Merge tag 'rdma-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/roland...
[cascardo/linux.git] / fs / btrfs / super.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include <linux/btrfs.h>
45 #include "delayed-inode.h"
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "hash.h"
52 #include "props.h"
53 #include "xattr.h"
54 #include "volumes.h"
55 #include "export.h"
56 #include "compression.h"
57 #include "rcu-string.h"
58 #include "dev-replace.h"
59 #include "free-space-cache.h"
60 #include "backref.h"
61 #include "tests/btrfs-tests.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/btrfs.h>
65
66 static const struct super_operations btrfs_super_ops;
67 static struct file_system_type btrfs_fs_type;
68
69 static int btrfs_remount(struct super_block *sb, int *flags, char *data);
70
71 static const char *btrfs_decode_error(int errno)
72 {
73         char *errstr = "unknown";
74
75         switch (errno) {
76         case -EIO:
77                 errstr = "IO failure";
78                 break;
79         case -ENOMEM:
80                 errstr = "Out of memory";
81                 break;
82         case -EROFS:
83                 errstr = "Readonly filesystem";
84                 break;
85         case -EEXIST:
86                 errstr = "Object already exists";
87                 break;
88         case -ENOSPC:
89                 errstr = "No space left";
90                 break;
91         case -ENOENT:
92                 errstr = "No such entry";
93                 break;
94         }
95
96         return errstr;
97 }
98
99 static void save_error_info(struct btrfs_fs_info *fs_info)
100 {
101         /*
102          * today we only save the error info into ram.  Long term we'll
103          * also send it down to the disk
104          */
105         set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
106 }
107
108 /* btrfs handle error by forcing the filesystem readonly */
109 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
110 {
111         struct super_block *sb = fs_info->sb;
112
113         if (sb->s_flags & MS_RDONLY)
114                 return;
115
116         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
117                 sb->s_flags |= MS_RDONLY;
118                 btrfs_info(fs_info, "forced readonly");
119                 /*
120                  * Note that a running device replace operation is not
121                  * canceled here although there is no way to update
122                  * the progress. It would add the risk of a deadlock,
123                  * therefore the canceling is ommited. The only penalty
124                  * is that some I/O remains active until the procedure
125                  * completes. The next time when the filesystem is
126                  * mounted writeable again, the device replace
127                  * operation continues.
128                  */
129         }
130 }
131
132 #ifdef CONFIG_PRINTK
133 /*
134  * __btrfs_std_error decodes expected errors from the caller and
135  * invokes the approciate error response.
136  */
137 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
138                        unsigned int line, int errno, const char *fmt, ...)
139 {
140         struct super_block *sb = fs_info->sb;
141         const char *errstr;
142
143         /*
144          * Special case: if the error is EROFS, and we're already
145          * under MS_RDONLY, then it is safe here.
146          */
147         if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
148                 return;
149
150         errstr = btrfs_decode_error(errno);
151         if (fmt) {
152                 struct va_format vaf;
153                 va_list args;
154
155                 va_start(args, fmt);
156                 vaf.fmt = fmt;
157                 vaf.va = &args;
158
159                 printk(KERN_CRIT
160                         "BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
161                         sb->s_id, function, line, errno, errstr, &vaf);
162                 va_end(args);
163         } else {
164                 printk(KERN_CRIT "BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
165                         sb->s_id, function, line, errno, errstr);
166         }
167
168         /* Don't go through full error handling during mount */
169         save_error_info(fs_info);
170         if (sb->s_flags & MS_BORN)
171                 btrfs_handle_error(fs_info);
172 }
173
174 static const char * const logtypes[] = {
175         "emergency",
176         "alert",
177         "critical",
178         "error",
179         "warning",
180         "notice",
181         "info",
182         "debug",
183 };
184
185 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
186 {
187         struct super_block *sb = fs_info->sb;
188         char lvl[4];
189         struct va_format vaf;
190         va_list args;
191         const char *type = logtypes[4];
192         int kern_level;
193
194         va_start(args, fmt);
195
196         kern_level = printk_get_level(fmt);
197         if (kern_level) {
198                 size_t size = printk_skip_level(fmt) - fmt;
199                 memcpy(lvl, fmt,  size);
200                 lvl[size] = '\0';
201                 fmt += size;
202                 type = logtypes[kern_level - '0'];
203         } else
204                 *lvl = '\0';
205
206         vaf.fmt = fmt;
207         vaf.va = &args;
208
209         printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf);
210
211         va_end(args);
212 }
213
214 #else
215
216 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
217                        unsigned int line, int errno, const char *fmt, ...)
218 {
219         struct super_block *sb = fs_info->sb;
220
221         /*
222          * Special case: if the error is EROFS, and we're already
223          * under MS_RDONLY, then it is safe here.
224          */
225         if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
226                 return;
227
228         /* Don't go through full error handling during mount */
229         if (sb->s_flags & MS_BORN) {
230                 save_error_info(fs_info);
231                 btrfs_handle_error(fs_info);
232         }
233 }
234 #endif
235
236 /*
237  * We only mark the transaction aborted and then set the file system read-only.
238  * This will prevent new transactions from starting or trying to join this
239  * one.
240  *
241  * This means that error recovery at the call site is limited to freeing
242  * any local memory allocations and passing the error code up without
243  * further cleanup. The transaction should complete as it normally would
244  * in the call path but will return -EIO.
245  *
246  * We'll complete the cleanup in btrfs_end_transaction and
247  * btrfs_commit_transaction.
248  */
249 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
250                                struct btrfs_root *root, const char *function,
251                                unsigned int line, int errno)
252 {
253         /*
254          * Report first abort since mount
255          */
256         if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED,
257                                 &root->fs_info->fs_state)) {
258                 WARN(1, KERN_DEBUG "BTRFS: Transaction aborted (error %d)\n",
259                                 errno);
260         }
261         trans->aborted = errno;
262         /* Nothing used. The other threads that have joined this
263          * transaction may be able to continue. */
264         if (!trans->blocks_used) {
265                 const char *errstr;
266
267                 errstr = btrfs_decode_error(errno);
268                 btrfs_warn(root->fs_info,
269                            "%s:%d: Aborting unused transaction(%s).",
270                            function, line, errstr);
271                 return;
272         }
273         ACCESS_ONCE(trans->transaction->aborted) = errno;
274         /* Wake up anybody who may be waiting on this transaction */
275         wake_up(&root->fs_info->transaction_wait);
276         wake_up(&root->fs_info->transaction_blocked_wait);
277         __btrfs_std_error(root->fs_info, function, line, errno, NULL);
278 }
279 /*
280  * __btrfs_panic decodes unexpected, fatal errors from the caller,
281  * issues an alert, and either panics or BUGs, depending on mount options.
282  */
283 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
284                    unsigned int line, int errno, const char *fmt, ...)
285 {
286         char *s_id = "<unknown>";
287         const char *errstr;
288         struct va_format vaf = { .fmt = fmt };
289         va_list args;
290
291         if (fs_info)
292                 s_id = fs_info->sb->s_id;
293
294         va_start(args, fmt);
295         vaf.va = &args;
296
297         errstr = btrfs_decode_error(errno);
298         if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR))
299                 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
300                         s_id, function, line, &vaf, errno, errstr);
301
302         btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
303                    function, line, &vaf, errno, errstr);
304         va_end(args);
305         /* Caller calls BUG() */
306 }
307
308 static void btrfs_put_super(struct super_block *sb)
309 {
310         (void)close_ctree(btrfs_sb(sb)->tree_root);
311         /* FIXME: need to fix VFS to return error? */
312         /* AV: return it _where_?  ->put_super() can be triggered by any number
313          * of async events, up to and including delivery of SIGKILL to the
314          * last process that kept it busy.  Or segfault in the aforementioned
315          * process...  Whom would you report that to?
316          */
317 }
318
319 enum {
320         Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
321         Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
322         Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
323         Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
324         Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
325         Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
326         Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache,
327         Opt_no_space_cache, Opt_recovery, Opt_skip_balance,
328         Opt_check_integrity, Opt_check_integrity_including_extent_data,
329         Opt_check_integrity_print_mask, Opt_fatal_errors, Opt_rescan_uuid_tree,
330         Opt_commit_interval, Opt_barrier, Opt_nodefrag, Opt_nodiscard,
331         Opt_noenospc_debug, Opt_noflushoncommit, Opt_acl, Opt_datacow,
332         Opt_datasum, Opt_treelog, Opt_noinode_cache,
333         Opt_err,
334 };
335
336 static match_table_t tokens = {
337         {Opt_degraded, "degraded"},
338         {Opt_subvol, "subvol=%s"},
339         {Opt_subvolid, "subvolid=%s"},
340         {Opt_device, "device=%s"},
341         {Opt_nodatasum, "nodatasum"},
342         {Opt_datasum, "datasum"},
343         {Opt_nodatacow, "nodatacow"},
344         {Opt_datacow, "datacow"},
345         {Opt_nobarrier, "nobarrier"},
346         {Opt_barrier, "barrier"},
347         {Opt_max_inline, "max_inline=%s"},
348         {Opt_alloc_start, "alloc_start=%s"},
349         {Opt_thread_pool, "thread_pool=%d"},
350         {Opt_compress, "compress"},
351         {Opt_compress_type, "compress=%s"},
352         {Opt_compress_force, "compress-force"},
353         {Opt_compress_force_type, "compress-force=%s"},
354         {Opt_ssd, "ssd"},
355         {Opt_ssd_spread, "ssd_spread"},
356         {Opt_nossd, "nossd"},
357         {Opt_acl, "acl"},
358         {Opt_noacl, "noacl"},
359         {Opt_notreelog, "notreelog"},
360         {Opt_treelog, "treelog"},
361         {Opt_flushoncommit, "flushoncommit"},
362         {Opt_noflushoncommit, "noflushoncommit"},
363         {Opt_ratio, "metadata_ratio=%d"},
364         {Opt_discard, "discard"},
365         {Opt_nodiscard, "nodiscard"},
366         {Opt_space_cache, "space_cache"},
367         {Opt_clear_cache, "clear_cache"},
368         {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
369         {Opt_enospc_debug, "enospc_debug"},
370         {Opt_noenospc_debug, "noenospc_debug"},
371         {Opt_subvolrootid, "subvolrootid=%d"},
372         {Opt_defrag, "autodefrag"},
373         {Opt_nodefrag, "noautodefrag"},
374         {Opt_inode_cache, "inode_cache"},
375         {Opt_noinode_cache, "noinode_cache"},
376         {Opt_no_space_cache, "nospace_cache"},
377         {Opt_recovery, "recovery"},
378         {Opt_skip_balance, "skip_balance"},
379         {Opt_check_integrity, "check_int"},
380         {Opt_check_integrity_including_extent_data, "check_int_data"},
381         {Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
382         {Opt_rescan_uuid_tree, "rescan_uuid_tree"},
383         {Opt_fatal_errors, "fatal_errors=%s"},
384         {Opt_commit_interval, "commit=%d"},
385         {Opt_err, NULL},
386 };
387
388 /*
389  * Regular mount options parser.  Everything that is needed only when
390  * reading in a new superblock is parsed here.
391  * XXX JDM: This needs to be cleaned up for remount.
392  */
393 int btrfs_parse_options(struct btrfs_root *root, char *options)
394 {
395         struct btrfs_fs_info *info = root->fs_info;
396         substring_t args[MAX_OPT_ARGS];
397         char *p, *num, *orig = NULL;
398         u64 cache_gen;
399         int intarg;
400         int ret = 0;
401         char *compress_type;
402         bool compress_force = false;
403         bool compress = false;
404
405         cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
406         if (cache_gen)
407                 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
408
409         if (!options)
410                 goto out;
411
412         /*
413          * strsep changes the string, duplicate it because parse_options
414          * gets called twice
415          */
416         options = kstrdup(options, GFP_NOFS);
417         if (!options)
418                 return -ENOMEM;
419
420         orig = options;
421
422         while ((p = strsep(&options, ",")) != NULL) {
423                 int token;
424                 if (!*p)
425                         continue;
426
427                 token = match_token(p, tokens, args);
428                 switch (token) {
429                 case Opt_degraded:
430                         btrfs_info(root->fs_info, "allowing degraded mounts");
431                         btrfs_set_opt(info->mount_opt, DEGRADED);
432                         break;
433                 case Opt_subvol:
434                 case Opt_subvolid:
435                 case Opt_subvolrootid:
436                 case Opt_device:
437                         /*
438                          * These are parsed by btrfs_parse_early_options
439                          * and can be happily ignored here.
440                          */
441                         break;
442                 case Opt_nodatasum:
443                         btrfs_set_and_info(root, NODATASUM,
444                                            "setting nodatasum");
445                         break;
446                 case Opt_datasum:
447                         if (btrfs_test_opt(root, NODATASUM)) {
448                                 if (btrfs_test_opt(root, NODATACOW))
449                                         btrfs_info(root->fs_info, "setting datasum, datacow enabled");
450                                 else
451                                         btrfs_info(root->fs_info, "setting datasum");
452                         }
453                         btrfs_clear_opt(info->mount_opt, NODATACOW);
454                         btrfs_clear_opt(info->mount_opt, NODATASUM);
455                         break;
456                 case Opt_nodatacow:
457                         if (!btrfs_test_opt(root, NODATACOW)) {
458                                 if (!btrfs_test_opt(root, COMPRESS) ||
459                                     !btrfs_test_opt(root, FORCE_COMPRESS)) {
460                                         btrfs_info(root->fs_info,
461                                                    "setting nodatacow, compression disabled");
462                                 } else {
463                                         btrfs_info(root->fs_info, "setting nodatacow");
464                                 }
465                         }
466                         btrfs_clear_opt(info->mount_opt, COMPRESS);
467                         btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
468                         btrfs_set_opt(info->mount_opt, NODATACOW);
469                         btrfs_set_opt(info->mount_opt, NODATASUM);
470                         break;
471                 case Opt_datacow:
472                         btrfs_clear_and_info(root, NODATACOW,
473                                              "setting datacow");
474                         break;
475                 case Opt_compress_force:
476                 case Opt_compress_force_type:
477                         compress_force = true;
478                         /* Fallthrough */
479                 case Opt_compress:
480                 case Opt_compress_type:
481                         compress = true;
482                         if (token == Opt_compress ||
483                             token == Opt_compress_force ||
484                             strcmp(args[0].from, "zlib") == 0) {
485                                 compress_type = "zlib";
486                                 info->compress_type = BTRFS_COMPRESS_ZLIB;
487                                 btrfs_set_opt(info->mount_opt, COMPRESS);
488                                 btrfs_clear_opt(info->mount_opt, NODATACOW);
489                                 btrfs_clear_opt(info->mount_opt, NODATASUM);
490                         } else if (strcmp(args[0].from, "lzo") == 0) {
491                                 compress_type = "lzo";
492                                 info->compress_type = BTRFS_COMPRESS_LZO;
493                                 btrfs_set_opt(info->mount_opt, COMPRESS);
494                                 btrfs_clear_opt(info->mount_opt, NODATACOW);
495                                 btrfs_clear_opt(info->mount_opt, NODATASUM);
496                                 btrfs_set_fs_incompat(info, COMPRESS_LZO);
497                         } else if (strncmp(args[0].from, "no", 2) == 0) {
498                                 compress_type = "no";
499                                 btrfs_clear_opt(info->mount_opt, COMPRESS);
500                                 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
501                                 compress_force = false;
502                         } else {
503                                 ret = -EINVAL;
504                                 goto out;
505                         }
506
507                         if (compress_force) {
508                                 btrfs_set_and_info(root, FORCE_COMPRESS,
509                                                    "force %s compression",
510                                                    compress_type);
511                         } else if (compress) {
512                                 if (!btrfs_test_opt(root, COMPRESS))
513                                         btrfs_info(root->fs_info,
514                                                    "btrfs: use %s compression",
515                                                    compress_type);
516                         }
517                         break;
518                 case Opt_ssd:
519                         btrfs_set_and_info(root, SSD,
520                                            "use ssd allocation scheme");
521                         break;
522                 case Opt_ssd_spread:
523                         btrfs_set_and_info(root, SSD_SPREAD,
524                                            "use spread ssd allocation scheme");
525                         btrfs_set_opt(info->mount_opt, SSD);
526                         break;
527                 case Opt_nossd:
528                         btrfs_set_and_info(root, NOSSD,
529                                              "not using ssd allocation scheme");
530                         btrfs_clear_opt(info->mount_opt, SSD);
531                         break;
532                 case Opt_barrier:
533                         btrfs_clear_and_info(root, NOBARRIER,
534                                              "turning on barriers");
535                         break;
536                 case Opt_nobarrier:
537                         btrfs_set_and_info(root, NOBARRIER,
538                                            "turning off barriers");
539                         break;
540                 case Opt_thread_pool:
541                         ret = match_int(&args[0], &intarg);
542                         if (ret) {
543                                 goto out;
544                         } else if (intarg > 0) {
545                                 info->thread_pool_size = intarg;
546                         } else {
547                                 ret = -EINVAL;
548                                 goto out;
549                         }
550                         break;
551                 case Opt_max_inline:
552                         num = match_strdup(&args[0]);
553                         if (num) {
554                                 info->max_inline = memparse(num, NULL);
555                                 kfree(num);
556
557                                 if (info->max_inline) {
558                                         info->max_inline = min_t(u64,
559                                                 info->max_inline,
560                                                 root->sectorsize);
561                                 }
562                                 btrfs_info(root->fs_info, "max_inline at %llu",
563                                         info->max_inline);
564                         } else {
565                                 ret = -ENOMEM;
566                                 goto out;
567                         }
568                         break;
569                 case Opt_alloc_start:
570                         num = match_strdup(&args[0]);
571                         if (num) {
572                                 mutex_lock(&info->chunk_mutex);
573                                 info->alloc_start = memparse(num, NULL);
574                                 mutex_unlock(&info->chunk_mutex);
575                                 kfree(num);
576                                 btrfs_info(root->fs_info, "allocations start at %llu",
577                                         info->alloc_start);
578                         } else {
579                                 ret = -ENOMEM;
580                                 goto out;
581                         }
582                         break;
583                 case Opt_acl:
584 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
585                         root->fs_info->sb->s_flags |= MS_POSIXACL;
586                         break;
587 #else
588                         btrfs_err(root->fs_info,
589                                 "support for ACL not compiled in!");
590                         ret = -EINVAL;
591                         goto out;
592 #endif
593                 case Opt_noacl:
594                         root->fs_info->sb->s_flags &= ~MS_POSIXACL;
595                         break;
596                 case Opt_notreelog:
597                         btrfs_set_and_info(root, NOTREELOG,
598                                            "disabling tree log");
599                         break;
600                 case Opt_treelog:
601                         btrfs_clear_and_info(root, NOTREELOG,
602                                              "enabling tree log");
603                         break;
604                 case Opt_flushoncommit:
605                         btrfs_set_and_info(root, FLUSHONCOMMIT,
606                                            "turning on flush-on-commit");
607                         break;
608                 case Opt_noflushoncommit:
609                         btrfs_clear_and_info(root, FLUSHONCOMMIT,
610                                              "turning off flush-on-commit");
611                         break;
612                 case Opt_ratio:
613                         ret = match_int(&args[0], &intarg);
614                         if (ret) {
615                                 goto out;
616                         } else if (intarg >= 0) {
617                                 info->metadata_ratio = intarg;
618                                 btrfs_info(root->fs_info, "metadata ratio %d",
619                                        info->metadata_ratio);
620                         } else {
621                                 ret = -EINVAL;
622                                 goto out;
623                         }
624                         break;
625                 case Opt_discard:
626                         btrfs_set_and_info(root, DISCARD,
627                                            "turning on discard");
628                         break;
629                 case Opt_nodiscard:
630                         btrfs_clear_and_info(root, DISCARD,
631                                              "turning off discard");
632                         break;
633                 case Opt_space_cache:
634                         btrfs_set_and_info(root, SPACE_CACHE,
635                                            "enabling disk space caching");
636                         break;
637                 case Opt_rescan_uuid_tree:
638                         btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
639                         break;
640                 case Opt_no_space_cache:
641                         btrfs_clear_and_info(root, SPACE_CACHE,
642                                              "disabling disk space caching");
643                         break;
644                 case Opt_inode_cache:
645                         btrfs_set_and_info(root, CHANGE_INODE_CACHE,
646                                            "enabling inode map caching");
647                         break;
648                 case Opt_noinode_cache:
649                         btrfs_clear_and_info(root, CHANGE_INODE_CACHE,
650                                              "disabling inode map caching");
651                         break;
652                 case Opt_clear_cache:
653                         btrfs_set_and_info(root, CLEAR_CACHE,
654                                            "force clearing of disk cache");
655                         break;
656                 case Opt_user_subvol_rm_allowed:
657                         btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
658                         break;
659                 case Opt_enospc_debug:
660                         btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
661                         break;
662                 case Opt_noenospc_debug:
663                         btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
664                         break;
665                 case Opt_defrag:
666                         btrfs_set_and_info(root, AUTO_DEFRAG,
667                                            "enabling auto defrag");
668                         break;
669                 case Opt_nodefrag:
670                         btrfs_clear_and_info(root, AUTO_DEFRAG,
671                                              "disabling auto defrag");
672                         break;
673                 case Opt_recovery:
674                         btrfs_info(root->fs_info, "enabling auto recovery");
675                         btrfs_set_opt(info->mount_opt, RECOVERY);
676                         break;
677                 case Opt_skip_balance:
678                         btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
679                         break;
680 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
681                 case Opt_check_integrity_including_extent_data:
682                         btrfs_info(root->fs_info,
683                                    "enabling check integrity including extent data");
684                         btrfs_set_opt(info->mount_opt,
685                                       CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
686                         btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
687                         break;
688                 case Opt_check_integrity:
689                         btrfs_info(root->fs_info, "enabling check integrity");
690                         btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
691                         break;
692                 case Opt_check_integrity_print_mask:
693                         ret = match_int(&args[0], &intarg);
694                         if (ret) {
695                                 goto out;
696                         } else if (intarg >= 0) {
697                                 info->check_integrity_print_mask = intarg;
698                                 btrfs_info(root->fs_info, "check_integrity_print_mask 0x%x",
699                                        info->check_integrity_print_mask);
700                         } else {
701                                 ret = -EINVAL;
702                                 goto out;
703                         }
704                         break;
705 #else
706                 case Opt_check_integrity_including_extent_data:
707                 case Opt_check_integrity:
708                 case Opt_check_integrity_print_mask:
709                         btrfs_err(root->fs_info,
710                                 "support for check_integrity* not compiled in!");
711                         ret = -EINVAL;
712                         goto out;
713 #endif
714                 case Opt_fatal_errors:
715                         if (strcmp(args[0].from, "panic") == 0)
716                                 btrfs_set_opt(info->mount_opt,
717                                               PANIC_ON_FATAL_ERROR);
718                         else if (strcmp(args[0].from, "bug") == 0)
719                                 btrfs_clear_opt(info->mount_opt,
720                                               PANIC_ON_FATAL_ERROR);
721                         else {
722                                 ret = -EINVAL;
723                                 goto out;
724                         }
725                         break;
726                 case Opt_commit_interval:
727                         intarg = 0;
728                         ret = match_int(&args[0], &intarg);
729                         if (ret < 0) {
730                                 btrfs_err(root->fs_info, "invalid commit interval");
731                                 ret = -EINVAL;
732                                 goto out;
733                         }
734                         if (intarg > 0) {
735                                 if (intarg > 300) {
736                                         btrfs_warn(root->fs_info, "excessive commit interval %d",
737                                                         intarg);
738                                 }
739                                 info->commit_interval = intarg;
740                         } else {
741                                 btrfs_info(root->fs_info, "using default commit interval %ds",
742                                     BTRFS_DEFAULT_COMMIT_INTERVAL);
743                                 info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
744                         }
745                         break;
746                 case Opt_err:
747                         btrfs_info(root->fs_info, "unrecognized mount option '%s'", p);
748                         ret = -EINVAL;
749                         goto out;
750                 default:
751                         break;
752                 }
753         }
754 out:
755         if (!ret && btrfs_test_opt(root, SPACE_CACHE))
756                 btrfs_info(root->fs_info, "disk space caching is enabled");
757         kfree(orig);
758         return ret;
759 }
760
761 /*
762  * Parse mount options that are required early in the mount process.
763  *
764  * All other options will be parsed on much later in the mount process and
765  * only when we need to allocate a new super block.
766  */
767 static int btrfs_parse_early_options(const char *options, fmode_t flags,
768                 void *holder, char **subvol_name, u64 *subvol_objectid,
769                 struct btrfs_fs_devices **fs_devices)
770 {
771         substring_t args[MAX_OPT_ARGS];
772         char *device_name, *opts, *orig, *p;
773         char *num = NULL;
774         int error = 0;
775
776         if (!options)
777                 return 0;
778
779         /*
780          * strsep changes the string, duplicate it because parse_options
781          * gets called twice
782          */
783         opts = kstrdup(options, GFP_KERNEL);
784         if (!opts)
785                 return -ENOMEM;
786         orig = opts;
787
788         while ((p = strsep(&opts, ",")) != NULL) {
789                 int token;
790                 if (!*p)
791                         continue;
792
793                 token = match_token(p, tokens, args);
794                 switch (token) {
795                 case Opt_subvol:
796                         kfree(*subvol_name);
797                         *subvol_name = match_strdup(&args[0]);
798                         if (!*subvol_name) {
799                                 error = -ENOMEM;
800                                 goto out;
801                         }
802                         break;
803                 case Opt_subvolid:
804                         num = match_strdup(&args[0]);
805                         if (num) {
806                                 *subvol_objectid = memparse(num, NULL);
807                                 kfree(num);
808                                 /* we want the original fs_tree */
809                                 if (!*subvol_objectid)
810                                         *subvol_objectid =
811                                                 BTRFS_FS_TREE_OBJECTID;
812                         } else {
813                                 error = -EINVAL;
814                                 goto out;
815                         }
816                         break;
817                 case Opt_subvolrootid:
818                         printk(KERN_WARNING
819                                 "BTRFS: 'subvolrootid' mount option is deprecated and has "
820                                 "no effect\n");
821                         break;
822                 case Opt_device:
823                         device_name = match_strdup(&args[0]);
824                         if (!device_name) {
825                                 error = -ENOMEM;
826                                 goto out;
827                         }
828                         error = btrfs_scan_one_device(device_name,
829                                         flags, holder, fs_devices);
830                         kfree(device_name);
831                         if (error)
832                                 goto out;
833                         break;
834                 default:
835                         break;
836                 }
837         }
838
839 out:
840         kfree(orig);
841         return error;
842 }
843
844 static struct dentry *get_default_root(struct super_block *sb,
845                                        u64 subvol_objectid)
846 {
847         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
848         struct btrfs_root *root = fs_info->tree_root;
849         struct btrfs_root *new_root;
850         struct btrfs_dir_item *di;
851         struct btrfs_path *path;
852         struct btrfs_key location;
853         struct inode *inode;
854         u64 dir_id;
855         int new = 0;
856
857         /*
858          * We have a specific subvol we want to mount, just setup location and
859          * go look up the root.
860          */
861         if (subvol_objectid) {
862                 location.objectid = subvol_objectid;
863                 location.type = BTRFS_ROOT_ITEM_KEY;
864                 location.offset = (u64)-1;
865                 goto find_root;
866         }
867
868         path = btrfs_alloc_path();
869         if (!path)
870                 return ERR_PTR(-ENOMEM);
871         path->leave_spinning = 1;
872
873         /*
874          * Find the "default" dir item which points to the root item that we
875          * will mount by default if we haven't been given a specific subvolume
876          * to mount.
877          */
878         dir_id = btrfs_super_root_dir(fs_info->super_copy);
879         di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
880         if (IS_ERR(di)) {
881                 btrfs_free_path(path);
882                 return ERR_CAST(di);
883         }
884         if (!di) {
885                 /*
886                  * Ok the default dir item isn't there.  This is weird since
887                  * it's always been there, but don't freak out, just try and
888                  * mount to root most subvolume.
889                  */
890                 btrfs_free_path(path);
891                 dir_id = BTRFS_FIRST_FREE_OBJECTID;
892                 new_root = fs_info->fs_root;
893                 goto setup_root;
894         }
895
896         btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
897         btrfs_free_path(path);
898
899 find_root:
900         new_root = btrfs_read_fs_root_no_name(fs_info, &location);
901         if (IS_ERR(new_root))
902                 return ERR_CAST(new_root);
903
904         dir_id = btrfs_root_dirid(&new_root->root_item);
905 setup_root:
906         location.objectid = dir_id;
907         location.type = BTRFS_INODE_ITEM_KEY;
908         location.offset = 0;
909
910         inode = btrfs_iget(sb, &location, new_root, &new);
911         if (IS_ERR(inode))
912                 return ERR_CAST(inode);
913
914         /*
915          * If we're just mounting the root most subvol put the inode and return
916          * a reference to the dentry.  We will have already gotten a reference
917          * to the inode in btrfs_fill_super so we're good to go.
918          */
919         if (!new && sb->s_root->d_inode == inode) {
920                 iput(inode);
921                 return dget(sb->s_root);
922         }
923
924         return d_obtain_root(inode);
925 }
926
927 static int btrfs_fill_super(struct super_block *sb,
928                             struct btrfs_fs_devices *fs_devices,
929                             void *data, int silent)
930 {
931         struct inode *inode;
932         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
933         struct btrfs_key key;
934         int err;
935
936         sb->s_maxbytes = MAX_LFS_FILESIZE;
937         sb->s_magic = BTRFS_SUPER_MAGIC;
938         sb->s_op = &btrfs_super_ops;
939         sb->s_d_op = &btrfs_dentry_operations;
940         sb->s_export_op = &btrfs_export_ops;
941         sb->s_xattr = btrfs_xattr_handlers;
942         sb->s_time_gran = 1;
943 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
944         sb->s_flags |= MS_POSIXACL;
945 #endif
946         sb->s_flags |= MS_I_VERSION;
947         err = open_ctree(sb, fs_devices, (char *)data);
948         if (err) {
949                 printk(KERN_ERR "BTRFS: open_ctree failed\n");
950                 return err;
951         }
952
953         key.objectid = BTRFS_FIRST_FREE_OBJECTID;
954         key.type = BTRFS_INODE_ITEM_KEY;
955         key.offset = 0;
956         inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
957         if (IS_ERR(inode)) {
958                 err = PTR_ERR(inode);
959                 goto fail_close;
960         }
961
962         sb->s_root = d_make_root(inode);
963         if (!sb->s_root) {
964                 err = -ENOMEM;
965                 goto fail_close;
966         }
967
968         save_mount_options(sb, data);
969         cleancache_init_fs(sb);
970         sb->s_flags |= MS_ACTIVE;
971         return 0;
972
973 fail_close:
974         close_ctree(fs_info->tree_root);
975         return err;
976 }
977
978 int btrfs_sync_fs(struct super_block *sb, int wait)
979 {
980         struct btrfs_trans_handle *trans;
981         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
982         struct btrfs_root *root = fs_info->tree_root;
983
984         trace_btrfs_sync_fs(wait);
985
986         if (!wait) {
987                 filemap_flush(fs_info->btree_inode->i_mapping);
988                 return 0;
989         }
990
991         btrfs_wait_ordered_roots(fs_info, -1);
992
993         trans = btrfs_attach_transaction_barrier(root);
994         if (IS_ERR(trans)) {
995                 /* no transaction, don't bother */
996                 if (PTR_ERR(trans) == -ENOENT)
997                         return 0;
998                 return PTR_ERR(trans);
999         }
1000         return btrfs_commit_transaction(trans, root);
1001 }
1002
1003 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1004 {
1005         struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1006         struct btrfs_root *root = info->tree_root;
1007         char *compress_type;
1008
1009         if (btrfs_test_opt(root, DEGRADED))
1010                 seq_puts(seq, ",degraded");
1011         if (btrfs_test_opt(root, NODATASUM))
1012                 seq_puts(seq, ",nodatasum");
1013         if (btrfs_test_opt(root, NODATACOW))
1014                 seq_puts(seq, ",nodatacow");
1015         if (btrfs_test_opt(root, NOBARRIER))
1016                 seq_puts(seq, ",nobarrier");
1017         if (info->max_inline != 8192 * 1024)
1018                 seq_printf(seq, ",max_inline=%llu", info->max_inline);
1019         if (info->alloc_start != 0)
1020                 seq_printf(seq, ",alloc_start=%llu", info->alloc_start);
1021         if (info->thread_pool_size !=  min_t(unsigned long,
1022                                              num_online_cpus() + 2, 8))
1023                 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
1024         if (btrfs_test_opt(root, COMPRESS)) {
1025                 if (info->compress_type == BTRFS_COMPRESS_ZLIB)
1026                         compress_type = "zlib";
1027                 else
1028                         compress_type = "lzo";
1029                 if (btrfs_test_opt(root, FORCE_COMPRESS))
1030                         seq_printf(seq, ",compress-force=%s", compress_type);
1031                 else
1032                         seq_printf(seq, ",compress=%s", compress_type);
1033         }
1034         if (btrfs_test_opt(root, NOSSD))
1035                 seq_puts(seq, ",nossd");
1036         if (btrfs_test_opt(root, SSD_SPREAD))
1037                 seq_puts(seq, ",ssd_spread");
1038         else if (btrfs_test_opt(root, SSD))
1039                 seq_puts(seq, ",ssd");
1040         if (btrfs_test_opt(root, NOTREELOG))
1041                 seq_puts(seq, ",notreelog");
1042         if (btrfs_test_opt(root, FLUSHONCOMMIT))
1043                 seq_puts(seq, ",flushoncommit");
1044         if (btrfs_test_opt(root, DISCARD))
1045                 seq_puts(seq, ",discard");
1046         if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
1047                 seq_puts(seq, ",noacl");
1048         if (btrfs_test_opt(root, SPACE_CACHE))
1049                 seq_puts(seq, ",space_cache");
1050         else
1051                 seq_puts(seq, ",nospace_cache");
1052         if (btrfs_test_opt(root, RESCAN_UUID_TREE))
1053                 seq_puts(seq, ",rescan_uuid_tree");
1054         if (btrfs_test_opt(root, CLEAR_CACHE))
1055                 seq_puts(seq, ",clear_cache");
1056         if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
1057                 seq_puts(seq, ",user_subvol_rm_allowed");
1058         if (btrfs_test_opt(root, ENOSPC_DEBUG))
1059                 seq_puts(seq, ",enospc_debug");
1060         if (btrfs_test_opt(root, AUTO_DEFRAG))
1061                 seq_puts(seq, ",autodefrag");
1062         if (btrfs_test_opt(root, INODE_MAP_CACHE))
1063                 seq_puts(seq, ",inode_cache");
1064         if (btrfs_test_opt(root, SKIP_BALANCE))
1065                 seq_puts(seq, ",skip_balance");
1066         if (btrfs_test_opt(root, RECOVERY))
1067                 seq_puts(seq, ",recovery");
1068 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1069         if (btrfs_test_opt(root, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1070                 seq_puts(seq, ",check_int_data");
1071         else if (btrfs_test_opt(root, CHECK_INTEGRITY))
1072                 seq_puts(seq, ",check_int");
1073         if (info->check_integrity_print_mask)
1074                 seq_printf(seq, ",check_int_print_mask=%d",
1075                                 info->check_integrity_print_mask);
1076 #endif
1077         if (info->metadata_ratio)
1078                 seq_printf(seq, ",metadata_ratio=%d",
1079                                 info->metadata_ratio);
1080         if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR))
1081                 seq_puts(seq, ",fatal_errors=panic");
1082         if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1083                 seq_printf(seq, ",commit=%d", info->commit_interval);
1084         return 0;
1085 }
1086
1087 static int btrfs_test_super(struct super_block *s, void *data)
1088 {
1089         struct btrfs_fs_info *p = data;
1090         struct btrfs_fs_info *fs_info = btrfs_sb(s);
1091
1092         return fs_info->fs_devices == p->fs_devices;
1093 }
1094
1095 static int btrfs_set_super(struct super_block *s, void *data)
1096 {
1097         int err = set_anon_super(s, data);
1098         if (!err)
1099                 s->s_fs_info = data;
1100         return err;
1101 }
1102
1103 /*
1104  * subvolumes are identified by ino 256
1105  */
1106 static inline int is_subvolume_inode(struct inode *inode)
1107 {
1108         if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1109                 return 1;
1110         return 0;
1111 }
1112
1113 /*
1114  * This will strip out the subvol=%s argument for an argument string and add
1115  * subvolid=0 to make sure we get the actual tree root for path walking to the
1116  * subvol we want.
1117  */
1118 static char *setup_root_args(char *args)
1119 {
1120         unsigned len = strlen(args) + 2 + 1;
1121         char *src, *dst, *buf;
1122
1123         /*
1124          * We need the same args as before, but with this substitution:
1125          * s!subvol=[^,]+!subvolid=0!
1126          *
1127          * Since the replacement string is up to 2 bytes longer than the
1128          * original, allocate strlen(args) + 2 + 1 bytes.
1129          */
1130
1131         src = strstr(args, "subvol=");
1132         /* This shouldn't happen, but just in case.. */
1133         if (!src)
1134                 return NULL;
1135
1136         buf = dst = kmalloc(len, GFP_NOFS);
1137         if (!buf)
1138                 return NULL;
1139
1140         /*
1141          * If the subvol= arg is not at the start of the string,
1142          * copy whatever precedes it into buf.
1143          */
1144         if (src != args) {
1145                 *src++ = '\0';
1146                 strcpy(buf, args);
1147                 dst += strlen(args);
1148         }
1149
1150         strcpy(dst, "subvolid=0");
1151         dst += strlen("subvolid=0");
1152
1153         /*
1154          * If there is a "," after the original subvol=... string,
1155          * copy that suffix into our buffer.  Otherwise, we're done.
1156          */
1157         src = strchr(src, ',');
1158         if (src)
1159                 strcpy(dst, src);
1160
1161         return buf;
1162 }
1163
1164 static struct dentry *mount_subvol(const char *subvol_name, int flags,
1165                                    const char *device_name, char *data)
1166 {
1167         struct dentry *root;
1168         struct vfsmount *mnt;
1169         char *newargs;
1170
1171         newargs = setup_root_args(data);
1172         if (!newargs)
1173                 return ERR_PTR(-ENOMEM);
1174         mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
1175                              newargs);
1176
1177         if (PTR_RET(mnt) == -EBUSY) {
1178                 if (flags & MS_RDONLY) {
1179                         mnt = vfs_kern_mount(&btrfs_fs_type, flags & ~MS_RDONLY, device_name,
1180                                              newargs);
1181                 } else {
1182                         int r;
1183                         mnt = vfs_kern_mount(&btrfs_fs_type, flags | MS_RDONLY, device_name,
1184                                              newargs);
1185                         if (IS_ERR(mnt)) {
1186                                 kfree(newargs);
1187                                 return ERR_CAST(mnt);
1188                         }
1189
1190                         r = btrfs_remount(mnt->mnt_sb, &flags, NULL);
1191                         if (r < 0) {
1192                                 /* FIXME: release vfsmount mnt ??*/
1193                                 kfree(newargs);
1194                                 return ERR_PTR(r);
1195                         }
1196                 }
1197         }
1198
1199         kfree(newargs);
1200
1201         if (IS_ERR(mnt))
1202                 return ERR_CAST(mnt);
1203
1204         root = mount_subtree(mnt, subvol_name);
1205
1206         if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) {
1207                 struct super_block *s = root->d_sb;
1208                 dput(root);
1209                 root = ERR_PTR(-EINVAL);
1210                 deactivate_locked_super(s);
1211                 printk(KERN_ERR "BTRFS: '%s' is not a valid subvolume\n",
1212                                 subvol_name);
1213         }
1214
1215         return root;
1216 }
1217
1218 /*
1219  * Find a superblock for the given device / mount point.
1220  *
1221  * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
1222  *        for multiple device setup.  Make sure to keep it in sync.
1223  */
1224 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1225                 const char *device_name, void *data)
1226 {
1227         struct block_device *bdev = NULL;
1228         struct super_block *s;
1229         struct dentry *root;
1230         struct btrfs_fs_devices *fs_devices = NULL;
1231         struct btrfs_fs_info *fs_info = NULL;
1232         fmode_t mode = FMODE_READ;
1233         char *subvol_name = NULL;
1234         u64 subvol_objectid = 0;
1235         int error = 0;
1236
1237         if (!(flags & MS_RDONLY))
1238                 mode |= FMODE_WRITE;
1239
1240         error = btrfs_parse_early_options(data, mode, fs_type,
1241                                           &subvol_name, &subvol_objectid,
1242                                           &fs_devices);
1243         if (error) {
1244                 kfree(subvol_name);
1245                 return ERR_PTR(error);
1246         }
1247
1248         if (subvol_name) {
1249                 root = mount_subvol(subvol_name, flags, device_name, data);
1250                 kfree(subvol_name);
1251                 return root;
1252         }
1253
1254         error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1255         if (error)
1256                 return ERR_PTR(error);
1257
1258         /*
1259          * Setup a dummy root and fs_info for test/set super.  This is because
1260          * we don't actually fill this stuff out until open_ctree, but we need
1261          * it for searching for existing supers, so this lets us do that and
1262          * then open_ctree will properly initialize everything later.
1263          */
1264         fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1265         if (!fs_info)
1266                 return ERR_PTR(-ENOMEM);
1267
1268         fs_info->fs_devices = fs_devices;
1269
1270         fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1271         fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1272         if (!fs_info->super_copy || !fs_info->super_for_commit) {
1273                 error = -ENOMEM;
1274                 goto error_fs_info;
1275         }
1276
1277         error = btrfs_open_devices(fs_devices, mode, fs_type);
1278         if (error)
1279                 goto error_fs_info;
1280
1281         if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1282                 error = -EACCES;
1283                 goto error_close_devices;
1284         }
1285
1286         bdev = fs_devices->latest_bdev;
1287         s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC,
1288                  fs_info);
1289         if (IS_ERR(s)) {
1290                 error = PTR_ERR(s);
1291                 goto error_close_devices;
1292         }
1293
1294         if (s->s_root) {
1295                 btrfs_close_devices(fs_devices);
1296                 free_fs_info(fs_info);
1297                 if ((flags ^ s->s_flags) & MS_RDONLY)
1298                         error = -EBUSY;
1299         } else {
1300                 char b[BDEVNAME_SIZE];
1301
1302                 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1303                 btrfs_sb(s)->bdev_holder = fs_type;
1304                 error = btrfs_fill_super(s, fs_devices, data,
1305                                          flags & MS_SILENT ? 1 : 0);
1306         }
1307
1308         root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error);
1309         if (IS_ERR(root))
1310                 deactivate_locked_super(s);
1311
1312         return root;
1313
1314 error_close_devices:
1315         btrfs_close_devices(fs_devices);
1316 error_fs_info:
1317         free_fs_info(fs_info);
1318         return ERR_PTR(error);
1319 }
1320
1321 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1322                                      int new_pool_size, int old_pool_size)
1323 {
1324         if (new_pool_size == old_pool_size)
1325                 return;
1326
1327         fs_info->thread_pool_size = new_pool_size;
1328
1329         btrfs_info(fs_info, "resize thread pool %d -> %d",
1330                old_pool_size, new_pool_size);
1331
1332         btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1333         btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1334         btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size);
1335         btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1336         btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1337         btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1338         btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1339                                 new_pool_size);
1340         btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1341         btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1342         btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1343         btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1344         btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1345                                 new_pool_size);
1346 }
1347
1348 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1349 {
1350         set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1351 }
1352
1353 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1354                                        unsigned long old_opts, int flags)
1355 {
1356         if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1357             (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1358              (flags & MS_RDONLY))) {
1359                 /* wait for any defraggers to finish */
1360                 wait_event(fs_info->transaction_wait,
1361                            (atomic_read(&fs_info->defrag_running) == 0));
1362                 if (flags & MS_RDONLY)
1363                         sync_filesystem(fs_info->sb);
1364         }
1365 }
1366
1367 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1368                                          unsigned long old_opts)
1369 {
1370         /*
1371          * We need cleanup all defragable inodes if the autodefragment is
1372          * close or the fs is R/O.
1373          */
1374         if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1375             (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1376              (fs_info->sb->s_flags & MS_RDONLY))) {
1377                 btrfs_cleanup_defrag_inodes(fs_info);
1378         }
1379
1380         clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1381 }
1382
1383 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1384 {
1385         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1386         struct btrfs_root *root = fs_info->tree_root;
1387         unsigned old_flags = sb->s_flags;
1388         unsigned long old_opts = fs_info->mount_opt;
1389         unsigned long old_compress_type = fs_info->compress_type;
1390         u64 old_max_inline = fs_info->max_inline;
1391         u64 old_alloc_start = fs_info->alloc_start;
1392         int old_thread_pool_size = fs_info->thread_pool_size;
1393         unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1394         int ret;
1395
1396         sync_filesystem(sb);
1397         btrfs_remount_prepare(fs_info);
1398
1399         ret = btrfs_parse_options(root, data);
1400         if (ret) {
1401                 ret = -EINVAL;
1402                 goto restore;
1403         }
1404
1405         btrfs_remount_begin(fs_info, old_opts, *flags);
1406         btrfs_resize_thread_pool(fs_info,
1407                 fs_info->thread_pool_size, old_thread_pool_size);
1408
1409         if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1410                 goto out;
1411
1412         if (*flags & MS_RDONLY) {
1413                 /*
1414                  * this also happens on 'umount -rf' or on shutdown, when
1415                  * the filesystem is busy.
1416                  */
1417                 cancel_work_sync(&fs_info->async_reclaim_work);
1418
1419                 /* wait for the uuid_scan task to finish */
1420                 down(&fs_info->uuid_tree_rescan_sem);
1421                 /* avoid complains from lockdep et al. */
1422                 up(&fs_info->uuid_tree_rescan_sem);
1423
1424                 sb->s_flags |= MS_RDONLY;
1425
1426                 btrfs_dev_replace_suspend_for_unmount(fs_info);
1427                 btrfs_scrub_cancel(fs_info);
1428                 btrfs_pause_balance(fs_info);
1429
1430                 ret = btrfs_commit_super(root);
1431                 if (ret)
1432                         goto restore;
1433         } else {
1434                 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1435                         btrfs_err(fs_info,
1436                                 "Remounting read-write after error is not allowed");
1437                         ret = -EINVAL;
1438                         goto restore;
1439                 }
1440                 if (fs_info->fs_devices->rw_devices == 0) {
1441                         ret = -EACCES;
1442                         goto restore;
1443                 }
1444
1445                 if (fs_info->fs_devices->missing_devices >
1446                      fs_info->num_tolerated_disk_barrier_failures &&
1447                     !(*flags & MS_RDONLY)) {
1448                         btrfs_warn(fs_info,
1449                                 "too many missing devices, writeable remount is not allowed");
1450                         ret = -EACCES;
1451                         goto restore;
1452                 }
1453
1454                 if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1455                         ret = -EINVAL;
1456                         goto restore;
1457                 }
1458
1459                 ret = btrfs_cleanup_fs_roots(fs_info);
1460                 if (ret)
1461                         goto restore;
1462
1463                 /* recover relocation */
1464                 mutex_lock(&fs_info->cleaner_mutex);
1465                 ret = btrfs_recover_relocation(root);
1466                 mutex_unlock(&fs_info->cleaner_mutex);
1467                 if (ret)
1468                         goto restore;
1469
1470                 ret = btrfs_resume_balance_async(fs_info);
1471                 if (ret)
1472                         goto restore;
1473
1474                 ret = btrfs_resume_dev_replace_async(fs_info);
1475                 if (ret) {
1476                         btrfs_warn(fs_info, "failed to resume dev_replace");
1477                         goto restore;
1478                 }
1479
1480                 if (!fs_info->uuid_root) {
1481                         btrfs_info(fs_info, "creating UUID tree");
1482                         ret = btrfs_create_uuid_tree(fs_info);
1483                         if (ret) {
1484                                 btrfs_warn(fs_info, "failed to create the UUID tree %d", ret);
1485                                 goto restore;
1486                         }
1487                 }
1488                 sb->s_flags &= ~MS_RDONLY;
1489         }
1490 out:
1491         wake_up_process(fs_info->transaction_kthread);
1492         btrfs_remount_cleanup(fs_info, old_opts);
1493         return 0;
1494
1495 restore:
1496         /* We've hit an error - don't reset MS_RDONLY */
1497         if (sb->s_flags & MS_RDONLY)
1498                 old_flags |= MS_RDONLY;
1499         sb->s_flags = old_flags;
1500         fs_info->mount_opt = old_opts;
1501         fs_info->compress_type = old_compress_type;
1502         fs_info->max_inline = old_max_inline;
1503         mutex_lock(&fs_info->chunk_mutex);
1504         fs_info->alloc_start = old_alloc_start;
1505         mutex_unlock(&fs_info->chunk_mutex);
1506         btrfs_resize_thread_pool(fs_info,
1507                 old_thread_pool_size, fs_info->thread_pool_size);
1508         fs_info->metadata_ratio = old_metadata_ratio;
1509         btrfs_remount_cleanup(fs_info, old_opts);
1510         return ret;
1511 }
1512
1513 /* Used to sort the devices by max_avail(descending sort) */
1514 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1515                                        const void *dev_info2)
1516 {
1517         if (((struct btrfs_device_info *)dev_info1)->max_avail >
1518             ((struct btrfs_device_info *)dev_info2)->max_avail)
1519                 return -1;
1520         else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1521                  ((struct btrfs_device_info *)dev_info2)->max_avail)
1522                 return 1;
1523         else
1524         return 0;
1525 }
1526
1527 /*
1528  * sort the devices by max_avail, in which max free extent size of each device
1529  * is stored.(Descending Sort)
1530  */
1531 static inline void btrfs_descending_sort_devices(
1532                                         struct btrfs_device_info *devices,
1533                                         size_t nr_devices)
1534 {
1535         sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1536              btrfs_cmp_device_free_bytes, NULL);
1537 }
1538
1539 /*
1540  * The helper to calc the free space on the devices that can be used to store
1541  * file data.
1542  */
1543 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1544 {
1545         struct btrfs_fs_info *fs_info = root->fs_info;
1546         struct btrfs_device_info *devices_info;
1547         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1548         struct btrfs_device *device;
1549         u64 skip_space;
1550         u64 type;
1551         u64 avail_space;
1552         u64 used_space;
1553         u64 min_stripe_size;
1554         int min_stripes = 1, num_stripes = 1;
1555         int i = 0, nr_devices;
1556         int ret;
1557
1558         nr_devices = fs_info->fs_devices->open_devices;
1559         BUG_ON(!nr_devices);
1560
1561         devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1562                                GFP_NOFS);
1563         if (!devices_info)
1564                 return -ENOMEM;
1565
1566         /* calc min stripe number for data space alloction */
1567         type = btrfs_get_alloc_profile(root, 1);
1568         if (type & BTRFS_BLOCK_GROUP_RAID0) {
1569                 min_stripes = 2;
1570                 num_stripes = nr_devices;
1571         } else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1572                 min_stripes = 2;
1573                 num_stripes = 2;
1574         } else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1575                 min_stripes = 4;
1576                 num_stripes = 4;
1577         }
1578
1579         if (type & BTRFS_BLOCK_GROUP_DUP)
1580                 min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1581         else
1582                 min_stripe_size = BTRFS_STRIPE_LEN;
1583
1584         list_for_each_entry(device, &fs_devices->devices, dev_list) {
1585                 if (!device->in_fs_metadata || !device->bdev ||
1586                     device->is_tgtdev_for_dev_replace)
1587                         continue;
1588
1589                 avail_space = device->total_bytes - device->bytes_used;
1590
1591                 /* align with stripe_len */
1592                 do_div(avail_space, BTRFS_STRIPE_LEN);
1593                 avail_space *= BTRFS_STRIPE_LEN;
1594
1595                 /*
1596                  * In order to avoid overwritting the superblock on the drive,
1597                  * btrfs starts at an offset of at least 1MB when doing chunk
1598                  * allocation.
1599                  */
1600                 skip_space = 1024 * 1024;
1601
1602                 /* user can set the offset in fs_info->alloc_start. */
1603                 if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1604                     device->total_bytes)
1605                         skip_space = max(fs_info->alloc_start, skip_space);
1606
1607                 /*
1608                  * btrfs can not use the free space in [0, skip_space - 1],
1609                  * we must subtract it from the total. In order to implement
1610                  * it, we account the used space in this range first.
1611                  */
1612                 ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1613                                                      &used_space);
1614                 if (ret) {
1615                         kfree(devices_info);
1616                         return ret;
1617                 }
1618
1619                 /* calc the free space in [0, skip_space - 1] */
1620                 skip_space -= used_space;
1621
1622                 /*
1623                  * we can use the free space in [0, skip_space - 1], subtract
1624                  * it from the total.
1625                  */
1626                 if (avail_space && avail_space >= skip_space)
1627                         avail_space -= skip_space;
1628                 else
1629                         avail_space = 0;
1630
1631                 if (avail_space < min_stripe_size)
1632                         continue;
1633
1634                 devices_info[i].dev = device;
1635                 devices_info[i].max_avail = avail_space;
1636
1637                 i++;
1638         }
1639
1640         nr_devices = i;
1641
1642         btrfs_descending_sort_devices(devices_info, nr_devices);
1643
1644         i = nr_devices - 1;
1645         avail_space = 0;
1646         while (nr_devices >= min_stripes) {
1647                 if (num_stripes > nr_devices)
1648                         num_stripes = nr_devices;
1649
1650                 if (devices_info[i].max_avail >= min_stripe_size) {
1651                         int j;
1652                         u64 alloc_size;
1653
1654                         avail_space += devices_info[i].max_avail * num_stripes;
1655                         alloc_size = devices_info[i].max_avail;
1656                         for (j = i + 1 - num_stripes; j <= i; j++)
1657                                 devices_info[j].max_avail -= alloc_size;
1658                 }
1659                 i--;
1660                 nr_devices--;
1661         }
1662
1663         kfree(devices_info);
1664         *free_bytes = avail_space;
1665         return 0;
1666 }
1667
1668 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1669 {
1670         struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1671         struct btrfs_super_block *disk_super = fs_info->super_copy;
1672         struct list_head *head = &fs_info->space_info;
1673         struct btrfs_space_info *found;
1674         u64 total_used = 0;
1675         u64 total_free_data = 0;
1676         int bits = dentry->d_sb->s_blocksize_bits;
1677         __be32 *fsid = (__be32 *)fs_info->fsid;
1678         int ret;
1679
1680         /* holding chunk_muext to avoid allocating new chunks */
1681         mutex_lock(&fs_info->chunk_mutex);
1682         rcu_read_lock();
1683         list_for_each_entry_rcu(found, head, list) {
1684                 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1685                         total_free_data += found->disk_total - found->disk_used;
1686                         total_free_data -=
1687                                 btrfs_account_ro_block_groups_free_space(found);
1688                 }
1689
1690                 total_used += found->disk_used;
1691         }
1692         rcu_read_unlock();
1693
1694         buf->f_namelen = BTRFS_NAME_LEN;
1695         buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1696         buf->f_bfree = buf->f_blocks - (total_used >> bits);
1697         buf->f_bsize = dentry->d_sb->s_blocksize;
1698         buf->f_type = BTRFS_SUPER_MAGIC;
1699         buf->f_bavail = total_free_data;
1700         ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
1701         if (ret) {
1702                 mutex_unlock(&fs_info->chunk_mutex);
1703                 return ret;
1704         }
1705         buf->f_bavail += total_free_data;
1706         buf->f_bavail = buf->f_bavail >> bits;
1707         mutex_unlock(&fs_info->chunk_mutex);
1708
1709         /* We treat it as constant endianness (it doesn't matter _which_)
1710            because we want the fsid to come out the same whether mounted
1711            on a big-endian or little-endian host */
1712         buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1713         buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1714         /* Mask in the root object ID too, to disambiguate subvols */
1715         buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1716         buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1717
1718         return 0;
1719 }
1720
1721 static void btrfs_kill_super(struct super_block *sb)
1722 {
1723         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1724         kill_anon_super(sb);
1725         free_fs_info(fs_info);
1726 }
1727
1728 static struct file_system_type btrfs_fs_type = {
1729         .owner          = THIS_MODULE,
1730         .name           = "btrfs",
1731         .mount          = btrfs_mount,
1732         .kill_sb        = btrfs_kill_super,
1733         .fs_flags       = FS_REQUIRES_DEV,
1734 };
1735 MODULE_ALIAS_FS("btrfs");
1736
1737 /*
1738  * used by btrfsctl to scan devices when no FS is mounted
1739  */
1740 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1741                                 unsigned long arg)
1742 {
1743         struct btrfs_ioctl_vol_args *vol;
1744         struct btrfs_fs_devices *fs_devices;
1745         int ret = -ENOTTY;
1746
1747         if (!capable(CAP_SYS_ADMIN))
1748                 return -EPERM;
1749
1750         vol = memdup_user((void __user *)arg, sizeof(*vol));
1751         if (IS_ERR(vol))
1752                 return PTR_ERR(vol);
1753
1754         switch (cmd) {
1755         case BTRFS_IOC_SCAN_DEV:
1756                 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1757                                             &btrfs_fs_type, &fs_devices);
1758                 break;
1759         case BTRFS_IOC_DEVICES_READY:
1760                 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1761                                             &btrfs_fs_type, &fs_devices);
1762                 if (ret)
1763                         break;
1764                 ret = !(fs_devices->num_devices == fs_devices->total_devices);
1765                 break;
1766         }
1767
1768         kfree(vol);
1769         return ret;
1770 }
1771
1772 static int btrfs_freeze(struct super_block *sb)
1773 {
1774         struct btrfs_trans_handle *trans;
1775         struct btrfs_root *root = btrfs_sb(sb)->tree_root;
1776
1777         trans = btrfs_attach_transaction_barrier(root);
1778         if (IS_ERR(trans)) {
1779                 /* no transaction, don't bother */
1780                 if (PTR_ERR(trans) == -ENOENT)
1781                         return 0;
1782                 return PTR_ERR(trans);
1783         }
1784         return btrfs_commit_transaction(trans, root);
1785 }
1786
1787 static int btrfs_unfreeze(struct super_block *sb)
1788 {
1789         return 0;
1790 }
1791
1792 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
1793 {
1794         struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
1795         struct btrfs_fs_devices *cur_devices;
1796         struct btrfs_device *dev, *first_dev = NULL;
1797         struct list_head *head;
1798         struct rcu_string *name;
1799
1800         mutex_lock(&fs_info->fs_devices->device_list_mutex);
1801         cur_devices = fs_info->fs_devices;
1802         while (cur_devices) {
1803                 head = &cur_devices->devices;
1804                 list_for_each_entry(dev, head, dev_list) {
1805                         if (dev->missing)
1806                                 continue;
1807                         if (!dev->name)
1808                                 continue;
1809                         if (!first_dev || dev->devid < first_dev->devid)
1810                                 first_dev = dev;
1811                 }
1812                 cur_devices = cur_devices->seed;
1813         }
1814
1815         if (first_dev) {
1816                 rcu_read_lock();
1817                 name = rcu_dereference(first_dev->name);
1818                 seq_escape(m, name->str, " \t\n\\");
1819                 rcu_read_unlock();
1820         } else {
1821                 WARN_ON(1);
1822         }
1823         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1824         return 0;
1825 }
1826
1827 static const struct super_operations btrfs_super_ops = {
1828         .drop_inode     = btrfs_drop_inode,
1829         .evict_inode    = btrfs_evict_inode,
1830         .put_super      = btrfs_put_super,
1831         .sync_fs        = btrfs_sync_fs,
1832         .show_options   = btrfs_show_options,
1833         .show_devname   = btrfs_show_devname,
1834         .write_inode    = btrfs_write_inode,
1835         .alloc_inode    = btrfs_alloc_inode,
1836         .destroy_inode  = btrfs_destroy_inode,
1837         .statfs         = btrfs_statfs,
1838         .remount_fs     = btrfs_remount,
1839         .freeze_fs      = btrfs_freeze,
1840         .unfreeze_fs    = btrfs_unfreeze,
1841 };
1842
1843 static const struct file_operations btrfs_ctl_fops = {
1844         .unlocked_ioctl  = btrfs_control_ioctl,
1845         .compat_ioctl = btrfs_control_ioctl,
1846         .owner   = THIS_MODULE,
1847         .llseek = noop_llseek,
1848 };
1849
1850 static struct miscdevice btrfs_misc = {
1851         .minor          = BTRFS_MINOR,
1852         .name           = "btrfs-control",
1853         .fops           = &btrfs_ctl_fops
1854 };
1855
1856 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1857 MODULE_ALIAS("devname:btrfs-control");
1858
1859 static int btrfs_interface_init(void)
1860 {
1861         return misc_register(&btrfs_misc);
1862 }
1863
1864 static void btrfs_interface_exit(void)
1865 {
1866         if (misc_deregister(&btrfs_misc) < 0)
1867                 printk(KERN_INFO "BTRFS: misc_deregister failed for control device\n");
1868 }
1869
1870 static void btrfs_print_info(void)
1871 {
1872         printk(KERN_INFO "Btrfs loaded"
1873 #ifdef CONFIG_BTRFS_DEBUG
1874                         ", debug=on"
1875 #endif
1876 #ifdef CONFIG_BTRFS_ASSERT
1877                         ", assert=on"
1878 #endif
1879 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1880                         ", integrity-checker=on"
1881 #endif
1882                         "\n");
1883 }
1884
1885 static int btrfs_run_sanity_tests(void)
1886 {
1887         int ret;
1888
1889         ret = btrfs_init_test_fs();
1890         if (ret)
1891                 return ret;
1892
1893         ret = btrfs_test_free_space_cache();
1894         if (ret)
1895                 goto out;
1896         ret = btrfs_test_extent_buffer_operations();
1897         if (ret)
1898                 goto out;
1899         ret = btrfs_test_extent_io();
1900         if (ret)
1901                 goto out;
1902         ret = btrfs_test_inodes();
1903         if (ret)
1904                 goto out;
1905         ret = btrfs_test_qgroups();
1906 out:
1907         btrfs_destroy_test_fs();
1908         return ret;
1909 }
1910
1911 static int __init init_btrfs_fs(void)
1912 {
1913         int err;
1914
1915         err = btrfs_hash_init();
1916         if (err)
1917                 return err;
1918
1919         btrfs_props_init();
1920
1921         err = btrfs_init_sysfs();
1922         if (err)
1923                 goto free_hash;
1924
1925         btrfs_init_compress();
1926
1927         err = btrfs_init_cachep();
1928         if (err)
1929                 goto free_compress;
1930
1931         err = extent_io_init();
1932         if (err)
1933                 goto free_cachep;
1934
1935         err = extent_map_init();
1936         if (err)
1937                 goto free_extent_io;
1938
1939         err = ordered_data_init();
1940         if (err)
1941                 goto free_extent_map;
1942
1943         err = btrfs_delayed_inode_init();
1944         if (err)
1945                 goto free_ordered_data;
1946
1947         err = btrfs_auto_defrag_init();
1948         if (err)
1949                 goto free_delayed_inode;
1950
1951         err = btrfs_delayed_ref_init();
1952         if (err)
1953                 goto free_auto_defrag;
1954
1955         err = btrfs_prelim_ref_init();
1956         if (err)
1957                 goto free_prelim_ref;
1958
1959         err = btrfs_interface_init();
1960         if (err)
1961                 goto free_delayed_ref;
1962
1963         btrfs_init_lockdep();
1964
1965         btrfs_print_info();
1966
1967         err = btrfs_run_sanity_tests();
1968         if (err)
1969                 goto unregister_ioctl;
1970
1971         err = register_filesystem(&btrfs_fs_type);
1972         if (err)
1973                 goto unregister_ioctl;
1974
1975         return 0;
1976
1977 unregister_ioctl:
1978         btrfs_interface_exit();
1979 free_prelim_ref:
1980         btrfs_prelim_ref_exit();
1981 free_delayed_ref:
1982         btrfs_delayed_ref_exit();
1983 free_auto_defrag:
1984         btrfs_auto_defrag_exit();
1985 free_delayed_inode:
1986         btrfs_delayed_inode_exit();
1987 free_ordered_data:
1988         ordered_data_exit();
1989 free_extent_map:
1990         extent_map_exit();
1991 free_extent_io:
1992         extent_io_exit();
1993 free_cachep:
1994         btrfs_destroy_cachep();
1995 free_compress:
1996         btrfs_exit_compress();
1997         btrfs_exit_sysfs();
1998 free_hash:
1999         btrfs_hash_exit();
2000         return err;
2001 }
2002
2003 static void __exit exit_btrfs_fs(void)
2004 {
2005         btrfs_destroy_cachep();
2006         btrfs_delayed_ref_exit();
2007         btrfs_auto_defrag_exit();
2008         btrfs_delayed_inode_exit();
2009         btrfs_prelim_ref_exit();
2010         ordered_data_exit();
2011         extent_map_exit();
2012         extent_io_exit();
2013         btrfs_interface_exit();
2014         unregister_filesystem(&btrfs_fs_type);
2015         btrfs_exit_sysfs();
2016         btrfs_cleanup_fs_uuids();
2017         btrfs_exit_compress();
2018         btrfs_hash_exit();
2019 }
2020
2021 late_initcall(init_btrfs_fs);
2022 module_exit(exit_btrfs_fs)
2023
2024 MODULE_LICENSE("GPL");