] == 0) {
6031                 BTRFS_I(inode)->index_cnt = 2;
6032                 goto out;
6033         }
6034
6035         path->slots[0]--;
6036
6037         leaf = path->nodes[0];
6038         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6039
6040         if (found_key.objectid != btrfs_ino(inode) ||
6041             found_key.type != BTRFS_DIR_INDEX_KEY) {
6042                 BTRFS_I(inode)->index_cnt = 2;
6043                 goto out;
6044         }
6045
6046         BTRFS_I(inode)->index_cnt = found_key.offset + 1;
6047 out:
6048         btrfs_free_path(path);
6049         return ret;
6050 }
6051
6052 /*
6053  * helper to find a free sequence number in a given directory.  This current
6054  * code is very simple, later versions will do smarter things in the btree
6055  */
6056 int btrfs_set_inode_index(struct inode *dir, u64 *index)
6057 {
6058         int ret = 0;
6059
6060         if (BTRFS_I(dir)->index_cnt == (u64)-1) {
6061                 ret = btrfs_inode_delayed_dir_index_count(dir);
6062                 if (ret) {
6063                         ret = btrfs_set_inode_index_count(dir);
6064                         if (ret)
6065                                 return ret;
6066                 }
6067         }
6068
6069         *index = BTRFS_I(dir)->index_cnt;
6070         BTRFS_I(dir)->index_cnt++;
6071
6072         return ret;
6073 }
6074
6075 static int btrfs_insert_inode_locked(struct inode *inode)
6076 {
6077         struct btrfs_iget_args args;
6078         args.location = &BTRFS_I(inode)->location;
6079         args.root = BTRFS_I(inode)->root;
6080
6081         return insert_inode_locked4(inode,
6082                    btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6083                    btrfs_find_actor, &args);
6084 }
6085
6086 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6087                                      struct btrfs_root *root,
6088                                      struct inode *dir,
6089                                      const char *name, int name_len,
6090                                      u64 ref_objectid, u64 objectid,
6091                                      umode_t mode, u64 *index)
6092 {
6093         struct inode *inode;
6094         struct btrfs_inode_item *inode_item;
6095         struct btrfs_key *location;
6096         struct btrfs_path *path;
6097         struct btrfs_inode_ref *ref;
6098         struct btrfs_key key[2];
6099         u32 sizes[2];
6100         int nitems = name ? 2 : 1;
6101         unsigned long ptr;
6102         int ret;
6103
6104         path = btrfs_alloc_path();
6105         if (!path)
6106                 return ERR_PTR(-ENOMEM);
6107
6108         inode = new_inode(root->fs_info->sb);
6109         if (!inode) {
6110                 btrfs_free_path(path);
6111                 return ERR_PTR(-ENOMEM);
6112         }
6113
6114         /*
6115          * O_TMPFILE, set link count to 0, so that after this point,
6116          * we fill in an inode item with the correct link count.
6117          */
6118         if (!name)
6119                 set_nlink(inode, 0);
6120
6121         /*
6122          * we have to initialize this early, so we can reclaim the inode
6123          * number if we fail afterwards in this function.
6124          */
6125         inode->i_ino = objectid;
6126
6127         if (dir && name) {
6128                 trace_btrfs_inode_request(dir);
6129
6130                 ret = btrfs_set_inode_index(dir, index);
6131                 if (ret) {
6132                         btrfs_free_path(path);
6133                         iput(inode);
6134                         return ERR_PTR(ret);
6135                 }
6136         } else if (dir) {
6137                 *index = 0;
6138         }
6139         /*
6140          * index_cnt is ignored for everything but a dir,
6141          * btrfs_get_inode_index_count has an explanation for the magic
6142          * number
6143          */
6144         BTRFS_I(inode)->index_cnt = 2;
6145         BTRFS_I(inode)->dir_index = *index;
6146         BTRFS_I(inode)->root = root;
6147         BTRFS_I(inode)->generation = trans->transid;
6148         inode->i_generation = BTRFS_I(inode)->generation;
6149
6150         /*
6151          * We could have gotten an inode number from somebody who was fsynced
6152          * and then removed in this same transaction, so let's just set full
6153          * sync since it will be a full sync anyway and this will blow away the
6154          * old info in the log.
6155          */
6156         set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6157
6158         key[0].objectid = objectid;
6159         key[0].type = BTRFS_INODE_ITEM_KEY;
6160         key[0].offset = 0;
6161
6162         sizes[0] = sizeof(struct btrfs_inode_item);
6163
6164         if (name) {
6165                 /*
6166                  * Start new inodes with an inode_ref. This is slightly more
6167                  * efficient for small numbers of hard links since they will
6168                  * be packed into one item. Extended refs will kick in if we
6169                  * add more hard links than can fit in the ref item.
6170                  */
6171                 key[1].objectid = objectid;
6172                 key[1].type = BTRFS_INODE_REF_KEY;
6173                 key[1].offset = ref_objectid;
6174
6175                 sizes[1] = name_len + sizeof(*ref);
6176         }
6177
6178         location = &BTRFS_I(inode)->location;
6179         location->objectid = objectid;
6180         location->offset = 0;
6181         location->type = BTRFS_INODE_ITEM_KEY;
6182
6183         ret = btrfs_insert_inode_locked(inode);
6184         if (ret < 0)
6185                 goto fail;
6186
6187         path->leave_spinning = 1;
6188         ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6189         if (ret != 0)
6190                 goto fail_unlock;
6191
6192         inode_init_owner(inode, dir, mode);
6193         inode_set_bytes(inode, 0);
6194
6195         inode->i_mtime = current_fs_time(inode->i_sb);
6196         inode->i_atime = inode->i_mtime;
6197         inode->i_ctime = inode->i_mtime;
6198         BTRFS_I(inode)->i_otime = inode->i_mtime;
6199
6200         inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6201                                   struct btrfs_inode_item);
6202         memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
6203                              sizeof(*inode_item));
6204         fill_inode_item(trans, path->nodes[0], inode_item, inode);
6205
6206         if (name) {
6207                 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6208                                      struct btrfs_inode_ref);
6209                 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6210                 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6211                 ptr = (unsigned long)(ref + 1);
6212                 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6213         }
6214
6215         btrfs_mark_buffer_dirty(path->nodes[0]);
6216         btrfs_free_path(path);
6217
6218         btrfs_inherit_iflags(inode, dir);
6219
6220         if (S_ISREG(mode)) {
6221                 if (btrfs_test_opt(root, NODATASUM))
6222                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6223                 if (btrfs_test_opt(root, NODATACOW))
6224                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6225                                 BTRFS_INODE_NODATASUM;
6226         }
6227
6228         inode_tree_add(inode);
6229
6230         trace_btrfs_inode_new(inode);
6231         btrfs_set_inode_last_trans(trans, inode);
6232
6233         btrfs_update_root_times(trans, root);
6234
6235         ret = btrfs_inode_inherit_props(trans, inode, dir);
6236         if (ret)
6237                 btrfs_err(root->fs_info,
6238                           "error inheriting props for ino %llu (root %llu): %d",
6239                           btrfs_ino(inode), root->root_key.objectid, ret);
6240
6241         return inode;
6242
6243 fail_unlock:
6244         unlock_new_inode(inode);
6245 fail:
6246         if (dir && name)
6247                 BTRFS_I(dir)->index_cnt--;
6248         btrfs_free_path(path);
6249         iput(inode);
6250         return ERR_PTR(ret);
6251 }
6252
6253 static inline u8 btrfs_inode_type(struct inode *inode)
6254 {
6255         return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6256 }
6257
6258 /*
6259  * utility function to add 'inode' into 'parent_inode' with
6260  * a give name and a given sequence number.
6261  * if 'add_backref' is true, also insert a backref from the
6262  * inode to the parent directory.
6263  */
6264 int btrfs_add_link(struct btrfs_trans_handle *trans,
6265                    struct inode *parent_inode, struct inode *inode,
6266                    const char *name, int name_len, int add_backref, u64 index)
6267 {
6268         int ret = 0;
6269         struct btrfs_key key;
6270         struct btrfs_root *root = BTRFS_I(parent_inode)->root;
6271         u64 ino = btrfs_ino(inode);
6272         u64 parent_ino = btrfs_ino(parent_inode);
6273
6274         if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6275                 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
6276         } else {
6277                 key.objectid = ino;
6278                 key.type = BTRFS_INODE_ITEM_KEY;
6279                 key.offset = 0;
6280         }
6281
6282         if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6283                 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
6284                                          key.objectid, root->root_key.objectid,
6285                                          parent_ino, index, name, name_len);
6286         } else if (add_backref) {
6287                 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6288                                              parent_ino, index);
6289         }
6290
6291         /* Nothing to clean up yet */
6292         if (ret)
6293                 return ret;
6294
6295         ret = btrfs_insert_dir_item(trans, root, name, name_len,
6296                                     parent_inode, &key,
6297                                     btrfs_inode_type(inode), index);
6298         if (ret == -EEXIST || ret == -EOVERFLOW)
6299                 goto fail_dir_item;
6300         else if (ret) {
6301                 btrfs_abort_transaction(trans, root, ret);
6302                 return ret;
6303         }
6304
6305         btrfs_i_size_write(parent_inode, parent_inode->i_size +
6306                            name_len * 2);
6307         inode_inc_iversion(parent_inode);
6308         parent_inode->i_mtime = parent_inode->i_ctime =
6309                 current_fs_time(parent_inode->i_sb);
6310         ret = btrfs_update_inode(trans, root, parent_inode);
6311         if (ret)
6312                 btrfs_abort_transaction(trans, root, ret);
6313         return ret;
6314
6315 fail_dir_item:
6316         if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6317                 u64 local_index;
6318                 int err;
6319                 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
6320                                  key.objectid, root->root_key.objectid,
6321                                  parent_ino, &local_index, name, name_len);
6322
6323         } else if (add_backref) {
6324                 u64 local_index;
6325                 int err;
6326
6327                 err = btrfs_del_inode_ref(trans, root, name, name_len,
6328                                           ino, parent_ino, &local_index);
6329         }
6330         return ret;
6331 }
6332
6333 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6334                             struct inode *dir, struct dentry *dentry,
6335                             struct inode *inode, int backref, u64 index)
6336 {
6337         int err = btrfs_add_link(trans, dir, inode,
6338                                  dentry->d_name.name, dentry->d_name.len,
6339                                  backref, index);
6340         if (err > 0)
6341                 err = -EEXIST;
6342         return err;
6343 }
6344
6345 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6346                         umode_t mode, dev_t rdev)
6347 {
6348         struct btrfs_trans_handle *trans;
6349         struct btrfs_root *root = BTRFS_I(dir)->root;
6350         struct inode *inode = NULL;
6351         int err;
6352         int drop_inode = 0;
6353         u64 objectid;
6354         u64 index = 0;
6355
6356         /*
6357          * 2 for inode item and ref
6358          * 2 for dir items
6359          * 1 for xattr if selinux is on
6360          */
6361         trans = btrfs_start_transaction(root, 5);
6362         if (IS_ERR(trans))
6363                 return PTR_ERR(trans);
6364
6365         err = btrfs_find_free_ino(root, &objectid);
6366         if (err)
6367                 goto out_unlock;
6368
6369         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6370                                 dentry->d_name.len, btrfs_ino(dir), objectid,
6371                                 mode, &index);
6372         if (IS_ERR(inode)) {
6373                 err = PTR_ERR(inode);
6374                 goto out_unlock;
6375         }
6376
6377         /*
6378         * If the active LSM wants to access the inode during
6379         * d_instantiate it needs these. Smack checks to see
6380         * if the filesystem supports xattrs by looking at the
6381         * ops vector.
6382         */
6383         inode->i_op = &btrfs_special_inode_operations;
6384         init_special_inode(inode, inode->i_mode, rdev);
6385
6386         err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6387         if (err)
6388                 goto out_unlock_inode;
6389
6390         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6391         if (err) {
6392                 goto out_unlock_inode;
6393         } else {
6394                 btrfs_update_inode(trans, root, inode);
6395                 unlock_new_inode(inode);
6396                 d_instantiate(dentry, inode);
6397         }
6398
6399 out_unlock:
6400         btrfs_end_transaction(trans, root);
6401         btrfs_balance_delayed_items(root);
6402         btrfs_btree_balance_dirty(root);
6403         if (drop_inode) {
6404                 inode_dec_link_count(inode);
6405                 iput(inode);
6406         }
6407         return err;
6408
6409 out_unlock_inode:
6410         drop_inode = 1;
6411         unlock_new_inode(inode);
6412         goto out_unlock;
6413
6414 }
6415
6416 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6417                         umode_t mode, bool excl)
6418 {
6419         struct btrfs_trans_handle *trans;
6420         struct btrfs_root *root = BTRFS_I(dir)->root;
6421         struct inode *inode = NULL;
6422         int drop_inode_on_err = 0;
6423         int err;
6424         u64 objectid;
6425         u64 index = 0;
6426
6427         /*
6428          * 2 for inode item and ref
6429          * 2 for dir items
6430          * 1 for xattr if selinux is on
6431          */
6432         trans = btrfs_start_transaction(root, 5);
6433         if (IS_ERR(trans))
6434                 return PTR_ERR(trans);
6435
6436         err = btrfs_find_free_ino(root, &objectid);
6437         if (err)
6438                 goto out_unlock;
6439
6440         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6441                                 dentry->d_name.len, btrfs_ino(dir), objectid,
6442                                 mode, &index);
6443         if (IS_ERR(inode)) {
6444                 err = PTR_ERR(inode);
6445                 goto out_unlock;
6446         }
6447         drop_inode_on_err = 1;
6448         /*
6449         * If the active LSM wants to access the inode during
6450         * d_instantiate it needs these. Smack checks to see
6451         * if the filesystem supports xattrs by looking at the
6452         * ops vector.
6453         */
6454         inode->i_fop = &btrfs_file_operations;
6455         inode->i_op = &btrfs_file_inode_operations;
6456         inode->i_mapping->a_ops = &btrfs_aops;
6457
6458         err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6459         if (err)
6460                 goto out_unlock_inode;
6461
6462         err = btrfs_update_inode(trans, root, inode);
6463         if (err)
6464                 goto out_unlock_inode;
6465
6466         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6467         if (err)
6468                 goto out_unlock_inode;
6469
6470         BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6471         unlock_new_inode(inode);
6472         d_instantiate(dentry, inode);
6473
6474 out_unlock:
6475         btrfs_end_transaction(trans, root);
6476         if (err && drop_inode_on_err) {
6477                 inode_dec_link_count(inode);
6478                 iput(inode);
6479         }
6480         btrfs_balance_delayed_items(root);
6481         btrfs_btree_balance_dirty(root);
6482         return err;
6483
6484 out_unlock_inode:
6485         unlock_new_inode(inode);
6486         goto out_unlock;
6487
6488 }
6489
6490 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6491                       struct dentry *dentry)
6492 {
6493         struct btrfs_trans_handle *trans = NULL;
6494         struct btrfs_root *root = BTRFS_I(dir)->root;
6495         struct inode *inode = d_inode(old_dentry);
6496         u64 index;
6497         int err;
6498         int drop_inode = 0;
6499
6500         /* do not allow sys_link's with other subvols of the same device */
6501         if (root->objectid != BTRFS_I(inode)->root->objectid)
6502                 return -EXDEV;
6503
6504         if (inode->i_nlink >= BTRFS_LINK_MAX)
6505                 return -EMLINK;
6506
6507         err = btrfs_set_inode_index(dir, &index);
6508         if (err)
6509                 goto fail;
6510
6511         /*
6512          * 2 items for inode and inode ref
6513          * 2 items for dir items
6514          * 1 item for parent inode
6515          */
6516         trans = btrfs_start_transaction(root, 5);
6517         if (IS_ERR(trans)) {
6518                 err = PTR_ERR(trans);
6519                 trans = NULL;
6520                 goto fail;
6521         }
6522
6523         /* There are several dir indexes for this inode, clear the cache. */
6524         BTRFS_I(inode)->dir_index = 0ULL;
6525         inc_nlink(inode);
6526         inode_inc_iversion(inode);
6527         inode->i_ctime = current_fs_time(inode->i_sb);
6528         ihold(inode);
6529         set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6530
6531         err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
6532
6533         if (err) {
6534                 drop_inode = 1;
6535         } else {
6536                 struct dentry *parent = dentry->d_parent;
6537                 err = btrfs_update_inode(trans, root, inode);
6538                 if (err)
6539                         goto fail;
6540                 if (inode->i_nlink == 1) {
6541                         /*
6542                          * If new hard link count is 1, it's a file created
6543                          * with open(2) O_TMPFILE flag.
6544                          */
6545                         err = btrfs_orphan_del(trans, inode);
6546                         if (err)
6547                                 goto fail;
6548                 }
6549                 d_instantiate(dentry, inode);
6550                 btrfs_log_new_name(trans, inode, NULL, parent);
6551         }
6552
6553         btrfs_balance_delayed_items(root);
6554 fail:
6555         if (trans)
6556                 btrfs_end_transaction(trans, root);
6557         if (drop_inode) {
6558                 inode_dec_link_count(inode);
6559                 iput(inode);
6560         }
6561         btrfs_btree_balance_dirty(root);
6562         return err;
6563 }
6564
6565 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6566 {
6567         struct inode *inode = NULL;
6568         struct btrfs_trans_handle *trans;
6569         struct btrfs_root *root = BTRFS_I(dir)->root;
6570         int err = 0;
6571         int drop_on_err = 0;
6572         u64 objectid = 0;
6573         u64 index = 0;
6574
6575         /*
6576          * 2 items for inode and ref
6577          * 2 items for dir items
6578          * 1 for xattr if selinux is on
6579          */
6580         trans = btrfs_start_transaction(root, 5);
6581         if (IS_ERR(trans))
6582                 return PTR_ERR(trans);
6583
6584         err = btrfs_find_free_ino(root, &objectid);
6585         if (err)
6586                 goto out_fail;
6587
6588         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6589                                 dentry->d_name.len, btrfs_ino(dir), objectid,
6590                                 S_IFDIR | mode, &index);
6591         if (IS_ERR(inode)) {
6592                 err = PTR_ERR(inode);
6593                 goto out_fail;
6594         }
6595
6596         drop_on_err = 1;
6597         /* these must be set before we unlock the inode */
6598         inode->i_op = &btrfs_dir_inode_operations;
6599         inode->i_fop = &btrfs_dir_file_operations;
6600
6601         err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6602         if (err)
6603                 goto out_fail_inode;
6604
6605         btrfs_i_size_write(inode, 0);
6606         err = btrfs_update_inode(trans, root, inode);
6607         if (err)
6608                 goto out_fail_inode;
6609
6610         err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6611                              dentry->d_name.len, 0, index);
6612         if (err)
6613                 goto out_fail_inode;
6614
6615         d_instantiate(dentry, inode);
6616         /*
6617          * mkdir is special.  We're unlocking after we call d_instantiate
6618          * to avoid a race with nfsd calling d_instantiate.
6619          */
6620         unlock_new_inode(inode);
6621         drop_on_err = 0;
6622
6623 out_fail:
6624         btrfs_end_transaction(trans, root);
6625         if (drop_on_err) {
6626                 inode_dec_link_count(inode);
6627                 iput(inode);
6628         }
6629         btrfs_balance_delayed_items(root);
6630         btrfs_btree_balance_dirty(root);
6631         return err;
6632
6633 out_fail_inode:
6634         unlock_new_inode(inode);
6635         goto out_fail;
6636 }
6637
6638 /* Find next extent map of a given extent map, caller needs to ensure locks */
6639 static struct extent_map *next_extent_map(struct extent_map *em)
6640 {
6641         struct rb_node *next;
6642
6643         next = rb_next(&em->rb_node);
6644         if (!next)
6645                 return NULL;
6646         return container_of(next, struct extent_map, rb_node);
6647 }
6648
6649 static struct extent_map *prev_extent_map(struct extent_map *em)
6650 {
6651         struct rb_node *prev;
6652
6653         prev = rb_prev(&em->rb_node);
6654         if (!prev)
6655                 return NULL;
6656         return container_of(prev, struct extent_map, rb_node);
6657 }
6658
6659 /* helper for btfs_get_extent.  Given an existing extent in the tree,
6660  * the existing extent is the nearest extent to map_start,
6661  * and an extent that you want to insert, deal with overlap and insert
6662  * the best fitted new extent into the tree.
6663  */
6664 static int merge_extent_mapping(struct extent_map_tree *em_tree,
6665                                 struct extent_map *existing,
6666                                 struct extent_map *em,
6667                                 u64 map_start)
6668 {
6669         struct extent_map *prev;
6670         struct extent_map *next;
6671         u64 start;
6672         u64 end;
6673         u64 start_diff;
6674
6675         BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
6676
6677         if (existing->start > map_start) {
6678                 next = existing;
6679                 prev = prev_extent_map(next);
6680         } else {
6681                 prev = existing;
6682                 next = next_extent_map(prev);
6683         }
6684
6685         start = prev ? extent_map_end(prev) : em->start;
6686         start = max_t(u64, start, em->start);
6687         end = next ? next->start : extent_map_end(em);
6688         end = min_t(u64, end, extent_map_end(em));
6689         start_diff = start - em->start;
6690         em->start = start;
6691         em->len = end - start;
6692         if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6693             !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
6694                 em->block_start += start_diff;
6695                 em->block_len -= start_diff;
6696         }
6697         return add_extent_mapping(em_tree, em, 0);
6698 }
6699
6700 static noinline int uncompress_inline(struct btrfs_path *path,
6701                                       struct page *page,
6702                                       size_t pg_offset, u64 extent_offset,
6703                                       struct btrfs_file_extent_item *item)
6704 {
6705         int ret;
6706         struct extent_buffer *leaf = path->nodes[0];
6707         char *tmp;
6708         size_t max_size;
6709         unsigned long inline_size;
6710         unsigned long ptr;
6711         int compress_type;
6712
6713         WARN_ON(pg_offset != 0);
6714         compress_type = btrfs_file_extent_compression(leaf, item);
6715         max_size = btrfs_file_extent_ram_bytes(leaf, item);
6716         inline_size = btrfs_file_extent_inline_item_len(leaf,
6717                                         btrfs_item_nr(path->slots[0]));
6718         tmp = kmalloc(inline_size, GFP_NOFS);
6719         if (!tmp)
6720                 return -ENOMEM;
6721         ptr = btrfs_file_extent_inline_start(item);
6722
6723         read_extent_buffer(leaf, tmp, ptr, inline_size);
6724
6725         max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6726         ret = btrfs_decompress(compress_type, tmp, page,
6727                                extent_offset, inline_size, max_size);
6728         kfree(tmp);
6729         return ret;
6730 }
6731
6732 /*
6733  * a bit scary, this does extent mapping from logical file offset to the disk.
6734  * the ugly parts come from merging extents from the disk with the in-ram
6735  * representation.  This gets more complex because of the data=ordered code,
6736  * where the in-ram extents might be locked pending data=ordered completion.
6737  *
6738  * This also copies inline extents directly into the page.
6739  */
6740
6741 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
6742                                     size_t pg_offset, u64 start, u64 len,
6743                                     int create)
6744 {
6745         int ret;
6746         int err = 0;
6747         u64 extent_start = 0;
6748         u64 extent_end = 0;
6749         u64 objectid = btrfs_ino(inode);
6750         u32 found_type;
6751         struct btrfs_path *path = NULL;
6752         struct btrfs_root *root = BTRFS_I(inode)->root;
6753         struct btrfs_file_extent_item *item;
6754         struct extent_buffer *leaf;
6755         struct btrfs_key found_key;
6756         struct extent_map *em = NULL;
6757         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
6758         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6759         struct btrfs_trans_handle *trans = NULL;
6760         const bool new_inline = !page || create;
6761
6762 again:
6763         read_lock(&em_tree->lock);
6764         em = lookup_extent_mapping(em_tree, start, len);
6765         if (em)
6766                 em->bdev = root->fs_info->fs_devices->latest_bdev;
6767         read_unlock(&em_tree->lock);
6768
6769         if (em) {
6770                 if (em->start > start || em->start + em->len <= start)
6771                         free_extent_map(em);
6772                 else if (em->block_start == EXTENT_MAP_INLINE && page)
6773                         free_extent_map(em);
6774                 else
6775                         goto out;
6776         }
6777         em = alloc_extent_map();
6778         if (!em) {
6779                 err = -ENOMEM;
6780                 goto out;
6781         }
6782         em->bdev = root->fs_info->fs_devices->latest_bdev;
6783         em->start = EXTENT_MAP_HOLE;
6784         em->orig_start = EXTENT_MAP_HOLE;
6785         em->len = (u64)-1;
6786         em->block_len = (u64)-1;
6787
6788         if (!path) {
6789                 path = btrfs_alloc_path();
6790                 if (!path) {
6791                         err = -ENOMEM;
6792                         goto out;
6793                 }
6794                 /*
6795                  * Chances are we'll be called again, so go ahead and do
6796                  * readahead
6797                  */
6798                 path->reada = READA_FORWARD;
6799         }
6800
6801         ret = btrfs_lookup_file_extent(trans, root, path,
6802                                        objectid, start, trans != NULL);
6803         if (ret < 0) {
6804                 err = ret;
6805                 goto out;
6806         }
6807
6808         if (ret != 0) {
6809                 if (path->slots[0] == 0)
6810                         goto not_found;
6811                 path->slots[0]--;
6812         }
6813
6814         leaf = path->nodes[0];
6815         item = btrfs_item_ptr(leaf, path->slots[0],
6816                               struct btrfs_file_extent_item);
6817         /* are we inside the extent that was found? */
6818         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6819         found_type = found_key.type;
6820         if (found_key.objectid != objectid ||
6821             found_type != BTRFS_EXTENT_DATA_KEY) {
6822                 /*
6823                  * If we backup past the first extent we want to move forward
6824                  * and see if there is an extent in front of us, otherwise we'll
6825                  * say there is a hole for our whole search range which can
6826                  * cause problems.
6827                  */
6828                 extent_end = start;
6829                 goto next;
6830         }
6831
6832         found_type = btrfs_file_extent_type(leaf, item);
6833         extent_start = found_key.offset;
6834         if (found_type == BTRFS_FILE_EXTENT_REG ||
6835             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6836                 extent_end = extent_start +
6837                        btrfs_file_extent_num_bytes(leaf, item);
6838         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6839                 size_t size;
6840                 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6841                 extent_end = ALIGN(extent_start + size, root->sectorsize);
6842         }
6843 next:
6844         if (start >= extent_end) {
6845                 path->slots[0]++;
6846                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6847                         ret = btrfs_next_leaf(root, path);
6848                         if (ret < 0) {
6849                                 err = ret;
6850                                 goto out;
6851                         }
6852                         if (ret > 0)
6853                                 goto not_found;
6854                         leaf = path->nodes[0];
6855                 }
6856                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6857                 if (found_key.objectid != objectid ||
6858                     found_key.type != BTRFS_EXTENT_DATA_KEY)
6859                         goto not_found;
6860                 if (start + len <= found_key.offset)
6861                         goto not_found;
6862                 if (start > found_key.offset)
6863                         goto next;
6864                 em->start = start;
6865                 em->orig_start = start;
6866                 em->len = found_key.offset - start;
6867                 goto not_found_em;
6868         }
6869
6870         btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6871
6872         if (found_type == BTRFS_FILE_EXTENT_REG ||
6873             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6874                 goto insert;
6875         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6876                 unsigned long ptr;
6877                 char *map;
6878                 size_t size;
6879                 size_t extent_offset;
6880                 size_t copy_size;
6881
6882                 if (new_inline)
6883                         goto out;
6884
6885                 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6886                 extent_offset = page_offset(page) + pg_offset - extent_start;
6887                 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6888                                   size - extent_offset);
6889                 em->start = extent_start + extent_offset;
6890                 em->len = ALIGN(copy_size, root->sectorsize);
6891                 em->orig_block_len = em->len;
6892                 em->orig_start = em->start;
6893                 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6894                 if (create == 0 && !PageUptodate(page)) {
6895                         if (btrfs_file_extent_compression(leaf, item) !=
6896                             BTRFS_COMPRESS_NONE) {
6897                                 ret = uncompress_inline(path, page, pg_offset,
6898                                                         extent_offset, item);
6899                                 if (ret) {
6900                                         err = ret;
6901                                         goto out;
6902                                 }
6903                         } else {
6904                                 map = kmap(page);
6905                                 read_extent_buffer(leaf, map + pg_offset, ptr,
6906                                                    copy_size);
6907                                 if (pg_offset + copy_size < PAGE_SIZE) {
6908                                         memset(map + pg_offset + copy_size, 0,
6909                                                PAGE_SIZE - pg_offset -
6910                                                copy_size);
6911                                 }
6912                                 kunmap(page);
6913                         }
6914                         flush_dcache_page(page);
6915                 } else if (create && PageUptodate(page)) {
6916                         BUG();
6917                         if (!trans) {
6918                                 kunmap(page);
6919                                 free_extent_map(em);
6920                                 em = NULL;
6921
6922                                 btrfs_release_path(path);
6923                                 trans = btrfs_join_transaction(root);
6924
6925                                 if (IS_ERR(trans))
6926                                         return ERR_CAST(trans);
6927                                 goto again;
6928                         }
6929                         map = kmap(page);
6930                         write_extent_buffer(leaf, map + pg_offset, ptr,
6931                                             copy_size);
6932                         kunmap(page);
6933                         btrfs_mark_buffer_dirty(leaf);
6934                 }
6935                 set_extent_uptodate(io_tree, em->start,
6936                                     extent_map_end(em) - 1, NULL, GFP_NOFS);
6937                 goto insert;
6938         }
6939 not_found:
6940         em->start = start;
6941         em->orig_start = start;
6942         em->len = len;
6943 not_found_em:
6944         em->block_start = EXTENT_MAP_HOLE;
6945         set_bit(EXTENT_FLAG_VACANCY, &em->flags);
6946 insert:
6947         btrfs_release_path(path);
6948         if (em->start > start || extent_map_end(em) <= start) {
6949                 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
6950                         em->start, em->len, start, len);
6951                 err = -EIO;
6952                 goto out;
6953         }
6954
6955         err = 0;
6956         write_lock(&em_tree->lock);
6957         ret = add_extent_mapping(em_tree, em, 0);
6958         /* it is possible that someone inserted the extent into the tree
6959          * while we had the lock dropped.  It is also possible that
6960          * an overlapping map exists in the tree
6961          */
6962         if (ret == -EEXIST) {
6963                 struct extent_map *existing;
6964
6965                 ret = 0;
6966
6967                 existing = search_extent_mapping(em_tree, start, len);
6968                 /*
6969                  * existing will always be non-NULL, since there must be
6970                  * extent causing the -EEXIST.
6971                  */
6972                 if (start >= extent_map_end(existing) ||
6973                     start <= existing->start) {
6974                         /*
6975                          * The existing extent map is the one nearest to
6976                          * the [start, start + len) range which overlaps
6977                          */
6978                         err = merge_extent_mapping(em_tree, existing,
6979                                                    em, start);
6980                         free_extent_map(existing);
6981                         if (err) {
6982                                 free_extent_map(em);
6983                                 em = NULL;
6984                         }
6985                 } else {
6986                         free_extent_map(em);
6987                         em = existing;
6988                         err = 0;
6989                 }
6990         }
6991         write_unlock(&em_tree->lock);
6992 out:
6993
6994         trace_btrfs_get_extent(root, em);
6995
6996         btrfs_free_path(path);
6997         if (trans) {
6998                 ret = btrfs_end_transaction(trans, root);
6999                 if (!err)
7000                         err = ret;
7001         }
7002         if (err) {
7003                 free_extent_map(em);
7004                 return ERR_PTR(err);
7005         }
7006         BUG_ON(!em); /* Error is always set */
7007         return em;
7008 }
7009
7010 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
7011                                            size_t pg_offset, u64 start, u64 len,
7012                                            int create)
7013 {
7014         struct extent_map *em;
7015         struct extent_map *hole_em = NULL;
7016         u64 range_start = start;
7017         u64 end;
7018         u64 found;
7019         u64 found_end;
7020         int err = 0;
7021
7022         em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7023         if (IS_ERR(em))
7024                 return em;
7025         if (em) {
7026                 /*
7027                  * if our em maps to
7028                  * -  a hole or
7029                  * -  a pre-alloc extent,
7030                  * there might actually be delalloc bytes behind it.
7031                  */
7032                 if (em->block_start != EXTENT_MAP_HOLE &&
7033                     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7034                         return em;
7035                 else
7036                         hole_em = em;
7037         }
7038
7039         /* check to see if we've wrapped (len == -1 or similar) */
7040         end = start + len;
7041         if (end < start)
7042                 end = (u64)-1;
7043         else
7044                 end -= 1;
7045
7046         em = NULL;
7047
7048         /* ok, we didn't find anything, lets look for delalloc */
7049         found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
7050                                  end, len, EXTENT_DELALLOC, 1);
7051         found_end = range_start + found;
7052         if (found_end < range_start)
7053                 found_end = (u64)-1;
7054
7055         /*
7056          * we didn't find anything useful, return
7057          * the original results from get_extent()
7058          */
7059         if (range_start > end || found_end <= start) {
7060                 em = hole_em;
7061                 hole_em = NULL;
7062                 goto out;
7063         }
7064
7065         /* adjust the range_start to make sure it doesn't
7066          * go backwards from the start they passed in
7067          */
7068         range_start = max(start, range_start);
7069         found = found_end - range_start;
7070
7071         if (found > 0) {
7072                 u64 hole_start = start;
7073                 u64 hole_len = len;
7074
7075                 em = alloc_extent_map();
7076                 if (!em) {
7077                         err = -ENOMEM;
7078                         goto out;
7079                 }
7080                 /*
7081                  * when btrfs_get_extent can't find anything it
7082                  * returns one huge hole
7083                  *
7084                  * make sure what it found really fits our range, and
7085                  * adjust to make sure it is based on the start from
7086                  * the caller
7087                  */
7088                 if (hole_em) {
7089                         u64 calc_end = extent_map_end(hole_em);
7090
7091                         if (calc_end <= start || (hole_em->start > end)) {
7092                                 free_extent_map(hole_em);
7093                                 hole_em = NULL;
7094                         } else {
7095                                 hole_start = max(hole_em->start, start);
7096                                 hole_len = calc_end - hole_start;
7097                         }
7098                 }
7099                 em->bdev = NULL;
7100                 if (hole_em && range_start > hole_start) {
7101                         /* our hole starts before our delalloc, so we
7102                          * have to return just the parts of the hole
7103                          * that go until  the delalloc starts
7104                          */
7105                         em->len = min(hole_len,
7106                                       range_start - hole_start);
7107                         em->start = hole_start;
7108                         em->orig_start = hole_start;
7109                         /*
7110                          * don't adjust block start at all,
7111                          * it is fixed at EXTENT_MAP_HOLE
7112                          */
7113                         em->block_start = hole_em->block_start;
7114                         em->block_len = hole_len;
7115                         if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7116                                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7117                 } else {
7118                         em->start = range_start;
7119                         em->len = found;
7120                         em->orig_start = range_start;
7121                         em->block_start = EXTENT_MAP_DELALLOC;
7122                         em->block_len = found;
7123                 }
7124         } else if (hole_em) {
7125                 return hole_em;
7126         }
7127 out:
7128
7129         free_extent_map(hole_em);
7130         if (err) {
7131                 free_extent_map(em);
7132                 return ERR_PTR(err);
7133         }
7134         return em;
7135 }
7136
7137 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7138                                                   u64 start, u64 len)
7139 {
7140         struct btrfs_root *root = BTRFS_I(inode)->root;
7141         struct extent_map *em;
7142         struct btrfs_key ins;
7143         u64 alloc_hint;
7144         int ret;
7145
7146         alloc_hint = get_extent_allocation_hint(inode, start, len);
7147         ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
7148                                    alloc_hint, &ins, 1, 1);
7149         if (ret)
7150                 return ERR_PTR(ret);
7151
7152         /*
7153          * Create the ordered extent before the extent map. This is to avoid
7154          * races with the fast fsync path that would lead to it logging file
7155          * extent items that point to disk extents that were not yet written to.
7156          * The fast fsync path collects ordered extents into a local list and
7157          * then collects all the new extent maps, so we must create the ordered
7158          * extent first and make sure the fast fsync path collects any new
7159          * ordered extents after collecting new extent maps as well.
7160          * The fsync path simply can not rely on inode_dio_wait() because it
7161          * causes deadlock with AIO.
7162          */
7163         ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
7164                                            ins.offset, ins.offset, 0);
7165         if (ret) {
7166                 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
7167                 return ERR_PTR(ret);
7168         }
7169
7170         btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
7171
7172         em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
7173                               ins.offset, ins.offset, ins.offset, 0);
7174         if (IS_ERR(em)) {
7175                 struct btrfs_ordered_extent *oe;
7176
7177                 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
7178                 oe = btrfs_lookup_ordered_extent(inode, start);
7179                 ASSERT(oe);
7180                 if (WARN_ON(!oe))
7181                         return em;
7182                 set_bit(BTRFS_ORDERED_IOERR, &oe->flags);
7183                 set_bit(BTRFS_ORDERED_IO_DONE, &oe->flags);
7184                 btrfs_remove_ordered_extent(inode, oe);
7185                 /* Once for our lookup and once for the ordered extents tree. */
7186                 btrfs_put_ordered_extent(oe);
7187                 btrfs_put_ordered_extent(oe);
7188         }
7189         return em;
7190 }
7191
7192 /*
7193  * returns 1 when the nocow is safe, < 1 on error, 0 if the
7194  * block must be cow'd
7195  */
7196 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7197                               u64 *orig_start, u64 *orig_block_len,
7198                               u64 *ram_bytes)
7199 {
7200         struct btrfs_trans_handle *trans;
7201         struct btrfs_path *path;
7202         int ret;
7203         struct extent_buffer *leaf;
7204         struct btrfs_root *root = BTRFS_I(inode)->root;
7205         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7206         struct btrfs_file_extent_item *fi;
7207         struct btrfs_key key;
7208         u64 disk_bytenr;
7209         u64 backref_offset;
7210         u64 extent_end;
7211         u64 num_bytes;
7212         int slot;
7213         int found_type;
7214         bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7215
7216         path = btrfs_alloc_path();
7217         if (!path)
7218                 return -ENOMEM;
7219
7220         ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
7221                                        offset, 0);
7222         if (ret < 0)
7223                 goto out;
7224
7225         slot = path->slots[0];
7226         if (ret == 1) {
7227                 if (slot == 0) {
7228                         /* can't find the item, must cow */
7229                         ret = 0;
7230                         goto out;
7231                 }
7232                 slot--;
7233         }
7234         ret = 0;
7235         leaf = path->nodes[0];
7236         btrfs_item_key_to_cpu(leaf, &key, slot);
7237         if (key.objectid != btrfs_ino(inode) ||
7238             key.type != BTRFS_EXTENT_DATA_KEY) {
7239                 /* not our file or wrong item type, must cow */
7240                 goto out;
7241         }
7242
7243         if (key.offset > offset) {
7244                 /* Wrong offset, must cow */
7245                 goto out;
7246         }
7247
7248         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7249         found_type = btrfs_file_extent_type(leaf, fi);
7250         if (found_type != BTRFS_FILE_EXTENT_REG &&
7251             found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7252                 /* not a regular extent, must cow */
7253                 goto out;
7254         }
7255
7256         if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7257                 goto out;
7258
7259         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7260         if (extent_end <= offset)
7261                 goto out;
7262
7263         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7264         if (disk_bytenr == 0)
7265                 goto out;
7266
7267         if (btrfs_file_extent_compression(leaf, fi) ||
7268             btrfs_file_extent_encryption(leaf, fi) ||
7269             btrfs_file_extent_other_encoding(leaf, fi))
7270                 goto out;
7271
7272         backref_offset = btrfs_file_extent_offset(leaf, fi);
7273
7274         if (orig_start) {
7275                 *orig_start = key.offset - backref_offset;
7276                 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7277                 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7278         }
7279
7280         if (btrfs_extent_readonly(root, disk_bytenr))
7281                 goto out;
7282
7283         num_bytes = min(offset + *len, extent_end) - offset;
7284         if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7285                 u64 range_end;
7286
7287                 range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
7288                 ret = test_range_bit(io_tree, offset, range_end,
7289                                      EXTENT_DELALLOC, 0, NULL);
7290                 if (ret) {
7291                         ret = -EAGAIN;
7292                         goto out;
7293                 }
7294         }
7295
7296         btrfs_release_path(path);
7297
7298         /*
7299          * look for other files referencing this extent, if we
7300          * find any we must cow
7301          */
7302         trans = btrfs_join_transaction(root);
7303         if (IS_ERR(trans)) {
7304                 ret = 0;
7305                 goto out;
7306         }
7307
7308         ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
7309                                     key.offset - backref_offset, disk_bytenr);
7310         btrfs_end_transaction(trans, root);
7311         if (ret) {
7312                 ret = 0;
7313                 goto out;
7314         }
7315
7316         /*
7317          * adjust disk_bytenr and num_bytes to cover just the bytes
7318          * in this extent we are about to write.  If there
7319          * are any csums in that range we have to cow in order
7320          * to keep the csums correct
7321          */
7322         disk_bytenr += backref_offset;
7323         disk_bytenr += offset - key.offset;
7324         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
7325                                 goto out;
7326         /*
7327          * all of the above have passed, it is safe to overwrite this extent
7328          * without cow
7329          */
7330         *len = num_bytes;
7331         ret = 1;
7332 out:
7333         btrfs_free_path(path);
7334         return ret;
7335 }
7336
7337 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7338 {
7339         struct radix_tree_root *root = &inode->i_mapping->page_tree;
7340         int found = false;
7341         void **pagep = NULL;
7342         struct page *page = NULL;
7343         int start_idx;
7344         int end_idx;
7345
7346         start_idx = start >> PAGE_SHIFT;
7347
7348         /*
7349          * end is the last byte in the last page.  end == start is legal
7350          */
7351         end_idx = end >> PAGE_SHIFT;
7352
7353         rcu_read_lock();
7354
7355         /* Most of the code in this while loop is lifted from
7356          * find_get_page.  It's been modified to begin searching from a
7357          * page and return just the first page found in that range.  If the
7358          * found idx is less than or equal to the end idx then we know that
7359          * a page exists.  If no pages are found or if those pages are
7360          * outside of the range then we're fine (yay!) */
7361         while (page == NULL &&
7362                radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7363                 page = radix_tree_deref_slot(pagep);
7364                 if (unlikely(!page))
7365                         break;
7366
7367                 if (radix_tree_exception(page)) {
7368                         if (radix_tree_deref_retry(page)) {
7369                                 page = NULL;
7370                                 continue;
7371                         }
7372                         /*
7373                          * Otherwise, shmem/tmpfs must be storing a swap entry
7374                          * here as an exceptional entry: so return it without
7375                          * attempting to raise page count.
7376                          */
7377                         page = NULL;
7378                         break; /* TODO: Is this relevant for this use case? */
7379                 }
7380
7381                 if (!page_cache_get_speculative(page)) {
7382                         page = NULL;
7383                         continue;
7384                 }
7385
7386                 /*
7387                  * Has the page moved?
7388                  * This is part of the lockless pagecache protocol. See
7389                  * include/linux/pagemap.h for details.
7390                  */
7391                 if (unlikely(page != *pagep)) {
7392                         put_page(page);
7393                         page = NULL;
7394                 }
7395         }
7396
7397         if (page) {
7398                 if (page->index <= end_idx)
7399                         found = true;
7400                 put_page(page);
7401         }
7402
7403         rcu_read_unlock();
7404         return found;
7405 }
7406
7407 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7408                               struct extent_state **cached_state, int writing)
7409 {
7410         struct btrfs_ordered_extent *ordered;
7411         int ret = 0;
7412
7413         while (1) {
7414                 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7415                                  cached_state);
7416                 /*
7417                  * We're concerned with the entire range that we're going to be
7418                  * doing DIO to, so we need to make sure theres no ordered
7419                  * extents in this range.
7420                  */
7421                 ordered = btrfs_lookup_ordered_range(inode, lockstart,
7422                                                      lockend - lockstart + 1);
7423
7424                 /*
7425                  * We need to make sure there are no buffered pages in this
7426                  * range either, we could have raced between the invalidate in
7427                  * generic_file_direct_write and locking the extent.  The
7428                  * invalidate needs to happen so that reads after a write do not
7429                  * get stale data.
7430                  */
7431                 if (!ordered &&
7432                     (!writing ||
7433                      !btrfs_page_exists_in_range(inode, lockstart, lockend)))
7434                         break;
7435
7436                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7437                                      cached_state, GFP_NOFS);
7438
7439                 if (ordered) {
7440                         /*
7441                          * If we are doing a DIO read and the ordered extent we
7442                          * found is for a buffered write, we can not wait for it
7443                          * to complete and retry, because if we do so we can
7444                          * deadlock with concurrent buffered writes on page
7445                          * locks. This happens only if our DIO read covers more
7446                          * than one extent map, if at this point has already
7447                          * created an ordered extent for a previous extent map
7448                          * and locked its range in the inode's io tree, and a
7449                          * concurrent write against that previous extent map's
7450                          * range and this range started (we unlock the ranges
7451                          * in the io tree only when the bios complete and
7452                          * buffered writes always lock pages before attempting
7453                          * to lock range in the io tree).
7454                          */
7455                         if (writing ||
7456                             test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7457                                 btrfs_start_ordered_extent(inode, ordered, 1);
7458                         else
7459                                 ret = -ENOTBLK;
7460                         btrfs_put_ordered_extent(ordered);
7461                 } else {
7462                         /*
7463                          * We could trigger writeback for this range (and wait
7464                          * for it to complete) and then invalidate the pages for
7465                          * this range (through invalidate_inode_pages2_range()),
7466                          * but that can lead us to a deadlock with a concurrent
7467                          * call to readpages() (a buffered read or a defrag call
7468                          * triggered a readahead) on a page lock due to an
7469                          * ordered dio extent we created before but did not have
7470                          * yet a corresponding bio submitted (whence it can not
7471                          * complete), which makes readpages() wait for that
7472                          * ordered extent to complete while holding a lock on
7473                          * that page.
7474                          */
7475                         ret = -ENOTBLK;
7476                 }
7477
7478                 if (ret)
7479                         break;
7480
7481                 cond_resched();
7482         }
7483
7484         return ret;
7485 }
7486
7487 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
7488                                            u64 len, u64 orig_start,
7489                                            u64 block_start, u64 block_len,
7490                                            u64 orig_block_len, u64 ram_bytes,
7491                                            int type)
7492 {
7493         struct extent_map_tree *em_tree;
7494         struct extent_map *em;
7495         struct btrfs_root *root = BTRFS_I(inode)->root;
7496         int ret;
7497
7498         em_tree = &BTRFS_I(inode)->extent_tree;
7499         em = alloc_extent_map();
7500         if (!em)
7501                 return ERR_PTR(-ENOMEM);
7502
7503         em->start = start;
7504         em->orig_start = orig_start;
7505         em->mod_start = start;
7506         em->mod_len = len;
7507         em->len = len;
7508         em->block_len = block_len;
7509         em->block_start = block_start;
7510         em->bdev = root->fs_info->fs_devices->latest_bdev;
7511         em->orig_block_len = orig_block_len;
7512         em->ram_bytes = ram_bytes;
7513         em->generation = -1;
7514         set_bit(EXTENT_FLAG_PINNED, &em->flags);
7515         if (type == BTRFS_ORDERED_PREALLOC)
7516                 set_bit(EXTENT_FLAG_FILLING, &em->flags);
7517
7518         do {
7519                 btrfs_drop_extent_cache(inode, em->start,
7520                                 em->start + em->len - 1, 0);
7521                 write_lock(&em_tree->lock);
7522                 ret = add_extent_mapping(em_tree, em, 1);
7523                 write_unlock(&em_tree->lock);
7524         } while (ret == -EEXIST);
7525
7526         if (ret) {
7527                 free_extent_map(em);
7528                 return ERR_PTR(ret);
7529         }
7530
7531         return em;
7532 }
7533
7534 static void adjust_dio_outstanding_extents(struct inode *inode,
7535                                            struct btrfs_dio_data *dio_data,
7536                                            const u64 len)
7537 {
7538         unsigned num_extents;
7539
7540         num_extents = (unsigned) div64_u64(len + BTRFS_MAX_EXTENT_SIZE - 1,
7541                                            BTRFS_MAX_EXTENT_SIZE);
7542         /*
7543          * If we have an outstanding_extents count still set then we're
7544          * within our reservation, otherwise we need to adjust our inode
7545          * counter appropriately.
7546          */
7547         if (dio_data->outstanding_extents) {
7548                 dio_data->outstanding_extents -= num_extents;
7549         } else {
7550                 spin_lock(&BTRFS_I(inode)->lock);
7551                 BTRFS_I(inode)->outstanding_extents += num_extents;
7552                 spin_unlock(&BTRFS_I(inode)->lock);
7553         }
7554 }
7555
7556 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7557                                    struct buffer_head *bh_result, int create)
7558 {
7559         struct extent_map *em;
7560         struct btrfs_root *root = BTRFS_I(inode)->root;
7561         struct extent_state *cached_state = NULL;
7562         struct btrfs_dio_data *dio_data = NULL;
7563         u64 start = iblock << inode->i_blkbits;
7564         u64 lockstart, lockend;
7565         u64 len = bh_result->b_size;
7566         int unlock_bits = EXTENT_LOCKED;
7567         int ret = 0;
7568
7569         if (create)
7570                 unlock_bits |= EXTENT_DIRTY;
7571         else
7572                 len = min_t(u64, len, root->sectorsize);
7573
7574         lockstart = start;
7575         lockend = start + len - 1;
7576
7577         if (current->journal_info) {
7578                 /*
7579                  * Need to pull our outstanding extents and set journal_info to NULL so
7580                  * that anything that needs to check if there's a transction doesn't get
7581                  * confused.
7582                  */
7583                 dio_data = current->journal_info;
7584                 current->journal_info = NULL;
7585         }
7586
7587         /*
7588          * If this errors out it's because we couldn't invalidate pagecache for
7589          * this range and we need to fallback to buffered.
7590          */
7591         if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7592                                create)) {
7593                 ret = -ENOTBLK;
7594                 goto err;
7595         }
7596
7597         em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
7598         if (IS_ERR(em)) {
7599                 ret = PTR_ERR(em);
7600                 goto unlock_err;
7601         }
7602
7603         /*
7604          * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7605          * io.  INLINE is special, and we could probably kludge it in here, but
7606          * it's still buffered so for safety lets just fall back to the generic
7607          * buffered path.
7608          *
7609          * For COMPRESSED we _have_ to read the entire extent in so we can
7610          * decompress it, so there will be buffering required no matter what we
7611          * do, so go ahead and fallback to buffered.
7612          *
7613          * We return -ENOTBLK because thats what makes DIO go ahead and go back
7614          * to buffered IO.  Don't blame me, this is the price we pay for using
7615          * the generic code.
7616          */
7617         if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7618             em->block_start == EXTENT_MAP_INLINE) {
7619                 free_extent_map(em);
7620                 ret = -ENOTBLK;
7621                 goto unlock_err;
7622         }
7623
7624         /* Just a good old fashioned hole, return */
7625         if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7626                         test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7627                 free_extent_map(em);
7628                 goto unlock_err;
7629         }
7630
7631         /*
7632          * We don't allocate a new extent in the following cases
7633          *
7634          * 1) The inode is marked as NODATACOW.  In this case we'll just use the
7635          * existing extent.
7636          * 2) The extent is marked as PREALLOC.  We're good to go here and can
7637          * just use the extent.
7638          *
7639          */
7640         if (!create) {
7641                 len = min(len, em->len - (start - em->start));
7642                 lockstart = start + len;
7643                 goto unlock;
7644         }
7645
7646         if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7647             ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7648              em->block_start != EXTENT_MAP_HOLE)) {
7649                 int type;
7650                 u64 block_start, orig_start, orig_block_len, ram_bytes;
7651
7652                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7653                         type = BTRFS_ORDERED_PREALLOC;
7654                 else
7655                         type = BTRFS_ORDERED_NOCOW;
7656                 len = min(len, em->len - (start - em->start));
7657                 block_start = em->block_start + (start - em->start);
7658
7659                 if (can_nocow_extent(inode, start, &len, &orig_start,
7660                                      &orig_block_len, &ram_bytes) == 1) {
7661                         if (type == BTRFS_ORDERED_PREALLOC) {
7662                                 free_extent_map(em);
7663                                 em = create_pinned_em(inode, start, len,
7664                                                        orig_start,
7665                                                        block_start, len,
7666                                                        orig_block_len,
7667                                                        ram_bytes, type);
7668                                 if (IS_ERR(em)) {
7669                                         ret = PTR_ERR(em);
7670                                         goto unlock_err;
7671                                 }
7672                         }
7673
7674                         ret = btrfs_add_ordered_extent_dio(inode, start,
7675                                            block_start, len, len, type);
7676                         if (ret) {
7677                                 free_extent_map(em);
7678                                 goto unlock_err;
7679                         }
7680                         goto unlock;
7681                 }
7682         }
7683
7684         /*
7685          * this will cow the extent, reset the len in case we changed
7686          * it above
7687          */
7688         len = bh_result->b_size;
7689         free_extent_map(em);
7690         em = btrfs_new_extent_direct(inode, start, len);
7691         if (IS_ERR(em)) {
7692                 ret = PTR_ERR(em);
7693                 goto unlock_err;
7694         }
7695         len = min(len, em->len - (start - em->start));
7696 unlock:
7697         bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7698                 inode->i_blkbits;
7699         bh_result->b_size = len;
7700         bh_result->b_bdev = em->bdev;
7701         set_buffer_mapped(bh_result);
7702         if (create) {
7703                 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7704                         set_buffer_new(bh_result);
7705
7706                 /*
7707                  * Need to update the i_size under the extent lock so buffered
7708                  * readers will get the updated i_size when we unlock.
7709                  */
7710                 if (start + len > i_size_read(inode))
7711                         i_size_write(inode, start + len);
7712
7713                 adjust_dio_outstanding_extents(inode, dio_data, len);
7714                 btrfs_free_reserved_data_space(inode, start, len);
7715                 WARN_ON(dio_data->reserve < len);
7716                 dio_data->reserve -= len;
7717                 dio_data->unsubmitted_oe_range_end = start + len;
7718                 current->journal_info = dio_data;
7719         }
7720
7721         /*
7722          * In the case of write we need to clear and unlock the entire range,
7723          * in the case of read we need to unlock only the end area that we
7724          * aren't using if there is any left over space.
7725          */
7726         if (lockstart < lockend) {
7727                 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7728                                  lockend, unlock_bits, 1, 0,
7729                                  &cached_state, GFP_NOFS);
7730         } else {
7731                 free_extent_state(cached_state);
7732         }
7733
7734         free_extent_map(em);
7735
7736         return 0;
7737
7738 unlock_err:
7739         clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7740                          unlock_bits, 1, 0, &cached_state, GFP_NOFS);
7741 err:
7742         if (dio_data)
7743                 current->journal_info = dio_data;
7744         /*
7745          * Compensate the delalloc release we do in btrfs_direct_IO() when we
7746          * write less data then expected, so that we don't underflow our inode's
7747          * outstanding extents counter.
7748          */
7749         if (create && dio_data)
7750                 adjust_dio_outstanding_extents(inode, dio_data, len);
7751
7752         return ret;
7753 }
7754
7755 static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7756                                         int rw, int mirror_num)
7757 {
7758         struct btrfs_root *root = BTRFS_I(inode)->root;
7759         int ret;
7760
7761         BUG_ON(rw & REQ_WRITE);
7762
7763         bio_get(bio);
7764
7765         ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7766                                   BTRFS_WQ_ENDIO_DIO_REPAIR);
7767         if (ret)
7768                 goto err;
7769
7770         ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
7771 err:
7772         bio_put(bio);
7773         return ret;
7774 }
7775
7776 static int btrfs_check_dio_repairable(struct inode *inode,
7777                                       struct bio *failed_bio,
7778                                       struct io_failure_record *failrec,
7779                                       int failed_mirror)
7780 {
7781         int num_copies;
7782
7783         num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
7784                                       failrec->logical, failrec->len);
7785         if (num_copies == 1) {
7786                 /*
7787                  * we only have a single copy of the data, so don't bother with
7788                  * all the retry and error correction code that follows. no
7789                  * matter what the error is, it is very likely to persist.
7790                  */
7791                 pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
7792                          num_copies, failrec->this_mirror, failed_mirror);
7793                 return 0;
7794         }
7795
7796         failrec->failed_mirror = failed_mirror;
7797         failrec->this_mirror++;
7798         if (failrec->this_mirror == failed_mirror)
7799                 failrec->this_mirror++;
7800
7801         if (failrec->this_mirror > num_copies) {
7802                 pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
7803                          num_copies, failrec->this_mirror, failed_mirror);
7804                 return 0;
7805         }
7806
7807         return 1;
7808 }
7809
7810 static int dio_read_error(struct inode *inode, struct bio *failed_bio,
7811                         struct page *page, unsigned int pgoff,
7812                         u64 start, u64 end, int failed_mirror,
7813                         bio_end_io_t *repair_endio, void *repair_arg)
7814 {
7815         struct io_failure_record *failrec;
7816         struct bio *bio;
7817         int isector;
7818         int read_mode;
7819         int ret;
7820
7821         BUG_ON(failed_bio->bi_rw & REQ_WRITE);
7822
7823         ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7824         if (ret)
7825                 return ret;
7826
7827         ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7828                                          failed_mirror);
7829         if (!ret) {
7830                 free_io_failure(inode, failrec);
7831                 return -EIO;
7832         }
7833
7834         if ((failed_bio->bi_vcnt > 1)
7835                 || (failed_bio->bi_io_vec->bv_len
7836                         > BTRFS_I(inode)->root->sectorsize))
7837                 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
7838         else
7839                 read_mode = READ_SYNC;
7840
7841         isector = start - btrfs_io_bio(failed_bio)->logical;
7842         isector >>= inode->i_sb->s_blocksize_bits;
7843         bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7844                                 pgoff, isector, repair_endio, repair_arg);
7845         if (!bio) {
7846                 free_io_failure(inode, failrec);
7847                 return -EIO;
7848         }
7849
7850         btrfs_debug(BTRFS_I(inode)->root->fs_info,
7851                     "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7852                     read_mode, failrec->this_mirror, failrec->in_validation);
7853
7854         ret = submit_dio_repair_bio(inode, bio, read_mode,
7855                                     failrec->this_mirror);
7856         if (ret) {
7857                 free_io_failure(inode, failrec);
7858                 bio_put(bio);
7859         }
7860
7861         return ret;
7862 }
7863
7864 struct btrfs_retry_complete {
7865         struct completion done;
7866         struct inode *inode;
7867         u64 start;
7868         int uptodate;
7869 };
7870
7871 static void btrfs_retry_endio_nocsum(struct bio *bio)
7872 {
7873         struct btrfs_retry_complete *done = bio->bi_private;
7874         struct inode *inode;
7875         struct bio_vec *bvec;
7876         int i;
7877
7878         if (bio->bi_error)
7879                 goto end;
7880
7881         ASSERT(bio->bi_vcnt == 1);
7882         inode = bio->bi_io_vec->bv_page->mapping->host;
7883         ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize);
7884
7885         done->uptodate = 1;
7886         bio_for_each_segment_all(bvec, bio, i)
7887                 clean_io_failure(done->inode, done->start, bvec->bv_page, 0);
7888 end:
7889         complete(&done->done);
7890         bio_put(bio);
7891 }
7892
7893 static int __btrfs_correct_data_nocsum(struct inode *inode,
7894                                        struct btrfs_io_bio *io_bio)
7895 {
7896         struct btrfs_fs_info *fs_info;
7897         struct bio_vec *bvec;
7898         struct btrfs_retry_complete done;
7899         u64 start;
7900         unsigned int pgoff;
7901         u32 sectorsize;
7902         int nr_sectors;
7903         int i;
7904         int ret;
7905
7906         fs_info = BTRFS_I(inode)->root->fs_info;
7907         sectorsize = BTRFS_I(inode)->root->sectorsize;
7908
7909         start = io_bio->logical;
7910         done.inode = inode;
7911
7912         bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7913                 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
7914                 pgoff = bvec->bv_offset;
7915
7916 next_block_or_try_again:
7917                 done.uptodate = 0;
7918                 done.start = start;
7919                 init_completion(&done.done);
7920
7921                 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
7922                                 pgoff, start, start + sectorsize - 1,
7923                                 io_bio->mirror_num,
7924                                 btrfs_retry_endio_nocsum, &done);
7925                 if (ret)
7926                         return ret;
7927
7928                 wait_for_completion(&done.done);
7929
7930                 if (!done.uptodate) {
7931                         /* We might have another mirror, so try again */
7932                         goto next_block_or_try_again;
7933                 }
7934
7935                 start += sectorsize;
7936
7937                 if (nr_sectors--) {
7938                         pgoff += sectorsize;
7939                         goto next_block_or_try_again;
7940                 }
7941         }
7942
7943         return 0;
7944 }
7945
7946 static void btrfs_retry_endio(struct bio *bio)
7947 {
7948         struct btrfs_retry_complete *done = bio->bi_private;
7949         struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7950         struct inode *inode;
7951         struct bio_vec *bvec;
7952         u64 start;
7953         int uptodate;
7954         int ret;
7955         int i;
7956
7957         if (bio->bi_error)
7958                 goto end;
7959
7960         uptodate = 1;
7961
7962         start = done->start;
7963
7964         ASSERT(bio->bi_vcnt == 1);
7965         inode = bio->bi_io_vec->bv_page->mapping->host;
7966         ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize);
7967
7968         bio_for_each_segment_all(bvec, bio, i) {
7969                 ret = __readpage_endio_check(done->inode, io_bio, i,
7970                                         bvec->bv_page, bvec->bv_offset,
7971                                         done->start, bvec->bv_len);
7972                 if (!ret)
7973                         clean_io_failure(done->inode, done->start,
7974                                         bvec->bv_page, bvec->bv_offset);
7975                 else
7976                         uptodate = 0;
7977         }
7978
7979         done->uptodate = uptodate;
7980 end:
7981         complete(&done->done);
7982         bio_put(bio);
7983 }
7984
7985 static int __btrfs_subio_endio_read(struct inode *inode,
7986                                     struct btrfs_io_bio *io_bio, int err)
7987 {
7988         struct btrfs_fs_info *fs_info;
7989         struct bio_vec *bvec;
7990         struct btrfs_retry_complete done;
7991         u64 start;
7992         u64 offset = 0;
7993         u32 sectorsize;
7994         int nr_sectors;
7995         unsigned int pgoff;
7996         int csum_pos;
7997         int i;
7998         int ret;
7999
8000         fs_info = BTRFS_I(inode)->root->fs_info;
8001         sectorsize = BTRFS_I(inode)->root->sectorsize;
8002
8003         err = 0;
8004         start = io_bio->logical;
8005         done.inode = inode;
8006
8007         bio_for_each_segment_all(bvec, &io_bio->bio, i) {
8008                 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
8009
8010                 pgoff = bvec->bv_offset;
8011 next_block:
8012                 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8013                 ret = __readpage_endio_check(inode, io_bio, csum_pos,
8014                                         bvec->bv_page, pgoff, start,
8015                                         sectorsize);
8016                 if (likely(!ret))
8017                         goto next;
8018 try_again:
8019                 done.uptodate = 0;
8020                 done.start = start;
8021                 init_completion(&done.done);
8022
8023                 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
8024                                 pgoff, start, start + sectorsize - 1,
8025                                 io_bio->mirror_num,
8026                                 btrfs_retry_endio, &done);
8027                 if (ret) {
8028                         err = ret;
8029                         goto next;
8030                 }
8031
8032                 wait_for_completion(&done.done);
8033
8034                 if (!done.uptodate) {
8035                         /* We might have another mirror, so try again */
8036                         goto try_again;
8037                 }
8038 next:
8039                 offset += sectorsize;
8040                 start += sectorsize;
8041
8042                 ASSERT(nr_sectors);
8043
8044                 if (--nr_sectors) {
8045                         pgoff += sectorsize;
8046                         goto next_block;
8047                 }
8048         }
8049
8050         return err;
8051 }
8052
8053 static int btrfs_subio_endio_read(struct inode *inode,
8054                                   struct btrfs_io_bio *io_bio, int err)
8055 {
8056         bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8057
8058         if (skip_csum) {
8059                 if (unlikely(err))
8060                         return __btrfs_correct_data_nocsum(inode, io_bio);
8061                 else
8062                         return 0;
8063         } else {
8064                 return __btrfs_subio_endio_read(inode, io_bio, err);
8065         }
8066 }
8067
8068 static void btrfs_endio_direct_read(struct bio *bio)
8069 {
8070         struct btrfs_dio_private *dip = bio->bi_private;
8071         struct inode *inode = dip->inode;
8072         struct bio *dio_bio;
8073         struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8074         int err = bio->bi_error;
8075
8076         if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8077                 err = btrfs_subio_endio_read(inode, io_bio, err);
8078
8079         unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
8080                       dip->logical_offset + dip->bytes - 1);
8081         dio_bio = dip->dio_bio;
8082
8083         kfree(dip);
8084
8085         dio_bio->bi_error = bio->bi_error;
8086         dio_end_io(dio_bio, bio->bi_error);
8087
8088         if (io_bio->end_io)
8089                 io_bio->end_io(io_bio, err);
8090         bio_put(bio);
8091 }
8092
8093 static void btrfs_endio_direct_write_update_ordered(struct inode *inode,
8094                                                     const u64 offset,
8095                                                     const u64 bytes,
8096                                                     const int uptodate)
8097 {
8098         struct btrfs_root *root = BTRFS_I(inode)->root;
8099         struct btrfs_ordered_extent *ordered = NULL;
8100         u64 ordered_offset = offset;
8101         u64 ordered_bytes = bytes;
8102         int ret;
8103
8104 again:
8105         ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
8106                                                    &ordered_offset,
8107                                                    ordered_bytes,
8108                                                    uptodate);
8109         if (!ret)
8110                 goto out_test;
8111
8112         btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
8113                         finish_ordered_fn, NULL, NULL);
8114         btrfs_queue_work(root->fs_info->endio_write_workers,
8115                          &ordered->work);
8116 out_test:
8117         /*
8118          * our bio might span multiple ordered extents.  If we haven't
8119          * completed the accounting for the whole dio, go back and try again
8120          */
8121         if (ordered_offset < offset + bytes) {
8122                 ordered_bytes = offset + bytes - ordered_offset;
8123                 ordered = NULL;
8124                 goto again;
8125         }
8126 }
8127
8128 static void btrfs_endio_direct_write(struct bio *bio)
8129 {
8130         struct btrfs_dio_private *dip = bio->bi_private;
8131         struct bio *dio_bio = dip->dio_bio;
8132
8133         btrfs_endio_direct_write_update_ordered(dip->inode,
8134                                                 dip->logical_offset,
8135                                                 dip->bytes,
8136                                                 !bio->bi_error);
8137
8138         kfree(dip);
8139
8140         dio_bio->bi_error = bio->bi_error;
8141         dio_end_io(dio_bio, bio->bi_error);
8142         bio_put(bio);
8143 }
8144
8145 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
8146                                     struct bio *bio, int mirror_num,
8147                                     unsigned long bio_flags, u64 offset)
8148 {
8149         int ret;
8150         struct btrfs_root *root = BTRFS_I(inode)->root;
8151         ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
8152         BUG_ON(ret); /* -ENOMEM */
8153         return 0;
8154 }
8155
8156 static void btrfs_end_dio_bio(struct bio *bio)
8157 {
8158         struct btrfs_dio_private *dip = bio->bi_private;
8159         int err = bio->bi_error;
8160
8161         if (err)
8162                 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8163                            "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
8164                            btrfs_ino(dip->inode), bio->bi_rw,
8165                            (unsigned long long)bio->bi_iter.bi_sector,
8166                            bio->bi_iter.bi_size, err);
8167
8168         if (dip->subio_endio)
8169                 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
8170
8171         if (err) {
8172                 dip->errors = 1;
8173
8174                 /*
8175                  * before atomic variable goto zero, we must make sure
8176                  * dip->errors is perceived to be set.
8177                  */
8178                 smp_mb__before_atomic();
8179         }
8180
8181         /* if there are more bios still pending for this dio, just exit */
8182         if (!atomic_dec_and_test(&dip->pending_bios))
8183                 goto out;
8184
8185         if (dip->errors) {
8186                 bio_io_error(dip->orig_bio);
8187         } else {
8188                 dip->dio_bio->bi_error = 0;
8189                 bio_endio(dip->orig_bio);
8190         }
8191 out:
8192         bio_put(bio);
8193 }
8194
8195 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
8196                                        u64 first_sector, gfp_t gfp_flags)
8197 {
8198         struct bio *bio;
8199         bio = btrfs_bio_alloc(bdev, first_sector, BIO_MAX_PAGES, gfp_flags);
8200         if (bio)
8201                 bio_associate_current(bio);
8202         return bio;
8203 }
8204
8205 static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root,
8206                                                  struct inode *inode,
8207                                                  struct btrfs_dio_private *dip,
8208                                                  struct bio *bio,
8209                                                  u64 file_offset)
8210 {
8211         struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8212         struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8213         int ret;
8214
8215         /*
8216          * We load all the csum data we need when we submit
8217          * the first bio to reduce the csum tree search and
8218          * contention.
8219          */
8220         if (dip->logical_offset == file_offset) {
8221                 ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio,
8222                                                 file_offset);
8223                 if (ret)
8224                         return ret;
8225         }
8226
8227         if (bio == dip->orig_bio)
8228                 return 0;
8229
8230         file_offset -= dip->logical_offset;
8231         file_offset >>= inode->i_sb->s_blocksize_bits;
8232         io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8233
8234         return 0;
8235 }
8236
8237 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
8238                                          int rw, u64 file_offset, int skip_sum,
8239                                          int async_submit)
8240 {
8241         struct btrfs_dio_private *dip = bio->bi_private;
8242         int write = rw & REQ_WRITE;
8243         struct btrfs_root *root = BTRFS_I(inode)->root;
8244         int ret;
8245
8246         if (async_submit)
8247                 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8248
8249         bio_get(bio);
8250
8251         if (!write) {
8252                 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
8253                                 BTRFS_WQ_ENDIO_DATA);
8254                 if (ret)
8255                         goto err;
8256         }
8257
8258         if (skip_sum)
8259                 goto map;
8260
8261         if (write && async_submit) {
8262                 ret = btrfs_wq_submit_bio(root->fs_info,
8263                                    inode, rw, bio, 0, 0,
8264                                    file_offset,
8265                                    __btrfs_submit_bio_start_direct_io,
8266                                    __btrfs_submit_bio_done);
8267                 goto err;
8268         } else if (write) {
8269                 /*
8270                  * If we aren't doing async submit, calculate the csum of the
8271                  * bio now.
8272                  */
8273                 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
8274                 if (ret)
8275                         goto err;
8276         } else {
8277                 ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio,
8278                                                      file_offset);
8279                 if (ret)
8280                         goto err;
8281         }
8282 map:
8283         ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
8284 err:
8285         bio_put(bio);
8286         return ret;
8287 }
8288
8289 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
8290                                     int skip_sum)
8291 {
8292         struct inode *inode = dip->inode;
8293         struct btrfs_root *root = BTRFS_I(inode)->root;
8294         struct bio *bio;
8295         struct bio *orig_bio = dip->orig_bio;
8296         struct bio_vec *bvec = orig_bio->bi_io_vec;
8297         u64 start_sector = orig_bio->bi_iter.bi_sector;
8298         u64 file_offset = dip->logical_offset;
8299         u64 submit_len = 0;
8300         u64 map_length;
8301         u32 blocksize = root->sectorsize;
8302         int async_submit = 0;
8303         int nr_sectors;
8304         int ret;
8305         int i;
8306
8307         map_length = orig_bio->bi_iter.bi_size;
8308         ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
8309                               &map_length, NULL, 0);
8310         if (ret)
8311                 return -EIO;
8312
8313         if (map_length >= orig_bio->bi_iter.bi_size) {
8314                 bio = orig_bio;
8315                 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8316                 goto submit;
8317         }
8318
8319         /* async crcs make it difficult to collect full stripe writes. */
8320         if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8321                 async_submit = 0;
8322         else
8323                 async_submit = 1;
8324
8325         bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
8326         if (!bio)
8327                 return -ENOMEM;
8328
8329         bio->bi_private = dip;
8330         bio->bi_end_io = btrfs_end_dio_bio;
8331         btrfs_io_bio(bio)->logical = file_offset;
8332         atomic_inc(&dip->pending_bios);
8333
8334         while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
8335                 nr_sectors = BTRFS_BYTES_TO_BLKS(root->fs_info, bvec->bv_len);
8336                 i = 0;
8337 next_block:
8338                 if (unlikely(map_length < submit_len + blocksize ||
8339                     bio_add_page(bio, bvec->bv_page, blocksize,
8340                             bvec->bv_offset + (i * blocksize)) < blocksize)) {
8341                         /*
8342                          * inc the count before we submit the bio so
8343                          * we know the end IO handler won't happen before
8344                          * we inc the count. Otherwise, the dip might get freed
8345                          * before we're done setting it up
8346                          */
8347                         atomic_inc(&dip->pending_bios);
8348                         ret = __btrfs_submit_dio_bio(bio, inode, rw,
8349                                                      file_offset, skip_sum,
8350                                                      async_submit);
8351                         if (ret) {
8352                                 bio_put(bio);
8353                                 atomic_dec(&dip->pending_bios);
8354                                 goto out_err;
8355                         }
8356
8357                         start_sector += submit_len >> 9;
8358                         file_offset += submit_len;
8359
8360                         submit_len = 0;
8361
8362                         bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
8363                                                   start_sector, GFP_NOFS);
8364                         if (!bio)
8365                                 goto out_err;
8366                         bio->bi_private = dip;
8367                         bio->bi_end_io = btrfs_end_dio_bio;
8368                         btrfs_io_bio(bio)->logical = file_offset;
8369
8370                         map_length = orig_bio->bi_iter.bi_size;
8371                         ret = btrfs_map_block(root->fs_info, rw,
8372                                               start_sector << 9,
8373                                               &map_length, NULL, 0);
8374                         if (ret) {
8375                                 bio_put(bio);
8376                                 goto out_err;
8377                         }
8378
8379                         goto next_block;
8380                 } else {
8381                         submit_len += blocksize;
8382                         if (--nr_sectors) {
8383                                 i++;
8384                                 goto next_block;
8385                         }
8386                         bvec++;
8387                 }
8388         }
8389
8390 submit:
8391         ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
8392                                      async_submit);
8393         if (!ret)
8394                 return 0;
8395
8396         bio_put(bio);
8397 out_err:
8398         dip->errors = 1;
8399         /*
8400          * before atomic variable goto zero, we must
8401          * make sure dip->errors is perceived to be set.
8402          */
8403         smp_mb__before_atomic();
8404         if (atomic_dec_and_test(&dip->pending_bios))
8405                 bio_io_error(dip->orig_bio);
8406
8407         /* bio_end_io() will handle error, so we needn't return it */
8408         return 0;
8409 }
8410
8411 static void btrfs_submit_direct(int rw, struct bio *dio_bio,
8412                                 struct inode *inode, loff_t file_offset)
8413 {
8414         struct btrfs_dio_private *dip = NULL;
8415         struct bio *io_bio = NULL;
8416         struct btrfs_io_bio *btrfs_bio;
8417         int skip_sum;
8418         int write = rw & REQ_WRITE;
8419         int ret = 0;
8420
8421         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8422
8423         io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
8424         if (!io_bio) {
8425                 ret = -ENOMEM;
8426                 goto free_ordered;
8427         }
8428
8429         dip = kzalloc(sizeof(*dip), GFP_NOFS);
8430         if (!dip) {
8431                 ret = -ENOMEM;
8432                 goto free_ordered;
8433         }
8434
8435         dip->private = dio_bio->bi_private;
8436         dip->inode = inode;
8437         dip->logical_offset = file_offset;
8438         dip->bytes = dio_bio->bi_iter.bi_size;
8439         dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8440         io_bio->bi_private = dip;
8441         dip->orig_bio = io_bio;
8442         dip->dio_bio = dio_bio;
8443         atomic_set(&dip->pending_bios, 0);
8444         btrfs_bio = btrfs_io_bio(io_bio);
8445         btrfs_bio->logical = file_offset;
8446
8447         if (write) {
8448                 io_bio->bi_end_io = btrfs_endio_direct_write;
8449         } else {
8450                 io_bio->bi_end_io = btrfs_endio_direct_read;
8451                 dip->subio_endio = btrfs_subio_endio_read;
8452         }
8453
8454         /*
8455          * Reset the range for unsubmitted ordered extents (to a 0 length range)
8456          * even if we fail to submit a bio, because in such case we do the
8457          * corresponding error handling below and it must not be done a second
8458          * time by btrfs_direct_IO().
8459          */
8460         if (write) {
8461                 struct btrfs_dio_data *dio_data = current->journal_info;
8462
8463                 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8464                         dip->bytes;
8465                 dio_data->unsubmitted_oe_range_start =
8466                         dio_data->unsubmitted_oe_range_end;
8467         }
8468
8469         ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
8470         if (!ret)
8471                 return;
8472
8473         if (btrfs_bio->end_io)
8474                 btrfs_bio->end_io(btrfs_bio, ret);
8475
8476 free_ordered:
8477         /*
8478          * If we arrived here it means either we failed to submit the dip
8479          * or we either failed to clone the dio_bio or failed to allocate the
8480          * dip. If we cloned the dio_bio and allocated the dip, we can just
8481          * call bio_endio against our io_bio so that we get proper resource
8482          * cleanup if we fail to submit the dip, otherwise, we must do the
8483          * same as btrfs_endio_direct_[write|read] because we can't call these
8484          * callbacks - they require an allocated dip and a clone of dio_bio.
8485          */
8486         if (io_bio && dip) {
8487                 io_bio->bi_error = -EIO;
8488                 bio_endio(io_bio);
8489                 /*
8490                  * The end io callbacks free our dip, do the final put on io_bio
8491                  * and all the cleanup and final put for dio_bio (through
8492                  * dio_end_io()).
8493                  */
8494                 dip = NULL;
8495                 io_bio = NULL;
8496         } else {
8497                 if (write)
8498                         btrfs_endio_direct_write_update_ordered(inode,
8499                                                 file_offset,
8500                                                 dio_bio->bi_iter.bi_size,
8501                                                 0);
8502                 else
8503                         unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8504                               file_offset + dio_bio->bi_iter.bi_size - 1);
8505
8506                 dio_bio->bi_error = -EIO;
8507                 /*
8508                  * Releases and cleans up our dio_bio, no need to bio_put()
8509                  * nor bio_endio()/bio_io_error() against dio_bio.
8510                  */
8511                 dio_end_io(dio_bio, ret);
8512         }
8513         if (io_bio)
8514                 bio_put(io_bio);
8515         kfree(dip);
8516 }
8517
8518 static ssize_t check_direct_IO(struct btrfs_root *root, struct kiocb *iocb,
8519                         const struct iov_iter *iter, loff_t offset)
8520 {
8521         int seg;
8522         int i;
8523         unsigned blocksize_mask = root->sectorsize - 1;
8524         ssize_t retval = -EINVAL;
8525
8526         if (offset & blocksize_mask)
8527                 goto out;
8528
8529         if (iov_iter_alignment(iter) & blocksize_mask)
8530                 goto out;
8531
8532         /* If this is a write we don't need to check anymore */
8533         if (iov_iter_rw(iter) == WRITE)
8534                 return 0;
8535         /*
8536          * Check to make sure we don't have duplicate iov_base's in this
8537          * iovec, if so return EINVAL, otherwise we'll get csum errors
8538          * when reading back.
8539          */
8540         for (seg = 0; seg < iter->nr_segs; seg++) {
8541                 for (i = seg + 1; i < iter->nr_segs; i++) {
8542                         if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8543                                 goto out;
8544                 }
8545         }
8546         retval = 0;
8547 out:
8548         return retval;
8549 }
8550
8551 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
8552                                loff_t offset)
8553 {
8554         struct file *file = iocb->ki_filp;
8555         struct inode *inode = file->f_mapping->host;
8556         struct btrfs_root *root = BTRFS_I(inode)->root;
8557         struct btrfs_dio_data dio_data = { 0 };
8558         size_t count = 0;
8559         int flags = 0;
8560         bool wakeup = true;
8561         bool relock = false;
8562         ssize_t ret;
8563
8564         if (check_direct_IO(BTRFS_I(inode)->root, iocb, iter, offset))
8565                 return 0;
8566
8567         inode_dio_begin(inode);
8568         smp_mb__after_atomic();
8569
8570         /*
8571          * The generic stuff only does filemap_write_and_wait_range, which
8572          * isn't enough if we've written compressed pages to this area, so
8573          * we need to flush the dirty pages again to make absolutely sure
8574          * that any outstanding dirty pages are on disk.
8575          */
8576         count = iov_iter_count(iter);
8577         if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8578                      &BTRFS_I(inode)->runtime_flags))
8579                 filemap_fdatawrite_range(inode->i_mapping, offset,
8580                                          offset + count - 1);
8581
8582         if (iov_iter_rw(iter) == WRITE) {
8583                 /*
8584                  * If the write DIO is beyond the EOF, we need update
8585                  * the isize, but it is protected by i_mutex. So we can
8586                  * not unlock the i_mutex at this case.
8587                  */
8588                 if (offset + count <= inode->i_size) {
8589                         inode_unlock(inode);
8590                         relock = true;
8591                 }
8592                 ret = btrfs_delalloc_reserve_space(inode, offset, count);
8593                 if (ret)
8594                         goto out;
8595                 dio_data.outstanding_extents = div64_u64(count +
8596                                                 BTRFS_MAX_EXTENT_SIZE - 1,
8597                                                 BTRFS_MAX_EXTENT_SIZE);
8598
8599                 /*
8600                  * We need to know how many extents we reserved so that we can
8601                  * do the accounting properly if we go over the number we
8602                  * originally calculated.  Abuse current->journal_info for this.
8603                  */
8604                 dio_data.reserve = round_up(count, root->sectorsize);
8605                 dio_data.unsubmitted_oe_range_start = (u64)offset;
8606                 dio_data.unsubmitted_oe_range_end = (u64)offset;
8607                 current->journal_info = &dio_data;
8608         } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8609                                      &BTRFS_I(inode)->runtime_flags)) {
8610                 inode_dio_end(inode);
8611                 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8612                 wakeup = false;
8613         }
8614
8615         ret = __blockdev_direct_IO(iocb, inode,
8616                                    BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
8617                                    iter, offset, btrfs_get_blocks_direct, NULL,
8618                                    btrfs_submit_direct, flags);
8619         if (iov_iter_rw(iter) == WRITE) {
8620                 current->journal_info = NULL;
8621                 if (ret < 0 && ret != -EIOCBQUEUED) {
8622                         if (dio_data.reserve)
8623                                 btrfs_delalloc_release_space(inode, offset,
8624                                                              dio_data.reserve);
8625                         /*
8626                          * On error we might have left some ordered extents
8627                          * without submitting corresponding bios for them, so
8628                          * cleanup them up to avoid other tasks getting them
8629                          * and waiting for them to complete forever.
8630                          */
8631                         if (dio_data.unsubmitted_oe_range_start <
8632                             dio_data.unsubmitted_oe_range_end)
8633                                 btrfs_endio_direct_write_update_ordered(inode,
8634                                         dio_data.unsubmitted_oe_range_start,
8635                                         dio_data.unsubmitted_oe_range_end -
8636                                         dio_data.unsubmitted_oe_range_start,
8637                                         0);
8638                 } else if (ret >= 0 && (size_t)ret < count)
8639                         btrfs_delalloc_release_space(inode, offset,
8640                                                      count - (size_t)ret);
8641         }
8642 out:
8643         if (wakeup)
8644                 inode_dio_end(inode);
8645         if (relock)
8646                 inode_lock(inode);
8647
8648         return ret;
8649 }
8650
8651 #define BTRFS_FIEMAP_FLAGS      (FIEMAP_FLAG_SYNC)
8652
8653 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8654                 __u64 start, __u64 len)
8655 {
8656         int     ret;
8657
8658         ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8659         if (ret)
8660                 return ret;
8661
8662         return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
8663 }
8664
8665 int btrfs_readpage(struct file *file, struct page *page)
8666 {
8667         struct extent_io_tree *tree;
8668         tree = &BTRFS_I(page->mapping->host)->io_tree;
8669         return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8670 }
8671
8672 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8673 {
8674         struct extent_io_tree *tree;
8675         struct inode *inode = page->mapping->host;
8676         int ret;
8677
8678         if (current->flags & PF_MEMALLOC) {
8679                 redirty_page_for_writepage(wbc, page);
8680                 unlock_page(page);
8681                 return 0;
8682         }
8683
8684         /*
8685          * If we are under memory pressure we will call this directly from the
8686          * VM, we need to make sure we have the inode referenced for the ordered
8687          * extent.  If not just return like we didn't do anything.
8688          */
8689         if (!igrab(inode)) {
8690                 redirty_page_for_writepage(wbc, page);
8691                 return AOP_WRITEPAGE_ACTIVATE;
8692         }
8693         tree = &BTRFS_I(page->mapping->host)->io_tree;
8694         ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8695         btrfs_add_delayed_iput(inode);
8696         return ret;
8697 }
8698
8699 static int btrfs_writepages(struct address_space *mapping,
8700                             struct writeback_control *wbc)
8701 {
8702         struct extent_io_tree *tree;
8703
8704         tree = &BTRFS_I(mapping->host)->io_tree;
8705         return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8706 }
8707
8708 static int
8709 btrfs_readpages(struct file *file, struct address_space *mapping,
8710                 struct list_head *pages, unsigned nr_pages)
8711 {
8712         struct extent_io_tree *tree;
8713         tree = &BTRFS_I(mapping->host)->io_tree;
8714         return extent_readpages(tree, mapping, pages, nr_pages,
8715                                 btrfs_get_extent);
8716 }
8717 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8718 {
8719         struct extent_io_tree *tree;
8720         struct extent_map_tree *map;
8721         int ret;
8722
8723         tree = &BTRFS_I(page->mapping->host)->io_tree;
8724         map = &BTRFS_I(page->mapping->host)->extent_tree;
8725         ret = try_release_extent_mapping(map, tree, page, gfp_flags);
8726         if (ret == 1) {
8727                 ClearPagePrivate(page);
8728                 set_page_private(page, 0);
8729                 put_page(page);
8730         }
8731         return ret;
8732 }
8733
8734 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8735 {
8736         if (PageWriteback(page) || PageDirty(page))
8737                 return 0;
8738         return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
8739 }
8740
8741 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8742                                  unsigned int length)
8743 {
8744         struct inode *inode = page->mapping->host;
8745         struct extent_io_tree *tree;
8746         struct btrfs_ordered_extent *ordered;
8747         struct extent_state *cached_state = NULL;
8748         u64 page_start = page_offset(page);
8749         u64 page_end = page_start + PAGE_SIZE - 1;
8750         u64 start;
8751         u64 end;
8752         int inode_evicting = inode->i_state & I_FREEING;
8753
8754         /*
8755          * we have the page locked, so new writeback can't start,
8756          * and the dirty bit won't be cleared while we are here.
8757          *
8758          * Wait for IO on this page so that we can safely clear
8759          * the PagePrivate2 bit and do ordered accounting
8760          */
8761         wait_on_page_writeback(page);
8762
8763         tree = &BTRFS_I(inode)->io_tree;
8764         if (offset) {
8765                 btrfs_releasepage(page, GFP_NOFS);
8766                 return;
8767         }
8768
8769         if (!inode_evicting)
8770                 lock_extent_bits(tree, page_start, page_end, &cached_state);
8771 again:
8772         start = page_start;
8773         ordered = btrfs_lookup_ordered_range(inode, start,
8774                                         page_end - start + 1);
8775         if (ordered) {
8776                 end = min(page_end, ordered->file_offset + ordered->len - 1);
8777                 /*
8778                  * IO on this page will never be started, so we need
8779                  * to account for any ordered extents now
8780                  */
8781                 if (!inode_evicting)
8782                         clear_extent_bit(tree, start, end,
8783                                          EXTENT_DIRTY | EXTENT_DELALLOC |
8784                                          EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8785                                          EXTENT_DEFRAG, 1, 0, &cached_state,
8786                                          GFP_NOFS);
8787                 /*
8788                  * whoever cleared the private bit is responsible
8789                  * for the finish_ordered_io
8790                  */
8791                 if (TestClearPagePrivate2(page)) {
8792                         struct btrfs_ordered_inode_tree *tree;
8793                         u64 new_len;
8794
8795                         tree = &BTRFS_I(inode)->ordered_tree;
8796
8797                         spin_lock_irq(&tree->lock);
8798                         set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8799                         new_len = start - ordered->file_offset;
8800                         if (new_len < ordered->truncated_len)
8801                                 ordered->truncated_len = new_len;
8802                         spin_unlock_irq(&tree->lock);
8803
8804                         if (btrfs_dec_test_ordered_pending(inode, &ordered,
8805                                                            start,
8806                                                            end - start + 1, 1))
8807                                 btrfs_finish_ordered_io(ordered);
8808                 }
8809                 btrfs_put_ordered_extent(ordered);
8810                 if (!inode_evicting) {
8811                         cached_state = NULL;
8812                         lock_extent_bits(tree, start, end,
8813                                          &cached_state);
8814                 }
8815
8816                 start = end + 1;
8817                 if (start < page_end)
8818                         goto again;
8819         }
8820
8821         /*
8822          * Qgroup reserved space handler
8823          * Page here will be either
8824          * 1) Already written to disk
8825          *    In this case, its reserved space is released from data rsv map
8826          *    and will be freed by delayed_ref handler finally.
8827          *    So even we call qgroup_free_data(), it won't decrease reserved
8828          *    space.
8829          * 2) Not written to disk
8830          *    This means the reserved space should be freed here.
8831          */
8832         btrfs_qgroup_free_data(inode, page_start, PAGE_SIZE);
8833         if (!inode_evicting) {
8834                 clear_extent_bit(tree, page_start, page_end,
8835                                  EXTENT_LOCKED | EXTENT_DIRTY |
8836                                  EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8837                                  EXTENT_DEFRAG, 1, 1,
8838                                  &cached_state, GFP_NOFS);
8839
8840                 __btrfs_releasepage(page, GFP_NOFS);
8841         }
8842
8843         ClearPageChecked(page);
8844         if (PagePrivate(page)) {
8845                 ClearPagePrivate(page);
8846                 set_page_private(page, 0);
8847                 put_page(page);
8848         }
8849 }
8850
8851 /*
8852  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8853  * called from a page fault handler when a page is first dirtied. Hence we must
8854  * be careful to check for EOF conditions here. We set the page up correctly
8855  * for a written page which means we get ENOSPC checking when writing into
8856  * holes and correct delalloc and unwritten extent mapping on filesystems that
8857  * support these features.
8858  *
8859  * We are not allowed to take the i_mutex here so we have to play games to
8860  * protect against truncate races as the page could now be beyond EOF.  Because
8861  * vmtruncate() writes the inode size before removing pages, once we have the
8862  * page lock we can determine safely if the page is beyond EOF. If it is not
8863  * beyond EOF, then the page is guaranteed safe against truncation until we
8864  * unlock the page.
8865  */
8866 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
8867 {
8868         struct page *page = vmf->page;
8869         struct inode *inode = file_inode(vma->vm_file);
8870         struct btrfs_root *root = BTRFS_I(inode)->root;
8871         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8872         struct btrfs_ordered_extent *ordered;
8873         struct extent_state *cached_state = NULL;
8874         char *kaddr;
8875         unsigned long zero_start;
8876         loff_t size;
8877         int ret;
8878         int reserved = 0;
8879         u64 reserved_space;
8880         u64 page_start;
8881         u64 page_end;
8882         u64 end;
8883
8884         reserved_space = PAGE_SIZE;
8885
8886         sb_start_pagefault(inode->i_sb);
8887         page_start = page_offset(page);
8888         page_end = page_start + PAGE_SIZE - 1;
8889         end = page_end;
8890
8891         /*
8892          * Reserving delalloc space after obtaining the page lock can lead to
8893          * deadlock. For example, if a dirty page is locked by this function
8894          * and the call to btrfs_delalloc_reserve_space() ends up triggering
8895          * dirty page write out, then the btrfs_writepage() function could
8896          * end up waiting indefinitely to get a lock on the page currently
8897          * being processed by btrfs_page_mkwrite() function.
8898          */
8899         ret = btrfs_delalloc_reserve_space(inode, page_start,
8900                                            reserved_space);
8901         if (!ret) {
8902                 ret = file_update_time(vma->vm_file);
8903                 reserved = 1;
8904         }
8905         if (ret) {
8906                 if (ret == -ENOMEM)
8907                         ret = VM_FAULT_OOM;
8908                 else /* -ENOSPC, -EIO, etc */
8909                         ret = VM_FAULT_SIGBUS;
8910                 if (reserved)
8911                         goto out;
8912                 goto out_noreserve;
8913         }
8914
8915         ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8916 again:
8917         lock_page(page);
8918         size = i_size_read(inode);
8919
8920         if ((page->mapping != inode->i_mapping) ||
8921             (page_start >= size)) {
8922                 /* page got truncated out from underneath us */
8923                 goto out_unlock;
8924         }
8925         wait_on_page_writeback(page);
8926
8927         lock_extent_bits(io_tree, page_start, page_end, &cached_state);
8928         set_page_extent_mapped(page);
8929
8930         /*
8931          * we can't set the delalloc bits if there are pending ordered
8932          * extents.  Drop our locks and wait for them to finish
8933          */
8934         ordered = btrfs_lookup_ordered_range(inode, page_start, page_end);
8935         if (ordered) {
8936                 unlock_extent_cached(io_tree, page_start, page_end,
8937                                      &cached_state, GFP_NOFS);
8938                 unlock_page(page);
8939                 btrfs_start_ordered_extent(inode, ordered, 1);
8940                 btrfs_put_ordered_extent(ordered);
8941                 goto again;
8942         }
8943
8944         if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8945                 reserved_space = round_up(size - page_start, root->sectorsize);
8946                 if (reserved_space < PAGE_SIZE) {
8947                         end = page_start + reserved_space - 1;
8948                         spin_lock(&BTRFS_I(inode)->lock);
8949                         BTRFS_I(inode)->outstanding_extents++;
8950                         spin_unlock(&BTRFS_I(inode)->lock);
8951                         btrfs_delalloc_release_space(inode, page_start,
8952                                                 PAGE_SIZE - reserved_space);
8953                 }
8954         }
8955
8956         /*
8957          * XXX - page_mkwrite gets called every time the page is dirtied, even
8958          * if it was already dirty, so for space accounting reasons we need to
8959          * clear any delalloc bits for the range we are fixing to save.  There
8960          * is probably a better way to do this, but for now keep consistent with
8961          * prepare_pages in the normal write path.
8962          */
8963         clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8964                           EXTENT_DIRTY | EXTENT_DELALLOC |
8965                           EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
8966                           0, 0, &cached_state, GFP_NOFS);
8967
8968         ret = btrfs_set_extent_delalloc(inode, page_start, end,
8969                                         &cached_state);
8970         if (ret) {
8971                 unlock_extent_cached(io_tree, page_start, page_end,
8972                                      &cached_state, GFP_NOFS);
8973                 ret = VM_FAULT_SIGBUS;
8974                 goto out_unlock;
8975         }
8976         ret = 0;
8977
8978         /* page is wholly or partially inside EOF */
8979         if (page_start + PAGE_SIZE > size)
8980                 zero_start = size & ~PAGE_MASK;
8981         else
8982                 zero_start = PAGE_SIZE;
8983
8984         if (zero_start != PAGE_SIZE) {
8985                 kaddr = kmap(page);
8986                 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
8987                 flush_dcache_page(page);
8988                 kunmap(page);
8989         }
8990         ClearPageChecked(page);
8991         set_page_dirty(page);
8992         SetPageUptodate(page);
8993
8994         BTRFS_I(inode)->last_trans = root->fs_info->generation;
8995         BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
8996         BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
8997
8998         unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
8999
9000 out_unlock:
9001         if (!ret) {
9002                 sb_end_pagefault(inode->i_sb);
9003                 return VM_FAULT_LOCKED;
9004         }
9005         unlock_page(page);
9006 out:
9007         btrfs_delalloc_release_space(inode, page_start, reserved_space);
9008 out_noreserve:
9009         sb_end_pagefault(inode->i_sb);
9010         return ret;
9011 }
9012
9013 static int btrfs_truncate(struct inode *inode)
9014 {
9015         struct btrfs_root *root = BTRFS_I(inode)->root;
9016         struct btrfs_block_rsv *rsv;
9017         int ret = 0;
9018         int err = 0;
9019         struct btrfs_trans_handle *trans;
9020         u64 mask = root->sectorsize - 1;
9021         u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
9022
9023         ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9024                                        (u64)-1);
9025         if (ret)
9026                 return ret;
9027
9028         /*
9029          * Yes ladies and gentelment, this is indeed ugly.  The fact is we have
9030          * 3 things going on here
9031          *
9032          * 1) We need to reserve space for our orphan item and the space to
9033          * delete our orphan item.  Lord knows we don't want to have a dangling
9034          * orphan item because we didn't reserve space to remove it.
9035          *
9036          * 2) We need to reserve space to update our inode.
9037          *
9038          * 3) We need to have something to cache all the space that is going to
9039          * be free'd up by the truncate operation, but also have some slack
9040          * space reserved in case it uses space during the truncate (thank you
9041          * very much snapshotting).
9042          *
9043          * And we need these to all be seperate.  The fact is we can use alot of
9044          * space doing the truncate, and we have no earthly idea how much space
9045          * we will use, so we need the truncate reservation to be seperate so it
9046          * doesn't end up using space reserved for updating the inode or
9047          * removing the orphan item.  We also need to be able to stop the
9048          * transaction and start a new one, which means we need to be able to
9049          * update the inode several times, and we have no idea of knowing how
9050          * many times that will be, so we can't just reserve 1 item for the
9051          * entirety of the opration, so that has to be done seperately as well.
9052          * Then there is the orphan item, which does indeed need to be held on
9053          * to for the whole operation, and we need nobody to touch this reserved
9054          * space except the orphan code.
9055          *
9056          * So that leaves us with
9057          *
9058          * 1) root->orphan_block_rsv - for the orphan deletion.
9059          * 2) rsv - for the truncate reservation, which we will steal from the
9060          * transaction reservation.
9061          * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
9062          * updating the inode.
9063          */
9064         rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
9065         if (!rsv)
9066                 return -ENOMEM;
9067         rsv->size = min_size;
9068         rsv->failfast = 1;
9069
9070         /*
9071          * 1 for the truncate slack space
9072          * 1 for updating the inode.
9073          */
9074         trans = btrfs_start_transaction(root, 2);
9075         if (IS_ERR(trans)) {
9076                 err = PTR_ERR(trans);
9077                 goto out;
9078         }
9079
9080         /* Migrate the slack space for the truncate to our reserve */
9081         ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
9082                                       min_size);
9083         BUG_ON(ret);
9084
9085         /*
9086          * So if we truncate and then write and fsync we normally would just
9087          * write the extents that changed, which is a problem if we need to
9088          * first truncate that entire inode.  So set this flag so we write out
9089          * all of the extents in the inode to the sync log so we're completely
9090          * safe.
9091          */
9092         set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
9093         trans->block_rsv = rsv;
9094
9095         while (1) {
9096                 ret = btrfs_truncate_inode_items(trans, root, inode,
9097                                                  inode->i_size,
9098                                                  BTRFS_EXTENT_DATA_KEY);
9099                 if (ret != -ENOSPC && ret != -EAGAIN) {
9100                         err = ret;
9101                         break;
9102                 }
9103
9104                 trans->block_rsv = &root->fs_info->trans_block_rsv;
9105                 ret = btrfs_update_inode(trans, root, inode);
9106                 if (ret) {
9107                         err = ret;
9108                         break;
9109                 }
9110
9111                 btrfs_end_transaction(trans, root);
9112                 btrfs_btree_balance_dirty(root);
9113
9114                 trans = btrfs_start_transaction(root, 2);
9115                 if (IS_ERR(trans)) {
9116                         ret = err = PTR_ERR(trans);
9117                         trans = NULL;
9118                         break;
9119                 }
9120
9121                 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
9122                                               rsv, min_size);
9123                 BUG_ON(ret);    /* shouldn't happen */
9124                 trans->block_rsv = rsv;
9125         }
9126
9127         if (ret == 0 && inode->i_nlink > 0) {
9128                 trans->block_rsv = root->orphan_block_rsv;
9129                 ret = btrfs_orphan_del(trans, inode);
9130                 if (ret)
9131                         err = ret;
9132         }
9133
9134         if (trans) {
9135                 trans->block_rsv = &root->fs_info->trans_block_rsv;
9136                 ret = btrfs_update_inode(trans, root, inode);
9137                 if (ret && !err)
9138                         err = ret;
9139
9140                 ret = btrfs_end_transaction(trans, root);
9141                 btrfs_btree_balance_dirty(root);
9142         }
9143
9144 out:
9145         btrfs_free_block_rsv(root, rsv);
9146
9147         if (ret && !err)
9148                 err = ret;
9149
9150         return err;
9151 }
9152
9153 /*
9154  * create a new subvolume directory/inode (helper for the ioctl).
9155  */
9156 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
9157                              struct btrfs_root *new_root,
9158                              struct btrfs_root *parent_root,
9159                              u64 new_dirid)
9160 {
9161         struct inode *inode;
9162         int err;
9163         u64 index = 0;
9164
9165         inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9166                                 new_dirid, new_dirid,
9167                                 S_IFDIR | (~current_umask() & S_IRWXUGO),
9168                                 &index);
9169         if (IS_ERR(inode))
9170                 return PTR_ERR(inode);
9171         inode->i_op = &btrfs_dir_inode_operations;
9172         inode->i_fop = &btrfs_dir_file_operations;
9173
9174         set_nlink(inode, 1);
9175         btrfs_i_size_write(inode, 0);
9176         unlock_new_inode(inode);
9177
9178         err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9179         if (err)
9180                 btrfs_err(new_root->fs_info,
9181                           "error inheriting subvolume %llu properties: %d",
9182                           new_root->root_key.objectid, err);
9183
9184         err = btrfs_update_inode(trans, new_root, inode);
9185
9186         iput(inode);
9187         return err;
9188 }
9189
9190 struct inode *btrfs_alloc_inode(struct super_block *sb)
9191 {
9192         struct btrfs_inode *ei;
9193         struct inode *inode;
9194
9195         ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
9196         if (!ei)
9197                 return NULL;
9198
9199         ei->root = NULL;
9200         ei->generation = 0;
9201         ei->last_trans = 0;
9202         ei->last_sub_trans = 0;
9203         ei->logged_trans = 0;
9204         ei->delalloc_bytes = 0;
9205         ei->defrag_bytes = 0;
9206         ei->disk_i_size = 0;
9207         ei->flags = 0;
9208         ei->csum_bytes = 0;
9209         ei->index_cnt = (u64)-1;
9210         ei->dir_index = 0;
9211         ei->last_unlink_trans = 0;
9212         ei->last_log_commit = 0;
9213         ei->delayed_iput_count = 0;
9214
9215         spin_lock_init(&ei->lock);
9216         ei->outstanding_extents = 0;
9217         ei->reserved_extents = 0;
9218
9219         ei->runtime_flags = 0;
9220         ei->force_compress = BTRFS_COMPRESS_NONE;
9221
9222         ei->delayed_node = NULL;
9223
9224         ei->i_otime.tv_sec = 0;
9225         ei->i_otime.tv_nsec = 0;
9226
9227         inode = &ei->vfs_inode;
9228         extent_map_tree_init(&ei->extent_tree);
9229         extent_io_tree_init(&ei->io_tree, &inode->i_data);
9230         extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
9231         ei->io_tree.track_uptodate = 1;
9232         ei->io_failure_tree.track_uptodate = 1;
9233         atomic_set(&ei->sync_writers, 0);
9234         mutex_init(&ei->log_mutex);
9235         mutex_init(&ei->delalloc_mutex);
9236         btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9237         INIT_LIST_HEAD(&ei->delalloc_inodes);
9238         INIT_LIST_HEAD(&ei->delayed_iput);
9239         RB_CLEAR_NODE(&ei->rb_node);
9240
9241         return inode;
9242 }
9243
9244 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9245 void btrfs_test_destroy_inode(struct inode *inode)
9246 {
9247         btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9248         kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9249 }
9250 #endif
9251
9252 static void btrfs_i_callback(struct rcu_head *head)
9253 {
9254         struct inode *inode = container_of(head, struct inode, i_rcu);
9255         kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9256 }
9257
9258 void btrfs_destroy_inode(struct inode *inode)
9259 {
9260         struct btrfs_ordered_extent *ordered;
9261         struct btrfs_root *root = BTRFS_I(inode)->root;
9262
9263         WARN_ON(!hlist_empty(&inode->i_dentry));
9264         WARN_ON(inode->i_data.nrpages);
9265         WARN_ON(BTRFS_I(inode)->outstanding_extents);
9266         WARN_ON(BTRFS_I(inode)->reserved_extents);
9267         WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9268         WARN_ON(BTRFS_I(inode)->csum_bytes);
9269         WARN_ON(BTRFS_I(inode)->defrag_bytes);
9270
9271         /*
9272          * This can happen where we create an inode, but somebody else also
9273          * created the same inode and we need to destroy the one we already
9274          * created.
9275          */
9276         if (!root)
9277                 goto free;
9278
9279         if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9280                      &BTRFS_I(inode)->runtime_flags)) {
9281                 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
9282                         btrfs_ino(inode));
9283                 atomic_dec(&root->orphan_inodes);
9284         }
9285
9286         while (1) {
9287                 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9288                 if (!ordered)
9289                         break;
9290                 else {
9291                         btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
9292                                 ordered->file_offset, ordered->len);
9293                         btrfs_remove_ordered_extent(inode, ordered);
9294                         btrfs_put_ordered_extent(ordered);
9295                         btrfs_put_ordered_extent(ordered);
9296                 }
9297         }
9298         btrfs_qgroup_check_reserved_leak(inode);
9299         inode_tree_del(inode);
9300         btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9301 free:
9302         call_rcu(&inode->i_rcu, btrfs_i_callback);
9303 }
9304
9305 int btrfs_drop_inode(struct inode *inode)
9306 {
9307         struct btrfs_root *root = BTRFS_I(inode)->root;
9308
9309         if (root == NULL)
9310                 return 1;
9311
9312         /* the snap/subvol tree is on deleting */
9313         if (btrfs_root_refs(&root->root_item) == 0)
9314                 return 1;
9315         else
9316                 return generic_drop_inode(inode);
9317 }
9318
9319 static void init_once(void *foo)
9320 {
9321         struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9322
9323         inode_init_once(&ei->vfs_inode);
9324 }
9325
9326 void btrfs_destroy_cachep(void)
9327 {
9328         /*
9329          * Make sure all delayed rcu free inodes are flushed before we
9330          * destroy cache.
9331          */
9332         rcu_barrier();
9333         kmem_cache_destroy(btrfs_inode_cachep);
9334         kmem_cache_destroy(btrfs_trans_handle_cachep);
9335         kmem_cache_destroy(btrfs_transaction_cachep);
9336         kmem_cache_destroy(btrfs_path_cachep);
9337         kmem_cache_destroy(btrfs_free_space_cachep);
9338 }
9339
9340 int btrfs_init_cachep(void)
9341 {
9342         btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9343                         sizeof(struct btrfs_inode), 0,
9344                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9345                         init_once);
9346         if (!btrfs_inode_cachep)
9347                 goto fail;
9348
9349         btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9350                         sizeof(struct btrfs_trans_handle), 0,
9351                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9352         if (!btrfs_trans_handle_cachep)
9353                 goto fail;
9354
9355         btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9356                         sizeof(struct btrfs_transaction), 0,
9357                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9358         if (!btrfs_transaction_cachep)
9359                 goto fail;
9360
9361         btrfs_path_cachep = kmem_cache_create("btrfs_path",
9362                         sizeof(struct btrfs_path), 0,
9363                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9364         if (!btrfs_path_cachep)
9365                 goto fail;
9366
9367         btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9368                         sizeof(struct btrfs_free_space), 0,
9369                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9370         if (!btrfs_free_space_cachep)
9371                 goto fail;
9372
9373         return 0;
9374 fail:
9375         btrfs_destroy_cachep();
9376         return -ENOMEM;
9377 }
9378
9379 static int btrfs_getattr(struct vfsmount *mnt,
9380                          struct dentry *dentry, struct kstat *stat)
9381 {
9382         u64 delalloc_bytes;
9383         struct inode *inode = d_inode(dentry);
9384         u32 blocksize = inode->i_sb->s_blocksize;
9385
9386         generic_fillattr(inode, stat);
9387         stat->dev = BTRFS_I(inode)->root->anon_dev;
9388
9389         spin_lock(&BTRFS_I(inode)->lock);
9390         delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
9391         spin_unlock(&BTRFS_I(inode)->lock);
9392         stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9393                         ALIGN(delalloc_bytes, blocksize)) >> 9;
9394         return 0;
9395 }
9396
9397 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9398                            struct inode *new_dir, struct dentry *new_dentry)
9399 {
9400         struct btrfs_trans_handle *trans;
9401         struct btrfs_root *root = BTRFS_I(old_dir)->root;
9402         struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9403         struct inode *new_inode = d_inode(new_dentry);
9404         struct inode *old_inode = d_inode(old_dentry);
9405         u64 index = 0;
9406         u64 root_objectid;
9407         int ret;
9408         u64 old_ino = btrfs_ino(old_inode);
9409
9410         if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9411                 return -EPERM;
9412
9413         /* we only allow rename subvolume link between subvolumes */
9414         if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9415                 return -EXDEV;
9416
9417         if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9418             (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
9419                 return -ENOTEMPTY;
9420
9421         if (S_ISDIR(old_inode->i_mode) && new_inode &&
9422             new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9423                 return -ENOTEMPTY;
9424
9425
9426         /* check for collisions, even if the  name isn't there */
9427         ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9428                              new_dentry->d_name.name,
9429                              new_dentry->d_name.len);
9430
9431         if (ret) {
9432                 if (ret == -EEXIST) {
9433                         /* we shouldn't get
9434                          * eexist without a new_inode */
9435                         if (WARN_ON(!new_inode)) {
9436                                 return ret;
9437                         }
9438                 } else {
9439                         /* maybe -EOVERFLOW */
9440                         return ret;
9441                 }
9442         }
9443         ret = 0;
9444
9445         /*
9446          * we're using rename to replace one file with another.  Start IO on it
9447          * now so  we don't add too much work to the end of the transaction
9448          */
9449         if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9450                 filemap_flush(old_inode->i_mapping);
9451
9452         /* close the racy window with snapshot create/destroy ioctl */
9453         if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9454                 down_read(&root->fs_info->subvol_sem);
9455         /*
9456          * We want to reserve the absolute worst case amount of items.  So if
9457          * both inodes are subvols and we need to unlink them then that would
9458          * require 4 item modifications, but if they are both normal inodes it
9459          * would require 5 item modifications, so we'll assume their normal
9460          * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9461          * should cover the worst case number of items we'll modify.
9462          */
9463         trans = btrfs_start_transaction(root, 11);
9464         if (IS_ERR(trans)) {
9465                 ret = PTR_ERR(trans);
9466                 goto out_notrans;
9467         }
9468
9469         if (dest != root)
9470                 btrfs_record_root_in_trans(trans, dest);
9471
9472         ret = btrfs_set_inode_index(new_dir, &index);
9473         if (ret)
9474                 goto out_fail;
9475
9476         BTRFS_I(old_inode)->dir_index = 0ULL;
9477         if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9478                 /* force full log commit if subvolume involved. */
9479                 btrfs_set_log_full_commit(root->fs_info, trans);
9480         } else {
9481                 ret = btrfs_insert_inode_ref(trans, dest,
9482                                              new_dentry->d_name.name,
9483                                              new_dentry->d_name.len,
9484                                              old_ino,
9485                                              btrfs_ino(new_dir), index);
9486                 if (ret)
9487                         goto out_fail;
9488                 /*
9489                  * this is an ugly little race, but the rename is required
9490                  * to make sure that if we crash, the inode is either at the
9491                  * old name or the new one.  pinning the log transaction lets
9492                  * us make sure we don't allow a log commit to come in after
9493                  * we unlink the name but before we add the new name back in.
9494                  */
9495                 btrfs_pin_log_trans(root);
9496         }
9497
9498         inode_inc_iversion(old_dir);
9499         inode_inc_iversion(new_dir);
9500         inode_inc_iversion(old_inode);
9501         old_dir->i_ctime = old_dir->i_mtime =
9502         new_dir->i_ctime = new_dir->i_mtime =
9503         old_inode->i_ctime = current_fs_time(old_dir->i_sb);
9504
9505         if (old_dentry->d_parent != new_dentry->d_parent)
9506                 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9507
9508         if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9509                 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9510                 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9511                                         old_dentry->d_name.name,
9512                                         old_dentry->d_name.len);
9513         } else {
9514                 ret = __btrfs_unlink_inode(trans, root, old_dir,
9515                                         d_inode(old_dentry),
9516                                         old_dentry->d_name.name,
9517                                         old_dentry->d_name.len);
9518                 if (!ret)
9519                         ret = btrfs_update_inode(trans, root, old_inode);
9520         }
9521         if (ret) {
9522                 btrfs_abort_transaction(trans, root, ret);
9523                 goto out_fail;
9524         }
9525
9526         if (new_inode) {
9527                 inode_inc_iversion(new_inode);
9528                 new_inode->i_ctime = current_fs_time(new_inode->i_sb);
9529                 if (unlikely(btrfs_ino(new_inode) ==
9530                              BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9531                         root_objectid = BTRFS_I(new_inode)->location.objectid;
9532                         ret = btrfs_unlink_subvol(trans, dest, new_dir,
9533                                                 root_objectid,
9534                                                 new_dentry->d_name.name,
9535                                                 new_dentry->d_name.len);
9536                         BUG_ON(new_inode->i_nlink == 0);
9537                 } else {
9538                         ret = btrfs_unlink_inode(trans, dest, new_dir,
9539                                                  d_inode(new_dentry),
9540                                                  new_dentry->d_name.name,
9541                                                  new_dentry->d_name.len);
9542                 }
9543                 if (!ret && new_inode->i_nlink == 0)
9544                         ret = btrfs_orphan_add(trans, d_inode(new_dentry));
9545                 if (ret) {
9546                         btrfs_abort_transaction(trans, root, ret);
9547                         goto out_fail;
9548                 }
9549         }
9550
9551         ret = btrfs_add_link(trans, new_dir, old_inode,
9552                              new_dentry->d_name.name,
9553                              new_dentry->d_name.len, 0, index);
9554         if (ret) {
9555                 btrfs_abort_transaction(trans, root, ret);
9556                 goto out_fail;
9557         }
9558
9559         if (old_inode->i_nlink == 1)
9560                 BTRFS_I(old_inode)->dir_index = index;
9561
9562         if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
9563                 struct dentry *parent = new_dentry->d_parent;
9564                 btrfs_log_new_name(trans, old_inode, old_dir, parent);
9565                 btrfs_end_log_trans(root);
9566         }
9567 out_fail:
9568         btrfs_end_transaction(trans, root);
9569 out_notrans:
9570         if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9571                 up_read(&root->fs_info->subvol_sem);
9572
9573         return ret;
9574 }
9575
9576 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9577                          struct inode *new_dir, struct dentry *new_dentry,
9578                          unsigned int flags)
9579 {
9580         if (flags & ~RENAME_NOREPLACE)
9581                 return -EINVAL;
9582
9583         return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry);
9584 }
9585
9586 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9587 {
9588         struct btrfs_delalloc_work *delalloc_work;
9589         struct inode *inode;
9590
9591         delalloc_work = container_of(work, struct btrfs_delalloc_work,
9592                                      work);
9593         inode = delalloc_work->inode;
9594         filemap_flush(inode->i_mapping);
9595         if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9596                                 &BTRFS_I(inode)->runtime_flags))
9597                 filemap_flush(inode->i_mapping);
9598
9599         if (delalloc_work->delay_iput)
9600                 btrfs_add_delayed_iput(inode);
9601         else
9602                 iput(inode);
9603         complete(&delalloc_work->completion);
9604 }
9605
9606 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
9607                                                     int delay_iput)
9608 {
9609         struct btrfs_delalloc_work *work;
9610
9611         work = kmalloc(sizeof(*work), GFP_NOFS);
9612         if (!work)
9613                 return NULL;
9614
9615         init_completion(&work->completion);
9616         INIT_LIST_HEAD(&work->list);
9617         work->inode = inode;
9618         work->delay_iput = delay_iput;
9619         WARN_ON_ONCE(!inode);
9620         btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9621                         btrfs_run_delalloc_work, NULL, NULL);
9622
9623         return work;
9624 }
9625
9626 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
9627 {
9628         wait_for_completion(&work->completion);
9629         kfree(work);
9630 }
9631
9632 /*
9633  * some fairly slow code that needs optimization. This walks the list
9634  * of all the inodes with pending delalloc and forces them to disk.
9635  */
9636 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
9637                                    int nr)
9638 {
9639         struct btrfs_inode *binode;
9640         struct inode *inode;
9641         struct btrfs_delalloc_work *work, *next;
9642         struct list_head works;
9643         struct list_head splice;
9644         int ret = 0;
9645
9646         INIT_LIST_HEAD(&works);
9647         INIT_LIST_HEAD(&splice);
9648
9649         mutex_lock(&root->delalloc_mutex);
9650         spin_lock(&root->delalloc_lock);
9651         list_splice_init(&root->delalloc_inodes, &splice);
9652         while (!list_empty(&splice)) {
9653                 binode = list_entry(splice.next, struct btrfs_inode,
9654                                     delalloc_inodes);
9655
9656                 list_move_tail(&binode->delalloc_inodes,
9657                                &root->delalloc_inodes);
9658                 inode = igrab(&binode->vfs_inode);
9659                 if (!inode) {
9660                         cond_resched_lock(&root->delalloc_lock);
9661                         continue;
9662                 }
9663                 spin_unlock(&root->delalloc_lock);
9664
9665                 work = btrfs_alloc_delalloc_work(inode, delay_iput);
9666                 if (!work) {
9667                         if (delay_iput)
9668                                 btrfs_add_delayed_iput(inode);
9669                         else
9670                                 iput(inode);
9671                         ret = -ENOMEM;
9672                         goto out;
9673                 }
9674                 list_add_tail(&work->list, &works);
9675                 btrfs_queue_work(root->fs_info->flush_workers,
9676                                  &work->work);
9677                 ret++;
9678                 if (nr != -1 && ret >= nr)
9679                         goto out;
9680                 cond_resched();
9681                 spin_lock(&root->delalloc_lock);
9682         }
9683         spin_unlock(&root->delalloc_lock);
9684
9685 out:
9686         list_for_each_entry_safe(work, next, &works, list) {
9687                 list_del_init(&work->list);
9688                 btrfs_wait_and_free_delalloc_work(work);
9689         }
9690
9691         if (!list_empty_careful(&splice)) {
9692                 spin_lock(&root->delalloc_lock);
9693                 list_splice_tail(&splice, &root->delalloc_inodes);
9694                 spin_unlock(&root->delalloc_lock);
9695         }
9696         mutex_unlock(&root->delalloc_mutex);
9697         return ret;
9698 }
9699
9700 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
9701 {
9702         int ret;
9703
9704         if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
9705                 return -EROFS;
9706
9707         ret = __start_delalloc_inodes(root, delay_iput, -1);
9708         if (ret > 0)
9709                 ret = 0;
9710         /*
9711          * the filemap_flush will queue IO into the worker threads, but
9712          * we have to make sure the IO is actually started and that
9713          * ordered extents get created before we return
9714          */
9715         atomic_inc(&root->fs_info->async_submit_draining);
9716         while (atomic_read(&root->fs_info->nr_async_submits) ||
9717               atomic_read(&root->fs_info->async_delalloc_pages)) {
9718                 wait_event(root->fs_info->async_submit_wait,
9719                    (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
9720                     atomic_read(&root->fs_info->async_delalloc_pages) == 0));
9721         }
9722         atomic_dec(&root->fs_info->async_submit_draining);
9723         return ret;
9724 }
9725
9726 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
9727                                int nr)
9728 {
9729         struct btrfs_root *root;
9730         struct list_head splice;
9731         int ret;
9732
9733         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9734                 return -EROFS;
9735
9736         INIT_LIST_HEAD(&splice);
9737
9738         mutex_lock(&fs_info->delalloc_root_mutex);
9739         spin_lock(&fs_info->delalloc_root_lock);
9740         list_splice_init(&fs_info->delalloc_roots, &splice);
9741         while (!list_empty(&splice) && nr) {
9742                 root = list_first_entry(&splice, struct btrfs_root,
9743                                         delalloc_root);
9744                 root = btrfs_grab_fs_root(root);
9745                 BUG_ON(!root);
9746                 list_move_tail(&root->delalloc_root,
9747                                &fs_info->delalloc_roots);
9748                 spin_unlock(&fs_info->delalloc_root_lock);
9749
9750                 ret = __start_delalloc_inodes(root, delay_iput, nr);
9751                 btrfs_put_fs_root(root);
9752                 if (ret < 0)
9753                         goto out;
9754
9755                 if (nr != -1) {
9756                         nr -= ret;
9757                         WARN_ON(nr < 0);
9758                 }
9759                 spin_lock(&fs_info->delalloc_root_lock);
9760         }
9761         spin_unlock(&fs_info->delalloc_root_lock);
9762
9763         ret = 0;
9764         atomic_inc(&fs_info->async_submit_draining);
9765         while (atomic_read(&fs_info->nr_async_submits) ||
9766               atomic_read(&fs_info->async_delalloc_pages)) {
9767                 wait_event(fs_info->async_submit_wait,
9768                    (atomic_read(&fs_info->nr_async_submits) == 0 &&
9769                     atomic_read(&fs_info->async_delalloc_pages) == 0));
9770         }
9771         atomic_dec(&fs_info->async_submit_draining);
9772 out:
9773         if (!list_empty_careful(&splice)) {
9774                 spin_lock(&fs_info->delalloc_root_lock);
9775                 list_splice_tail(&splice, &fs_info->delalloc_roots);
9776                 spin_unlock(&fs_info->delalloc_root_lock);
9777         }
9778         mutex_unlock(&fs_info->delalloc_root_mutex);
9779         return ret;
9780 }
9781
9782 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
9783                          const char *symname)
9784 {
9785         struct btrfs_trans_handle *trans;
9786         struct btrfs_root *root = BTRFS_I(dir)->root;
9787         struct btrfs_path *path;
9788         struct btrfs_key key;
9789         struct inode *inode = NULL;
9790         int err;
9791         int drop_inode = 0;
9792         u64 objectid;
9793         u64 index = 0;
9794         int name_len;
9795         int datasize;
9796         unsigned long ptr;
9797         struct btrfs_file_extent_item *ei;
9798         struct extent_buffer *leaf;
9799
9800         name_len = strlen(symname);
9801         if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
9802                 return -ENAMETOOLONG;
9803
9804         /*
9805          * 2 items for inode item and ref
9806          * 2 items for dir items
9807          * 1 item for updating parent inode item
9808          * 1 item for the inline extent item
9809          * 1 item for xattr if selinux is on
9810          */
9811         trans = btrfs_start_transaction(root, 7);
9812         if (IS_ERR(trans))
9813                 return PTR_ERR(trans);
9814
9815         err = btrfs_find_free_ino(root, &objectid);
9816         if (err)
9817                 goto out_unlock;
9818
9819         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9820                                 dentry->d_name.len, btrfs_ino(dir), objectid,
9821                                 S_IFLNK|S_IRWXUGO, &index);
9822         if (IS_ERR(inode)) {
9823                 err = PTR_ERR(inode);
9824                 goto out_unlock;
9825         }
9826
9827         /*
9828         * If the active LSM wants to access the inode during
9829         * d_instantiate it needs these. Smack checks to see
9830         * if the filesystem supports xattrs by looking at the
9831         * ops vector.
9832         */
9833         inode->i_fop = &btrfs_file_operations;
9834         inode->i_op = &btrfs_file_inode_operations;
9835         inode->i_mapping->a_ops = &btrfs_aops;
9836         BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9837
9838         err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9839         if (err)
9840                 goto out_unlock_inode;
9841
9842         path = btrfs_alloc_path();
9843         if (!path) {
9844                 err = -ENOMEM;
9845                 goto out_unlock_inode;
9846         }
9847         key.objectid = btrfs_ino(inode);
9848         key.offset = 0;
9849         key.type = BTRFS_EXTENT_DATA_KEY;
9850         datasize = btrfs_file_extent_calc_inline_size(name_len);
9851         err = btrfs_insert_empty_item(trans, root, path, &key,
9852                                       datasize);
9853         if (err) {
9854                 btrfs_free_path(path);
9855                 goto out_unlock_inode;
9856         }
9857         leaf = path->nodes[0];
9858         ei = btrfs_item_ptr(leaf, path->slots[0],
9859                             struct btrfs_file_extent_item);
9860         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9861         btrfs_set_file_extent_type(leaf, ei,
9862                                    BTRFS_FILE_EXTENT_INLINE);
9863         btrfs_set_file_extent_encryption(leaf, ei, 0);
9864         btrfs_set_file_extent_compression(leaf, ei, 0);
9865         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9866         btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9867
9868         ptr = btrfs_file_extent_inline_start(ei);
9869         write_extent_buffer(leaf, symname, ptr, name_len);
9870         btrfs_mark_buffer_dirty(leaf);
9871         btrfs_free_path(path);
9872
9873         inode->i_op = &btrfs_symlink_inode_operations;
9874         inode_nohighmem(inode);
9875         inode->i_mapping->a_ops = &btrfs_symlink_aops;
9876         inode_set_bytes(inode, name_len);
9877         btrfs_i_size_write(inode, name_len);
9878         err = btrfs_update_inode(trans, root, inode);
9879         /*
9880          * Last step, add directory indexes for our symlink inode. This is the
9881          * last step to avoid extra cleanup of these indexes if an error happens
9882          * elsewhere above.
9883          */
9884         if (!err)
9885                 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
9886         if (err) {
9887                 drop_inode = 1;
9888                 goto out_unlock_inode;
9889         }
9890
9891         unlock_new_inode(inode);
9892         d_instantiate(dentry, inode);
9893
9894 out_unlock:
9895         btrfs_end_transaction(trans, root);
9896         if (drop_inode) {
9897                 inode_dec_link_count(inode);
9898                 iput(inode);
9899         }
9900         btrfs_btree_balance_dirty(root);
9901         return err;
9902
9903 out_unlock_inode:
9904         drop_inode = 1;
9905         unlock_new_inode(inode);
9906         goto out_unlock;
9907 }
9908
9909 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9910                                        u64 start, u64 num_bytes, u64 min_size,
9911                                        loff_t actual_len, u64 *alloc_hint,
9912                                        struct btrfs_trans_handle *trans)
9913 {
9914         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9915         struct extent_map *em;
9916         struct btrfs_root *root = BTRFS_I(inode)->root;
9917         struct btrfs_key ins;
9918         u64 cur_offset = start;
9919         u64 i_size;
9920         u64 cur_bytes;
9921         u64 last_alloc = (u64)-1;
9922         int ret = 0;
9923         bool own_trans = true;
9924
9925         if (trans)
9926                 own_trans = false;
9927         while (num_bytes > 0) {
9928                 if (own_trans) {
9929                         trans = btrfs_start_transaction(root, 3);
9930                         if (IS_ERR(trans)) {
9931                                 ret = PTR_ERR(trans);
9932                                 break;
9933                         }
9934                 }
9935
9936                 cur_bytes = min_t(u64, num_bytes, SZ_256M);
9937                 cur_bytes = max(cur_bytes, min_size);
9938                 /*
9939                  * If we are severely fragmented we could end up with really
9940                  * small allocations, so if the allocator is returning small
9941                  * chunks lets make its job easier by only searching for those
9942                  * sized chunks.
9943                  */
9944                 cur_bytes = min(cur_bytes, last_alloc);
9945                 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
9946                                            *alloc_hint, &ins, 1, 0);
9947                 if (ret) {
9948                         if (own_trans)
9949                                 btrfs_end_transaction(trans, root);
9950                         break;
9951                 }
9952                 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
9953
9954                 last_alloc = ins.offset;
9955                 ret = insert_reserved_file_extent(trans, inode,
9956                                                   cur_offset, ins.objectid,
9957                                                   ins.offset, ins.offset,
9958                                                   ins.offset, 0, 0, 0,
9959                                                   BTRFS_FILE_EXTENT_PREALLOC);
9960                 if (ret) {
9961                         btrfs_free_reserved_extent(root, ins.objectid,
9962                                                    ins.offset, 0);
9963                         btrfs_abort_transaction(trans, root, ret);
9964                         if (own_trans)
9965                                 btrfs_end_transaction(trans, root);
9966                         break;
9967                 }
9968
9969                 btrfs_drop_extent_cache(inode, cur_offset,
9970                                         cur_offset + ins.offset -1, 0);
9971
9972                 em = alloc_extent_map();
9973                 if (!em) {
9974                         set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
9975                                 &BTRFS_I(inode)->runtime_flags);
9976                         goto next;
9977                 }
9978
9979                 em->start = cur_offset;
9980                 em->orig_start = cur_offset;
9981                 em->len = ins.offset;
9982                 em->block_start = ins.objectid;
9983                 em->block_len = ins.offset;
9984                 em->orig_block_len = ins.offset;
9985                 em->ram_bytes = ins.offset;
9986                 em->bdev = root->fs_info->fs_devices->latest_bdev;
9987                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9988                 em->generation = trans->transid;
9989
9990                 while (1) {
9991                         write_lock(&em_tree->lock);
9992                         ret = add_extent_mapping(em_tree, em, 1);
9993                         write_unlock(&em_tree->lock);
9994                         if (ret != -EEXIST)
9995                                 break;
9996                         btrfs_drop_extent_cache(inode, cur_offset,
9997                                                 cur_offset + ins.offset - 1,
9998                                                 0);
9999                 }
10000                 free_extent_map(em);
10001 next:
10002                 num_bytes -= ins.offset;
10003                 cur_offset += ins.offset;
10004                 *alloc_hint = ins.objectid + ins.offset;
10005
10006                 inode_inc_iversion(inode);
10007                 inode->i_ctime = current_fs_time(inode->i_sb);
10008                 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10009                 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10010                     (actual_len > inode->i_size) &&
10011                     (cur_offset > inode->i_size)) {
10012                         if (cur_offset > actual_len)
10013                                 i_size = actual_len;
10014                         else
10015                                 i_size = cur_offset;
10016                         i_size_write(inode, i_size);
10017                         btrfs_ordered_update_i_size(inode, i_size, NULL);
10018                 }
10019
10020                 ret = btrfs_update_inode(trans, root, inode);
10021
10022                 if (ret) {
10023                         btrfs_abort_transaction(trans, root, ret);
10024                         if (own_trans)
10025                                 btrfs_end_transaction(trans, root);
10026                         break;
10027                 }
10028
10029                 if (own_trans)
10030                         btrfs_end_transaction(trans, root);
10031         }
10032         return ret;
10033 }
10034
10035 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10036                               u64 start, u64 num_bytes, u64 min_size,
10037                               loff_t actual_len, u64 *alloc_hint)
10038 {
10039         return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10040                                            min_size, actual_len, alloc_hint,
10041                                            NULL);
10042 }
10043
10044 int btrfs_prealloc_file_range_trans(struct inode *inode,
10045                                     struct btrfs_trans_handle *trans, int mode,
10046                                     u64 start, u64 num_bytes, u64 min_size,
10047                                     loff_t actual_len, u64 *alloc_hint)
10048 {
10049         return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10050                                            min_size, actual_len, alloc_hint, trans);
10051 }
10052
10053 static int btrfs_set_page_dirty(struct page *page)
10054 {
10055         return __set_page_dirty_nobuffers(page);
10056 }
10057
10058 static int btrfs_permission(struct inode *inode, int mask)
10059 {
10060         struct btrfs_root *root = BTRFS_I(inode)->root;
10061         umode_t mode = inode->i_mode;
10062
10063         if (mask & MAY_WRITE &&
10064             (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10065                 if (btrfs_root_readonly(root))
10066                         return -EROFS;
10067                 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10068                         return -EACCES;
10069         }
10070         return generic_permission(inode, mask);
10071 }
10072
10073 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10074 {
10075         struct btrfs_trans_handle *trans;
10076         struct btrfs_root *root = BTRFS_I(dir)->root;
10077         struct inode *inode = NULL;
10078         u64 objectid;
10079         u64 index;
10080         int ret = 0;
10081
10082         /*
10083          * 5 units required for adding orphan entry
10084          */
10085         trans = btrfs_start_transaction(root, 5);
10086         if (IS_ERR(trans))
10087                 return PTR_ERR(trans);
10088
10089         ret = btrfs_find_free_ino(root, &objectid);
10090         if (ret)
10091                 goto out;
10092
10093         inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10094                                 btrfs_ino(dir), objectid, mode, &index);
10095         if (IS_ERR(inode)) {
10096                 ret = PTR_ERR(inode);
10097                 inode = NULL;
10098                 goto out;
10099         }
10100
10101         inode->i_fop = &btrfs_file_operations;
10102         inode->i_op = &btrfs_file_inode_operations;
10103
10104         inode->i_mapping->a_ops = &btrfs_aops;
10105         BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10106
10107         ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10108         if (ret)
10109                 goto out_inode;
10110
10111         ret = btrfs_update_inode(trans, root, inode);
10112         if (ret)
10113                 goto out_inode;
10114         ret = btrfs_orphan_add(trans, inode);
10115         if (ret)
10116                 goto out_inode;
10117
10118         /*
10119          * We set number of links to 0 in btrfs_new_inode(), and here we set
10120          * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10121          * through:
10122          *
10123          *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10124          */
10125         set_nlink(inode, 1);
10126         unlock_new_inode(inode);
10127         d_tmpfile(dentry, inode);
10128         mark_inode_dirty(inode);
10129
10130 out:
10131         btrfs_end_transaction(trans, root);
10132         if (ret)
10133                 iput(inode);
10134         btrfs_balance_delayed_items(root);
10135         btrfs_btree_balance_dirty(root);
10136         return ret;
10137
10138 out_inode:
10139         unlock_new_inode(inode);
10140         goto out;
10141
10142 }
10143
10144 /* Inspired by filemap_check_errors() */
10145 int btrfs_inode_check_errors(struct inode *inode)
10146 {
10147         int ret = 0;
10148
10149         if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) &&
10150             test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags))
10151                 ret = -ENOSPC;
10152         if (test_bit(AS_EIO, &inode->i_mapping->flags) &&
10153             test_and_clear_bit(AS_EIO, &inode->i_mapping->flags))
10154                 ret = -EIO;
10155
10156         return ret;
10157 }
10158
10159 static const struct inode_operations btrfs_dir_inode_operations = {
10160         .getattr        = btrfs_getattr,
10161         .lookup         = btrfs_lookup,
10162         .create         = btrfs_create,
10163         .unlink         = btrfs_unlink,
10164         .link           = btrfs_link,
10165         .mkdir          = btrfs_mkdir,
10166         .rmdir          = btrfs_rmdir,
10167         .rename2        = btrfs_rename2,
10168         .symlink        = btrfs_symlink,
10169         .setattr        = btrfs_setattr,
10170         .mknod          = btrfs_mknod,
10171         .setxattr       = btrfs_setxattr,
10172         .getxattr       = generic_getxattr,
10173         .listxattr      = btrfs_listxattr,
10174         .removexattr    = btrfs_removexattr,
10175         .permission     = btrfs_permission,
10176         .get_acl        = btrfs_get_acl,
10177         .set_acl        = btrfs_set_acl,
10178         .update_time    = btrfs_update_time,
10179         .tmpfile        = btrfs_tmpfile,
10180 };
10181 static const struct inode_operations btrfs_dir_ro_inode_operations = {
10182         .lookup         = btrfs_lookup,
10183         .permission     = btrfs_permission,
10184         .get_acl        = btrfs_get_acl,
10185         .set_acl        = btrfs_set_acl,
10186         .update_time    = btrfs_update_time,
10187 };
10188
10189 static const struct file_operations btrfs_dir_file_operations = {
10190         .llseek         = generic_file_llseek,
10191         .read           = generic_read_dir,
10192         .iterate        = btrfs_real_readdir,
10193         .unlocked_ioctl = btrfs_ioctl,
10194 #ifdef CONFIG_COMPAT
10195         .compat_ioctl   = btrfs_ioctl,
10196 #endif
10197         .release        = btrfs_release_file,
10198         .fsync          = btrfs_sync_file,
10199 };
10200
10201 static const struct extent_io_ops btrfs_extent_io_ops = {
10202         .fill_delalloc = run_delalloc_range,
10203         .submit_bio_hook = btrfs_submit_bio_hook,
10204         .merge_bio_hook = btrfs_merge_bio_hook,
10205         .readpage_end_io_hook = btrfs_readpage_end_io_hook,
10206         .writepage_end_io_hook = btrfs_writepage_end_io_hook,
10207         .writepage_start_hook = btrfs_writepage_start_hook,
10208         .set_bit_hook = btrfs_set_bit_hook,
10209         .clear_bit_hook = btrfs_clear_bit_hook,
10210         .merge_extent_hook = btrfs_merge_extent_hook,
10211         .split_extent_hook = btrfs_split_extent_hook,
10212 };
10213
10214 /*
10215  * btrfs doesn't support the bmap operation because swapfiles
10216  * use bmap to make a mapping of extents in the file.  They assume
10217  * these extents won't change over the life of the file and they
10218  * use the bmap result to do IO directly to the drive.
10219  *
10220  * the btrfs bmap call would return logical addresses that aren't
10221  * suitable for IO and they also will change frequently as COW
10222  * operations happen.  So, swapfile + btrfs == corruption.
10223  *
10224  * For now we're avoiding this by dropping bmap.
10225  */
10226 static const struct address_space_operations btrfs_aops = {
10227         .readpage       = btrfs_readpage,
10228         .writepage      = btrfs_writepage,
10229         .writepages     = btrfs_writepages,
10230         .readpages      = btrfs_readpages,
10231         .direct_IO      = btrfs_direct_IO,
10232         .invalidatepage = btrfs_invalidatepage,
10233         .releasepage    = btrfs_releasepage,
10234         .set_page_dirty = btrfs_set_page_dirty,
10235         .error_remove_page = generic_error_remove_page,
10236 };
10237
10238 static const struct address_space_operations btrfs_symlink_aops = {
10239         .readpage       = btrfs_readpage,
10240         .writepage      = btrfs_writepage,
10241         .invalidatepage = btrfs_invalidatepage,
10242         .releasepage    = btrfs_releasepage,
10243 };
10244
10245 static const struct inode_operations btrfs_file_inode_operations = {
10246         .getattr        = btrfs_getattr,
10247         .setattr        = btrfs_setattr,
10248         .setxattr       = btrfs_setxattr,
10249         .getxattr       = generic_getxattr,
10250         .listxattr      = btrfs_listxattr,
10251         .removexattr    = btrfs_removexattr,
10252         .permission     = btrfs_permission,
10253         .fiemap         = btrfs_fiemap,
10254         .get_acl        = btrfs_get_acl,
10255         .set_acl        = btrfs_set_acl,
10256         .update_time    = btrfs_update_time,
10257 };
10258 static const struct inode_operations btrfs_special_inode_operations = {
10259         .getattr        = btrfs_getattr,
10260         .setattr        = btrfs_setattr,
10261         .permission     = btrfs_permission,
10262         .setxattr       = btrfs_setxattr,
10263         .getxattr       = generic_getxattr,
10264         .listxattr      = btrfs_listxattr,
10265         .removexattr    = btrfs_removexattr,
10266         .get_acl        = btrfs_get_acl,
10267         .set_acl        = btrfs_set_acl,
10268         .update_time    = btrfs_update_time,
10269 };
10270 static const struct inode_operations btrfs_symlink_inode_operations = {
10271         .readlink       = generic_readlink,
10272         .get_link       = page_get_link,
10273         .getattr        = btrfs_getattr,
10274         .setattr        = btrfs_setattr,
10275         .permission     = btrfs_permission,
10276         .setxattr       = btrfs_setxattr,
10277         .getxattr       = generic_getxattr,
10278         .listxattr      = btrfs_listxattr,
10279         .removexattr    = btrfs_removexattr,
10280         .update_time    = btrfs_update_time,
10281 };
10282
10283 const struct dentry_operations btrfs_dentry_operations = {
10284         .d_delete       = btrfs_dentry_delete,
10285         .d_release      = btrfs_dentry_release,
10286 };