Btrfs: don't wait for unrelated IO to finish before relocation
[cascardo/linux.git] / fs / btrfs / ordered-data.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/slab.h>
20 #include <linux/blkdev.h>
21 #include <linux/writeback.h>
22 #include <linux/pagevec.h>
23 #include "ctree.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "extent_io.h"
27 #include "disk-io.h"
28 #include "compression.h"
29
30 static struct kmem_cache *btrfs_ordered_extent_cache;
31
32 static u64 entry_end(struct btrfs_ordered_extent *entry)
33 {
34         if (entry->file_offset + entry->len < entry->file_offset)
35                 return (u64)-1;
36         return entry->file_offset + entry->len;
37 }
38
39 /* returns NULL if the insertion worked, or it returns the node it did find
40  * in the tree
41  */
42 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
43                                    struct rb_node *node)
44 {
45         struct rb_node **p = &root->rb_node;
46         struct rb_node *parent = NULL;
47         struct btrfs_ordered_extent *entry;
48
49         while (*p) {
50                 parent = *p;
51                 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
52
53                 if (file_offset < entry->file_offset)
54                         p = &(*p)->rb_left;
55                 else if (file_offset >= entry_end(entry))
56                         p = &(*p)->rb_right;
57                 else
58                         return parent;
59         }
60
61         rb_link_node(node, parent, p);
62         rb_insert_color(node, root);
63         return NULL;
64 }
65
66 static void ordered_data_tree_panic(struct inode *inode, int errno,
67                                                u64 offset)
68 {
69         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
70         btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset "
71                     "%llu", offset);
72 }
73
74 /*
75  * look for a given offset in the tree, and if it can't be found return the
76  * first lesser offset
77  */
78 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
79                                      struct rb_node **prev_ret)
80 {
81         struct rb_node *n = root->rb_node;
82         struct rb_node *prev = NULL;
83         struct rb_node *test;
84         struct btrfs_ordered_extent *entry;
85         struct btrfs_ordered_extent *prev_entry = NULL;
86
87         while (n) {
88                 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
89                 prev = n;
90                 prev_entry = entry;
91
92                 if (file_offset < entry->file_offset)
93                         n = n->rb_left;
94                 else if (file_offset >= entry_end(entry))
95                         n = n->rb_right;
96                 else
97                         return n;
98         }
99         if (!prev_ret)
100                 return NULL;
101
102         while (prev && file_offset >= entry_end(prev_entry)) {
103                 test = rb_next(prev);
104                 if (!test)
105                         break;
106                 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
107                                       rb_node);
108                 if (file_offset < entry_end(prev_entry))
109                         break;
110
111                 prev = test;
112         }
113         if (prev)
114                 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
115                                       rb_node);
116         while (prev && file_offset < entry_end(prev_entry)) {
117                 test = rb_prev(prev);
118                 if (!test)
119                         break;
120                 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
121                                       rb_node);
122                 prev = test;
123         }
124         *prev_ret = prev;
125         return NULL;
126 }
127
128 /*
129  * helper to check if a given offset is inside a given entry
130  */
131 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
132 {
133         if (file_offset < entry->file_offset ||
134             entry->file_offset + entry->len <= file_offset)
135                 return 0;
136         return 1;
137 }
138
139 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
140                           u64 len)
141 {
142         if (file_offset + len <= entry->file_offset ||
143             entry->file_offset + entry->len <= file_offset)
144                 return 0;
145         return 1;
146 }
147
148 /*
149  * look find the first ordered struct that has this offset, otherwise
150  * the first one less than this offset
151  */
152 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
153                                           u64 file_offset)
154 {
155         struct rb_root *root = &tree->tree;
156         struct rb_node *prev = NULL;
157         struct rb_node *ret;
158         struct btrfs_ordered_extent *entry;
159
160         if (tree->last) {
161                 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
162                                  rb_node);
163                 if (offset_in_entry(entry, file_offset))
164                         return tree->last;
165         }
166         ret = __tree_search(root, file_offset, &prev);
167         if (!ret)
168                 ret = prev;
169         if (ret)
170                 tree->last = ret;
171         return ret;
172 }
173
174 /* allocate and add a new ordered_extent into the per-inode tree.
175  * file_offset is the logical offset in the file
176  *
177  * start is the disk block number of an extent already reserved in the
178  * extent allocation tree
179  *
180  * len is the length of the extent
181  *
182  * The tree is given a single reference on the ordered extent that was
183  * inserted.
184  */
185 static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
186                                       u64 start, u64 len, u64 disk_len,
187                                       int type, int dio, int compress_type)
188 {
189         struct btrfs_root *root = BTRFS_I(inode)->root;
190         struct btrfs_ordered_inode_tree *tree;
191         struct rb_node *node;
192         struct btrfs_ordered_extent *entry;
193
194         tree = &BTRFS_I(inode)->ordered_tree;
195         entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
196         if (!entry)
197                 return -ENOMEM;
198
199         entry->file_offset = file_offset;
200         entry->start = start;
201         entry->len = len;
202         entry->disk_len = disk_len;
203         entry->bytes_left = len;
204         entry->inode = igrab(inode);
205         entry->compress_type = compress_type;
206         entry->truncated_len = (u64)-1;
207         if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
208                 set_bit(type, &entry->flags);
209
210         if (dio)
211                 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
212
213         /* one ref for the tree */
214         atomic_set(&entry->refs, 1);
215         init_waitqueue_head(&entry->wait);
216         INIT_LIST_HEAD(&entry->list);
217         INIT_LIST_HEAD(&entry->root_extent_list);
218         INIT_LIST_HEAD(&entry->work_list);
219         init_completion(&entry->completion);
220         INIT_LIST_HEAD(&entry->log_list);
221         INIT_LIST_HEAD(&entry->trans_list);
222
223         trace_btrfs_ordered_extent_add(inode, entry);
224
225         spin_lock_irq(&tree->lock);
226         node = tree_insert(&tree->tree, file_offset,
227                            &entry->rb_node);
228         if (node)
229                 ordered_data_tree_panic(inode, -EEXIST, file_offset);
230         spin_unlock_irq(&tree->lock);
231
232         spin_lock(&root->ordered_extent_lock);
233         list_add_tail(&entry->root_extent_list,
234                       &root->ordered_extents);
235         root->nr_ordered_extents++;
236         if (root->nr_ordered_extents == 1) {
237                 spin_lock(&root->fs_info->ordered_root_lock);
238                 BUG_ON(!list_empty(&root->ordered_root));
239                 list_add_tail(&root->ordered_root,
240                               &root->fs_info->ordered_roots);
241                 spin_unlock(&root->fs_info->ordered_root_lock);
242         }
243         spin_unlock(&root->ordered_extent_lock);
244
245         return 0;
246 }
247
248 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
249                              u64 start, u64 len, u64 disk_len, int type)
250 {
251         return __btrfs_add_ordered_extent(inode, file_offset, start, len,
252                                           disk_len, type, 0,
253                                           BTRFS_COMPRESS_NONE);
254 }
255
256 int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
257                                  u64 start, u64 len, u64 disk_len, int type)
258 {
259         return __btrfs_add_ordered_extent(inode, file_offset, start, len,
260                                           disk_len, type, 1,
261                                           BTRFS_COMPRESS_NONE);
262 }
263
264 int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
265                                       u64 start, u64 len, u64 disk_len,
266                                       int type, int compress_type)
267 {
268         return __btrfs_add_ordered_extent(inode, file_offset, start, len,
269                                           disk_len, type, 0,
270                                           compress_type);
271 }
272
273 /*
274  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
275  * when an ordered extent is finished.  If the list covers more than one
276  * ordered extent, it is split across multiples.
277  */
278 void btrfs_add_ordered_sum(struct inode *inode,
279                            struct btrfs_ordered_extent *entry,
280                            struct btrfs_ordered_sum *sum)
281 {
282         struct btrfs_ordered_inode_tree *tree;
283
284         tree = &BTRFS_I(inode)->ordered_tree;
285         spin_lock_irq(&tree->lock);
286         list_add_tail(&sum->list, &entry->list);
287         spin_unlock_irq(&tree->lock);
288 }
289
290 /*
291  * this is used to account for finished IO across a given range
292  * of the file.  The IO may span ordered extents.  If
293  * a given ordered_extent is completely done, 1 is returned, otherwise
294  * 0.
295  *
296  * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
297  * to make sure this function only returns 1 once for a given ordered extent.
298  *
299  * file_offset is updated to one byte past the range that is recorded as
300  * complete.  This allows you to walk forward in the file.
301  */
302 int btrfs_dec_test_first_ordered_pending(struct inode *inode,
303                                    struct btrfs_ordered_extent **cached,
304                                    u64 *file_offset, u64 io_size, int uptodate)
305 {
306         struct btrfs_ordered_inode_tree *tree;
307         struct rb_node *node;
308         struct btrfs_ordered_extent *entry = NULL;
309         int ret;
310         unsigned long flags;
311         u64 dec_end;
312         u64 dec_start;
313         u64 to_dec;
314
315         tree = &BTRFS_I(inode)->ordered_tree;
316         spin_lock_irqsave(&tree->lock, flags);
317         node = tree_search(tree, *file_offset);
318         if (!node) {
319                 ret = 1;
320                 goto out;
321         }
322
323         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
324         if (!offset_in_entry(entry, *file_offset)) {
325                 ret = 1;
326                 goto out;
327         }
328
329         dec_start = max(*file_offset, entry->file_offset);
330         dec_end = min(*file_offset + io_size, entry->file_offset +
331                       entry->len);
332         *file_offset = dec_end;
333         if (dec_start > dec_end) {
334                 btrfs_crit(BTRFS_I(inode)->root->fs_info,
335                         "bad ordering dec_start %llu end %llu", dec_start, dec_end);
336         }
337         to_dec = dec_end - dec_start;
338         if (to_dec > entry->bytes_left) {
339                 btrfs_crit(BTRFS_I(inode)->root->fs_info,
340                         "bad ordered accounting left %llu size %llu",
341                         entry->bytes_left, to_dec);
342         }
343         entry->bytes_left -= to_dec;
344         if (!uptodate)
345                 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
346
347         if (entry->bytes_left == 0) {
348                 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
349                 /*
350                  * Implicit memory barrier after test_and_set_bit
351                  */
352                 if (waitqueue_active(&entry->wait))
353                         wake_up(&entry->wait);
354         } else {
355                 ret = 1;
356         }
357 out:
358         if (!ret && cached && entry) {
359                 *cached = entry;
360                 atomic_inc(&entry->refs);
361         }
362         spin_unlock_irqrestore(&tree->lock, flags);
363         return ret == 0;
364 }
365
366 /*
367  * this is used to account for finished IO across a given range
368  * of the file.  The IO should not span ordered extents.  If
369  * a given ordered_extent is completely done, 1 is returned, otherwise
370  * 0.
371  *
372  * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
373  * to make sure this function only returns 1 once for a given ordered extent.
374  */
375 int btrfs_dec_test_ordered_pending(struct inode *inode,
376                                    struct btrfs_ordered_extent **cached,
377                                    u64 file_offset, u64 io_size, int uptodate)
378 {
379         struct btrfs_ordered_inode_tree *tree;
380         struct rb_node *node;
381         struct btrfs_ordered_extent *entry = NULL;
382         unsigned long flags;
383         int ret;
384
385         tree = &BTRFS_I(inode)->ordered_tree;
386         spin_lock_irqsave(&tree->lock, flags);
387         if (cached && *cached) {
388                 entry = *cached;
389                 goto have_entry;
390         }
391
392         node = tree_search(tree, file_offset);
393         if (!node) {
394                 ret = 1;
395                 goto out;
396         }
397
398         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
399 have_entry:
400         if (!offset_in_entry(entry, file_offset)) {
401                 ret = 1;
402                 goto out;
403         }
404
405         if (io_size > entry->bytes_left) {
406                 btrfs_crit(BTRFS_I(inode)->root->fs_info,
407                            "bad ordered accounting left %llu size %llu",
408                        entry->bytes_left, io_size);
409         }
410         entry->bytes_left -= io_size;
411         if (!uptodate)
412                 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
413
414         if (entry->bytes_left == 0) {
415                 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
416                 /*
417                  * Implicit memory barrier after test_and_set_bit
418                  */
419                 if (waitqueue_active(&entry->wait))
420                         wake_up(&entry->wait);
421         } else {
422                 ret = 1;
423         }
424 out:
425         if (!ret && cached && entry) {
426                 *cached = entry;
427                 atomic_inc(&entry->refs);
428         }
429         spin_unlock_irqrestore(&tree->lock, flags);
430         return ret == 0;
431 }
432
433 /* Needs to either be called under a log transaction or the log_mutex */
434 void btrfs_get_logged_extents(struct inode *inode,
435                               struct list_head *logged_list,
436                               const loff_t start,
437                               const loff_t end)
438 {
439         struct btrfs_ordered_inode_tree *tree;
440         struct btrfs_ordered_extent *ordered;
441         struct rb_node *n;
442         struct rb_node *prev;
443
444         tree = &BTRFS_I(inode)->ordered_tree;
445         spin_lock_irq(&tree->lock);
446         n = __tree_search(&tree->tree, end, &prev);
447         if (!n)
448                 n = prev;
449         for (; n; n = rb_prev(n)) {
450                 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
451                 if (ordered->file_offset > end)
452                         continue;
453                 if (entry_end(ordered) <= start)
454                         break;
455                 if (test_and_set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
456                         continue;
457                 list_add(&ordered->log_list, logged_list);
458                 atomic_inc(&ordered->refs);
459         }
460         spin_unlock_irq(&tree->lock);
461 }
462
463 void btrfs_put_logged_extents(struct list_head *logged_list)
464 {
465         struct btrfs_ordered_extent *ordered;
466
467         while (!list_empty(logged_list)) {
468                 ordered = list_first_entry(logged_list,
469                                            struct btrfs_ordered_extent,
470                                            log_list);
471                 list_del_init(&ordered->log_list);
472                 btrfs_put_ordered_extent(ordered);
473         }
474 }
475
476 void btrfs_submit_logged_extents(struct list_head *logged_list,
477                                  struct btrfs_root *log)
478 {
479         int index = log->log_transid % 2;
480
481         spin_lock_irq(&log->log_extents_lock[index]);
482         list_splice_tail(logged_list, &log->logged_list[index]);
483         spin_unlock_irq(&log->log_extents_lock[index]);
484 }
485
486 void btrfs_wait_logged_extents(struct btrfs_trans_handle *trans,
487                                struct btrfs_root *log, u64 transid)
488 {
489         struct btrfs_ordered_extent *ordered;
490         int index = transid % 2;
491
492         spin_lock_irq(&log->log_extents_lock[index]);
493         while (!list_empty(&log->logged_list[index])) {
494                 struct inode *inode;
495                 ordered = list_first_entry(&log->logged_list[index],
496                                            struct btrfs_ordered_extent,
497                                            log_list);
498                 list_del_init(&ordered->log_list);
499                 inode = ordered->inode;
500                 spin_unlock_irq(&log->log_extents_lock[index]);
501
502                 if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
503                     !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
504                         u64 start = ordered->file_offset;
505                         u64 end = ordered->file_offset + ordered->len - 1;
506
507                         WARN_ON(!inode);
508                         filemap_fdatawrite_range(inode->i_mapping, start, end);
509                 }
510                 wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE,
511                                                    &ordered->flags));
512
513                 /*
514                  * In order to keep us from losing our ordered extent
515                  * information when committing the transaction we have to make
516                  * sure that any logged extents are completed when we go to
517                  * commit the transaction.  To do this we simply increase the
518                  * current transactions pending_ordered counter and decrement it
519                  * when the ordered extent completes.
520                  */
521                 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
522                         struct btrfs_ordered_inode_tree *tree;
523
524                         tree = &BTRFS_I(inode)->ordered_tree;
525                         spin_lock_irq(&tree->lock);
526                         if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
527                                 set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
528                                 atomic_inc(&trans->transaction->pending_ordered);
529                         }
530                         spin_unlock_irq(&tree->lock);
531                 }
532                 btrfs_put_ordered_extent(ordered);
533                 spin_lock_irq(&log->log_extents_lock[index]);
534         }
535         spin_unlock_irq(&log->log_extents_lock[index]);
536 }
537
538 void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid)
539 {
540         struct btrfs_ordered_extent *ordered;
541         int index = transid % 2;
542
543         spin_lock_irq(&log->log_extents_lock[index]);
544         while (!list_empty(&log->logged_list[index])) {
545                 ordered = list_first_entry(&log->logged_list[index],
546                                            struct btrfs_ordered_extent,
547                                            log_list);
548                 list_del_init(&ordered->log_list);
549                 spin_unlock_irq(&log->log_extents_lock[index]);
550                 btrfs_put_ordered_extent(ordered);
551                 spin_lock_irq(&log->log_extents_lock[index]);
552         }
553         spin_unlock_irq(&log->log_extents_lock[index]);
554 }
555
556 /*
557  * used to drop a reference on an ordered extent.  This will free
558  * the extent if the last reference is dropped
559  */
560 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
561 {
562         struct list_head *cur;
563         struct btrfs_ordered_sum *sum;
564
565         trace_btrfs_ordered_extent_put(entry->inode, entry);
566
567         if (atomic_dec_and_test(&entry->refs)) {
568                 ASSERT(list_empty(&entry->log_list));
569                 ASSERT(list_empty(&entry->trans_list));
570                 ASSERT(list_empty(&entry->root_extent_list));
571                 ASSERT(RB_EMPTY_NODE(&entry->rb_node));
572                 if (entry->inode)
573                         btrfs_add_delayed_iput(entry->inode);
574                 while (!list_empty(&entry->list)) {
575                         cur = entry->list.next;
576                         sum = list_entry(cur, struct btrfs_ordered_sum, list);
577                         list_del(&sum->list);
578                         kfree(sum);
579                 }
580                 kmem_cache_free(btrfs_ordered_extent_cache, entry);
581         }
582 }
583
584 /*
585  * remove an ordered extent from the tree.  No references are dropped
586  * and waiters are woken up.
587  */
588 void btrfs_remove_ordered_extent(struct inode *inode,
589                                  struct btrfs_ordered_extent *entry)
590 {
591         struct btrfs_ordered_inode_tree *tree;
592         struct btrfs_root *root = BTRFS_I(inode)->root;
593         struct rb_node *node;
594         bool dec_pending_ordered = false;
595
596         tree = &BTRFS_I(inode)->ordered_tree;
597         spin_lock_irq(&tree->lock);
598         node = &entry->rb_node;
599         rb_erase(node, &tree->tree);
600         RB_CLEAR_NODE(node);
601         if (tree->last == node)
602                 tree->last = NULL;
603         set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
604         if (test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags))
605                 dec_pending_ordered = true;
606         spin_unlock_irq(&tree->lock);
607
608         /*
609          * The current running transaction is waiting on us, we need to let it
610          * know that we're complete and wake it up.
611          */
612         if (dec_pending_ordered) {
613                 struct btrfs_transaction *trans;
614
615                 /*
616                  * The checks for trans are just a formality, it should be set,
617                  * but if it isn't we don't want to deref/assert under the spin
618                  * lock, so be nice and check if trans is set, but ASSERT() so
619                  * if it isn't set a developer will notice.
620                  */
621                 spin_lock(&root->fs_info->trans_lock);
622                 trans = root->fs_info->running_transaction;
623                 if (trans)
624                         atomic_inc(&trans->use_count);
625                 spin_unlock(&root->fs_info->trans_lock);
626
627                 ASSERT(trans);
628                 if (trans) {
629                         if (atomic_dec_and_test(&trans->pending_ordered))
630                                 wake_up(&trans->pending_wait);
631                         btrfs_put_transaction(trans);
632                 }
633         }
634
635         spin_lock(&root->ordered_extent_lock);
636         list_del_init(&entry->root_extent_list);
637         root->nr_ordered_extents--;
638
639         trace_btrfs_ordered_extent_remove(inode, entry);
640
641         if (!root->nr_ordered_extents) {
642                 spin_lock(&root->fs_info->ordered_root_lock);
643                 BUG_ON(list_empty(&root->ordered_root));
644                 list_del_init(&root->ordered_root);
645                 spin_unlock(&root->fs_info->ordered_root_lock);
646         }
647         spin_unlock(&root->ordered_extent_lock);
648         wake_up(&entry->wait);
649 }
650
651 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
652 {
653         struct btrfs_ordered_extent *ordered;
654
655         ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
656         btrfs_start_ordered_extent(ordered->inode, ordered, 1);
657         complete(&ordered->completion);
658 }
659
660 /*
661  * wait for all the ordered extents in a root.  This is done when balancing
662  * space between drives.
663  */
664 int btrfs_wait_ordered_extents(struct btrfs_root *root, int nr,
665                                const u64 range_start, const u64 range_len)
666 {
667         LIST_HEAD(splice);
668         LIST_HEAD(skipped);
669         LIST_HEAD(works);
670         struct btrfs_ordered_extent *ordered, *next;
671         int count = 0;
672         const u64 range_end = range_start + range_len;
673
674         mutex_lock(&root->ordered_extent_mutex);
675         spin_lock(&root->ordered_extent_lock);
676         list_splice_init(&root->ordered_extents, &splice);
677         while (!list_empty(&splice) && nr) {
678                 ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
679                                            root_extent_list);
680
681                 if (range_end <= ordered->start ||
682                     ordered->start + ordered->disk_len <= range_start) {
683                         list_move_tail(&ordered->root_extent_list, &skipped);
684                         cond_resched_lock(&root->ordered_extent_lock);
685                         continue;
686                 }
687
688                 list_move_tail(&ordered->root_extent_list,
689                                &root->ordered_extents);
690                 atomic_inc(&ordered->refs);
691                 spin_unlock(&root->ordered_extent_lock);
692
693                 btrfs_init_work(&ordered->flush_work,
694                                 btrfs_flush_delalloc_helper,
695                                 btrfs_run_ordered_extent_work, NULL, NULL);
696                 list_add_tail(&ordered->work_list, &works);
697                 btrfs_queue_work(root->fs_info->flush_workers,
698                                  &ordered->flush_work);
699
700                 cond_resched();
701                 spin_lock(&root->ordered_extent_lock);
702                 if (nr != -1)
703                         nr--;
704                 count++;
705         }
706         list_splice_tail(&skipped, &root->ordered_extents);
707         list_splice_tail(&splice, &root->ordered_extents);
708         spin_unlock(&root->ordered_extent_lock);
709
710         list_for_each_entry_safe(ordered, next, &works, work_list) {
711                 list_del_init(&ordered->work_list);
712                 wait_for_completion(&ordered->completion);
713                 btrfs_put_ordered_extent(ordered);
714                 cond_resched();
715         }
716         mutex_unlock(&root->ordered_extent_mutex);
717
718         return count;
719 }
720
721 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, int nr,
722                               const u64 range_start, const u64 range_len)
723 {
724         struct btrfs_root *root;
725         struct list_head splice;
726         int done;
727
728         INIT_LIST_HEAD(&splice);
729
730         mutex_lock(&fs_info->ordered_operations_mutex);
731         spin_lock(&fs_info->ordered_root_lock);
732         list_splice_init(&fs_info->ordered_roots, &splice);
733         while (!list_empty(&splice) && nr) {
734                 root = list_first_entry(&splice, struct btrfs_root,
735                                         ordered_root);
736                 root = btrfs_grab_fs_root(root);
737                 BUG_ON(!root);
738                 list_move_tail(&root->ordered_root,
739                                &fs_info->ordered_roots);
740                 spin_unlock(&fs_info->ordered_root_lock);
741
742                 done = btrfs_wait_ordered_extents(root, nr,
743                                                   range_start, range_len);
744                 btrfs_put_fs_root(root);
745
746                 spin_lock(&fs_info->ordered_root_lock);
747                 if (nr != -1) {
748                         nr -= done;
749                         WARN_ON(nr < 0);
750                 }
751         }
752         list_splice_tail(&splice, &fs_info->ordered_roots);
753         spin_unlock(&fs_info->ordered_root_lock);
754         mutex_unlock(&fs_info->ordered_operations_mutex);
755 }
756
757 /*
758  * Used to start IO or wait for a given ordered extent to finish.
759  *
760  * If wait is one, this effectively waits on page writeback for all the pages
761  * in the extent, and it waits on the io completion code to insert
762  * metadata into the btree corresponding to the extent
763  */
764 void btrfs_start_ordered_extent(struct inode *inode,
765                                        struct btrfs_ordered_extent *entry,
766                                        int wait)
767 {
768         u64 start = entry->file_offset;
769         u64 end = start + entry->len - 1;
770
771         trace_btrfs_ordered_extent_start(inode, entry);
772
773         /*
774          * pages in the range can be dirty, clean or writeback.  We
775          * start IO on any dirty ones so the wait doesn't stall waiting
776          * for the flusher thread to find them
777          */
778         if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
779                 filemap_fdatawrite_range(inode->i_mapping, start, end);
780         if (wait) {
781                 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
782                                                  &entry->flags));
783         }
784 }
785
786 /*
787  * Used to wait on ordered extents across a large range of bytes.
788  */
789 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
790 {
791         int ret = 0;
792         int ret_wb = 0;
793         u64 end;
794         u64 orig_end;
795         struct btrfs_ordered_extent *ordered;
796
797         if (start + len < start) {
798                 orig_end = INT_LIMIT(loff_t);
799         } else {
800                 orig_end = start + len - 1;
801                 if (orig_end > INT_LIMIT(loff_t))
802                         orig_end = INT_LIMIT(loff_t);
803         }
804
805         /* start IO across the range first to instantiate any delalloc
806          * extents
807          */
808         ret = btrfs_fdatawrite_range(inode, start, orig_end);
809         if (ret)
810                 return ret;
811
812         /*
813          * If we have a writeback error don't return immediately. Wait first
814          * for any ordered extents that haven't completed yet. This is to make
815          * sure no one can dirty the same page ranges and call writepages()
816          * before the ordered extents complete - to avoid failures (-EEXIST)
817          * when adding the new ordered extents to the ordered tree.
818          */
819         ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
820
821         end = orig_end;
822         while (1) {
823                 ordered = btrfs_lookup_first_ordered_extent(inode, end);
824                 if (!ordered)
825                         break;
826                 if (ordered->file_offset > orig_end) {
827                         btrfs_put_ordered_extent(ordered);
828                         break;
829                 }
830                 if (ordered->file_offset + ordered->len <= start) {
831                         btrfs_put_ordered_extent(ordered);
832                         break;
833                 }
834                 btrfs_start_ordered_extent(inode, ordered, 1);
835                 end = ordered->file_offset;
836                 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
837                         ret = -EIO;
838                 btrfs_put_ordered_extent(ordered);
839                 if (ret || end == 0 || end == start)
840                         break;
841                 end--;
842         }
843         return ret_wb ? ret_wb : ret;
844 }
845
846 /*
847  * find an ordered extent corresponding to file_offset.  return NULL if
848  * nothing is found, otherwise take a reference on the extent and return it
849  */
850 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
851                                                          u64 file_offset)
852 {
853         struct btrfs_ordered_inode_tree *tree;
854         struct rb_node *node;
855         struct btrfs_ordered_extent *entry = NULL;
856
857         tree = &BTRFS_I(inode)->ordered_tree;
858         spin_lock_irq(&tree->lock);
859         node = tree_search(tree, file_offset);
860         if (!node)
861                 goto out;
862
863         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
864         if (!offset_in_entry(entry, file_offset))
865                 entry = NULL;
866         if (entry)
867                 atomic_inc(&entry->refs);
868 out:
869         spin_unlock_irq(&tree->lock);
870         return entry;
871 }
872
873 /* Since the DIO code tries to lock a wide area we need to look for any ordered
874  * extents that exist in the range, rather than just the start of the range.
875  */
876 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
877                                                         u64 file_offset,
878                                                         u64 len)
879 {
880         struct btrfs_ordered_inode_tree *tree;
881         struct rb_node *node;
882         struct btrfs_ordered_extent *entry = NULL;
883
884         tree = &BTRFS_I(inode)->ordered_tree;
885         spin_lock_irq(&tree->lock);
886         node = tree_search(tree, file_offset);
887         if (!node) {
888                 node = tree_search(tree, file_offset + len);
889                 if (!node)
890                         goto out;
891         }
892
893         while (1) {
894                 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
895                 if (range_overlaps(entry, file_offset, len))
896                         break;
897
898                 if (entry->file_offset >= file_offset + len) {
899                         entry = NULL;
900                         break;
901                 }
902                 entry = NULL;
903                 node = rb_next(node);
904                 if (!node)
905                         break;
906         }
907 out:
908         if (entry)
909                 atomic_inc(&entry->refs);
910         spin_unlock_irq(&tree->lock);
911         return entry;
912 }
913
914 bool btrfs_have_ordered_extents_in_range(struct inode *inode,
915                                          u64 file_offset,
916                                          u64 len)
917 {
918         struct btrfs_ordered_extent *oe;
919
920         oe = btrfs_lookup_ordered_range(inode, file_offset, len);
921         if (oe) {
922                 btrfs_put_ordered_extent(oe);
923                 return true;
924         }
925         return false;
926 }
927
928 /*
929  * lookup and return any extent before 'file_offset'.  NULL is returned
930  * if none is found
931  */
932 struct btrfs_ordered_extent *
933 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
934 {
935         struct btrfs_ordered_inode_tree *tree;
936         struct rb_node *node;
937         struct btrfs_ordered_extent *entry = NULL;
938
939         tree = &BTRFS_I(inode)->ordered_tree;
940         spin_lock_irq(&tree->lock);
941         node = tree_search(tree, file_offset);
942         if (!node)
943                 goto out;
944
945         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
946         atomic_inc(&entry->refs);
947 out:
948         spin_unlock_irq(&tree->lock);
949         return entry;
950 }
951
952 /*
953  * After an extent is done, call this to conditionally update the on disk
954  * i_size.  i_size is updated to cover any fully written part of the file.
955  */
956 int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
957                                 struct btrfs_ordered_extent *ordered)
958 {
959         struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
960         u64 disk_i_size;
961         u64 new_i_size;
962         u64 i_size = i_size_read(inode);
963         struct rb_node *node;
964         struct rb_node *prev = NULL;
965         struct btrfs_ordered_extent *test;
966         int ret = 1;
967
968         spin_lock_irq(&tree->lock);
969         if (ordered) {
970                 offset = entry_end(ordered);
971                 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags))
972                         offset = min(offset,
973                                      ordered->file_offset +
974                                      ordered->truncated_len);
975         } else {
976                 offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
977         }
978         disk_i_size = BTRFS_I(inode)->disk_i_size;
979
980         /* truncate file */
981         if (disk_i_size > i_size) {
982                 BTRFS_I(inode)->disk_i_size = i_size;
983                 ret = 0;
984                 goto out;
985         }
986
987         /*
988          * if the disk i_size is already at the inode->i_size, or
989          * this ordered extent is inside the disk i_size, we're done
990          */
991         if (disk_i_size == i_size)
992                 goto out;
993
994         /*
995          * We still need to update disk_i_size if outstanding_isize is greater
996          * than disk_i_size.
997          */
998         if (offset <= disk_i_size &&
999             (!ordered || ordered->outstanding_isize <= disk_i_size))
1000                 goto out;
1001
1002         /*
1003          * walk backward from this ordered extent to disk_i_size.
1004          * if we find an ordered extent then we can't update disk i_size
1005          * yet
1006          */
1007         if (ordered) {
1008                 node = rb_prev(&ordered->rb_node);
1009         } else {
1010                 prev = tree_search(tree, offset);
1011                 /*
1012                  * we insert file extents without involving ordered struct,
1013                  * so there should be no ordered struct cover this offset
1014                  */
1015                 if (prev) {
1016                         test = rb_entry(prev, struct btrfs_ordered_extent,
1017                                         rb_node);
1018                         BUG_ON(offset_in_entry(test, offset));
1019                 }
1020                 node = prev;
1021         }
1022         for (; node; node = rb_prev(node)) {
1023                 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1024
1025                 /* We treat this entry as if it doesn't exist */
1026                 if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
1027                         continue;
1028                 if (test->file_offset + test->len <= disk_i_size)
1029                         break;
1030                 if (test->file_offset >= i_size)
1031                         break;
1032                 if (entry_end(test) > disk_i_size) {
1033                         /*
1034                          * we don't update disk_i_size now, so record this
1035                          * undealt i_size. Or we will not know the real
1036                          * i_size.
1037                          */
1038                         if (test->outstanding_isize < offset)
1039                                 test->outstanding_isize = offset;
1040                         if (ordered &&
1041                             ordered->outstanding_isize >
1042                             test->outstanding_isize)
1043                                 test->outstanding_isize =
1044                                                 ordered->outstanding_isize;
1045                         goto out;
1046                 }
1047         }
1048         new_i_size = min_t(u64, offset, i_size);
1049
1050         /*
1051          * Some ordered extents may completed before the current one, and
1052          * we hold the real i_size in ->outstanding_isize.
1053          */
1054         if (ordered && ordered->outstanding_isize > new_i_size)
1055                 new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
1056         BTRFS_I(inode)->disk_i_size = new_i_size;
1057         ret = 0;
1058 out:
1059         /*
1060          * We need to do this because we can't remove ordered extents until
1061          * after the i_disk_size has been updated and then the inode has been
1062          * updated to reflect the change, so we need to tell anybody who finds
1063          * this ordered extent that we've already done all the real work, we
1064          * just haven't completed all the other work.
1065          */
1066         if (ordered)
1067                 set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
1068         spin_unlock_irq(&tree->lock);
1069         return ret;
1070 }
1071
1072 /*
1073  * search the ordered extents for one corresponding to 'offset' and
1074  * try to find a checksum.  This is used because we allow pages to
1075  * be reclaimed before their checksum is actually put into the btree
1076  */
1077 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
1078                            u32 *sum, int len)
1079 {
1080         struct btrfs_ordered_sum *ordered_sum;
1081         struct btrfs_ordered_extent *ordered;
1082         struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
1083         unsigned long num_sectors;
1084         unsigned long i;
1085         u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
1086         int index = 0;
1087
1088         ordered = btrfs_lookup_ordered_extent(inode, offset);
1089         if (!ordered)
1090                 return 0;
1091
1092         spin_lock_irq(&tree->lock);
1093         list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
1094                 if (disk_bytenr >= ordered_sum->bytenr &&
1095                     disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
1096                         i = (disk_bytenr - ordered_sum->bytenr) >>
1097                             inode->i_sb->s_blocksize_bits;
1098                         num_sectors = ordered_sum->len >>
1099                                       inode->i_sb->s_blocksize_bits;
1100                         num_sectors = min_t(int, len - index, num_sectors - i);
1101                         memcpy(sum + index, ordered_sum->sums + i,
1102                                num_sectors);
1103
1104                         index += (int)num_sectors;
1105                         if (index == len)
1106                                 goto out;
1107                         disk_bytenr += num_sectors * sectorsize;
1108                 }
1109         }
1110 out:
1111         spin_unlock_irq(&tree->lock);
1112         btrfs_put_ordered_extent(ordered);
1113         return index;
1114 }
1115
1116 int __init ordered_data_init(void)
1117 {
1118         btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1119                                      sizeof(struct btrfs_ordered_extent), 0,
1120                                      SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
1121                                      NULL);
1122         if (!btrfs_ordered_extent_cache)
1123                 return -ENOMEM;
1124
1125         return 0;
1126 }
1127
1128 void ordered_data_exit(void)
1129 {
1130         kmem_cache_destroy(btrfs_ordered_extent_cache);
1131 }