btrfs: Add noenospc_debug mount option.
[cascardo/linux.git] / fs / btrfs / super.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include <linux/btrfs.h>
45 #include "delayed-inode.h"
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "xattr.h"
52 #include "volumes.h"
53 #include "export.h"
54 #include "compression.h"
55 #include "rcu-string.h"
56 #include "dev-replace.h"
57 #include "free-space-cache.h"
58 #include "backref.h"
59 #include "tests/btrfs-tests.h"
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/btrfs.h>
63
64 static const struct super_operations btrfs_super_ops;
65 static struct file_system_type btrfs_fs_type;
66
67 static const char *btrfs_decode_error(int errno)
68 {
69         char *errstr = "unknown";
70
71         switch (errno) {
72         case -EIO:
73                 errstr = "IO failure";
74                 break;
75         case -ENOMEM:
76                 errstr = "Out of memory";
77                 break;
78         case -EROFS:
79                 errstr = "Readonly filesystem";
80                 break;
81         case -EEXIST:
82                 errstr = "Object already exists";
83                 break;
84         case -ENOSPC:
85                 errstr = "No space left";
86                 break;
87         case -ENOENT:
88                 errstr = "No such entry";
89                 break;
90         }
91
92         return errstr;
93 }
94
95 static void save_error_info(struct btrfs_fs_info *fs_info)
96 {
97         /*
98          * today we only save the error info into ram.  Long term we'll
99          * also send it down to the disk
100          */
101         set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
102 }
103
104 /* btrfs handle error by forcing the filesystem readonly */
105 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
106 {
107         struct super_block *sb = fs_info->sb;
108
109         if (sb->s_flags & MS_RDONLY)
110                 return;
111
112         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
113                 sb->s_flags |= MS_RDONLY;
114                 btrfs_info(fs_info, "forced readonly");
115                 /*
116                  * Note that a running device replace operation is not
117                  * canceled here although there is no way to update
118                  * the progress. It would add the risk of a deadlock,
119                  * therefore the canceling is ommited. The only penalty
120                  * is that some I/O remains active until the procedure
121                  * completes. The next time when the filesystem is
122                  * mounted writeable again, the device replace
123                  * operation continues.
124                  */
125         }
126 }
127
128 #ifdef CONFIG_PRINTK
129 /*
130  * __btrfs_std_error decodes expected errors from the caller and
131  * invokes the approciate error response.
132  */
133 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
134                        unsigned int line, int errno, const char *fmt, ...)
135 {
136         struct super_block *sb = fs_info->sb;
137         const char *errstr;
138
139         /*
140          * Special case: if the error is EROFS, and we're already
141          * under MS_RDONLY, then it is safe here.
142          */
143         if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
144                 return;
145
146         errstr = btrfs_decode_error(errno);
147         if (fmt) {
148                 struct va_format vaf;
149                 va_list args;
150
151                 va_start(args, fmt);
152                 vaf.fmt = fmt;
153                 vaf.va = &args;
154
155                 printk(KERN_CRIT
156                         "BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
157                         sb->s_id, function, line, errno, errstr, &vaf);
158                 va_end(args);
159         } else {
160                 printk(KERN_CRIT "BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
161                         sb->s_id, function, line, errno, errstr);
162         }
163
164         /* Don't go through full error handling during mount */
165         save_error_info(fs_info);
166         if (sb->s_flags & MS_BORN)
167                 btrfs_handle_error(fs_info);
168 }
169
170 static const char * const logtypes[] = {
171         "emergency",
172         "alert",
173         "critical",
174         "error",
175         "warning",
176         "notice",
177         "info",
178         "debug",
179 };
180
181 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
182 {
183         struct super_block *sb = fs_info->sb;
184         char lvl[4];
185         struct va_format vaf;
186         va_list args;
187         const char *type = logtypes[4];
188         int kern_level;
189
190         va_start(args, fmt);
191
192         kern_level = printk_get_level(fmt);
193         if (kern_level) {
194                 size_t size = printk_skip_level(fmt) - fmt;
195                 memcpy(lvl, fmt,  size);
196                 lvl[size] = '\0';
197                 fmt += size;
198                 type = logtypes[kern_level - '0'];
199         } else
200                 *lvl = '\0';
201
202         vaf.fmt = fmt;
203         vaf.va = &args;
204
205         printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf);
206
207         va_end(args);
208 }
209
210 #else
211
212 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
213                        unsigned int line, int errno, const char *fmt, ...)
214 {
215         struct super_block *sb = fs_info->sb;
216
217         /*
218          * Special case: if the error is EROFS, and we're already
219          * under MS_RDONLY, then it is safe here.
220          */
221         if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
222                 return;
223
224         /* Don't go through full error handling during mount */
225         if (sb->s_flags & MS_BORN) {
226                 save_error_info(fs_info);
227                 btrfs_handle_error(fs_info);
228         }
229 }
230 #endif
231
232 /*
233  * We only mark the transaction aborted and then set the file system read-only.
234  * This will prevent new transactions from starting or trying to join this
235  * one.
236  *
237  * This means that error recovery at the call site is limited to freeing
238  * any local memory allocations and passing the error code up without
239  * further cleanup. The transaction should complete as it normally would
240  * in the call path but will return -EIO.
241  *
242  * We'll complete the cleanup in btrfs_end_transaction and
243  * btrfs_commit_transaction.
244  */
245 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
246                                struct btrfs_root *root, const char *function,
247                                unsigned int line, int errno)
248 {
249         /*
250          * Report first abort since mount
251          */
252         if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED,
253                                 &root->fs_info->fs_state)) {
254                 WARN(1, KERN_DEBUG "BTRFS: Transaction aborted (error %d)\n",
255                                 errno);
256         }
257         trans->aborted = errno;
258         /* Nothing used. The other threads that have joined this
259          * transaction may be able to continue. */
260         if (!trans->blocks_used) {
261                 const char *errstr;
262
263                 errstr = btrfs_decode_error(errno);
264                 btrfs_warn(root->fs_info,
265                            "%s:%d: Aborting unused transaction(%s).",
266                            function, line, errstr);
267                 return;
268         }
269         ACCESS_ONCE(trans->transaction->aborted) = errno;
270         /* Wake up anybody who may be waiting on this transaction */
271         wake_up(&root->fs_info->transaction_wait);
272         wake_up(&root->fs_info->transaction_blocked_wait);
273         __btrfs_std_error(root->fs_info, function, line, errno, NULL);
274 }
275 /*
276  * __btrfs_panic decodes unexpected, fatal errors from the caller,
277  * issues an alert, and either panics or BUGs, depending on mount options.
278  */
279 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
280                    unsigned int line, int errno, const char *fmt, ...)
281 {
282         char *s_id = "<unknown>";
283         const char *errstr;
284         struct va_format vaf = { .fmt = fmt };
285         va_list args;
286
287         if (fs_info)
288                 s_id = fs_info->sb->s_id;
289
290         va_start(args, fmt);
291         vaf.va = &args;
292
293         errstr = btrfs_decode_error(errno);
294         if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR))
295                 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
296                         s_id, function, line, &vaf, errno, errstr);
297
298         btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
299                    function, line, &vaf, errno, errstr);
300         va_end(args);
301         /* Caller calls BUG() */
302 }
303
304 static void btrfs_put_super(struct super_block *sb)
305 {
306         (void)close_ctree(btrfs_sb(sb)->tree_root);
307         /* FIXME: need to fix VFS to return error? */
308         /* AV: return it _where_?  ->put_super() can be triggered by any number
309          * of async events, up to and including delivery of SIGKILL to the
310          * last process that kept it busy.  Or segfault in the aforementioned
311          * process...  Whom would you report that to?
312          */
313 }
314
315 enum {
316         Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
317         Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
318         Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
319         Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
320         Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
321         Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
322         Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache,
323         Opt_no_space_cache, Opt_recovery, Opt_skip_balance,
324         Opt_check_integrity, Opt_check_integrity_including_extent_data,
325         Opt_check_integrity_print_mask, Opt_fatal_errors, Opt_rescan_uuid_tree,
326         Opt_commit_interval, Opt_barrier, Opt_nodefrag, Opt_nodiscard,
327         Opt_noenospc_debug,
328         Opt_err,
329 };
330
331 static match_table_t tokens = {
332         {Opt_degraded, "degraded"},
333         {Opt_subvol, "subvol=%s"},
334         {Opt_subvolid, "subvolid=%s"},
335         {Opt_device, "device=%s"},
336         {Opt_nodatasum, "nodatasum"},
337         {Opt_nodatacow, "nodatacow"},
338         {Opt_nobarrier, "nobarrier"},
339         {Opt_barrier, "barrier"},
340         {Opt_max_inline, "max_inline=%s"},
341         {Opt_alloc_start, "alloc_start=%s"},
342         {Opt_thread_pool, "thread_pool=%d"},
343         {Opt_compress, "compress"},
344         {Opt_compress_type, "compress=%s"},
345         {Opt_compress_force, "compress-force"},
346         {Opt_compress_force_type, "compress-force=%s"},
347         {Opt_ssd, "ssd"},
348         {Opt_ssd_spread, "ssd_spread"},
349         {Opt_nossd, "nossd"},
350         {Opt_noacl, "noacl"},
351         {Opt_notreelog, "notreelog"},
352         {Opt_flushoncommit, "flushoncommit"},
353         {Opt_ratio, "metadata_ratio=%d"},
354         {Opt_discard, "discard"},
355         {Opt_nodiscard, "nodiscard"},
356         {Opt_space_cache, "space_cache"},
357         {Opt_clear_cache, "clear_cache"},
358         {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
359         {Opt_enospc_debug, "enospc_debug"},
360         {Opt_noenospc_debug, "noenospc_debug"},
361         {Opt_subvolrootid, "subvolrootid=%d"},
362         {Opt_defrag, "autodefrag"},
363         {Opt_nodefrag, "noautodefrag"},
364         {Opt_inode_cache, "inode_cache"},
365         {Opt_no_space_cache, "nospace_cache"},
366         {Opt_recovery, "recovery"},
367         {Opt_skip_balance, "skip_balance"},
368         {Opt_check_integrity, "check_int"},
369         {Opt_check_integrity_including_extent_data, "check_int_data"},
370         {Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
371         {Opt_rescan_uuid_tree, "rescan_uuid_tree"},
372         {Opt_fatal_errors, "fatal_errors=%s"},
373         {Opt_commit_interval, "commit=%d"},
374         {Opt_err, NULL},
375 };
376
377 /*
378  * Regular mount options parser.  Everything that is needed only when
379  * reading in a new superblock is parsed here.
380  * XXX JDM: This needs to be cleaned up for remount.
381  */
382 int btrfs_parse_options(struct btrfs_root *root, char *options)
383 {
384         struct btrfs_fs_info *info = root->fs_info;
385         substring_t args[MAX_OPT_ARGS];
386         char *p, *num, *orig = NULL;
387         u64 cache_gen;
388         int intarg;
389         int ret = 0;
390         char *compress_type;
391         bool compress_force = false;
392
393         cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
394         if (cache_gen)
395                 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
396
397         if (!options)
398                 goto out;
399
400         /*
401          * strsep changes the string, duplicate it because parse_options
402          * gets called twice
403          */
404         options = kstrdup(options, GFP_NOFS);
405         if (!options)
406                 return -ENOMEM;
407
408         orig = options;
409
410         while ((p = strsep(&options, ",")) != NULL) {
411                 int token;
412                 if (!*p)
413                         continue;
414
415                 token = match_token(p, tokens, args);
416                 switch (token) {
417                 case Opt_degraded:
418                         btrfs_info(root->fs_info, "allowing degraded mounts");
419                         btrfs_set_opt(info->mount_opt, DEGRADED);
420                         break;
421                 case Opt_subvol:
422                 case Opt_subvolid:
423                 case Opt_subvolrootid:
424                 case Opt_device:
425                         /*
426                          * These are parsed by btrfs_parse_early_options
427                          * and can be happily ignored here.
428                          */
429                         break;
430                 case Opt_nodatasum:
431                         btrfs_info(root->fs_info, "setting nodatasum");
432                         btrfs_set_opt(info->mount_opt, NODATASUM);
433                         break;
434                 case Opt_nodatacow:
435                         if (!btrfs_test_opt(root, COMPRESS) ||
436                                 !btrfs_test_opt(root, FORCE_COMPRESS)) {
437                                         btrfs_info(root->fs_info,
438                                                 "setting nodatacow, compression disabled");
439                         } else {
440                                 btrfs_info(root->fs_info, "setting nodatacow");
441                         }
442                         btrfs_clear_opt(info->mount_opt, COMPRESS);
443                         btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
444                         btrfs_set_opt(info->mount_opt, NODATACOW);
445                         btrfs_set_opt(info->mount_opt, NODATASUM);
446                         break;
447                 case Opt_compress_force:
448                 case Opt_compress_force_type:
449                         compress_force = true;
450                         /* Fallthrough */
451                 case Opt_compress:
452                 case Opt_compress_type:
453                         if (token == Opt_compress ||
454                             token == Opt_compress_force ||
455                             strcmp(args[0].from, "zlib") == 0) {
456                                 compress_type = "zlib";
457                                 info->compress_type = BTRFS_COMPRESS_ZLIB;
458                                 btrfs_set_opt(info->mount_opt, COMPRESS);
459                                 btrfs_clear_opt(info->mount_opt, NODATACOW);
460                                 btrfs_clear_opt(info->mount_opt, NODATASUM);
461                         } else if (strcmp(args[0].from, "lzo") == 0) {
462                                 compress_type = "lzo";
463                                 info->compress_type = BTRFS_COMPRESS_LZO;
464                                 btrfs_set_opt(info->mount_opt, COMPRESS);
465                                 btrfs_clear_opt(info->mount_opt, NODATACOW);
466                                 btrfs_clear_opt(info->mount_opt, NODATASUM);
467                                 btrfs_set_fs_incompat(info, COMPRESS_LZO);
468                         } else if (strncmp(args[0].from, "no", 2) == 0) {
469                                 compress_type = "no";
470                                 btrfs_clear_opt(info->mount_opt, COMPRESS);
471                                 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
472                                 compress_force = false;
473                         } else {
474                                 ret = -EINVAL;
475                                 goto out;
476                         }
477
478                         if (compress_force) {
479                                 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
480                                 btrfs_info(root->fs_info, "force %s compression",
481                                         compress_type);
482                         } else if (btrfs_test_opt(root, COMPRESS)) {
483                                 pr_info("btrfs: use %s compression\n",
484                                         compress_type);
485                         }
486                         break;
487                 case Opt_ssd:
488                         btrfs_info(root->fs_info, "use ssd allocation scheme");
489                         btrfs_set_opt(info->mount_opt, SSD);
490                         break;
491                 case Opt_ssd_spread:
492                         btrfs_info(root->fs_info, "use spread ssd allocation scheme");
493                         btrfs_set_opt(info->mount_opt, SSD);
494                         btrfs_set_opt(info->mount_opt, SSD_SPREAD);
495                         break;
496                 case Opt_nossd:
497                         btrfs_info(root->fs_info, "not using ssd allocation scheme");
498                         btrfs_set_opt(info->mount_opt, NOSSD);
499                         btrfs_clear_opt(info->mount_opt, SSD);
500                         btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
501                         break;
502                 case Opt_barrier:
503                         if (btrfs_test_opt(root, NOBARRIER))
504                                 btrfs_info(root->fs_info, "turning on barriers");
505                         btrfs_clear_opt(info->mount_opt, NOBARRIER);
506                         break;
507                 case Opt_nobarrier:
508                         btrfs_info(root->fs_info, "turning off barriers");
509                         btrfs_set_opt(info->mount_opt, NOBARRIER);
510                         break;
511                 case Opt_thread_pool:
512                         ret = match_int(&args[0], &intarg);
513                         if (ret) {
514                                 goto out;
515                         } else if (intarg > 0) {
516                                 info->thread_pool_size = intarg;
517                         } else {
518                                 ret = -EINVAL;
519                                 goto out;
520                         }
521                         break;
522                 case Opt_max_inline:
523                         num = match_strdup(&args[0]);
524                         if (num) {
525                                 info->max_inline = memparse(num, NULL);
526                                 kfree(num);
527
528                                 if (info->max_inline) {
529                                         info->max_inline = max_t(u64,
530                                                 info->max_inline,
531                                                 root->sectorsize);
532                                 }
533                                 btrfs_info(root->fs_info, "max_inline at %llu",
534                                         info->max_inline);
535                         } else {
536                                 ret = -ENOMEM;
537                                 goto out;
538                         }
539                         break;
540                 case Opt_alloc_start:
541                         num = match_strdup(&args[0]);
542                         if (num) {
543                                 mutex_lock(&info->chunk_mutex);
544                                 info->alloc_start = memparse(num, NULL);
545                                 mutex_unlock(&info->chunk_mutex);
546                                 kfree(num);
547                                 btrfs_info(root->fs_info, "allocations start at %llu",
548                                         info->alloc_start);
549                         } else {
550                                 ret = -ENOMEM;
551                                 goto out;
552                         }
553                         break;
554                 case Opt_noacl:
555                         root->fs_info->sb->s_flags &= ~MS_POSIXACL;
556                         break;
557                 case Opt_notreelog:
558                         btrfs_info(root->fs_info, "disabling tree log");
559                         btrfs_set_opt(info->mount_opt, NOTREELOG);
560                         break;
561                 case Opt_flushoncommit:
562                         btrfs_info(root->fs_info, "turning on flush-on-commit");
563                         btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
564                         break;
565                 case Opt_ratio:
566                         ret = match_int(&args[0], &intarg);
567                         if (ret) {
568                                 goto out;
569                         } else if (intarg >= 0) {
570                                 info->metadata_ratio = intarg;
571                                 btrfs_info(root->fs_info, "metadata ratio %d",
572                                        info->metadata_ratio);
573                         } else {
574                                 ret = -EINVAL;
575                                 goto out;
576                         }
577                         break;
578                 case Opt_discard:
579                         btrfs_set_opt(info->mount_opt, DISCARD);
580                         break;
581                 case Opt_nodiscard:
582                         btrfs_clear_opt(info->mount_opt, DISCARD);
583                         break;
584                 case Opt_space_cache:
585                         btrfs_set_opt(info->mount_opt, SPACE_CACHE);
586                         break;
587                 case Opt_rescan_uuid_tree:
588                         btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
589                         break;
590                 case Opt_no_space_cache:
591                         btrfs_info(root->fs_info, "disabling disk space caching");
592                         btrfs_clear_opt(info->mount_opt, SPACE_CACHE);
593                         break;
594                 case Opt_inode_cache:
595                         btrfs_info(root->fs_info, "enabling inode map caching");
596                         btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE);
597                         break;
598                 case Opt_clear_cache:
599                         btrfs_info(root->fs_info, "force clearing of disk cache");
600                         btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
601                         break;
602                 case Opt_user_subvol_rm_allowed:
603                         btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
604                         break;
605                 case Opt_enospc_debug:
606                         btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
607                         break;
608                 case Opt_noenospc_debug:
609                         btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
610                         break;
611                 case Opt_defrag:
612                         btrfs_info(root->fs_info, "enabling auto defrag");
613                         btrfs_set_opt(info->mount_opt, AUTO_DEFRAG);
614                         break;
615                 case Opt_nodefrag:
616                         if (btrfs_test_opt(root, AUTO_DEFRAG))
617                                 btrfs_info(root->fs_info, "disabling auto defrag");
618                         btrfs_clear_opt(info->mount_opt, AUTO_DEFRAG);
619                         break;
620                 case Opt_recovery:
621                         btrfs_info(root->fs_info, "enabling auto recovery");
622                         btrfs_set_opt(info->mount_opt, RECOVERY);
623                         break;
624                 case Opt_skip_balance:
625                         btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
626                         break;
627 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
628                 case Opt_check_integrity_including_extent_data:
629                         btrfs_info(root->fs_info,
630                                    "enabling check integrity including extent data");
631                         btrfs_set_opt(info->mount_opt,
632                                       CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
633                         btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
634                         break;
635                 case Opt_check_integrity:
636                         btrfs_info(root->fs_info, "enabling check integrity");
637                         btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
638                         break;
639                 case Opt_check_integrity_print_mask:
640                         ret = match_int(&args[0], &intarg);
641                         if (ret) {
642                                 goto out;
643                         } else if (intarg >= 0) {
644                                 info->check_integrity_print_mask = intarg;
645                                 btrfs_info(root->fs_info, "check_integrity_print_mask 0x%x",
646                                        info->check_integrity_print_mask);
647                         } else {
648                                 ret = -EINVAL;
649                                 goto out;
650                         }
651                         break;
652 #else
653                 case Opt_check_integrity_including_extent_data:
654                 case Opt_check_integrity:
655                 case Opt_check_integrity_print_mask:
656                         btrfs_err(root->fs_info,
657                                 "support for check_integrity* not compiled in!");
658                         ret = -EINVAL;
659                         goto out;
660 #endif
661                 case Opt_fatal_errors:
662                         if (strcmp(args[0].from, "panic") == 0)
663                                 btrfs_set_opt(info->mount_opt,
664                                               PANIC_ON_FATAL_ERROR);
665                         else if (strcmp(args[0].from, "bug") == 0)
666                                 btrfs_clear_opt(info->mount_opt,
667                                               PANIC_ON_FATAL_ERROR);
668                         else {
669                                 ret = -EINVAL;
670                                 goto out;
671                         }
672                         break;
673                 case Opt_commit_interval:
674                         intarg = 0;
675                         ret = match_int(&args[0], &intarg);
676                         if (ret < 0) {
677                                 btrfs_err(root->fs_info, "invalid commit interval");
678                                 ret = -EINVAL;
679                                 goto out;
680                         }
681                         if (intarg > 0) {
682                                 if (intarg > 300) {
683                                         btrfs_warn(root->fs_info, "excessive commit interval %d",
684                                                         intarg);
685                                 }
686                                 info->commit_interval = intarg;
687                         } else {
688                                 btrfs_info(root->fs_info, "using default commit interval %ds",
689                                     BTRFS_DEFAULT_COMMIT_INTERVAL);
690                                 info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
691                         }
692                         break;
693                 case Opt_err:
694                         btrfs_info(root->fs_info, "unrecognized mount option '%s'", p);
695                         ret = -EINVAL;
696                         goto out;
697                 default:
698                         break;
699                 }
700         }
701 out:
702         if (!ret && btrfs_test_opt(root, SPACE_CACHE))
703                 btrfs_info(root->fs_info, "disk space caching is enabled");
704         kfree(orig);
705         return ret;
706 }
707
708 /*
709  * Parse mount options that are required early in the mount process.
710  *
711  * All other options will be parsed on much later in the mount process and
712  * only when we need to allocate a new super block.
713  */
714 static int btrfs_parse_early_options(const char *options, fmode_t flags,
715                 void *holder, char **subvol_name, u64 *subvol_objectid,
716                 struct btrfs_fs_devices **fs_devices)
717 {
718         substring_t args[MAX_OPT_ARGS];
719         char *device_name, *opts, *orig, *p;
720         char *num = NULL;
721         int error = 0;
722
723         if (!options)
724                 return 0;
725
726         /*
727          * strsep changes the string, duplicate it because parse_options
728          * gets called twice
729          */
730         opts = kstrdup(options, GFP_KERNEL);
731         if (!opts)
732                 return -ENOMEM;
733         orig = opts;
734
735         while ((p = strsep(&opts, ",")) != NULL) {
736                 int token;
737                 if (!*p)
738                         continue;
739
740                 token = match_token(p, tokens, args);
741                 switch (token) {
742                 case Opt_subvol:
743                         kfree(*subvol_name);
744                         *subvol_name = match_strdup(&args[0]);
745                         if (!*subvol_name) {
746                                 error = -ENOMEM;
747                                 goto out;
748                         }
749                         break;
750                 case Opt_subvolid:
751                         num = match_strdup(&args[0]);
752                         if (num) {
753                                 *subvol_objectid = memparse(num, NULL);
754                                 kfree(num);
755                                 /* we want the original fs_tree */
756                                 if (!*subvol_objectid)
757                                         *subvol_objectid =
758                                                 BTRFS_FS_TREE_OBJECTID;
759                         } else {
760                                 error = -EINVAL;
761                                 goto out;
762                         }
763                         break;
764                 case Opt_subvolrootid:
765                         printk(KERN_WARNING
766                                 "BTRFS: 'subvolrootid' mount option is deprecated and has "
767                                 "no effect\n");
768                         break;
769                 case Opt_device:
770                         device_name = match_strdup(&args[0]);
771                         if (!device_name) {
772                                 error = -ENOMEM;
773                                 goto out;
774                         }
775                         error = btrfs_scan_one_device(device_name,
776                                         flags, holder, fs_devices);
777                         kfree(device_name);
778                         if (error)
779                                 goto out;
780                         break;
781                 default:
782                         break;
783                 }
784         }
785
786 out:
787         kfree(orig);
788         return error;
789 }
790
791 static struct dentry *get_default_root(struct super_block *sb,
792                                        u64 subvol_objectid)
793 {
794         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
795         struct btrfs_root *root = fs_info->tree_root;
796         struct btrfs_root *new_root;
797         struct btrfs_dir_item *di;
798         struct btrfs_path *path;
799         struct btrfs_key location;
800         struct inode *inode;
801         u64 dir_id;
802         int new = 0;
803
804         /*
805          * We have a specific subvol we want to mount, just setup location and
806          * go look up the root.
807          */
808         if (subvol_objectid) {
809                 location.objectid = subvol_objectid;
810                 location.type = BTRFS_ROOT_ITEM_KEY;
811                 location.offset = (u64)-1;
812                 goto find_root;
813         }
814
815         path = btrfs_alloc_path();
816         if (!path)
817                 return ERR_PTR(-ENOMEM);
818         path->leave_spinning = 1;
819
820         /*
821          * Find the "default" dir item which points to the root item that we
822          * will mount by default if we haven't been given a specific subvolume
823          * to mount.
824          */
825         dir_id = btrfs_super_root_dir(fs_info->super_copy);
826         di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
827         if (IS_ERR(di)) {
828                 btrfs_free_path(path);
829                 return ERR_CAST(di);
830         }
831         if (!di) {
832                 /*
833                  * Ok the default dir item isn't there.  This is weird since
834                  * it's always been there, but don't freak out, just try and
835                  * mount to root most subvolume.
836                  */
837                 btrfs_free_path(path);
838                 dir_id = BTRFS_FIRST_FREE_OBJECTID;
839                 new_root = fs_info->fs_root;
840                 goto setup_root;
841         }
842
843         btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
844         btrfs_free_path(path);
845
846 find_root:
847         new_root = btrfs_read_fs_root_no_name(fs_info, &location);
848         if (IS_ERR(new_root))
849                 return ERR_CAST(new_root);
850
851         dir_id = btrfs_root_dirid(&new_root->root_item);
852 setup_root:
853         location.objectid = dir_id;
854         location.type = BTRFS_INODE_ITEM_KEY;
855         location.offset = 0;
856
857         inode = btrfs_iget(sb, &location, new_root, &new);
858         if (IS_ERR(inode))
859                 return ERR_CAST(inode);
860
861         /*
862          * If we're just mounting the root most subvol put the inode and return
863          * a reference to the dentry.  We will have already gotten a reference
864          * to the inode in btrfs_fill_super so we're good to go.
865          */
866         if (!new && sb->s_root->d_inode == inode) {
867                 iput(inode);
868                 return dget(sb->s_root);
869         }
870
871         return d_obtain_alias(inode);
872 }
873
874 static int btrfs_fill_super(struct super_block *sb,
875                             struct btrfs_fs_devices *fs_devices,
876                             void *data, int silent)
877 {
878         struct inode *inode;
879         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
880         struct btrfs_key key;
881         int err;
882
883         sb->s_maxbytes = MAX_LFS_FILESIZE;
884         sb->s_magic = BTRFS_SUPER_MAGIC;
885         sb->s_op = &btrfs_super_ops;
886         sb->s_d_op = &btrfs_dentry_operations;
887         sb->s_export_op = &btrfs_export_ops;
888         sb->s_xattr = btrfs_xattr_handlers;
889         sb->s_time_gran = 1;
890 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
891         sb->s_flags |= MS_POSIXACL;
892 #endif
893         sb->s_flags |= MS_I_VERSION;
894         err = open_ctree(sb, fs_devices, (char *)data);
895         if (err) {
896                 printk(KERN_ERR "BTRFS: open_ctree failed\n");
897                 return err;
898         }
899
900         key.objectid = BTRFS_FIRST_FREE_OBJECTID;
901         key.type = BTRFS_INODE_ITEM_KEY;
902         key.offset = 0;
903         inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
904         if (IS_ERR(inode)) {
905                 err = PTR_ERR(inode);
906                 goto fail_close;
907         }
908
909         sb->s_root = d_make_root(inode);
910         if (!sb->s_root) {
911                 err = -ENOMEM;
912                 goto fail_close;
913         }
914
915         save_mount_options(sb, data);
916         cleancache_init_fs(sb);
917         sb->s_flags |= MS_ACTIVE;
918         return 0;
919
920 fail_close:
921         close_ctree(fs_info->tree_root);
922         return err;
923 }
924
925 int btrfs_sync_fs(struct super_block *sb, int wait)
926 {
927         struct btrfs_trans_handle *trans;
928         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
929         struct btrfs_root *root = fs_info->tree_root;
930
931         trace_btrfs_sync_fs(wait);
932
933         if (!wait) {
934                 filemap_flush(fs_info->btree_inode->i_mapping);
935                 return 0;
936         }
937
938         btrfs_wait_ordered_roots(fs_info, -1);
939
940         trans = btrfs_attach_transaction_barrier(root);
941         if (IS_ERR(trans)) {
942                 /* no transaction, don't bother */
943                 if (PTR_ERR(trans) == -ENOENT)
944                         return 0;
945                 return PTR_ERR(trans);
946         }
947         return btrfs_commit_transaction(trans, root);
948 }
949
950 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
951 {
952         struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
953         struct btrfs_root *root = info->tree_root;
954         char *compress_type;
955
956         if (btrfs_test_opt(root, DEGRADED))
957                 seq_puts(seq, ",degraded");
958         if (btrfs_test_opt(root, NODATASUM))
959                 seq_puts(seq, ",nodatasum");
960         if (btrfs_test_opt(root, NODATACOW))
961                 seq_puts(seq, ",nodatacow");
962         if (btrfs_test_opt(root, NOBARRIER))
963                 seq_puts(seq, ",nobarrier");
964         if (info->max_inline != 8192 * 1024)
965                 seq_printf(seq, ",max_inline=%llu", info->max_inline);
966         if (info->alloc_start != 0)
967                 seq_printf(seq, ",alloc_start=%llu", info->alloc_start);
968         if (info->thread_pool_size !=  min_t(unsigned long,
969                                              num_online_cpus() + 2, 8))
970                 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
971         if (btrfs_test_opt(root, COMPRESS)) {
972                 if (info->compress_type == BTRFS_COMPRESS_ZLIB)
973                         compress_type = "zlib";
974                 else
975                         compress_type = "lzo";
976                 if (btrfs_test_opt(root, FORCE_COMPRESS))
977                         seq_printf(seq, ",compress-force=%s", compress_type);
978                 else
979                         seq_printf(seq, ",compress=%s", compress_type);
980         }
981         if (btrfs_test_opt(root, NOSSD))
982                 seq_puts(seq, ",nossd");
983         if (btrfs_test_opt(root, SSD_SPREAD))
984                 seq_puts(seq, ",ssd_spread");
985         else if (btrfs_test_opt(root, SSD))
986                 seq_puts(seq, ",ssd");
987         if (btrfs_test_opt(root, NOTREELOG))
988                 seq_puts(seq, ",notreelog");
989         if (btrfs_test_opt(root, FLUSHONCOMMIT))
990                 seq_puts(seq, ",flushoncommit");
991         if (btrfs_test_opt(root, DISCARD))
992                 seq_puts(seq, ",discard");
993         if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
994                 seq_puts(seq, ",noacl");
995         if (btrfs_test_opt(root, SPACE_CACHE))
996                 seq_puts(seq, ",space_cache");
997         else
998                 seq_puts(seq, ",nospace_cache");
999         if (btrfs_test_opt(root, RESCAN_UUID_TREE))
1000                 seq_puts(seq, ",rescan_uuid_tree");
1001         if (btrfs_test_opt(root, CLEAR_CACHE))
1002                 seq_puts(seq, ",clear_cache");
1003         if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
1004                 seq_puts(seq, ",user_subvol_rm_allowed");
1005         if (btrfs_test_opt(root, ENOSPC_DEBUG))
1006                 seq_puts(seq, ",enospc_debug");
1007         if (btrfs_test_opt(root, AUTO_DEFRAG))
1008                 seq_puts(seq, ",autodefrag");
1009         if (btrfs_test_opt(root, INODE_MAP_CACHE))
1010                 seq_puts(seq, ",inode_cache");
1011         if (btrfs_test_opt(root, SKIP_BALANCE))
1012                 seq_puts(seq, ",skip_balance");
1013         if (btrfs_test_opt(root, RECOVERY))
1014                 seq_puts(seq, ",recovery");
1015 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1016         if (btrfs_test_opt(root, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1017                 seq_puts(seq, ",check_int_data");
1018         else if (btrfs_test_opt(root, CHECK_INTEGRITY))
1019                 seq_puts(seq, ",check_int");
1020         if (info->check_integrity_print_mask)
1021                 seq_printf(seq, ",check_int_print_mask=%d",
1022                                 info->check_integrity_print_mask);
1023 #endif
1024         if (info->metadata_ratio)
1025                 seq_printf(seq, ",metadata_ratio=%d",
1026                                 info->metadata_ratio);
1027         if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR))
1028                 seq_puts(seq, ",fatal_errors=panic");
1029         if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1030                 seq_printf(seq, ",commit=%d", info->commit_interval);
1031         return 0;
1032 }
1033
1034 static int btrfs_test_super(struct super_block *s, void *data)
1035 {
1036         struct btrfs_fs_info *p = data;
1037         struct btrfs_fs_info *fs_info = btrfs_sb(s);
1038
1039         return fs_info->fs_devices == p->fs_devices;
1040 }
1041
1042 static int btrfs_set_super(struct super_block *s, void *data)
1043 {
1044         int err = set_anon_super(s, data);
1045         if (!err)
1046                 s->s_fs_info = data;
1047         return err;
1048 }
1049
1050 /*
1051  * subvolumes are identified by ino 256
1052  */
1053 static inline int is_subvolume_inode(struct inode *inode)
1054 {
1055         if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1056                 return 1;
1057         return 0;
1058 }
1059
1060 /*
1061  * This will strip out the subvol=%s argument for an argument string and add
1062  * subvolid=0 to make sure we get the actual tree root for path walking to the
1063  * subvol we want.
1064  */
1065 static char *setup_root_args(char *args)
1066 {
1067         unsigned len = strlen(args) + 2 + 1;
1068         char *src, *dst, *buf;
1069
1070         /*
1071          * We need the same args as before, but with this substitution:
1072          * s!subvol=[^,]+!subvolid=0!
1073          *
1074          * Since the replacement string is up to 2 bytes longer than the
1075          * original, allocate strlen(args) + 2 + 1 bytes.
1076          */
1077
1078         src = strstr(args, "subvol=");
1079         /* This shouldn't happen, but just in case.. */
1080         if (!src)
1081                 return NULL;
1082
1083         buf = dst = kmalloc(len, GFP_NOFS);
1084         if (!buf)
1085                 return NULL;
1086
1087         /*
1088          * If the subvol= arg is not at the start of the string,
1089          * copy whatever precedes it into buf.
1090          */
1091         if (src != args) {
1092                 *src++ = '\0';
1093                 strcpy(buf, args);
1094                 dst += strlen(args);
1095         }
1096
1097         strcpy(dst, "subvolid=0");
1098         dst += strlen("subvolid=0");
1099
1100         /*
1101          * If there is a "," after the original subvol=... string,
1102          * copy that suffix into our buffer.  Otherwise, we're done.
1103          */
1104         src = strchr(src, ',');
1105         if (src)
1106                 strcpy(dst, src);
1107
1108         return buf;
1109 }
1110
1111 static struct dentry *mount_subvol(const char *subvol_name, int flags,
1112                                    const char *device_name, char *data)
1113 {
1114         struct dentry *root;
1115         struct vfsmount *mnt;
1116         char *newargs;
1117
1118         newargs = setup_root_args(data);
1119         if (!newargs)
1120                 return ERR_PTR(-ENOMEM);
1121         mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
1122                              newargs);
1123         kfree(newargs);
1124         if (IS_ERR(mnt))
1125                 return ERR_CAST(mnt);
1126
1127         root = mount_subtree(mnt, subvol_name);
1128
1129         if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) {
1130                 struct super_block *s = root->d_sb;
1131                 dput(root);
1132                 root = ERR_PTR(-EINVAL);
1133                 deactivate_locked_super(s);
1134                 printk(KERN_ERR "BTRFS: '%s' is not a valid subvolume\n",
1135                                 subvol_name);
1136         }
1137
1138         return root;
1139 }
1140
1141 /*
1142  * Find a superblock for the given device / mount point.
1143  *
1144  * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
1145  *        for multiple device setup.  Make sure to keep it in sync.
1146  */
1147 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1148                 const char *device_name, void *data)
1149 {
1150         struct block_device *bdev = NULL;
1151         struct super_block *s;
1152         struct dentry *root;
1153         struct btrfs_fs_devices *fs_devices = NULL;
1154         struct btrfs_fs_info *fs_info = NULL;
1155         fmode_t mode = FMODE_READ;
1156         char *subvol_name = NULL;
1157         u64 subvol_objectid = 0;
1158         int error = 0;
1159
1160         if (!(flags & MS_RDONLY))
1161                 mode |= FMODE_WRITE;
1162
1163         error = btrfs_parse_early_options(data, mode, fs_type,
1164                                           &subvol_name, &subvol_objectid,
1165                                           &fs_devices);
1166         if (error) {
1167                 kfree(subvol_name);
1168                 return ERR_PTR(error);
1169         }
1170
1171         if (subvol_name) {
1172                 root = mount_subvol(subvol_name, flags, device_name, data);
1173                 kfree(subvol_name);
1174                 return root;
1175         }
1176
1177         error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1178         if (error)
1179                 return ERR_PTR(error);
1180
1181         /*
1182          * Setup a dummy root and fs_info for test/set super.  This is because
1183          * we don't actually fill this stuff out until open_ctree, but we need
1184          * it for searching for existing supers, so this lets us do that and
1185          * then open_ctree will properly initialize everything later.
1186          */
1187         fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1188         if (!fs_info)
1189                 return ERR_PTR(-ENOMEM);
1190
1191         fs_info->fs_devices = fs_devices;
1192
1193         fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1194         fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1195         if (!fs_info->super_copy || !fs_info->super_for_commit) {
1196                 error = -ENOMEM;
1197                 goto error_fs_info;
1198         }
1199
1200         error = btrfs_open_devices(fs_devices, mode, fs_type);
1201         if (error)
1202                 goto error_fs_info;
1203
1204         if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1205                 error = -EACCES;
1206                 goto error_close_devices;
1207         }
1208
1209         bdev = fs_devices->latest_bdev;
1210         s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC,
1211                  fs_info);
1212         if (IS_ERR(s)) {
1213                 error = PTR_ERR(s);
1214                 goto error_close_devices;
1215         }
1216
1217         if (s->s_root) {
1218                 btrfs_close_devices(fs_devices);
1219                 free_fs_info(fs_info);
1220                 if ((flags ^ s->s_flags) & MS_RDONLY)
1221                         error = -EBUSY;
1222         } else {
1223                 char b[BDEVNAME_SIZE];
1224
1225                 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1226                 btrfs_sb(s)->bdev_holder = fs_type;
1227                 error = btrfs_fill_super(s, fs_devices, data,
1228                                          flags & MS_SILENT ? 1 : 0);
1229         }
1230
1231         root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error);
1232         if (IS_ERR(root))
1233                 deactivate_locked_super(s);
1234
1235         return root;
1236
1237 error_close_devices:
1238         btrfs_close_devices(fs_devices);
1239 error_fs_info:
1240         free_fs_info(fs_info);
1241         return ERR_PTR(error);
1242 }
1243
1244 static void btrfs_set_max_workers(struct btrfs_workers *workers, int new_limit)
1245 {
1246         spin_lock_irq(&workers->lock);
1247         workers->max_workers = new_limit;
1248         spin_unlock_irq(&workers->lock);
1249 }
1250
1251 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1252                                      int new_pool_size, int old_pool_size)
1253 {
1254         if (new_pool_size == old_pool_size)
1255                 return;
1256
1257         fs_info->thread_pool_size = new_pool_size;
1258
1259         btrfs_info(fs_info, "resize thread pool %d -> %d",
1260                old_pool_size, new_pool_size);
1261
1262         btrfs_set_max_workers(&fs_info->generic_worker, new_pool_size);
1263         btrfs_set_max_workers(&fs_info->workers, new_pool_size);
1264         btrfs_set_max_workers(&fs_info->delalloc_workers, new_pool_size);
1265         btrfs_set_max_workers(&fs_info->submit_workers, new_pool_size);
1266         btrfs_set_max_workers(&fs_info->caching_workers, new_pool_size);
1267         btrfs_set_max_workers(&fs_info->fixup_workers, new_pool_size);
1268         btrfs_set_max_workers(&fs_info->endio_workers, new_pool_size);
1269         btrfs_set_max_workers(&fs_info->endio_meta_workers, new_pool_size);
1270         btrfs_set_max_workers(&fs_info->endio_meta_write_workers, new_pool_size);
1271         btrfs_set_max_workers(&fs_info->endio_write_workers, new_pool_size);
1272         btrfs_set_max_workers(&fs_info->endio_freespace_worker, new_pool_size);
1273         btrfs_set_max_workers(&fs_info->delayed_workers, new_pool_size);
1274         btrfs_set_max_workers(&fs_info->readahead_workers, new_pool_size);
1275         btrfs_set_max_workers(&fs_info->scrub_wr_completion_workers,
1276                               new_pool_size);
1277 }
1278
1279 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1280 {
1281         set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1282 }
1283
1284 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1285                                        unsigned long old_opts, int flags)
1286 {
1287         if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1288             (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1289              (flags & MS_RDONLY))) {
1290                 /* wait for any defraggers to finish */
1291                 wait_event(fs_info->transaction_wait,
1292                            (atomic_read(&fs_info->defrag_running) == 0));
1293                 if (flags & MS_RDONLY)
1294                         sync_filesystem(fs_info->sb);
1295         }
1296 }
1297
1298 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1299                                          unsigned long old_opts)
1300 {
1301         /*
1302          * We need cleanup all defragable inodes if the autodefragment is
1303          * close or the fs is R/O.
1304          */
1305         if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1306             (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1307              (fs_info->sb->s_flags & MS_RDONLY))) {
1308                 btrfs_cleanup_defrag_inodes(fs_info);
1309         }
1310
1311         clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1312 }
1313
1314 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1315 {
1316         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1317         struct btrfs_root *root = fs_info->tree_root;
1318         unsigned old_flags = sb->s_flags;
1319         unsigned long old_opts = fs_info->mount_opt;
1320         unsigned long old_compress_type = fs_info->compress_type;
1321         u64 old_max_inline = fs_info->max_inline;
1322         u64 old_alloc_start = fs_info->alloc_start;
1323         int old_thread_pool_size = fs_info->thread_pool_size;
1324         unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1325         int ret;
1326
1327         btrfs_remount_prepare(fs_info);
1328
1329         ret = btrfs_parse_options(root, data);
1330         if (ret) {
1331                 ret = -EINVAL;
1332                 goto restore;
1333         }
1334
1335         btrfs_remount_begin(fs_info, old_opts, *flags);
1336         btrfs_resize_thread_pool(fs_info,
1337                 fs_info->thread_pool_size, old_thread_pool_size);
1338
1339         if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1340                 goto out;
1341
1342         if (*flags & MS_RDONLY) {
1343                 /*
1344                  * this also happens on 'umount -rf' or on shutdown, when
1345                  * the filesystem is busy.
1346                  */
1347
1348                 /* wait for the uuid_scan task to finish */
1349                 down(&fs_info->uuid_tree_rescan_sem);
1350                 /* avoid complains from lockdep et al. */
1351                 up(&fs_info->uuid_tree_rescan_sem);
1352
1353                 sb->s_flags |= MS_RDONLY;
1354
1355                 btrfs_dev_replace_suspend_for_unmount(fs_info);
1356                 btrfs_scrub_cancel(fs_info);
1357                 btrfs_pause_balance(fs_info);
1358
1359                 ret = btrfs_commit_super(root);
1360                 if (ret)
1361                         goto restore;
1362         } else {
1363                 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1364                         btrfs_err(fs_info,
1365                                 "Remounting read-write after error is not allowed");
1366                         ret = -EINVAL;
1367                         goto restore;
1368                 }
1369                 if (fs_info->fs_devices->rw_devices == 0) {
1370                         ret = -EACCES;
1371                         goto restore;
1372                 }
1373
1374                 if (fs_info->fs_devices->missing_devices >
1375                      fs_info->num_tolerated_disk_barrier_failures &&
1376                     !(*flags & MS_RDONLY)) {
1377                         btrfs_warn(fs_info,
1378                                 "too many missing devices, writeable remount is not allowed");
1379                         ret = -EACCES;
1380                         goto restore;
1381                 }
1382
1383                 if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1384                         ret = -EINVAL;
1385                         goto restore;
1386                 }
1387
1388                 ret = btrfs_cleanup_fs_roots(fs_info);
1389                 if (ret)
1390                         goto restore;
1391
1392                 /* recover relocation */
1393                 ret = btrfs_recover_relocation(root);
1394                 if (ret)
1395                         goto restore;
1396
1397                 ret = btrfs_resume_balance_async(fs_info);
1398                 if (ret)
1399                         goto restore;
1400
1401                 ret = btrfs_resume_dev_replace_async(fs_info);
1402                 if (ret) {
1403                         btrfs_warn(fs_info, "failed to resume dev_replace");
1404                         goto restore;
1405                 }
1406
1407                 if (!fs_info->uuid_root) {
1408                         btrfs_info(fs_info, "creating UUID tree");
1409                         ret = btrfs_create_uuid_tree(fs_info);
1410                         if (ret) {
1411                                 btrfs_warn(fs_info, "failed to create the UUID tree %d", ret);
1412                                 goto restore;
1413                         }
1414                 }
1415                 sb->s_flags &= ~MS_RDONLY;
1416         }
1417 out:
1418         btrfs_remount_cleanup(fs_info, old_opts);
1419         return 0;
1420
1421 restore:
1422         /* We've hit an error - don't reset MS_RDONLY */
1423         if (sb->s_flags & MS_RDONLY)
1424                 old_flags |= MS_RDONLY;
1425         sb->s_flags = old_flags;
1426         fs_info->mount_opt = old_opts;
1427         fs_info->compress_type = old_compress_type;
1428         fs_info->max_inline = old_max_inline;
1429         mutex_lock(&fs_info->chunk_mutex);
1430         fs_info->alloc_start = old_alloc_start;
1431         mutex_unlock(&fs_info->chunk_mutex);
1432         btrfs_resize_thread_pool(fs_info,
1433                 old_thread_pool_size, fs_info->thread_pool_size);
1434         fs_info->metadata_ratio = old_metadata_ratio;
1435         btrfs_remount_cleanup(fs_info, old_opts);
1436         return ret;
1437 }
1438
1439 /* Used to sort the devices by max_avail(descending sort) */
1440 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1441                                        const void *dev_info2)
1442 {
1443         if (((struct btrfs_device_info *)dev_info1)->max_avail >
1444             ((struct btrfs_device_info *)dev_info2)->max_avail)
1445                 return -1;
1446         else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1447                  ((struct btrfs_device_info *)dev_info2)->max_avail)
1448                 return 1;
1449         else
1450         return 0;
1451 }
1452
1453 /*
1454  * sort the devices by max_avail, in which max free extent size of each device
1455  * is stored.(Descending Sort)
1456  */
1457 static inline void btrfs_descending_sort_devices(
1458                                         struct btrfs_device_info *devices,
1459                                         size_t nr_devices)
1460 {
1461         sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1462              btrfs_cmp_device_free_bytes, NULL);
1463 }
1464
1465 /*
1466  * The helper to calc the free space on the devices that can be used to store
1467  * file data.
1468  */
1469 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1470 {
1471         struct btrfs_fs_info *fs_info = root->fs_info;
1472         struct btrfs_device_info *devices_info;
1473         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1474         struct btrfs_device *device;
1475         u64 skip_space;
1476         u64 type;
1477         u64 avail_space;
1478         u64 used_space;
1479         u64 min_stripe_size;
1480         int min_stripes = 1, num_stripes = 1;
1481         int i = 0, nr_devices;
1482         int ret;
1483
1484         nr_devices = fs_info->fs_devices->open_devices;
1485         BUG_ON(!nr_devices);
1486
1487         devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1488                                GFP_NOFS);
1489         if (!devices_info)
1490                 return -ENOMEM;
1491
1492         /* calc min stripe number for data space alloction */
1493         type = btrfs_get_alloc_profile(root, 1);
1494         if (type & BTRFS_BLOCK_GROUP_RAID0) {
1495                 min_stripes = 2;
1496                 num_stripes = nr_devices;
1497         } else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1498                 min_stripes = 2;
1499                 num_stripes = 2;
1500         } else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1501                 min_stripes = 4;
1502                 num_stripes = 4;
1503         }
1504
1505         if (type & BTRFS_BLOCK_GROUP_DUP)
1506                 min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1507         else
1508                 min_stripe_size = BTRFS_STRIPE_LEN;
1509
1510         list_for_each_entry(device, &fs_devices->devices, dev_list) {
1511                 if (!device->in_fs_metadata || !device->bdev ||
1512                     device->is_tgtdev_for_dev_replace)
1513                         continue;
1514
1515                 avail_space = device->total_bytes - device->bytes_used;
1516
1517                 /* align with stripe_len */
1518                 do_div(avail_space, BTRFS_STRIPE_LEN);
1519                 avail_space *= BTRFS_STRIPE_LEN;
1520
1521                 /*
1522                  * In order to avoid overwritting the superblock on the drive,
1523                  * btrfs starts at an offset of at least 1MB when doing chunk
1524                  * allocation.
1525                  */
1526                 skip_space = 1024 * 1024;
1527
1528                 /* user can set the offset in fs_info->alloc_start. */
1529                 if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1530                     device->total_bytes)
1531                         skip_space = max(fs_info->alloc_start, skip_space);
1532
1533                 /*
1534                  * btrfs can not use the free space in [0, skip_space - 1],
1535                  * we must subtract it from the total. In order to implement
1536                  * it, we account the used space in this range first.
1537                  */
1538                 ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1539                                                      &used_space);
1540                 if (ret) {
1541                         kfree(devices_info);
1542                         return ret;
1543                 }
1544
1545                 /* calc the free space in [0, skip_space - 1] */
1546                 skip_space -= used_space;
1547
1548                 /*
1549                  * we can use the free space in [0, skip_space - 1], subtract
1550                  * it from the total.
1551                  */
1552                 if (avail_space && avail_space >= skip_space)
1553                         avail_space -= skip_space;
1554                 else
1555                         avail_space = 0;
1556
1557                 if (avail_space < min_stripe_size)
1558                         continue;
1559
1560                 devices_info[i].dev = device;
1561                 devices_info[i].max_avail = avail_space;
1562
1563                 i++;
1564         }
1565
1566         nr_devices = i;
1567
1568         btrfs_descending_sort_devices(devices_info, nr_devices);
1569
1570         i = nr_devices - 1;
1571         avail_space = 0;
1572         while (nr_devices >= min_stripes) {
1573                 if (num_stripes > nr_devices)
1574                         num_stripes = nr_devices;
1575
1576                 if (devices_info[i].max_avail >= min_stripe_size) {
1577                         int j;
1578                         u64 alloc_size;
1579
1580                         avail_space += devices_info[i].max_avail * num_stripes;
1581                         alloc_size = devices_info[i].max_avail;
1582                         for (j = i + 1 - num_stripes; j <= i; j++)
1583                                 devices_info[j].max_avail -= alloc_size;
1584                 }
1585                 i--;
1586                 nr_devices--;
1587         }
1588
1589         kfree(devices_info);
1590         *free_bytes = avail_space;
1591         return 0;
1592 }
1593
1594 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1595 {
1596         struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1597         struct btrfs_super_block *disk_super = fs_info->super_copy;
1598         struct list_head *head = &fs_info->space_info;
1599         struct btrfs_space_info *found;
1600         u64 total_used = 0;
1601         u64 total_free_data = 0;
1602         int bits = dentry->d_sb->s_blocksize_bits;
1603         __be32 *fsid = (__be32 *)fs_info->fsid;
1604         int ret;
1605
1606         /* holding chunk_muext to avoid allocating new chunks */
1607         mutex_lock(&fs_info->chunk_mutex);
1608         rcu_read_lock();
1609         list_for_each_entry_rcu(found, head, list) {
1610                 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1611                         total_free_data += found->disk_total - found->disk_used;
1612                         total_free_data -=
1613                                 btrfs_account_ro_block_groups_free_space(found);
1614                 }
1615
1616                 total_used += found->disk_used;
1617         }
1618         rcu_read_unlock();
1619
1620         buf->f_namelen = BTRFS_NAME_LEN;
1621         buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1622         buf->f_bfree = buf->f_blocks - (total_used >> bits);
1623         buf->f_bsize = dentry->d_sb->s_blocksize;
1624         buf->f_type = BTRFS_SUPER_MAGIC;
1625         buf->f_bavail = total_free_data;
1626         ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
1627         if (ret) {
1628                 mutex_unlock(&fs_info->chunk_mutex);
1629                 return ret;
1630         }
1631         buf->f_bavail += total_free_data;
1632         buf->f_bavail = buf->f_bavail >> bits;
1633         mutex_unlock(&fs_info->chunk_mutex);
1634
1635         /* We treat it as constant endianness (it doesn't matter _which_)
1636            because we want the fsid to come out the same whether mounted
1637            on a big-endian or little-endian host */
1638         buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1639         buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1640         /* Mask in the root object ID too, to disambiguate subvols */
1641         buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1642         buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1643
1644         return 0;
1645 }
1646
1647 static void btrfs_kill_super(struct super_block *sb)
1648 {
1649         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1650         kill_anon_super(sb);
1651         free_fs_info(fs_info);
1652 }
1653
1654 static struct file_system_type btrfs_fs_type = {
1655         .owner          = THIS_MODULE,
1656         .name           = "btrfs",
1657         .mount          = btrfs_mount,
1658         .kill_sb        = btrfs_kill_super,
1659         .fs_flags       = FS_REQUIRES_DEV,
1660 };
1661 MODULE_ALIAS_FS("btrfs");
1662
1663 /*
1664  * used by btrfsctl to scan devices when no FS is mounted
1665  */
1666 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1667                                 unsigned long arg)
1668 {
1669         struct btrfs_ioctl_vol_args *vol;
1670         struct btrfs_fs_devices *fs_devices;
1671         int ret = -ENOTTY;
1672
1673         if (!capable(CAP_SYS_ADMIN))
1674                 return -EPERM;
1675
1676         vol = memdup_user((void __user *)arg, sizeof(*vol));
1677         if (IS_ERR(vol))
1678                 return PTR_ERR(vol);
1679
1680         switch (cmd) {
1681         case BTRFS_IOC_SCAN_DEV:
1682                 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1683                                             &btrfs_fs_type, &fs_devices);
1684                 break;
1685         case BTRFS_IOC_DEVICES_READY:
1686                 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1687                                             &btrfs_fs_type, &fs_devices);
1688                 if (ret)
1689                         break;
1690                 ret = !(fs_devices->num_devices == fs_devices->total_devices);
1691                 break;
1692         }
1693
1694         kfree(vol);
1695         return ret;
1696 }
1697
1698 static int btrfs_freeze(struct super_block *sb)
1699 {
1700         struct btrfs_trans_handle *trans;
1701         struct btrfs_root *root = btrfs_sb(sb)->tree_root;
1702
1703         trans = btrfs_attach_transaction_barrier(root);
1704         if (IS_ERR(trans)) {
1705                 /* no transaction, don't bother */
1706                 if (PTR_ERR(trans) == -ENOENT)
1707                         return 0;
1708                 return PTR_ERR(trans);
1709         }
1710         return btrfs_commit_transaction(trans, root);
1711 }
1712
1713 static int btrfs_unfreeze(struct super_block *sb)
1714 {
1715         return 0;
1716 }
1717
1718 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
1719 {
1720         struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
1721         struct btrfs_fs_devices *cur_devices;
1722         struct btrfs_device *dev, *first_dev = NULL;
1723         struct list_head *head;
1724         struct rcu_string *name;
1725
1726         mutex_lock(&fs_info->fs_devices->device_list_mutex);
1727         cur_devices = fs_info->fs_devices;
1728         while (cur_devices) {
1729                 head = &cur_devices->devices;
1730                 list_for_each_entry(dev, head, dev_list) {
1731                         if (dev->missing)
1732                                 continue;
1733                         if (!first_dev || dev->devid < first_dev->devid)
1734                                 first_dev = dev;
1735                 }
1736                 cur_devices = cur_devices->seed;
1737         }
1738
1739         if (first_dev) {
1740                 rcu_read_lock();
1741                 name = rcu_dereference(first_dev->name);
1742                 seq_escape(m, name->str, " \t\n\\");
1743                 rcu_read_unlock();
1744         } else {
1745                 WARN_ON(1);
1746         }
1747         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1748         return 0;
1749 }
1750
1751 static const struct super_operations btrfs_super_ops = {
1752         .drop_inode     = btrfs_drop_inode,
1753         .evict_inode    = btrfs_evict_inode,
1754         .put_super      = btrfs_put_super,
1755         .sync_fs        = btrfs_sync_fs,
1756         .show_options   = btrfs_show_options,
1757         .show_devname   = btrfs_show_devname,
1758         .write_inode    = btrfs_write_inode,
1759         .alloc_inode    = btrfs_alloc_inode,
1760         .destroy_inode  = btrfs_destroy_inode,
1761         .statfs         = btrfs_statfs,
1762         .remount_fs     = btrfs_remount,
1763         .freeze_fs      = btrfs_freeze,
1764         .unfreeze_fs    = btrfs_unfreeze,
1765 };
1766
1767 static const struct file_operations btrfs_ctl_fops = {
1768         .unlocked_ioctl  = btrfs_control_ioctl,
1769         .compat_ioctl = btrfs_control_ioctl,
1770         .owner   = THIS_MODULE,
1771         .llseek = noop_llseek,
1772 };
1773
1774 static struct miscdevice btrfs_misc = {
1775         .minor          = BTRFS_MINOR,
1776         .name           = "btrfs-control",
1777         .fops           = &btrfs_ctl_fops
1778 };
1779
1780 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1781 MODULE_ALIAS("devname:btrfs-control");
1782
1783 static int btrfs_interface_init(void)
1784 {
1785         return misc_register(&btrfs_misc);
1786 }
1787
1788 static void btrfs_interface_exit(void)
1789 {
1790         if (misc_deregister(&btrfs_misc) < 0)
1791                 printk(KERN_INFO "BTRFS: misc_deregister failed for control device\n");
1792 }
1793
1794 static void btrfs_print_info(void)
1795 {
1796         printk(KERN_INFO "Btrfs loaded"
1797 #ifdef CONFIG_BTRFS_DEBUG
1798                         ", debug=on"
1799 #endif
1800 #ifdef CONFIG_BTRFS_ASSERT
1801                         ", assert=on"
1802 #endif
1803 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1804                         ", integrity-checker=on"
1805 #endif
1806                         "\n");
1807 }
1808
1809 static int btrfs_run_sanity_tests(void)
1810 {
1811         int ret;
1812
1813         ret = btrfs_init_test_fs();
1814         if (ret)
1815                 return ret;
1816
1817         ret = btrfs_test_free_space_cache();
1818         if (ret)
1819                 goto out;
1820         ret = btrfs_test_extent_buffer_operations();
1821         if (ret)
1822                 goto out;
1823         ret = btrfs_test_extent_io();
1824         if (ret)
1825                 goto out;
1826         ret = btrfs_test_inodes();
1827 out:
1828         btrfs_destroy_test_fs();
1829         return ret;
1830 }
1831
1832 static int __init init_btrfs_fs(void)
1833 {
1834         int err;
1835
1836         err = btrfs_init_sysfs();
1837         if (err)
1838                 return err;
1839
1840         btrfs_init_compress();
1841
1842         err = btrfs_init_cachep();
1843         if (err)
1844                 goto free_compress;
1845
1846         err = extent_io_init();
1847         if (err)
1848                 goto free_cachep;
1849
1850         err = extent_map_init();
1851         if (err)
1852                 goto free_extent_io;
1853
1854         err = ordered_data_init();
1855         if (err)
1856                 goto free_extent_map;
1857
1858         err = btrfs_delayed_inode_init();
1859         if (err)
1860                 goto free_ordered_data;
1861
1862         err = btrfs_auto_defrag_init();
1863         if (err)
1864                 goto free_delayed_inode;
1865
1866         err = btrfs_delayed_ref_init();
1867         if (err)
1868                 goto free_auto_defrag;
1869
1870         err = btrfs_prelim_ref_init();
1871         if (err)
1872                 goto free_prelim_ref;
1873
1874         err = btrfs_interface_init();
1875         if (err)
1876                 goto free_delayed_ref;
1877
1878         btrfs_init_lockdep();
1879
1880         btrfs_print_info();
1881
1882         err = btrfs_run_sanity_tests();
1883         if (err)
1884                 goto unregister_ioctl;
1885
1886         err = register_filesystem(&btrfs_fs_type);
1887         if (err)
1888                 goto unregister_ioctl;
1889
1890         return 0;
1891
1892 unregister_ioctl:
1893         btrfs_interface_exit();
1894 free_prelim_ref:
1895         btrfs_prelim_ref_exit();
1896 free_delayed_ref:
1897         btrfs_delayed_ref_exit();
1898 free_auto_defrag:
1899         btrfs_auto_defrag_exit();
1900 free_delayed_inode:
1901         btrfs_delayed_inode_exit();
1902 free_ordered_data:
1903         ordered_data_exit();
1904 free_extent_map:
1905         extent_map_exit();
1906 free_extent_io:
1907         extent_io_exit();
1908 free_cachep:
1909         btrfs_destroy_cachep();
1910 free_compress:
1911         btrfs_exit_compress();
1912         btrfs_exit_sysfs();
1913         return err;
1914 }
1915
1916 static void __exit exit_btrfs_fs(void)
1917 {
1918         btrfs_destroy_cachep();
1919         btrfs_delayed_ref_exit();
1920         btrfs_auto_defrag_exit();
1921         btrfs_delayed_inode_exit();
1922         btrfs_prelim_ref_exit();
1923         ordered_data_exit();
1924         extent_map_exit();
1925         extent_io_exit();
1926         btrfs_interface_exit();
1927         unregister_filesystem(&btrfs_fs_type);
1928         btrfs_exit_sysfs();
1929         btrfs_cleanup_fs_uuids();
1930         btrfs_exit_compress();
1931 }
1932
1933 module_init(init_btrfs_fs)
1934 module_exit(exit_btrfs_fs)
1935
1936 MODULE_LICENSE("GPL");