97b601bec326bc09a885c0f55ad29647a88790c6
[cascardo/linux.git] / fs / btrfs / inode.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/aio.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/xattr.h>
38 #include <linux/posix_acl.h>
39 #include <linux/falloc.h>
40 #include <linux/slab.h>
41 #include <linux/ratelimit.h>
42 #include <linux/mount.h>
43 #include <linux/btrfs.h>
44 #include <linux/blkdev.h>
45 #include <linux/posix_acl_xattr.h>
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "ordered-data.h"
52 #include "xattr.h"
53 #include "tree-log.h"
54 #include "volumes.h"
55 #include "compression.h"
56 #include "locking.h"
57 #include "free-space-cache.h"
58 #include "inode-map.h"
59 #include "backref.h"
60 #include "hash.h"
61 #include "props.h"
62
63 struct btrfs_iget_args {
64         struct btrfs_key *location;
65         struct btrfs_root *root;
66 };
67
68 static const struct inode_operations btrfs_dir_inode_operations;
69 static const struct inode_operations btrfs_symlink_inode_operations;
70 static const struct inode_operations btrfs_dir_ro_inode_operations;
71 static const struct inode_operations btrfs_special_inode_operations;
72 static const struct inode_operations btrfs_file_inode_operations;
73 static const struct address_space_operations btrfs_aops;
74 static const struct address_space_operations btrfs_symlink_aops;
75 static const struct file_operations btrfs_dir_file_operations;
76 static struct extent_io_ops btrfs_extent_io_ops;
77
78 static struct kmem_cache *btrfs_inode_cachep;
79 static struct kmem_cache *btrfs_delalloc_work_cachep;
80 struct kmem_cache *btrfs_trans_handle_cachep;
81 struct kmem_cache *btrfs_transaction_cachep;
82 struct kmem_cache *btrfs_path_cachep;
83 struct kmem_cache *btrfs_free_space_cachep;
84
85 #define S_SHIFT 12
86 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
87         [S_IFREG >> S_SHIFT]    = BTRFS_FT_REG_FILE,
88         [S_IFDIR >> S_SHIFT]    = BTRFS_FT_DIR,
89         [S_IFCHR >> S_SHIFT]    = BTRFS_FT_CHRDEV,
90         [S_IFBLK >> S_SHIFT]    = BTRFS_FT_BLKDEV,
91         [S_IFIFO >> S_SHIFT]    = BTRFS_FT_FIFO,
92         [S_IFSOCK >> S_SHIFT]   = BTRFS_FT_SOCK,
93         [S_IFLNK >> S_SHIFT]    = BTRFS_FT_SYMLINK,
94 };
95
96 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
97 static int btrfs_truncate(struct inode *inode);
98 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
99 static noinline int cow_file_range(struct inode *inode,
100                                    struct page *locked_page,
101                                    u64 start, u64 end, int *page_started,
102                                    unsigned long *nr_written, int unlock);
103 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
104                                            u64 len, u64 orig_start,
105                                            u64 block_start, u64 block_len,
106                                            u64 orig_block_len, u64 ram_bytes,
107                                            int type);
108
109 static int btrfs_dirty_inode(struct inode *inode);
110
111 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
112                                      struct inode *inode,  struct inode *dir,
113                                      const struct qstr *qstr)
114 {
115         int err;
116
117         err = btrfs_init_acl(trans, inode, dir);
118         if (!err)
119                 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
120         return err;
121 }
122
123 /*
124  * this does all the hard work for inserting an inline extent into
125  * the btree.  The caller should have done a btrfs_drop_extents so that
126  * no overlapping inline items exist in the btree
127  */
128 static int insert_inline_extent(struct btrfs_trans_handle *trans,
129                                 struct btrfs_path *path, int extent_inserted,
130                                 struct btrfs_root *root, struct inode *inode,
131                                 u64 start, size_t size, size_t compressed_size,
132                                 int compress_type,
133                                 struct page **compressed_pages)
134 {
135         struct extent_buffer *leaf;
136         struct page *page = NULL;
137         char *kaddr;
138         unsigned long ptr;
139         struct btrfs_file_extent_item *ei;
140         int err = 0;
141         int ret;
142         size_t cur_size = size;
143         unsigned long offset;
144
145         if (compressed_size && compressed_pages)
146                 cur_size = compressed_size;
147
148         inode_add_bytes(inode, size);
149
150         if (!extent_inserted) {
151                 struct btrfs_key key;
152                 size_t datasize;
153
154                 key.objectid = btrfs_ino(inode);
155                 key.offset = start;
156                 key.type = BTRFS_EXTENT_DATA_KEY;
157
158                 datasize = btrfs_file_extent_calc_inline_size(cur_size);
159                 path->leave_spinning = 1;
160                 ret = btrfs_insert_empty_item(trans, root, path, &key,
161                                               datasize);
162                 if (ret) {
163                         err = ret;
164                         goto fail;
165                 }
166         }
167         leaf = path->nodes[0];
168         ei = btrfs_item_ptr(leaf, path->slots[0],
169                             struct btrfs_file_extent_item);
170         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
171         btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
172         btrfs_set_file_extent_encryption(leaf, ei, 0);
173         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
174         btrfs_set_file_extent_ram_bytes(leaf, ei, size);
175         ptr = btrfs_file_extent_inline_start(ei);
176
177         if (compress_type != BTRFS_COMPRESS_NONE) {
178                 struct page *cpage;
179                 int i = 0;
180                 while (compressed_size > 0) {
181                         cpage = compressed_pages[i];
182                         cur_size = min_t(unsigned long, compressed_size,
183                                        PAGE_CACHE_SIZE);
184
185                         kaddr = kmap_atomic(cpage);
186                         write_extent_buffer(leaf, kaddr, ptr, cur_size);
187                         kunmap_atomic(kaddr);
188
189                         i++;
190                         ptr += cur_size;
191                         compressed_size -= cur_size;
192                 }
193                 btrfs_set_file_extent_compression(leaf, ei,
194                                                   compress_type);
195         } else {
196                 page = find_get_page(inode->i_mapping,
197                                      start >> PAGE_CACHE_SHIFT);
198                 btrfs_set_file_extent_compression(leaf, ei, 0);
199                 kaddr = kmap_atomic(page);
200                 offset = start & (PAGE_CACHE_SIZE - 1);
201                 write_extent_buffer(leaf, kaddr + offset, ptr, size);
202                 kunmap_atomic(kaddr);
203                 page_cache_release(page);
204         }
205         btrfs_mark_buffer_dirty(leaf);
206         btrfs_release_path(path);
207
208         /*
209          * we're an inline extent, so nobody can
210          * extend the file past i_size without locking
211          * a page we already have locked.
212          *
213          * We must do any isize and inode updates
214          * before we unlock the pages.  Otherwise we
215          * could end up racing with unlink.
216          */
217         BTRFS_I(inode)->disk_i_size = inode->i_size;
218         ret = btrfs_update_inode(trans, root, inode);
219
220         return ret;
221 fail:
222         return err;
223 }
224
225
226 /*
227  * conditionally insert an inline extent into the file.  This
228  * does the checks required to make sure the data is small enough
229  * to fit as an inline extent.
230  */
231 static noinline int cow_file_range_inline(struct btrfs_root *root,
232                                           struct inode *inode, u64 start,
233                                           u64 end, size_t compressed_size,
234                                           int compress_type,
235                                           struct page **compressed_pages)
236 {
237         struct btrfs_trans_handle *trans;
238         u64 isize = i_size_read(inode);
239         u64 actual_end = min(end + 1, isize);
240         u64 inline_len = actual_end - start;
241         u64 aligned_end = ALIGN(end, root->sectorsize);
242         u64 data_len = inline_len;
243         int ret;
244         struct btrfs_path *path;
245         int extent_inserted = 0;
246         u32 extent_item_size;
247
248         if (compressed_size)
249                 data_len = compressed_size;
250
251         if (start > 0 ||
252             actual_end > PAGE_CACHE_SIZE ||
253             data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) ||
254             (!compressed_size &&
255             (actual_end & (root->sectorsize - 1)) == 0) ||
256             end + 1 < isize ||
257             data_len > root->fs_info->max_inline) {
258                 return 1;
259         }
260
261         path = btrfs_alloc_path();
262         if (!path)
263                 return -ENOMEM;
264
265         trans = btrfs_join_transaction(root);
266         if (IS_ERR(trans)) {
267                 btrfs_free_path(path);
268                 return PTR_ERR(trans);
269         }
270         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
271
272         if (compressed_size && compressed_pages)
273                 extent_item_size = btrfs_file_extent_calc_inline_size(
274                    compressed_size);
275         else
276                 extent_item_size = btrfs_file_extent_calc_inline_size(
277                     inline_len);
278
279         ret = __btrfs_drop_extents(trans, root, inode, path,
280                                    start, aligned_end, NULL,
281                                    1, 1, extent_item_size, &extent_inserted);
282         if (ret) {
283                 btrfs_abort_transaction(trans, root, ret);
284                 goto out;
285         }
286
287         if (isize > actual_end)
288                 inline_len = min_t(u64, isize, actual_end);
289         ret = insert_inline_extent(trans, path, extent_inserted,
290                                    root, inode, start,
291                                    inline_len, compressed_size,
292                                    compress_type, compressed_pages);
293         if (ret && ret != -ENOSPC) {
294                 btrfs_abort_transaction(trans, root, ret);
295                 goto out;
296         } else if (ret == -ENOSPC) {
297                 ret = 1;
298                 goto out;
299         }
300
301         set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
302         btrfs_delalloc_release_metadata(inode, end + 1 - start);
303         btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
304 out:
305         btrfs_free_path(path);
306         btrfs_end_transaction(trans, root);
307         return ret;
308 }
309
310 struct async_extent {
311         u64 start;
312         u64 ram_size;
313         u64 compressed_size;
314         struct page **pages;
315         unsigned long nr_pages;
316         int compress_type;
317         struct list_head list;
318 };
319
320 struct async_cow {
321         struct inode *inode;
322         struct btrfs_root *root;
323         struct page *locked_page;
324         u64 start;
325         u64 end;
326         struct list_head extents;
327         struct btrfs_work work;
328 };
329
330 static noinline int add_async_extent(struct async_cow *cow,
331                                      u64 start, u64 ram_size,
332                                      u64 compressed_size,
333                                      struct page **pages,
334                                      unsigned long nr_pages,
335                                      int compress_type)
336 {
337         struct async_extent *async_extent;
338
339         async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
340         BUG_ON(!async_extent); /* -ENOMEM */
341         async_extent->start = start;
342         async_extent->ram_size = ram_size;
343         async_extent->compressed_size = compressed_size;
344         async_extent->pages = pages;
345         async_extent->nr_pages = nr_pages;
346         async_extent->compress_type = compress_type;
347         list_add_tail(&async_extent->list, &cow->extents);
348         return 0;
349 }
350
351 static inline int inode_need_compress(struct inode *inode)
352 {
353         struct btrfs_root *root = BTRFS_I(inode)->root;
354
355         /* force compress */
356         if (btrfs_test_opt(root, FORCE_COMPRESS))
357                 return 1;
358         /* bad compression ratios */
359         if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
360                 return 0;
361         if (btrfs_test_opt(root, COMPRESS) ||
362             BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
363             BTRFS_I(inode)->force_compress)
364                 return 1;
365         return 0;
366 }
367
368 /*
369  * we create compressed extents in two phases.  The first
370  * phase compresses a range of pages that have already been
371  * locked (both pages and state bits are locked).
372  *
373  * This is done inside an ordered work queue, and the compression
374  * is spread across many cpus.  The actual IO submission is step
375  * two, and the ordered work queue takes care of making sure that
376  * happens in the same order things were put onto the queue by
377  * writepages and friends.
378  *
379  * If this code finds it can't get good compression, it puts an
380  * entry onto the work queue to write the uncompressed bytes.  This
381  * makes sure that both compressed inodes and uncompressed inodes
382  * are written in the same order that the flusher thread sent them
383  * down.
384  */
385 static noinline void compress_file_range(struct inode *inode,
386                                         struct page *locked_page,
387                                         u64 start, u64 end,
388                                         struct async_cow *async_cow,
389                                         int *num_added)
390 {
391         struct btrfs_root *root = BTRFS_I(inode)->root;
392         u64 num_bytes;
393         u64 blocksize = root->sectorsize;
394         u64 actual_end;
395         u64 isize = i_size_read(inode);
396         int ret = 0;
397         struct page **pages = NULL;
398         unsigned long nr_pages;
399         unsigned long nr_pages_ret = 0;
400         unsigned long total_compressed = 0;
401         unsigned long total_in = 0;
402         unsigned long max_compressed = 128 * 1024;
403         unsigned long max_uncompressed = 128 * 1024;
404         int i;
405         int will_compress;
406         int compress_type = root->fs_info->compress_type;
407         int redirty = 0;
408
409         /* if this is a small write inside eof, kick off a defrag */
410         if ((end - start + 1) < 16 * 1024 &&
411             (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
412                 btrfs_add_inode_defrag(NULL, inode);
413
414         actual_end = min_t(u64, isize, end + 1);
415 again:
416         will_compress = 0;
417         nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
418         nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
419
420         /*
421          * we don't want to send crud past the end of i_size through
422          * compression, that's just a waste of CPU time.  So, if the
423          * end of the file is before the start of our current
424          * requested range of bytes, we bail out to the uncompressed
425          * cleanup code that can deal with all of this.
426          *
427          * It isn't really the fastest way to fix things, but this is a
428          * very uncommon corner.
429          */
430         if (actual_end <= start)
431                 goto cleanup_and_bail_uncompressed;
432
433         total_compressed = actual_end - start;
434
435         /*
436          * skip compression for a small file range(<=blocksize) that
437          * isn't an inline extent, since it dosen't save disk space at all.
438          */
439         if (total_compressed <= blocksize &&
440            (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
441                 goto cleanup_and_bail_uncompressed;
442
443         /* we want to make sure that amount of ram required to uncompress
444          * an extent is reasonable, so we limit the total size in ram
445          * of a compressed extent to 128k.  This is a crucial number
446          * because it also controls how easily we can spread reads across
447          * cpus for decompression.
448          *
449          * We also want to make sure the amount of IO required to do
450          * a random read is reasonably small, so we limit the size of
451          * a compressed extent to 128k.
452          */
453         total_compressed = min(total_compressed, max_uncompressed);
454         num_bytes = ALIGN(end - start + 1, blocksize);
455         num_bytes = max(blocksize,  num_bytes);
456         total_in = 0;
457         ret = 0;
458
459         /*
460          * we do compression for mount -o compress and when the
461          * inode has not been flagged as nocompress.  This flag can
462          * change at any time if we discover bad compression ratios.
463          */
464         if (inode_need_compress(inode)) {
465                 WARN_ON(pages);
466                 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
467                 if (!pages) {
468                         /* just bail out to the uncompressed code */
469                         goto cont;
470                 }
471
472                 if (BTRFS_I(inode)->force_compress)
473                         compress_type = BTRFS_I(inode)->force_compress;
474
475                 /*
476                  * we need to call clear_page_dirty_for_io on each
477                  * page in the range.  Otherwise applications with the file
478                  * mmap'd can wander in and change the page contents while
479                  * we are compressing them.
480                  *
481                  * If the compression fails for any reason, we set the pages
482                  * dirty again later on.
483                  */
484                 extent_range_clear_dirty_for_io(inode, start, end);
485                 redirty = 1;
486                 ret = btrfs_compress_pages(compress_type,
487                                            inode->i_mapping, start,
488                                            total_compressed, pages,
489                                            nr_pages, &nr_pages_ret,
490                                            &total_in,
491                                            &total_compressed,
492                                            max_compressed);
493
494                 if (!ret) {
495                         unsigned long offset = total_compressed &
496                                 (PAGE_CACHE_SIZE - 1);
497                         struct page *page = pages[nr_pages_ret - 1];
498                         char *kaddr;
499
500                         /* zero the tail end of the last page, we might be
501                          * sending it down to disk
502                          */
503                         if (offset) {
504                                 kaddr = kmap_atomic(page);
505                                 memset(kaddr + offset, 0,
506                                        PAGE_CACHE_SIZE - offset);
507                                 kunmap_atomic(kaddr);
508                         }
509                         will_compress = 1;
510                 }
511         }
512 cont:
513         if (start == 0) {
514                 /* lets try to make an inline extent */
515                 if (ret || total_in < (actual_end - start)) {
516                         /* we didn't compress the entire range, try
517                          * to make an uncompressed inline extent.
518                          */
519                         ret = cow_file_range_inline(root, inode, start, end,
520                                                     0, 0, NULL);
521                 } else {
522                         /* try making a compressed inline extent */
523                         ret = cow_file_range_inline(root, inode, start, end,
524                                                     total_compressed,
525                                                     compress_type, pages);
526                 }
527                 if (ret <= 0) {
528                         unsigned long clear_flags = EXTENT_DELALLOC |
529                                 EXTENT_DEFRAG;
530                         unsigned long page_error_op;
531
532                         clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
533                         page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
534
535                         /*
536                          * inline extent creation worked or returned error,
537                          * we don't need to create any more async work items.
538                          * Unlock and free up our temp pages.
539                          */
540                         extent_clear_unlock_delalloc(inode, start, end, NULL,
541                                                      clear_flags, PAGE_UNLOCK |
542                                                      PAGE_CLEAR_DIRTY |
543                                                      PAGE_SET_WRITEBACK |
544                                                      page_error_op |
545                                                      PAGE_END_WRITEBACK);
546                         goto free_pages_out;
547                 }
548         }
549
550         if (will_compress) {
551                 /*
552                  * we aren't doing an inline extent round the compressed size
553                  * up to a block size boundary so the allocator does sane
554                  * things
555                  */
556                 total_compressed = ALIGN(total_compressed, blocksize);
557
558                 /*
559                  * one last check to make sure the compression is really a
560                  * win, compare the page count read with the blocks on disk
561                  */
562                 total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
563                 if (total_compressed >= total_in) {
564                         will_compress = 0;
565                 } else {
566                         num_bytes = total_in;
567                 }
568         }
569         if (!will_compress && pages) {
570                 /*
571                  * the compression code ran but failed to make things smaller,
572                  * free any pages it allocated and our page pointer array
573                  */
574                 for (i = 0; i < nr_pages_ret; i++) {
575                         WARN_ON(pages[i]->mapping);
576                         page_cache_release(pages[i]);
577                 }
578                 kfree(pages);
579                 pages = NULL;
580                 total_compressed = 0;
581                 nr_pages_ret = 0;
582
583                 /* flag the file so we don't compress in the future */
584                 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
585                     !(BTRFS_I(inode)->force_compress)) {
586                         BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
587                 }
588         }
589         if (will_compress) {
590                 *num_added += 1;
591
592                 /* the async work queues will take care of doing actual
593                  * allocation on disk for these compressed pages,
594                  * and will submit them to the elevator.
595                  */
596                 add_async_extent(async_cow, start, num_bytes,
597                                  total_compressed, pages, nr_pages_ret,
598                                  compress_type);
599
600                 if (start + num_bytes < end) {
601                         start += num_bytes;
602                         pages = NULL;
603                         cond_resched();
604                         goto again;
605                 }
606         } else {
607 cleanup_and_bail_uncompressed:
608                 /*
609                  * No compression, but we still need to write the pages in
610                  * the file we've been given so far.  redirty the locked
611                  * page if it corresponds to our extent and set things up
612                  * for the async work queue to run cow_file_range to do
613                  * the normal delalloc dance
614                  */
615                 if (page_offset(locked_page) >= start &&
616                     page_offset(locked_page) <= end) {
617                         __set_page_dirty_nobuffers(locked_page);
618                         /* unlocked later on in the async handlers */
619                 }
620                 if (redirty)
621                         extent_range_redirty_for_io(inode, start, end);
622                 add_async_extent(async_cow, start, end - start + 1,
623                                  0, NULL, 0, BTRFS_COMPRESS_NONE);
624                 *num_added += 1;
625         }
626
627         return;
628
629 free_pages_out:
630         for (i = 0; i < nr_pages_ret; i++) {
631                 WARN_ON(pages[i]->mapping);
632                 page_cache_release(pages[i]);
633         }
634         kfree(pages);
635 }
636
637 static void free_async_extent_pages(struct async_extent *async_extent)
638 {
639         int i;
640
641         if (!async_extent->pages)
642                 return;
643
644         for (i = 0; i < async_extent->nr_pages; i++) {
645                 WARN_ON(async_extent->pages[i]->mapping);
646                 page_cache_release(async_extent->pages[i]);
647         }
648         kfree(async_extent->pages);
649         async_extent->nr_pages = 0;
650         async_extent->pages = NULL;
651 }
652
653 /*
654  * phase two of compressed writeback.  This is the ordered portion
655  * of the code, which only gets called in the order the work was
656  * queued.  We walk all the async extents created by compress_file_range
657  * and send them down to the disk.
658  */
659 static noinline void submit_compressed_extents(struct inode *inode,
660                                               struct async_cow *async_cow)
661 {
662         struct async_extent *async_extent;
663         u64 alloc_hint = 0;
664         struct btrfs_key ins;
665         struct extent_map *em;
666         struct btrfs_root *root = BTRFS_I(inode)->root;
667         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
668         struct extent_io_tree *io_tree;
669         int ret = 0;
670
671 again:
672         while (!list_empty(&async_cow->extents)) {
673                 async_extent = list_entry(async_cow->extents.next,
674                                           struct async_extent, list);
675                 list_del(&async_extent->list);
676
677                 io_tree = &BTRFS_I(inode)->io_tree;
678
679 retry:
680                 /* did the compression code fall back to uncompressed IO? */
681                 if (!async_extent->pages) {
682                         int page_started = 0;
683                         unsigned long nr_written = 0;
684
685                         lock_extent(io_tree, async_extent->start,
686                                          async_extent->start +
687                                          async_extent->ram_size - 1);
688
689                         /* allocate blocks */
690                         ret = cow_file_range(inode, async_cow->locked_page,
691                                              async_extent->start,
692                                              async_extent->start +
693                                              async_extent->ram_size - 1,
694                                              &page_started, &nr_written, 0);
695
696                         /* JDM XXX */
697
698                         /*
699                          * if page_started, cow_file_range inserted an
700                          * inline extent and took care of all the unlocking
701                          * and IO for us.  Otherwise, we need to submit
702                          * all those pages down to the drive.
703                          */
704                         if (!page_started && !ret)
705                                 extent_write_locked_range(io_tree,
706                                                   inode, async_extent->start,
707                                                   async_extent->start +
708                                                   async_extent->ram_size - 1,
709                                                   btrfs_get_extent,
710                                                   WB_SYNC_ALL);
711                         else if (ret)
712                                 unlock_page(async_cow->locked_page);
713                         kfree(async_extent);
714                         cond_resched();
715                         continue;
716                 }
717
718                 lock_extent(io_tree, async_extent->start,
719                             async_extent->start + async_extent->ram_size - 1);
720
721                 ret = btrfs_reserve_extent(root,
722                                            async_extent->compressed_size,
723                                            async_extent->compressed_size,
724                                            0, alloc_hint, &ins, 1, 1);
725                 if (ret) {
726                         free_async_extent_pages(async_extent);
727
728                         if (ret == -ENOSPC) {
729                                 unlock_extent(io_tree, async_extent->start,
730                                               async_extent->start +
731                                               async_extent->ram_size - 1);
732
733                                 /*
734                                  * we need to redirty the pages if we decide to
735                                  * fallback to uncompressed IO, otherwise we
736                                  * will not submit these pages down to lower
737                                  * layers.
738                                  */
739                                 extent_range_redirty_for_io(inode,
740                                                 async_extent->start,
741                                                 async_extent->start +
742                                                 async_extent->ram_size - 1);
743
744                                 goto retry;
745                         }
746                         goto out_free;
747                 }
748
749                 /*
750                  * here we're doing allocation and writeback of the
751                  * compressed pages
752                  */
753                 btrfs_drop_extent_cache(inode, async_extent->start,
754                                         async_extent->start +
755                                         async_extent->ram_size - 1, 0);
756
757                 em = alloc_extent_map();
758                 if (!em) {
759                         ret = -ENOMEM;
760                         goto out_free_reserve;
761                 }
762                 em->start = async_extent->start;
763                 em->len = async_extent->ram_size;
764                 em->orig_start = em->start;
765                 em->mod_start = em->start;
766                 em->mod_len = em->len;
767
768                 em->block_start = ins.objectid;
769                 em->block_len = ins.offset;
770                 em->orig_block_len = ins.offset;
771                 em->ram_bytes = async_extent->ram_size;
772                 em->bdev = root->fs_info->fs_devices->latest_bdev;
773                 em->compress_type = async_extent->compress_type;
774                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
775                 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
776                 em->generation = -1;
777
778                 while (1) {
779                         write_lock(&em_tree->lock);
780                         ret = add_extent_mapping(em_tree, em, 1);
781                         write_unlock(&em_tree->lock);
782                         if (ret != -EEXIST) {
783                                 free_extent_map(em);
784                                 break;
785                         }
786                         btrfs_drop_extent_cache(inode, async_extent->start,
787                                                 async_extent->start +
788                                                 async_extent->ram_size - 1, 0);
789                 }
790
791                 if (ret)
792                         goto out_free_reserve;
793
794                 ret = btrfs_add_ordered_extent_compress(inode,
795                                                 async_extent->start,
796                                                 ins.objectid,
797                                                 async_extent->ram_size,
798                                                 ins.offset,
799                                                 BTRFS_ORDERED_COMPRESSED,
800                                                 async_extent->compress_type);
801                 if (ret) {
802                         btrfs_drop_extent_cache(inode, async_extent->start,
803                                                 async_extent->start +
804                                                 async_extent->ram_size - 1, 0);
805                         goto out_free_reserve;
806                 }
807
808                 /*
809                  * clear dirty, set writeback and unlock the pages.
810                  */
811                 extent_clear_unlock_delalloc(inode, async_extent->start,
812                                 async_extent->start +
813                                 async_extent->ram_size - 1,
814                                 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
815                                 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
816                                 PAGE_SET_WRITEBACK);
817                 ret = btrfs_submit_compressed_write(inode,
818                                     async_extent->start,
819                                     async_extent->ram_size,
820                                     ins.objectid,
821                                     ins.offset, async_extent->pages,
822                                     async_extent->nr_pages);
823                 if (ret) {
824                         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
825                         struct page *p = async_extent->pages[0];
826                         const u64 start = async_extent->start;
827                         const u64 end = start + async_extent->ram_size - 1;
828
829                         p->mapping = inode->i_mapping;
830                         tree->ops->writepage_end_io_hook(p, start, end,
831                                                          NULL, 0);
832                         p->mapping = NULL;
833                         extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
834                                                      PAGE_END_WRITEBACK |
835                                                      PAGE_SET_ERROR);
836                         free_async_extent_pages(async_extent);
837                 }
838                 alloc_hint = ins.objectid + ins.offset;
839                 kfree(async_extent);
840                 cond_resched();
841         }
842         return;
843 out_free_reserve:
844         btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
845 out_free:
846         extent_clear_unlock_delalloc(inode, async_extent->start,
847                                      async_extent->start +
848                                      async_extent->ram_size - 1,
849                                      NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
850                                      EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
851                                      PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
852                                      PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
853                                      PAGE_SET_ERROR);
854         free_async_extent_pages(async_extent);
855         kfree(async_extent);
856         goto again;
857 }
858
859 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
860                                       u64 num_bytes)
861 {
862         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
863         struct extent_map *em;
864         u64 alloc_hint = 0;
865
866         read_lock(&em_tree->lock);
867         em = search_extent_mapping(em_tree, start, num_bytes);
868         if (em) {
869                 /*
870                  * if block start isn't an actual block number then find the
871                  * first block in this inode and use that as a hint.  If that
872                  * block is also bogus then just don't worry about it.
873                  */
874                 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
875                         free_extent_map(em);
876                         em = search_extent_mapping(em_tree, 0, 0);
877                         if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
878                                 alloc_hint = em->block_start;
879                         if (em)
880                                 free_extent_map(em);
881                 } else {
882                         alloc_hint = em->block_start;
883                         free_extent_map(em);
884                 }
885         }
886         read_unlock(&em_tree->lock);
887
888         return alloc_hint;
889 }
890
891 /*
892  * when extent_io.c finds a delayed allocation range in the file,
893  * the call backs end up in this code.  The basic idea is to
894  * allocate extents on disk for the range, and create ordered data structs
895  * in ram to track those extents.
896  *
897  * locked_page is the page that writepage had locked already.  We use
898  * it to make sure we don't do extra locks or unlocks.
899  *
900  * *page_started is set to one if we unlock locked_page and do everything
901  * required to start IO on it.  It may be clean and already done with
902  * IO when we return.
903  */
904 static noinline int cow_file_range(struct inode *inode,
905                                    struct page *locked_page,
906                                    u64 start, u64 end, int *page_started,
907                                    unsigned long *nr_written,
908                                    int unlock)
909 {
910         struct btrfs_root *root = BTRFS_I(inode)->root;
911         u64 alloc_hint = 0;
912         u64 num_bytes;
913         unsigned long ram_size;
914         u64 disk_num_bytes;
915         u64 cur_alloc_size;
916         u64 blocksize = root->sectorsize;
917         struct btrfs_key ins;
918         struct extent_map *em;
919         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
920         int ret = 0;
921
922         if (btrfs_is_free_space_inode(inode)) {
923                 WARN_ON_ONCE(1);
924                 ret = -EINVAL;
925                 goto out_unlock;
926         }
927
928         num_bytes = ALIGN(end - start + 1, blocksize);
929         num_bytes = max(blocksize,  num_bytes);
930         disk_num_bytes = num_bytes;
931
932         /* if this is a small write inside eof, kick off defrag */
933         if (num_bytes < 64 * 1024 &&
934             (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
935                 btrfs_add_inode_defrag(NULL, inode);
936
937         if (start == 0) {
938                 /* lets try to make an inline extent */
939                 ret = cow_file_range_inline(root, inode, start, end, 0, 0,
940                                             NULL);
941                 if (ret == 0) {
942                         extent_clear_unlock_delalloc(inode, start, end, NULL,
943                                      EXTENT_LOCKED | EXTENT_DELALLOC |
944                                      EXTENT_DEFRAG, PAGE_UNLOCK |
945                                      PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
946                                      PAGE_END_WRITEBACK);
947
948                         *nr_written = *nr_written +
949                              (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
950                         *page_started = 1;
951                         goto out;
952                 } else if (ret < 0) {
953                         goto out_unlock;
954                 }
955         }
956
957         BUG_ON(disk_num_bytes >
958                btrfs_super_total_bytes(root->fs_info->super_copy));
959
960         alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
961         btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
962
963         while (disk_num_bytes > 0) {
964                 unsigned long op;
965
966                 cur_alloc_size = disk_num_bytes;
967                 ret = btrfs_reserve_extent(root, cur_alloc_size,
968                                            root->sectorsize, 0, alloc_hint,
969                                            &ins, 1, 1);
970                 if (ret < 0)
971                         goto out_unlock;
972
973                 em = alloc_extent_map();
974                 if (!em) {
975                         ret = -ENOMEM;
976                         goto out_reserve;
977                 }
978                 em->start = start;
979                 em->orig_start = em->start;
980                 ram_size = ins.offset;
981                 em->len = ins.offset;
982                 em->mod_start = em->start;
983                 em->mod_len = em->len;
984
985                 em->block_start = ins.objectid;
986                 em->block_len = ins.offset;
987                 em->orig_block_len = ins.offset;
988                 em->ram_bytes = ram_size;
989                 em->bdev = root->fs_info->fs_devices->latest_bdev;
990                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
991                 em->generation = -1;
992
993                 while (1) {
994                         write_lock(&em_tree->lock);
995                         ret = add_extent_mapping(em_tree, em, 1);
996                         write_unlock(&em_tree->lock);
997                         if (ret != -EEXIST) {
998                                 free_extent_map(em);
999                                 break;
1000                         }
1001                         btrfs_drop_extent_cache(inode, start,
1002                                                 start + ram_size - 1, 0);
1003                 }
1004                 if (ret)
1005                         goto out_reserve;
1006
1007                 cur_alloc_size = ins.offset;
1008                 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1009                                                ram_size, cur_alloc_size, 0);
1010                 if (ret)
1011                         goto out_drop_extent_cache;
1012
1013                 if (root->root_key.objectid ==
1014                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
1015                         ret = btrfs_reloc_clone_csums(inode, start,
1016                                                       cur_alloc_size);
1017                         if (ret)
1018                                 goto out_drop_extent_cache;
1019                 }
1020
1021                 if (disk_num_bytes < cur_alloc_size)
1022                         break;
1023
1024                 /* we're not doing compressed IO, don't unlock the first
1025                  * page (which the caller expects to stay locked), don't
1026                  * clear any dirty bits and don't set any writeback bits
1027                  *
1028                  * Do set the Private2 bit so we know this page was properly
1029                  * setup for writepage
1030                  */
1031                 op = unlock ? PAGE_UNLOCK : 0;
1032                 op |= PAGE_SET_PRIVATE2;
1033
1034                 extent_clear_unlock_delalloc(inode, start,
1035                                              start + ram_size - 1, locked_page,
1036                                              EXTENT_LOCKED | EXTENT_DELALLOC,
1037                                              op);
1038                 disk_num_bytes -= cur_alloc_size;
1039                 num_bytes -= cur_alloc_size;
1040                 alloc_hint = ins.objectid + ins.offset;
1041                 start += cur_alloc_size;
1042         }
1043 out:
1044         return ret;
1045
1046 out_drop_extent_cache:
1047         btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1048 out_reserve:
1049         btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
1050 out_unlock:
1051         extent_clear_unlock_delalloc(inode, start, end, locked_page,
1052                                      EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1053                                      EXTENT_DELALLOC | EXTENT_DEFRAG,
1054                                      PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1055                                      PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
1056         goto out;
1057 }
1058
1059 /*
1060  * work queue call back to started compression on a file and pages
1061  */
1062 static noinline void async_cow_start(struct btrfs_work *work)
1063 {
1064         struct async_cow *async_cow;
1065         int num_added = 0;
1066         async_cow = container_of(work, struct async_cow, work);
1067
1068         compress_file_range(async_cow->inode, async_cow->locked_page,
1069                             async_cow->start, async_cow->end, async_cow,
1070                             &num_added);
1071         if (num_added == 0) {
1072                 btrfs_add_delayed_iput(async_cow->inode);
1073                 async_cow->inode = NULL;
1074         }
1075 }
1076
1077 /*
1078  * work queue call back to submit previously compressed pages
1079  */
1080 static noinline void async_cow_submit(struct btrfs_work *work)
1081 {
1082         struct async_cow *async_cow;
1083         struct btrfs_root *root;
1084         unsigned long nr_pages;
1085
1086         async_cow = container_of(work, struct async_cow, work);
1087
1088         root = async_cow->root;
1089         nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1090                 PAGE_CACHE_SHIFT;
1091
1092         if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1093             5 * 1024 * 1024 &&
1094             waitqueue_active(&root->fs_info->async_submit_wait))
1095                 wake_up(&root->fs_info->async_submit_wait);
1096
1097         if (async_cow->inode)
1098                 submit_compressed_extents(async_cow->inode, async_cow);
1099 }
1100
1101 static noinline void async_cow_free(struct btrfs_work *work)
1102 {
1103         struct async_cow *async_cow;
1104         async_cow = container_of(work, struct async_cow, work);
1105         if (async_cow->inode)
1106                 btrfs_add_delayed_iput(async_cow->inode);
1107         kfree(async_cow);
1108 }
1109
1110 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1111                                 u64 start, u64 end, int *page_started,
1112                                 unsigned long *nr_written)
1113 {
1114         struct async_cow *async_cow;
1115         struct btrfs_root *root = BTRFS_I(inode)->root;
1116         unsigned long nr_pages;
1117         u64 cur_end;
1118         int limit = 10 * 1024 * 1024;
1119
1120         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1121                          1, 0, NULL, GFP_NOFS);
1122         while (start < end) {
1123                 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1124                 BUG_ON(!async_cow); /* -ENOMEM */
1125                 async_cow->inode = igrab(inode);
1126                 async_cow->root = root;
1127                 async_cow->locked_page = locked_page;
1128                 async_cow->start = start;
1129
1130                 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1131                     !btrfs_test_opt(root, FORCE_COMPRESS))
1132                         cur_end = end;
1133                 else
1134                         cur_end = min(end, start + 512 * 1024 - 1);
1135
1136                 async_cow->end = cur_end;
1137                 INIT_LIST_HEAD(&async_cow->extents);
1138
1139                 btrfs_init_work(&async_cow->work,
1140                                 btrfs_delalloc_helper,
1141                                 async_cow_start, async_cow_submit,
1142                                 async_cow_free);
1143
1144                 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1145                         PAGE_CACHE_SHIFT;
1146                 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1147
1148                 btrfs_queue_work(root->fs_info->delalloc_workers,
1149                                  &async_cow->work);
1150
1151                 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1152                         wait_event(root->fs_info->async_submit_wait,
1153                            (atomic_read(&root->fs_info->async_delalloc_pages) <
1154                             limit));
1155                 }
1156
1157                 while (atomic_read(&root->fs_info->async_submit_draining) &&
1158                       atomic_read(&root->fs_info->async_delalloc_pages)) {
1159                         wait_event(root->fs_info->async_submit_wait,
1160                           (atomic_read(&root->fs_info->async_delalloc_pages) ==
1161                            0));
1162                 }
1163
1164                 *nr_written += nr_pages;
1165                 start = cur_end + 1;
1166         }
1167         *page_started = 1;
1168         return 0;
1169 }
1170
1171 static noinline int csum_exist_in_range(struct btrfs_root *root,
1172                                         u64 bytenr, u64 num_bytes)
1173 {
1174         int ret;
1175         struct btrfs_ordered_sum *sums;
1176         LIST_HEAD(list);
1177
1178         ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1179                                        bytenr + num_bytes - 1, &list, 0);
1180         if (ret == 0 && list_empty(&list))
1181                 return 0;
1182
1183         while (!list_empty(&list)) {
1184                 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1185                 list_del(&sums->list);
1186                 kfree(sums);
1187         }
1188         return 1;
1189 }
1190
1191 /*
1192  * when nowcow writeback call back.  This checks for snapshots or COW copies
1193  * of the extents that exist in the file, and COWs the file as required.
1194  *
1195  * If no cow copies or snapshots exist, we write directly to the existing
1196  * blocks on disk
1197  */
1198 static noinline int run_delalloc_nocow(struct inode *inode,
1199                                        struct page *locked_page,
1200                               u64 start, u64 end, int *page_started, int force,
1201                               unsigned long *nr_written)
1202 {
1203         struct btrfs_root *root = BTRFS_I(inode)->root;
1204         struct btrfs_trans_handle *trans;
1205         struct extent_buffer *leaf;
1206         struct btrfs_path *path;
1207         struct btrfs_file_extent_item *fi;
1208         struct btrfs_key found_key;
1209         u64 cow_start;
1210         u64 cur_offset;
1211         u64 extent_end;
1212         u64 extent_offset;
1213         u64 disk_bytenr;
1214         u64 num_bytes;
1215         u64 disk_num_bytes;
1216         u64 ram_bytes;
1217         int extent_type;
1218         int ret, err;
1219         int type;
1220         int nocow;
1221         int check_prev = 1;
1222         bool nolock;
1223         u64 ino = btrfs_ino(inode);
1224
1225         path = btrfs_alloc_path();
1226         if (!path) {
1227                 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1228                                              EXTENT_LOCKED | EXTENT_DELALLOC |
1229                                              EXTENT_DO_ACCOUNTING |
1230                                              EXTENT_DEFRAG, PAGE_UNLOCK |
1231                                              PAGE_CLEAR_DIRTY |
1232                                              PAGE_SET_WRITEBACK |
1233                                              PAGE_END_WRITEBACK);
1234                 return -ENOMEM;
1235         }
1236
1237         nolock = btrfs_is_free_space_inode(inode);
1238
1239         if (nolock)
1240                 trans = btrfs_join_transaction_nolock(root);
1241         else
1242                 trans = btrfs_join_transaction(root);
1243
1244         if (IS_ERR(trans)) {
1245                 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1246                                              EXTENT_LOCKED | EXTENT_DELALLOC |
1247                                              EXTENT_DO_ACCOUNTING |
1248                                              EXTENT_DEFRAG, PAGE_UNLOCK |
1249                                              PAGE_CLEAR_DIRTY |
1250                                              PAGE_SET_WRITEBACK |
1251                                              PAGE_END_WRITEBACK);
1252                 btrfs_free_path(path);
1253                 return PTR_ERR(trans);
1254         }
1255
1256         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1257
1258         cow_start = (u64)-1;
1259         cur_offset = start;
1260         while (1) {
1261                 ret = btrfs_lookup_file_extent(trans, root, path, ino,
1262                                                cur_offset, 0);
1263                 if (ret < 0)
1264                         goto error;
1265                 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1266                         leaf = path->nodes[0];
1267                         btrfs_item_key_to_cpu(leaf, &found_key,
1268                                               path->slots[0] - 1);
1269                         if (found_key.objectid == ino &&
1270                             found_key.type == BTRFS_EXTENT_DATA_KEY)
1271                                 path->slots[0]--;
1272                 }
1273                 check_prev = 0;
1274 next_slot:
1275                 leaf = path->nodes[0];
1276                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1277                         ret = btrfs_next_leaf(root, path);
1278                         if (ret < 0)
1279                                 goto error;
1280                         if (ret > 0)
1281                                 break;
1282                         leaf = path->nodes[0];
1283                 }
1284
1285                 nocow = 0;
1286                 disk_bytenr = 0;
1287                 num_bytes = 0;
1288                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1289
1290                 if (found_key.objectid > ino ||
1291                     found_key.type > BTRFS_EXTENT_DATA_KEY ||
1292                     found_key.offset > end)
1293                         break;
1294
1295                 if (found_key.offset > cur_offset) {
1296                         extent_end = found_key.offset;
1297                         extent_type = 0;
1298                         goto out_check;
1299                 }
1300
1301                 fi = btrfs_item_ptr(leaf, path->slots[0],
1302                                     struct btrfs_file_extent_item);
1303                 extent_type = btrfs_file_extent_type(leaf, fi);
1304
1305                 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1306                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1307                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1308                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1309                         extent_offset = btrfs_file_extent_offset(leaf, fi);
1310                         extent_end = found_key.offset +
1311                                 btrfs_file_extent_num_bytes(leaf, fi);
1312                         disk_num_bytes =
1313                                 btrfs_file_extent_disk_num_bytes(leaf, fi);
1314                         if (extent_end <= start) {
1315                                 path->slots[0]++;
1316                                 goto next_slot;
1317                         }
1318                         if (disk_bytenr == 0)
1319                                 goto out_check;
1320                         if (btrfs_file_extent_compression(leaf, fi) ||
1321                             btrfs_file_extent_encryption(leaf, fi) ||
1322                             btrfs_file_extent_other_encoding(leaf, fi))
1323                                 goto out_check;
1324                         if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1325                                 goto out_check;
1326                         if (btrfs_extent_readonly(root, disk_bytenr))
1327                                 goto out_check;
1328                         if (btrfs_cross_ref_exist(trans, root, ino,
1329                                                   found_key.offset -
1330                                                   extent_offset, disk_bytenr))
1331                                 goto out_check;
1332                         disk_bytenr += extent_offset;
1333                         disk_bytenr += cur_offset - found_key.offset;
1334                         num_bytes = min(end + 1, extent_end) - cur_offset;
1335                         /*
1336                          * if there are pending snapshots for this root,
1337                          * we fall into common COW way.
1338                          */
1339                         if (!nolock) {
1340                                 err = btrfs_start_write_no_snapshoting(root);
1341                                 if (!err)
1342                                         goto out_check;
1343                         }
1344                         /*
1345                          * force cow if csum exists in the range.
1346                          * this ensure that csum for a given extent are
1347                          * either valid or do not exist.
1348                          */
1349                         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1350                                 goto out_check;
1351                         nocow = 1;
1352                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1353                         extent_end = found_key.offset +
1354                                 btrfs_file_extent_inline_len(leaf,
1355                                                      path->slots[0], fi);
1356                         extent_end = ALIGN(extent_end, root->sectorsize);
1357                 } else {
1358                         BUG_ON(1);
1359                 }
1360 out_check:
1361                 if (extent_end <= start) {
1362                         path->slots[0]++;
1363                         if (!nolock && nocow)
1364                                 btrfs_end_write_no_snapshoting(root);
1365                         goto next_slot;
1366                 }
1367                 if (!nocow) {
1368                         if (cow_start == (u64)-1)
1369                                 cow_start = cur_offset;
1370                         cur_offset = extent_end;
1371                         if (cur_offset > end)
1372                                 break;
1373                         path->slots[0]++;
1374                         goto next_slot;
1375                 }
1376
1377                 btrfs_release_path(path);
1378                 if (cow_start != (u64)-1) {
1379                         ret = cow_file_range(inode, locked_page,
1380                                              cow_start, found_key.offset - 1,
1381                                              page_started, nr_written, 1);
1382                         if (ret) {
1383                                 if (!nolock && nocow)
1384                                         btrfs_end_write_no_snapshoting(root);
1385                                 goto error;
1386                         }
1387                         cow_start = (u64)-1;
1388                 }
1389
1390                 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1391                         struct extent_map *em;
1392                         struct extent_map_tree *em_tree;
1393                         em_tree = &BTRFS_I(inode)->extent_tree;
1394                         em = alloc_extent_map();
1395                         BUG_ON(!em); /* -ENOMEM */
1396                         em->start = cur_offset;
1397                         em->orig_start = found_key.offset - extent_offset;
1398                         em->len = num_bytes;
1399                         em->block_len = num_bytes;
1400                         em->block_start = disk_bytenr;
1401                         em->orig_block_len = disk_num_bytes;
1402                         em->ram_bytes = ram_bytes;
1403                         em->bdev = root->fs_info->fs_devices->latest_bdev;
1404                         em->mod_start = em->start;
1405                         em->mod_len = em->len;
1406                         set_bit(EXTENT_FLAG_PINNED, &em->flags);
1407                         set_bit(EXTENT_FLAG_FILLING, &em->flags);
1408                         em->generation = -1;
1409                         while (1) {
1410                                 write_lock(&em_tree->lock);
1411                                 ret = add_extent_mapping(em_tree, em, 1);
1412                                 write_unlock(&em_tree->lock);
1413                                 if (ret != -EEXIST) {
1414                                         free_extent_map(em);
1415                                         break;
1416                                 }
1417                                 btrfs_drop_extent_cache(inode, em->start,
1418                                                 em->start + em->len - 1, 0);
1419                         }
1420                         type = BTRFS_ORDERED_PREALLOC;
1421                 } else {
1422                         type = BTRFS_ORDERED_NOCOW;
1423                 }
1424
1425                 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1426                                                num_bytes, num_bytes, type);
1427                 BUG_ON(ret); /* -ENOMEM */
1428
1429                 if (root->root_key.objectid ==
1430                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
1431                         ret = btrfs_reloc_clone_csums(inode, cur_offset,
1432                                                       num_bytes);
1433                         if (ret) {
1434                                 if (!nolock && nocow)
1435                                         btrfs_end_write_no_snapshoting(root);
1436                                 goto error;
1437                         }
1438                 }
1439
1440                 extent_clear_unlock_delalloc(inode, cur_offset,
1441                                              cur_offset + num_bytes - 1,
1442                                              locked_page, EXTENT_LOCKED |
1443                                              EXTENT_DELALLOC, PAGE_UNLOCK |
1444                                              PAGE_SET_PRIVATE2);
1445                 if (!nolock && nocow)
1446                         btrfs_end_write_no_snapshoting(root);
1447                 cur_offset = extent_end;
1448                 if (cur_offset > end)
1449                         break;
1450         }
1451         btrfs_release_path(path);
1452
1453         if (cur_offset <= end && cow_start == (u64)-1) {
1454                 cow_start = cur_offset;
1455                 cur_offset = end;
1456         }
1457
1458         if (cow_start != (u64)-1) {
1459                 ret = cow_file_range(inode, locked_page, cow_start, end,
1460                                      page_started, nr_written, 1);
1461                 if (ret)
1462                         goto error;
1463         }
1464
1465 error:
1466         err = btrfs_end_transaction(trans, root);
1467         if (!ret)
1468                 ret = err;
1469
1470         if (ret && cur_offset < end)
1471                 extent_clear_unlock_delalloc(inode, cur_offset, end,
1472                                              locked_page, EXTENT_LOCKED |
1473                                              EXTENT_DELALLOC | EXTENT_DEFRAG |
1474                                              EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1475                                              PAGE_CLEAR_DIRTY |
1476                                              PAGE_SET_WRITEBACK |
1477                                              PAGE_END_WRITEBACK);
1478         btrfs_free_path(path);
1479         return ret;
1480 }
1481
1482 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1483 {
1484
1485         if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1486             !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1487                 return 0;
1488
1489         /*
1490          * @defrag_bytes is a hint value, no spinlock held here,
1491          * if is not zero, it means the file is defragging.
1492          * Force cow if given extent needs to be defragged.
1493          */
1494         if (BTRFS_I(inode)->defrag_bytes &&
1495             test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1496                            EXTENT_DEFRAG, 0, NULL))
1497                 return 1;
1498
1499         return 0;
1500 }
1501
1502 /*
1503  * extent_io.c call back to do delayed allocation processing
1504  */
1505 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1506                               u64 start, u64 end, int *page_started,
1507                               unsigned long *nr_written)
1508 {
1509         int ret;
1510         int force_cow = need_force_cow(inode, start, end);
1511
1512         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1513                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1514                                          page_started, 1, nr_written);
1515         } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1516                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1517                                          page_started, 0, nr_written);
1518         } else if (!inode_need_compress(inode)) {
1519                 ret = cow_file_range(inode, locked_page, start, end,
1520                                       page_started, nr_written, 1);
1521         } else {
1522                 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1523                         &BTRFS_I(inode)->runtime_flags);
1524                 ret = cow_file_range_async(inode, locked_page, start, end,
1525                                            page_started, nr_written);
1526         }
1527         return ret;
1528 }
1529
1530 static void btrfs_split_extent_hook(struct inode *inode,
1531                                     struct extent_state *orig, u64 split)
1532 {
1533         u64 size;
1534
1535         /* not delalloc, ignore it */
1536         if (!(orig->state & EXTENT_DELALLOC))
1537                 return;
1538
1539         size = orig->end - orig->start + 1;
1540         if (size > BTRFS_MAX_EXTENT_SIZE) {
1541                 u64 num_extents;
1542                 u64 new_size;
1543
1544                 /*
1545                  * We need the largest size of the remaining extent to see if we
1546                  * need to add a new outstanding extent.  Think of the following
1547                  * case
1548                  *
1549                  * [MEAX_EXTENT_SIZEx2 - 4k][4k]
1550                  *
1551                  * The new_size would just be 4k and we'd think we had enough
1552                  * outstanding extents for this if we only took one side of the
1553                  * split, same goes for the other direction.  We need to see if
1554                  * the larger size still is the same amount of extents as the
1555                  * original size, because if it is we need to add a new
1556                  * outstanding extent.  But if we split up and the larger size
1557                  * is less than the original then we are good to go since we've
1558                  * already accounted for the extra extent in our original
1559                  * accounting.
1560                  */
1561                 new_size = orig->end - split + 1;
1562                 if ((split - orig->start) > new_size)
1563                         new_size = split - orig->start;
1564
1565                 num_extents = div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1,
1566                                         BTRFS_MAX_EXTENT_SIZE);
1567                 if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1568                               BTRFS_MAX_EXTENT_SIZE) < num_extents)
1569                         return;
1570         }
1571
1572         spin_lock(&BTRFS_I(inode)->lock);
1573         BTRFS_I(inode)->outstanding_extents++;
1574         spin_unlock(&BTRFS_I(inode)->lock);
1575 }
1576
1577 /*
1578  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1579  * extents so we can keep track of new extents that are just merged onto old
1580  * extents, such as when we are doing sequential writes, so we can properly
1581  * account for the metadata space we'll need.
1582  */
1583 static void btrfs_merge_extent_hook(struct inode *inode,
1584                                     struct extent_state *new,
1585                                     struct extent_state *other)
1586 {
1587         u64 new_size, old_size;
1588         u64 num_extents;
1589
1590         /* not delalloc, ignore it */
1591         if (!(other->state & EXTENT_DELALLOC))
1592                 return;
1593
1594         old_size = other->end - other->start + 1;
1595         if (old_size < (new->end - new->start + 1))
1596                 old_size = (new->end - new->start + 1);
1597         if (new->start > other->start)
1598                 new_size = new->end - other->start + 1;
1599         else
1600                 new_size = other->end - new->start + 1;
1601
1602         /* we're not bigger than the max, unreserve the space and go */
1603         if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1604                 spin_lock(&BTRFS_I(inode)->lock);
1605                 BTRFS_I(inode)->outstanding_extents--;
1606                 spin_unlock(&BTRFS_I(inode)->lock);
1607                 return;
1608         }
1609
1610         /*
1611          * If we grew by another max_extent, just return, we want to keep that
1612          * reserved amount.
1613          */
1614         num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1615                                 BTRFS_MAX_EXTENT_SIZE);
1616         if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1617                       BTRFS_MAX_EXTENT_SIZE) > num_extents)
1618                 return;
1619
1620         spin_lock(&BTRFS_I(inode)->lock);
1621         BTRFS_I(inode)->outstanding_extents--;
1622         spin_unlock(&BTRFS_I(inode)->lock);
1623 }
1624
1625 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1626                                       struct inode *inode)
1627 {
1628         spin_lock(&root->delalloc_lock);
1629         if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1630                 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1631                               &root->delalloc_inodes);
1632                 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1633                         &BTRFS_I(inode)->runtime_flags);
1634                 root->nr_delalloc_inodes++;
1635                 if (root->nr_delalloc_inodes == 1) {
1636                         spin_lock(&root->fs_info->delalloc_root_lock);
1637                         BUG_ON(!list_empty(&root->delalloc_root));
1638                         list_add_tail(&root->delalloc_root,
1639                                       &root->fs_info->delalloc_roots);
1640                         spin_unlock(&root->fs_info->delalloc_root_lock);
1641                 }
1642         }
1643         spin_unlock(&root->delalloc_lock);
1644 }
1645
1646 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1647                                      struct inode *inode)
1648 {
1649         spin_lock(&root->delalloc_lock);
1650         if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1651                 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1652                 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1653                           &BTRFS_I(inode)->runtime_flags);
1654                 root->nr_delalloc_inodes--;
1655                 if (!root->nr_delalloc_inodes) {
1656                         spin_lock(&root->fs_info->delalloc_root_lock);
1657                         BUG_ON(list_empty(&root->delalloc_root));
1658                         list_del_init(&root->delalloc_root);
1659                         spin_unlock(&root->fs_info->delalloc_root_lock);
1660                 }
1661         }
1662         spin_unlock(&root->delalloc_lock);
1663 }
1664
1665 /*
1666  * extent_io.c set_bit_hook, used to track delayed allocation
1667  * bytes in this file, and to maintain the list of inodes that
1668  * have pending delalloc work to be done.
1669  */
1670 static void btrfs_set_bit_hook(struct inode *inode,
1671                                struct extent_state *state, unsigned *bits)
1672 {
1673
1674         if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1675                 WARN_ON(1);
1676         /*
1677          * set_bit and clear bit hooks normally require _irqsave/restore
1678          * but in this case, we are only testing for the DELALLOC
1679          * bit, which is only set or cleared with irqs on
1680          */
1681         if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1682                 struct btrfs_root *root = BTRFS_I(inode)->root;
1683                 u64 len = state->end + 1 - state->start;
1684                 bool do_list = !btrfs_is_free_space_inode(inode);
1685
1686                 if (*bits & EXTENT_FIRST_DELALLOC) {
1687                         *bits &= ~EXTENT_FIRST_DELALLOC;
1688                 } else {
1689                         spin_lock(&BTRFS_I(inode)->lock);
1690                         BTRFS_I(inode)->outstanding_extents++;
1691                         spin_unlock(&BTRFS_I(inode)->lock);
1692                 }
1693
1694                 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1695                                      root->fs_info->delalloc_batch);
1696                 spin_lock(&BTRFS_I(inode)->lock);
1697                 BTRFS_I(inode)->delalloc_bytes += len;
1698                 if (*bits & EXTENT_DEFRAG)
1699                         BTRFS_I(inode)->defrag_bytes += len;
1700                 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1701                                          &BTRFS_I(inode)->runtime_flags))
1702                         btrfs_add_delalloc_inodes(root, inode);
1703                 spin_unlock(&BTRFS_I(inode)->lock);
1704         }
1705 }
1706
1707 /*
1708  * extent_io.c clear_bit_hook, see set_bit_hook for why
1709  */
1710 static void btrfs_clear_bit_hook(struct inode *inode,
1711                                  struct extent_state *state,
1712                                  unsigned *bits)
1713 {
1714         u64 len = state->end + 1 - state->start;
1715         u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1,
1716                                     BTRFS_MAX_EXTENT_SIZE);
1717
1718         spin_lock(&BTRFS_I(inode)->lock);
1719         if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1720                 BTRFS_I(inode)->defrag_bytes -= len;
1721         spin_unlock(&BTRFS_I(inode)->lock);
1722
1723         /*
1724          * set_bit and clear bit hooks normally require _irqsave/restore
1725          * but in this case, we are only testing for the DELALLOC
1726          * bit, which is only set or cleared with irqs on
1727          */
1728         if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1729                 struct btrfs_root *root = BTRFS_I(inode)->root;
1730                 bool do_list = !btrfs_is_free_space_inode(inode);
1731
1732                 if (*bits & EXTENT_FIRST_DELALLOC) {
1733                         *bits &= ~EXTENT_FIRST_DELALLOC;
1734                 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1735                         spin_lock(&BTRFS_I(inode)->lock);
1736                         BTRFS_I(inode)->outstanding_extents -= num_extents;
1737                         spin_unlock(&BTRFS_I(inode)->lock);
1738                 }
1739
1740                 /*
1741                  * We don't reserve metadata space for space cache inodes so we
1742                  * don't need to call dellalloc_release_metadata if there is an
1743                  * error.
1744                  */
1745                 if (*bits & EXTENT_DO_ACCOUNTING &&
1746                     root != root->fs_info->tree_root)
1747                         btrfs_delalloc_release_metadata(inode, len);
1748
1749                 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1750                     && do_list && !(state->state & EXTENT_NORESERVE))
1751                         btrfs_free_reserved_data_space(inode, len);
1752
1753                 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1754                                      root->fs_info->delalloc_batch);
1755                 spin_lock(&BTRFS_I(inode)->lock);
1756                 BTRFS_I(inode)->delalloc_bytes -= len;
1757                 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1758                     test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1759                              &BTRFS_I(inode)->runtime_flags))
1760                         btrfs_del_delalloc_inode(root, inode);
1761                 spin_unlock(&BTRFS_I(inode)->lock);
1762         }
1763 }
1764
1765 /*
1766  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1767  * we don't create bios that span stripes or chunks
1768  */
1769 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
1770                          size_t size, struct bio *bio,
1771                          unsigned long bio_flags)
1772 {
1773         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1774         u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1775         u64 length = 0;
1776         u64 map_length;
1777         int ret;
1778
1779         if (bio_flags & EXTENT_BIO_COMPRESSED)
1780                 return 0;
1781
1782         length = bio->bi_iter.bi_size;
1783         map_length = length;
1784         ret = btrfs_map_block(root->fs_info, rw, logical,
1785                               &map_length, NULL, 0);
1786         /* Will always return 0 with map_multi == NULL */
1787         BUG_ON(ret < 0);
1788         if (map_length < length + size)
1789                 return 1;
1790         return 0;
1791 }
1792
1793 /*
1794  * in order to insert checksums into the metadata in large chunks,
1795  * we wait until bio submission time.   All the pages in the bio are
1796  * checksummed and sums are attached onto the ordered extent record.
1797  *
1798  * At IO completion time the cums attached on the ordered extent record
1799  * are inserted into the btree
1800  */
1801 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1802                                     struct bio *bio, int mirror_num,
1803                                     unsigned long bio_flags,
1804                                     u64 bio_offset)
1805 {
1806         struct btrfs_root *root = BTRFS_I(inode)->root;
1807         int ret = 0;
1808
1809         ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1810         BUG_ON(ret); /* -ENOMEM */
1811         return 0;
1812 }
1813
1814 /*
1815  * in order to insert checksums into the metadata in large chunks,
1816  * we wait until bio submission time.   All the pages in the bio are
1817  * checksummed and sums are attached onto the ordered extent record.
1818  *
1819  * At IO completion time the cums attached on the ordered extent record
1820  * are inserted into the btree
1821  */
1822 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1823                           int mirror_num, unsigned long bio_flags,
1824                           u64 bio_offset)
1825 {
1826         struct btrfs_root *root = BTRFS_I(inode)->root;
1827         int ret;
1828
1829         ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1830         if (ret)
1831                 bio_endio(bio, ret);
1832         return ret;
1833 }
1834
1835 /*
1836  * extent_io.c submission hook. This does the right thing for csum calculation
1837  * on write, or reading the csums from the tree before a read
1838  */
1839 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1840                           int mirror_num, unsigned long bio_flags,
1841                           u64 bio_offset)
1842 {
1843         struct btrfs_root *root = BTRFS_I(inode)->root;
1844         int ret = 0;
1845         int skip_sum;
1846         int metadata = 0;
1847         int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1848
1849         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1850
1851         if (btrfs_is_free_space_inode(inode))
1852                 metadata = 2;
1853
1854         if (!(rw & REQ_WRITE)) {
1855                 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1856                 if (ret)
1857                         goto out;
1858
1859                 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1860                         ret = btrfs_submit_compressed_read(inode, bio,
1861                                                            mirror_num,
1862                                                            bio_flags);
1863                         goto out;
1864                 } else if (!skip_sum) {
1865                         ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1866                         if (ret)
1867                                 goto out;
1868                 }
1869                 goto mapit;
1870         } else if (async && !skip_sum) {
1871                 /* csum items have already been cloned */
1872                 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1873                         goto mapit;
1874                 /* we're doing a write, do the async checksumming */
1875                 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1876                                    inode, rw, bio, mirror_num,
1877                                    bio_flags, bio_offset,
1878                                    __btrfs_submit_bio_start,
1879                                    __btrfs_submit_bio_done);
1880                 goto out;
1881         } else if (!skip_sum) {
1882                 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1883                 if (ret)
1884                         goto out;
1885         }
1886
1887 mapit:
1888         ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1889
1890 out:
1891         if (ret < 0)
1892                 bio_endio(bio, ret);
1893         return ret;
1894 }
1895
1896 /*
1897  * given a list of ordered sums record them in the inode.  This happens
1898  * at IO completion time based on sums calculated at bio submission time.
1899  */
1900 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1901                              struct inode *inode, u64 file_offset,
1902                              struct list_head *list)
1903 {
1904         struct btrfs_ordered_sum *sum;
1905
1906         list_for_each_entry(sum, list, list) {
1907                 trans->adding_csums = 1;
1908                 btrfs_csum_file_blocks(trans,
1909                        BTRFS_I(inode)->root->fs_info->csum_root, sum);
1910                 trans->adding_csums = 0;
1911         }
1912         return 0;
1913 }
1914
1915 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1916                               struct extent_state **cached_state)
1917 {
1918         WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
1919         return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1920                                    cached_state, GFP_NOFS);
1921 }
1922
1923 /* see btrfs_writepage_start_hook for details on why this is required */
1924 struct btrfs_writepage_fixup {
1925         struct page *page;
1926         struct btrfs_work work;
1927 };
1928
1929 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1930 {
1931         struct btrfs_writepage_fixup *fixup;
1932         struct btrfs_ordered_extent *ordered;
1933         struct extent_state *cached_state = NULL;
1934         struct page *page;
1935         struct inode *inode;
1936         u64 page_start;
1937         u64 page_end;
1938         int ret;
1939
1940         fixup = container_of(work, struct btrfs_writepage_fixup, work);
1941         page = fixup->page;
1942 again:
1943         lock_page(page);
1944         if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1945                 ClearPageChecked(page);
1946                 goto out_page;
1947         }
1948
1949         inode = page->mapping->host;
1950         page_start = page_offset(page);
1951         page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1952
1953         lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1954                          &cached_state);
1955
1956         /* already ordered? We're done */
1957         if (PagePrivate2(page))
1958                 goto out;
1959
1960         ordered = btrfs_lookup_ordered_extent(inode, page_start);
1961         if (ordered) {
1962                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1963                                      page_end, &cached_state, GFP_NOFS);
1964                 unlock_page(page);
1965                 btrfs_start_ordered_extent(inode, ordered, 1);
1966                 btrfs_put_ordered_extent(ordered);
1967                 goto again;
1968         }
1969
1970         ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1971         if (ret) {
1972                 mapping_set_error(page->mapping, ret);
1973                 end_extent_writepage(page, ret, page_start, page_end);
1974                 ClearPageChecked(page);
1975                 goto out;
1976          }
1977
1978         btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1979         ClearPageChecked(page);
1980         set_page_dirty(page);
1981 out:
1982         unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1983                              &cached_state, GFP_NOFS);
1984 out_page:
1985         unlock_page(page);
1986         page_cache_release(page);
1987         kfree(fixup);
1988 }
1989
1990 /*
1991  * There are a few paths in the higher layers of the kernel that directly
1992  * set the page dirty bit without asking the filesystem if it is a
1993  * good idea.  This causes problems because we want to make sure COW
1994  * properly happens and the data=ordered rules are followed.
1995  *
1996  * In our case any range that doesn't have the ORDERED bit set
1997  * hasn't been properly setup for IO.  We kick off an async process
1998  * to fix it up.  The async helper will wait for ordered extents, set
1999  * the delalloc bit and make it safe to write the page.
2000  */
2001 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
2002 {
2003         struct inode *inode = page->mapping->host;
2004         struct btrfs_writepage_fixup *fixup;
2005         struct btrfs_root *root = BTRFS_I(inode)->root;
2006
2007         /* this page is properly in the ordered list */
2008         if (TestClearPagePrivate2(page))
2009                 return 0;
2010
2011         if (PageChecked(page))
2012                 return -EAGAIN;
2013
2014         fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2015         if (!fixup)
2016                 return -EAGAIN;
2017
2018         SetPageChecked(page);
2019         page_cache_get(page);
2020         btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2021                         btrfs_writepage_fixup_worker, NULL, NULL);
2022         fixup->page = page;
2023         btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
2024         return -EBUSY;
2025 }
2026
2027 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2028                                        struct inode *inode, u64 file_pos,
2029                                        u64 disk_bytenr, u64 disk_num_bytes,
2030                                        u64 num_bytes, u64 ram_bytes,
2031                                        u8 compression, u8 encryption,
2032                                        u16 other_encoding, int extent_type)
2033 {
2034         struct btrfs_root *root = BTRFS_I(inode)->root;
2035         struct btrfs_file_extent_item *fi;
2036         struct btrfs_path *path;
2037         struct extent_buffer *leaf;
2038         struct btrfs_key ins;
2039         int extent_inserted = 0;
2040         int ret;
2041
2042         path = btrfs_alloc_path();
2043         if (!path)
2044                 return -ENOMEM;
2045
2046         /*
2047          * we may be replacing one extent in the tree with another.
2048          * The new extent is pinned in the extent map, and we don't want
2049          * to drop it from the cache until it is completely in the btree.
2050          *
2051          * So, tell btrfs_drop_extents to leave this extent in the cache.
2052          * the caller is expected to unpin it and allow it to be merged
2053          * with the others.
2054          */
2055         ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2056                                    file_pos + num_bytes, NULL, 0,
2057                                    1, sizeof(*fi), &extent_inserted);
2058         if (ret)
2059                 goto out;
2060
2061         if (!extent_inserted) {
2062                 ins.objectid = btrfs_ino(inode);
2063                 ins.offset = file_pos;
2064                 ins.type = BTRFS_EXTENT_DATA_KEY;
2065
2066                 path->leave_spinning = 1;
2067                 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2068                                               sizeof(*fi));
2069                 if (ret)
2070                         goto out;
2071         }
2072         leaf = path->nodes[0];
2073         fi = btrfs_item_ptr(leaf, path->slots[0],
2074                             struct btrfs_file_extent_item);
2075         btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2076         btrfs_set_file_extent_type(leaf, fi, extent_type);
2077         btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2078         btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2079         btrfs_set_file_extent_offset(leaf, fi, 0);
2080         btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2081         btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2082         btrfs_set_file_extent_compression(leaf, fi, compression);
2083         btrfs_set_file_extent_encryption(leaf, fi, encryption);
2084         btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2085
2086         btrfs_mark_buffer_dirty(leaf);
2087         btrfs_release_path(path);
2088
2089         inode_add_bytes(inode, num_bytes);
2090
2091         ins.objectid = disk_bytenr;
2092         ins.offset = disk_num_bytes;
2093         ins.type = BTRFS_EXTENT_ITEM_KEY;
2094         ret = btrfs_alloc_reserved_file_extent(trans, root,
2095                                         root->root_key.objectid,
2096                                         btrfs_ino(inode), file_pos, &ins);
2097 out:
2098         btrfs_free_path(path);
2099
2100         return ret;
2101 }
2102
2103 /* snapshot-aware defrag */
2104 struct sa_defrag_extent_backref {
2105         struct rb_node node;
2106         struct old_sa_defrag_extent *old;
2107         u64 root_id;
2108         u64 inum;
2109         u64 file_pos;
2110         u64 extent_offset;
2111         u64 num_bytes;
2112         u64 generation;
2113 };
2114
2115 struct old_sa_defrag_extent {
2116         struct list_head list;
2117         struct new_sa_defrag_extent *new;
2118
2119         u64 extent_offset;
2120         u64 bytenr;
2121         u64 offset;
2122         u64 len;
2123         int count;
2124 };
2125
2126 struct new_sa_defrag_extent {
2127         struct rb_root root;
2128         struct list_head head;
2129         struct btrfs_path *path;
2130         struct inode *inode;
2131         u64 file_pos;
2132         u64 len;
2133         u64 bytenr;
2134         u64 disk_len;
2135         u8 compress_type;
2136 };
2137
2138 static int backref_comp(struct sa_defrag_extent_backref *b1,
2139                         struct sa_defrag_extent_backref *b2)
2140 {
2141         if (b1->root_id < b2->root_id)
2142                 return -1;
2143         else if (b1->root_id > b2->root_id)
2144                 return 1;
2145
2146         if (b1->inum < b2->inum)
2147                 return -1;
2148         else if (b1->inum > b2->inum)
2149                 return 1;
2150
2151         if (b1->file_pos < b2->file_pos)
2152                 return -1;
2153         else if (b1->file_pos > b2->file_pos)
2154                 return 1;
2155
2156         /*
2157          * [------------------------------] ===> (a range of space)
2158          *     |<--->|   |<---->| =============> (fs/file tree A)
2159          * |<---------------------------->| ===> (fs/file tree B)
2160          *
2161          * A range of space can refer to two file extents in one tree while
2162          * refer to only one file extent in another tree.
2163          *
2164          * So we may process a disk offset more than one time(two extents in A)
2165          * and locate at the same extent(one extent in B), then insert two same
2166          * backrefs(both refer to the extent in B).
2167          */
2168         return 0;
2169 }
2170
2171 static void backref_insert(struct rb_root *root,
2172                            struct sa_defrag_extent_backref *backref)
2173 {
2174         struct rb_node **p = &root->rb_node;
2175         struct rb_node *parent = NULL;
2176         struct sa_defrag_extent_backref *entry;
2177         int ret;
2178
2179         while (*p) {
2180                 parent = *p;
2181                 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2182
2183                 ret = backref_comp(backref, entry);
2184                 if (ret < 0)
2185                         p = &(*p)->rb_left;
2186                 else
2187                         p = &(*p)->rb_right;
2188         }
2189
2190         rb_link_node(&backref->node, parent, p);
2191         rb_insert_color(&backref->node, root);
2192 }
2193
2194 /*
2195  * Note the backref might has changed, and in this case we just return 0.
2196  */
2197 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2198                                        void *ctx)
2199 {
2200         struct btrfs_file_extent_item *extent;
2201         struct btrfs_fs_info *fs_info;
2202         struct old_sa_defrag_extent *old = ctx;
2203         struct new_sa_defrag_extent *new = old->new;
2204         struct btrfs_path *path = new->path;
2205         struct btrfs_key key;
2206         struct btrfs_root *root;
2207         struct sa_defrag_extent_backref *backref;
2208         struct extent_buffer *leaf;
2209         struct inode *inode = new->inode;
2210         int slot;
2211         int ret;
2212         u64 extent_offset;
2213         u64 num_bytes;
2214
2215         if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2216             inum == btrfs_ino(inode))
2217                 return 0;
2218
2219         key.objectid = root_id;
2220         key.type = BTRFS_ROOT_ITEM_KEY;
2221         key.offset = (u64)-1;
2222
2223         fs_info = BTRFS_I(inode)->root->fs_info;
2224         root = btrfs_read_fs_root_no_name(fs_info, &key);
2225         if (IS_ERR(root)) {
2226                 if (PTR_ERR(root) == -ENOENT)
2227                         return 0;
2228                 WARN_ON(1);
2229                 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2230                          inum, offset, root_id);
2231                 return PTR_ERR(root);
2232         }
2233
2234         key.objectid = inum;
2235         key.type = BTRFS_EXTENT_DATA_KEY;
2236         if (offset > (u64)-1 << 32)
2237                 key.offset = 0;
2238         else
2239                 key.offset = offset;
2240
2241         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2242         if (WARN_ON(ret < 0))
2243                 return ret;
2244         ret = 0;
2245
2246         while (1) {
2247                 cond_resched();
2248
2249                 leaf = path->nodes[0];
2250                 slot = path->slots[0];
2251
2252                 if (slot >= btrfs_header_nritems(leaf)) {
2253                         ret = btrfs_next_leaf(root, path);
2254                         if (ret < 0) {
2255                                 goto out;
2256                         } else if (ret > 0) {
2257                                 ret = 0;
2258                                 goto out;
2259                         }
2260                         continue;
2261                 }
2262
2263                 path->slots[0]++;
2264
2265                 btrfs_item_key_to_cpu(leaf, &key, slot);
2266
2267                 if (key.objectid > inum)
2268                         goto out;
2269
2270                 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2271                         continue;
2272
2273                 extent = btrfs_item_ptr(leaf, slot,
2274                                         struct btrfs_file_extent_item);
2275
2276                 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2277                         continue;
2278
2279                 /*
2280                  * 'offset' refers to the exact key.offset,
2281                  * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2282                  * (key.offset - extent_offset).
2283                  */
2284                 if (key.offset != offset)
2285                         continue;
2286
2287                 extent_offset = btrfs_file_extent_offset(leaf, extent);
2288                 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2289
2290                 if (extent_offset >= old->extent_offset + old->offset +
2291                     old->len || extent_offset + num_bytes <=
2292                     old->extent_offset + old->offset)
2293                         continue;
2294                 break;
2295         }
2296
2297         backref = kmalloc(sizeof(*backref), GFP_NOFS);
2298         if (!backref) {
2299                 ret = -ENOENT;
2300                 goto out;
2301         }
2302
2303         backref->root_id = root_id;
2304         backref->inum = inum;
2305         backref->file_pos = offset;
2306         backref->num_bytes = num_bytes;
2307         backref->extent_offset = extent_offset;
2308         backref->generation = btrfs_file_extent_generation(leaf, extent);
2309         backref->old = old;
2310         backref_insert(&new->root, backref);
2311         old->count++;
2312 out:
2313         btrfs_release_path(path);
2314         WARN_ON(ret);
2315         return ret;
2316 }
2317
2318 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2319                                    struct new_sa_defrag_extent *new)
2320 {
2321         struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2322         struct old_sa_defrag_extent *old, *tmp;
2323         int ret;
2324
2325         new->path = path;
2326
2327         list_for_each_entry_safe(old, tmp, &new->head, list) {
2328                 ret = iterate_inodes_from_logical(old->bytenr +
2329                                                   old->extent_offset, fs_info,
2330                                                   path, record_one_backref,
2331                                                   old);
2332                 if (ret < 0 && ret != -ENOENT)
2333                         return false;
2334
2335                 /* no backref to be processed for this extent */
2336                 if (!old->count) {
2337                         list_del(&old->list);
2338                         kfree(old);
2339                 }
2340         }
2341
2342         if (list_empty(&new->head))
2343                 return false;
2344
2345         return true;
2346 }
2347
2348 static int relink_is_mergable(struct extent_buffer *leaf,
2349                               struct btrfs_file_extent_item *fi,
2350                               struct new_sa_defrag_extent *new)
2351 {
2352         if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2353                 return 0;
2354
2355         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2356                 return 0;
2357
2358         if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2359                 return 0;
2360
2361         if (btrfs_file_extent_encryption(leaf, fi) ||
2362             btrfs_file_extent_other_encoding(leaf, fi))
2363                 return 0;
2364
2365         return 1;
2366 }
2367
2368 /*
2369  * Note the backref might has changed, and in this case we just return 0.
2370  */
2371 static noinline int relink_extent_backref(struct btrfs_path *path,
2372                                  struct sa_defrag_extent_backref *prev,
2373                                  struct sa_defrag_extent_backref *backref)
2374 {
2375         struct btrfs_file_extent_item *extent;
2376         struct btrfs_file_extent_item *item;
2377         struct btrfs_ordered_extent *ordered;
2378         struct btrfs_trans_handle *trans;
2379         struct btrfs_fs_info *fs_info;
2380         struct btrfs_root *root;
2381         struct btrfs_key key;
2382         struct extent_buffer *leaf;
2383         struct old_sa_defrag_extent *old = backref->old;
2384         struct new_sa_defrag_extent *new = old->new;
2385         struct inode *src_inode = new->inode;
2386         struct inode *inode;
2387         struct extent_state *cached = NULL;
2388         int ret = 0;
2389         u64 start;
2390         u64 len;
2391         u64 lock_start;
2392         u64 lock_end;
2393         bool merge = false;
2394         int index;
2395
2396         if (prev && prev->root_id == backref->root_id &&
2397             prev->inum == backref->inum &&
2398             prev->file_pos + prev->num_bytes == backref->file_pos)
2399                 merge = true;
2400
2401         /* step 1: get root */
2402         key.objectid = backref->root_id;
2403         key.type = BTRFS_ROOT_ITEM_KEY;
2404         key.offset = (u64)-1;
2405
2406         fs_info = BTRFS_I(src_inode)->root->fs_info;
2407         index = srcu_read_lock(&fs_info->subvol_srcu);
2408
2409         root = btrfs_read_fs_root_no_name(fs_info, &key);
2410         if (IS_ERR(root)) {
2411                 srcu_read_unlock(&fs_info->subvol_srcu, index);
2412                 if (PTR_ERR(root) == -ENOENT)
2413                         return 0;
2414                 return PTR_ERR(root);
2415         }
2416
2417         if (btrfs_root_readonly(root)) {
2418                 srcu_read_unlock(&fs_info->subvol_srcu, index);
2419                 return 0;
2420         }
2421
2422         /* step 2: get inode */
2423         key.objectid = backref->inum;
2424         key.type = BTRFS_INODE_ITEM_KEY;
2425         key.offset = 0;
2426
2427         inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2428         if (IS_ERR(inode)) {
2429                 srcu_read_unlock(&fs_info->subvol_srcu, index);
2430                 return 0;
2431         }
2432
2433         srcu_read_unlock(&fs_info->subvol_srcu, index);
2434
2435         /* step 3: relink backref */
2436         lock_start = backref->file_pos;
2437         lock_end = backref->file_pos + backref->num_bytes - 1;
2438         lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2439                          0, &cached);
2440
2441         ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2442         if (ordered) {
2443                 btrfs_put_ordered_extent(ordered);
2444                 goto out_unlock;
2445         }
2446
2447         trans = btrfs_join_transaction(root);
2448         if (IS_ERR(trans)) {
2449                 ret = PTR_ERR(trans);
2450                 goto out_unlock;
2451         }
2452
2453         key.objectid = backref->inum;
2454         key.type = BTRFS_EXTENT_DATA_KEY;
2455         key.offset = backref->file_pos;
2456
2457         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2458         if (ret < 0) {
2459                 goto out_free_path;
2460         } else if (ret > 0) {
2461                 ret = 0;
2462                 goto out_free_path;
2463         }
2464
2465         extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2466                                 struct btrfs_file_extent_item);
2467
2468         if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2469             backref->generation)
2470                 goto out_free_path;
2471
2472         btrfs_release_path(path);
2473
2474         start = backref->file_pos;
2475         if (backref->extent_offset < old->extent_offset + old->offset)
2476                 start += old->extent_offset + old->offset -
2477                          backref->extent_offset;
2478
2479         len = min(backref->extent_offset + backref->num_bytes,
2480                   old->extent_offset + old->offset + old->len);
2481         len -= max(backref->extent_offset, old->extent_offset + old->offset);
2482
2483         ret = btrfs_drop_extents(trans, root, inode, start,
2484                                  start + len, 1);
2485         if (ret)
2486                 goto out_free_path;
2487 again:
2488         key.objectid = btrfs_ino(inode);
2489         key.type = BTRFS_EXTENT_DATA_KEY;
2490         key.offset = start;
2491
2492         path->leave_spinning = 1;
2493         if (merge) {
2494                 struct btrfs_file_extent_item *fi;
2495                 u64 extent_len;
2496                 struct btrfs_key found_key;
2497
2498                 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2499                 if (ret < 0)
2500                         goto out_free_path;
2501
2502                 path->slots[0]--;
2503                 leaf = path->nodes[0];
2504                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2505
2506                 fi = btrfs_item_ptr(leaf, path->slots[0],
2507                                     struct btrfs_file_extent_item);
2508                 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2509
2510                 if (extent_len + found_key.offset == start &&
2511                     relink_is_mergable(leaf, fi, new)) {
2512                         btrfs_set_file_extent_num_bytes(leaf, fi,
2513                                                         extent_len + len);
2514                         btrfs_mark_buffer_dirty(leaf);
2515                         inode_add_bytes(inode, len);
2516
2517                         ret = 1;
2518                         goto out_free_path;
2519                 } else {
2520                         merge = false;
2521                         btrfs_release_path(path);
2522                         goto again;
2523                 }
2524         }
2525
2526         ret = btrfs_insert_empty_item(trans, root, path, &key,
2527                                         sizeof(*extent));
2528         if (ret) {
2529                 btrfs_abort_transaction(trans, root, ret);
2530                 goto out_free_path;
2531         }
2532
2533         leaf = path->nodes[0];
2534         item = btrfs_item_ptr(leaf, path->slots[0],
2535                                 struct btrfs_file_extent_item);
2536         btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2537         btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2538         btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2539         btrfs_set_file_extent_num_bytes(leaf, item, len);
2540         btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2541         btrfs_set_file_extent_generation(leaf, item, trans->transid);
2542         btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2543         btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2544         btrfs_set_file_extent_encryption(leaf, item, 0);
2545         btrfs_set_file_extent_other_encoding(leaf, item, 0);
2546
2547         btrfs_mark_buffer_dirty(leaf);
2548         inode_add_bytes(inode, len);
2549         btrfs_release_path(path);
2550
2551         ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2552                         new->disk_len, 0,
2553                         backref->root_id, backref->inum,
2554                         new->file_pos, 0);      /* start - extent_offset */
2555         if (ret) {
2556                 btrfs_abort_transaction(trans, root, ret);
2557                 goto out_free_path;
2558         }
2559
2560         ret = 1;
2561 out_free_path:
2562         btrfs_release_path(path);
2563         path->leave_spinning = 0;
2564         btrfs_end_transaction(trans, root);
2565 out_unlock:
2566         unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2567                              &cached, GFP_NOFS);
2568         iput(inode);
2569         return ret;
2570 }
2571
2572 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2573 {
2574         struct old_sa_defrag_extent *old, *tmp;
2575
2576         if (!new)
2577                 return;
2578
2579         list_for_each_entry_safe(old, tmp, &new->head, list) {
2580                 list_del(&old->list);
2581                 kfree(old);
2582         }
2583         kfree(new);
2584 }
2585
2586 static void relink_file_extents(struct new_sa_defrag_extent *new)
2587 {
2588         struct btrfs_path *path;
2589         struct sa_defrag_extent_backref *backref;
2590         struct sa_defrag_extent_backref *prev = NULL;
2591         struct inode *inode;
2592         struct btrfs_root *root;
2593         struct rb_node *node;
2594         int ret;
2595
2596         inode = new->inode;
2597         root = BTRFS_I(inode)->root;
2598
2599         path = btrfs_alloc_path();
2600         if (!path)
2601                 return;
2602
2603         if (!record_extent_backrefs(path, new)) {
2604                 btrfs_free_path(path);
2605                 goto out;
2606         }
2607         btrfs_release_path(path);
2608
2609         while (1) {
2610                 node = rb_first(&new->root);
2611                 if (!node)
2612                         break;
2613                 rb_erase(node, &new->root);
2614
2615                 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2616
2617                 ret = relink_extent_backref(path, prev, backref);
2618                 WARN_ON(ret < 0);
2619
2620                 kfree(prev);
2621
2622                 if (ret == 1)
2623                         prev = backref;
2624                 else
2625                         prev = NULL;
2626                 cond_resched();
2627         }
2628         kfree(prev);
2629
2630         btrfs_free_path(path);
2631 out:
2632         free_sa_defrag_extent(new);
2633
2634         atomic_dec(&root->fs_info->defrag_running);
2635         wake_up(&root->fs_info->transaction_wait);
2636 }
2637
2638 static struct new_sa_defrag_extent *
2639 record_old_file_extents(struct inode *inode,
2640                         struct btrfs_ordered_extent *ordered)
2641 {
2642         struct btrfs_root *root = BTRFS_I(inode)->root;
2643         struct btrfs_path *path;
2644         struct btrfs_key key;
2645         struct old_sa_defrag_extent *old;
2646         struct new_sa_defrag_extent *new;
2647         int ret;
2648
2649         new = kmalloc(sizeof(*new), GFP_NOFS);
2650         if (!new)
2651                 return NULL;
2652
2653         new->inode = inode;
2654         new->file_pos = ordered->file_offset;
2655         new->len = ordered->len;
2656         new->bytenr = ordered->start;
2657         new->disk_len = ordered->disk_len;
2658         new->compress_type = ordered->compress_type;
2659         new->root = RB_ROOT;
2660         INIT_LIST_HEAD(&new->head);
2661
2662         path = btrfs_alloc_path();
2663         if (!path)
2664                 goto out_kfree;
2665
2666         key.objectid = btrfs_ino(inode);
2667         key.type = BTRFS_EXTENT_DATA_KEY;
2668         key.offset = new->file_pos;
2669
2670         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2671         if (ret < 0)
2672                 goto out_free_path;
2673         if (ret > 0 && path->slots[0] > 0)
2674                 path->slots[0]--;
2675
2676         /* find out all the old extents for the file range */
2677         while (1) {
2678                 struct btrfs_file_extent_item *extent;
2679                 struct extent_buffer *l;
2680                 int slot;
2681                 u64 num_bytes;
2682                 u64 offset;
2683                 u64 end;
2684                 u64 disk_bytenr;
2685                 u64 extent_offset;
2686
2687                 l = path->nodes[0];
2688                 slot = path->slots[0];
2689
2690                 if (slot >= btrfs_header_nritems(l)) {
2691                         ret = btrfs_next_leaf(root, path);
2692                         if (ret < 0)
2693                                 goto out_free_path;
2694                         else if (ret > 0)
2695                                 break;
2696                         continue;
2697                 }
2698
2699                 btrfs_item_key_to_cpu(l, &key, slot);
2700
2701                 if (key.objectid != btrfs_ino(inode))
2702                         break;
2703                 if (key.type != BTRFS_EXTENT_DATA_KEY)
2704                         break;
2705                 if (key.offset >= new->file_pos + new->len)
2706                         break;
2707
2708                 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2709
2710                 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2711                 if (key.offset + num_bytes < new->file_pos)
2712                         goto next;
2713
2714                 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2715                 if (!disk_bytenr)
2716                         goto next;
2717
2718                 extent_offset = btrfs_file_extent_offset(l, extent);
2719
2720                 old = kmalloc(sizeof(*old), GFP_NOFS);
2721                 if (!old)
2722                         goto out_free_path;
2723
2724                 offset = max(new->file_pos, key.offset);
2725                 end = min(new->file_pos + new->len, key.offset + num_bytes);
2726
2727                 old->bytenr = disk_bytenr;
2728                 old->extent_offset = extent_offset;
2729                 old->offset = offset - key.offset;
2730                 old->len = end - offset;
2731                 old->new = new;
2732                 old->count = 0;
2733                 list_add_tail(&old->list, &new->head);
2734 next:
2735                 path->slots[0]++;
2736                 cond_resched();
2737         }
2738
2739         btrfs_free_path(path);
2740         atomic_inc(&root->fs_info->defrag_running);
2741
2742         return new;
2743
2744 out_free_path:
2745         btrfs_free_path(path);
2746 out_kfree:
2747         free_sa_defrag_extent(new);
2748         return NULL;
2749 }
2750
2751 static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2752                                          u64 start, u64 len)
2753 {
2754         struct btrfs_block_group_cache *cache;
2755
2756         cache = btrfs_lookup_block_group(root->fs_info, start);
2757         ASSERT(cache);
2758
2759         spin_lock(&cache->lock);
2760         cache->delalloc_bytes -= len;
2761         spin_unlock(&cache->lock);
2762
2763         btrfs_put_block_group(cache);
2764 }
2765
2766 /* as ordered data IO finishes, this gets called so we can finish
2767  * an ordered extent if the range of bytes in the file it covers are
2768  * fully written.
2769  */
2770 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2771 {
2772         struct inode *inode = ordered_extent->inode;
2773         struct btrfs_root *root = BTRFS_I(inode)->root;
2774         struct btrfs_trans_handle *trans = NULL;
2775         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2776         struct extent_state *cached_state = NULL;
2777         struct new_sa_defrag_extent *new = NULL;
2778         int compress_type = 0;
2779         int ret = 0;
2780         u64 logical_len = ordered_extent->len;
2781         bool nolock;
2782         bool truncated = false;
2783
2784         nolock = btrfs_is_free_space_inode(inode);
2785
2786         if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2787                 ret = -EIO;
2788                 goto out;
2789         }
2790
2791         btrfs_free_io_failure_record(inode, ordered_extent->file_offset,
2792                                      ordered_extent->file_offset +
2793                                      ordered_extent->len - 1);
2794
2795         if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2796                 truncated = true;
2797                 logical_len = ordered_extent->truncated_len;
2798                 /* Truncated the entire extent, don't bother adding */
2799                 if (!logical_len)
2800                         goto out;
2801         }
2802
2803         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2804                 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2805                 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2806                 if (nolock)
2807                         trans = btrfs_join_transaction_nolock(root);
2808                 else
2809                         trans = btrfs_join_transaction(root);
2810                 if (IS_ERR(trans)) {
2811                         ret = PTR_ERR(trans);
2812                         trans = NULL;
2813                         goto out;
2814                 }
2815                 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2816                 ret = btrfs_update_inode_fallback(trans, root, inode);
2817                 if (ret) /* -ENOMEM or corruption */
2818                         btrfs_abort_transaction(trans, root, ret);
2819                 goto out;
2820         }
2821
2822         lock_extent_bits(io_tree, ordered_extent->file_offset,
2823                          ordered_extent->file_offset + ordered_extent->len - 1,
2824                          0, &cached_state);
2825
2826         ret = test_range_bit(io_tree, ordered_extent->file_offset,
2827                         ordered_extent->file_offset + ordered_extent->len - 1,
2828                         EXTENT_DEFRAG, 1, cached_state);
2829         if (ret) {
2830                 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2831                 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
2832                         /* the inode is shared */
2833                         new = record_old_file_extents(inode, ordered_extent);
2834
2835                 clear_extent_bit(io_tree, ordered_extent->file_offset,
2836                         ordered_extent->file_offset + ordered_extent->len - 1,
2837                         EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2838         }
2839
2840         if (nolock)
2841                 trans = btrfs_join_transaction_nolock(root);
2842         else
2843                 trans = btrfs_join_transaction(root);
2844         if (IS_ERR(trans)) {
2845                 ret = PTR_ERR(trans);
2846                 trans = NULL;
2847                 goto out_unlock;
2848         }
2849
2850         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2851
2852         if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2853                 compress_type = ordered_extent->compress_type;
2854         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2855                 BUG_ON(compress_type);
2856                 ret = btrfs_mark_extent_written(trans, inode,
2857                                                 ordered_extent->file_offset,
2858                                                 ordered_extent->file_offset +
2859                                                 logical_len);
2860         } else {
2861                 BUG_ON(root == root->fs_info->tree_root);
2862                 ret = insert_reserved_file_extent(trans, inode,
2863                                                 ordered_extent->file_offset,
2864                                                 ordered_extent->start,
2865                                                 ordered_extent->disk_len,
2866                                                 logical_len, logical_len,
2867                                                 compress_type, 0, 0,
2868                                                 BTRFS_FILE_EXTENT_REG);
2869                 if (!ret)
2870                         btrfs_release_delalloc_bytes(root,
2871                                                      ordered_extent->start,
2872                                                      ordered_extent->disk_len);
2873         }
2874         unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2875                            ordered_extent->file_offset, ordered_extent->len,
2876                            trans->transid);
2877         if (ret < 0) {
2878                 btrfs_abort_transaction(trans, root, ret);
2879                 goto out_unlock;
2880         }
2881
2882         add_pending_csums(trans, inode, ordered_extent->file_offset,
2883                           &ordered_extent->list);
2884
2885         btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2886         ret = btrfs_update_inode_fallback(trans, root, inode);
2887         if (ret) { /* -ENOMEM or corruption */
2888                 btrfs_abort_transaction(trans, root, ret);
2889                 goto out_unlock;
2890         }
2891         ret = 0;
2892 out_unlock:
2893         unlock_extent_cached(io_tree, ordered_extent->file_offset,
2894                              ordered_extent->file_offset +
2895                              ordered_extent->len - 1, &cached_state, GFP_NOFS);
2896 out:
2897         if (root != root->fs_info->tree_root)
2898                 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
2899         if (trans)
2900                 btrfs_end_transaction(trans, root);
2901
2902         if (ret || truncated) {
2903                 u64 start, end;
2904
2905                 if (truncated)
2906                         start = ordered_extent->file_offset + logical_len;
2907                 else
2908                         start = ordered_extent->file_offset;
2909                 end = ordered_extent->file_offset + ordered_extent->len - 1;
2910                 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2911
2912                 /* Drop the cache for the part of the extent we didn't write. */
2913                 btrfs_drop_extent_cache(inode, start, end, 0);
2914
2915                 /*
2916                  * If the ordered extent had an IOERR or something else went
2917                  * wrong we need to return the space for this ordered extent
2918                  * back to the allocator.  We only free the extent in the
2919                  * truncated case if we didn't write out the extent at all.
2920                  */
2921                 if ((ret || !logical_len) &&
2922                     !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2923                     !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2924                         btrfs_free_reserved_extent(root, ordered_extent->start,
2925                                                    ordered_extent->disk_len, 1);
2926         }
2927
2928
2929         /*
2930          * This needs to be done to make sure anybody waiting knows we are done
2931          * updating everything for this ordered extent.
2932          */
2933         btrfs_remove_ordered_extent(inode, ordered_extent);
2934
2935         /* for snapshot-aware defrag */
2936         if (new) {
2937                 if (ret) {
2938                         free_sa_defrag_extent(new);
2939                         atomic_dec(&root->fs_info->defrag_running);
2940                 } else {
2941                         relink_file_extents(new);
2942                 }
2943         }
2944
2945         /* once for us */
2946         btrfs_put_ordered_extent(ordered_extent);
2947         /* once for the tree */
2948         btrfs_put_ordered_extent(ordered_extent);
2949
2950         return ret;
2951 }
2952
2953 static void finish_ordered_fn(struct btrfs_work *work)
2954 {
2955         struct btrfs_ordered_extent *ordered_extent;
2956         ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2957         btrfs_finish_ordered_io(ordered_extent);
2958 }
2959
2960 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
2961                                 struct extent_state *state, int uptodate)
2962 {
2963         struct inode *inode = page->mapping->host;
2964         struct btrfs_root *root = BTRFS_I(inode)->root;
2965         struct btrfs_ordered_extent *ordered_extent = NULL;
2966         struct btrfs_workqueue *wq;
2967         btrfs_work_func_t func;
2968
2969         trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2970
2971         ClearPagePrivate2(page);
2972         if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2973                                             end - start + 1, uptodate))
2974                 return 0;
2975
2976         if (btrfs_is_free_space_inode(inode)) {
2977                 wq = root->fs_info->endio_freespace_worker;
2978                 func = btrfs_freespace_write_helper;
2979         } else {
2980                 wq = root->fs_info->endio_write_workers;
2981                 func = btrfs_endio_write_helper;
2982         }
2983
2984         btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
2985                         NULL);
2986         btrfs_queue_work(wq, &ordered_extent->work);
2987
2988         return 0;
2989 }
2990
2991 static int __readpage_endio_check(struct inode *inode,
2992                                   struct btrfs_io_bio *io_bio,
2993                                   int icsum, struct page *page,
2994                                   int pgoff, u64 start, size_t len)
2995 {
2996         char *kaddr;
2997         u32 csum_expected;
2998         u32 csum = ~(u32)0;
2999         static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
3000                                       DEFAULT_RATELIMIT_BURST);
3001
3002         csum_expected = *(((u32 *)io_bio->csum) + icsum);
3003
3004         kaddr = kmap_atomic(page);
3005         csum = btrfs_csum_data(kaddr + pgoff, csum,  len);
3006         btrfs_csum_final(csum, (char *)&csum);
3007         if (csum != csum_expected)
3008                 goto zeroit;
3009
3010         kunmap_atomic(kaddr);
3011         return 0;
3012 zeroit:
3013         if (__ratelimit(&_rs))
3014                 btrfs_warn(BTRFS_I(inode)->root->fs_info,
3015                            "csum failed ino %llu off %llu csum %u expected csum %u",
3016                            btrfs_ino(inode), start, csum, csum_expected);
3017         memset(kaddr + pgoff, 1, len);
3018         flush_dcache_page(page);
3019         kunmap_atomic(kaddr);
3020         if (csum_expected == 0)
3021                 return 0;
3022         return -EIO;
3023 }
3024
3025 /*
3026  * when reads are done, we need to check csums to verify the data is correct
3027  * if there's a match, we allow the bio to finish.  If not, the code in
3028  * extent_io.c will try to find good copies for us.
3029  */
3030 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3031                                       u64 phy_offset, struct page *page,
3032                                       u64 start, u64 end, int mirror)
3033 {
3034         size_t offset = start - page_offset(page);
3035         struct inode *inode = page->mapping->host;
3036         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3037         struct btrfs_root *root = BTRFS_I(inode)->root;
3038
3039         if (PageChecked(page)) {
3040                 ClearPageChecked(page);
3041                 return 0;
3042         }
3043
3044         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3045                 return 0;
3046
3047         if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3048             test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3049                 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
3050                                   GFP_NOFS);
3051                 return 0;
3052         }
3053
3054         phy_offset >>= inode->i_sb->s_blocksize_bits;
3055         return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3056                                       start, (size_t)(end - start + 1));
3057 }
3058
3059 struct delayed_iput {
3060         struct list_head list;
3061         struct inode *inode;
3062 };
3063
3064 /* JDM: If this is fs-wide, why can't we add a pointer to
3065  * btrfs_inode instead and avoid the allocation? */
3066 void btrfs_add_delayed_iput(struct inode *inode)
3067 {
3068         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3069         struct delayed_iput *delayed;
3070
3071         if (atomic_add_unless(&inode->i_count, -1, 1))
3072                 return;
3073
3074         delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
3075         delayed->inode = inode;
3076
3077         spin_lock(&fs_info->delayed_iput_lock);
3078         list_add_tail(&delayed->list, &fs_info->delayed_iputs);
3079         spin_unlock(&fs_info->delayed_iput_lock);
3080 }
3081
3082 void btrfs_run_delayed_iputs(struct btrfs_root *root)
3083 {
3084         LIST_HEAD(list);
3085         struct btrfs_fs_info *fs_info = root->fs_info;
3086         struct delayed_iput *delayed;
3087         int empty;
3088
3089         spin_lock(&fs_info->delayed_iput_lock);
3090         empty = list_empty(&fs_info->delayed_iputs);
3091         spin_unlock(&fs_info->delayed_iput_lock);
3092         if (empty)
3093                 return;
3094
3095         spin_lock(&fs_info->delayed_iput_lock);
3096         list_splice_init(&fs_info->delayed_iputs, &list);
3097         spin_unlock(&fs_info->delayed_iput_lock);
3098
3099         while (!list_empty(&list)) {
3100                 delayed = list_entry(list.next, struct delayed_iput, list);
3101                 list_del(&delayed->list);
3102                 iput(delayed->inode);
3103                 kfree(delayed);
3104         }
3105 }
3106
3107 /*
3108  * This is called in transaction commit time. If there are no orphan
3109  * files in the subvolume, it removes orphan item and frees block_rsv
3110  * structure.
3111  */
3112 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3113                               struct btrfs_root *root)
3114 {
3115         struct btrfs_block_rsv *block_rsv;
3116         int ret;
3117
3118         if (atomic_read(&root->orphan_inodes) ||
3119             root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3120                 return;
3121
3122         spin_lock(&root->orphan_lock);
3123         if (atomic_read(&root->orphan_inodes)) {
3124                 spin_unlock(&root->orphan_lock);
3125                 return;
3126         }
3127
3128         if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3129                 spin_unlock(&root->orphan_lock);
3130                 return;
3131         }
3132
3133         block_rsv = root->orphan_block_rsv;
3134         root->orphan_block_rsv = NULL;
3135         spin_unlock(&root->orphan_lock);
3136
3137         if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
3138             btrfs_root_refs(&root->root_item) > 0) {
3139                 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
3140                                             root->root_key.objectid);
3141                 if (ret)
3142                         btrfs_abort_transaction(trans, root, ret);
3143                 else
3144                         clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3145                                   &root->state);
3146         }
3147
3148         if (block_rsv) {
3149                 WARN_ON(block_rsv->size > 0);
3150                 btrfs_free_block_rsv(root, block_rsv);
3151         }
3152 }
3153
3154 /*
3155  * This creates an orphan entry for the given inode in case something goes
3156  * wrong in the middle of an unlink/truncate.
3157  *
3158  * NOTE: caller of this function should reserve 5 units of metadata for
3159  *       this function.
3160  */
3161 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3162 {
3163         struct btrfs_root *root = BTRFS_I(inode)->root;
3164         struct btrfs_block_rsv *block_rsv = NULL;
3165         int reserve = 0;
3166         int insert = 0;
3167         int ret;
3168
3169         if (!root->orphan_block_rsv) {
3170                 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
3171                 if (!block_rsv)
3172                         return -ENOMEM;
3173         }
3174
3175         spin_lock(&root->orphan_lock);
3176         if (!root->orphan_block_rsv) {
3177                 root->orphan_block_rsv = block_rsv;
3178         } else if (block_rsv) {
3179                 btrfs_free_block_rsv(root, block_rsv);
3180                 block_rsv = NULL;
3181         }
3182
3183         if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3184                               &BTRFS_I(inode)->runtime_flags)) {
3185 #if 0
3186                 /*
3187                  * For proper ENOSPC handling, we should do orphan
3188                  * cleanup when mounting. But this introduces backward
3189                  * compatibility issue.
3190                  */
3191                 if (!xchg(&root->orphan_item_inserted, 1))
3192                         insert = 2;
3193                 else
3194                         insert = 1;
3195 #endif
3196                 insert = 1;
3197                 atomic_inc(&root->orphan_inodes);
3198         }
3199
3200         if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3201                               &BTRFS_I(inode)->runtime_flags))
3202                 reserve = 1;
3203         spin_unlock(&root->orphan_lock);
3204
3205         /* grab metadata reservation from transaction handle */
3206         if (reserve) {
3207                 ret = btrfs_orphan_reserve_metadata(trans, inode);
3208                 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
3209         }
3210
3211         /* insert an orphan item to track this unlinked/truncated file */
3212         if (insert >= 1) {
3213                 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3214                 if (ret) {
3215                         atomic_dec(&root->orphan_inodes);
3216                         if (reserve) {
3217                                 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3218                                           &BTRFS_I(inode)->runtime_flags);
3219                                 btrfs_orphan_release_metadata(inode);
3220                         }
3221                         if (ret != -EEXIST) {
3222                                 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3223                                           &BTRFS_I(inode)->runtime_flags);
3224                                 btrfs_abort_transaction(trans, root, ret);
3225                                 return ret;
3226                         }
3227                 }
3228                 ret = 0;
3229         }
3230
3231         /* insert an orphan item to track subvolume contains orphan files */
3232         if (insert >= 2) {
3233                 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3234                                                root->root_key.objectid);
3235                 if (ret && ret != -EEXIST) {
3236                         btrfs_abort_transaction(trans, root, ret);
3237                         return ret;
3238                 }
3239         }
3240         return 0;
3241 }
3242
3243 /*
3244  * We have done the truncate/delete so we can go ahead and remove the orphan
3245  * item for this particular inode.
3246  */
3247 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3248                             struct inode *inode)
3249 {
3250         struct btrfs_root *root = BTRFS_I(inode)->root;
3251         int delete_item = 0;
3252         int release_rsv = 0;
3253         int ret = 0;
3254
3255         spin_lock(&root->orphan_lock);
3256         if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3257                                &BTRFS_I(inode)->runtime_flags))
3258                 delete_item = 1;
3259
3260         if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3261                                &BTRFS_I(inode)->runtime_flags))
3262                 release_rsv = 1;
3263         spin_unlock(&root->orphan_lock);
3264
3265         if (delete_item) {
3266                 atomic_dec(&root->orphan_inodes);
3267                 if (trans)
3268                         ret = btrfs_del_orphan_item(trans, root,
3269                                                     btrfs_ino(inode));
3270         }
3271
3272         if (release_rsv)
3273                 btrfs_orphan_release_metadata(inode);
3274
3275         return ret;
3276 }
3277
3278 /*
3279  * this cleans up any orphans that may be left on the list from the last use
3280  * of this root.
3281  */
3282 int btrfs_orphan_cleanup(struct btrfs_root *root)
3283 {
3284         struct btrfs_path *path;
3285         struct extent_buffer *leaf;
3286         struct btrfs_key key, found_key;
3287         struct btrfs_trans_handle *trans;
3288         struct inode *inode;
3289         u64 last_objectid = 0;
3290         int ret = 0, nr_unlink = 0, nr_truncate = 0;
3291
3292         if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3293                 return 0;
3294
3295         path = btrfs_alloc_path();
3296         if (!path) {
3297                 ret = -ENOMEM;
3298                 goto out;
3299         }
3300         path->reada = -1;
3301
3302         key.objectid = BTRFS_ORPHAN_OBJECTID;
3303         key.type = BTRFS_ORPHAN_ITEM_KEY;
3304         key.offset = (u64)-1;
3305
3306         while (1) {
3307                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3308                 if (ret < 0)
3309                         goto out;
3310
3311                 /*
3312                  * if ret == 0 means we found what we were searching for, which
3313                  * is weird, but possible, so only screw with path if we didn't
3314                  * find the key and see if we have stuff that matches
3315                  */
3316                 if (ret > 0) {
3317                         ret = 0;
3318                         if (path->slots[0] == 0)
3319                                 break;
3320                         path->slots[0]--;
3321                 }
3322
3323                 /* pull out the item */
3324                 leaf = path->nodes[0];
3325                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3326
3327                 /* make sure the item matches what we want */
3328                 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3329                         break;
3330                 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3331                         break;
3332
3333                 /* release the path since we're done with it */
3334                 btrfs_release_path(path);
3335
3336                 /*
3337                  * this is where we are basically btrfs_lookup, without the
3338                  * crossing root thing.  we store the inode number in the
3339                  * offset of the orphan item.
3340                  */
3341
3342                 if (found_key.offset == last_objectid) {
3343                         btrfs_err(root->fs_info,
3344                                 "Error removing orphan entry, stopping orphan cleanup");
3345                         ret = -EINVAL;
3346                         goto out;
3347                 }
3348
3349                 last_objectid = found_key.offset;
3350
3351                 found_key.objectid = found_key.offset;
3352                 found_key.type = BTRFS_INODE_ITEM_KEY;
3353                 found_key.offset = 0;
3354                 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
3355                 ret = PTR_ERR_OR_ZERO(inode);
3356                 if (ret && ret != -ESTALE)
3357                         goto out;
3358
3359                 if (ret == -ESTALE && root == root->fs_info->tree_root) {
3360                         struct btrfs_root *dead_root;
3361                         struct btrfs_fs_info *fs_info = root->fs_info;
3362                         int is_dead_root = 0;
3363
3364                         /*
3365                          * this is an orphan in the tree root. Currently these
3366                          * could come from 2 sources:
3367                          *  a) a snapshot deletion in progress
3368                          *  b) a free space cache inode
3369                          * We need to distinguish those two, as the snapshot
3370                          * orphan must not get deleted.
3371                          * find_dead_roots already ran before us, so if this
3372                          * is a snapshot deletion, we should find the root
3373                          * in the dead_roots list
3374                          */
3375                         spin_lock(&fs_info->trans_lock);
3376                         list_for_each_entry(dead_root, &fs_info->dead_roots,
3377                                             root_list) {
3378                                 if (dead_root->root_key.objectid ==
3379                                     found_key.objectid) {
3380                                         is_dead_root = 1;
3381                                         break;
3382                                 }
3383                         }
3384                         spin_unlock(&fs_info->trans_lock);
3385                         if (is_dead_root) {
3386                                 /* prevent this orphan from being found again */
3387                                 key.offset = found_key.objectid - 1;
3388                                 continue;
3389                         }
3390                 }
3391                 /*
3392                  * Inode is already gone but the orphan item is still there,
3393                  * kill the orphan item.
3394                  */
3395                 if (ret == -ESTALE) {
3396                         trans = btrfs_start_transaction(root, 1);
3397                         if (IS_ERR(trans)) {
3398                                 ret = PTR_ERR(trans);
3399                                 goto out;
3400                         }
3401                         btrfs_debug(root->fs_info, "auto deleting %Lu",
3402                                 found_key.objectid);
3403                         ret = btrfs_del_orphan_item(trans, root,
3404                                                     found_key.objectid);
3405                         btrfs_end_transaction(trans, root);
3406                         if (ret)
3407                                 goto out;
3408                         continue;
3409                 }
3410
3411                 /*
3412                  * add this inode to the orphan list so btrfs_orphan_del does
3413                  * the proper thing when we hit it
3414                  */
3415                 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3416                         &BTRFS_I(inode)->runtime_flags);
3417                 atomic_inc(&root->orphan_inodes);
3418
3419                 /* if we have links, this was a truncate, lets do that */
3420                 if (inode->i_nlink) {
3421                         if (WARN_ON(!S_ISREG(inode->i_mode))) {
3422                                 iput(inode);
3423                                 continue;
3424                         }
3425                         nr_truncate++;
3426
3427                         /* 1 for the orphan item deletion. */
3428                         trans = btrfs_start_transaction(root, 1);
3429                         if (IS_ERR(trans)) {
3430                                 iput(inode);
3431                                 ret = PTR_ERR(trans);
3432                                 goto out;
3433                         }
3434                         ret = btrfs_orphan_add(trans, inode);
3435                         btrfs_end_transaction(trans, root);
3436                         if (ret) {
3437                                 iput(inode);
3438                                 goto out;
3439                         }
3440
3441                         ret = btrfs_truncate(inode);
3442                         if (ret)
3443                                 btrfs_orphan_del(NULL, inode);
3444                 } else {
3445                         nr_unlink++;
3446                 }
3447
3448                 /* this will do delete_inode and everything for us */
3449                 iput(inode);
3450                 if (ret)
3451                         goto out;
3452         }
3453         /* release the path since we're done with it */
3454         btrfs_release_path(path);
3455
3456         root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3457
3458         if (root->orphan_block_rsv)
3459                 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3460                                         (u64)-1);
3461
3462         if (root->orphan_block_rsv ||
3463             test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3464                 trans = btrfs_join_transaction(root);
3465                 if (!IS_ERR(trans))
3466                         btrfs_end_transaction(trans, root);
3467         }
3468
3469         if (nr_unlink)
3470                 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
3471         if (nr_truncate)
3472                 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
3473
3474 out:
3475         if (ret)
3476                 btrfs_err(root->fs_info,
3477                         "could not do orphan cleanup %d", ret);
3478         btrfs_free_path(path);
3479         return ret;
3480 }
3481
3482 /*
3483  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3484  * don't find any xattrs, we know there can't be any acls.
3485  *
3486  * slot is the slot the inode is in, objectid is the objectid of the inode
3487  */
3488 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3489                                           int slot, u64 objectid,
3490                                           int *first_xattr_slot)
3491 {
3492         u32 nritems = btrfs_header_nritems(leaf);
3493         struct btrfs_key found_key;
3494         static u64 xattr_access = 0;
3495         static u64 xattr_default = 0;
3496         int scanned = 0;
3497
3498         if (!xattr_access) {
3499                 xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS,
3500                                         strlen(POSIX_ACL_XATTR_ACCESS));
3501                 xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT,
3502                                         strlen(POSIX_ACL_XATTR_DEFAULT));
3503         }
3504
3505         slot++;
3506         *first_xattr_slot = -1;
3507         while (slot < nritems) {
3508                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3509
3510                 /* we found a different objectid, there must not be acls */
3511                 if (found_key.objectid != objectid)
3512                         return 0;
3513
3514                 /* we found an xattr, assume we've got an acl */
3515                 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3516                         if (*first_xattr_slot == -1)
3517                                 *first_xattr_slot = slot;
3518                         if (found_key.offset == xattr_access ||
3519                             found_key.offset == xattr_default)
3520                                 return 1;
3521                 }
3522
3523                 /*
3524                  * we found a key greater than an xattr key, there can't
3525                  * be any acls later on
3526                  */
3527                 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3528                         return 0;
3529
3530                 slot++;
3531                 scanned++;
3532
3533                 /*
3534                  * it goes inode, inode backrefs, xattrs, extents,
3535                  * so if there are a ton of hard links to an inode there can
3536                  * be a lot of backrefs.  Don't waste time searching too hard,
3537                  * this is just an optimization
3538                  */
3539                 if (scanned >= 8)
3540                         break;
3541         }
3542         /* we hit the end of the leaf before we found an xattr or
3543          * something larger than an xattr.  We have to assume the inode
3544          * has acls
3545          */
3546         if (*first_xattr_slot == -1)
3547                 *first_xattr_slot = slot;
3548         return 1;
3549 }
3550
3551 /*
3552  * read an inode from the btree into the in-memory inode
3553  */
3554 static void btrfs_read_locked_inode(struct inode *inode)
3555 {
3556         struct btrfs_path *path;
3557         struct extent_buffer *leaf;
3558         struct btrfs_inode_item *inode_item;
3559         struct btrfs_root *root = BTRFS_I(inode)->root;
3560         struct btrfs_key location;
3561         unsigned long ptr;
3562         int maybe_acls;
3563         u32 rdev;
3564         int ret;
3565         bool filled = false;
3566         int first_xattr_slot;
3567
3568         ret = btrfs_fill_inode(inode, &rdev);
3569         if (!ret)
3570                 filled = true;
3571
3572         path = btrfs_alloc_path();
3573         if (!path)
3574                 goto make_bad;
3575
3576         memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3577
3578         ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3579         if (ret)
3580                 goto make_bad;
3581
3582         leaf = path->nodes[0];
3583
3584         if (filled)
3585                 goto cache_index;
3586
3587         inode_item = btrfs_item_ptr(leaf, path->slots[0],
3588                                     struct btrfs_inode_item);
3589         inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3590         set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3591         i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3592         i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3593         btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
3594
3595         inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3596         inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3597
3598         inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3599         inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3600
3601         inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3602         inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3603
3604         BTRFS_I(inode)->i_otime.tv_sec =
3605                 btrfs_timespec_sec(leaf, &inode_item->otime);
3606         BTRFS_I(inode)->i_otime.tv_nsec =
3607                 btrfs_timespec_nsec(leaf, &inode_item->otime);
3608
3609         inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3610         BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3611         BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3612
3613         /*
3614          * If we were modified in the current generation and evicted from memory
3615          * and then re-read we need to do a full sync since we don't have any
3616          * idea about which extents were modified before we were evicted from
3617          * cache.
3618          */
3619         if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3620                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3621                         &BTRFS_I(inode)->runtime_flags);
3622
3623         inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3624         inode->i_generation = BTRFS_I(inode)->generation;
3625         inode->i_rdev = 0;
3626         rdev = btrfs_inode_rdev(leaf, inode_item);
3627
3628         BTRFS_I(inode)->index_cnt = (u64)-1;
3629         BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3630
3631 cache_index:
3632         path->slots[0]++;
3633         if (inode->i_nlink != 1 ||
3634             path->slots[0] >= btrfs_header_nritems(leaf))
3635                 goto cache_acl;
3636
3637         btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3638         if (location.objectid != btrfs_ino(inode))
3639                 goto cache_acl;
3640
3641         ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3642         if (location.type == BTRFS_INODE_REF_KEY) {
3643                 struct btrfs_inode_ref *ref;
3644
3645                 ref = (struct btrfs_inode_ref *)ptr;
3646                 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3647         } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3648                 struct btrfs_inode_extref *extref;
3649
3650                 extref = (struct btrfs_inode_extref *)ptr;
3651                 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3652                                                                      extref);
3653         }
3654 cache_acl:
3655         /*
3656          * try to precache a NULL acl entry for files that don't have
3657          * any xattrs or acls
3658          */
3659         maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3660                                            btrfs_ino(inode), &first_xattr_slot);
3661         if (first_xattr_slot != -1) {
3662                 path->slots[0] = first_xattr_slot;
3663                 ret = btrfs_load_inode_props(inode, path);
3664                 if (ret)
3665                         btrfs_err(root->fs_info,
3666                                   "error loading props for ino %llu (root %llu): %d",
3667                                   btrfs_ino(inode),
3668                                   root->root_key.objectid, ret);
3669         }
3670         btrfs_free_path(path);
3671
3672         if (!maybe_acls)
3673                 cache_no_acl(inode);
3674
3675         switch (inode->i_mode & S_IFMT) {
3676         case S_IFREG:
3677                 inode->i_mapping->a_ops = &btrfs_aops;
3678                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3679                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3680                 inode->i_fop = &btrfs_file_operations;
3681                 inode->i_op = &btrfs_file_inode_operations;
3682                 break;
3683         case S_IFDIR:
3684                 inode->i_fop = &btrfs_dir_file_operations;
3685                 if (root == root->fs_info->tree_root)
3686                         inode->i_op = &btrfs_dir_ro_inode_operations;
3687                 else
3688                         inode->i_op = &btrfs_dir_inode_operations;
3689                 break;
3690         case S_IFLNK:
3691                 inode->i_op = &btrfs_symlink_inode_operations;
3692                 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3693                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3694                 break;
3695         default:
3696                 inode->i_op = &btrfs_special_inode_operations;
3697                 init_special_inode(inode, inode->i_mode, rdev);
3698                 break;
3699         }
3700
3701         btrfs_update_iflags(inode);
3702         return;
3703
3704 make_bad:
3705         btrfs_free_path(path);
3706         make_bad_inode(inode);
3707 }
3708
3709 /*
3710  * given a leaf and an inode, copy the inode fields into the leaf
3711  */
3712 static void fill_inode_item(struct btrfs_trans_handle *trans,
3713                             struct extent_buffer *leaf,
3714                             struct btrfs_inode_item *item,
3715                             struct inode *inode)
3716 {
3717         struct btrfs_map_token token;
3718
3719         btrfs_init_map_token(&token);
3720
3721         btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3722         btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3723         btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3724                                    &token);
3725         btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3726         btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3727
3728         btrfs_set_token_timespec_sec(leaf, &item->atime,
3729                                      inode->i_atime.tv_sec, &token);
3730         btrfs_set_token_timespec_nsec(leaf, &item->atime,
3731                                       inode->i_atime.tv_nsec, &token);
3732
3733         btrfs_set_token_timespec_sec(leaf, &item->mtime,
3734                                      inode->i_mtime.tv_sec, &token);
3735         btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3736                                       inode->i_mtime.tv_nsec, &token);
3737
3738         btrfs_set_token_timespec_sec(leaf, &item->ctime,
3739                                      inode->i_ctime.tv_sec, &token);
3740         btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3741                                       inode->i_ctime.tv_nsec, &token);
3742
3743         btrfs_set_token_timespec_sec(leaf, &item->otime,
3744                                      BTRFS_I(inode)->i_otime.tv_sec, &token);
3745         btrfs_set_token_timespec_nsec(leaf, &item->otime,
3746                                       BTRFS_I(inode)->i_otime.tv_nsec, &token);
3747
3748         btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3749                                      &token);
3750         btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3751                                          &token);
3752         btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3753         btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3754         btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3755         btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3756         btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3757 }
3758
3759 /*
3760  * copy everything in the in-memory inode into the btree.
3761  */
3762 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3763                                 struct btrfs_root *root, struct inode *inode)
3764 {
3765         struct btrfs_inode_item *inode_item;
3766         struct btrfs_path *path;
3767         struct extent_buffer *leaf;
3768         int ret;
3769
3770         path = btrfs_alloc_path();
3771         if (!path)
3772                 return -ENOMEM;
3773
3774         path->leave_spinning = 1;
3775         ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3776                                  1);
3777         if (ret) {
3778                 if (ret > 0)
3779                         ret = -ENOENT;
3780                 goto failed;
3781         }
3782
3783         leaf = path->nodes[0];
3784         inode_item = btrfs_item_ptr(leaf, path->slots[0],
3785                                     struct btrfs_inode_item);
3786
3787         fill_inode_item(trans, leaf, inode_item, inode);
3788         btrfs_mark_buffer_dirty(leaf);
3789         btrfs_set_inode_last_trans(trans, inode);
3790         ret = 0;
3791 failed:
3792         btrfs_free_path(path);
3793         return ret;
3794 }
3795
3796 /*
3797  * copy everything in the in-memory inode into the btree.
3798  */
3799 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3800                                 struct btrfs_root *root, struct inode *inode)
3801 {
3802         int ret;
3803
3804         /*
3805          * If the inode is a free space inode, we can deadlock during commit
3806          * if we put it into the delayed code.
3807          *
3808          * The data relocation inode should also be directly updated
3809          * without delay
3810          */
3811         if (!btrfs_is_free_space_inode(inode)
3812             && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3813             && !root->fs_info->log_root_recovering) {
3814                 btrfs_update_root_times(trans, root);
3815
3816                 ret = btrfs_delayed_update_inode(trans, root, inode);
3817                 if (!ret)
3818                         btrfs_set_inode_last_trans(trans, inode);
3819                 return ret;
3820         }
3821
3822         return btrfs_update_inode_item(trans, root, inode);
3823 }
3824
3825 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3826                                          struct btrfs_root *root,
3827                                          struct inode *inode)
3828 {
3829         int ret;
3830
3831         ret = btrfs_update_inode(trans, root, inode);
3832         if (ret == -ENOSPC)
3833                 return btrfs_update_inode_item(trans, root, inode);
3834         return ret;
3835 }
3836
3837 /*
3838  * unlink helper that gets used here in inode.c and in the tree logging
3839  * recovery code.  It remove a link in a directory with a given name, and
3840  * also drops the back refs in the inode to the directory
3841  */
3842 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3843                                 struct btrfs_root *root,
3844                                 struct inode *dir, struct inode *inode,
3845                                 const char *name, int name_len)
3846 {
3847         struct btrfs_path *path;
3848         int ret = 0;
3849         struct extent_buffer *leaf;
3850         struct btrfs_dir_item *di;
3851         struct btrfs_key key;
3852         u64 index;
3853         u64 ino = btrfs_ino(inode);
3854         u64 dir_ino = btrfs_ino(dir);
3855
3856         path = btrfs_alloc_path();
3857         if (!path) {
3858                 ret = -ENOMEM;
3859                 goto out;
3860         }
3861
3862         path->leave_spinning = 1;
3863         di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3864                                     name, name_len, -1);
3865         if (IS_ERR(di)) {
3866                 ret = PTR_ERR(di);
3867                 goto err;
3868         }
3869         if (!di) {
3870                 ret = -ENOENT;
3871                 goto err;
3872         }
3873         leaf = path->nodes[0];
3874         btrfs_dir_item_key_to_cpu(leaf, di, &key);
3875         ret = btrfs_delete_one_dir_name(trans, root, path, di);
3876         if (ret)
3877                 goto err;
3878         btrfs_release_path(path);
3879
3880         /*
3881          * If we don't have dir index, we have to get it by looking up
3882          * the inode ref, since we get the inode ref, remove it directly,
3883          * it is unnecessary to do delayed deletion.
3884          *
3885          * But if we have dir index, needn't search inode ref to get it.
3886          * Since the inode ref is close to the inode item, it is better
3887          * that we delay to delete it, and just do this deletion when
3888          * we update the inode item.
3889          */
3890         if (BTRFS_I(inode)->dir_index) {
3891                 ret = btrfs_delayed_delete_inode_ref(inode);
3892                 if (!ret) {
3893                         index = BTRFS_I(inode)->dir_index;
3894                         goto skip_backref;
3895                 }
3896         }
3897
3898         ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3899                                   dir_ino, &index);
3900         if (ret) {
3901                 btrfs_info(root->fs_info,
3902                         "failed to delete reference to %.*s, inode %llu parent %llu",
3903                         name_len, name, ino, dir_ino);
3904                 btrfs_abort_transaction(trans, root, ret);
3905                 goto err;
3906         }
3907 skip_backref:
3908         ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3909         if (ret) {
3910                 btrfs_abort_transaction(trans, root, ret);
3911                 goto err;
3912         }
3913
3914         ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
3915                                          inode, dir_ino);
3916         if (ret != 0 && ret != -ENOENT) {
3917                 btrfs_abort_transaction(trans, root, ret);
3918                 goto err;
3919         }
3920
3921         ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
3922                                            dir, index);
3923         if (ret == -ENOENT)
3924                 ret = 0;
3925         else if (ret)
3926                 btrfs_abort_transaction(trans, root, ret);
3927 err:
3928         btrfs_free_path(path);
3929         if (ret)
3930                 goto out;
3931
3932         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3933         inode_inc_iversion(inode);
3934         inode_inc_iversion(dir);
3935         inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3936         ret = btrfs_update_inode(trans, root, dir);
3937 out:
3938         return ret;
3939 }
3940
3941 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3942                        struct btrfs_root *root,
3943                        struct inode *dir, struct inode *inode,
3944                        const char *name, int name_len)
3945 {
3946         int ret;
3947         ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3948         if (!ret) {
3949                 drop_nlink(inode);
3950                 ret = btrfs_update_inode(trans, root, inode);
3951         }
3952         return ret;
3953 }
3954
3955 /*
3956  * helper to start transaction for unlink and rmdir.
3957  *
3958  * unlink and rmdir are special in btrfs, they do not always free space, so
3959  * if we cannot make our reservations the normal way try and see if there is
3960  * plenty of slack room in the global reserve to migrate, otherwise we cannot
3961  * allow the unlink to occur.
3962  */
3963 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
3964 {
3965         struct btrfs_trans_handle *trans;
3966         struct btrfs_root *root = BTRFS_I(dir)->root;
3967         int ret;
3968
3969         /*
3970          * 1 for the possible orphan item
3971          * 1 for the dir item
3972          * 1 for the dir index
3973          * 1 for the inode ref
3974          * 1 for the inode
3975          */
3976         trans = btrfs_start_transaction(root, 5);
3977         if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
3978                 return trans;
3979
3980         if (PTR_ERR(trans) == -ENOSPC) {
3981                 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
3982
3983                 trans = btrfs_start_transaction(root, 0);
3984                 if (IS_ERR(trans))
3985                         return trans;
3986                 ret = btrfs_cond_migrate_bytes(root->fs_info,
3987                                                &root->fs_info->trans_block_rsv,
3988                                                num_bytes, 5);
3989                 if (ret) {
3990                         btrfs_end_transaction(trans, root);
3991                         return ERR_PTR(ret);
3992                 }
3993                 trans->block_rsv = &root->fs_info->trans_block_rsv;
3994                 trans->bytes_reserved = num_bytes;
3995         }
3996         return trans;
3997 }
3998
3999 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4000 {
4001         struct btrfs_root *root = BTRFS_I(dir)->root;
4002         struct btrfs_trans_handle *trans;
4003         struct inode *inode = dentry->d_inode;
4004         int ret;
4005
4006         trans = __unlink_start_trans(dir);
4007         if (IS_ERR(trans))
4008                 return PTR_ERR(trans);
4009
4010         btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
4011
4012         ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
4013                                  dentry->d_name.name, dentry->d_name.len);
4014         if (ret)
4015                 goto out;
4016
4017         if (inode->i_nlink == 0) {
4018                 ret = btrfs_orphan_add(trans, inode);
4019                 if (ret)
4020                         goto out;
4021         }
4022
4023 out:
4024         btrfs_end_transaction(trans, root);
4025         btrfs_btree_balance_dirty(root);
4026         return ret;
4027 }
4028
4029 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4030                         struct btrfs_root *root,
4031                         struct inode *dir, u64 objectid,
4032                         const char *name, int name_len)
4033 {
4034         struct btrfs_path *path;
4035         struct extent_buffer *leaf;
4036         struct btrfs_dir_item *di;
4037         struct btrfs_key key;
4038         u64 index;
4039         int ret;
4040         u64 dir_ino = btrfs_ino(dir);
4041
4042         path = btrfs_alloc_path();
4043         if (!path)
4044                 return -ENOMEM;
4045
4046         di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4047                                    name, name_len, -1);
4048         if (IS_ERR_OR_NULL(di)) {
4049                 if (!di)
4050                         ret = -ENOENT;
4051                 else
4052                         ret = PTR_ERR(di);
4053                 goto out;
4054         }
4055
4056         leaf = path->nodes[0];
4057         btrfs_dir_item_key_to_cpu(leaf, di, &key);
4058         WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4059         ret = btrfs_delete_one_dir_name(trans, root, path, di);
4060         if (ret) {
4061                 btrfs_abort_transaction(trans, root, ret);
4062                 goto out;
4063         }
4064         btrfs_release_path(path);
4065
4066         ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4067                                  objectid, root->root_key.objectid,
4068                                  dir_ino, &index, name, name_len);
4069         if (ret < 0) {
4070                 if (ret != -ENOENT) {
4071                         btrfs_abort_transaction(trans, root, ret);
4072                         goto out;
4073                 }
4074                 di = btrfs_search_dir_index_item(root, path, dir_ino,
4075                                                  name, name_len);
4076                 if (IS_ERR_OR_NULL(di)) {
4077                         if (!di)
4078                                 ret = -ENOENT;
4079                         else
4080                                 ret = PTR_ERR(di);
4081                         btrfs_abort_transaction(trans, root, ret);
4082                         goto out;
4083                 }
4084
4085                 leaf = path->nodes[0];
4086                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4087                 btrfs_release_path(path);
4088                 index = key.offset;
4089         }
4090         btrfs_release_path(path);
4091
4092         ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4093         if (ret) {
4094                 btrfs_abort_transaction(trans, root, ret);
4095                 goto out;
4096         }
4097
4098         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
4099         inode_inc_iversion(dir);
4100         dir->i_mtime = dir->i_ctime = CURRENT_TIME;
4101         ret = btrfs_update_inode_fallback(trans, root, dir);
4102         if (ret)
4103                 btrfs_abort_transaction(trans, root, ret);
4104 out:
4105         btrfs_free_path(path);
4106         return ret;
4107 }
4108
4109 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4110 {
4111         struct inode *inode = dentry->d_inode;
4112         int err = 0;
4113         struct btrfs_root *root = BTRFS_I(dir)->root;
4114         struct btrfs_trans_handle *trans;
4115
4116         if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4117                 return -ENOTEMPTY;
4118         if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
4119                 return -EPERM;
4120
4121         trans = __unlink_start_trans(dir);
4122         if (IS_ERR(trans))
4123                 return PTR_ERR(trans);
4124
4125         if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4126                 err = btrfs_unlink_subvol(trans, root, dir,
4127                                           BTRFS_I(inode)->location.objectid,
4128                                           dentry->d_name.name,
4129                                           dentry->d_name.len);
4130                 goto out;
4131         }
4132
4133         err = btrfs_orphan_add(trans, inode);
4134         if (err)
4135                 goto out;
4136
4137         /* now the directory is empty */
4138         err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
4139                                  dentry->d_name.name, dentry->d_name.len);
4140         if (!err)
4141                 btrfs_i_size_write(inode, 0);
4142 out:
4143         btrfs_end_transaction(trans, root);
4144         btrfs_btree_balance_dirty(root);
4145
4146         return err;
4147 }
4148
4149 /*
4150  * this can truncate away extent items, csum items and directory items.
4151  * It starts at a high offset and removes keys until it can't find
4152  * any higher than new_size
4153  *
4154  * csum items that cross the new i_size are truncated to the new size
4155  * as well.
4156  *
4157  * min_type is the minimum key type to truncate down to.  If set to 0, this
4158  * will kill all the items on this inode, including the INODE_ITEM_KEY.
4159  */
4160 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4161                                struct btrfs_root *root,
4162                                struct inode *inode,
4163                                u64 new_size, u32 min_type)
4164 {
4165         struct btrfs_path *path;
4166         struct extent_buffer *leaf;
4167         struct btrfs_file_extent_item *fi;
4168         struct btrfs_key key;
4169         struct btrfs_key found_key;
4170         u64 extent_start = 0;
4171         u64 extent_num_bytes = 0;
4172         u64 extent_offset = 0;
4173         u64 item_end = 0;
4174         u64 last_size = (u64)-1;
4175         u32 found_type = (u8)-1;
4176         int found_extent;
4177         int del_item;
4178         int pending_del_nr = 0;
4179         int pending_del_slot = 0;
4180         int extent_type = -1;
4181         int ret;
4182         int err = 0;
4183         u64 ino = btrfs_ino(inode);
4184
4185         BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4186
4187         path = btrfs_alloc_path();
4188         if (!path)
4189                 return -ENOMEM;
4190         path->reada = -1;
4191
4192         /*
4193          * We want to drop from the next block forward in case this new size is
4194          * not block aligned since we will be keeping the last block of the
4195          * extent just the way it is.
4196          */
4197         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4198             root == root->fs_info->tree_root)
4199                 btrfs_drop_extent_cache(inode, ALIGN(new_size,
4200                                         root->sectorsize), (u64)-1, 0);
4201
4202         /*
4203          * This function is also used to drop the items in the log tree before
4204          * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4205          * it is used to drop the loged items. So we shouldn't kill the delayed
4206          * items.
4207          */
4208         if (min_type == 0 && root == BTRFS_I(inode)->root)
4209                 btrfs_kill_delayed_inode_items(inode);
4210
4211         key.objectid = ino;
4212         key.offset = (u64)-1;
4213         key.type = (u8)-1;
4214
4215 search_again:
4216         path->leave_spinning = 1;
4217         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4218         if (ret < 0) {
4219                 err = ret;
4220                 goto out;
4221         }
4222
4223         if (ret > 0) {
4224                 /* there are no items in the tree for us to truncate, we're
4225                  * done
4226                  */
4227                 if (path->slots[0] == 0)
4228                         goto out;
4229                 path->slots[0]--;
4230         }
4231
4232         while (1) {
4233                 fi = NULL;
4234                 leaf = path->nodes[0];
4235                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4236                 found_type = found_key.type;
4237
4238                 if (found_key.objectid != ino)
4239                         break;
4240
4241                 if (found_type < min_type)
4242                         break;
4243
4244                 item_end = found_key.offset;
4245                 if (found_type == BTRFS_EXTENT_DATA_KEY) {
4246                         fi = btrfs_item_ptr(leaf, path->slots[0],
4247                                             struct btrfs_file_extent_item);
4248                         extent_type = btrfs_file_extent_type(leaf, fi);
4249                         if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4250                                 item_end +=
4251                                     btrfs_file_extent_num_bytes(leaf, fi);
4252                         } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4253                                 item_end += btrfs_file_extent_inline_len(leaf,
4254                                                          path->slots[0], fi);
4255                         }
4256                         item_end--;
4257                 }
4258                 if (found_type > min_type) {
4259                         del_item = 1;
4260                 } else {
4261                         if (item_end < new_size)
4262                                 break;
4263                         if (found_key.offset >= new_size)
4264                                 del_item = 1;
4265                         else
4266                                 del_item = 0;
4267                 }
4268                 found_extent = 0;
4269                 /* FIXME, shrink the extent if the ref count is only 1 */
4270                 if (found_type != BTRFS_EXTENT_DATA_KEY)
4271                         goto delete;
4272
4273                 if (del_item)
4274                         last_size = found_key.offset;
4275                 else
4276                         last_size = new_size;
4277
4278                 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4279                         u64 num_dec;
4280                         extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4281                         if (!del_item) {
4282                                 u64 orig_num_bytes =
4283                                         btrfs_file_extent_num_bytes(leaf, fi);
4284                                 extent_num_bytes = ALIGN(new_size -
4285                                                 found_key.offset,
4286                                                 root->sectorsize);
4287                                 btrfs_set_file_extent_num_bytes(leaf, fi,
4288                                                          extent_num_bytes);
4289                                 num_dec = (orig_num_bytes -
4290                                            extent_num_bytes);
4291                                 if (test_bit(BTRFS_ROOT_REF_COWS,
4292                                              &root->state) &&
4293                                     extent_start != 0)
4294                                         inode_sub_bytes(inode, num_dec);
4295                                 btrfs_mark_buffer_dirty(leaf);
4296                         } else {
4297                                 extent_num_bytes =
4298                                         btrfs_file_extent_disk_num_bytes(leaf,
4299                                                                          fi);
4300                                 extent_offset = found_key.offset -
4301                                         btrfs_file_extent_offset(leaf, fi);
4302
4303                                 /* FIXME blocksize != 4096 */
4304                                 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4305                                 if (extent_start != 0) {
4306                                         found_extent = 1;
4307                                         if (test_bit(BTRFS_ROOT_REF_COWS,
4308                                                      &root->state))
4309                                                 inode_sub_bytes(inode, num_dec);
4310                                 }
4311                         }
4312                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4313                         /*
4314                          * we can't truncate inline items that have had
4315                          * special encodings
4316                          */
4317                         if (!del_item &&
4318                             btrfs_file_extent_compression(leaf, fi) == 0 &&
4319                             btrfs_file_extent_encryption(leaf, fi) == 0 &&
4320                             btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4321                                 u32 size = new_size - found_key.offset;
4322
4323                                 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4324                                         inode_sub_bytes(inode, item_end + 1 -
4325                                                         new_size);
4326
4327                                 /*
4328                                  * update the ram bytes to properly reflect
4329                                  * the new size of our item
4330                                  */
4331                                 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4332                                 size =
4333                                     btrfs_file_extent_calc_inline_size(size);
4334                                 btrfs_truncate_item(root, path, size, 1);
4335                         } else if (test_bit(BTRFS_ROOT_REF_COWS,
4336                                             &root->state)) {
4337                                 inode_sub_bytes(inode, item_end + 1 -
4338                                                 found_key.offset);
4339                         }
4340                 }
4341 delete:
4342                 if (del_item) {
4343                         if (!pending_del_nr) {
4344                                 /* no pending yet, add ourselves */
4345                                 pending_del_slot = path->slots[0];
4346                                 pending_del_nr = 1;
4347                         } else if (pending_del_nr &&
4348                                    path->slots[0] + 1 == pending_del_slot) {
4349                                 /* hop on the pending chunk */
4350                                 pending_del_nr++;
4351                                 pending_del_slot = path->slots[0];
4352                         } else {
4353                                 BUG();
4354                         }
4355                 } else {
4356                         break;
4357                 }
4358                 if (found_extent &&
4359                     (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4360                      root == root->fs_info->tree_root)) {
4361                         btrfs_set_path_blocking(path);
4362                         ret = btrfs_free_extent(trans, root, extent_start,
4363                                                 extent_num_bytes, 0,
4364                                                 btrfs_header_owner(leaf),
4365                                                 ino, extent_offset, 0);
4366                         BUG_ON(ret);
4367                 }
4368
4369                 if (found_type == BTRFS_INODE_ITEM_KEY)
4370                         break;
4371
4372                 if (path->slots[0] == 0 ||
4373                     path->slots[0] != pending_del_slot) {
4374                         if (pending_del_nr) {
4375                                 ret = btrfs_del_items(trans, root, path,
4376                                                 pending_del_slot,
4377                                                 pending_del_nr);
4378                                 if (ret) {
4379                                         btrfs_abort_transaction(trans,
4380                                                                 root, ret);
4381                                         goto error;
4382                                 }
4383                                 pending_del_nr = 0;
4384                         }
4385                         btrfs_release_path(path);
4386                         goto search_again;
4387                 } else {
4388                         path->slots[0]--;
4389                 }
4390         }
4391 out:
4392         if (pending_del_nr) {
4393                 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4394                                       pending_del_nr);
4395                 if (ret)
4396                         btrfs_abort_transaction(trans, root, ret);
4397         }
4398 error:
4399         if (last_size != (u64)-1 &&
4400             root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4401                 btrfs_ordered_update_i_size(inode, last_size, NULL);
4402         btrfs_free_path(path);
4403         return err;
4404 }
4405
4406 /*
4407  * btrfs_truncate_page - read, zero a chunk and write a page
4408  * @inode - inode that we're zeroing
4409  * @from - the offset to start zeroing
4410  * @len - the length to zero, 0 to zero the entire range respective to the
4411  *      offset
4412  * @front - zero up to the offset instead of from the offset on
4413  *
4414  * This will find the page for the "from" offset and cow the page and zero the
4415  * part we want to zero.  This is used with truncate and hole punching.
4416  */
4417 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4418                         int front)
4419 {
4420         struct address_space *mapping = inode->i_mapping;
4421         struct btrfs_root *root = BTRFS_I(inode)->root;
4422         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4423         struct btrfs_ordered_extent *ordered;
4424         struct extent_state *cached_state = NULL;
4425         char *kaddr;
4426         u32 blocksize = root->sectorsize;
4427         pgoff_t index = from >> PAGE_CACHE_SHIFT;
4428         unsigned offset = from & (PAGE_CACHE_SIZE-1);
4429         struct page *page;
4430         gfp_t mask = btrfs_alloc_write_mask(mapping);
4431         int ret = 0;
4432         u64 page_start;
4433         u64 page_end;
4434
4435         if ((offset & (blocksize - 1)) == 0 &&
4436             (!len || ((len & (blocksize - 1)) == 0)))
4437                 goto out;
4438         ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
4439         if (ret)
4440                 goto out;
4441
4442 again:
4443         page = find_or_create_page(mapping, index, mask);
4444         if (!page) {
4445                 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4446                 ret = -ENOMEM;
4447                 goto out;
4448         }
4449
4450         page_start = page_offset(page);
4451         page_end = page_start + PAGE_CACHE_SIZE - 1;
4452
4453         if (!PageUptodate(page)) {
4454                 ret = btrfs_readpage(NULL, page);
4455                 lock_page(page);
4456                 if (page->mapping != mapping) {
4457                         unlock_page(page);
4458                         page_cache_release(page);
4459                         goto again;
4460                 }
4461                 if (!PageUptodate(page)) {
4462                         ret = -EIO;
4463                         goto out_unlock;
4464                 }
4465         }
4466         wait_on_page_writeback(page);
4467
4468         lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
4469         set_page_extent_mapped(page);
4470
4471         ordered = btrfs_lookup_ordered_extent(inode, page_start);
4472         if (ordered) {
4473                 unlock_extent_cached(io_tree, page_start, page_end,
4474                                      &cached_state, GFP_NOFS);
4475                 unlock_page(page);
4476                 page_cache_release(page);
4477                 btrfs_start_ordered_extent(inode, ordered, 1);
4478                 btrfs_put_ordered_extent(ordered);
4479                 goto again;
4480         }
4481
4482         clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
4483                           EXTENT_DIRTY | EXTENT_DELALLOC |
4484                           EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4485                           0, 0, &cached_state, GFP_NOFS);
4486
4487         ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4488                                         &cached_state);
4489         if (ret) {
4490                 unlock_extent_cached(io_tree, page_start, page_end,
4491                                      &cached_state, GFP_NOFS);
4492                 goto out_unlock;
4493         }
4494
4495         if (offset != PAGE_CACHE_SIZE) {
4496                 if (!len)
4497                         len = PAGE_CACHE_SIZE - offset;
4498                 kaddr = kmap(page);
4499                 if (front)
4500                         memset(kaddr, 0, offset);
4501                 else
4502                         memset(kaddr + offset, 0, len);
4503                 flush_dcache_page(page);
4504                 kunmap(page);
4505         }
4506         ClearPageChecked(page);
4507         set_page_dirty(page);
4508         unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4509                              GFP_NOFS);
4510
4511 out_unlock:
4512         if (ret)
4513                 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4514         unlock_page(page);
4515         page_cache_release(page);
4516 out:
4517         return ret;
4518 }
4519
4520 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4521                              u64 offset, u64 len)
4522 {
4523         struct btrfs_trans_handle *trans;
4524         int ret;
4525
4526         /*
4527          * Still need to make sure the inode looks like it's been updated so
4528          * that any holes get logged if we fsync.
4529          */
4530         if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4531                 BTRFS_I(inode)->last_trans = root->fs_info->generation;
4532                 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4533                 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4534                 return 0;
4535         }
4536
4537         /*
4538          * 1 - for the one we're dropping
4539          * 1 - for the one we're adding
4540          * 1 - for updating the inode.
4541          */
4542         trans = btrfs_start_transaction(root, 3);
4543         if (IS_ERR(trans))
4544                 return PTR_ERR(trans);
4545
4546         ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4547         if (ret) {
4548                 btrfs_abort_transaction(trans, root, ret);
4549                 btrfs_end_transaction(trans, root);
4550                 return ret;
4551         }
4552
4553         ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4554                                        0, 0, len, 0, len, 0, 0, 0);
4555         if (ret)
4556                 btrfs_abort_transaction(trans, root, ret);
4557         else
4558                 btrfs_update_inode(trans, root, inode);
4559         btrfs_end_transaction(trans, root);
4560         return ret;
4561 }
4562
4563 /*
4564  * This function puts in dummy file extents for the area we're creating a hole
4565  * for.  So if we are truncating this file to a larger size we need to insert
4566  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4567  * the range between oldsize and size
4568  */
4569 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4570 {
4571         struct btrfs_root *root = BTRFS_I(inode)->root;
4572         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4573         struct extent_map *em = NULL;
4574         struct extent_state *cached_state = NULL;
4575         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4576         u64 hole_start = ALIGN(oldsize, root->sectorsize);
4577         u64 block_end = ALIGN(size, root->sectorsize);
4578         u64 last_byte;
4579         u64 cur_offset;
4580         u64 hole_size;
4581         int err = 0;
4582
4583         /*
4584          * If our size started in the middle of a page we need to zero out the
4585          * rest of the page before we expand the i_size, otherwise we could
4586          * expose stale data.
4587          */
4588         err = btrfs_truncate_page(inode, oldsize, 0, 0);
4589         if (err)
4590                 return err;
4591
4592         if (size <= hole_start)
4593                 return 0;
4594
4595         while (1) {
4596                 struct btrfs_ordered_extent *ordered;
4597
4598                 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
4599                                  &cached_state);
4600                 ordered = btrfs_lookup_ordered_range(inode, hole_start,
4601                                                      block_end - hole_start);
4602                 if (!ordered)
4603                         break;
4604                 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4605                                      &cached_state, GFP_NOFS);
4606                 btrfs_start_ordered_extent(inode, ordered, 1);
4607                 btrfs_put_ordered_extent(ordered);
4608         }
4609
4610         cur_offset = hole_start;
4611         while (1) {
4612                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4613                                 block_end - cur_offset, 0);
4614                 if (IS_ERR(em)) {
4615                         err = PTR_ERR(em);
4616                         em = NULL;
4617                         break;
4618                 }
4619                 last_byte = min(extent_map_end(em), block_end);
4620                 last_byte = ALIGN(last_byte , root->sectorsize);
4621                 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4622                         struct extent_map *hole_em;
4623                         hole_size = last_byte - cur_offset;
4624
4625                         err = maybe_insert_hole(root, inode, cur_offset,
4626                                                 hole_size);
4627                         if (err)
4628                                 break;
4629                         btrfs_drop_extent_cache(inode, cur_offset,
4630                                                 cur_offset + hole_size - 1, 0);
4631                         hole_em = alloc_extent_map();
4632                         if (!hole_em) {
4633                                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4634                                         &BTRFS_I(inode)->runtime_flags);
4635                                 goto next;
4636                         }
4637                         hole_em->start = cur_offset;
4638                         hole_em->len = hole_size;
4639                         hole_em->orig_start = cur_offset;
4640
4641                         hole_em->block_start = EXTENT_MAP_HOLE;
4642                         hole_em->block_len = 0;
4643                         hole_em->orig_block_len = 0;
4644                         hole_em->ram_bytes = hole_size;
4645                         hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4646                         hole_em->compress_type = BTRFS_COMPRESS_NONE;
4647                         hole_em->generation = root->fs_info->generation;
4648
4649                         while (1) {
4650                                 write_lock(&em_tree->lock);
4651                                 err = add_extent_mapping(em_tree, hole_em, 1);
4652                                 write_unlock(&em_tree->lock);
4653                                 if (err != -EEXIST)
4654                                         break;
4655                                 btrfs_drop_extent_cache(inode, cur_offset,
4656                                                         cur_offset +
4657                                                         hole_size - 1, 0);
4658                         }
4659                         free_extent_map(hole_em);
4660                 }
4661 next:
4662                 free_extent_map(em);
4663                 em = NULL;
4664                 cur_offset = last_byte;
4665                 if (cur_offset >= block_end)
4666                         break;
4667         }
4668         free_extent_map(em);
4669         unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4670                              GFP_NOFS);
4671         return err;
4672 }
4673
4674 static int wait_snapshoting_atomic_t(atomic_t *a)
4675 {
4676         schedule();
4677         return 0;
4678 }
4679
4680 static void wait_for_snapshot_creation(struct btrfs_root *root)
4681 {
4682         while (true) {
4683                 int ret;
4684
4685                 ret = btrfs_start_write_no_snapshoting(root);
4686                 if (ret)
4687                         break;
4688                 wait_on_atomic_t(&root->will_be_snapshoted,
4689                                  wait_snapshoting_atomic_t,
4690                                  TASK_UNINTERRUPTIBLE);
4691         }
4692 }
4693
4694 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4695 {
4696         struct btrfs_root *root = BTRFS_I(inode)->root;
4697         struct btrfs_trans_handle *trans;
4698         loff_t oldsize = i_size_read(inode);
4699         loff_t newsize = attr->ia_size;
4700         int mask = attr->ia_valid;
4701         int ret;
4702
4703         /*
4704          * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4705          * special case where we need to update the times despite not having
4706          * these flags set.  For all other operations the VFS set these flags
4707          * explicitly if it wants a timestamp update.
4708          */
4709         if (newsize != oldsize) {
4710                 inode_inc_iversion(inode);
4711                 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4712                         inode->i_ctime = inode->i_mtime =
4713                                 current_fs_time(inode->i_sb);
4714         }
4715
4716         if (newsize > oldsize) {
4717                 truncate_pagecache(inode, newsize);
4718                 /*
4719                  * Don't do an expanding truncate while snapshoting is ongoing.
4720                  * This is to ensure the snapshot captures a fully consistent
4721                  * state of this file - if the snapshot captures this expanding
4722                  * truncation, it must capture all writes that happened before
4723                  * this truncation.
4724                  */
4725                 wait_for_snapshot_creation(root);
4726                 ret = btrfs_cont_expand(inode, oldsize, newsize);
4727                 if (ret) {
4728                         btrfs_end_write_no_snapshoting(root);
4729                         return ret;
4730                 }
4731
4732                 trans = btrfs_start_transaction(root, 1);
4733                 if (IS_ERR(trans)) {
4734                         btrfs_end_write_no_snapshoting(root);
4735                         return PTR_ERR(trans);
4736                 }
4737
4738                 i_size_write(inode, newsize);
4739                 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4740                 ret = btrfs_update_inode(trans, root, inode);
4741                 btrfs_end_write_no_snapshoting(root);
4742                 btrfs_end_transaction(trans, root);
4743         } else {
4744
4745                 /*
4746                  * We're truncating a file that used to have good data down to
4747                  * zero. Make sure it gets into the ordered flush list so that
4748                  * any new writes get down to disk quickly.
4749                  */
4750                 if (newsize == 0)
4751                         set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4752                                 &BTRFS_I(inode)->runtime_flags);
4753
4754                 /*
4755                  * 1 for the orphan item we're going to add
4756                  * 1 for the orphan item deletion.
4757                  */
4758                 trans = btrfs_start_transaction(root, 2);
4759                 if (IS_ERR(trans))
4760                         return PTR_ERR(trans);
4761
4762                 /*
4763                  * We need to do this in case we fail at _any_ point during the
4764                  * actual truncate.  Once we do the truncate_setsize we could
4765                  * invalidate pages which forces any outstanding ordered io to
4766                  * be instantly completed which will give us extents that need
4767                  * to be truncated.  If we fail to get an orphan inode down we
4768                  * could have left over extents that were never meant to live,
4769                  * so we need to garuntee from this point on that everything
4770                  * will be consistent.
4771                  */
4772                 ret = btrfs_orphan_add(trans, inode);
4773                 btrfs_end_transaction(trans, root);
4774                 if (ret)
4775                         return ret;
4776
4777                 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4778                 truncate_setsize(inode, newsize);
4779
4780                 /* Disable nonlocked read DIO to avoid the end less truncate */
4781                 btrfs_inode_block_unlocked_dio(inode);
4782                 inode_dio_wait(inode);
4783                 btrfs_inode_resume_unlocked_dio(inode);
4784
4785                 ret = btrfs_truncate(inode);
4786                 if (ret && inode->i_nlink) {
4787                         int err;
4788
4789                         /*
4790                          * failed to truncate, disk_i_size is only adjusted down
4791                          * as we remove extents, so it should represent the true
4792                          * size of the inode, so reset the in memory size and
4793                          * delete our orphan entry.
4794                          */
4795                         trans = btrfs_join_transaction(root);
4796                         if (IS_ERR(trans)) {
4797                                 btrfs_orphan_del(NULL, inode);
4798                                 return ret;
4799                         }
4800                         i_size_write(inode, BTRFS_I(inode)->disk_i_size);
4801                         err = btrfs_orphan_del(trans, inode);
4802                         if (err)
4803                                 btrfs_abort_transaction(trans, root, err);
4804                         btrfs_end_transaction(trans, root);
4805                 }
4806         }
4807
4808         return ret;
4809 }
4810
4811 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4812 {
4813         struct inode *inode = dentry->d_inode;
4814         struct btrfs_root *root = BTRFS_I(inode)->root;
4815         int err;
4816
4817         if (btrfs_root_readonly(root))
4818                 return -EROFS;
4819
4820         err = inode_change_ok(inode, attr);
4821         if (err)
4822                 return err;
4823
4824         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
4825                 err = btrfs_setsize(inode, attr);
4826                 if (err)
4827                         return err;
4828         }
4829
4830         if (attr->ia_valid) {
4831                 setattr_copy(inode, attr);
4832                 inode_inc_iversion(inode);
4833                 err = btrfs_dirty_inode(inode);
4834
4835                 if (!err && attr->ia_valid & ATTR_MODE)
4836                         err = posix_acl_chmod(inode, inode->i_mode);
4837         }
4838
4839         return err;
4840 }
4841
4842 /*
4843  * While truncating the inode pages during eviction, we get the VFS calling
4844  * btrfs_invalidatepage() against each page of the inode. This is slow because
4845  * the calls to btrfs_invalidatepage() result in a huge amount of calls to
4846  * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
4847  * extent_state structures over and over, wasting lots of time.
4848  *
4849  * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
4850  * those expensive operations on a per page basis and do only the ordered io
4851  * finishing, while we release here the extent_map and extent_state structures,
4852  * without the excessive merging and splitting.
4853  */
4854 static void evict_inode_truncate_pages(struct inode *inode)
4855 {
4856         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4857         struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
4858         struct rb_node *node;
4859
4860         ASSERT(inode->i_state & I_FREEING);
4861         truncate_inode_pages_final(&inode->i_data);
4862
4863         write_lock(&map_tree->lock);
4864         while (!RB_EMPTY_ROOT(&map_tree->map)) {
4865                 struct extent_map *em;
4866
4867                 node = rb_first(&map_tree->map);
4868                 em = rb_entry(node, struct extent_map, rb_node);
4869                 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
4870                 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
4871                 remove_extent_mapping(map_tree, em);
4872                 free_extent_map(em);
4873                 if (need_resched()) {
4874                         write_unlock(&map_tree->lock);
4875                         cond_resched();
4876                         write_lock(&map_tree->lock);
4877                 }
4878         }
4879         write_unlock(&map_tree->lock);
4880
4881         spin_lock(&io_tree->lock);
4882         while (!RB_EMPTY_ROOT(&io_tree->state)) {
4883                 struct extent_state *state;
4884                 struct extent_state *cached_state = NULL;
4885
4886                 node = rb_first(&io_tree->state);
4887                 state = rb_entry(node, struct extent_state, rb_node);
4888                 atomic_inc(&state->refs);
4889                 spin_unlock(&io_tree->lock);
4890
4891                 lock_extent_bits(io_tree, state->start, state->end,
4892                                  0, &cached_state);
4893                 clear_extent_bit(io_tree, state->start, state->end,
4894                                  EXTENT_LOCKED | EXTENT_DIRTY |
4895                                  EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
4896                                  EXTENT_DEFRAG, 1, 1,
4897                                  &cached_state, GFP_NOFS);
4898                 free_extent_state(state);
4899
4900                 cond_resched();
4901                 spin_lock(&io_tree->lock);
4902         }
4903         spin_unlock(&io_tree->lock);
4904 }
4905
4906 void btrfs_evict_inode(struct inode *inode)
4907 {
4908         struct btrfs_trans_handle *trans;
4909         struct btrfs_root *root = BTRFS_I(inode)->root;
4910         struct btrfs_block_rsv *rsv, *global_rsv;
4911         u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
4912         int ret;
4913
4914         trace_btrfs_inode_evict(inode);
4915
4916         evict_inode_truncate_pages(inode);
4917
4918         if (inode->i_nlink &&
4919             ((btrfs_root_refs(&root->root_item) != 0 &&
4920               root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
4921              btrfs_is_free_space_inode(inode)))
4922                 goto no_delete;
4923
4924         if (is_bad_inode(inode)) {
4925                 btrfs_orphan_del(NULL, inode);
4926                 goto no_delete;
4927         }
4928         /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4929         btrfs_wait_ordered_range(inode, 0, (u64)-1);
4930
4931         btrfs_free_io_failure_record(inode, 0, (u64)-1);
4932
4933         if (root->fs_info->log_root_recovering) {
4934                 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
4935                                  &BTRFS_I(inode)->runtime_flags));
4936                 goto no_delete;
4937         }
4938
4939         if (inode->i_nlink > 0) {
4940                 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
4941                        root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
4942                 goto no_delete;
4943         }
4944
4945         ret = btrfs_commit_inode_delayed_inode(inode);
4946         if (ret) {
4947                 btrfs_orphan_del(NULL, inode);
4948                 goto no_delete;
4949         }
4950
4951         rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4952         if (!rsv) {
4953                 btrfs_orphan_del(NULL, inode);
4954                 goto no_delete;
4955         }
4956         rsv->size = min_size;
4957         rsv->failfast = 1;
4958         global_rsv = &root->fs_info->global_block_rsv;
4959
4960         btrfs_i_size_write(inode, 0);
4961
4962         /*
4963          * This is a bit simpler than btrfs_truncate since we've already
4964          * reserved our space for our orphan item in the unlink, so we just
4965          * need to reserve some slack space in case we add bytes and update
4966          * inode item when doing the truncate.
4967          */
4968         while (1) {
4969                 ret = btrfs_block_rsv_refill(root, rsv, min_size,
4970                                              BTRFS_RESERVE_FLUSH_LIMIT);
4971
4972                 /*
4973                  * Try and steal from the global reserve since we will
4974                  * likely not use this space anyway, we want to try as
4975                  * hard as possible to get this to work.
4976                  */
4977                 if (ret)
4978                         ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
4979
4980                 if (ret) {
4981                         btrfs_warn(root->fs_info,
4982                                 "Could not get space for a delete, will truncate on mount %d",
4983                                 ret);
4984                         btrfs_orphan_del(NULL, inode);
4985                         btrfs_free_block_rsv(root, rsv);
4986                         goto no_delete;
4987                 }
4988
4989                 trans = btrfs_join_transaction(root);
4990                 if (IS_ERR(trans)) {
4991                         btrfs_orphan_del(NULL, inode);
4992                         btrfs_free_block_rsv(root, rsv);
4993                         goto no_delete;
4994                 }
4995
4996                 trans->block_rsv = rsv;
4997
4998                 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
4999                 if (ret != -ENOSPC)
5000                         break;
5001
5002                 trans->block_rsv = &root->fs_info->trans_block_rsv;
5003                 btrfs_end_transaction(trans, root);
5004                 trans = NULL;
5005                 btrfs_btree_balance_dirty(root);
5006         }
5007
5008         btrfs_free_block_rsv(root, rsv);
5009
5010         /*
5011          * Errors here aren't a big deal, it just means we leave orphan items
5012          * in the tree.  They will be cleaned up on the next mount.
5013          */
5014         if (ret == 0) {
5015                 trans->block_rsv = root->orphan_block_rsv;
5016                 btrfs_orphan_del(trans, inode);
5017         } else {
5018                 btrfs_orphan_del(NULL, inode);
5019         }
5020
5021         trans->block_rsv = &root->fs_info->trans_block_rsv;
5022         if (!(root == root->fs_info->tree_root ||
5023               root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5024                 btrfs_return_ino(root, btrfs_ino(inode));
5025
5026         btrfs_end_transaction(trans, root);
5027         btrfs_btree_balance_dirty(root);
5028 no_delete:
5029         btrfs_remove_delayed_node(inode);
5030         clear_inode(inode);
5031         return;
5032 }
5033
5034 /*
5035  * this returns the key found in the dir entry in the location pointer.
5036  * If no dir entries were found, location->objectid is 0.
5037  */
5038 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5039                                struct btrfs_key *location)
5040 {
5041         const char *name = dentry->d_name.name;
5042         int namelen = dentry->d_name.len;
5043         struct btrfs_dir_item *di;
5044         struct btrfs_path *path;
5045         struct btrfs_root *root = BTRFS_I(dir)->root;
5046         int ret = 0;
5047
5048         path = btrfs_alloc_path();
5049         if (!path)
5050                 return -ENOMEM;
5051
5052         di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
5053                                     namelen, 0);
5054         if (IS_ERR(di))
5055                 ret = PTR_ERR(di);
5056
5057         if (IS_ERR_OR_NULL(di))
5058                 goto out_err;
5059
5060         btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5061 out:
5062         btrfs_free_path(path);
5063         return ret;
5064 out_err:
5065         location->objectid = 0;
5066         goto out;
5067 }
5068
5069 /*
5070  * when we hit a tree root in a directory, the btrfs part of the inode
5071  * needs to be changed to reflect the root directory of the tree root.  This
5072  * is kind of like crossing a mount point.
5073  */
5074 static int fixup_tree_root_location(struct btrfs_root *root,
5075                                     struct inode *dir,
5076                                     struct dentry *dentry,
5077                                     struct btrfs_key *location,
5078                                     struct btrfs_root **sub_root)
5079 {
5080         struct btrfs_path *path;
5081         struct btrfs_root *new_root;
5082         struct btrfs_root_ref *ref;
5083         struct extent_buffer *leaf;
5084         struct btrfs_key key;
5085         int ret;
5086         int err = 0;
5087
5088         path = btrfs_alloc_path();
5089         if (!path) {
5090                 err = -ENOMEM;
5091                 goto out;
5092         }
5093
5094         err = -ENOENT;
5095         key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5096         key.type = BTRFS_ROOT_REF_KEY;
5097         key.offset = location->objectid;
5098
5099         ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path,
5100                                 0, 0);
5101         if (ret) {
5102                 if (ret < 0)
5103                         err = ret;
5104                 goto out;
5105         }
5106
5107         leaf = path->nodes[0];
5108         ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5109         if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5110             btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5111                 goto out;
5112
5113         ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5114                                    (unsigned long)(ref + 1),
5115                                    dentry->d_name.len);
5116         if (ret)
5117                 goto out;
5118
5119         btrfs_release_path(path);
5120
5121         new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
5122         if (IS_ERR(new_root)) {
5123                 err = PTR_ERR(new_root);
5124                 goto out;
5125         }
5126
5127         *sub_root = new_root;
5128         location->objectid = btrfs_root_dirid(&new_root->root_item);
5129         location->type = BTRFS_INODE_ITEM_KEY;
5130         location->offset = 0;
5131         err = 0;
5132 out:
5133         btrfs_free_path(path);
5134         return err;
5135 }
5136
5137 static void inode_tree_add(struct inode *inode)
5138 {
5139         struct btrfs_root *root = BTRFS_I(inode)->root;
5140         struct btrfs_inode *entry;
5141         struct rb_node **p;
5142         struct rb_node *parent;
5143         struct rb_node *new = &BTRFS_I(inode)->rb_node;
5144         u64 ino = btrfs_ino(inode);
5145
5146         if (inode_unhashed(inode))
5147                 return;
5148         parent = NULL;
5149         spin_lock(&root->inode_lock);
5150         p = &root->inode_tree.rb_node;
5151         while (*p) {
5152                 parent = *p;
5153                 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5154
5155                 if (ino < btrfs_ino(&entry->vfs_inode))
5156                         p = &parent->rb_left;
5157                 else if (ino > btrfs_ino(&entry->vfs_inode))
5158                         p = &parent->rb_right;
5159                 else {
5160                         WARN_ON(!(entry->vfs_inode.i_state &
5161                                   (I_WILL_FREE | I_FREEING)));
5162                         rb_replace_node(parent, new, &root->inode_tree);
5163                         RB_CLEAR_NODE(parent);
5164                         spin_unlock(&root->inode_lock);
5165                         return;
5166                 }
5167         }
5168         rb_link_node(new, parent, p);
5169         rb_insert_color(new, &root->inode_tree);
5170         spin_unlock(&root->inode_lock);
5171 }
5172
5173 static void inode_tree_del(struct inode *inode)
5174 {
5175         struct btrfs_root *root = BTRFS_I(inode)->root;
5176         int empty = 0;
5177
5178         spin_lock(&root->inode_lock);
5179         if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5180                 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5181                 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5182                 empty = RB_EMPTY_ROOT(&root->inode_tree);
5183         }
5184         spin_unlock(&root->inode_lock);
5185
5186         if (empty && btrfs_root_refs(&root->root_item) == 0) {
5187                 synchronize_srcu(&root->fs_info->subvol_srcu);
5188                 spin_lock(&root->inode_lock);
5189                 empty = RB_EMPTY_ROOT(&root->inode_tree);
5190                 spin_unlock(&root->inode_lock);
5191                 if (empty)
5192                         btrfs_add_dead_root(root);
5193         }
5194 }
5195
5196 void btrfs_invalidate_inodes(struct btrfs_root *root)
5197 {
5198         struct rb_node *node;
5199         struct rb_node *prev;
5200         struct btrfs_inode *entry;
5201         struct inode *inode;
5202         u64 objectid = 0;
5203
5204         if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5205                 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
5206
5207         spin_lock(&root->inode_lock);
5208 again:
5209         node = root->inode_tree.rb_node;
5210         prev = NULL;
5211         while (node) {
5212                 prev = node;
5213                 entry = rb_entry(node, struct btrfs_inode, rb_node);
5214
5215                 if (objectid < btrfs_ino(&entry->vfs_inode))
5216                         node = node->rb_left;
5217                 else if (objectid > btrfs_ino(&entry->vfs_inode))
5218                         node = node->rb_right;
5219                 else
5220                         break;
5221         }
5222         if (!node) {
5223                 while (prev) {
5224                         entry = rb_entry(prev, struct btrfs_inode, rb_node);
5225                         if (objectid <= btrfs_ino(&entry->vfs_inode)) {
5226                                 node = prev;
5227                                 break;
5228                         }
5229                         prev = rb_next(prev);
5230                 }
5231         }
5232         while (node) {
5233                 entry = rb_entry(node, struct btrfs_inode, rb_node);
5234                 objectid = btrfs_ino(&entry->vfs_inode) + 1;
5235                 inode = igrab(&entry->vfs_inode);
5236                 if (inode) {
5237                         spin_unlock(&root->inode_lock);
5238                         if (atomic_read(&inode->i_count) > 1)
5239                                 d_prune_aliases(inode);
5240                         /*
5241                          * btrfs_drop_inode will have it removed from
5242                          * the inode cache when its usage count
5243                          * hits zero.
5244                          */
5245                         iput(inode);
5246                         cond_resched();
5247                         spin_lock(&root->inode_lock);
5248                         goto again;
5249                 }
5250
5251                 if (cond_resched_lock(&root->inode_lock))
5252                         goto again;
5253
5254                 node = rb_next(node);
5255         }
5256         spin_unlock(&root->inode_lock);
5257 }
5258
5259 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5260 {
5261         struct btrfs_iget_args *args = p;
5262         inode->i_ino = args->location->objectid;
5263         memcpy(&BTRFS_I(inode)->location, args->location,
5264                sizeof(*args->location));
5265         BTRFS_I(inode)->root = args->root;
5266         return 0;
5267 }
5268
5269 static int btrfs_find_actor(struct inode *inode, void *opaque)
5270 {
5271         struct btrfs_iget_args *args = opaque;
5272         return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5273                 args->root == BTRFS_I(inode)->root;
5274 }
5275
5276 static struct inode *btrfs_iget_locked(struct super_block *s,
5277                                        struct btrfs_key *location,
5278                                        struct btrfs_root *root)
5279 {
5280         struct inode *inode;
5281         struct btrfs_iget_args args;
5282         unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5283
5284         args.location = location;
5285         args.root = root;
5286
5287         inode = iget5_locked(s, hashval, btrfs_find_actor,
5288                              btrfs_init_locked_inode,
5289                              (void *)&args);
5290         return inode;
5291 }
5292
5293 /* Get an inode object given its location and corresponding root.
5294  * Returns in *is_new if the inode was read from disk
5295  */
5296 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5297                          struct btrfs_root *root, int *new)
5298 {
5299         struct inode *inode;
5300
5301         inode = btrfs_iget_locked(s, location, root);
5302         if (!inode)
5303                 return ERR_PTR(-ENOMEM);
5304
5305         if (inode->i_state & I_NEW) {
5306                 btrfs_read_locked_inode(inode);
5307                 if (!is_bad_inode(inode)) {
5308                         inode_tree_add(inode);
5309                         unlock_new_inode(inode);
5310                         if (new)
5311                                 *new = 1;
5312                 } else {
5313                         unlock_new_inode(inode);
5314                         iput(inode);
5315                         inode = ERR_PTR(-ESTALE);
5316                 }
5317         }
5318
5319         return inode;
5320 }
5321
5322 static struct inode *new_simple_dir(struct super_block *s,
5323                                     struct btrfs_key *key,
5324                                     struct btrfs_root *root)
5325 {
5326         struct inode *inode = new_inode(s);
5327
5328         if (!inode)
5329                 return ERR_PTR(-ENOMEM);
5330
5331         BTRFS_I(inode)->root = root;
5332         memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5333         set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5334
5335         inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5336         inode->i_op = &btrfs_dir_ro_inode_operations;
5337         inode->i_fop = &simple_dir_operations;
5338         inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5339         inode->i_mtime = CURRENT_TIME;
5340         inode->i_atime = inode->i_mtime;
5341         inode->i_ctime = inode->i_mtime;
5342         BTRFS_I(inode)->i_otime = inode->i_mtime;
5343
5344         return inode;
5345 }
5346
5347 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5348 {
5349         struct inode *inode;
5350         struct btrfs_root *root = BTRFS_I(dir)->root;
5351         struct btrfs_root *sub_root = root;
5352         struct btrfs_key location;
5353         int index;
5354         int ret = 0;
5355
5356         if (dentry->d_name.len > BTRFS_NAME_LEN)
5357                 return ERR_PTR(-ENAMETOOLONG);
5358
5359         ret = btrfs_inode_by_name(dir, dentry, &location);
5360         if (ret < 0)
5361                 return ERR_PTR(ret);
5362
5363         if (location.objectid == 0)
5364                 return ERR_PTR(-ENOENT);
5365
5366         if (location.type == BTRFS_INODE_ITEM_KEY) {
5367                 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5368                 return inode;
5369         }
5370
5371         BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5372
5373         index = srcu_read_lock(&root->fs_info->subvol_srcu);
5374         ret = fixup_tree_root_location(root, dir, dentry,
5375                                        &location, &sub_root);
5376         if (ret < 0) {
5377                 if (ret != -ENOENT)
5378                         inode = ERR_PTR(ret);
5379                 else
5380                         inode = new_simple_dir(dir->i_sb, &location, sub_root);
5381         } else {
5382                 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5383         }
5384         srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5385
5386         if (!IS_ERR(inode) && root != sub_root) {
5387                 down_read(&root->fs_info->cleanup_work_sem);
5388                 if (!(inode->i_sb->s_flags & MS_RDONLY))
5389                         ret = btrfs_orphan_cleanup(sub_root);
5390                 up_read(&root->fs_info->cleanup_work_sem);
5391                 if (ret) {
5392                         iput(inode);
5393                         inode = ERR_PTR(ret);
5394                 }
5395         }
5396
5397         return inode;
5398 }
5399
5400 static int btrfs_dentry_delete(const struct dentry *dentry)
5401 {
5402         struct btrfs_root *root;
5403         struct inode *inode = dentry->d_inode;
5404
5405         if (!inode && !IS_ROOT(dentry))
5406                 inode = dentry->d_parent->d_inode;
5407
5408         if (inode) {
5409                 root = BTRFS_I(inode)->root;
5410                 if (btrfs_root_refs(&root->root_item) == 0)
5411                         return 1;
5412
5413                 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5414                         return 1;
5415         }
5416         return 0;
5417 }
5418
5419 static void btrfs_dentry_release(struct dentry *dentry)
5420 {
5421         kfree(dentry->d_fsdata);
5422 }
5423
5424 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5425                                    unsigned int flags)
5426 {
5427         struct inode *inode;
5428
5429         inode = btrfs_lookup_dentry(dir, dentry);
5430         if (IS_ERR(inode)) {
5431                 if (PTR_ERR(inode) == -ENOENT)
5432                         inode = NULL;
5433                 else
5434                         return ERR_CAST(inode);
5435         }
5436
5437         return d_splice_alias(inode, dentry);
5438 }
5439
5440 unsigned char btrfs_filetype_table[] = {
5441         DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5442 };
5443
5444 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5445 {
5446         struct inode *inode = file_inode(file);
5447         struct btrfs_root *root = BTRFS_I(inode)->root;
5448         struct btrfs_item *item;
5449         struct btrfs_dir_item *di;
5450         struct btrfs_key key;
5451         struct btrfs_key found_key;
5452         struct btrfs_path *path;
5453         struct list_head ins_list;
5454         struct list_head del_list;
5455         int ret;
5456         struct extent_buffer *leaf;
5457         int slot;
5458         unsigned char d_type;
5459         int over = 0;
5460         u32 di_cur;
5461         u32 di_total;
5462         u32 di_len;
5463         int key_type = BTRFS_DIR_INDEX_KEY;
5464         char tmp_name[32];
5465         char *name_ptr;
5466         int name_len;
5467         int is_curr = 0;        /* ctx->pos points to the current index? */
5468
5469         /* FIXME, use a real flag for deciding about the key type */
5470         if (root->fs_info->tree_root == root)
5471                 key_type = BTRFS_DIR_ITEM_KEY;
5472
5473         if (!dir_emit_dots(file, ctx))
5474                 return 0;
5475
5476         path = btrfs_alloc_path();
5477         if (!path)
5478                 return -ENOMEM;
5479
5480         path->reada = 1;
5481
5482         if (key_type == BTRFS_DIR_INDEX_KEY) {
5483                 INIT_LIST_HEAD(&ins_list);
5484                 INIT_LIST_HEAD(&del_list);
5485                 btrfs_get_delayed_items(inode, &ins_list, &del_list);
5486         }
5487
5488         key.type = key_type;
5489         key.offset = ctx->pos;
5490         key.objectid = btrfs_ino(inode);
5491
5492         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5493         if (ret < 0)
5494                 goto err;
5495
5496         while (1) {
5497                 leaf = path->nodes[0];
5498                 slot = path->slots[0];
5499                 if (slot >= btrfs_header_nritems(leaf)) {
5500                         ret = btrfs_next_leaf(root, path);
5501                         if (ret < 0)
5502                                 goto err;
5503                         else if (ret > 0)
5504                                 break;
5505                         continue;
5506                 }
5507
5508                 item = btrfs_item_nr(slot);
5509                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5510
5511                 if (found_key.objectid != key.objectid)
5512                         break;
5513                 if (found_key.type != key_type)
5514                         break;
5515                 if (found_key.offset < ctx->pos)
5516                         goto next;
5517                 if (key_type == BTRFS_DIR_INDEX_KEY &&
5518                     btrfs_should_delete_dir_index(&del_list,
5519                                                   found_key.offset))
5520                         goto next;
5521
5522                 ctx->pos = found_key.offset;
5523                 is_curr = 1;
5524
5525                 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5526                 di_cur = 0;
5527                 di_total = btrfs_item_size(leaf, item);
5528
5529                 while (di_cur < di_total) {
5530                         struct btrfs_key location;
5531
5532                         if (verify_dir_item(root, leaf, di))
5533                                 break;
5534
5535                         name_len = btrfs_dir_name_len(leaf, di);
5536                         if (name_len <= sizeof(tmp_name)) {
5537                                 name_ptr = tmp_name;
5538                         } else {
5539                                 name_ptr = kmalloc(name_len, GFP_NOFS);
5540                                 if (!name_ptr) {
5541                                         ret = -ENOMEM;
5542                                         goto err;
5543                                 }
5544                         }
5545                         read_extent_buffer(leaf, name_ptr,
5546                                            (unsigned long)(di + 1), name_len);
5547
5548                         d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5549                         btrfs_dir_item_key_to_cpu(leaf, di, &location);
5550
5551
5552                         /* is this a reference to our own snapshot? If so
5553                          * skip it.
5554                          *
5555                          * In contrast to old kernels, we insert the snapshot's
5556                          * dir item and dir index after it has been created, so
5557                          * we won't find a reference to our own snapshot. We
5558                          * still keep the following code for backward
5559                          * compatibility.
5560                          */
5561                         if (location.type == BTRFS_ROOT_ITEM_KEY &&
5562                             location.objectid == root->root_key.objectid) {
5563                                 over = 0;
5564                                 goto skip;
5565                         }
5566                         over = !dir_emit(ctx, name_ptr, name_len,
5567                                        location.objectid, d_type);
5568
5569 skip:
5570                         if (name_ptr != tmp_name)
5571                                 kfree(name_ptr);
5572
5573                         if (over)
5574                                 goto nopos;
5575                         di_len = btrfs_dir_name_len(leaf, di) +
5576                                  btrfs_dir_data_len(leaf, di) + sizeof(*di);
5577                         di_cur += di_len;
5578                         di = (struct btrfs_dir_item *)((char *)di + di_len);
5579                 }
5580 next:
5581                 path->slots[0]++;
5582         }
5583
5584         if (key_type == BTRFS_DIR_INDEX_KEY) {
5585                 if (is_curr)
5586                         ctx->pos++;
5587                 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5588                 if (ret)
5589                         goto nopos;
5590         }
5591
5592         /* Reached end of directory/root. Bump pos past the last item. */
5593         ctx->pos++;
5594
5595         /*
5596          * Stop new entries from being returned after we return the last
5597          * entry.
5598          *
5599          * New directory entries are assigned a strictly increasing
5600          * offset.  This means that new entries created during readdir
5601          * are *guaranteed* to be seen in the future by that readdir.
5602          * This has broken buggy programs which operate on names as
5603          * they're returned by readdir.  Until we re-use freed offsets
5604          * we have this hack to stop new entries from being returned
5605          * under the assumption that they'll never reach this huge
5606          * offset.
5607          *
5608          * This is being careful not to overflow 32bit loff_t unless the
5609          * last entry requires it because doing so has broken 32bit apps
5610          * in the past.
5611          */
5612         if (key_type == BTRFS_DIR_INDEX_KEY) {
5613                 if (ctx->pos >= INT_MAX)
5614                         ctx->pos = LLONG_MAX;
5615                 else
5616                         ctx->pos = INT_MAX;
5617         }
5618 nopos:
5619         ret = 0;
5620 err:
5621         if (key_type == BTRFS_DIR_INDEX_KEY)
5622                 btrfs_put_delayed_items(&ins_list, &del_list);
5623         btrfs_free_path(path);
5624         return ret;
5625 }
5626
5627 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
5628 {
5629         struct btrfs_root *root = BTRFS_I(inode)->root;
5630         struct btrfs_trans_handle *trans;
5631         int ret = 0;
5632         bool nolock = false;
5633
5634         if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5635                 return 0;
5636
5637         if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
5638                 nolock = true;
5639
5640         if (wbc->sync_mode == WB_SYNC_ALL) {
5641                 if (nolock)
5642                         trans = btrfs_join_transaction_nolock(root);
5643                 else
5644                         trans = btrfs_join_transaction(root);
5645                 if (IS_ERR(trans))
5646                         return PTR_ERR(trans);
5647                 ret = btrfs_commit_transaction(trans, root);
5648         }
5649         return ret;
5650 }
5651
5652 /*
5653  * This is somewhat expensive, updating the tree every time the
5654  * inode changes.  But, it is most likely to find the inode in cache.
5655  * FIXME, needs more benchmarking...there are no reasons other than performance
5656  * to keep or drop this code.
5657  */
5658 static int btrfs_dirty_inode(struct inode *inode)
5659 {
5660         struct btrfs_root *root = BTRFS_I(inode)->root;
5661         struct btrfs_trans_handle *trans;
5662         int ret;
5663
5664         if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5665                 return 0;
5666
5667         trans = btrfs_join_transaction(root);
5668         if (IS_ERR(trans))
5669                 return PTR_ERR(trans);
5670
5671         ret = btrfs_update_inode(trans, root, inode);
5672         if (ret && ret == -ENOSPC) {
5673                 /* whoops, lets try again with the full transaction */
5674                 btrfs_end_transaction(trans, root);
5675                 trans = btrfs_start_transaction(root, 1);
5676                 if (IS_ERR(trans))
5677                         return PTR_ERR(trans);
5678
5679                 ret = btrfs_update_inode(trans, root, inode);
5680         }
5681         btrfs_end_transaction(trans, root);
5682         if (BTRFS_I(inode)->delayed_node)
5683                 btrfs_balance_delayed_items(root);
5684
5685         return ret;
5686 }
5687
5688 /*
5689  * This is a copy of file_update_time.  We need this so we can return error on
5690  * ENOSPC for updating the inode in the case of file write and mmap writes.
5691  */
5692 static int btrfs_update_time(struct inode *inode, struct timespec *now,
5693                              int flags)
5694 {
5695         struct btrfs_root *root = BTRFS_I(inode)->root;
5696
5697         if (btrfs_root_readonly(root))
5698                 return -EROFS;
5699
5700         if (flags & S_VERSION)
5701                 inode_inc_iversion(inode);
5702         if (flags & S_CTIME)
5703                 inode->i_ctime = *now;
5704         if (flags & S_MTIME)
5705                 inode->i_mtime = *now;
5706         if (flags & S_ATIME)
5707                 inode->i_atime = *now;
5708         return btrfs_dirty_inode(inode);
5709 }
5710
5711 /*
5712  * find the highest existing sequence number in a directory
5713  * and then set the in-memory index_cnt variable to reflect
5714  * free sequence numbers
5715  */
5716 static int btrfs_set_inode_index_count(struct inode *inode)
5717 {
5718         struct btrfs_root *root = BTRFS_I(inode)->root;
5719         struct btrfs_key key, found_key;
5720         struct btrfs_path *path;
5721         struct extent_buffer *leaf;
5722         int ret;
5723
5724         key.objectid = btrfs_ino(inode);
5725         key.type = BTRFS_DIR_INDEX_KEY;
5726         key.offset = (u64)-1;
5727
5728         path = btrfs_alloc_path();
5729         if (!path)
5730                 return -ENOMEM;
5731
5732         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5733         if (ret < 0)
5734                 goto out;
5735         /* FIXME: we should be able to handle this */
5736         if (ret == 0)
5737                 goto out;
5738         ret = 0;
5739
5740         /*
5741          * MAGIC NUMBER EXPLANATION:
5742          * since we search a directory based on f_pos we have to start at 2
5743          * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5744          * else has to start at 2
5745          */
5746         if (path->slots[0] == 0) {
5747                 BTRFS_I(inode)->index_cnt = 2;
5748                 goto out;
5749         }
5750
5751         path->slots[0]--;
5752
5753         leaf = path->nodes[0];
5754         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5755
5756         if (found_key.objectid != btrfs_ino(inode) ||
5757             found_key.type != BTRFS_DIR_INDEX_KEY) {
5758                 BTRFS_I(inode)->index_cnt = 2;
5759                 goto out;
5760         }
5761
5762         BTRFS_I(inode)->index_cnt = found_key.offset + 1;
5763 out:
5764         btrfs_free_path(path);
5765         return ret;
5766 }
5767
5768 /*
5769  * helper to find a free sequence number in a given directory.  This current
5770  * code is very simple, later versions will do smarter things in the btree
5771  */
5772 int btrfs_set_inode_index(struct inode *dir, u64 *index)
5773 {
5774         int ret = 0;
5775
5776         if (BTRFS_I(dir)->index_cnt == (u64)-1) {
5777                 ret = btrfs_inode_delayed_dir_index_count(dir);
5778                 if (ret) {
5779                         ret = btrfs_set_inode_index_count(dir);
5780                         if (ret)
5781                                 return ret;
5782                 }
5783         }
5784
5785         *index = BTRFS_I(dir)->index_cnt;
5786         BTRFS_I(dir)->index_cnt++;
5787
5788         return ret;
5789 }
5790
5791 static int btrfs_insert_inode_locked(struct inode *inode)
5792 {
5793         struct btrfs_iget_args args;
5794         args.location = &BTRFS_I(inode)->location;
5795         args.root = BTRFS_I(inode)->root;
5796
5797         return insert_inode_locked4(inode,
5798                    btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
5799                    btrfs_find_actor, &args);
5800 }
5801
5802 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5803                                      struct btrfs_root *root,
5804                                      struct inode *dir,
5805                                      const char *name, int name_len,
5806                                      u64 ref_objectid, u64 objectid,
5807                                      umode_t mode, u64 *index)
5808 {
5809         struct inode *inode;
5810         struct btrfs_inode_item *inode_item;
5811         struct btrfs_key *location;
5812         struct btrfs_path *path;
5813         struct btrfs_inode_ref *ref;
5814         struct btrfs_key key[2];
5815         u32 sizes[2];
5816         int nitems = name ? 2 : 1;
5817         unsigned long ptr;
5818         int ret;
5819
5820         path = btrfs_alloc_path();
5821         if (!path)
5822                 return ERR_PTR(-ENOMEM);
5823
5824         inode = new_inode(root->fs_info->sb);
5825         if (!inode) {
5826                 btrfs_free_path(path);
5827                 return ERR_PTR(-ENOMEM);
5828         }
5829
5830         /*
5831          * O_TMPFILE, set link count to 0, so that after this point,
5832          * we fill in an inode item with the correct link count.
5833          */
5834         if (!name)
5835                 set_nlink(inode, 0);
5836
5837         /*
5838          * we have to initialize this early, so we can reclaim the inode
5839          * number if we fail afterwards in this function.
5840          */
5841         inode->i_ino = objectid;
5842
5843         if (dir && name) {
5844                 trace_btrfs_inode_request(dir);
5845
5846                 ret = btrfs_set_inode_index(dir, index);
5847                 if (ret) {
5848                         btrfs_free_path(path);
5849                         iput(inode);
5850                         return ERR_PTR(ret);
5851                 }
5852         } else if (dir) {
5853                 *index = 0;
5854         }
5855         /*
5856          * index_cnt is ignored for everything but a dir,
5857          * btrfs_get_inode_index_count has an explanation for the magic
5858          * number
5859          */
5860         BTRFS_I(inode)->index_cnt = 2;
5861         BTRFS_I(inode)->dir_index = *index;
5862         BTRFS_I(inode)->root = root;
5863         BTRFS_I(inode)->generation = trans->transid;
5864         inode->i_generation = BTRFS_I(inode)->generation;
5865
5866         /*
5867          * We could have gotten an inode number from somebody who was fsynced
5868          * and then removed in this same transaction, so let's just set full
5869          * sync since it will be a full sync anyway and this will blow away the
5870          * old info in the log.
5871          */
5872         set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
5873
5874         key[0].objectid = objectid;
5875         key[0].type = BTRFS_INODE_ITEM_KEY;
5876         key[0].offset = 0;
5877
5878         sizes[0] = sizeof(struct btrfs_inode_item);
5879
5880         if (name) {
5881                 /*
5882                  * Start new inodes with an inode_ref. This is slightly more
5883                  * efficient for small numbers of hard links since they will
5884                  * be packed into one item. Extended refs will kick in if we
5885                  * add more hard links than can fit in the ref item.
5886                  */
5887                 key[1].objectid = objectid;
5888                 key[1].type = BTRFS_INODE_REF_KEY;
5889                 key[1].offset = ref_objectid;
5890
5891                 sizes[1] = name_len + sizeof(*ref);
5892         }
5893
5894         location = &BTRFS_I(inode)->location;
5895         location->objectid = objectid;
5896         location->offset = 0;
5897         location->type = BTRFS_INODE_ITEM_KEY;
5898
5899         ret = btrfs_insert_inode_locked(inode);
5900         if (ret < 0)
5901                 goto fail;
5902
5903         path->leave_spinning = 1;
5904         ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
5905         if (ret != 0)
5906                 goto fail_unlock;
5907
5908         inode_init_owner(inode, dir, mode);
5909         inode_set_bytes(inode, 0);
5910
5911         inode->i_mtime = CURRENT_TIME;
5912         inode->i_atime = inode->i_mtime;
5913         inode->i_ctime = inode->i_mtime;
5914         BTRFS_I(inode)->i_otime = inode->i_mtime;
5915
5916         inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5917                                   struct btrfs_inode_item);
5918         memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
5919                              sizeof(*inode_item));
5920         fill_inode_item(trans, path->nodes[0], inode_item, inode);
5921
5922         if (name) {
5923                 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
5924                                      struct btrfs_inode_ref);
5925                 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
5926                 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
5927                 ptr = (unsigned long)(ref + 1);
5928                 write_extent_buffer(path->nodes[0], name, ptr, name_len);
5929         }
5930
5931         btrfs_mark_buffer_dirty(path->nodes[0]);
5932         btrfs_free_path(path);
5933
5934         btrfs_inherit_iflags(inode, dir);
5935
5936         if (S_ISREG(mode)) {
5937                 if (btrfs_test_opt(root, NODATASUM))
5938                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
5939                 if (btrfs_test_opt(root, NODATACOW))
5940                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
5941                                 BTRFS_INODE_NODATASUM;
5942         }
5943
5944         inode_tree_add(inode);
5945
5946         trace_btrfs_inode_new(inode);
5947         btrfs_set_inode_last_trans(trans, inode);
5948
5949         btrfs_update_root_times(trans, root);
5950
5951         ret = btrfs_inode_inherit_props(trans, inode, dir);
5952         if (ret)
5953                 btrfs_err(root->fs_info,
5954                           "error inheriting props for ino %llu (root %llu): %d",
5955                           btrfs_ino(inode), root->root_key.objectid, ret);
5956
5957         return inode;
5958
5959 fail_unlock:
5960         unlock_new_inode(inode);
5961 fail:
5962         if (dir && name)
5963                 BTRFS_I(dir)->index_cnt--;
5964         btrfs_free_path(path);
5965         iput(inode);
5966         return ERR_PTR(ret);
5967 }
5968
5969 static inline u8 btrfs_inode_type(struct inode *inode)
5970 {
5971         return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
5972 }
5973
5974 /*
5975  * utility function to add 'inode' into 'parent_inode' with
5976  * a give name and a given sequence number.
5977  * if 'add_backref' is true, also insert a backref from the
5978  * inode to the parent directory.
5979  */
5980 int btrfs_add_link(struct btrfs_trans_handle *trans,
5981                    struct inode *parent_inode, struct inode *inode,
5982                    const char *name, int name_len, int add_backref, u64 index)
5983 {
5984         int ret = 0;
5985         struct btrfs_key key;
5986         struct btrfs_root *root = BTRFS_I(parent_inode)->root;
5987         u64 ino = btrfs_ino(inode);
5988         u64 parent_ino = btrfs_ino(parent_inode);
5989
5990         if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5991                 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
5992         } else {
5993                 key.objectid = ino;
5994                 key.type = BTRFS_INODE_ITEM_KEY;
5995                 key.offset = 0;
5996         }
5997
5998         if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5999                 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
6000                                          key.objectid, root->root_key.objectid,
6001                                          parent_ino, index, name, name_len);
6002         } else if (add_backref) {
6003                 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6004                                              parent_ino, index);
6005         }
6006
6007         /* Nothing to clean up yet */
6008         if (ret)
6009                 return ret;
6010
6011         ret = btrfs_insert_dir_item(trans, root, name, name_len,
6012                                     parent_inode, &key,
6013                                     btrfs_inode_type(inode), index);
6014         if (ret == -EEXIST || ret == -EOVERFLOW)
6015                 goto fail_dir_item;
6016         else if (ret) {
6017                 btrfs_abort_transaction(trans, root, ret);
6018                 return ret;
6019         }
6020
6021         btrfs_i_size_write(parent_inode, parent_inode->i_size +
6022                            name_len * 2);
6023         inode_inc_iversion(parent_inode);
6024         parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
6025         ret = btrfs_update_inode(trans, root, parent_inode);
6026         if (ret)
6027                 btrfs_abort_transaction(trans, root, ret);
6028         return ret;
6029
6030 fail_dir_item:
6031         if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6032                 u64 local_index;
6033                 int err;
6034                 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
6035                                  key.objectid, root->root_key.objectid,
6036                                  parent_ino, &local_index, name, name_len);
6037
6038         } else if (add_backref) {
6039                 u64 local_index;
6040                 int err;
6041
6042                 err = btrfs_del_inode_ref(trans, root, name, name_len,
6043                                           ino, parent_ino, &local_index);
6044         }
6045         return ret;
6046 }
6047
6048 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6049                             struct inode *dir, struct dentry *dentry,
6050                             struct inode *inode, int backref, u64 index)
6051 {
6052         int err = btrfs_add_link(trans, dir, inode,
6053                                  dentry->d_name.name, dentry->d_name.len,
6054                                  backref, index);
6055         if (err > 0)
6056                 err = -EEXIST;
6057         return err;
6058 }
6059
6060 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6061                         umode_t mode, dev_t rdev)
6062 {
6063         struct btrfs_trans_handle *trans;
6064         struct btrfs_root *root = BTRFS_I(dir)->root;
6065         struct inode *inode = NULL;
6066         int err;
6067         int drop_inode = 0;
6068         u64 objectid;
6069         u64 index = 0;
6070
6071         if (!new_valid_dev(rdev))
6072                 return -EINVAL;
6073
6074         /*
6075          * 2 for inode item and ref
6076          * 2 for dir items
6077          * 1 for xattr if selinux is on
6078          */
6079         trans = btrfs_start_transaction(root, 5);
6080         if (IS_ERR(trans))
6081                 return PTR_ERR(trans);
6082
6083         err = btrfs_find_free_ino(root, &objectid);
6084         if (err)
6085                 goto out_unlock;
6086
6087         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6088                                 dentry->d_name.len, btrfs_ino(dir), objectid,
6089                                 mode, &index);
6090         if (IS_ERR(inode)) {
6091                 err = PTR_ERR(inode);
6092                 goto out_unlock;
6093         }
6094
6095         /*
6096         * If the active LSM wants to access the inode during
6097         * d_instantiate it needs these. Smack checks to see
6098         * if the filesystem supports xattrs by looking at the
6099         * ops vector.
6100         */
6101         inode->i_op = &btrfs_special_inode_operations;
6102         init_special_inode(inode, inode->i_mode, rdev);
6103
6104         err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6105         if (err)
6106                 goto out_unlock_inode;
6107
6108         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6109         if (err) {
6110                 goto out_unlock_inode;
6111         } else {
6112                 btrfs_update_inode(trans, root, inode);
6113                 unlock_new_inode(inode);
6114                 d_instantiate(dentry, inode);
6115         }
6116
6117 out_unlock:
6118         btrfs_end_transaction(trans, root);
6119         btrfs_balance_delayed_items(root);
6120         btrfs_btree_balance_dirty(root);
6121         if (drop_inode) {
6122                 inode_dec_link_count(inode);
6123                 iput(inode);
6124         }
6125         return err;
6126
6127 out_unlock_inode:
6128         drop_inode = 1;
6129         unlock_new_inode(inode);
6130         goto out_unlock;
6131
6132 }
6133
6134 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6135                         umode_t mode, bool excl)
6136 {
6137         struct btrfs_trans_handle *trans;
6138         struct btrfs_root *root = BTRFS_I(dir)->root;
6139         struct inode *inode = NULL;
6140         int drop_inode_on_err = 0;
6141         int err;
6142         u64 objectid;
6143         u64 index = 0;
6144
6145         /*
6146          * 2 for inode item and ref
6147          * 2 for dir items
6148          * 1 for xattr if selinux is on
6149          */
6150         trans = btrfs_start_transaction(root, 5);
6151         if (IS_ERR(trans))
6152                 return PTR_ERR(trans);
6153
6154         err = btrfs_find_free_ino(root, &objectid);
6155         if (err)
6156                 goto out_unlock;
6157
6158         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6159                                 dentry->d_name.len, btrfs_ino(dir), objectid,
6160                                 mode, &index);
6161         if (IS_ERR(inode)) {
6162                 err = PTR_ERR(inode);
6163                 goto out_unlock;
6164         }
6165         drop_inode_on_err = 1;
6166         /*
6167         * If the active LSM wants to access the inode during
6168         * d_instantiate it needs these. Smack checks to see
6169         * if the filesystem supports xattrs by looking at the
6170         * ops vector.
6171         */
6172         inode->i_fop = &btrfs_file_operations;
6173         inode->i_op = &btrfs_file_inode_operations;
6174         inode->i_mapping->a_ops = &btrfs_aops;
6175         inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
6176
6177         err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6178         if (err)
6179                 goto out_unlock_inode;
6180
6181         err = btrfs_update_inode(trans, root, inode);
6182         if (err)
6183                 goto out_unlock_inode;
6184
6185         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6186         if (err)
6187                 goto out_unlock_inode;
6188
6189         BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6190         unlock_new_inode(inode);
6191         d_instantiate(dentry, inode);
6192
6193 out_unlock:
6194         btrfs_end_transaction(trans, root);
6195         if (err && drop_inode_on_err) {
6196                 inode_dec_link_count(inode);
6197                 iput(inode);
6198         }
6199         btrfs_balance_delayed_items(root);
6200         btrfs_btree_balance_dirty(root);
6201         return err;
6202
6203 out_unlock_inode:
6204         unlock_new_inode(inode);
6205         goto out_unlock;
6206
6207 }
6208
6209 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6210                       struct dentry *dentry)
6211 {
6212         struct btrfs_trans_handle *trans;
6213         struct btrfs_root *root = BTRFS_I(dir)->root;
6214         struct inode *inode = old_dentry->d_inode;
6215         u64 index;
6216         int err;
6217         int drop_inode = 0;
6218
6219         /* do not allow sys_link's with other subvols of the same device */
6220         if (root->objectid != BTRFS_I(inode)->root->objectid)
6221                 return -EXDEV;
6222
6223         if (inode->i_nlink >= BTRFS_LINK_MAX)
6224                 return -EMLINK;
6225
6226         err = btrfs_set_inode_index(dir, &index);
6227         if (err)
6228                 goto fail;
6229
6230         /*
6231          * 2 items for inode and inode ref
6232          * 2 items for dir items
6233          * 1 item for parent inode
6234          */
6235         trans = btrfs_start_transaction(root, 5);
6236         if (IS_ERR(trans)) {
6237                 err = PTR_ERR(trans);
6238                 goto fail;
6239         }
6240
6241         /* There are several dir indexes for this inode, clear the cache. */
6242         BTRFS_I(inode)->dir_index = 0ULL;
6243         inc_nlink(inode);
6244         inode_inc_iversion(inode);
6245         inode->i_ctime = CURRENT_TIME;
6246         ihold(inode);
6247         set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6248
6249         err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
6250
6251         if (err) {
6252                 drop_inode = 1;
6253         } else {
6254                 struct dentry *parent = dentry->d_parent;
6255                 err = btrfs_update_inode(trans, root, inode);
6256                 if (err)
6257                         goto fail;
6258                 if (inode->i_nlink == 1) {
6259                         /*
6260                          * If new hard link count is 1, it's a file created
6261                          * with open(2) O_TMPFILE flag.
6262                          */
6263                         err = btrfs_orphan_del(trans, inode);
6264                         if (err)
6265                                 goto fail;
6266                 }
6267                 d_instantiate(dentry, inode);
6268                 btrfs_log_new_name(trans, inode, NULL, parent);
6269         }
6270
6271         btrfs_end_transaction(trans, root);
6272         btrfs_balance_delayed_items(root);
6273 fail:
6274         if (drop_inode) {
6275                 inode_dec_link_count(inode);
6276                 iput(inode);
6277         }
6278         btrfs_btree_balance_dirty(root);
6279         return err;
6280 }
6281
6282 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6283 {
6284         struct inode *inode = NULL;
6285         struct btrfs_trans_handle *trans;
6286         struct btrfs_root *root = BTRFS_I(dir)->root;
6287         int err = 0;
6288         int drop_on_err = 0;
6289         u64 objectid = 0;
6290         u64 index = 0;
6291
6292         /*
6293          * 2 items for inode and ref
6294          * 2 items for dir items
6295          * 1 for xattr if selinux is on
6296          */
6297         trans = btrfs_start_transaction(root, 5);
6298         if (IS_ERR(trans))
6299                 return PTR_ERR(trans);
6300
6301         err = btrfs_find_free_ino(root, &objectid);
6302         if (err)
6303                 goto out_fail;
6304
6305         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6306                                 dentry->d_name.len, btrfs_ino(dir), objectid,
6307                                 S_IFDIR | mode, &index);
6308         if (IS_ERR(inode)) {
6309                 err = PTR_ERR(inode);
6310                 goto out_fail;
6311         }
6312
6313         drop_on_err = 1;
6314         /* these must be set before we unlock the inode */
6315         inode->i_op = &btrfs_dir_inode_operations;
6316         inode->i_fop = &btrfs_dir_file_operations;
6317
6318         err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6319         if (err)
6320                 goto out_fail_inode;
6321
6322         btrfs_i_size_write(inode, 0);
6323         err = btrfs_update_inode(trans, root, inode);
6324         if (err)
6325                 goto out_fail_inode;
6326
6327         err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6328                              dentry->d_name.len, 0, index);
6329         if (err)
6330                 goto out_fail_inode;
6331
6332         d_instantiate(dentry, inode);
6333         /*
6334          * mkdir is special.  We're unlocking after we call d_instantiate
6335          * to avoid a race with nfsd calling d_instantiate.
6336          */
6337         unlock_new_inode(inode);
6338         drop_on_err = 0;
6339
6340 out_fail:
6341         btrfs_end_transaction(trans, root);
6342         if (drop_on_err) {
6343                 inode_dec_link_count(inode);
6344                 iput(inode);
6345         }
6346         btrfs_balance_delayed_items(root);
6347         btrfs_btree_balance_dirty(root);
6348         return err;
6349
6350 out_fail_inode:
6351         unlock_new_inode(inode);
6352         goto out_fail;
6353 }
6354
6355 /* Find next extent map of a given extent map, caller needs to ensure locks */
6356 static struct extent_map *next_extent_map(struct extent_map *em)
6357 {
6358         struct rb_node *next;
6359
6360         next = rb_next(&em->rb_node);
6361         if (!next)
6362                 return NULL;
6363         return container_of(next, struct extent_map, rb_node);
6364 }
6365
6366 static struct extent_map *prev_extent_map(struct extent_map *em)
6367 {
6368         struct rb_node *prev;
6369
6370         prev = rb_prev(&em->rb_node);
6371         if (!prev)
6372                 return NULL;
6373         return container_of(prev, struct extent_map, rb_node);
6374 }
6375
6376 /* helper for btfs_get_extent.  Given an existing extent in the tree,
6377  * the existing extent is the nearest extent to map_start,
6378  * and an extent that you want to insert, deal with overlap and insert
6379  * the best fitted new extent into the tree.
6380  */
6381 static int merge_extent_mapping(struct extent_map_tree *em_tree,
6382                                 struct extent_map *existing,
6383                                 struct extent_map *em,
6384                                 u64 map_start)
6385 {
6386         struct extent_map *prev;
6387         struct extent_map *next;
6388         u64 start;
6389         u64 end;
6390         u64 start_diff;
6391
6392         BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
6393
6394         if (existing->start > map_start) {
6395                 next = existing;
6396                 prev = prev_extent_map(next);
6397         } else {
6398                 prev = existing;
6399                 next = next_extent_map(prev);
6400         }
6401
6402         start = prev ? extent_map_end(prev) : em->start;
6403         start = max_t(u64, start, em->start);
6404         end = next ? next->start : extent_map_end(em);
6405         end = min_t(u64, end, extent_map_end(em));
6406         start_diff = start - em->start;
6407         em->start = start;
6408         em->len = end - start;
6409         if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6410             !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
6411                 em->block_start += start_diff;
6412                 em->block_len -= start_diff;
6413         }
6414         return add_extent_mapping(em_tree, em, 0);
6415 }
6416
6417 static noinline int uncompress_inline(struct btrfs_path *path,
6418                                       struct inode *inode, struct page *page,
6419                                       size_t pg_offset, u64 extent_offset,
6420                                       struct btrfs_file_extent_item *item)
6421 {
6422         int ret;
6423         struct extent_buffer *leaf = path->nodes[0];
6424         char *tmp;
6425         size_t max_size;
6426         unsigned long inline_size;
6427         unsigned long ptr;
6428         int compress_type;
6429
6430         WARN_ON(pg_offset != 0);
6431         compress_type = btrfs_file_extent_compression(leaf, item);
6432         max_size = btrfs_file_extent_ram_bytes(leaf, item);
6433         inline_size = btrfs_file_extent_inline_item_len(leaf,
6434                                         btrfs_item_nr(path->slots[0]));
6435         tmp = kmalloc(inline_size, GFP_NOFS);
6436         if (!tmp)
6437                 return -ENOMEM;
6438         ptr = btrfs_file_extent_inline_start(item);
6439
6440         read_extent_buffer(leaf, tmp, ptr, inline_size);
6441
6442         max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
6443         ret = btrfs_decompress(compress_type, tmp, page,
6444                                extent_offset, inline_size, max_size);
6445         kfree(tmp);
6446         return ret;
6447 }
6448
6449 /*
6450  * a bit scary, this does extent mapping from logical file offset to the disk.
6451  * the ugly parts come from merging extents from the disk with the in-ram
6452  * representation.  This gets more complex because of the data=ordered code,
6453  * where the in-ram extents might be locked pending data=ordered completion.
6454  *
6455  * This also copies inline extents directly into the page.
6456  */
6457
6458 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
6459                                     size_t pg_offset, u64 start, u64 len,
6460                                     int create)
6461 {
6462         int ret;
6463         int err = 0;
6464         u64 extent_start = 0;
6465         u64 extent_end = 0;
6466         u64 objectid = btrfs_ino(inode);
6467         u32 found_type;
6468         struct btrfs_path *path = NULL;
6469         struct btrfs_root *root = BTRFS_I(inode)->root;
6470         struct btrfs_file_extent_item *item;
6471         struct extent_buffer *leaf;
6472         struct btrfs_key found_key;
6473         struct extent_map *em = NULL;
6474         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
6475         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6476         struct btrfs_trans_handle *trans = NULL;
6477         const bool new_inline = !page || create;
6478
6479 again:
6480         read_lock(&em_tree->lock);
6481         em = lookup_extent_mapping(em_tree, start, len);
6482         if (em)
6483                 em->bdev = root->fs_info->fs_devices->latest_bdev;
6484         read_unlock(&em_tree->lock);
6485
6486         if (em) {
6487                 if (em->start > start || em->start + em->len <= start)
6488                         free_extent_map(em);
6489                 else if (em->block_start == EXTENT_MAP_INLINE && page)
6490                         free_extent_map(em);
6491                 else
6492                         goto out;
6493         }
6494         em = alloc_extent_map();
6495         if (!em) {
6496                 err = -ENOMEM;
6497                 goto out;
6498         }
6499         em->bdev = root->fs_info->fs_devices->latest_bdev;
6500         em->start = EXTENT_MAP_HOLE;
6501         em->orig_start = EXTENT_MAP_HOLE;
6502         em->len = (u64)-1;
6503         em->block_len = (u64)-1;
6504
6505         if (!path) {
6506                 path = btrfs_alloc_path();
6507                 if (!path) {
6508                         err = -ENOMEM;
6509                         goto out;
6510                 }
6511                 /*
6512                  * Chances are we'll be called again, so go ahead and do
6513                  * readahead
6514                  */
6515                 path->reada = 1;
6516         }
6517
6518         ret = btrfs_lookup_file_extent(trans, root, path,
6519                                        objectid, start, trans != NULL);
6520         if (ret < 0) {
6521                 err = ret;
6522                 goto out;
6523         }
6524
6525         if (ret != 0) {
6526                 if (path->slots[0] == 0)
6527                         goto not_found;
6528                 path->slots[0]--;
6529         }
6530
6531         leaf = path->nodes[0];
6532         item = btrfs_item_ptr(leaf, path->slots[0],
6533                               struct btrfs_file_extent_item);
6534         /* are we inside the extent that was found? */
6535         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6536         found_type = found_key.type;
6537         if (found_key.objectid != objectid ||
6538             found_type != BTRFS_EXTENT_DATA_KEY) {
6539                 /*
6540                  * If we backup past the first extent we want to move forward
6541                  * and see if there is an extent in front of us, otherwise we'll
6542                  * say there is a hole for our whole search range which can
6543                  * cause problems.
6544                  */
6545                 extent_end = start;
6546                 goto next;
6547         }
6548
6549         found_type = btrfs_file_extent_type(leaf, item);
6550         extent_start = found_key.offset;
6551         if (found_type == BTRFS_FILE_EXTENT_REG ||
6552             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6553                 extent_end = extent_start +
6554                        btrfs_file_extent_num_bytes(leaf, item);
6555         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6556                 size_t size;
6557                 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6558                 extent_end = ALIGN(extent_start + size, root->sectorsize);
6559         }
6560 next:
6561         if (start >= extent_end) {
6562                 path->slots[0]++;
6563                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6564                         ret = btrfs_next_leaf(root, path);
6565                         if (ret < 0) {
6566                                 err = ret;
6567                                 goto out;
6568                         }
6569                         if (ret > 0)
6570                                 goto not_found;
6571                         leaf = path->nodes[0];
6572                 }
6573                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6574                 if (found_key.objectid != objectid ||
6575                     found_key.type != BTRFS_EXTENT_DATA_KEY)
6576                         goto not_found;
6577                 if (start + len <= found_key.offset)
6578                         goto not_found;
6579                 if (start > found_key.offset)
6580                         goto next;
6581                 em->start = start;
6582                 em->orig_start = start;
6583                 em->len = found_key.offset - start;
6584                 goto not_found_em;
6585         }
6586
6587         btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6588
6589         if (found_type == BTRFS_FILE_EXTENT_REG ||
6590             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6591                 goto insert;
6592         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6593                 unsigned long ptr;
6594                 char *map;
6595                 size_t size;
6596                 size_t extent_offset;
6597                 size_t copy_size;
6598
6599                 if (new_inline)
6600                         goto out;
6601
6602                 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6603                 extent_offset = page_offset(page) + pg_offset - extent_start;
6604                 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
6605                                 size - extent_offset);
6606                 em->start = extent_start + extent_offset;
6607                 em->len = ALIGN(copy_size, root->sectorsize);
6608                 em->orig_block_len = em->len;
6609                 em->orig_start = em->start;
6610                 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6611                 if (create == 0 && !PageUptodate(page)) {
6612                         if (btrfs_file_extent_compression(leaf, item) !=
6613                             BTRFS_COMPRESS_NONE) {
6614                                 ret = uncompress_inline(path, inode, page,
6615                                                         pg_offset,
6616                                                         extent_offset, item);
6617                                 if (ret) {
6618                                         err = ret;
6619                                         goto out;
6620                                 }
6621                         } else {
6622                                 map = kmap(page);
6623                                 read_extent_buffer(leaf, map + pg_offset, ptr,
6624                                                    copy_size);
6625                                 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6626                                         memset(map + pg_offset + copy_size, 0,
6627                                                PAGE_CACHE_SIZE - pg_offset -
6628                                                copy_size);
6629                                 }
6630                                 kunmap(page);
6631                         }
6632                         flush_dcache_page(page);
6633                 } else if (create && PageUptodate(page)) {
6634                         BUG();
6635                         if (!trans) {
6636                                 kunmap(page);
6637                                 free_extent_map(em);
6638                                 em = NULL;
6639
6640                                 btrfs_release_path(path);
6641                                 trans = btrfs_join_transaction(root);
6642
6643                                 if (IS_ERR(trans))
6644                                         return ERR_CAST(trans);
6645                                 goto again;
6646                         }
6647                         map = kmap(page);
6648                         write_extent_buffer(leaf, map + pg_offset, ptr,
6649                                             copy_size);
6650                         kunmap(page);
6651                         btrfs_mark_buffer_dirty(leaf);
6652                 }
6653                 set_extent_uptodate(io_tree, em->start,
6654                                     extent_map_end(em) - 1, NULL, GFP_NOFS);
6655                 goto insert;
6656         }
6657 not_found:
6658         em->start = start;
6659         em->orig_start = start;
6660         em->len = len;
6661 not_found_em:
6662         em->block_start = EXTENT_MAP_HOLE;
6663         set_bit(EXTENT_FLAG_VACANCY, &em->flags);
6664 insert:
6665         btrfs_release_path(path);
6666         if (em->start > start || extent_map_end(em) <= start) {
6667                 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
6668                         em->start, em->len, start, len);
6669                 err = -EIO;
6670                 goto out;
6671         }
6672
6673         err = 0;
6674         write_lock(&em_tree->lock);
6675         ret = add_extent_mapping(em_tree, em, 0);
6676         /* it is possible that someone inserted the extent into the tree
6677          * while we had the lock dropped.  It is also possible that
6678          * an overlapping map exists in the tree
6679          */
6680         if (ret == -EEXIST) {
6681                 struct extent_map *existing;
6682
6683                 ret = 0;
6684
6685                 existing = search_extent_mapping(em_tree, start, len);
6686                 /*
6687                  * existing will always be non-NULL, since there must be
6688                  * extent causing the -EEXIST.
6689                  */
6690                 if (start >= extent_map_end(existing) ||
6691                     start <= existing->start) {
6692                         /*
6693                          * The existing extent map is the one nearest to
6694                          * the [start, start + len) range which overlaps
6695                          */
6696                         err = merge_extent_mapping(em_tree, existing,
6697                                                    em, start);
6698                         free_extent_map(existing);
6699                         if (err) {
6700                                 free_extent_map(em);
6701                                 em = NULL;
6702                         }
6703                 } else {
6704                         free_extent_map(em);
6705                         em = existing;
6706                         err = 0;
6707                 }
6708         }
6709         write_unlock(&em_tree->lock);
6710 out:
6711
6712         trace_btrfs_get_extent(root, em);
6713
6714         if (path)
6715                 btrfs_free_path(path);
6716         if (trans) {
6717                 ret = btrfs_end_transaction(trans, root);
6718                 if (!err)
6719                         err = ret;
6720         }
6721         if (err) {
6722                 free_extent_map(em);
6723                 return ERR_PTR(err);
6724         }
6725         BUG_ON(!em); /* Error is always set */
6726         return em;
6727 }
6728
6729 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
6730                                            size_t pg_offset, u64 start, u64 len,
6731                                            int create)
6732 {
6733         struct extent_map *em;
6734         struct extent_map *hole_em = NULL;
6735         u64 range_start = start;
6736         u64 end;
6737         u64 found;
6738         u64 found_end;
6739         int err = 0;
6740
6741         em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6742         if (IS_ERR(em))
6743                 return em;
6744         if (em) {
6745                 /*
6746                  * if our em maps to
6747                  * -  a hole or
6748                  * -  a pre-alloc extent,
6749                  * there might actually be delalloc bytes behind it.
6750                  */
6751                 if (em->block_start != EXTENT_MAP_HOLE &&
6752                     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6753                         return em;
6754                 else
6755                         hole_em = em;
6756         }
6757
6758         /* check to see if we've wrapped (len == -1 or similar) */
6759         end = start + len;
6760         if (end < start)
6761                 end = (u64)-1;
6762         else
6763                 end -= 1;
6764
6765         em = NULL;
6766
6767         /* ok, we didn't find anything, lets look for delalloc */
6768         found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
6769                                  end, len, EXTENT_DELALLOC, 1);
6770         found_end = range_start + found;
6771         if (found_end < range_start)
6772                 found_end = (u64)-1;
6773
6774         /*
6775          * we didn't find anything useful, return
6776          * the original results from get_extent()
6777          */
6778         if (range_start > end || found_end <= start) {
6779                 em = hole_em;
6780                 hole_em = NULL;
6781                 goto out;
6782         }
6783
6784         /* adjust the range_start to make sure it doesn't
6785          * go backwards from the start they passed in
6786          */
6787         range_start = max(start, range_start);
6788         found = found_end - range_start;
6789
6790         if (found > 0) {
6791                 u64 hole_start = start;
6792                 u64 hole_len = len;
6793
6794                 em = alloc_extent_map();
6795                 if (!em) {
6796                         err = -ENOMEM;
6797                         goto out;
6798                 }
6799                 /*
6800                  * when btrfs_get_extent can't find anything it
6801                  * returns one huge hole
6802                  *
6803                  * make sure what it found really fits our range, and
6804                  * adjust to make sure it is based on the start from
6805                  * the caller
6806                  */
6807                 if (hole_em) {
6808                         u64 calc_end = extent_map_end(hole_em);
6809
6810                         if (calc_end <= start || (hole_em->start > end)) {
6811                                 free_extent_map(hole_em);
6812                                 hole_em = NULL;
6813                         } else {
6814                                 hole_start = max(hole_em->start, start);
6815                                 hole_len = calc_end - hole_start;
6816                         }
6817                 }
6818                 em->bdev = NULL;
6819                 if (hole_em && range_start > hole_start) {
6820                         /* our hole starts before our delalloc, so we
6821                          * have to return just the parts of the hole
6822                          * that go until  the delalloc starts
6823                          */
6824                         em->len = min(hole_len,
6825                                       range_start - hole_start);
6826                         em->start = hole_start;
6827                         em->orig_start = hole_start;
6828                         /*
6829                          * don't adjust block start at all,
6830                          * it is fixed at EXTENT_MAP_HOLE
6831                          */
6832                         em->block_start = hole_em->block_start;
6833                         em->block_len = hole_len;
6834                         if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6835                                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
6836                 } else {
6837                         em->start = range_start;
6838                         em->len = found;
6839                         em->orig_start = range_start;
6840                         em->block_start = EXTENT_MAP_DELALLOC;
6841                         em->block_len = found;
6842                 }
6843         } else if (hole_em) {
6844                 return hole_em;
6845         }
6846 out:
6847
6848         free_extent_map(hole_em);
6849         if (err) {
6850                 free_extent_map(em);
6851                 return ERR_PTR(err);
6852         }
6853         return em;
6854 }
6855
6856 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
6857                                                   u64 start, u64 len)
6858 {
6859         struct btrfs_root *root = BTRFS_I(inode)->root;
6860         struct extent_map *em;
6861         struct btrfs_key ins;
6862         u64 alloc_hint;
6863         int ret;
6864
6865         alloc_hint = get_extent_allocation_hint(inode, start, len);
6866         ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
6867                                    alloc_hint, &ins, 1, 1);
6868         if (ret)
6869                 return ERR_PTR(ret);
6870
6871         em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
6872                               ins.offset, ins.offset, ins.offset, 0);
6873         if (IS_ERR(em)) {
6874                 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
6875                 return em;
6876         }
6877
6878         ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
6879                                            ins.offset, ins.offset, 0);
6880         if (ret) {
6881                 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
6882                 free_extent_map(em);
6883                 return ERR_PTR(ret);
6884         }
6885
6886         return em;
6887 }
6888
6889 /*
6890  * returns 1 when the nocow is safe, < 1 on error, 0 if the
6891  * block must be cow'd
6892  */
6893 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
6894                               u64 *orig_start, u64 *orig_block_len,
6895                               u64 *ram_bytes)
6896 {
6897         struct btrfs_trans_handle *trans;
6898         struct btrfs_path *path;
6899         int ret;
6900         struct extent_buffer *leaf;
6901         struct btrfs_root *root = BTRFS_I(inode)->root;
6902         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6903         struct btrfs_file_extent_item *fi;
6904         struct btrfs_key key;
6905         u64 disk_bytenr;
6906         u64 backref_offset;
6907         u64 extent_end;
6908         u64 num_bytes;
6909         int slot;
6910         int found_type;
6911         bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
6912
6913         path = btrfs_alloc_path();
6914         if (!path)
6915                 return -ENOMEM;
6916
6917         ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
6918                                        offset, 0);
6919         if (ret < 0)
6920                 goto out;
6921
6922         slot = path->slots[0];
6923         if (ret == 1) {
6924                 if (slot == 0) {
6925                         /* can't find the item, must cow */
6926                         ret = 0;
6927                         goto out;
6928                 }
6929                 slot--;
6930         }
6931         ret = 0;
6932         leaf = path->nodes[0];
6933         btrfs_item_key_to_cpu(leaf, &key, slot);
6934         if (key.objectid != btrfs_ino(inode) ||
6935             key.type != BTRFS_EXTENT_DATA_KEY) {
6936                 /* not our file or wrong item type, must cow */
6937                 goto out;
6938         }
6939
6940         if (key.offset > offset) {
6941                 /* Wrong offset, must cow */
6942                 goto out;
6943         }
6944
6945         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6946         found_type = btrfs_file_extent_type(leaf, fi);
6947         if (found_type != BTRFS_FILE_EXTENT_REG &&
6948             found_type != BTRFS_FILE_EXTENT_PREALLOC) {
6949                 /* not a regular extent, must cow */
6950                 goto out;
6951         }
6952
6953         if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
6954                 goto out;
6955
6956         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
6957         if (extent_end <= offset)
6958                 goto out;
6959
6960         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
6961         if (disk_bytenr == 0)
6962                 goto out;
6963
6964         if (btrfs_file_extent_compression(leaf, fi) ||
6965             btrfs_file_extent_encryption(leaf, fi) ||
6966             btrfs_file_extent_other_encoding(leaf, fi))
6967                 goto out;
6968
6969         backref_offset = btrfs_file_extent_offset(leaf, fi);
6970
6971         if (orig_start) {
6972                 *orig_start = key.offset - backref_offset;
6973                 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
6974                 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
6975         }
6976
6977         if (btrfs_extent_readonly(root, disk_bytenr))
6978                 goto out;
6979
6980         num_bytes = min(offset + *len, extent_end) - offset;
6981         if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6982                 u64 range_end;
6983
6984                 range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
6985                 ret = test_range_bit(io_tree, offset, range_end,
6986                                      EXTENT_DELALLOC, 0, NULL);
6987                 if (ret) {
6988                         ret = -EAGAIN;
6989                         goto out;
6990                 }
6991         }
6992
6993         btrfs_release_path(path);
6994
6995         /*
6996          * look for other files referencing this extent, if we
6997          * find any we must cow
6998          */
6999         trans = btrfs_join_transaction(root);
7000         if (IS_ERR(trans)) {
7001                 ret = 0;
7002                 goto out;
7003         }
7004
7005         ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
7006                                     key.offset - backref_offset, disk_bytenr);
7007         btrfs_end_transaction(trans, root);
7008         if (ret) {
7009                 ret = 0;
7010                 goto out;
7011         }
7012
7013         /*
7014          * adjust disk_bytenr and num_bytes to cover just the bytes
7015          * in this extent we are about to write.  If there
7016          * are any csums in that range we have to cow in order
7017          * to keep the csums correct
7018          */
7019         disk_bytenr += backref_offset;
7020         disk_bytenr += offset - key.offset;
7021         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
7022                                 goto out;
7023         /*
7024          * all of the above have passed, it is safe to overwrite this extent
7025          * without cow
7026          */
7027         *len = num_bytes;
7028         ret = 1;
7029 out:
7030         btrfs_free_path(path);
7031         return ret;
7032 }
7033
7034 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7035 {
7036         struct radix_tree_root *root = &inode->i_mapping->page_tree;
7037         int found = false;
7038         void **pagep = NULL;
7039         struct page *page = NULL;
7040         int start_idx;
7041         int end_idx;
7042
7043         start_idx = start >> PAGE_CACHE_SHIFT;
7044
7045         /*
7046          * end is the last byte in the last page.  end == start is legal
7047          */
7048         end_idx = end >> PAGE_CACHE_SHIFT;
7049
7050         rcu_read_lock();
7051
7052         /* Most of the code in this while loop is lifted from
7053          * find_get_page.  It's been modified to begin searching from a
7054          * page and return just the first page found in that range.  If the
7055          * found idx is less than or equal to the end idx then we know that
7056          * a page exists.  If no pages are found or if those pages are
7057          * outside of the range then we're fine (yay!) */
7058         while (page == NULL &&
7059                radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7060                 page = radix_tree_deref_slot(pagep);
7061                 if (unlikely(!page))
7062                         break;
7063
7064                 if (radix_tree_exception(page)) {
7065                         if (radix_tree_deref_retry(page)) {
7066                                 page = NULL;
7067                                 continue;
7068                         }
7069                         /*
7070                          * Otherwise, shmem/tmpfs must be storing a swap entry
7071                          * here as an exceptional entry: so return it without
7072                          * attempting to raise page count.
7073                          */
7074                         page = NULL;
7075                         break; /* TODO: Is this relevant for this use case? */
7076                 }
7077
7078                 if (!page_cache_get_speculative(page)) {
7079                         page = NULL;
7080                         continue;
7081                 }
7082
7083                 /*
7084                  * Has the page moved?
7085                  * This is part of the lockless pagecache protocol. See
7086                  * include/linux/pagemap.h for details.
7087                  */
7088                 if (unlikely(page != *pagep)) {
7089                         page_cache_release(page);
7090                         page = NULL;
7091                 }
7092         }
7093
7094         if (page) {
7095                 if (page->index <= end_idx)
7096                         found = true;
7097                 page_cache_release(page);
7098         }
7099
7100         rcu_read_unlock();
7101         return found;
7102 }
7103
7104 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7105                               struct extent_state **cached_state, int writing)
7106 {
7107         struct btrfs_ordered_extent *ordered;
7108         int ret = 0;
7109
7110         while (1) {
7111                 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7112                                  0, cached_state);
7113                 /*
7114                  * We're concerned with the entire range that we're going to be
7115                  * doing DIO to, so we need to make sure theres no ordered
7116                  * extents in this range.
7117                  */
7118                 ordered = btrfs_lookup_ordered_range(inode, lockstart,
7119                                                      lockend - lockstart + 1);
7120
7121                 /*
7122                  * We need to make sure there are no buffered pages in this
7123                  * range either, we could have raced between the invalidate in
7124                  * generic_file_direct_write and locking the extent.  The
7125                  * invalidate needs to happen so that reads after a write do not
7126                  * get stale data.
7127                  */
7128                 if (!ordered &&
7129                     (!writing ||
7130                      !btrfs_page_exists_in_range(inode, lockstart, lockend)))
7131                         break;
7132
7133                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7134                                      cached_state, GFP_NOFS);
7135
7136                 if (ordered) {
7137                         btrfs_start_ordered_extent(inode, ordered, 1);
7138                         btrfs_put_ordered_extent(ordered);
7139                 } else {
7140                         /* Screw you mmap */
7141                         ret = btrfs_fdatawrite_range(inode, lockstart, lockend);
7142                         if (ret)
7143                                 break;
7144                         ret = filemap_fdatawait_range(inode->i_mapping,
7145                                                       lockstart,
7146                                                       lockend);
7147                         if (ret)
7148                                 break;
7149
7150                         /*
7151                          * If we found a page that couldn't be invalidated just
7152                          * fall back to buffered.
7153                          */
7154                         ret = invalidate_inode_pages2_range(inode->i_mapping,
7155                                         lockstart >> PAGE_CACHE_SHIFT,
7156                                         lockend >> PAGE_CACHE_SHIFT);
7157                         if (ret)
7158                                 break;
7159                 }
7160
7161                 cond_resched();
7162         }
7163
7164         return ret;
7165 }
7166
7167 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
7168                                            u64 len, u64 orig_start,
7169                                            u64 block_start, u64 block_len,
7170                                            u64 orig_block_len, u64 ram_bytes,
7171                                            int type)
7172 {
7173         struct extent_map_tree *em_tree;
7174         struct extent_map *em;
7175         struct btrfs_root *root = BTRFS_I(inode)->root;
7176         int ret;
7177
7178         em_tree = &BTRFS_I(inode)->extent_tree;
7179         em = alloc_extent_map();
7180         if (!em)
7181                 return ERR_PTR(-ENOMEM);
7182
7183         em->start = start;
7184         em->orig_start = orig_start;
7185         em->mod_start = start;
7186         em->mod_len = len;
7187         em->len = len;
7188         em->block_len = block_len;
7189         em->block_start = block_start;
7190         em->bdev = root->fs_info->fs_devices->latest_bdev;
7191         em->orig_block_len = orig_block_len;
7192         em->ram_bytes = ram_bytes;
7193         em->generation = -1;
7194         set_bit(EXTENT_FLAG_PINNED, &em->flags);
7195         if (type == BTRFS_ORDERED_PREALLOC)
7196                 set_bit(EXTENT_FLAG_FILLING, &em->flags);
7197
7198         do {
7199                 btrfs_drop_extent_cache(inode, em->start,
7200                                 em->start + em->len - 1, 0);
7201                 write_lock(&em_tree->lock);
7202                 ret = add_extent_mapping(em_tree, em, 1);
7203                 write_unlock(&em_tree->lock);
7204         } while (ret == -EEXIST);
7205
7206         if (ret) {
7207                 free_extent_map(em);
7208                 return ERR_PTR(ret);
7209         }
7210
7211         return em;
7212 }
7213
7214
7215 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7216                                    struct buffer_head *bh_result, int create)
7217 {
7218         struct extent_map *em;
7219         struct btrfs_root *root = BTRFS_I(inode)->root;
7220         struct extent_state *cached_state = NULL;
7221         u64 start = iblock << inode->i_blkbits;
7222         u64 lockstart, lockend;
7223         u64 len = bh_result->b_size;
7224         u64 orig_len = len;
7225         int unlock_bits = EXTENT_LOCKED;
7226         int ret = 0;
7227
7228         if (create)
7229                 unlock_bits |= EXTENT_DIRTY;
7230         else
7231                 len = min_t(u64, len, root->sectorsize);
7232
7233         lockstart = start;
7234         lockend = start + len - 1;
7235
7236         /*
7237          * If this errors out it's because we couldn't invalidate pagecache for
7238          * this range and we need to fallback to buffered.
7239          */
7240         if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
7241                 return -ENOTBLK;
7242
7243         em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
7244         if (IS_ERR(em)) {
7245                 ret = PTR_ERR(em);
7246                 goto unlock_err;
7247         }
7248
7249         /*
7250          * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7251          * io.  INLINE is special, and we could probably kludge it in here, but
7252          * it's still buffered so for safety lets just fall back to the generic
7253          * buffered path.
7254          *
7255          * For COMPRESSED we _have_ to read the entire extent in so we can
7256          * decompress it, so there will be buffering required no matter what we
7257          * do, so go ahead and fallback to buffered.
7258          *
7259          * We return -ENOTBLK because thats what makes DIO go ahead and go back
7260          * to buffered IO.  Don't blame me, this is the price we pay for using
7261          * the generic code.
7262          */
7263         if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7264             em->block_start == EXTENT_MAP_INLINE) {
7265                 free_extent_map(em);
7266                 ret = -ENOTBLK;
7267                 goto unlock_err;
7268         }
7269
7270         /* Just a good old fashioned hole, return */
7271         if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7272                         test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7273                 free_extent_map(em);
7274                 goto unlock_err;
7275         }
7276
7277         /*
7278          * We don't allocate a new extent in the following cases
7279          *
7280          * 1) The inode is marked as NODATACOW.  In this case we'll just use the
7281          * existing extent.
7282          * 2) The extent is marked as PREALLOC.  We're good to go here and can
7283          * just use the extent.
7284          *
7285          */
7286         if (!create) {
7287                 len = min(len, em->len - (start - em->start));
7288                 lockstart = start + len;
7289                 goto unlock;
7290         }
7291
7292         if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7293             ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7294              em->block_start != EXTENT_MAP_HOLE)) {
7295                 int type;
7296                 u64 block_start, orig_start, orig_block_len, ram_bytes;
7297
7298                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7299                         type = BTRFS_ORDERED_PREALLOC;
7300                 else
7301                         type = BTRFS_ORDERED_NOCOW;
7302                 len = min(len, em->len - (start - em->start));
7303                 block_start = em->block_start + (start - em->start);
7304
7305                 if (can_nocow_extent(inode, start, &len, &orig_start,
7306                                      &orig_block_len, &ram_bytes) == 1) {
7307                         if (type == BTRFS_ORDERED_PREALLOC) {
7308                                 free_extent_map(em);
7309                                 em = create_pinned_em(inode, start, len,
7310                                                        orig_start,
7311                                                        block_start, len,
7312                                                        orig_block_len,
7313                                                        ram_bytes, type);
7314                                 if (IS_ERR(em)) {
7315                                         ret = PTR_ERR(em);
7316                                         goto unlock_err;
7317                                 }
7318                         }
7319
7320                         ret = btrfs_add_ordered_extent_dio(inode, start,
7321                                            block_start, len, len, type);
7322                         if (ret) {
7323                                 free_extent_map(em);
7324                                 goto unlock_err;
7325                         }
7326                         goto unlock;
7327                 }
7328         }
7329
7330         /*
7331          * this will cow the extent, reset the len in case we changed
7332          * it above
7333          */
7334         len = bh_result->b_size;
7335         free_extent_map(em);
7336         em = btrfs_new_extent_direct(inode, start, len);
7337         if (IS_ERR(em)) {
7338                 ret = PTR_ERR(em);
7339                 goto unlock_err;
7340         }
7341         len = min(len, em->len - (start - em->start));
7342 unlock:
7343         bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7344                 inode->i_blkbits;
7345         bh_result->b_size = len;
7346         bh_result->b_bdev = em->bdev;
7347         set_buffer_mapped(bh_result);
7348         if (create) {
7349                 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7350                         set_buffer_new(bh_result);
7351
7352                 /*
7353                  * Need to update the i_size under the extent lock so buffered
7354                  * readers will get the updated i_size when we unlock.
7355                  */
7356                 if (start + len > i_size_read(inode))
7357                         i_size_write(inode, start + len);
7358
7359                 if (len < orig_len) {
7360                         spin_lock(&BTRFS_I(inode)->lock);
7361                         BTRFS_I(inode)->outstanding_extents++;
7362                         spin_unlock(&BTRFS_I(inode)->lock);
7363                 }
7364                 btrfs_free_reserved_data_space(inode, len);
7365         }
7366
7367         /*
7368          * In the case of write we need to clear and unlock the entire range,
7369          * in the case of read we need to unlock only the end area that we
7370          * aren't using if there is any left over space.
7371          */
7372         if (lockstart < lockend) {
7373                 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7374                                  lockend, unlock_bits, 1, 0,
7375                                  &cached_state, GFP_NOFS);
7376         } else {
7377                 free_extent_state(cached_state);
7378         }
7379
7380         free_extent_map(em);
7381
7382         return 0;
7383
7384 unlock_err:
7385         clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7386                          unlock_bits, 1, 0, &cached_state, GFP_NOFS);
7387         return ret;
7388 }
7389
7390 static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7391                                         int rw, int mirror_num)
7392 {
7393         struct btrfs_root *root = BTRFS_I(inode)->root;
7394         int ret;
7395
7396         BUG_ON(rw & REQ_WRITE);
7397
7398         bio_get(bio);
7399
7400         ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7401                                   BTRFS_WQ_ENDIO_DIO_REPAIR);
7402         if (ret)
7403                 goto err;
7404
7405         ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
7406 err:
7407         bio_put(bio);
7408         return ret;
7409 }
7410
7411 static int btrfs_check_dio_repairable(struct inode *inode,
7412                                       struct bio *failed_bio,
7413                                       struct io_failure_record *failrec,
7414                                       int failed_mirror)
7415 {
7416         int num_copies;
7417
7418         num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
7419                                       failrec->logical, failrec->len);
7420         if (num_copies == 1) {
7421                 /*
7422                  * we only have a single copy of the data, so don't bother with
7423                  * all the retry and error correction code that follows. no
7424                  * matter what the error is, it is very likely to persist.
7425                  */
7426                 pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
7427                          num_copies, failrec->this_mirror, failed_mirror);
7428                 return 0;
7429         }
7430
7431         failrec->failed_mirror = failed_mirror;
7432         failrec->this_mirror++;
7433         if (failrec->this_mirror == failed_mirror)
7434                 failrec->this_mirror++;
7435
7436         if (failrec->this_mirror > num_copies) {
7437                 pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
7438                          num_copies, failrec->this_mirror, failed_mirror);
7439                 return 0;
7440         }
7441
7442         return 1;
7443 }
7444
7445 static int dio_read_error(struct inode *inode, struct bio *failed_bio,
7446                           struct page *page, u64 start, u64 end,
7447                           int failed_mirror, bio_end_io_t *repair_endio,
7448                           void *repair_arg)
7449 {
7450         struct io_failure_record *failrec;
7451         struct bio *bio;
7452         int isector;
7453         int read_mode;
7454         int ret;
7455
7456         BUG_ON(failed_bio->bi_rw & REQ_WRITE);
7457
7458         ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7459         if (ret)
7460                 return ret;
7461
7462         ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7463                                          failed_mirror);
7464         if (!ret) {
7465                 free_io_failure(inode, failrec);
7466                 return -EIO;
7467         }
7468
7469         if (failed_bio->bi_vcnt > 1)
7470                 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
7471         else
7472                 read_mode = READ_SYNC;
7473
7474         isector = start - btrfs_io_bio(failed_bio)->logical;
7475         isector >>= inode->i_sb->s_blocksize_bits;
7476         bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7477                                       0, isector, repair_endio, repair_arg);
7478         if (!bio) {
7479                 free_io_failure(inode, failrec);
7480                 return -EIO;
7481         }
7482
7483         btrfs_debug(BTRFS_I(inode)->root->fs_info,
7484                     "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7485                     read_mode, failrec->this_mirror, failrec->in_validation);
7486
7487         ret = submit_dio_repair_bio(inode, bio, read_mode,
7488                                     failrec->this_mirror);
7489         if (ret) {
7490                 free_io_failure(inode, failrec);
7491                 bio_put(bio);
7492         }
7493
7494         return ret;
7495 }
7496
7497 struct btrfs_retry_complete {
7498         struct completion done;
7499         struct inode *inode;
7500         u64 start;
7501         int uptodate;
7502 };
7503
7504 static void btrfs_retry_endio_nocsum(struct bio *bio, int err)
7505 {
7506         struct btrfs_retry_complete *done = bio->bi_private;
7507         struct bio_vec *bvec;
7508         int i;
7509
7510         if (err)
7511                 goto end;
7512
7513         done->uptodate = 1;
7514         bio_for_each_segment_all(bvec, bio, i)
7515                 clean_io_failure(done->inode, done->start, bvec->bv_page, 0);
7516 end:
7517         complete(&done->done);
7518         bio_put(bio);
7519 }
7520
7521 static int __btrfs_correct_data_nocsum(struct inode *inode,
7522                                        struct btrfs_io_bio *io_bio)
7523 {
7524         struct bio_vec *bvec;
7525         struct btrfs_retry_complete done;
7526         u64 start;
7527         int i;
7528         int ret;
7529
7530         start = io_bio->logical;
7531         done.inode = inode;
7532
7533         bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7534 try_again:
7535                 done.uptodate = 0;
7536                 done.start = start;
7537                 init_completion(&done.done);
7538
7539                 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7540                                      start + bvec->bv_len - 1,
7541                                      io_bio->mirror_num,
7542                                      btrfs_retry_endio_nocsum, &done);
7543                 if (ret)
7544                         return ret;
7545
7546                 wait_for_completion(&done.done);
7547
7548                 if (!done.uptodate) {
7549                         /* We might have another mirror, so try again */
7550                         goto try_again;
7551                 }
7552
7553                 start += bvec->bv_len;
7554         }
7555
7556         return 0;
7557 }
7558
7559 static void btrfs_retry_endio(struct bio *bio, int err)
7560 {
7561         struct btrfs_retry_complete *done = bio->bi_private;
7562         struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7563         struct bio_vec *bvec;
7564         int uptodate;
7565         int ret;
7566         int i;
7567
7568         if (err)
7569                 goto end;
7570
7571         uptodate = 1;
7572         bio_for_each_segment_all(bvec, bio, i) {
7573                 ret = __readpage_endio_check(done->inode, io_bio, i,
7574                                              bvec->bv_page, 0,
7575                                              done->start, bvec->bv_len);
7576                 if (!ret)
7577                         clean_io_failure(done->inode, done->start,
7578                                          bvec->bv_page, 0);
7579                 else
7580                         uptodate = 0;
7581         }
7582
7583         done->uptodate = uptodate;
7584 end:
7585         complete(&done->done);
7586         bio_put(bio);
7587 }
7588
7589 static int __btrfs_subio_endio_read(struct inode *inode,
7590                                     struct btrfs_io_bio *io_bio, int err)
7591 {
7592         struct bio_vec *bvec;
7593         struct btrfs_retry_complete done;
7594         u64 start;
7595         u64 offset = 0;
7596         int i;
7597         int ret;
7598
7599         err = 0;
7600         start = io_bio->logical;
7601         done.inode = inode;
7602
7603         bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7604                 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
7605                                              0, start, bvec->bv_len);
7606                 if (likely(!ret))
7607                         goto next;
7608 try_again:
7609                 done.uptodate = 0;
7610                 done.start = start;
7611                 init_completion(&done.done);
7612
7613                 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7614                                      start + bvec->bv_len - 1,
7615                                      io_bio->mirror_num,
7616                                      btrfs_retry_endio, &done);
7617                 if (ret) {
7618                         err = ret;
7619                         goto next;
7620                 }
7621
7622                 wait_for_completion(&done.done);
7623
7624                 if (!done.uptodate) {
7625                         /* We might have another mirror, so try again */
7626                         goto try_again;
7627                 }
7628 next:
7629                 offset += bvec->bv_len;
7630                 start += bvec->bv_len;
7631         }
7632
7633         return err;
7634 }
7635
7636 static int btrfs_subio_endio_read(struct inode *inode,
7637                                   struct btrfs_io_bio *io_bio, int err)
7638 {
7639         bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7640
7641         if (skip_csum) {
7642                 if (unlikely(err))
7643                         return __btrfs_correct_data_nocsum(inode, io_bio);
7644                 else
7645                         return 0;
7646         } else {
7647                 return __btrfs_subio_endio_read(inode, io_bio, err);
7648         }
7649 }
7650
7651 static void btrfs_endio_direct_read(struct bio *bio, int err)
7652 {
7653         struct btrfs_dio_private *dip = bio->bi_private;
7654         struct inode *inode = dip->inode;
7655         struct bio *dio_bio;
7656         struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7657
7658         if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
7659                 err = btrfs_subio_endio_read(inode, io_bio, err);
7660
7661         unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
7662                       dip->logical_offset + dip->bytes - 1);
7663         dio_bio = dip->dio_bio;
7664
7665         kfree(dip);
7666
7667         /* If we had a csum failure make sure to clear the uptodate flag */
7668         if (err)
7669                 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
7670         dio_end_io(dio_bio, err);
7671
7672         if (io_bio->end_io)
7673                 io_bio->end_io(io_bio, err);
7674         bio_put(bio);
7675 }
7676
7677 static void btrfs_endio_direct_write(struct bio *bio, int err)
7678 {
7679         struct btrfs_dio_private *dip = bio->bi_private;
7680         struct inode *inode = dip->inode;
7681         struct btrfs_root *root = BTRFS_I(inode)->root;
7682         struct btrfs_ordered_extent *ordered = NULL;
7683         u64 ordered_offset = dip->logical_offset;
7684         u64 ordered_bytes = dip->bytes;
7685         struct bio *dio_bio;
7686         int ret;
7687
7688         if (err)
7689                 goto out_done;
7690 again:
7691         ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
7692                                                    &ordered_offset,
7693                                                    ordered_bytes, !err);
7694         if (!ret)
7695                 goto out_test;
7696
7697         btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
7698                         finish_ordered_fn, NULL, NULL);
7699         btrfs_queue_work(root->fs_info->endio_write_workers,
7700                          &ordered->work);
7701 out_test:
7702         /*
7703          * our bio might span multiple ordered extents.  If we haven't
7704          * completed the accounting for the whole dio, go back and try again
7705          */
7706         if (ordered_offset < dip->logical_offset + dip->bytes) {
7707                 ordered_bytes = dip->logical_offset + dip->bytes -
7708                         ordered_offset;
7709                 ordered = NULL;
7710                 goto again;
7711         }
7712 out_done:
7713         dio_bio = dip->dio_bio;
7714
7715         kfree(dip);
7716
7717         /* If we had an error make sure to clear the uptodate flag */
7718         if (err)
7719                 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
7720         dio_end_io(dio_bio, err);
7721         bio_put(bio);
7722 }
7723
7724 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
7725                                     struct bio *bio, int mirror_num,
7726                                     unsigned long bio_flags, u64 offset)
7727 {
7728         int ret;
7729         struct btrfs_root *root = BTRFS_I(inode)->root;
7730         ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
7731         BUG_ON(ret); /* -ENOMEM */
7732         return 0;
7733 }
7734
7735 static void btrfs_end_dio_bio(struct bio *bio, int err)
7736 {
7737         struct btrfs_dio_private *dip = bio->bi_private;
7738
7739         if (err)
7740                 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
7741                            "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
7742                            btrfs_ino(dip->inode), bio->bi_rw,
7743                            (unsigned long long)bio->bi_iter.bi_sector,
7744                            bio->bi_iter.bi_size, err);
7745
7746         if (dip->subio_endio)
7747                 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
7748
7749         if (err) {
7750                 dip->errors = 1;
7751
7752                 /*
7753                  * before atomic variable goto zero, we must make sure
7754                  * dip->errors is perceived to be set.
7755                  */
7756                 smp_mb__before_atomic();
7757         }
7758
7759         /* if there are more bios still pending for this dio, just exit */
7760         if (!atomic_dec_and_test(&dip->pending_bios))
7761                 goto out;
7762
7763         if (dip->errors) {
7764                 bio_io_error(dip->orig_bio);
7765         } else {
7766                 set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags);
7767                 bio_endio(dip->orig_bio, 0);
7768         }
7769 out:
7770         bio_put(bio);
7771 }
7772
7773 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
7774                                        u64 first_sector, gfp_t gfp_flags)
7775 {
7776         int nr_vecs = bio_get_nr_vecs(bdev);
7777         return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
7778 }
7779
7780 static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root,
7781                                                  struct inode *inode,
7782                                                  struct btrfs_dio_private *dip,
7783                                                  struct bio *bio,
7784                                                  u64 file_offset)
7785 {
7786         struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7787         struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
7788         int ret;
7789
7790         /*
7791          * We load all the csum data we need when we submit
7792          * the first bio to reduce the csum tree search and
7793          * contention.
7794          */
7795         if (dip->logical_offset == file_offset) {
7796                 ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio,
7797                                                 file_offset);
7798                 if (ret)
7799                         return ret;
7800         }
7801
7802         if (bio == dip->orig_bio)
7803                 return 0;
7804
7805         file_offset -= dip->logical_offset;
7806         file_offset >>= inode->i_sb->s_blocksize_bits;
7807         io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
7808
7809         return 0;
7810 }
7811
7812 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
7813                                          int rw, u64 file_offset, int skip_sum,
7814                                          int async_submit)
7815 {
7816         struct btrfs_dio_private *dip = bio->bi_private;
7817         int write = rw & REQ_WRITE;
7818         struct btrfs_root *root = BTRFS_I(inode)->root;
7819         int ret;
7820
7821         if (async_submit)
7822                 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
7823
7824         bio_get(bio);
7825
7826         if (!write) {
7827                 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7828                                 BTRFS_WQ_ENDIO_DATA);
7829                 if (ret)
7830                         goto err;
7831         }
7832
7833         if (skip_sum)
7834                 goto map;
7835
7836         if (write && async_submit) {
7837                 ret = btrfs_wq_submit_bio(root->fs_info,
7838                                    inode, rw, bio, 0, 0,
7839                                    file_offset,
7840                                    __btrfs_submit_bio_start_direct_io,
7841                                    __btrfs_submit_bio_done);
7842                 goto err;
7843         } else if (write) {
7844                 /*
7845                  * If we aren't doing async submit, calculate the csum of the
7846                  * bio now.
7847                  */
7848                 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
7849                 if (ret)
7850                         goto err;
7851         } else {
7852                 ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio,
7853                                                      file_offset);
7854                 if (ret)
7855                         goto err;
7856         }
7857 map:
7858         ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
7859 err:
7860         bio_put(bio);
7861         return ret;
7862 }
7863
7864 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
7865                                     int skip_sum)
7866 {
7867         struct inode *inode = dip->inode;
7868         struct btrfs_root *root = BTRFS_I(inode)->root;
7869         struct bio *bio;
7870         struct bio *orig_bio = dip->orig_bio;
7871         struct bio_vec *bvec = orig_bio->bi_io_vec;
7872         u64 start_sector = orig_bio->bi_iter.bi_sector;
7873         u64 file_offset = dip->logical_offset;
7874         u64 submit_len = 0;
7875         u64 map_length;
7876         int nr_pages = 0;
7877         int ret;
7878         int async_submit = 0;
7879
7880         map_length = orig_bio->bi_iter.bi_size;
7881         ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
7882                               &map_length, NULL, 0);
7883         if (ret)
7884                 return -EIO;
7885
7886         if (map_length >= orig_bio->bi_iter.bi_size) {
7887                 bio = orig_bio;
7888                 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
7889                 goto submit;
7890         }
7891
7892         /* async crcs make it difficult to collect full stripe writes. */
7893         if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK)
7894                 async_submit = 0;
7895         else
7896                 async_submit = 1;
7897
7898         bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
7899         if (!bio)
7900                 return -ENOMEM;
7901
7902         bio->bi_private = dip;
7903         bio->bi_end_io = btrfs_end_dio_bio;
7904         btrfs_io_bio(bio)->logical = file_offset;
7905         atomic_inc(&dip->pending_bios);
7906
7907         while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
7908                 if (map_length < submit_len + bvec->bv_len ||
7909                     bio_add_page(bio, bvec->bv_page, bvec->bv_len,
7910                                  bvec->bv_offset) < bvec->bv_len) {
7911                         /*
7912                          * inc the count before we submit the bio so
7913                          * we know the end IO handler won't happen before
7914                          * we inc the count. Otherwise, the dip might get freed
7915                          * before we're done setting it up
7916                          */
7917                         atomic_inc(&dip->pending_bios);
7918                         ret = __btrfs_submit_dio_bio(bio, inode, rw,
7919                                                      file_offset, skip_sum,
7920                                                      async_submit);
7921                         if (ret) {
7922                                 bio_put(bio);
7923                                 atomic_dec(&dip->pending_bios);
7924                                 goto out_err;
7925                         }
7926
7927                         start_sector += submit_len >> 9;
7928                         file_offset += submit_len;
7929
7930                         submit_len = 0;
7931                         nr_pages = 0;
7932
7933                         bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
7934                                                   start_sector, GFP_NOFS);
7935                         if (!bio)
7936                                 goto out_err;
7937                         bio->bi_private = dip;
7938                         bio->bi_end_io = btrfs_end_dio_bio;
7939                         btrfs_io_bio(bio)->logical = file_offset;
7940
7941                         map_length = orig_bio->bi_iter.bi_size;
7942                         ret = btrfs_map_block(root->fs_info, rw,
7943                                               start_sector << 9,
7944                                               &map_length, NULL, 0);
7945                         if (ret) {
7946                                 bio_put(bio);
7947                                 goto out_err;
7948                         }
7949                 } else {
7950                         submit_len += bvec->bv_len;
7951                         nr_pages++;
7952                         bvec++;
7953                 }
7954         }
7955
7956 submit:
7957         ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
7958                                      async_submit);
7959         if (!ret)
7960                 return 0;
7961
7962         bio_put(bio);
7963 out_err:
7964         dip->errors = 1;
7965         /*
7966          * before atomic variable goto zero, we must
7967          * make sure dip->errors is perceived to be set.
7968          */
7969         smp_mb__before_atomic();
7970         if (atomic_dec_and_test(&dip->pending_bios))
7971                 bio_io_error(dip->orig_bio);
7972
7973         /* bio_end_io() will handle error, so we needn't return it */
7974         return 0;
7975 }
7976
7977 static void btrfs_submit_direct(int rw, struct bio *dio_bio,
7978                                 struct inode *inode, loff_t file_offset)
7979 {
7980         struct btrfs_root *root = BTRFS_I(inode)->root;
7981         struct btrfs_dio_private *dip;
7982         struct bio *io_bio;
7983         struct btrfs_io_bio *btrfs_bio;
7984         int skip_sum;
7985         int write = rw & REQ_WRITE;
7986         int ret = 0;
7987
7988         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7989
7990         io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
7991         if (!io_bio) {
7992                 ret = -ENOMEM;
7993                 goto free_ordered;
7994         }
7995
7996         dip = kzalloc(sizeof(*dip), GFP_NOFS);
7997         if (!dip) {
7998                 ret = -ENOMEM;
7999                 goto free_io_bio;
8000         }
8001
8002         dip->private = dio_bio->bi_private;
8003         dip->inode = inode;
8004         dip->logical_offset = file_offset;
8005         dip->bytes = dio_bio->bi_iter.bi_size;
8006         dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8007         io_bio->bi_private = dip;
8008         dip->orig_bio = io_bio;
8009         dip->dio_bio = dio_bio;
8010         atomic_set(&dip->pending_bios, 0);
8011         btrfs_bio = btrfs_io_bio(io_bio);
8012         btrfs_bio->logical = file_offset;
8013
8014         if (write) {
8015                 io_bio->bi_end_io = btrfs_endio_direct_write;
8016         } else {
8017                 io_bio->bi_end_io = btrfs_endio_direct_read;
8018                 dip->subio_endio = btrfs_subio_endio_read;
8019         }
8020
8021         ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
8022         if (!ret)
8023                 return;
8024
8025         if (btrfs_bio->end_io)
8026                 btrfs_bio->end_io(btrfs_bio, ret);
8027 free_io_bio:
8028         bio_put(io_bio);
8029
8030 free_ordered:
8031         /*
8032          * If this is a write, we need to clean up the reserved space and kill
8033          * the ordered extent.
8034          */
8035         if (write) {
8036                 struct btrfs_ordered_extent *ordered;
8037                 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
8038                 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
8039                     !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
8040                         btrfs_free_reserved_extent(root, ordered->start,
8041                                                    ordered->disk_len, 1);
8042                 btrfs_put_ordered_extent(ordered);
8043                 btrfs_put_ordered_extent(ordered);
8044         }
8045         bio_endio(dio_bio, ret);
8046 }
8047
8048 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
8049                         const struct iov_iter *iter, loff_t offset)
8050 {
8051         int seg;
8052         int i;
8053         unsigned blocksize_mask = root->sectorsize - 1;
8054         ssize_t retval = -EINVAL;
8055
8056         if (offset & blocksize_mask)
8057                 goto out;
8058
8059         if (iov_iter_alignment(iter) & blocksize_mask)
8060                 goto out;
8061
8062         /* If this is a write we don't need to check anymore */
8063         if (rw & WRITE)
8064                 return 0;
8065         /*
8066          * Check to make sure we don't have duplicate iov_base's in this
8067          * iovec, if so return EINVAL, otherwise we'll get csum errors
8068          * when reading back.
8069          */
8070         for (seg = 0; seg < iter->nr_segs; seg++) {
8071                 for (i = seg + 1; i < iter->nr_segs; i++) {
8072                         if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8073                                 goto out;
8074                 }
8075         }
8076         retval = 0;
8077 out:
8078         return retval;
8079 }
8080
8081 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
8082                         struct iov_iter *iter, loff_t offset)
8083 {
8084         struct file *file = iocb->ki_filp;
8085         struct inode *inode = file->f_mapping->host;
8086         size_t count = 0;
8087         int flags = 0;
8088         bool wakeup = true;
8089         bool relock = false;
8090         ssize_t ret;
8091
8092         if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iter, offset))
8093                 return 0;
8094
8095         atomic_inc(&inode->i_dio_count);
8096         smp_mb__after_atomic();
8097
8098         /*
8099          * The generic stuff only does filemap_write_and_wait_range, which
8100          * isn't enough if we've written compressed pages to this area, so
8101          * we need to flush the dirty pages again to make absolutely sure
8102          * that any outstanding dirty pages are on disk.
8103          */
8104         count = iov_iter_count(iter);
8105         if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8106                      &BTRFS_I(inode)->runtime_flags))
8107                 filemap_fdatawrite_range(inode->i_mapping, offset,
8108                                          offset + count - 1);
8109
8110         if (rw & WRITE) {
8111                 /*
8112                  * If the write DIO is beyond the EOF, we need update
8113                  * the isize, but it is protected by i_mutex. So we can
8114                  * not unlock the i_mutex at this case.
8115                  */
8116                 if (offset + count <= inode->i_size) {
8117                         mutex_unlock(&inode->i_mutex);
8118                         relock = true;
8119                 }
8120                 ret = btrfs_delalloc_reserve_space(inode, count);
8121                 if (ret)
8122                         goto out;
8123         } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8124                                      &BTRFS_I(inode)->runtime_flags)) {
8125                 inode_dio_done(inode);
8126                 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8127                 wakeup = false;
8128         }
8129
8130         ret = __blockdev_direct_IO(rw, iocb, inode,
8131                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
8132                         iter, offset, btrfs_get_blocks_direct, NULL,
8133                         btrfs_submit_direct, flags);
8134         if (rw & WRITE) {
8135                 if (ret < 0 && ret != -EIOCBQUEUED)
8136                         btrfs_delalloc_release_space(inode, count);
8137                 else if (ret >= 0 && (size_t)ret < count)
8138                         btrfs_delalloc_release_space(inode,
8139                                                      count - (size_t)ret);
8140         }
8141 out:
8142         if (wakeup)
8143                 inode_dio_done(inode);
8144         if (relock)
8145                 mutex_lock(&inode->i_mutex);
8146
8147         return ret;
8148 }
8149
8150 #define BTRFS_FIEMAP_FLAGS      (FIEMAP_FLAG_SYNC)
8151
8152 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8153                 __u64 start, __u64 len)
8154 {
8155         int     ret;
8156
8157         ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8158         if (ret)
8159                 return ret;
8160
8161         return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
8162 }
8163
8164 int btrfs_readpage(struct file *file, struct page *page)
8165 {
8166         struct extent_io_tree *tree;
8167         tree = &BTRFS_I(page->mapping->host)->io_tree;
8168         return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8169 }
8170
8171 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8172 {
8173         struct extent_io_tree *tree;
8174
8175
8176         if (current->flags & PF_MEMALLOC) {
8177                 redirty_page_for_writepage(wbc, page);
8178                 unlock_page(page);
8179                 return 0;
8180         }
8181         tree = &BTRFS_I(page->mapping->host)->io_tree;
8182         return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8183 }
8184
8185 static int btrfs_writepages(struct address_space *mapping,
8186                             struct writeback_control *wbc)
8187 {
8188         struct extent_io_tree *tree;
8189
8190         tree = &BTRFS_I(mapping->host)->io_tree;
8191         return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8192 }
8193
8194 static int
8195 btrfs_readpages(struct file *file, struct address_space *mapping,
8196                 struct list_head *pages, unsigned nr_pages)
8197 {
8198         struct extent_io_tree *tree;
8199         tree = &BTRFS_I(mapping->host)->io_tree;
8200         return extent_readpages(tree, mapping, pages, nr_pages,
8201                                 btrfs_get_extent);
8202 }
8203 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8204 {
8205         struct extent_io_tree *tree;
8206         struct extent_map_tree *map;
8207         int ret;
8208
8209         tree = &BTRFS_I(page->mapping->host)->io_tree;
8210         map = &BTRFS_I(page->mapping->host)->extent_tree;
8211         ret = try_release_extent_mapping(map, tree, page, gfp_flags);
8212         if (ret == 1) {
8213                 ClearPagePrivate(page);
8214                 set_page_private(page, 0);
8215                 page_cache_release(page);
8216         }
8217         return ret;
8218 }
8219
8220 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8221 {
8222         if (PageWriteback(page) || PageDirty(page))
8223                 return 0;
8224         return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
8225 }
8226
8227 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8228                                  unsigned int length)
8229 {
8230         struct inode *inode = page->mapping->host;
8231         struct extent_io_tree *tree;
8232         struct btrfs_ordered_extent *ordered;
8233         struct extent_state *cached_state = NULL;
8234         u64 page_start = page_offset(page);
8235         u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
8236         int inode_evicting = inode->i_state & I_FREEING;
8237
8238         /*
8239          * we have the page locked, so new writeback can't start,
8240          * and the dirty bit won't be cleared while we are here.
8241          *
8242          * Wait for IO on this page so that we can safely clear
8243          * the PagePrivate2 bit and do ordered accounting
8244          */
8245         wait_on_page_writeback(page);
8246
8247         tree = &BTRFS_I(inode)->io_tree;
8248         if (offset) {
8249                 btrfs_releasepage(page, GFP_NOFS);
8250                 return;
8251         }
8252
8253         if (!inode_evicting)
8254                 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
8255         ordered = btrfs_lookup_ordered_extent(inode, page_start);
8256         if (ordered) {
8257                 /*
8258                  * IO on this page will never be started, so we need
8259                  * to account for any ordered extents now
8260                  */
8261                 if (!inode_evicting)
8262                         clear_extent_bit(tree, page_start, page_end,
8263                                          EXTENT_DIRTY | EXTENT_DELALLOC |
8264                                          EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8265                                          EXTENT_DEFRAG, 1, 0, &cached_state,
8266                                          GFP_NOFS);
8267                 /*
8268                  * whoever cleared the private bit is responsible
8269                  * for the finish_ordered_io
8270                  */
8271                 if (TestClearPagePrivate2(page)) {
8272                         struct btrfs_ordered_inode_tree *tree;
8273                         u64 new_len;
8274
8275                         tree = &BTRFS_I(inode)->ordered_tree;
8276
8277                         spin_lock_irq(&tree->lock);
8278                         set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8279                         new_len = page_start - ordered->file_offset;
8280                         if (new_len < ordered->truncated_len)
8281                                 ordered->truncated_len = new_len;
8282                         spin_unlock_irq(&tree->lock);
8283
8284                         if (btrfs_dec_test_ordered_pending(inode, &ordered,
8285                                                            page_start,
8286                                                            PAGE_CACHE_SIZE, 1))
8287                                 btrfs_finish_ordered_io(ordered);
8288                 }
8289                 btrfs_put_ordered_extent(ordered);
8290                 if (!inode_evicting) {
8291                         cached_state = NULL;
8292                         lock_extent_bits(tree, page_start, page_end, 0,
8293                                          &cached_state);
8294                 }
8295         }
8296
8297         if (!inode_evicting) {
8298                 clear_extent_bit(tree, page_start, page_end,
8299                                  EXTENT_LOCKED | EXTENT_DIRTY |
8300                                  EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8301                                  EXTENT_DEFRAG, 1, 1,
8302                                  &cached_state, GFP_NOFS);
8303
8304                 __btrfs_releasepage(page, GFP_NOFS);
8305         }
8306
8307         ClearPageChecked(page);
8308         if (PagePrivate(page)) {
8309                 ClearPagePrivate(page);
8310                 set_page_private(page, 0);
8311                 page_cache_release(page);
8312         }
8313 }
8314
8315 /*
8316  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8317  * called from a page fault handler when a page is first dirtied. Hence we must
8318  * be careful to check for EOF conditions here. We set the page up correctly
8319  * for a written page which means we get ENOSPC checking when writing into
8320  * holes and correct delalloc and unwritten extent mapping on filesystems that
8321  * support these features.
8322  *
8323  * We are not allowed to take the i_mutex here so we have to play games to
8324  * protect against truncate races as the page could now be beyond EOF.  Because
8325  * vmtruncate() writes the inode size before removing pages, once we have the
8326  * page lock we can determine safely if the page is beyond EOF. If it is not
8327  * beyond EOF, then the page is guaranteed safe against truncation until we
8328  * unlock the page.
8329  */
8330 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
8331 {
8332         struct page *page = vmf->page;
8333         struct inode *inode = file_inode(vma->vm_file);
8334         struct btrfs_root *root = BTRFS_I(inode)->root;
8335         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8336         struct btrfs_ordered_extent *ordered;
8337         struct extent_state *cached_state = NULL;
8338         char *kaddr;
8339         unsigned long zero_start;
8340         loff_t size;
8341         int ret;
8342         int reserved = 0;
8343         u64 page_start;
8344         u64 page_end;
8345
8346         sb_start_pagefault(inode->i_sb);
8347         ret  = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
8348         if (!ret) {
8349                 ret = file_update_time(vma->vm_file);
8350                 reserved = 1;
8351         }
8352         if (ret) {
8353                 if (ret == -ENOMEM)
8354                         ret = VM_FAULT_OOM;
8355                 else /* -ENOSPC, -EIO, etc */
8356                         ret = VM_FAULT_SIGBUS;
8357                 if (reserved)
8358                         goto out;
8359                 goto out_noreserve;
8360         }
8361
8362         ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8363 again:
8364         lock_page(page);
8365         size = i_size_read(inode);
8366         page_start = page_offset(page);
8367         page_end = page_start + PAGE_CACHE_SIZE - 1;
8368
8369         if ((page->mapping != inode->i_mapping) ||
8370             (page_start >= size)) {
8371                 /* page got truncated out from underneath us */
8372                 goto out_unlock;
8373         }
8374         wait_on_page_writeback(page);
8375
8376         lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
8377         set_page_extent_mapped(page);
8378
8379         /*
8380          * we can't set the delalloc bits if there are pending ordered
8381          * extents.  Drop our locks and wait for them to finish
8382          */
8383         ordered = btrfs_lookup_ordered_extent(inode, page_start);
8384         if (ordered) {
8385                 unlock_extent_cached(io_tree, page_start, page_end,
8386                                      &cached_state, GFP_NOFS);
8387                 unlock_page(page);
8388                 btrfs_start_ordered_extent(inode, ordered, 1);
8389                 btrfs_put_ordered_extent(ordered);
8390                 goto again;
8391         }
8392
8393         /*
8394          * XXX - page_mkwrite gets called every time the page is dirtied, even
8395          * if it was already dirty, so for space accounting reasons we need to
8396          * clear any delalloc bits for the range we are fixing to save.  There
8397          * is probably a better way to do this, but for now keep consistent with
8398          * prepare_pages in the normal write path.
8399          */
8400         clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
8401                           EXTENT_DIRTY | EXTENT_DELALLOC |
8402                           EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
8403                           0, 0, &cached_state, GFP_NOFS);
8404
8405         ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
8406                                         &cached_state);
8407         if (ret) {
8408                 unlock_extent_cached(io_tree, page_start, page_end,
8409                                      &cached_state, GFP_NOFS);
8410                 ret = VM_FAULT_SIGBUS;
8411                 goto out_unlock;
8412         }
8413         ret = 0;
8414
8415         /* page is wholly or partially inside EOF */
8416         if (page_start + PAGE_CACHE_SIZE > size)
8417                 zero_start = size & ~PAGE_CACHE_MASK;
8418         else
8419                 zero_start = PAGE_CACHE_SIZE;
8420
8421         if (zero_start != PAGE_CACHE_SIZE) {
8422                 kaddr = kmap(page);
8423                 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
8424                 flush_dcache_page(page);
8425                 kunmap(page);
8426         }
8427         ClearPageChecked(page);
8428         set_page_dirty(page);
8429         SetPageUptodate(page);
8430
8431         BTRFS_I(inode)->last_trans = root->fs_info->generation;
8432         BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
8433         BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
8434
8435         unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
8436
8437 out_unlock:
8438         if (!ret) {
8439                 sb_end_pagefault(inode->i_sb);
8440                 return VM_FAULT_LOCKED;
8441         }
8442         unlock_page(page);
8443 out:
8444         btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
8445 out_noreserve:
8446         sb_end_pagefault(inode->i_sb);
8447         return ret;
8448 }
8449
8450 static int btrfs_truncate(struct inode *inode)
8451 {
8452         struct btrfs_root *root = BTRFS_I(inode)->root;
8453         struct btrfs_block_rsv *rsv;
8454         int ret = 0;
8455         int err = 0;
8456         struct btrfs_trans_handle *trans;
8457         u64 mask = root->sectorsize - 1;
8458         u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
8459
8460         ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8461                                        (u64)-1);
8462         if (ret)
8463                 return ret;
8464
8465         /*
8466          * Yes ladies and gentelment, this is indeed ugly.  The fact is we have
8467          * 3 things going on here
8468          *
8469          * 1) We need to reserve space for our orphan item and the space to
8470          * delete our orphan item.  Lord knows we don't want to have a dangling
8471          * orphan item because we didn't reserve space to remove it.
8472          *
8473          * 2) We need to reserve space to update our inode.
8474          *
8475          * 3) We need to have something to cache all the space that is going to
8476          * be free'd up by the truncate operation, but also have some slack
8477          * space reserved in case it uses space during the truncate (thank you
8478          * very much snapshotting).
8479          *
8480          * And we need these to all be seperate.  The fact is we can use alot of
8481          * space doing the truncate, and we have no earthly idea how much space
8482          * we will use, so we need the truncate reservation to be seperate so it
8483          * doesn't end up using space reserved for updating the inode or
8484          * removing the orphan item.  We also need to be able to stop the
8485          * transaction and start a new one, which means we need to be able to
8486          * update the inode several times, and we have no idea of knowing how
8487          * many times that will be, so we can't just reserve 1 item for the
8488          * entirety of the opration, so that has to be done seperately as well.
8489          * Then there is the orphan item, which does indeed need to be held on
8490          * to for the whole operation, and we need nobody to touch this reserved
8491          * space except the orphan code.
8492          *
8493          * So that leaves us with
8494          *
8495          * 1) root->orphan_block_rsv - for the orphan deletion.
8496          * 2) rsv - for the truncate reservation, which we will steal from the
8497          * transaction reservation.
8498          * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
8499          * updating the inode.
8500          */
8501         rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
8502         if (!rsv)
8503                 return -ENOMEM;
8504         rsv->size = min_size;
8505         rsv->failfast = 1;
8506
8507         /*
8508          * 1 for the truncate slack space
8509          * 1 for updating the inode.
8510          */
8511         trans = btrfs_start_transaction(root, 2);
8512         if (IS_ERR(trans)) {
8513                 err = PTR_ERR(trans);
8514                 goto out;
8515         }
8516
8517         /* Migrate the slack space for the truncate to our reserve */
8518         ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
8519                                       min_size);
8520         BUG_ON(ret);
8521
8522         /*
8523          * So if we truncate and then write and fsync we normally would just
8524          * write the extents that changed, which is a problem if we need to
8525          * first truncate that entire inode.  So set this flag so we write out
8526          * all of the extents in the inode to the sync log so we're completely
8527          * safe.
8528          */
8529         set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
8530         trans->block_rsv = rsv;
8531
8532         while (1) {
8533                 ret = btrfs_truncate_inode_items(trans, root, inode,
8534                                                  inode->i_size,
8535                                                  BTRFS_EXTENT_DATA_KEY);
8536                 if (ret != -ENOSPC) {
8537                         err = ret;
8538                         break;
8539                 }
8540
8541                 trans->block_rsv = &root->fs_info->trans_block_rsv;
8542                 ret = btrfs_update_inode(trans, root, inode);
8543                 if (ret) {
8544                         err = ret;
8545                         break;
8546                 }
8547
8548                 btrfs_end_transaction(trans, root);
8549                 btrfs_btree_balance_dirty(root);
8550
8551                 trans = btrfs_start_transaction(root, 2);
8552                 if (IS_ERR(trans)) {
8553                         ret = err = PTR_ERR(trans);
8554                         trans = NULL;
8555                         break;
8556                 }
8557
8558                 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
8559                                               rsv, min_size);
8560                 BUG_ON(ret);    /* shouldn't happen */
8561                 trans->block_rsv = rsv;
8562         }
8563
8564         if (ret == 0 && inode->i_nlink > 0) {
8565                 trans->block_rsv = root->orphan_block_rsv;
8566                 ret = btrfs_orphan_del(trans, inode);
8567                 if (ret)
8568                         err = ret;
8569         }
8570
8571         if (trans) {
8572                 trans->block_rsv = &root->fs_info->trans_block_rsv;
8573                 ret = btrfs_update_inode(trans, root, inode);
8574                 if (ret && !err)
8575                         err = ret;
8576
8577                 ret = btrfs_end_transaction(trans, root);
8578                 btrfs_btree_balance_dirty(root);
8579         }
8580
8581 out:
8582         btrfs_free_block_rsv(root, rsv);
8583
8584         if (ret && !err)
8585                 err = ret;
8586
8587         return err;
8588 }
8589
8590 /*
8591  * create a new subvolume directory/inode (helper for the ioctl).
8592  */
8593 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
8594                              struct btrfs_root *new_root,
8595                              struct btrfs_root *parent_root,
8596                              u64 new_dirid)
8597 {
8598         struct inode *inode;
8599         int err;
8600         u64 index = 0;
8601
8602         inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
8603                                 new_dirid, new_dirid,
8604                                 S_IFDIR | (~current_umask() & S_IRWXUGO),
8605                                 &index);
8606         if (IS_ERR(inode))
8607                 return PTR_ERR(inode);
8608         inode->i_op = &btrfs_dir_inode_operations;
8609         inode->i_fop = &btrfs_dir_file_operations;
8610
8611         set_nlink(inode, 1);
8612         btrfs_i_size_write(inode, 0);
8613         unlock_new_inode(inode);
8614
8615         err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
8616         if (err)
8617                 btrfs_err(new_root->fs_info,
8618                           "error inheriting subvolume %llu properties: %d",
8619                           new_root->root_key.objectid, err);
8620
8621         err = btrfs_update_inode(trans, new_root, inode);
8622
8623         iput(inode);
8624         return err;
8625 }
8626
8627 struct inode *btrfs_alloc_inode(struct super_block *sb)
8628 {
8629         struct btrfs_inode *ei;
8630         struct inode *inode;
8631
8632         ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
8633         if (!ei)
8634                 return NULL;
8635
8636         ei->root = NULL;
8637         ei->generation = 0;
8638         ei->last_trans = 0;
8639         ei->last_sub_trans = 0;
8640         ei->logged_trans = 0;
8641         ei->delalloc_bytes = 0;
8642         ei->defrag_bytes = 0;
8643         ei->disk_i_size = 0;
8644         ei->flags = 0;
8645         ei->csum_bytes = 0;
8646         ei->index_cnt = (u64)-1;
8647         ei->dir_index = 0;
8648         ei->last_unlink_trans = 0;
8649         ei->last_log_commit = 0;
8650
8651         spin_lock_init(&ei->lock);
8652         ei->outstanding_extents = 0;
8653         ei->reserved_extents = 0;
8654
8655         ei->runtime_flags = 0;
8656         ei->force_compress = BTRFS_COMPRESS_NONE;
8657
8658         ei->delayed_node = NULL;
8659
8660         ei->i_otime.tv_sec = 0;
8661         ei->i_otime.tv_nsec = 0;
8662
8663         inode = &ei->vfs_inode;
8664         extent_map_tree_init(&ei->extent_tree);
8665         extent_io_tree_init(&ei->io_tree, &inode->i_data);
8666         extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
8667         ei->io_tree.track_uptodate = 1;
8668         ei->io_failure_tree.track_uptodate = 1;
8669         atomic_set(&ei->sync_writers, 0);
8670         mutex_init(&ei->log_mutex);
8671         mutex_init(&ei->delalloc_mutex);
8672         btrfs_ordered_inode_tree_init(&ei->ordered_tree);
8673         INIT_LIST_HEAD(&ei->delalloc_inodes);
8674         RB_CLEAR_NODE(&ei->rb_node);
8675
8676         return inode;
8677 }
8678
8679 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8680 void btrfs_test_destroy_inode(struct inode *inode)
8681 {
8682         btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8683         kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8684 }
8685 #endif
8686
8687 static void btrfs_i_callback(struct rcu_head *head)
8688 {
8689         struct inode *inode = container_of(head, struct inode, i_rcu);
8690         kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8691 }
8692
8693 void btrfs_destroy_inode(struct inode *inode)
8694 {
8695         struct btrfs_ordered_extent *ordered;
8696         struct btrfs_root *root = BTRFS_I(inode)->root;
8697
8698         WARN_ON(!hlist_empty(&inode->i_dentry));
8699         WARN_ON(inode->i_data.nrpages);
8700         WARN_ON(BTRFS_I(inode)->outstanding_extents);
8701         WARN_ON(BTRFS_I(inode)->reserved_extents);
8702         WARN_ON(BTRFS_I(inode)->delalloc_bytes);
8703         WARN_ON(BTRFS_I(inode)->csum_bytes);
8704         WARN_ON(BTRFS_I(inode)->defrag_bytes);
8705
8706         /*
8707          * This can happen where we create an inode, but somebody else also
8708          * created the same inode and we need to destroy the one we already
8709          * created.
8710          */
8711         if (!root)
8712                 goto free;
8713
8714         if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8715                      &BTRFS_I(inode)->runtime_flags)) {
8716                 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
8717                         btrfs_ino(inode));
8718                 atomic_dec(&root->orphan_inodes);
8719         }
8720
8721         while (1) {
8722                 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8723                 if (!ordered)
8724                         break;
8725                 else {
8726                         btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
8727                                 ordered->file_offset, ordered->len);
8728                         btrfs_remove_ordered_extent(inode, ordered);
8729                         btrfs_put_ordered_extent(ordered);
8730                         btrfs_put_ordered_extent(ordered);
8731                 }
8732         }
8733         inode_tree_del(inode);
8734         btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8735 free:
8736         call_rcu(&inode->i_rcu, btrfs_i_callback);
8737 }
8738
8739 int btrfs_drop_inode(struct inode *inode)
8740 {
8741         struct btrfs_root *root = BTRFS_I(inode)->root;
8742
8743         if (root == NULL)
8744                 return 1;
8745
8746         /* the snap/subvol tree is on deleting */
8747         if (btrfs_root_refs(&root->root_item) == 0)
8748                 return 1;
8749         else
8750                 return generic_drop_inode(inode);
8751 }
8752
8753 static void init_once(void *foo)
8754 {
8755         struct btrfs_inode *ei = (struct btrfs_inode *) foo;
8756
8757         inode_init_once(&ei->vfs_inode);
8758 }
8759
8760 void btrfs_destroy_cachep(void)
8761 {
8762         /*
8763          * Make sure all delayed rcu free inodes are flushed before we
8764          * destroy cache.
8765          */
8766         rcu_barrier();
8767         if (btrfs_inode_cachep)
8768                 kmem_cache_destroy(btrfs_inode_cachep);
8769         if (btrfs_trans_handle_cachep)
8770                 kmem_cache_destroy(btrfs_trans_handle_cachep);
8771         if (btrfs_transaction_cachep)
8772                 kmem_cache_destroy(btrfs_transaction_cachep);
8773         if (btrfs_path_cachep)
8774                 kmem_cache_destroy(btrfs_path_cachep);
8775         if (btrfs_free_space_cachep)
8776                 kmem_cache_destroy(btrfs_free_space_cachep);
8777         if (btrfs_delalloc_work_cachep)
8778                 kmem_cache_destroy(btrfs_delalloc_work_cachep);
8779 }
8780
8781 int btrfs_init_cachep(void)
8782 {
8783         btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8784                         sizeof(struct btrfs_inode), 0,
8785                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
8786         if (!btrfs_inode_cachep)
8787                 goto fail;
8788
8789         btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
8790                         sizeof(struct btrfs_trans_handle), 0,
8791                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8792         if (!btrfs_trans_handle_cachep)
8793                 goto fail;
8794
8795         btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
8796                         sizeof(struct btrfs_transaction), 0,
8797                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8798         if (!btrfs_transaction_cachep)
8799                 goto fail;
8800
8801         btrfs_path_cachep = kmem_cache_create("btrfs_path",
8802                         sizeof(struct btrfs_path), 0,
8803                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8804         if (!btrfs_path_cachep)
8805                 goto fail;
8806
8807         btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
8808                         sizeof(struct btrfs_free_space), 0,
8809                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8810         if (!btrfs_free_space_cachep)
8811                 goto fail;
8812
8813         btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
8814                         sizeof(struct btrfs_delalloc_work), 0,
8815                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
8816                         NULL);
8817         if (!btrfs_delalloc_work_cachep)
8818                 goto fail;
8819
8820         return 0;
8821 fail:
8822         btrfs_destroy_cachep();
8823         return -ENOMEM;
8824 }
8825
8826 static int btrfs_getattr(struct vfsmount *mnt,
8827                          struct dentry *dentry, struct kstat *stat)
8828 {
8829         u64 delalloc_bytes;
8830         struct inode *inode = dentry->d_inode;
8831         u32 blocksize = inode->i_sb->s_blocksize;
8832
8833         generic_fillattr(inode, stat);
8834         stat->dev = BTRFS_I(inode)->root->anon_dev;
8835         stat->blksize = PAGE_CACHE_SIZE;
8836
8837         spin_lock(&BTRFS_I(inode)->lock);
8838         delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
8839         spin_unlock(&BTRFS_I(inode)->lock);
8840         stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
8841                         ALIGN(delalloc_bytes, blocksize)) >> 9;
8842         return 0;
8843 }
8844
8845 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
8846                            struct inode *new_dir, struct dentry *new_dentry)
8847 {
8848         struct btrfs_trans_handle *trans;
8849         struct btrfs_root *root = BTRFS_I(old_dir)->root;
8850         struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8851         struct inode *new_inode = new_dentry->d_inode;
8852         struct inode *old_inode = old_dentry->d_inode;
8853         struct timespec ctime = CURRENT_TIME;
8854         u64 index = 0;
8855         u64 root_objectid;
8856         int ret;
8857         u64 old_ino = btrfs_ino(old_inode);
8858
8859         if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
8860                 return -EPERM;
8861
8862         /* we only allow rename subvolume link between subvolumes */
8863         if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8864                 return -EXDEV;
8865
8866         if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8867             (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
8868                 return -ENOTEMPTY;
8869
8870         if (S_ISDIR(old_inode->i_mode) && new_inode &&
8871             new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8872                 return -ENOTEMPTY;
8873
8874
8875         /* check for collisions, even if the  name isn't there */
8876         ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
8877                              new_dentry->d_name.name,
8878                              new_dentry->d_name.len);
8879
8880         if (ret) {
8881                 if (ret == -EEXIST) {
8882                         /* we shouldn't get
8883                          * eexist without a new_inode */
8884                         if (WARN_ON(!new_inode)) {
8885                                 return ret;
8886                         }
8887                 } else {
8888                         /* maybe -EOVERFLOW */
8889                         return ret;
8890                 }
8891         }
8892         ret = 0;
8893
8894         /*
8895          * we're using rename to replace one file with another.  Start IO on it
8896          * now so  we don't add too much work to the end of the transaction
8897          */
8898         if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
8899                 filemap_flush(old_inode->i_mapping);
8900
8901         /* close the racy window with snapshot create/destroy ioctl */
8902         if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8903                 down_read(&root->fs_info->subvol_sem);
8904         /*
8905          * We want to reserve the absolute worst case amount of items.  So if
8906          * both inodes are subvols and we need to unlink them then that would
8907          * require 4 item modifications, but if they are both normal inodes it
8908          * would require 5 item modifications, so we'll assume their normal
8909          * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
8910          * should cover the worst case number of items we'll modify.
8911          */
8912         trans = btrfs_start_transaction(root, 11);
8913         if (IS_ERR(trans)) {
8914                 ret = PTR_ERR(trans);
8915                 goto out_notrans;
8916         }
8917
8918         if (dest != root)
8919                 btrfs_record_root_in_trans(trans, dest);
8920
8921         ret = btrfs_set_inode_index(new_dir, &index);
8922         if (ret)
8923                 goto out_fail;
8924
8925         BTRFS_I(old_inode)->dir_index = 0ULL;
8926         if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8927                 /* force full log commit if subvolume involved. */
8928                 btrfs_set_log_full_commit(root->fs_info, trans);
8929         } else {
8930                 ret = btrfs_insert_inode_ref(trans, dest,
8931                                              new_dentry->d_name.name,
8932                                              new_dentry->d_name.len,
8933                                              old_ino,
8934                                              btrfs_ino(new_dir), index);
8935                 if (ret)
8936                         goto out_fail;
8937                 /*
8938                  * this is an ugly little race, but the rename is required
8939                  * to make sure that if we crash, the inode is either at the
8940                  * old name or the new one.  pinning the log transaction lets
8941                  * us make sure we don't allow a log commit to come in after
8942                  * we unlink the name but before we add the new name back in.
8943                  */
8944                 btrfs_pin_log_trans(root);
8945         }
8946
8947         inode_inc_iversion(old_dir);
8948         inode_inc_iversion(new_dir);
8949         inode_inc_iversion(old_inode);
8950         old_dir->i_ctime = old_dir->i_mtime = ctime;
8951         new_dir->i_ctime = new_dir->i_mtime = ctime;
8952         old_inode->i_ctime = ctime;
8953
8954         if (old_dentry->d_parent != new_dentry->d_parent)
8955                 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
8956
8957         if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8958                 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
8959                 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
8960                                         old_dentry->d_name.name,
8961                                         old_dentry->d_name.len);
8962         } else {
8963                 ret = __btrfs_unlink_inode(trans, root, old_dir,
8964                                         old_dentry->d_inode,
8965                                         old_dentry->d_name.name,
8966                                         old_dentry->d_name.len);
8967                 if (!ret)
8968                         ret = btrfs_update_inode(trans, root, old_inode);
8969         }
8970         if (ret) {
8971                 btrfs_abort_transaction(trans, root, ret);
8972                 goto out_fail;
8973         }
8974
8975         if (new_inode) {
8976                 inode_inc_iversion(new_inode);
8977                 new_inode->i_ctime = CURRENT_TIME;
8978                 if (unlikely(btrfs_ino(new_inode) ==
8979                              BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
8980                         root_objectid = BTRFS_I(new_inode)->location.objectid;
8981                         ret = btrfs_unlink_subvol(trans, dest, new_dir,
8982                                                 root_objectid,
8983                                                 new_dentry->d_name.name,
8984                                                 new_dentry->d_name.len);
8985                         BUG_ON(new_inode->i_nlink == 0);
8986                 } else {
8987                         ret = btrfs_unlink_inode(trans, dest, new_dir,
8988                                                  new_dentry->d_inode,
8989                                                  new_dentry->d_name.name,
8990                                                  new_dentry->d_name.len);
8991                 }
8992                 if (!ret && new_inode->i_nlink == 0)
8993                         ret = btrfs_orphan_add(trans, new_dentry->d_inode);
8994                 if (ret) {
8995                         btrfs_abort_transaction(trans, root, ret);
8996                         goto out_fail;
8997                 }
8998         }
8999
9000         ret = btrfs_add_link(trans, new_dir, old_inode,
9001                              new_dentry->d_name.name,
9002                              new_dentry->d_name.len, 0, index);
9003         if (ret) {
9004                 btrfs_abort_transaction(trans, root, ret);
9005                 goto out_fail;
9006         }
9007
9008         if (old_inode->i_nlink == 1)
9009                 BTRFS_I(old_inode)->dir_index = index;
9010
9011         if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
9012                 struct dentry *parent = new_dentry->d_parent;
9013                 btrfs_log_new_name(trans, old_inode, old_dir, parent);
9014                 btrfs_end_log_trans(root);
9015         }
9016 out_fail:
9017         btrfs_end_transaction(trans, root);
9018 out_notrans:
9019         if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9020                 up_read(&root->fs_info->subvol_sem);
9021
9022         return ret;
9023 }
9024
9025 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9026                          struct inode *new_dir, struct dentry *new_dentry,
9027                          unsigned int flags)
9028 {
9029         if (flags & ~RENAME_NOREPLACE)
9030                 return -EINVAL;
9031
9032         return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry);
9033 }
9034
9035 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9036 {
9037         struct btrfs_delalloc_work *delalloc_work;
9038         struct inode *inode;
9039
9040         delalloc_work = container_of(work, struct btrfs_delalloc_work,
9041                                      work);
9042         inode = delalloc_work->inode;
9043         if (delalloc_work->wait) {
9044                 btrfs_wait_ordered_range(inode, 0, (u64)-1);
9045         } else {
9046                 filemap_flush(inode->i_mapping);
9047                 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9048                              &BTRFS_I(inode)->runtime_flags))
9049                         filemap_flush(inode->i_mapping);
9050         }
9051
9052         if (delalloc_work->delay_iput)
9053                 btrfs_add_delayed_iput(inode);
9054         else
9055                 iput(inode);
9056         complete(&delalloc_work->completion);
9057 }
9058
9059 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
9060                                                     int wait, int delay_iput)
9061 {
9062         struct btrfs_delalloc_work *work;
9063
9064         work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
9065         if (!work)
9066                 return NULL;
9067
9068         init_completion(&work->completion);
9069         INIT_LIST_HEAD(&work->list);
9070         work->inode = inode;
9071         work->wait = wait;
9072         work->delay_iput = delay_iput;
9073         WARN_ON_ONCE(!inode);
9074         btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9075                         btrfs_run_delalloc_work, NULL, NULL);
9076
9077         return work;
9078 }
9079
9080 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
9081 {
9082         wait_for_completion(&work->completion);
9083         kmem_cache_free(btrfs_delalloc_work_cachep, work);
9084 }
9085
9086 /*
9087  * some fairly slow code that needs optimization. This walks the list
9088  * of all the inodes with pending delalloc and forces them to disk.
9089  */
9090 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
9091                                    int nr)
9092 {
9093         struct btrfs_inode *binode;
9094         struct inode *inode;
9095         struct btrfs_delalloc_work *work, *next;
9096         struct list_head works;
9097         struct list_head splice;
9098         int ret = 0;
9099
9100         INIT_LIST_HEAD(&works);
9101         INIT_LIST_HEAD(&splice);
9102
9103         mutex_lock(&root->delalloc_mutex);
9104         spin_lock(&root->delalloc_lock);
9105         list_splice_init(&root->delalloc_inodes, &splice);
9106         while (!list_empty(&splice)) {
9107                 binode = list_entry(splice.next, struct btrfs_inode,
9108                                     delalloc_inodes);
9109
9110                 list_move_tail(&binode->delalloc_inodes,
9111                                &root->delalloc_inodes);
9112                 inode = igrab(&binode->vfs_inode);
9113                 if (!inode) {
9114                         cond_resched_lock(&root->delalloc_lock);
9115                         continue;
9116                 }
9117                 spin_unlock(&root->delalloc_lock);
9118
9119                 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
9120                 if (!work) {
9121                         if (delay_iput)
9122                                 btrfs_add_delayed_iput(inode);
9123                         else
9124                                 iput(inode);
9125                         ret = -ENOMEM;
9126                         goto out;
9127                 }
9128                 list_add_tail(&work->list, &works);
9129                 btrfs_queue_work(root->fs_info->flush_workers,
9130                                  &work->work);
9131                 ret++;
9132                 if (nr != -1 && ret >= nr)
9133                         goto out;
9134                 cond_resched();
9135                 spin_lock(&root->delalloc_lock);
9136         }
9137         spin_unlock(&root->delalloc_lock);
9138
9139 out:
9140         list_for_each_entry_safe(work, next, &works, list) {
9141                 list_del_init(&work->list);
9142                 btrfs_wait_and_free_delalloc_work(work);
9143         }
9144
9145         if (!list_empty_careful(&splice)) {
9146                 spin_lock(&root->delalloc_lock);
9147                 list_splice_tail(&splice, &root->delalloc_inodes);
9148                 spin_unlock(&root->delalloc_lock);
9149         }
9150         mutex_unlock(&root->delalloc_mutex);
9151         return ret;
9152 }
9153
9154 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
9155 {
9156         int ret;
9157
9158         if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
9159                 return -EROFS;
9160
9161         ret = __start_delalloc_inodes(root, delay_iput, -1);
9162         if (ret > 0)
9163                 ret = 0;
9164         /*
9165          * the filemap_flush will queue IO into the worker threads, but
9166          * we have to make sure the IO is actually started and that
9167          * ordered extents get created before we return
9168          */
9169         atomic_inc(&root->fs_info->async_submit_draining);
9170         while (atomic_read(&root->fs_info->nr_async_submits) ||
9171               atomic_read(&root->fs_info->async_delalloc_pages)) {
9172                 wait_event(root->fs_info->async_submit_wait,
9173                    (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
9174                     atomic_read(&root->fs_info->async_delalloc_pages) == 0));
9175         }
9176         atomic_dec(&root->fs_info->async_submit_draining);
9177         return ret;
9178 }
9179
9180 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
9181                                int nr)
9182 {
9183         struct btrfs_root *root;
9184         struct list_head splice;
9185         int ret;
9186
9187         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9188                 return -EROFS;
9189
9190         INIT_LIST_HEAD(&splice);
9191
9192         mutex_lock(&fs_info->delalloc_root_mutex);
9193         spin_lock(&fs_info->delalloc_root_lock);
9194         list_splice_init(&fs_info->delalloc_roots, &splice);
9195         while (!list_empty(&splice) && nr) {
9196                 root = list_first_entry(&splice, struct btrfs_root,
9197                                         delalloc_root);
9198                 root = btrfs_grab_fs_root(root);
9199                 BUG_ON(!root);
9200                 list_move_tail(&root->delalloc_root,
9201                                &fs_info->delalloc_roots);
9202                 spin_unlock(&fs_info->delalloc_root_lock);
9203
9204                 ret = __start_delalloc_inodes(root, delay_iput, nr);
9205                 btrfs_put_fs_root(root);
9206                 if (ret < 0)
9207                         goto out;
9208
9209                 if (nr != -1) {
9210                         nr -= ret;
9211                         WARN_ON(nr < 0);
9212                 }
9213                 spin_lock(&fs_info->delalloc_root_lock);
9214         }
9215         spin_unlock(&fs_info->delalloc_root_lock);
9216
9217         ret = 0;
9218         atomic_inc(&fs_info->async_submit_draining);
9219         while (atomic_read(&fs_info->nr_async_submits) ||
9220               atomic_read(&fs_info->async_delalloc_pages)) {
9221                 wait_event(fs_info->async_submit_wait,
9222                    (atomic_read(&fs_info->nr_async_submits) == 0 &&
9223                     atomic_read(&fs_info->async_delalloc_pages) == 0));
9224         }
9225         atomic_dec(&fs_info->async_submit_draining);
9226 out:
9227         if (!list_empty_careful(&splice)) {
9228                 spin_lock(&fs_info->delalloc_root_lock);
9229                 list_splice_tail(&splice, &fs_info->delalloc_roots);
9230                 spin_unlock(&fs_info->delalloc_root_lock);
9231         }
9232         mutex_unlock(&fs_info->delalloc_root_mutex);
9233         return ret;
9234 }
9235
9236 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
9237                          const char *symname)
9238 {
9239         struct btrfs_trans_handle *trans;
9240         struct btrfs_root *root = BTRFS_I(dir)->root;
9241         struct btrfs_path *path;
9242         struct btrfs_key key;
9243         struct inode *inode = NULL;
9244         int err;
9245         int drop_inode = 0;
9246         u64 objectid;
9247         u64 index = 0;
9248         int name_len;
9249         int datasize;
9250         unsigned long ptr;
9251         struct btrfs_file_extent_item *ei;
9252         struct extent_buffer *leaf;
9253
9254         name_len = strlen(symname);
9255         if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
9256                 return -ENAMETOOLONG;
9257
9258         /*
9259          * 2 items for inode item and ref
9260          * 2 items for dir items
9261          * 1 item for xattr if selinux is on
9262          */
9263         trans = btrfs_start_transaction(root, 5);
9264         if (IS_ERR(trans))
9265                 return PTR_ERR(trans);
9266
9267         err = btrfs_find_free_ino(root, &objectid);
9268         if (err)
9269                 goto out_unlock;
9270
9271         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9272                                 dentry->d_name.len, btrfs_ino(dir), objectid,
9273                                 S_IFLNK|S_IRWXUGO, &index);
9274         if (IS_ERR(inode)) {
9275                 err = PTR_ERR(inode);
9276                 goto out_unlock;
9277         }
9278
9279         /*
9280         * If the active LSM wants to access the inode during
9281         * d_instantiate it needs these. Smack checks to see
9282         * if the filesystem supports xattrs by looking at the
9283         * ops vector.
9284         */
9285         inode->i_fop = &btrfs_file_operations;
9286         inode->i_op = &btrfs_file_inode_operations;
9287         inode->i_mapping->a_ops = &btrfs_aops;
9288         inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
9289         BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9290
9291         err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9292         if (err)
9293                 goto out_unlock_inode;
9294
9295         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
9296         if (err)
9297                 goto out_unlock_inode;
9298
9299         path = btrfs_alloc_path();
9300         if (!path) {
9301                 err = -ENOMEM;
9302                 goto out_unlock_inode;
9303         }
9304         key.objectid = btrfs_ino(inode);
9305         key.offset = 0;
9306         key.type = BTRFS_EXTENT_DATA_KEY;
9307         datasize = btrfs_file_extent_calc_inline_size(name_len);
9308         err = btrfs_insert_empty_item(trans, root, path, &key,
9309                                       datasize);
9310         if (err) {
9311                 btrfs_free_path(path);
9312                 goto out_unlock_inode;
9313         }
9314         leaf = path->nodes[0];
9315         ei = btrfs_item_ptr(leaf, path->slots[0],
9316                             struct btrfs_file_extent_item);
9317         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9318         btrfs_set_file_extent_type(leaf, ei,
9319                                    BTRFS_FILE_EXTENT_INLINE);
9320         btrfs_set_file_extent_encryption(leaf, ei, 0);
9321         btrfs_set_file_extent_compression(leaf, ei, 0);
9322         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9323         btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9324
9325         ptr = btrfs_file_extent_inline_start(ei);
9326         write_extent_buffer(leaf, symname, ptr, name_len);
9327         btrfs_mark_buffer_dirty(leaf);
9328         btrfs_free_path(path);
9329
9330         inode->i_op = &btrfs_symlink_inode_operations;
9331         inode->i_mapping->a_ops = &btrfs_symlink_aops;
9332         inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
9333         inode_set_bytes(inode, name_len);
9334         btrfs_i_size_write(inode, name_len);
9335         err = btrfs_update_inode(trans, root, inode);
9336         if (err) {
9337                 drop_inode = 1;
9338                 goto out_unlock_inode;
9339         }
9340
9341         unlock_new_inode(inode);
9342         d_instantiate(dentry, inode);
9343
9344 out_unlock:
9345         btrfs_end_transaction(trans, root);
9346         if (drop_inode) {
9347                 inode_dec_link_count(inode);
9348                 iput(inode);
9349         }
9350         btrfs_btree_balance_dirty(root);
9351         return err;
9352
9353 out_unlock_inode:
9354         drop_inode = 1;
9355         unlock_new_inode(inode);
9356         goto out_unlock;
9357 }
9358
9359 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9360                                        u64 start, u64 num_bytes, u64 min_size,
9361                                        loff_t actual_len, u64 *alloc_hint,
9362                                        struct btrfs_trans_handle *trans)
9363 {
9364         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9365         struct extent_map *em;
9366         struct btrfs_root *root = BTRFS_I(inode)->root;
9367         struct btrfs_key ins;
9368         u64 cur_offset = start;
9369         u64 i_size;
9370         u64 cur_bytes;
9371         int ret = 0;
9372         bool own_trans = true;
9373
9374         if (trans)
9375                 own_trans = false;
9376         while (num_bytes > 0) {
9377                 if (own_trans) {
9378                         trans = btrfs_start_transaction(root, 3);
9379                         if (IS_ERR(trans)) {
9380                                 ret = PTR_ERR(trans);
9381                                 break;
9382                         }
9383                 }
9384
9385                 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
9386                 cur_bytes = max(cur_bytes, min_size);
9387                 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
9388                                            *alloc_hint, &ins, 1, 0);
9389                 if (ret) {
9390                         if (own_trans)
9391                                 btrfs_end_transaction(trans, root);
9392                         break;
9393                 }
9394
9395                 ret = insert_reserved_file_extent(trans, inode,
9396                                                   cur_offset, ins.objectid,
9397                                                   ins.offset, ins.offset,
9398                                                   ins.offset, 0, 0, 0,
9399                                                   BTRFS_FILE_EXTENT_PREALLOC);
9400                 if (ret) {
9401                         btrfs_free_reserved_extent(root, ins.objectid,
9402                                                    ins.offset, 0);
9403                         btrfs_abort_transaction(trans, root, ret);
9404                         if (own_trans)
9405                                 btrfs_end_transaction(trans, root);
9406                         break;
9407                 }
9408                 btrfs_drop_extent_cache(inode, cur_offset,
9409                                         cur_offset + ins.offset -1, 0);
9410
9411                 em = alloc_extent_map();
9412                 if (!em) {
9413                         set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
9414                                 &BTRFS_I(inode)->runtime_flags);
9415                         goto next;
9416                 }
9417
9418                 em->start = cur_offset;
9419                 em->orig_start = cur_offset;
9420                 em->len = ins.offset;
9421                 em->block_start = ins.objectid;
9422                 em->block_len = ins.offset;
9423                 em->orig_block_len = ins.offset;
9424                 em->ram_bytes = ins.offset;
9425                 em->bdev = root->fs_info->fs_devices->latest_bdev;
9426                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9427                 em->generation = trans->transid;
9428
9429                 while (1) {
9430                         write_lock(&em_tree->lock);
9431                         ret = add_extent_mapping(em_tree, em, 1);
9432                         write_unlock(&em_tree->lock);
9433                         if (ret != -EEXIST)
9434                                 break;
9435                         btrfs_drop_extent_cache(inode, cur_offset,
9436                                                 cur_offset + ins.offset - 1,
9437                                                 0);
9438                 }
9439                 free_extent_map(em);
9440 next:
9441                 num_bytes -= ins.offset;
9442                 cur_offset += ins.offset;
9443                 *alloc_hint = ins.objectid + ins.offset;
9444
9445                 inode_inc_iversion(inode);
9446                 inode->i_ctime = CURRENT_TIME;
9447                 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9448                 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9449                     (actual_len > inode->i_size) &&
9450                     (cur_offset > inode->i_size)) {
9451                         if (cur_offset > actual_len)
9452                                 i_size = actual_len;
9453                         else
9454                                 i_size = cur_offset;
9455                         i_size_write(inode, i_size);
9456                         btrfs_ordered_update_i_size(inode, i_size, NULL);
9457                 }
9458
9459                 ret = btrfs_update_inode(trans, root, inode);
9460
9461                 if (ret) {
9462                         btrfs_abort_transaction(trans, root, ret);
9463                         if (own_trans)
9464                                 btrfs_end_transaction(trans, root);
9465                         break;
9466                 }
9467
9468                 if (own_trans)
9469                         btrfs_end_transaction(trans, root);
9470         }
9471         return ret;
9472 }
9473
9474 int btrfs_prealloc_file_range(struct inode *inode, int mode,
9475                               u64 start, u64 num_bytes, u64 min_size,
9476                               loff_t actual_len, u64 *alloc_hint)
9477 {
9478         return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9479                                            min_size, actual_len, alloc_hint,
9480                                            NULL);
9481 }
9482
9483 int btrfs_prealloc_file_range_trans(struct inode *inode,
9484                                     struct btrfs_trans_handle *trans, int mode,
9485                                     u64 start, u64 num_bytes, u64 min_size,
9486                                     loff_t actual_len, u64 *alloc_hint)
9487 {
9488         return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9489                                            min_size, actual_len, alloc_hint, trans);
9490 }
9491
9492 static int btrfs_set_page_dirty(struct page *page)
9493 {
9494         return __set_page_dirty_nobuffers(page);
9495 }
9496
9497 static int btrfs_permission(struct inode *inode, int mask)
9498 {
9499         struct btrfs_root *root = BTRFS_I(inode)->root;
9500         umode_t mode = inode->i_mode;
9501
9502         if (mask & MAY_WRITE &&
9503             (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9504                 if (btrfs_root_readonly(root))
9505                         return -EROFS;
9506                 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9507                         return -EACCES;
9508         }
9509         return generic_permission(inode, mask);
9510 }
9511
9512 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
9513 {
9514         struct btrfs_trans_handle *trans;
9515         struct btrfs_root *root = BTRFS_I(dir)->root;
9516         struct inode *inode = NULL;
9517         u64 objectid;
9518         u64 index;
9519         int ret = 0;
9520
9521         /*
9522          * 5 units required for adding orphan entry
9523          */
9524         trans = btrfs_start_transaction(root, 5);
9525         if (IS_ERR(trans))
9526                 return PTR_ERR(trans);
9527
9528         ret = btrfs_find_free_ino(root, &objectid);
9529         if (ret)
9530                 goto out;
9531
9532         inode = btrfs_new_inode(trans, root, dir, NULL, 0,
9533                                 btrfs_ino(dir), objectid, mode, &index);
9534         if (IS_ERR(inode)) {
9535                 ret = PTR_ERR(inode);
9536                 inode = NULL;
9537                 goto out;
9538         }
9539
9540         inode->i_fop = &btrfs_file_operations;
9541         inode->i_op = &btrfs_file_inode_operations;
9542
9543         inode->i_mapping->a_ops = &btrfs_aops;
9544         inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
9545         BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9546
9547         ret = btrfs_init_inode_security(trans, inode, dir, NULL);
9548         if (ret)
9549                 goto out_inode;
9550
9551         ret = btrfs_update_inode(trans, root, inode);
9552         if (ret)
9553                 goto out_inode;
9554         ret = btrfs_orphan_add(trans, inode);
9555         if (ret)
9556                 goto out_inode;
9557
9558         /*
9559          * We set number of links to 0 in btrfs_new_inode(), and here we set
9560          * it to 1 because d_tmpfile() will issue a warning if the count is 0,
9561          * through:
9562          *
9563          *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9564          */
9565         set_nlink(inode, 1);
9566         unlock_new_inode(inode);
9567         d_tmpfile(dentry, inode);
9568         mark_inode_dirty(inode);
9569
9570 out:
9571         btrfs_end_transaction(trans, root);
9572         if (ret)
9573                 iput(inode);
9574         btrfs_balance_delayed_items(root);
9575         btrfs_btree_balance_dirty(root);
9576         return ret;
9577
9578 out_inode:
9579         unlock_new_inode(inode);
9580         goto out;
9581
9582 }
9583
9584 /* Inspired by filemap_check_errors() */
9585 int btrfs_inode_check_errors(struct inode *inode)
9586 {
9587         int ret = 0;
9588
9589         if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) &&
9590             test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags))
9591                 ret = -ENOSPC;
9592         if (test_bit(AS_EIO, &inode->i_mapping->flags) &&
9593             test_and_clear_bit(AS_EIO, &inode->i_mapping->flags))
9594                 ret = -EIO;
9595
9596         return ret;
9597 }
9598
9599 static const struct inode_operations btrfs_dir_inode_operations = {
9600         .getattr        = btrfs_getattr,
9601         .lookup         = btrfs_lookup,
9602         .create         = btrfs_create,
9603         .unlink         = btrfs_unlink,
9604         .link           = btrfs_link,
9605         .mkdir          = btrfs_mkdir,
9606         .rmdir          = btrfs_rmdir,
9607         .rename2        = btrfs_rename2,
9608         .symlink        = btrfs_symlink,
9609         .setattr        = btrfs_setattr,
9610         .mknod          = btrfs_mknod,
9611         .setxattr       = btrfs_setxattr,
9612         .getxattr       = btrfs_getxattr,
9613         .listxattr      = btrfs_listxattr,
9614         .removexattr    = btrfs_removexattr,
9615         .permission     = btrfs_permission,
9616         .get_acl        = btrfs_get_acl,
9617         .set_acl        = btrfs_set_acl,
9618         .update_time    = btrfs_update_time,
9619         .tmpfile        = btrfs_tmpfile,
9620 };
9621 static const struct inode_operations btrfs_dir_ro_inode_operations = {
9622         .lookup         = btrfs_lookup,
9623         .permission     = btrfs_permission,
9624         .get_acl        = btrfs_get_acl,
9625         .set_acl        = btrfs_set_acl,
9626         .update_time    = btrfs_update_time,
9627 };
9628
9629 static const struct file_operations btrfs_dir_file_operations = {
9630         .llseek         = generic_file_llseek,
9631         .read           = generic_read_dir,
9632         .iterate        = btrfs_real_readdir,
9633         .unlocked_ioctl = btrfs_ioctl,
9634 #ifdef CONFIG_COMPAT
9635         .compat_ioctl   = btrfs_ioctl,
9636 #endif
9637         .release        = btrfs_release_file,
9638         .fsync          = btrfs_sync_file,
9639 };
9640
9641 static struct extent_io_ops btrfs_extent_io_ops = {
9642         .fill_delalloc = run_delalloc_range,
9643         .submit_bio_hook = btrfs_submit_bio_hook,
9644         .merge_bio_hook = btrfs_merge_bio_hook,
9645         .readpage_end_io_hook = btrfs_readpage_end_io_hook,
9646         .writepage_end_io_hook = btrfs_writepage_end_io_hook,
9647         .writepage_start_hook = btrfs_writepage_start_hook,
9648         .set_bit_hook = btrfs_set_bit_hook,
9649         .clear_bit_hook = btrfs_clear_bit_hook,
9650         .merge_extent_hook = btrfs_merge_extent_hook,
9651         .split_extent_hook = btrfs_split_extent_hook,
9652 };
9653
9654 /*
9655  * btrfs doesn't support the bmap operation because swapfiles
9656  * use bmap to make a mapping of extents in the file.  They assume
9657  * these extents won't change over the life of the file and they
9658  * use the bmap result to do IO directly to the drive.
9659  *
9660  * the btrfs bmap call would return logical addresses that aren't
9661  * suitable for IO and they also will change frequently as COW
9662  * operations happen.  So, swapfile + btrfs == corruption.
9663  *
9664  * For now we're avoiding this by dropping bmap.
9665  */
9666 static const struct address_space_operations btrfs_aops = {
9667         .readpage       = btrfs_readpage,
9668         .writepage      = btrfs_writepage,
9669         .writepages     = btrfs_writepages,
9670         .readpages      = btrfs_readpages,
9671         .direct_IO      = btrfs_direct_IO,
9672         .invalidatepage = btrfs_invalidatepage,
9673         .releasepage    = btrfs_releasepage,
9674         .set_page_dirty = btrfs_set_page_dirty,
9675         .error_remove_page = generic_error_remove_page,
9676 };
9677
9678 static const struct address_space_operations btrfs_symlink_aops = {
9679         .readpage       = btrfs_readpage,
9680         .writepage      = btrfs_writepage,
9681         .invalidatepage = btrfs_invalidatepage,
9682         .releasepage    = btrfs_releasepage,
9683 };
9684
9685 static const struct inode_operations btrfs_file_inode_operations = {
9686         .getattr        = btrfs_getattr,
9687         .setattr        = btrfs_setattr,
9688         .setxattr       = btrfs_setxattr,
9689         .getxattr       = btrfs_getxattr,
9690         .listxattr      = btrfs_listxattr,
9691         .removexattr    = btrfs_removexattr,
9692         .permission     = btrfs_permission,
9693         .fiemap         = btrfs_fiemap,
9694         .get_acl        = btrfs_get_acl,
9695         .set_acl        = btrfs_set_acl,
9696         .update_time    = btrfs_update_time,
9697 };
9698 static const struct inode_operations btrfs_special_inode_operations = {
9699         .getattr        = btrfs_getattr,
9700         .setattr        = btrfs_setattr,
9701         .permission     = btrfs_permission,
9702         .setxattr       = btrfs_setxattr,
9703         .getxattr       = btrfs_getxattr,
9704         .listxattr      = btrfs_listxattr,
9705         .removexattr    = btrfs_removexattr,
9706         .get_acl        = btrfs_get_acl,
9707         .set_acl        = btrfs_set_acl,
9708         .update_time    = btrfs_update_time,
9709 };
9710 static const struct inode_operations btrfs_symlink_inode_operations = {
9711         .readlink       = generic_readlink,
9712         .follow_link    = page_follow_link_light,
9713         .put_link       = page_put_link,
9714         .getattr        = btrfs_getattr,
9715         .setattr        = btrfs_setattr,
9716         .permission     = btrfs_permission,
9717         .setxattr       = btrfs_setxattr,
9718         .getxattr       = btrfs_getxattr,
9719         .listxattr      = btrfs_listxattr,
9720         .removexattr    = btrfs_removexattr,
9721         .update_time    = btrfs_update_time,
9722 };
9723
9724 const struct dentry_operations btrfs_dentry_operations = {
9725         .d_delete       = btrfs_dentry_delete,
9726         .d_release      = btrfs_dentry_release,
9727 };