Btrfs: kill obsolete arguments in btrfs_wait_ordered_extents
[cascardo/linux.git] / fs / btrfs / super.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include "compat.h"
45 #include "delayed-inode.h"
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "ioctl.h"
51 #include "print-tree.h"
52 #include "xattr.h"
53 #include "volumes.h"
54 #include "version.h"
55 #include "export.h"
56 #include "compression.h"
57 #include "rcu-string.h"
58
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/btrfs.h>
61
62 static const struct super_operations btrfs_super_ops;
63 static struct file_system_type btrfs_fs_type;
64
65 static const char *btrfs_decode_error(struct btrfs_fs_info *fs_info, int errno,
66                                       char nbuf[16])
67 {
68         char *errstr = NULL;
69
70         switch (errno) {
71         case -EIO:
72                 errstr = "IO failure";
73                 break;
74         case -ENOMEM:
75                 errstr = "Out of memory";
76                 break;
77         case -EROFS:
78                 errstr = "Readonly filesystem";
79                 break;
80         case -EEXIST:
81                 errstr = "Object already exists";
82                 break;
83         default:
84                 if (nbuf) {
85                         if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
86                                 errstr = nbuf;
87                 }
88                 break;
89         }
90
91         return errstr;
92 }
93
94 static void __save_error_info(struct btrfs_fs_info *fs_info)
95 {
96         /*
97          * today we only save the error info into ram.  Long term we'll
98          * also send it down to the disk
99          */
100         fs_info->fs_state = BTRFS_SUPER_FLAG_ERROR;
101 }
102
103 static void save_error_info(struct btrfs_fs_info *fs_info)
104 {
105         __save_error_info(fs_info);
106 }
107
108 /* btrfs handle error by forcing the filesystem readonly */
109 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
110 {
111         struct super_block *sb = fs_info->sb;
112
113         if (sb->s_flags & MS_RDONLY)
114                 return;
115
116         if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
117                 sb->s_flags |= MS_RDONLY;
118                 printk(KERN_INFO "btrfs is forced readonly\n");
119                 __btrfs_scrub_cancel(fs_info);
120 //              WARN_ON(1);
121         }
122 }
123
124 #ifdef CONFIG_PRINTK
125 /*
126  * __btrfs_std_error decodes expected errors from the caller and
127  * invokes the approciate error response.
128  */
129 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
130                        unsigned int line, int errno, const char *fmt, ...)
131 {
132         struct super_block *sb = fs_info->sb;
133         char nbuf[16];
134         const char *errstr;
135         va_list args;
136         va_start(args, fmt);
137
138         /*
139          * Special case: if the error is EROFS, and we're already
140          * under MS_RDONLY, then it is safe here.
141          */
142         if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
143                 return;
144
145         errstr = btrfs_decode_error(fs_info, errno, nbuf);
146         if (fmt) {
147                 struct va_format vaf = {
148                         .fmt = fmt,
149                         .va = &args,
150                 };
151
152                 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s (%pV)\n",
153                         sb->s_id, function, line, errstr, &vaf);
154         } else {
155                 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s\n",
156                         sb->s_id, function, line, errstr);
157         }
158
159         /* Don't go through full error handling during mount */
160         if (sb->s_flags & MS_BORN) {
161                 save_error_info(fs_info);
162                 btrfs_handle_error(fs_info);
163         }
164         va_end(args);
165 }
166
167 static const char * const logtypes[] = {
168         "emergency",
169         "alert",
170         "critical",
171         "error",
172         "warning",
173         "notice",
174         "info",
175         "debug",
176 };
177
178 void btrfs_printk(struct btrfs_fs_info *fs_info, const char *fmt, ...)
179 {
180         struct super_block *sb = fs_info->sb;
181         char lvl[4];
182         struct va_format vaf;
183         va_list args;
184         const char *type = logtypes[4];
185         int kern_level;
186
187         va_start(args, fmt);
188
189         kern_level = printk_get_level(fmt);
190         if (kern_level) {
191                 size_t size = printk_skip_level(fmt) - fmt;
192                 memcpy(lvl, fmt,  size);
193                 lvl[size] = '\0';
194                 fmt += size;
195                 type = logtypes[kern_level - '0'];
196         } else
197                 *lvl = '\0';
198
199         vaf.fmt = fmt;
200         vaf.va = &args;
201
202         printk("%sBTRFS %s (device %s): %pV", lvl, type, sb->s_id, &vaf);
203
204         va_end(args);
205 }
206
207 #else
208
209 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
210                        unsigned int line, int errno, const char *fmt, ...)
211 {
212         struct super_block *sb = fs_info->sb;
213
214         /*
215          * Special case: if the error is EROFS, and we're already
216          * under MS_RDONLY, then it is safe here.
217          */
218         if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
219                 return;
220
221         /* Don't go through full error handling during mount */
222         if (sb->s_flags & MS_BORN) {
223                 save_error_info(fs_info);
224                 btrfs_handle_error(fs_info);
225         }
226 }
227 #endif
228
229 /*
230  * We only mark the transaction aborted and then set the file system read-only.
231  * This will prevent new transactions from starting or trying to join this
232  * one.
233  *
234  * This means that error recovery at the call site is limited to freeing
235  * any local memory allocations and passing the error code up without
236  * further cleanup. The transaction should complete as it normally would
237  * in the call path but will return -EIO.
238  *
239  * We'll complete the cleanup in btrfs_end_transaction and
240  * btrfs_commit_transaction.
241  */
242 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
243                                struct btrfs_root *root, const char *function,
244                                unsigned int line, int errno)
245 {
246         WARN_ONCE(1, KERN_DEBUG "btrfs: Transaction aborted");
247         trans->aborted = errno;
248         /* Nothing used. The other threads that have joined this
249          * transaction may be able to continue. */
250         if (!trans->blocks_used) {
251                 char nbuf[16];
252                 const char *errstr;
253
254                 errstr = btrfs_decode_error(root->fs_info, errno, nbuf);
255                 btrfs_printk(root->fs_info,
256                              "%s:%d: Aborting unused transaction(%s).\n",
257                              function, line, errstr);
258                 return;
259         }
260         trans->transaction->aborted = errno;
261         __btrfs_std_error(root->fs_info, function, line, errno, NULL);
262 }
263 /*
264  * __btrfs_panic decodes unexpected, fatal errors from the caller,
265  * issues an alert, and either panics or BUGs, depending on mount options.
266  */
267 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
268                    unsigned int line, int errno, const char *fmt, ...)
269 {
270         char nbuf[16];
271         char *s_id = "<unknown>";
272         const char *errstr;
273         struct va_format vaf = { .fmt = fmt };
274         va_list args;
275
276         if (fs_info)
277                 s_id = fs_info->sb->s_id;
278
279         va_start(args, fmt);
280         vaf.va = &args;
281
282         errstr = btrfs_decode_error(fs_info, errno, nbuf);
283         if (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR)
284                 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (%s)\n",
285                         s_id, function, line, &vaf, errstr);
286
287         printk(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (%s)\n",
288                s_id, function, line, &vaf, errstr);
289         va_end(args);
290         /* Caller calls BUG() */
291 }
292
293 static void btrfs_put_super(struct super_block *sb)
294 {
295         (void)close_ctree(btrfs_sb(sb)->tree_root);
296         /* FIXME: need to fix VFS to return error? */
297         /* AV: return it _where_?  ->put_super() can be triggered by any number
298          * of async events, up to and including delivery of SIGKILL to the
299          * last process that kept it busy.  Or segfault in the aforementioned
300          * process...  Whom would you report that to?
301          */
302 }
303
304 enum {
305         Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
306         Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
307         Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
308         Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
309         Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
310         Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
311         Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache,
312         Opt_no_space_cache, Opt_recovery, Opt_skip_balance,
313         Opt_check_integrity, Opt_check_integrity_including_extent_data,
314         Opt_check_integrity_print_mask, Opt_fatal_errors,
315         Opt_err,
316 };
317
318 static match_table_t tokens = {
319         {Opt_degraded, "degraded"},
320         {Opt_subvol, "subvol=%s"},
321         {Opt_subvolid, "subvolid=%d"},
322         {Opt_device, "device=%s"},
323         {Opt_nodatasum, "nodatasum"},
324         {Opt_nodatacow, "nodatacow"},
325         {Opt_nobarrier, "nobarrier"},
326         {Opt_max_inline, "max_inline=%s"},
327         {Opt_alloc_start, "alloc_start=%s"},
328         {Opt_thread_pool, "thread_pool=%d"},
329         {Opt_compress, "compress"},
330         {Opt_compress_type, "compress=%s"},
331         {Opt_compress_force, "compress-force"},
332         {Opt_compress_force_type, "compress-force=%s"},
333         {Opt_ssd, "ssd"},
334         {Opt_ssd_spread, "ssd_spread"},
335         {Opt_nossd, "nossd"},
336         {Opt_noacl, "noacl"},
337         {Opt_notreelog, "notreelog"},
338         {Opt_flushoncommit, "flushoncommit"},
339         {Opt_ratio, "metadata_ratio=%d"},
340         {Opt_discard, "discard"},
341         {Opt_space_cache, "space_cache"},
342         {Opt_clear_cache, "clear_cache"},
343         {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
344         {Opt_enospc_debug, "enospc_debug"},
345         {Opt_subvolrootid, "subvolrootid=%d"},
346         {Opt_defrag, "autodefrag"},
347         {Opt_inode_cache, "inode_cache"},
348         {Opt_no_space_cache, "nospace_cache"},
349         {Opt_recovery, "recovery"},
350         {Opt_skip_balance, "skip_balance"},
351         {Opt_check_integrity, "check_int"},
352         {Opt_check_integrity_including_extent_data, "check_int_data"},
353         {Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
354         {Opt_fatal_errors, "fatal_errors=%s"},
355         {Opt_err, NULL},
356 };
357
358 /*
359  * Regular mount options parser.  Everything that is needed only when
360  * reading in a new superblock is parsed here.
361  * XXX JDM: This needs to be cleaned up for remount.
362  */
363 int btrfs_parse_options(struct btrfs_root *root, char *options)
364 {
365         struct btrfs_fs_info *info = root->fs_info;
366         substring_t args[MAX_OPT_ARGS];
367         char *p, *num, *orig = NULL;
368         u64 cache_gen;
369         int intarg;
370         int ret = 0;
371         char *compress_type;
372         bool compress_force = false;
373
374         cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
375         if (cache_gen)
376                 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
377
378         if (!options)
379                 goto out;
380
381         /*
382          * strsep changes the string, duplicate it because parse_options
383          * gets called twice
384          */
385         options = kstrdup(options, GFP_NOFS);
386         if (!options)
387                 return -ENOMEM;
388
389         orig = options;
390
391         while ((p = strsep(&options, ",")) != NULL) {
392                 int token;
393                 if (!*p)
394                         continue;
395
396                 token = match_token(p, tokens, args);
397                 switch (token) {
398                 case Opt_degraded:
399                         printk(KERN_INFO "btrfs: allowing degraded mounts\n");
400                         btrfs_set_opt(info->mount_opt, DEGRADED);
401                         break;
402                 case Opt_subvol:
403                 case Opt_subvolid:
404                 case Opt_subvolrootid:
405                 case Opt_device:
406                         /*
407                          * These are parsed by btrfs_parse_early_options
408                          * and can be happily ignored here.
409                          */
410                         break;
411                 case Opt_nodatasum:
412                         printk(KERN_INFO "btrfs: setting nodatasum\n");
413                         btrfs_set_opt(info->mount_opt, NODATASUM);
414                         break;
415                 case Opt_nodatacow:
416                         printk(KERN_INFO "btrfs: setting nodatacow\n");
417                         btrfs_set_opt(info->mount_opt, NODATACOW);
418                         btrfs_set_opt(info->mount_opt, NODATASUM);
419                         break;
420                 case Opt_compress_force:
421                 case Opt_compress_force_type:
422                         compress_force = true;
423                 case Opt_compress:
424                 case Opt_compress_type:
425                         if (token == Opt_compress ||
426                             token == Opt_compress_force ||
427                             strcmp(args[0].from, "zlib") == 0) {
428                                 compress_type = "zlib";
429                                 info->compress_type = BTRFS_COMPRESS_ZLIB;
430                                 btrfs_set_opt(info->mount_opt, COMPRESS);
431                         } else if (strcmp(args[0].from, "lzo") == 0) {
432                                 compress_type = "lzo";
433                                 info->compress_type = BTRFS_COMPRESS_LZO;
434                                 btrfs_set_opt(info->mount_opt, COMPRESS);
435                                 btrfs_set_fs_incompat(info, COMPRESS_LZO);
436                         } else if (strncmp(args[0].from, "no", 2) == 0) {
437                                 compress_type = "no";
438                                 info->compress_type = BTRFS_COMPRESS_NONE;
439                                 btrfs_clear_opt(info->mount_opt, COMPRESS);
440                                 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
441                                 compress_force = false;
442                         } else {
443                                 ret = -EINVAL;
444                                 goto out;
445                         }
446
447                         if (compress_force) {
448                                 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
449                                 pr_info("btrfs: force %s compression\n",
450                                         compress_type);
451                         } else
452                                 pr_info("btrfs: use %s compression\n",
453                                         compress_type);
454                         break;
455                 case Opt_ssd:
456                         printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
457                         btrfs_set_opt(info->mount_opt, SSD);
458                         break;
459                 case Opt_ssd_spread:
460                         printk(KERN_INFO "btrfs: use spread ssd "
461                                "allocation scheme\n");
462                         btrfs_set_opt(info->mount_opt, SSD);
463                         btrfs_set_opt(info->mount_opt, SSD_SPREAD);
464                         break;
465                 case Opt_nossd:
466                         printk(KERN_INFO "btrfs: not using ssd allocation "
467                                "scheme\n");
468                         btrfs_set_opt(info->mount_opt, NOSSD);
469                         btrfs_clear_opt(info->mount_opt, SSD);
470                         btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
471                         break;
472                 case Opt_nobarrier:
473                         printk(KERN_INFO "btrfs: turning off barriers\n");
474                         btrfs_set_opt(info->mount_opt, NOBARRIER);
475                         break;
476                 case Opt_thread_pool:
477                         intarg = 0;
478                         match_int(&args[0], &intarg);
479                         if (intarg)
480                                 info->thread_pool_size = intarg;
481                         break;
482                 case Opt_max_inline:
483                         num = match_strdup(&args[0]);
484                         if (num) {
485                                 info->max_inline = memparse(num, NULL);
486                                 kfree(num);
487
488                                 if (info->max_inline) {
489                                         info->max_inline = max_t(u64,
490                                                 info->max_inline,
491                                                 root->sectorsize);
492                                 }
493                                 printk(KERN_INFO "btrfs: max_inline at %llu\n",
494                                         (unsigned long long)info->max_inline);
495                         }
496                         break;
497                 case Opt_alloc_start:
498                         num = match_strdup(&args[0]);
499                         if (num) {
500                                 info->alloc_start = memparse(num, NULL);
501                                 kfree(num);
502                                 printk(KERN_INFO
503                                         "btrfs: allocations start at %llu\n",
504                                         (unsigned long long)info->alloc_start);
505                         }
506                         break;
507                 case Opt_noacl:
508                         root->fs_info->sb->s_flags &= ~MS_POSIXACL;
509                         break;
510                 case Opt_notreelog:
511                         printk(KERN_INFO "btrfs: disabling tree log\n");
512                         btrfs_set_opt(info->mount_opt, NOTREELOG);
513                         break;
514                 case Opt_flushoncommit:
515                         printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
516                         btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
517                         break;
518                 case Opt_ratio:
519                         intarg = 0;
520                         match_int(&args[0], &intarg);
521                         if (intarg) {
522                                 info->metadata_ratio = intarg;
523                                 printk(KERN_INFO "btrfs: metadata ratio %d\n",
524                                        info->metadata_ratio);
525                         }
526                         break;
527                 case Opt_discard:
528                         btrfs_set_opt(info->mount_opt, DISCARD);
529                         break;
530                 case Opt_space_cache:
531                         btrfs_set_opt(info->mount_opt, SPACE_CACHE);
532                         break;
533                 case Opt_no_space_cache:
534                         printk(KERN_INFO "btrfs: disabling disk space caching\n");
535                         btrfs_clear_opt(info->mount_opt, SPACE_CACHE);
536                         break;
537                 case Opt_inode_cache:
538                         printk(KERN_INFO "btrfs: enabling inode map caching\n");
539                         btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE);
540                         break;
541                 case Opt_clear_cache:
542                         printk(KERN_INFO "btrfs: force clearing of disk cache\n");
543                         btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
544                         break;
545                 case Opt_user_subvol_rm_allowed:
546                         btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
547                         break;
548                 case Opt_enospc_debug:
549                         btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
550                         break;
551                 case Opt_defrag:
552                         printk(KERN_INFO "btrfs: enabling auto defrag");
553                         btrfs_set_opt(info->mount_opt, AUTO_DEFRAG);
554                         break;
555                 case Opt_recovery:
556                         printk(KERN_INFO "btrfs: enabling auto recovery");
557                         btrfs_set_opt(info->mount_opt, RECOVERY);
558                         break;
559                 case Opt_skip_balance:
560                         btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
561                         break;
562 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
563                 case Opt_check_integrity_including_extent_data:
564                         printk(KERN_INFO "btrfs: enabling check integrity"
565                                " including extent data\n");
566                         btrfs_set_opt(info->mount_opt,
567                                       CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
568                         btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
569                         break;
570                 case Opt_check_integrity:
571                         printk(KERN_INFO "btrfs: enabling check integrity\n");
572                         btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
573                         break;
574                 case Opt_check_integrity_print_mask:
575                         intarg = 0;
576                         match_int(&args[0], &intarg);
577                         if (intarg) {
578                                 info->check_integrity_print_mask = intarg;
579                                 printk(KERN_INFO "btrfs:"
580                                        " check_integrity_print_mask 0x%x\n",
581                                        info->check_integrity_print_mask);
582                         }
583                         break;
584 #else
585                 case Opt_check_integrity_including_extent_data:
586                 case Opt_check_integrity:
587                 case Opt_check_integrity_print_mask:
588                         printk(KERN_ERR "btrfs: support for check_integrity*"
589                                " not compiled in!\n");
590                         ret = -EINVAL;
591                         goto out;
592 #endif
593                 case Opt_fatal_errors:
594                         if (strcmp(args[0].from, "panic") == 0)
595                                 btrfs_set_opt(info->mount_opt,
596                                               PANIC_ON_FATAL_ERROR);
597                         else if (strcmp(args[0].from, "bug") == 0)
598                                 btrfs_clear_opt(info->mount_opt,
599                                               PANIC_ON_FATAL_ERROR);
600                         else {
601                                 ret = -EINVAL;
602                                 goto out;
603                         }
604                         break;
605                 case Opt_err:
606                         printk(KERN_INFO "btrfs: unrecognized mount option "
607                                "'%s'\n", p);
608                         ret = -EINVAL;
609                         goto out;
610                 default:
611                         break;
612                 }
613         }
614 out:
615         if (!ret && btrfs_test_opt(root, SPACE_CACHE))
616                 printk(KERN_INFO "btrfs: disk space caching is enabled\n");
617         kfree(orig);
618         return ret;
619 }
620
621 /*
622  * Parse mount options that are required early in the mount process.
623  *
624  * All other options will be parsed on much later in the mount process and
625  * only when we need to allocate a new super block.
626  */
627 static int btrfs_parse_early_options(const char *options, fmode_t flags,
628                 void *holder, char **subvol_name, u64 *subvol_objectid,
629                 u64 *subvol_rootid, struct btrfs_fs_devices **fs_devices)
630 {
631         substring_t args[MAX_OPT_ARGS];
632         char *device_name, *opts, *orig, *p;
633         int error = 0;
634         int intarg;
635
636         if (!options)
637                 return 0;
638
639         /*
640          * strsep changes the string, duplicate it because parse_options
641          * gets called twice
642          */
643         opts = kstrdup(options, GFP_KERNEL);
644         if (!opts)
645                 return -ENOMEM;
646         orig = opts;
647
648         while ((p = strsep(&opts, ",")) != NULL) {
649                 int token;
650                 if (!*p)
651                         continue;
652
653                 token = match_token(p, tokens, args);
654                 switch (token) {
655                 case Opt_subvol:
656                         kfree(*subvol_name);
657                         *subvol_name = match_strdup(&args[0]);
658                         break;
659                 case Opt_subvolid:
660                         intarg = 0;
661                         error = match_int(&args[0], &intarg);
662                         if (!error) {
663                                 /* we want the original fs_tree */
664                                 if (!intarg)
665                                         *subvol_objectid =
666                                                 BTRFS_FS_TREE_OBJECTID;
667                                 else
668                                         *subvol_objectid = intarg;
669                         }
670                         break;
671                 case Opt_subvolrootid:
672                         intarg = 0;
673                         error = match_int(&args[0], &intarg);
674                         if (!error) {
675                                 /* we want the original fs_tree */
676                                 if (!intarg)
677                                         *subvol_rootid =
678                                                 BTRFS_FS_TREE_OBJECTID;
679                                 else
680                                         *subvol_rootid = intarg;
681                         }
682                         break;
683                 case Opt_device:
684                         device_name = match_strdup(&args[0]);
685                         if (!device_name) {
686                                 error = -ENOMEM;
687                                 goto out;
688                         }
689                         error = btrfs_scan_one_device(device_name,
690                                         flags, holder, fs_devices);
691                         kfree(device_name);
692                         if (error)
693                                 goto out;
694                         break;
695                 default:
696                         break;
697                 }
698         }
699
700 out:
701         kfree(orig);
702         return error;
703 }
704
705 static struct dentry *get_default_root(struct super_block *sb,
706                                        u64 subvol_objectid)
707 {
708         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
709         struct btrfs_root *root = fs_info->tree_root;
710         struct btrfs_root *new_root;
711         struct btrfs_dir_item *di;
712         struct btrfs_path *path;
713         struct btrfs_key location;
714         struct inode *inode;
715         u64 dir_id;
716         int new = 0;
717
718         /*
719          * We have a specific subvol we want to mount, just setup location and
720          * go look up the root.
721          */
722         if (subvol_objectid) {
723                 location.objectid = subvol_objectid;
724                 location.type = BTRFS_ROOT_ITEM_KEY;
725                 location.offset = (u64)-1;
726                 goto find_root;
727         }
728
729         path = btrfs_alloc_path();
730         if (!path)
731                 return ERR_PTR(-ENOMEM);
732         path->leave_spinning = 1;
733
734         /*
735          * Find the "default" dir item which points to the root item that we
736          * will mount by default if we haven't been given a specific subvolume
737          * to mount.
738          */
739         dir_id = btrfs_super_root_dir(fs_info->super_copy);
740         di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
741         if (IS_ERR(di)) {
742                 btrfs_free_path(path);
743                 return ERR_CAST(di);
744         }
745         if (!di) {
746                 /*
747                  * Ok the default dir item isn't there.  This is weird since
748                  * it's always been there, but don't freak out, just try and
749                  * mount to root most subvolume.
750                  */
751                 btrfs_free_path(path);
752                 dir_id = BTRFS_FIRST_FREE_OBJECTID;
753                 new_root = fs_info->fs_root;
754                 goto setup_root;
755         }
756
757         btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
758         btrfs_free_path(path);
759
760 find_root:
761         new_root = btrfs_read_fs_root_no_name(fs_info, &location);
762         if (IS_ERR(new_root))
763                 return ERR_CAST(new_root);
764
765         if (btrfs_root_refs(&new_root->root_item) == 0)
766                 return ERR_PTR(-ENOENT);
767
768         dir_id = btrfs_root_dirid(&new_root->root_item);
769 setup_root:
770         location.objectid = dir_id;
771         location.type = BTRFS_INODE_ITEM_KEY;
772         location.offset = 0;
773
774         inode = btrfs_iget(sb, &location, new_root, &new);
775         if (IS_ERR(inode))
776                 return ERR_CAST(inode);
777
778         /*
779          * If we're just mounting the root most subvol put the inode and return
780          * a reference to the dentry.  We will have already gotten a reference
781          * to the inode in btrfs_fill_super so we're good to go.
782          */
783         if (!new && sb->s_root->d_inode == inode) {
784                 iput(inode);
785                 return dget(sb->s_root);
786         }
787
788         return d_obtain_alias(inode);
789 }
790
791 static int btrfs_fill_super(struct super_block *sb,
792                             struct btrfs_fs_devices *fs_devices,
793                             void *data, int silent)
794 {
795         struct inode *inode;
796         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
797         struct btrfs_key key;
798         int err;
799
800         sb->s_maxbytes = MAX_LFS_FILESIZE;
801         sb->s_magic = BTRFS_SUPER_MAGIC;
802         sb->s_op = &btrfs_super_ops;
803         sb->s_d_op = &btrfs_dentry_operations;
804         sb->s_export_op = &btrfs_export_ops;
805         sb->s_xattr = btrfs_xattr_handlers;
806         sb->s_time_gran = 1;
807 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
808         sb->s_flags |= MS_POSIXACL;
809 #endif
810         sb->s_flags |= MS_I_VERSION;
811         err = open_ctree(sb, fs_devices, (char *)data);
812         if (err) {
813                 printk("btrfs: open_ctree failed\n");
814                 return err;
815         }
816
817         key.objectid = BTRFS_FIRST_FREE_OBJECTID;
818         key.type = BTRFS_INODE_ITEM_KEY;
819         key.offset = 0;
820         inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
821         if (IS_ERR(inode)) {
822                 err = PTR_ERR(inode);
823                 goto fail_close;
824         }
825
826         sb->s_root = d_make_root(inode);
827         if (!sb->s_root) {
828                 err = -ENOMEM;
829                 goto fail_close;
830         }
831
832         save_mount_options(sb, data);
833         cleancache_init_fs(sb);
834         sb->s_flags |= MS_ACTIVE;
835         return 0;
836
837 fail_close:
838         close_ctree(fs_info->tree_root);
839         return err;
840 }
841
842 int btrfs_sync_fs(struct super_block *sb, int wait)
843 {
844         struct btrfs_trans_handle *trans;
845         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
846         struct btrfs_root *root = fs_info->tree_root;
847
848         trace_btrfs_sync_fs(wait);
849
850         if (!wait) {
851                 filemap_flush(fs_info->btree_inode->i_mapping);
852                 return 0;
853         }
854
855         btrfs_wait_ordered_extents(root, 0);
856
857         trans = btrfs_join_transaction_freeze(root);
858         if (IS_ERR(trans)) {
859                 /* Frozen, don't bother */
860                 if (PTR_ERR(trans) == -EPERM)
861                         return 0;
862                 return PTR_ERR(trans);
863         }
864         return btrfs_commit_transaction(trans, root);
865 }
866
867 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
868 {
869         struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
870         struct btrfs_root *root = info->tree_root;
871         char *compress_type;
872
873         if (btrfs_test_opt(root, DEGRADED))
874                 seq_puts(seq, ",degraded");
875         if (btrfs_test_opt(root, NODATASUM))
876                 seq_puts(seq, ",nodatasum");
877         if (btrfs_test_opt(root, NODATACOW))
878                 seq_puts(seq, ",nodatacow");
879         if (btrfs_test_opt(root, NOBARRIER))
880                 seq_puts(seq, ",nobarrier");
881         if (info->max_inline != 8192 * 1024)
882                 seq_printf(seq, ",max_inline=%llu",
883                            (unsigned long long)info->max_inline);
884         if (info->alloc_start != 0)
885                 seq_printf(seq, ",alloc_start=%llu",
886                            (unsigned long long)info->alloc_start);
887         if (info->thread_pool_size !=  min_t(unsigned long,
888                                              num_online_cpus() + 2, 8))
889                 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
890         if (btrfs_test_opt(root, COMPRESS)) {
891                 if (info->compress_type == BTRFS_COMPRESS_ZLIB)
892                         compress_type = "zlib";
893                 else
894                         compress_type = "lzo";
895                 if (btrfs_test_opt(root, FORCE_COMPRESS))
896                         seq_printf(seq, ",compress-force=%s", compress_type);
897                 else
898                         seq_printf(seq, ",compress=%s", compress_type);
899         }
900         if (btrfs_test_opt(root, NOSSD))
901                 seq_puts(seq, ",nossd");
902         if (btrfs_test_opt(root, SSD_SPREAD))
903                 seq_puts(seq, ",ssd_spread");
904         else if (btrfs_test_opt(root, SSD))
905                 seq_puts(seq, ",ssd");
906         if (btrfs_test_opt(root, NOTREELOG))
907                 seq_puts(seq, ",notreelog");
908         if (btrfs_test_opt(root, FLUSHONCOMMIT))
909                 seq_puts(seq, ",flushoncommit");
910         if (btrfs_test_opt(root, DISCARD))
911                 seq_puts(seq, ",discard");
912         if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
913                 seq_puts(seq, ",noacl");
914         if (btrfs_test_opt(root, SPACE_CACHE))
915                 seq_puts(seq, ",space_cache");
916         else
917                 seq_puts(seq, ",nospace_cache");
918         if (btrfs_test_opt(root, CLEAR_CACHE))
919                 seq_puts(seq, ",clear_cache");
920         if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
921                 seq_puts(seq, ",user_subvol_rm_allowed");
922         if (btrfs_test_opt(root, ENOSPC_DEBUG))
923                 seq_puts(seq, ",enospc_debug");
924         if (btrfs_test_opt(root, AUTO_DEFRAG))
925                 seq_puts(seq, ",autodefrag");
926         if (btrfs_test_opt(root, INODE_MAP_CACHE))
927                 seq_puts(seq, ",inode_cache");
928         if (btrfs_test_opt(root, SKIP_BALANCE))
929                 seq_puts(seq, ",skip_balance");
930         if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR))
931                 seq_puts(seq, ",fatal_errors=panic");
932         return 0;
933 }
934
935 static int btrfs_test_super(struct super_block *s, void *data)
936 {
937         struct btrfs_fs_info *p = data;
938         struct btrfs_fs_info *fs_info = btrfs_sb(s);
939
940         return fs_info->fs_devices == p->fs_devices;
941 }
942
943 static int btrfs_set_super(struct super_block *s, void *data)
944 {
945         int err = set_anon_super(s, data);
946         if (!err)
947                 s->s_fs_info = data;
948         return err;
949 }
950
951 /*
952  * subvolumes are identified by ino 256
953  */
954 static inline int is_subvolume_inode(struct inode *inode)
955 {
956         if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
957                 return 1;
958         return 0;
959 }
960
961 /*
962  * This will strip out the subvol=%s argument for an argument string and add
963  * subvolid=0 to make sure we get the actual tree root for path walking to the
964  * subvol we want.
965  */
966 static char *setup_root_args(char *args)
967 {
968         unsigned len = strlen(args) + 2 + 1;
969         char *src, *dst, *buf;
970
971         /*
972          * We need the same args as before, but with this substitution:
973          * s!subvol=[^,]+!subvolid=0!
974          *
975          * Since the replacement string is up to 2 bytes longer than the
976          * original, allocate strlen(args) + 2 + 1 bytes.
977          */
978
979         src = strstr(args, "subvol=");
980         /* This shouldn't happen, but just in case.. */
981         if (!src)
982                 return NULL;
983
984         buf = dst = kmalloc(len, GFP_NOFS);
985         if (!buf)
986                 return NULL;
987
988         /*
989          * If the subvol= arg is not at the start of the string,
990          * copy whatever precedes it into buf.
991          */
992         if (src != args) {
993                 *src++ = '\0';
994                 strcpy(buf, args);
995                 dst += strlen(args);
996         }
997
998         strcpy(dst, "subvolid=0");
999         dst += strlen("subvolid=0");
1000
1001         /*
1002          * If there is a "," after the original subvol=... string,
1003          * copy that suffix into our buffer.  Otherwise, we're done.
1004          */
1005         src = strchr(src, ',');
1006         if (src)
1007                 strcpy(dst, src);
1008
1009         return buf;
1010 }
1011
1012 static struct dentry *mount_subvol(const char *subvol_name, int flags,
1013                                    const char *device_name, char *data)
1014 {
1015         struct dentry *root;
1016         struct vfsmount *mnt;
1017         char *newargs;
1018
1019         newargs = setup_root_args(data);
1020         if (!newargs)
1021                 return ERR_PTR(-ENOMEM);
1022         mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
1023                              newargs);
1024         kfree(newargs);
1025         if (IS_ERR(mnt))
1026                 return ERR_CAST(mnt);
1027
1028         root = mount_subtree(mnt, subvol_name);
1029
1030         if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) {
1031                 struct super_block *s = root->d_sb;
1032                 dput(root);
1033                 root = ERR_PTR(-EINVAL);
1034                 deactivate_locked_super(s);
1035                 printk(KERN_ERR "btrfs: '%s' is not a valid subvolume\n",
1036                                 subvol_name);
1037         }
1038
1039         return root;
1040 }
1041
1042 /*
1043  * Find a superblock for the given device / mount point.
1044  *
1045  * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
1046  *        for multiple device setup.  Make sure to keep it in sync.
1047  */
1048 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1049                 const char *device_name, void *data)
1050 {
1051         struct block_device *bdev = NULL;
1052         struct super_block *s;
1053         struct dentry *root;
1054         struct btrfs_fs_devices *fs_devices = NULL;
1055         struct btrfs_fs_info *fs_info = NULL;
1056         fmode_t mode = FMODE_READ;
1057         char *subvol_name = NULL;
1058         u64 subvol_objectid = 0;
1059         u64 subvol_rootid = 0;
1060         int error = 0;
1061
1062         if (!(flags & MS_RDONLY))
1063                 mode |= FMODE_WRITE;
1064
1065         error = btrfs_parse_early_options(data, mode, fs_type,
1066                                           &subvol_name, &subvol_objectid,
1067                                           &subvol_rootid, &fs_devices);
1068         if (error) {
1069                 kfree(subvol_name);
1070                 return ERR_PTR(error);
1071         }
1072
1073         if (subvol_name) {
1074                 root = mount_subvol(subvol_name, flags, device_name, data);
1075                 kfree(subvol_name);
1076                 return root;
1077         }
1078
1079         error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1080         if (error)
1081                 return ERR_PTR(error);
1082
1083         /*
1084          * Setup a dummy root and fs_info for test/set super.  This is because
1085          * we don't actually fill this stuff out until open_ctree, but we need
1086          * it for searching for existing supers, so this lets us do that and
1087          * then open_ctree will properly initialize everything later.
1088          */
1089         fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1090         if (!fs_info)
1091                 return ERR_PTR(-ENOMEM);
1092
1093         fs_info->fs_devices = fs_devices;
1094
1095         fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1096         fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1097         if (!fs_info->super_copy || !fs_info->super_for_commit) {
1098                 error = -ENOMEM;
1099                 goto error_fs_info;
1100         }
1101
1102         error = btrfs_open_devices(fs_devices, mode, fs_type);
1103         if (error)
1104                 goto error_fs_info;
1105
1106         if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1107                 error = -EACCES;
1108                 goto error_close_devices;
1109         }
1110
1111         bdev = fs_devices->latest_bdev;
1112         s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC,
1113                  fs_info);
1114         if (IS_ERR(s)) {
1115                 error = PTR_ERR(s);
1116                 goto error_close_devices;
1117         }
1118
1119         if (s->s_root) {
1120                 btrfs_close_devices(fs_devices);
1121                 free_fs_info(fs_info);
1122                 if ((flags ^ s->s_flags) & MS_RDONLY)
1123                         error = -EBUSY;
1124         } else {
1125                 char b[BDEVNAME_SIZE];
1126
1127                 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1128                 btrfs_sb(s)->bdev_holder = fs_type;
1129                 error = btrfs_fill_super(s, fs_devices, data,
1130                                          flags & MS_SILENT ? 1 : 0);
1131         }
1132
1133         root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error);
1134         if (IS_ERR(root))
1135                 deactivate_locked_super(s);
1136
1137         return root;
1138
1139 error_close_devices:
1140         btrfs_close_devices(fs_devices);
1141 error_fs_info:
1142         free_fs_info(fs_info);
1143         return ERR_PTR(error);
1144 }
1145
1146 static void btrfs_set_max_workers(struct btrfs_workers *workers, int new_limit)
1147 {
1148         spin_lock_irq(&workers->lock);
1149         workers->max_workers = new_limit;
1150         spin_unlock_irq(&workers->lock);
1151 }
1152
1153 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1154                                      int new_pool_size, int old_pool_size)
1155 {
1156         if (new_pool_size == old_pool_size)
1157                 return;
1158
1159         fs_info->thread_pool_size = new_pool_size;
1160
1161         printk(KERN_INFO "btrfs: resize thread pool %d -> %d\n",
1162                old_pool_size, new_pool_size);
1163
1164         btrfs_set_max_workers(&fs_info->generic_worker, new_pool_size);
1165         btrfs_set_max_workers(&fs_info->workers, new_pool_size);
1166         btrfs_set_max_workers(&fs_info->delalloc_workers, new_pool_size);
1167         btrfs_set_max_workers(&fs_info->submit_workers, new_pool_size);
1168         btrfs_set_max_workers(&fs_info->caching_workers, new_pool_size);
1169         btrfs_set_max_workers(&fs_info->fixup_workers, new_pool_size);
1170         btrfs_set_max_workers(&fs_info->endio_workers, new_pool_size);
1171         btrfs_set_max_workers(&fs_info->endio_meta_workers, new_pool_size);
1172         btrfs_set_max_workers(&fs_info->endio_meta_write_workers, new_pool_size);
1173         btrfs_set_max_workers(&fs_info->endio_write_workers, new_pool_size);
1174         btrfs_set_max_workers(&fs_info->endio_freespace_worker, new_pool_size);
1175         btrfs_set_max_workers(&fs_info->delayed_workers, new_pool_size);
1176         btrfs_set_max_workers(&fs_info->readahead_workers, new_pool_size);
1177         btrfs_set_max_workers(&fs_info->scrub_workers, new_pool_size);
1178 }
1179
1180 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1181 {
1182         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1183         struct btrfs_root *root = fs_info->tree_root;
1184         unsigned old_flags = sb->s_flags;
1185         unsigned long old_opts = fs_info->mount_opt;
1186         unsigned long old_compress_type = fs_info->compress_type;
1187         u64 old_max_inline = fs_info->max_inline;
1188         u64 old_alloc_start = fs_info->alloc_start;
1189         int old_thread_pool_size = fs_info->thread_pool_size;
1190         unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1191         int ret;
1192
1193         ret = btrfs_parse_options(root, data);
1194         if (ret) {
1195                 ret = -EINVAL;
1196                 goto restore;
1197         }
1198
1199         btrfs_resize_thread_pool(fs_info,
1200                 fs_info->thread_pool_size, old_thread_pool_size);
1201
1202         if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1203                 return 0;
1204
1205         if (*flags & MS_RDONLY) {
1206                 sb->s_flags |= MS_RDONLY;
1207
1208                 ret = btrfs_commit_super(root);
1209                 if (ret)
1210                         goto restore;
1211         } else {
1212                 if (fs_info->fs_devices->rw_devices == 0) {
1213                         ret = -EACCES;
1214                         goto restore;
1215                 }
1216
1217                 if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1218                         ret = -EINVAL;
1219                         goto restore;
1220                 }
1221
1222                 ret = btrfs_cleanup_fs_roots(fs_info);
1223                 if (ret)
1224                         goto restore;
1225
1226                 /* recover relocation */
1227                 ret = btrfs_recover_relocation(root);
1228                 if (ret)
1229                         goto restore;
1230
1231                 ret = btrfs_resume_balance_async(fs_info);
1232                 if (ret)
1233                         goto restore;
1234
1235                 sb->s_flags &= ~MS_RDONLY;
1236         }
1237
1238         return 0;
1239
1240 restore:
1241         /* We've hit an error - don't reset MS_RDONLY */
1242         if (sb->s_flags & MS_RDONLY)
1243                 old_flags |= MS_RDONLY;
1244         sb->s_flags = old_flags;
1245         fs_info->mount_opt = old_opts;
1246         fs_info->compress_type = old_compress_type;
1247         fs_info->max_inline = old_max_inline;
1248         fs_info->alloc_start = old_alloc_start;
1249         btrfs_resize_thread_pool(fs_info,
1250                 old_thread_pool_size, fs_info->thread_pool_size);
1251         fs_info->metadata_ratio = old_metadata_ratio;
1252         return ret;
1253 }
1254
1255 /* Used to sort the devices by max_avail(descending sort) */
1256 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1257                                        const void *dev_info2)
1258 {
1259         if (((struct btrfs_device_info *)dev_info1)->max_avail >
1260             ((struct btrfs_device_info *)dev_info2)->max_avail)
1261                 return -1;
1262         else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1263                  ((struct btrfs_device_info *)dev_info2)->max_avail)
1264                 return 1;
1265         else
1266         return 0;
1267 }
1268
1269 /*
1270  * sort the devices by max_avail, in which max free extent size of each device
1271  * is stored.(Descending Sort)
1272  */
1273 static inline void btrfs_descending_sort_devices(
1274                                         struct btrfs_device_info *devices,
1275                                         size_t nr_devices)
1276 {
1277         sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1278              btrfs_cmp_device_free_bytes, NULL);
1279 }
1280
1281 /*
1282  * The helper to calc the free space on the devices that can be used to store
1283  * file data.
1284  */
1285 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1286 {
1287         struct btrfs_fs_info *fs_info = root->fs_info;
1288         struct btrfs_device_info *devices_info;
1289         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1290         struct btrfs_device *device;
1291         u64 skip_space;
1292         u64 type;
1293         u64 avail_space;
1294         u64 used_space;
1295         u64 min_stripe_size;
1296         int min_stripes = 1, num_stripes = 1;
1297         int i = 0, nr_devices;
1298         int ret;
1299
1300         nr_devices = fs_info->fs_devices->open_devices;
1301         BUG_ON(!nr_devices);
1302
1303         devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
1304                                GFP_NOFS);
1305         if (!devices_info)
1306                 return -ENOMEM;
1307
1308         /* calc min stripe number for data space alloction */
1309         type = btrfs_get_alloc_profile(root, 1);
1310         if (type & BTRFS_BLOCK_GROUP_RAID0) {
1311                 min_stripes = 2;
1312                 num_stripes = nr_devices;
1313         } else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1314                 min_stripes = 2;
1315                 num_stripes = 2;
1316         } else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1317                 min_stripes = 4;
1318                 num_stripes = 4;
1319         }
1320
1321         if (type & BTRFS_BLOCK_GROUP_DUP)
1322                 min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1323         else
1324                 min_stripe_size = BTRFS_STRIPE_LEN;
1325
1326         list_for_each_entry(device, &fs_devices->devices, dev_list) {
1327                 if (!device->in_fs_metadata || !device->bdev)
1328                         continue;
1329
1330                 avail_space = device->total_bytes - device->bytes_used;
1331
1332                 /* align with stripe_len */
1333                 do_div(avail_space, BTRFS_STRIPE_LEN);
1334                 avail_space *= BTRFS_STRIPE_LEN;
1335
1336                 /*
1337                  * In order to avoid overwritting the superblock on the drive,
1338                  * btrfs starts at an offset of at least 1MB when doing chunk
1339                  * allocation.
1340                  */
1341                 skip_space = 1024 * 1024;
1342
1343                 /* user can set the offset in fs_info->alloc_start. */
1344                 if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1345                     device->total_bytes)
1346                         skip_space = max(fs_info->alloc_start, skip_space);
1347
1348                 /*
1349                  * btrfs can not use the free space in [0, skip_space - 1],
1350                  * we must subtract it from the total. In order to implement
1351                  * it, we account the used space in this range first.
1352                  */
1353                 ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1354                                                      &used_space);
1355                 if (ret) {
1356                         kfree(devices_info);
1357                         return ret;
1358                 }
1359
1360                 /* calc the free space in [0, skip_space - 1] */
1361                 skip_space -= used_space;
1362
1363                 /*
1364                  * we can use the free space in [0, skip_space - 1], subtract
1365                  * it from the total.
1366                  */
1367                 if (avail_space && avail_space >= skip_space)
1368                         avail_space -= skip_space;
1369                 else
1370                         avail_space = 0;
1371
1372                 if (avail_space < min_stripe_size)
1373                         continue;
1374
1375                 devices_info[i].dev = device;
1376                 devices_info[i].max_avail = avail_space;
1377
1378                 i++;
1379         }
1380
1381         nr_devices = i;
1382
1383         btrfs_descending_sort_devices(devices_info, nr_devices);
1384
1385         i = nr_devices - 1;
1386         avail_space = 0;
1387         while (nr_devices >= min_stripes) {
1388                 if (num_stripes > nr_devices)
1389                         num_stripes = nr_devices;
1390
1391                 if (devices_info[i].max_avail >= min_stripe_size) {
1392                         int j;
1393                         u64 alloc_size;
1394
1395                         avail_space += devices_info[i].max_avail * num_stripes;
1396                         alloc_size = devices_info[i].max_avail;
1397                         for (j = i + 1 - num_stripes; j <= i; j++)
1398                                 devices_info[j].max_avail -= alloc_size;
1399                 }
1400                 i--;
1401                 nr_devices--;
1402         }
1403
1404         kfree(devices_info);
1405         *free_bytes = avail_space;
1406         return 0;
1407 }
1408
1409 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1410 {
1411         struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1412         struct btrfs_super_block *disk_super = fs_info->super_copy;
1413         struct list_head *head = &fs_info->space_info;
1414         struct btrfs_space_info *found;
1415         u64 total_used = 0;
1416         u64 total_free_data = 0;
1417         int bits = dentry->d_sb->s_blocksize_bits;
1418         __be32 *fsid = (__be32 *)fs_info->fsid;
1419         int ret;
1420
1421         /* holding chunk_muext to avoid allocating new chunks */
1422         mutex_lock(&fs_info->chunk_mutex);
1423         rcu_read_lock();
1424         list_for_each_entry_rcu(found, head, list) {
1425                 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1426                         total_free_data += found->disk_total - found->disk_used;
1427                         total_free_data -=
1428                                 btrfs_account_ro_block_groups_free_space(found);
1429                 }
1430
1431                 total_used += found->disk_used;
1432         }
1433         rcu_read_unlock();
1434
1435         buf->f_namelen = BTRFS_NAME_LEN;
1436         buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1437         buf->f_bfree = buf->f_blocks - (total_used >> bits);
1438         buf->f_bsize = dentry->d_sb->s_blocksize;
1439         buf->f_type = BTRFS_SUPER_MAGIC;
1440         buf->f_bavail = total_free_data;
1441         ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
1442         if (ret) {
1443                 mutex_unlock(&fs_info->chunk_mutex);
1444                 return ret;
1445         }
1446         buf->f_bavail += total_free_data;
1447         buf->f_bavail = buf->f_bavail >> bits;
1448         mutex_unlock(&fs_info->chunk_mutex);
1449
1450         /* We treat it as constant endianness (it doesn't matter _which_)
1451            because we want the fsid to come out the same whether mounted
1452            on a big-endian or little-endian host */
1453         buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1454         buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1455         /* Mask in the root object ID too, to disambiguate subvols */
1456         buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1457         buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1458
1459         return 0;
1460 }
1461
1462 static void btrfs_kill_super(struct super_block *sb)
1463 {
1464         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1465         kill_anon_super(sb);
1466         free_fs_info(fs_info);
1467 }
1468
1469 static struct file_system_type btrfs_fs_type = {
1470         .owner          = THIS_MODULE,
1471         .name           = "btrfs",
1472         .mount          = btrfs_mount,
1473         .kill_sb        = btrfs_kill_super,
1474         .fs_flags       = FS_REQUIRES_DEV,
1475 };
1476
1477 /*
1478  * used by btrfsctl to scan devices when no FS is mounted
1479  */
1480 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1481                                 unsigned long arg)
1482 {
1483         struct btrfs_ioctl_vol_args *vol;
1484         struct btrfs_fs_devices *fs_devices;
1485         int ret = -ENOTTY;
1486
1487         if (!capable(CAP_SYS_ADMIN))
1488                 return -EPERM;
1489
1490         vol = memdup_user((void __user *)arg, sizeof(*vol));
1491         if (IS_ERR(vol))
1492                 return PTR_ERR(vol);
1493
1494         switch (cmd) {
1495         case BTRFS_IOC_SCAN_DEV:
1496                 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1497                                             &btrfs_fs_type, &fs_devices);
1498                 break;
1499         case BTRFS_IOC_DEVICES_READY:
1500                 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1501                                             &btrfs_fs_type, &fs_devices);
1502                 if (ret)
1503                         break;
1504                 ret = !(fs_devices->num_devices == fs_devices->total_devices);
1505                 break;
1506         }
1507
1508         kfree(vol);
1509         return ret;
1510 }
1511
1512 static int btrfs_freeze(struct super_block *sb)
1513 {
1514         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1515         mutex_lock(&fs_info->transaction_kthread_mutex);
1516         mutex_lock(&fs_info->cleaner_mutex);
1517         return 0;
1518 }
1519
1520 static int btrfs_unfreeze(struct super_block *sb)
1521 {
1522         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1523         mutex_unlock(&fs_info->cleaner_mutex);
1524         mutex_unlock(&fs_info->transaction_kthread_mutex);
1525         return 0;
1526 }
1527
1528 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
1529 {
1530         struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
1531         struct btrfs_fs_devices *cur_devices;
1532         struct btrfs_device *dev, *first_dev = NULL;
1533         struct list_head *head;
1534         struct rcu_string *name;
1535
1536         mutex_lock(&fs_info->fs_devices->device_list_mutex);
1537         cur_devices = fs_info->fs_devices;
1538         while (cur_devices) {
1539                 head = &cur_devices->devices;
1540                 list_for_each_entry(dev, head, dev_list) {
1541                         if (dev->missing)
1542                                 continue;
1543                         if (!first_dev || dev->devid < first_dev->devid)
1544                                 first_dev = dev;
1545                 }
1546                 cur_devices = cur_devices->seed;
1547         }
1548
1549         if (first_dev) {
1550                 rcu_read_lock();
1551                 name = rcu_dereference(first_dev->name);
1552                 seq_escape(m, name->str, " \t\n\\");
1553                 rcu_read_unlock();
1554         } else {
1555                 WARN_ON(1);
1556         }
1557         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1558         return 0;
1559 }
1560
1561 static const struct super_operations btrfs_super_ops = {
1562         .drop_inode     = btrfs_drop_inode,
1563         .evict_inode    = btrfs_evict_inode,
1564         .put_super      = btrfs_put_super,
1565         .sync_fs        = btrfs_sync_fs,
1566         .show_options   = btrfs_show_options,
1567         .show_devname   = btrfs_show_devname,
1568         .write_inode    = btrfs_write_inode,
1569         .alloc_inode    = btrfs_alloc_inode,
1570         .destroy_inode  = btrfs_destroy_inode,
1571         .statfs         = btrfs_statfs,
1572         .remount_fs     = btrfs_remount,
1573         .freeze_fs      = btrfs_freeze,
1574         .unfreeze_fs    = btrfs_unfreeze,
1575 };
1576
1577 static const struct file_operations btrfs_ctl_fops = {
1578         .unlocked_ioctl  = btrfs_control_ioctl,
1579         .compat_ioctl = btrfs_control_ioctl,
1580         .owner   = THIS_MODULE,
1581         .llseek = noop_llseek,
1582 };
1583
1584 static struct miscdevice btrfs_misc = {
1585         .minor          = BTRFS_MINOR,
1586         .name           = "btrfs-control",
1587         .fops           = &btrfs_ctl_fops
1588 };
1589
1590 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1591 MODULE_ALIAS("devname:btrfs-control");
1592
1593 static int btrfs_interface_init(void)
1594 {
1595         return misc_register(&btrfs_misc);
1596 }
1597
1598 static void btrfs_interface_exit(void)
1599 {
1600         if (misc_deregister(&btrfs_misc) < 0)
1601                 printk(KERN_INFO "misc_deregister failed for control device");
1602 }
1603
1604 static int __init init_btrfs_fs(void)
1605 {
1606         int err;
1607
1608         err = btrfs_init_sysfs();
1609         if (err)
1610                 return err;
1611
1612         btrfs_init_compress();
1613
1614         err = btrfs_init_cachep();
1615         if (err)
1616                 goto free_compress;
1617
1618         err = extent_io_init();
1619         if (err)
1620                 goto free_cachep;
1621
1622         err = extent_map_init();
1623         if (err)
1624                 goto free_extent_io;
1625
1626         err = ordered_data_init();
1627         if (err)
1628                 goto free_extent_map;
1629
1630         err = btrfs_delayed_inode_init();
1631         if (err)
1632                 goto free_ordered_data;
1633
1634         err = btrfs_interface_init();
1635         if (err)
1636                 goto free_delayed_inode;
1637
1638         err = register_filesystem(&btrfs_fs_type);
1639         if (err)
1640                 goto unregister_ioctl;
1641
1642         btrfs_init_lockdep();
1643
1644         printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION);
1645         return 0;
1646
1647 unregister_ioctl:
1648         btrfs_interface_exit();
1649 free_delayed_inode:
1650         btrfs_delayed_inode_exit();
1651 free_ordered_data:
1652         ordered_data_exit();
1653 free_extent_map:
1654         extent_map_exit();
1655 free_extent_io:
1656         extent_io_exit();
1657 free_cachep:
1658         btrfs_destroy_cachep();
1659 free_compress:
1660         btrfs_exit_compress();
1661         btrfs_exit_sysfs();
1662         return err;
1663 }
1664
1665 static void __exit exit_btrfs_fs(void)
1666 {
1667         btrfs_destroy_cachep();
1668         btrfs_delayed_inode_exit();
1669         ordered_data_exit();
1670         extent_map_exit();
1671         extent_io_exit();
1672         btrfs_interface_exit();
1673         unregister_filesystem(&btrfs_fs_type);
1674         btrfs_exit_sysfs();
1675         btrfs_cleanup_fs_uuids();
1676         btrfs_exit_compress();
1677 }
1678
1679 module_init(init_btrfs_fs)
1680 module_exit(exit_btrfs_fs)
1681
1682 MODULE_LICENSE("GPL");