2fe3ef5e9de3e8ac0cfb65bf3c0da38ff6b419d6
[cascardo/linux.git] / fs / btrfs / transaction.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 #include "qgroup.h"
35
36 #define BTRFS_ROOT_TRANS_TAG 0
37
38 static unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39         [TRANS_STATE_RUNNING]           = 0U,
40         [TRANS_STATE_BLOCKED]           = (__TRANS_USERSPACE |
41                                            __TRANS_START),
42         [TRANS_STATE_COMMIT_START]      = (__TRANS_USERSPACE |
43                                            __TRANS_START |
44                                            __TRANS_ATTACH),
45         [TRANS_STATE_COMMIT_DOING]      = (__TRANS_USERSPACE |
46                                            __TRANS_START |
47                                            __TRANS_ATTACH |
48                                            __TRANS_JOIN),
49         [TRANS_STATE_UNBLOCKED]         = (__TRANS_USERSPACE |
50                                            __TRANS_START |
51                                            __TRANS_ATTACH |
52                                            __TRANS_JOIN |
53                                            __TRANS_JOIN_NOLOCK),
54         [TRANS_STATE_COMPLETED]         = (__TRANS_USERSPACE |
55                                            __TRANS_START |
56                                            __TRANS_ATTACH |
57                                            __TRANS_JOIN |
58                                            __TRANS_JOIN_NOLOCK),
59 };
60
61 void btrfs_put_transaction(struct btrfs_transaction *transaction)
62 {
63         WARN_ON(atomic_read(&transaction->use_count) == 0);
64         if (atomic_dec_and_test(&transaction->use_count)) {
65                 BUG_ON(!list_empty(&transaction->list));
66                 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67                 while (!list_empty(&transaction->pending_chunks)) {
68                         struct extent_map *em;
69
70                         em = list_first_entry(&transaction->pending_chunks,
71                                               struct extent_map, list);
72                         list_del_init(&em->list);
73                         free_extent_map(em);
74                 }
75                 kmem_cache_free(btrfs_transaction_cachep, transaction);
76         }
77 }
78
79 static void clear_btree_io_tree(struct extent_io_tree *tree)
80 {
81         spin_lock(&tree->lock);
82         while (!RB_EMPTY_ROOT(&tree->state)) {
83                 struct rb_node *node;
84                 struct extent_state *state;
85
86                 node = rb_first(&tree->state);
87                 state = rb_entry(node, struct extent_state, rb_node);
88                 rb_erase(&state->rb_node, &tree->state);
89                 RB_CLEAR_NODE(&state->rb_node);
90                 /*
91                  * btree io trees aren't supposed to have tasks waiting for
92                  * changes in the flags of extent states ever.
93                  */
94                 ASSERT(!waitqueue_active(&state->wq));
95                 free_extent_state(state);
96                 if (need_resched()) {
97                         spin_unlock(&tree->lock);
98                         cond_resched();
99                         spin_lock(&tree->lock);
100                 }
101         }
102         spin_unlock(&tree->lock);
103 }
104
105 static noinline void switch_commit_roots(struct btrfs_transaction *trans,
106                                          struct btrfs_fs_info *fs_info)
107 {
108         struct btrfs_root *root, *tmp;
109
110         down_write(&fs_info->commit_root_sem);
111         list_for_each_entry_safe(root, tmp, &trans->switch_commits,
112                                  dirty_list) {
113                 list_del_init(&root->dirty_list);
114                 free_extent_buffer(root->commit_root);
115                 root->commit_root = btrfs_root_node(root);
116                 if (is_fstree(root->objectid))
117                         btrfs_unpin_free_ino(root);
118                 clear_btree_io_tree(&root->dirty_log_pages);
119         }
120         up_write(&fs_info->commit_root_sem);
121 }
122
123 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
124                                          unsigned int type)
125 {
126         if (type & TRANS_EXTWRITERS)
127                 atomic_inc(&trans->num_extwriters);
128 }
129
130 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
131                                          unsigned int type)
132 {
133         if (type & TRANS_EXTWRITERS)
134                 atomic_dec(&trans->num_extwriters);
135 }
136
137 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
138                                           unsigned int type)
139 {
140         atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
141 }
142
143 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
144 {
145         return atomic_read(&trans->num_extwriters);
146 }
147
148 /*
149  * either allocate a new transaction or hop into the existing one
150  */
151 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
152 {
153         struct btrfs_transaction *cur_trans;
154         struct btrfs_fs_info *fs_info = root->fs_info;
155
156         spin_lock(&fs_info->trans_lock);
157 loop:
158         /* The file system has been taken offline. No new transactions. */
159         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
160                 spin_unlock(&fs_info->trans_lock);
161                 return -EROFS;
162         }
163
164         cur_trans = fs_info->running_transaction;
165         if (cur_trans) {
166                 if (cur_trans->aborted) {
167                         spin_unlock(&fs_info->trans_lock);
168                         return cur_trans->aborted;
169                 }
170                 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
171                         spin_unlock(&fs_info->trans_lock);
172                         return -EBUSY;
173                 }
174                 atomic_inc(&cur_trans->use_count);
175                 atomic_inc(&cur_trans->num_writers);
176                 extwriter_counter_inc(cur_trans, type);
177                 spin_unlock(&fs_info->trans_lock);
178                 return 0;
179         }
180         spin_unlock(&fs_info->trans_lock);
181
182         /*
183          * If we are ATTACH, we just want to catch the current transaction,
184          * and commit it. If there is no transaction, just return ENOENT.
185          */
186         if (type == TRANS_ATTACH)
187                 return -ENOENT;
188
189         /*
190          * JOIN_NOLOCK only happens during the transaction commit, so
191          * it is impossible that ->running_transaction is NULL
192          */
193         BUG_ON(type == TRANS_JOIN_NOLOCK);
194
195         cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
196         if (!cur_trans)
197                 return -ENOMEM;
198
199         spin_lock(&fs_info->trans_lock);
200         if (fs_info->running_transaction) {
201                 /*
202                  * someone started a transaction after we unlocked.  Make sure
203                  * to redo the checks above
204                  */
205                 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
206                 goto loop;
207         } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
208                 spin_unlock(&fs_info->trans_lock);
209                 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
210                 return -EROFS;
211         }
212
213         atomic_set(&cur_trans->num_writers, 1);
214         extwriter_counter_init(cur_trans, type);
215         init_waitqueue_head(&cur_trans->writer_wait);
216         init_waitqueue_head(&cur_trans->commit_wait);
217         cur_trans->state = TRANS_STATE_RUNNING;
218         /*
219          * One for this trans handle, one so it will live on until we
220          * commit the transaction.
221          */
222         atomic_set(&cur_trans->use_count, 2);
223         cur_trans->have_free_bgs = 0;
224         cur_trans->start_time = get_seconds();
225
226         cur_trans->delayed_refs.href_root = RB_ROOT;
227         atomic_set(&cur_trans->delayed_refs.num_entries, 0);
228         cur_trans->delayed_refs.num_heads_ready = 0;
229         cur_trans->delayed_refs.num_heads = 0;
230         cur_trans->delayed_refs.flushing = 0;
231         cur_trans->delayed_refs.run_delayed_start = 0;
232
233         /*
234          * although the tree mod log is per file system and not per transaction,
235          * the log must never go across transaction boundaries.
236          */
237         smp_mb();
238         if (!list_empty(&fs_info->tree_mod_seq_list))
239                 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when "
240                         "creating a fresh transaction\n");
241         if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
242                 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when "
243                         "creating a fresh transaction\n");
244         atomic64_set(&fs_info->tree_mod_seq, 0);
245
246         spin_lock_init(&cur_trans->delayed_refs.lock);
247
248         INIT_LIST_HEAD(&cur_trans->pending_snapshots);
249         INIT_LIST_HEAD(&cur_trans->pending_chunks);
250         INIT_LIST_HEAD(&cur_trans->switch_commits);
251         INIT_LIST_HEAD(&cur_trans->pending_ordered);
252         INIT_LIST_HEAD(&cur_trans->dirty_bgs);
253         spin_lock_init(&cur_trans->dirty_bgs_lock);
254         list_add_tail(&cur_trans->list, &fs_info->trans_list);
255         extent_io_tree_init(&cur_trans->dirty_pages,
256                              fs_info->btree_inode->i_mapping);
257         fs_info->generation++;
258         cur_trans->transid = fs_info->generation;
259         fs_info->running_transaction = cur_trans;
260         cur_trans->aborted = 0;
261         spin_unlock(&fs_info->trans_lock);
262
263         return 0;
264 }
265
266 /*
267  * this does all the record keeping required to make sure that a reference
268  * counted root is properly recorded in a given transaction.  This is required
269  * to make sure the old root from before we joined the transaction is deleted
270  * when the transaction commits
271  */
272 static int record_root_in_trans(struct btrfs_trans_handle *trans,
273                                struct btrfs_root *root)
274 {
275         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
276             root->last_trans < trans->transid) {
277                 WARN_ON(root == root->fs_info->extent_root);
278                 WARN_ON(root->commit_root != root->node);
279
280                 /*
281                  * see below for IN_TRANS_SETUP usage rules
282                  * we have the reloc mutex held now, so there
283                  * is only one writer in this function
284                  */
285                 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
286
287                 /* make sure readers find IN_TRANS_SETUP before
288                  * they find our root->last_trans update
289                  */
290                 smp_wmb();
291
292                 spin_lock(&root->fs_info->fs_roots_radix_lock);
293                 if (root->last_trans == trans->transid) {
294                         spin_unlock(&root->fs_info->fs_roots_radix_lock);
295                         return 0;
296                 }
297                 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
298                            (unsigned long)root->root_key.objectid,
299                            BTRFS_ROOT_TRANS_TAG);
300                 spin_unlock(&root->fs_info->fs_roots_radix_lock);
301                 root->last_trans = trans->transid;
302
303                 /* this is pretty tricky.  We don't want to
304                  * take the relocation lock in btrfs_record_root_in_trans
305                  * unless we're really doing the first setup for this root in
306                  * this transaction.
307                  *
308                  * Normally we'd use root->last_trans as a flag to decide
309                  * if we want to take the expensive mutex.
310                  *
311                  * But, we have to set root->last_trans before we
312                  * init the relocation root, otherwise, we trip over warnings
313                  * in ctree.c.  The solution used here is to flag ourselves
314                  * with root IN_TRANS_SETUP.  When this is 1, we're still
315                  * fixing up the reloc trees and everyone must wait.
316                  *
317                  * When this is zero, they can trust root->last_trans and fly
318                  * through btrfs_record_root_in_trans without having to take the
319                  * lock.  smp_wmb() makes sure that all the writes above are
320                  * done before we pop in the zero below
321                  */
322                 btrfs_init_reloc_root(trans, root);
323                 smp_mb__before_atomic();
324                 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
325         }
326         return 0;
327 }
328
329
330 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
331                                struct btrfs_root *root)
332 {
333         if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
334                 return 0;
335
336         /*
337          * see record_root_in_trans for comments about IN_TRANS_SETUP usage
338          * and barriers
339          */
340         smp_rmb();
341         if (root->last_trans == trans->transid &&
342             !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
343                 return 0;
344
345         mutex_lock(&root->fs_info->reloc_mutex);
346         record_root_in_trans(trans, root);
347         mutex_unlock(&root->fs_info->reloc_mutex);
348
349         return 0;
350 }
351
352 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
353 {
354         return (trans->state >= TRANS_STATE_BLOCKED &&
355                 trans->state < TRANS_STATE_UNBLOCKED &&
356                 !trans->aborted);
357 }
358
359 /* wait for commit against the current transaction to become unblocked
360  * when this is done, it is safe to start a new transaction, but the current
361  * transaction might not be fully on disk.
362  */
363 static void wait_current_trans(struct btrfs_root *root)
364 {
365         struct btrfs_transaction *cur_trans;
366
367         spin_lock(&root->fs_info->trans_lock);
368         cur_trans = root->fs_info->running_transaction;
369         if (cur_trans && is_transaction_blocked(cur_trans)) {
370                 atomic_inc(&cur_trans->use_count);
371                 spin_unlock(&root->fs_info->trans_lock);
372
373                 wait_event(root->fs_info->transaction_wait,
374                            cur_trans->state >= TRANS_STATE_UNBLOCKED ||
375                            cur_trans->aborted);
376                 btrfs_put_transaction(cur_trans);
377         } else {
378                 spin_unlock(&root->fs_info->trans_lock);
379         }
380 }
381
382 static int may_wait_transaction(struct btrfs_root *root, int type)
383 {
384         if (root->fs_info->log_root_recovering)
385                 return 0;
386
387         if (type == TRANS_USERSPACE)
388                 return 1;
389
390         if (type == TRANS_START &&
391             !atomic_read(&root->fs_info->open_ioctl_trans))
392                 return 1;
393
394         return 0;
395 }
396
397 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
398 {
399         if (!root->fs_info->reloc_ctl ||
400             !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
401             root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
402             root->reloc_root)
403                 return false;
404
405         return true;
406 }
407
408 static struct btrfs_trans_handle *
409 start_transaction(struct btrfs_root *root, u64 num_items, unsigned int type,
410                   enum btrfs_reserve_flush_enum flush)
411 {
412         struct btrfs_trans_handle *h;
413         struct btrfs_transaction *cur_trans;
414         u64 num_bytes = 0;
415         u64 qgroup_reserved = 0;
416         bool reloc_reserved = false;
417         int ret;
418
419         /* Send isn't supposed to start transactions. */
420         ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
421
422         if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
423                 return ERR_PTR(-EROFS);
424
425         if (current->journal_info) {
426                 WARN_ON(type & TRANS_EXTWRITERS);
427                 h = current->journal_info;
428                 h->use_count++;
429                 WARN_ON(h->use_count > 2);
430                 h->orig_rsv = h->block_rsv;
431                 h->block_rsv = NULL;
432                 goto got_it;
433         }
434
435         /*
436          * Do the reservation before we join the transaction so we can do all
437          * the appropriate flushing if need be.
438          */
439         if (num_items > 0 && root != root->fs_info->chunk_root) {
440                 if (root->fs_info->quota_enabled &&
441                     is_fstree(root->root_key.objectid)) {
442                         qgroup_reserved = num_items * root->nodesize;
443                         ret = btrfs_qgroup_reserve(root, qgroup_reserved);
444                         if (ret)
445                                 return ERR_PTR(ret);
446                 }
447
448                 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
449                 /*
450                  * Do the reservation for the relocation root creation
451                  */
452                 if (need_reserve_reloc_root(root)) {
453                         num_bytes += root->nodesize;
454                         reloc_reserved = true;
455                 }
456
457                 ret = btrfs_block_rsv_add(root,
458                                           &root->fs_info->trans_block_rsv,
459                                           num_bytes, flush);
460                 if (ret)
461                         goto reserve_fail;
462         }
463 again:
464         h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
465         if (!h) {
466                 ret = -ENOMEM;
467                 goto alloc_fail;
468         }
469
470         /*
471          * If we are JOIN_NOLOCK we're already committing a transaction and
472          * waiting on this guy, so we don't need to do the sb_start_intwrite
473          * because we're already holding a ref.  We need this because we could
474          * have raced in and did an fsync() on a file which can kick a commit
475          * and then we deadlock with somebody doing a freeze.
476          *
477          * If we are ATTACH, it means we just want to catch the current
478          * transaction and commit it, so we needn't do sb_start_intwrite(). 
479          */
480         if (type & __TRANS_FREEZABLE)
481                 sb_start_intwrite(root->fs_info->sb);
482
483         if (may_wait_transaction(root, type))
484                 wait_current_trans(root);
485
486         do {
487                 ret = join_transaction(root, type);
488                 if (ret == -EBUSY) {
489                         wait_current_trans(root);
490                         if (unlikely(type == TRANS_ATTACH))
491                                 ret = -ENOENT;
492                 }
493         } while (ret == -EBUSY);
494
495         if (ret < 0) {
496                 /* We must get the transaction if we are JOIN_NOLOCK. */
497                 BUG_ON(type == TRANS_JOIN_NOLOCK);
498                 goto join_fail;
499         }
500
501         cur_trans = root->fs_info->running_transaction;
502
503         h->transid = cur_trans->transid;
504         h->transaction = cur_trans;
505         h->blocks_used = 0;
506         h->bytes_reserved = 0;
507         h->root = root;
508         h->delayed_ref_updates = 0;
509         h->use_count = 1;
510         h->adding_csums = 0;
511         h->block_rsv = NULL;
512         h->orig_rsv = NULL;
513         h->aborted = 0;
514         h->qgroup_reserved = 0;
515         h->delayed_ref_elem.seq = 0;
516         h->type = type;
517         h->allocating_chunk = false;
518         h->reloc_reserved = false;
519         h->sync = false;
520         INIT_LIST_HEAD(&h->qgroup_ref_list);
521         INIT_LIST_HEAD(&h->new_bgs);
522         INIT_LIST_HEAD(&h->ordered);
523
524         smp_mb();
525         if (cur_trans->state >= TRANS_STATE_BLOCKED &&
526             may_wait_transaction(root, type)) {
527                 current->journal_info = h;
528                 btrfs_commit_transaction(h, root);
529                 goto again;
530         }
531
532         if (num_bytes) {
533                 trace_btrfs_space_reservation(root->fs_info, "transaction",
534                                               h->transid, num_bytes, 1);
535                 h->block_rsv = &root->fs_info->trans_block_rsv;
536                 h->bytes_reserved = num_bytes;
537                 h->reloc_reserved = reloc_reserved;
538         }
539         h->qgroup_reserved = qgroup_reserved;
540
541 got_it:
542         btrfs_record_root_in_trans(h, root);
543
544         if (!current->journal_info && type != TRANS_USERSPACE)
545                 current->journal_info = h;
546         return h;
547
548 join_fail:
549         if (type & __TRANS_FREEZABLE)
550                 sb_end_intwrite(root->fs_info->sb);
551         kmem_cache_free(btrfs_trans_handle_cachep, h);
552 alloc_fail:
553         if (num_bytes)
554                 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
555                                         num_bytes);
556 reserve_fail:
557         if (qgroup_reserved)
558                 btrfs_qgroup_free(root, qgroup_reserved);
559         return ERR_PTR(ret);
560 }
561
562 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
563                                                    int num_items)
564 {
565         return start_transaction(root, num_items, TRANS_START,
566                                  BTRFS_RESERVE_FLUSH_ALL);
567 }
568
569 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
570                                         struct btrfs_root *root, int num_items)
571 {
572         return start_transaction(root, num_items, TRANS_START,
573                                  BTRFS_RESERVE_FLUSH_LIMIT);
574 }
575
576 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
577 {
578         return start_transaction(root, 0, TRANS_JOIN, 0);
579 }
580
581 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
582 {
583         return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
584 }
585
586 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
587 {
588         return start_transaction(root, 0, TRANS_USERSPACE, 0);
589 }
590
591 /*
592  * btrfs_attach_transaction() - catch the running transaction
593  *
594  * It is used when we want to commit the current the transaction, but
595  * don't want to start a new one.
596  *
597  * Note: If this function return -ENOENT, it just means there is no
598  * running transaction. But it is possible that the inactive transaction
599  * is still in the memory, not fully on disk. If you hope there is no
600  * inactive transaction in the fs when -ENOENT is returned, you should
601  * invoke
602  *     btrfs_attach_transaction_barrier()
603  */
604 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
605 {
606         return start_transaction(root, 0, TRANS_ATTACH, 0);
607 }
608
609 /*
610  * btrfs_attach_transaction_barrier() - catch the running transaction
611  *
612  * It is similar to the above function, the differentia is this one
613  * will wait for all the inactive transactions until they fully
614  * complete.
615  */
616 struct btrfs_trans_handle *
617 btrfs_attach_transaction_barrier(struct btrfs_root *root)
618 {
619         struct btrfs_trans_handle *trans;
620
621         trans = start_transaction(root, 0, TRANS_ATTACH, 0);
622         if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
623                 btrfs_wait_for_commit(root, 0);
624
625         return trans;
626 }
627
628 /* wait for a transaction commit to be fully complete */
629 static noinline void wait_for_commit(struct btrfs_root *root,
630                                     struct btrfs_transaction *commit)
631 {
632         wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
633 }
634
635 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
636 {
637         struct btrfs_transaction *cur_trans = NULL, *t;
638         int ret = 0;
639
640         if (transid) {
641                 if (transid <= root->fs_info->last_trans_committed)
642                         goto out;
643
644                 /* find specified transaction */
645                 spin_lock(&root->fs_info->trans_lock);
646                 list_for_each_entry(t, &root->fs_info->trans_list, list) {
647                         if (t->transid == transid) {
648                                 cur_trans = t;
649                                 atomic_inc(&cur_trans->use_count);
650                                 ret = 0;
651                                 break;
652                         }
653                         if (t->transid > transid) {
654                                 ret = 0;
655                                 break;
656                         }
657                 }
658                 spin_unlock(&root->fs_info->trans_lock);
659
660                 /*
661                  * The specified transaction doesn't exist, or we
662                  * raced with btrfs_commit_transaction
663                  */
664                 if (!cur_trans) {
665                         if (transid > root->fs_info->last_trans_committed)
666                                 ret = -EINVAL;
667                         goto out;
668                 }
669         } else {
670                 /* find newest transaction that is committing | committed */
671                 spin_lock(&root->fs_info->trans_lock);
672                 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
673                                             list) {
674                         if (t->state >= TRANS_STATE_COMMIT_START) {
675                                 if (t->state == TRANS_STATE_COMPLETED)
676                                         break;
677                                 cur_trans = t;
678                                 atomic_inc(&cur_trans->use_count);
679                                 break;
680                         }
681                 }
682                 spin_unlock(&root->fs_info->trans_lock);
683                 if (!cur_trans)
684                         goto out;  /* nothing committing|committed */
685         }
686
687         wait_for_commit(root, cur_trans);
688         btrfs_put_transaction(cur_trans);
689 out:
690         return ret;
691 }
692
693 void btrfs_throttle(struct btrfs_root *root)
694 {
695         if (!atomic_read(&root->fs_info->open_ioctl_trans))
696                 wait_current_trans(root);
697 }
698
699 static int should_end_transaction(struct btrfs_trans_handle *trans,
700                                   struct btrfs_root *root)
701 {
702         if (root->fs_info->global_block_rsv.space_info->full &&
703             btrfs_check_space_for_delayed_refs(trans, root))
704                 return 1;
705
706         return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
707 }
708
709 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
710                                  struct btrfs_root *root)
711 {
712         struct btrfs_transaction *cur_trans = trans->transaction;
713         int updates;
714         int err;
715
716         smp_mb();
717         if (cur_trans->state >= TRANS_STATE_BLOCKED ||
718             cur_trans->delayed_refs.flushing)
719                 return 1;
720
721         updates = trans->delayed_ref_updates;
722         trans->delayed_ref_updates = 0;
723         if (updates) {
724                 err = btrfs_run_delayed_refs(trans, root, updates);
725                 if (err) /* Error code will also eval true */
726                         return err;
727         }
728
729         return should_end_transaction(trans, root);
730 }
731
732 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
733                           struct btrfs_root *root, int throttle)
734 {
735         struct btrfs_transaction *cur_trans = trans->transaction;
736         struct btrfs_fs_info *info = root->fs_info;
737         unsigned long cur = trans->delayed_ref_updates;
738         int lock = (trans->type != TRANS_JOIN_NOLOCK);
739         int err = 0;
740         int must_run_delayed_refs = 0;
741
742         if (trans->use_count > 1) {
743                 trans->use_count--;
744                 trans->block_rsv = trans->orig_rsv;
745                 return 0;
746         }
747
748         btrfs_trans_release_metadata(trans, root);
749         trans->block_rsv = NULL;
750
751         if (!list_empty(&trans->new_bgs))
752                 btrfs_create_pending_block_groups(trans, root);
753
754         if (!list_empty(&trans->ordered)) {
755                 spin_lock(&info->trans_lock);
756                 list_splice(&trans->ordered, &cur_trans->pending_ordered);
757                 spin_unlock(&info->trans_lock);
758         }
759
760         trans->delayed_ref_updates = 0;
761         if (!trans->sync) {
762                 must_run_delayed_refs =
763                         btrfs_should_throttle_delayed_refs(trans, root);
764                 cur = max_t(unsigned long, cur, 32);
765
766                 /*
767                  * don't make the caller wait if they are from a NOLOCK
768                  * or ATTACH transaction, it will deadlock with commit
769                  */
770                 if (must_run_delayed_refs == 1 &&
771                     (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
772                         must_run_delayed_refs = 2;
773         }
774
775         if (trans->qgroup_reserved) {
776                 /*
777                  * the same root has to be passed here between start_transaction
778                  * and end_transaction. Subvolume quota depends on this.
779                  */
780                 btrfs_qgroup_free(trans->root, trans->qgroup_reserved);
781                 trans->qgroup_reserved = 0;
782         }
783
784         btrfs_trans_release_metadata(trans, root);
785         trans->block_rsv = NULL;
786
787         if (!list_empty(&trans->new_bgs))
788                 btrfs_create_pending_block_groups(trans, root);
789
790         if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
791             should_end_transaction(trans, root) &&
792             ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
793                 spin_lock(&info->trans_lock);
794                 if (cur_trans->state == TRANS_STATE_RUNNING)
795                         cur_trans->state = TRANS_STATE_BLOCKED;
796                 spin_unlock(&info->trans_lock);
797         }
798
799         if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
800                 if (throttle)
801                         return btrfs_commit_transaction(trans, root);
802                 else
803                         wake_up_process(info->transaction_kthread);
804         }
805
806         if (trans->type & __TRANS_FREEZABLE)
807                 sb_end_intwrite(root->fs_info->sb);
808
809         WARN_ON(cur_trans != info->running_transaction);
810         WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
811         atomic_dec(&cur_trans->num_writers);
812         extwriter_counter_dec(cur_trans, trans->type);
813
814         smp_mb();
815         if (waitqueue_active(&cur_trans->writer_wait))
816                 wake_up(&cur_trans->writer_wait);
817         btrfs_put_transaction(cur_trans);
818
819         if (current->journal_info == trans)
820                 current->journal_info = NULL;
821
822         if (throttle)
823                 btrfs_run_delayed_iputs(root);
824
825         if (trans->aborted ||
826             test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
827                 wake_up_process(info->transaction_kthread);
828                 err = -EIO;
829         }
830         assert_qgroups_uptodate(trans);
831
832         kmem_cache_free(btrfs_trans_handle_cachep, trans);
833         if (must_run_delayed_refs) {
834                 btrfs_async_run_delayed_refs(root, cur,
835                                              must_run_delayed_refs == 1);
836         }
837         return err;
838 }
839
840 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
841                           struct btrfs_root *root)
842 {
843         return __btrfs_end_transaction(trans, root, 0);
844 }
845
846 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
847                                    struct btrfs_root *root)
848 {
849         return __btrfs_end_transaction(trans, root, 1);
850 }
851
852 /*
853  * when btree blocks are allocated, they have some corresponding bits set for
854  * them in one of two extent_io trees.  This is used to make sure all of
855  * those extents are sent to disk but does not wait on them
856  */
857 int btrfs_write_marked_extents(struct btrfs_root *root,
858                                struct extent_io_tree *dirty_pages, int mark)
859 {
860         int err = 0;
861         int werr = 0;
862         struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
863         struct extent_state *cached_state = NULL;
864         u64 start = 0;
865         u64 end;
866
867         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
868                                       mark, &cached_state)) {
869                 bool wait_writeback = false;
870
871                 err = convert_extent_bit(dirty_pages, start, end,
872                                          EXTENT_NEED_WAIT,
873                                          mark, &cached_state, GFP_NOFS);
874                 /*
875                  * convert_extent_bit can return -ENOMEM, which is most of the
876                  * time a temporary error. So when it happens, ignore the error
877                  * and wait for writeback of this range to finish - because we
878                  * failed to set the bit EXTENT_NEED_WAIT for the range, a call
879                  * to btrfs_wait_marked_extents() would not know that writeback
880                  * for this range started and therefore wouldn't wait for it to
881                  * finish - we don't want to commit a superblock that points to
882                  * btree nodes/leafs for which writeback hasn't finished yet
883                  * (and without errors).
884                  * We cleanup any entries left in the io tree when committing
885                  * the transaction (through clear_btree_io_tree()).
886                  */
887                 if (err == -ENOMEM) {
888                         err = 0;
889                         wait_writeback = true;
890                 }
891                 if (!err)
892                         err = filemap_fdatawrite_range(mapping, start, end);
893                 if (err)
894                         werr = err;
895                 else if (wait_writeback)
896                         werr = filemap_fdatawait_range(mapping, start, end);
897                 free_extent_state(cached_state);
898                 cached_state = NULL;
899                 cond_resched();
900                 start = end + 1;
901         }
902         return werr;
903 }
904
905 /*
906  * when btree blocks are allocated, they have some corresponding bits set for
907  * them in one of two extent_io trees.  This is used to make sure all of
908  * those extents are on disk for transaction or log commit.  We wait
909  * on all the pages and clear them from the dirty pages state tree
910  */
911 int btrfs_wait_marked_extents(struct btrfs_root *root,
912                               struct extent_io_tree *dirty_pages, int mark)
913 {
914         int err = 0;
915         int werr = 0;
916         struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
917         struct extent_state *cached_state = NULL;
918         u64 start = 0;
919         u64 end;
920         struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
921         bool errors = false;
922
923         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
924                                       EXTENT_NEED_WAIT, &cached_state)) {
925                 /*
926                  * Ignore -ENOMEM errors returned by clear_extent_bit().
927                  * When committing the transaction, we'll remove any entries
928                  * left in the io tree. For a log commit, we don't remove them
929                  * after committing the log because the tree can be accessed
930                  * concurrently - we do it only at transaction commit time when
931                  * it's safe to do it (through clear_btree_io_tree()).
932                  */
933                 err = clear_extent_bit(dirty_pages, start, end,
934                                        EXTENT_NEED_WAIT,
935                                        0, 0, &cached_state, GFP_NOFS);
936                 if (err == -ENOMEM)
937                         err = 0;
938                 if (!err)
939                         err = filemap_fdatawait_range(mapping, start, end);
940                 if (err)
941                         werr = err;
942                 free_extent_state(cached_state);
943                 cached_state = NULL;
944                 cond_resched();
945                 start = end + 1;
946         }
947         if (err)
948                 werr = err;
949
950         if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
951                 if ((mark & EXTENT_DIRTY) &&
952                     test_and_clear_bit(BTRFS_INODE_BTREE_LOG1_ERR,
953                                        &btree_ino->runtime_flags))
954                         errors = true;
955
956                 if ((mark & EXTENT_NEW) &&
957                     test_and_clear_bit(BTRFS_INODE_BTREE_LOG2_ERR,
958                                        &btree_ino->runtime_flags))
959                         errors = true;
960         } else {
961                 if (test_and_clear_bit(BTRFS_INODE_BTREE_ERR,
962                                        &btree_ino->runtime_flags))
963                         errors = true;
964         }
965
966         if (errors && !werr)
967                 werr = -EIO;
968
969         return werr;
970 }
971
972 /*
973  * when btree blocks are allocated, they have some corresponding bits set for
974  * them in one of two extent_io trees.  This is used to make sure all of
975  * those extents are on disk for transaction or log commit
976  */
977 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
978                                 struct extent_io_tree *dirty_pages, int mark)
979 {
980         int ret;
981         int ret2;
982         struct blk_plug plug;
983
984         blk_start_plug(&plug);
985         ret = btrfs_write_marked_extents(root, dirty_pages, mark);
986         blk_finish_plug(&plug);
987         ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
988
989         if (ret)
990                 return ret;
991         if (ret2)
992                 return ret2;
993         return 0;
994 }
995
996 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
997                                      struct btrfs_root *root)
998 {
999         int ret;
1000
1001         ret = btrfs_write_and_wait_marked_extents(root,
1002                                            &trans->transaction->dirty_pages,
1003                                            EXTENT_DIRTY);
1004         clear_btree_io_tree(&trans->transaction->dirty_pages);
1005
1006         return ret;
1007 }
1008
1009 /*
1010  * this is used to update the root pointer in the tree of tree roots.
1011  *
1012  * But, in the case of the extent allocation tree, updating the root
1013  * pointer may allocate blocks which may change the root of the extent
1014  * allocation tree.
1015  *
1016  * So, this loops and repeats and makes sure the cowonly root didn't
1017  * change while the root pointer was being updated in the metadata.
1018  */
1019 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1020                                struct btrfs_root *root)
1021 {
1022         int ret;
1023         u64 old_root_bytenr;
1024         u64 old_root_used;
1025         struct btrfs_root *tree_root = root->fs_info->tree_root;
1026
1027         old_root_used = btrfs_root_used(&root->root_item);
1028         btrfs_write_dirty_block_groups(trans, root);
1029
1030         while (1) {
1031                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1032                 if (old_root_bytenr == root->node->start &&
1033                     old_root_used == btrfs_root_used(&root->root_item))
1034                         break;
1035
1036                 btrfs_set_root_node(&root->root_item, root->node);
1037                 ret = btrfs_update_root(trans, tree_root,
1038                                         &root->root_key,
1039                                         &root->root_item);
1040                 if (ret)
1041                         return ret;
1042
1043                 old_root_used = btrfs_root_used(&root->root_item);
1044         }
1045
1046         return 0;
1047 }
1048
1049 /*
1050  * update all the cowonly tree roots on disk
1051  *
1052  * The error handling in this function may not be obvious. Any of the
1053  * failures will cause the file system to go offline. We still need
1054  * to clean up the delayed refs.
1055  */
1056 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
1057                                          struct btrfs_root *root)
1058 {
1059         struct btrfs_fs_info *fs_info = root->fs_info;
1060         struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1061         struct list_head *next;
1062         struct extent_buffer *eb;
1063         int ret;
1064
1065         eb = btrfs_lock_root_node(fs_info->tree_root);
1066         ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1067                               0, &eb);
1068         btrfs_tree_unlock(eb);
1069         free_extent_buffer(eb);
1070
1071         if (ret)
1072                 return ret;
1073
1074         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1075         if (ret)
1076                 return ret;
1077
1078         ret = btrfs_run_dev_stats(trans, root->fs_info);
1079         if (ret)
1080                 return ret;
1081         ret = btrfs_run_dev_replace(trans, root->fs_info);
1082         if (ret)
1083                 return ret;
1084         ret = btrfs_run_qgroups(trans, root->fs_info);
1085         if (ret)
1086                 return ret;
1087
1088         /* run_qgroups might have added some more refs */
1089         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1090         if (ret)
1091                 return ret;
1092 again:
1093         while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1094                 next = fs_info->dirty_cowonly_roots.next;
1095                 list_del_init(next);
1096                 root = list_entry(next, struct btrfs_root, dirty_list);
1097                 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1098
1099                 if (root != fs_info->extent_root)
1100                         list_add_tail(&root->dirty_list,
1101                                       &trans->transaction->switch_commits);
1102                 ret = update_cowonly_root(trans, root);
1103                 if (ret)
1104                         return ret;
1105                 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1106                 if (ret)
1107                         return ret;
1108         }
1109
1110         while (!list_empty(dirty_bgs)) {
1111                 ret = btrfs_write_dirty_block_groups(trans, root);
1112                 if (ret)
1113                         return ret;
1114                 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1115                 if (ret)
1116                         return ret;
1117         }
1118
1119         if (!list_empty(&fs_info->dirty_cowonly_roots))
1120                 goto again;
1121
1122         list_add_tail(&fs_info->extent_root->dirty_list,
1123                       &trans->transaction->switch_commits);
1124         btrfs_after_dev_replace_commit(fs_info);
1125
1126         return 0;
1127 }
1128
1129 /*
1130  * dead roots are old snapshots that need to be deleted.  This allocates
1131  * a dirty root struct and adds it into the list of dead roots that need to
1132  * be deleted
1133  */
1134 void btrfs_add_dead_root(struct btrfs_root *root)
1135 {
1136         spin_lock(&root->fs_info->trans_lock);
1137         if (list_empty(&root->root_list))
1138                 list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1139         spin_unlock(&root->fs_info->trans_lock);
1140 }
1141
1142 /*
1143  * update all the cowonly tree roots on disk
1144  */
1145 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1146                                     struct btrfs_root *root)
1147 {
1148         struct btrfs_root *gang[8];
1149         struct btrfs_fs_info *fs_info = root->fs_info;
1150         int i;
1151         int ret;
1152         int err = 0;
1153
1154         spin_lock(&fs_info->fs_roots_radix_lock);
1155         while (1) {
1156                 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1157                                                  (void **)gang, 0,
1158                                                  ARRAY_SIZE(gang),
1159                                                  BTRFS_ROOT_TRANS_TAG);
1160                 if (ret == 0)
1161                         break;
1162                 for (i = 0; i < ret; i++) {
1163                         root = gang[i];
1164                         radix_tree_tag_clear(&fs_info->fs_roots_radix,
1165                                         (unsigned long)root->root_key.objectid,
1166                                         BTRFS_ROOT_TRANS_TAG);
1167                         spin_unlock(&fs_info->fs_roots_radix_lock);
1168
1169                         btrfs_free_log(trans, root);
1170                         btrfs_update_reloc_root(trans, root);
1171                         btrfs_orphan_commit_root(trans, root);
1172
1173                         btrfs_save_ino_cache(root, trans);
1174
1175                         /* see comments in should_cow_block() */
1176                         clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1177                         smp_mb__after_atomic();
1178
1179                         if (root->commit_root != root->node) {
1180                                 list_add_tail(&root->dirty_list,
1181                                         &trans->transaction->switch_commits);
1182                                 btrfs_set_root_node(&root->root_item,
1183                                                     root->node);
1184                         }
1185
1186                         err = btrfs_update_root(trans, fs_info->tree_root,
1187                                                 &root->root_key,
1188                                                 &root->root_item);
1189                         spin_lock(&fs_info->fs_roots_radix_lock);
1190                         if (err)
1191                                 break;
1192                 }
1193         }
1194         spin_unlock(&fs_info->fs_roots_radix_lock);
1195         return err;
1196 }
1197
1198 /*
1199  * defrag a given btree.
1200  * Every leaf in the btree is read and defragged.
1201  */
1202 int btrfs_defrag_root(struct btrfs_root *root)
1203 {
1204         struct btrfs_fs_info *info = root->fs_info;
1205         struct btrfs_trans_handle *trans;
1206         int ret;
1207
1208         if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1209                 return 0;
1210
1211         while (1) {
1212                 trans = btrfs_start_transaction(root, 0);
1213                 if (IS_ERR(trans))
1214                         return PTR_ERR(trans);
1215
1216                 ret = btrfs_defrag_leaves(trans, root);
1217
1218                 btrfs_end_transaction(trans, root);
1219                 btrfs_btree_balance_dirty(info->tree_root);
1220                 cond_resched();
1221
1222                 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1223                         break;
1224
1225                 if (btrfs_defrag_cancelled(root->fs_info)) {
1226                         pr_debug("BTRFS: defrag_root cancelled\n");
1227                         ret = -EAGAIN;
1228                         break;
1229                 }
1230         }
1231         clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1232         return ret;
1233 }
1234
1235 /*
1236  * new snapshots need to be created at a very specific time in the
1237  * transaction commit.  This does the actual creation.
1238  *
1239  * Note:
1240  * If the error which may affect the commitment of the current transaction
1241  * happens, we should return the error number. If the error which just affect
1242  * the creation of the pending snapshots, just return 0.
1243  */
1244 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1245                                    struct btrfs_fs_info *fs_info,
1246                                    struct btrfs_pending_snapshot *pending)
1247 {
1248         struct btrfs_key key;
1249         struct btrfs_root_item *new_root_item;
1250         struct btrfs_root *tree_root = fs_info->tree_root;
1251         struct btrfs_root *root = pending->root;
1252         struct btrfs_root *parent_root;
1253         struct btrfs_block_rsv *rsv;
1254         struct inode *parent_inode;
1255         struct btrfs_path *path;
1256         struct btrfs_dir_item *dir_item;
1257         struct dentry *dentry;
1258         struct extent_buffer *tmp;
1259         struct extent_buffer *old;
1260         struct timespec cur_time = CURRENT_TIME;
1261         int ret = 0;
1262         u64 to_reserve = 0;
1263         u64 index = 0;
1264         u64 objectid;
1265         u64 root_flags;
1266         uuid_le new_uuid;
1267
1268         path = btrfs_alloc_path();
1269         if (!path) {
1270                 pending->error = -ENOMEM;
1271                 return 0;
1272         }
1273
1274         new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1275         if (!new_root_item) {
1276                 pending->error = -ENOMEM;
1277                 goto root_item_alloc_fail;
1278         }
1279
1280         pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1281         if (pending->error)
1282                 goto no_free_objectid;
1283
1284         btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
1285
1286         if (to_reserve > 0) {
1287                 pending->error = btrfs_block_rsv_add(root,
1288                                                      &pending->block_rsv,
1289                                                      to_reserve,
1290                                                      BTRFS_RESERVE_NO_FLUSH);
1291                 if (pending->error)
1292                         goto no_free_objectid;
1293         }
1294
1295         key.objectid = objectid;
1296         key.offset = (u64)-1;
1297         key.type = BTRFS_ROOT_ITEM_KEY;
1298
1299         rsv = trans->block_rsv;
1300         trans->block_rsv = &pending->block_rsv;
1301         trans->bytes_reserved = trans->block_rsv->reserved;
1302
1303         dentry = pending->dentry;
1304         parent_inode = pending->dir;
1305         parent_root = BTRFS_I(parent_inode)->root;
1306         record_root_in_trans(trans, parent_root);
1307
1308         /*
1309          * insert the directory item
1310          */
1311         ret = btrfs_set_inode_index(parent_inode, &index);
1312         BUG_ON(ret); /* -ENOMEM */
1313
1314         /* check if there is a file/dir which has the same name. */
1315         dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1316                                          btrfs_ino(parent_inode),
1317                                          dentry->d_name.name,
1318                                          dentry->d_name.len, 0);
1319         if (dir_item != NULL && !IS_ERR(dir_item)) {
1320                 pending->error = -EEXIST;
1321                 goto dir_item_existed;
1322         } else if (IS_ERR(dir_item)) {
1323                 ret = PTR_ERR(dir_item);
1324                 btrfs_abort_transaction(trans, root, ret);
1325                 goto fail;
1326         }
1327         btrfs_release_path(path);
1328
1329         /*
1330          * pull in the delayed directory update
1331          * and the delayed inode item
1332          * otherwise we corrupt the FS during
1333          * snapshot
1334          */
1335         ret = btrfs_run_delayed_items(trans, root);
1336         if (ret) {      /* Transaction aborted */
1337                 btrfs_abort_transaction(trans, root, ret);
1338                 goto fail;
1339         }
1340
1341         record_root_in_trans(trans, root);
1342         btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1343         memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1344         btrfs_check_and_init_root_item(new_root_item);
1345
1346         root_flags = btrfs_root_flags(new_root_item);
1347         if (pending->readonly)
1348                 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1349         else
1350                 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1351         btrfs_set_root_flags(new_root_item, root_flags);
1352
1353         btrfs_set_root_generation_v2(new_root_item,
1354                         trans->transid);
1355         uuid_le_gen(&new_uuid);
1356         memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1357         memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1358                         BTRFS_UUID_SIZE);
1359         if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1360                 memset(new_root_item->received_uuid, 0,
1361                        sizeof(new_root_item->received_uuid));
1362                 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1363                 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1364                 btrfs_set_root_stransid(new_root_item, 0);
1365                 btrfs_set_root_rtransid(new_root_item, 0);
1366         }
1367         btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1368         btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1369         btrfs_set_root_otransid(new_root_item, trans->transid);
1370
1371         old = btrfs_lock_root_node(root);
1372         ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1373         if (ret) {
1374                 btrfs_tree_unlock(old);
1375                 free_extent_buffer(old);
1376                 btrfs_abort_transaction(trans, root, ret);
1377                 goto fail;
1378         }
1379
1380         btrfs_set_lock_blocking(old);
1381
1382         ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1383         /* clean up in any case */
1384         btrfs_tree_unlock(old);
1385         free_extent_buffer(old);
1386         if (ret) {
1387                 btrfs_abort_transaction(trans, root, ret);
1388                 goto fail;
1389         }
1390
1391         /*
1392          * We need to flush delayed refs in order to make sure all of our quota
1393          * operations have been done before we call btrfs_qgroup_inherit.
1394          */
1395         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1396         if (ret) {
1397                 btrfs_abort_transaction(trans, root, ret);
1398                 goto fail;
1399         }
1400
1401         ret = btrfs_qgroup_inherit(trans, fs_info,
1402                                    root->root_key.objectid,
1403                                    objectid, pending->inherit);
1404         if (ret) {
1405                 btrfs_abort_transaction(trans, root, ret);
1406                 goto fail;
1407         }
1408
1409         /* see comments in should_cow_block() */
1410         set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1411         smp_wmb();
1412
1413         btrfs_set_root_node(new_root_item, tmp);
1414         /* record when the snapshot was created in key.offset */
1415         key.offset = trans->transid;
1416         ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1417         btrfs_tree_unlock(tmp);
1418         free_extent_buffer(tmp);
1419         if (ret) {
1420                 btrfs_abort_transaction(trans, root, ret);
1421                 goto fail;
1422         }
1423
1424         /*
1425          * insert root back/forward references
1426          */
1427         ret = btrfs_add_root_ref(trans, tree_root, objectid,
1428                                  parent_root->root_key.objectid,
1429                                  btrfs_ino(parent_inode), index,
1430                                  dentry->d_name.name, dentry->d_name.len);
1431         if (ret) {
1432                 btrfs_abort_transaction(trans, root, ret);
1433                 goto fail;
1434         }
1435
1436         key.offset = (u64)-1;
1437         pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1438         if (IS_ERR(pending->snap)) {
1439                 ret = PTR_ERR(pending->snap);
1440                 btrfs_abort_transaction(trans, root, ret);
1441                 goto fail;
1442         }
1443
1444         ret = btrfs_reloc_post_snapshot(trans, pending);
1445         if (ret) {
1446                 btrfs_abort_transaction(trans, root, ret);
1447                 goto fail;
1448         }
1449
1450         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1451         if (ret) {
1452                 btrfs_abort_transaction(trans, root, ret);
1453                 goto fail;
1454         }
1455
1456         ret = btrfs_insert_dir_item(trans, parent_root,
1457                                     dentry->d_name.name, dentry->d_name.len,
1458                                     parent_inode, &key,
1459                                     BTRFS_FT_DIR, index);
1460         /* We have check then name at the beginning, so it is impossible. */
1461         BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1462         if (ret) {
1463                 btrfs_abort_transaction(trans, root, ret);
1464                 goto fail;
1465         }
1466
1467         btrfs_i_size_write(parent_inode, parent_inode->i_size +
1468                                          dentry->d_name.len * 2);
1469         parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1470         ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1471         if (ret) {
1472                 btrfs_abort_transaction(trans, root, ret);
1473                 goto fail;
1474         }
1475         ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1476                                   BTRFS_UUID_KEY_SUBVOL, objectid);
1477         if (ret) {
1478                 btrfs_abort_transaction(trans, root, ret);
1479                 goto fail;
1480         }
1481         if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1482                 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1483                                           new_root_item->received_uuid,
1484                                           BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1485                                           objectid);
1486                 if (ret && ret != -EEXIST) {
1487                         btrfs_abort_transaction(trans, root, ret);
1488                         goto fail;
1489                 }
1490         }
1491 fail:
1492         pending->error = ret;
1493 dir_item_existed:
1494         trans->block_rsv = rsv;
1495         trans->bytes_reserved = 0;
1496 no_free_objectid:
1497         kfree(new_root_item);
1498 root_item_alloc_fail:
1499         btrfs_free_path(path);
1500         return ret;
1501 }
1502
1503 /*
1504  * create all the snapshots we've scheduled for creation
1505  */
1506 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1507                                              struct btrfs_fs_info *fs_info)
1508 {
1509         struct btrfs_pending_snapshot *pending, *next;
1510         struct list_head *head = &trans->transaction->pending_snapshots;
1511         int ret = 0;
1512
1513         list_for_each_entry_safe(pending, next, head, list) {
1514                 list_del(&pending->list);
1515                 ret = create_pending_snapshot(trans, fs_info, pending);
1516                 if (ret)
1517                         break;
1518         }
1519         return ret;
1520 }
1521
1522 static void update_super_roots(struct btrfs_root *root)
1523 {
1524         struct btrfs_root_item *root_item;
1525         struct btrfs_super_block *super;
1526
1527         super = root->fs_info->super_copy;
1528
1529         root_item = &root->fs_info->chunk_root->root_item;
1530         super->chunk_root = root_item->bytenr;
1531         super->chunk_root_generation = root_item->generation;
1532         super->chunk_root_level = root_item->level;
1533
1534         root_item = &root->fs_info->tree_root->root_item;
1535         super->root = root_item->bytenr;
1536         super->generation = root_item->generation;
1537         super->root_level = root_item->level;
1538         if (btrfs_test_opt(root, SPACE_CACHE))
1539                 super->cache_generation = root_item->generation;
1540         if (root->fs_info->update_uuid_tree_gen)
1541                 super->uuid_tree_generation = root_item->generation;
1542 }
1543
1544 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1545 {
1546         struct btrfs_transaction *trans;
1547         int ret = 0;
1548
1549         spin_lock(&info->trans_lock);
1550         trans = info->running_transaction;
1551         if (trans)
1552                 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1553         spin_unlock(&info->trans_lock);
1554         return ret;
1555 }
1556
1557 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1558 {
1559         struct btrfs_transaction *trans;
1560         int ret = 0;
1561
1562         spin_lock(&info->trans_lock);
1563         trans = info->running_transaction;
1564         if (trans)
1565                 ret = is_transaction_blocked(trans);
1566         spin_unlock(&info->trans_lock);
1567         return ret;
1568 }
1569
1570 /*
1571  * wait for the current transaction commit to start and block subsequent
1572  * transaction joins
1573  */
1574 static void wait_current_trans_commit_start(struct btrfs_root *root,
1575                                             struct btrfs_transaction *trans)
1576 {
1577         wait_event(root->fs_info->transaction_blocked_wait,
1578                    trans->state >= TRANS_STATE_COMMIT_START ||
1579                    trans->aborted);
1580 }
1581
1582 /*
1583  * wait for the current transaction to start and then become unblocked.
1584  * caller holds ref.
1585  */
1586 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1587                                          struct btrfs_transaction *trans)
1588 {
1589         wait_event(root->fs_info->transaction_wait,
1590                    trans->state >= TRANS_STATE_UNBLOCKED ||
1591                    trans->aborted);
1592 }
1593
1594 /*
1595  * commit transactions asynchronously. once btrfs_commit_transaction_async
1596  * returns, any subsequent transaction will not be allowed to join.
1597  */
1598 struct btrfs_async_commit {
1599         struct btrfs_trans_handle *newtrans;
1600         struct btrfs_root *root;
1601         struct work_struct work;
1602 };
1603
1604 static void do_async_commit(struct work_struct *work)
1605 {
1606         struct btrfs_async_commit *ac =
1607                 container_of(work, struct btrfs_async_commit, work);
1608
1609         /*
1610          * We've got freeze protection passed with the transaction.
1611          * Tell lockdep about it.
1612          */
1613         if (ac->newtrans->type & __TRANS_FREEZABLE)
1614                 rwsem_acquire_read(
1615                      &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1616                      0, 1, _THIS_IP_);
1617
1618         current->journal_info = ac->newtrans;
1619
1620         btrfs_commit_transaction(ac->newtrans, ac->root);
1621         kfree(ac);
1622 }
1623
1624 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1625                                    struct btrfs_root *root,
1626                                    int wait_for_unblock)
1627 {
1628         struct btrfs_async_commit *ac;
1629         struct btrfs_transaction *cur_trans;
1630
1631         ac = kmalloc(sizeof(*ac), GFP_NOFS);
1632         if (!ac)
1633                 return -ENOMEM;
1634
1635         INIT_WORK(&ac->work, do_async_commit);
1636         ac->root = root;
1637         ac->newtrans = btrfs_join_transaction(root);
1638         if (IS_ERR(ac->newtrans)) {
1639                 int err = PTR_ERR(ac->newtrans);
1640                 kfree(ac);
1641                 return err;
1642         }
1643
1644         /* take transaction reference */
1645         cur_trans = trans->transaction;
1646         atomic_inc(&cur_trans->use_count);
1647
1648         btrfs_end_transaction(trans, root);
1649
1650         /*
1651          * Tell lockdep we've released the freeze rwsem, since the
1652          * async commit thread will be the one to unlock it.
1653          */
1654         if (ac->newtrans->type & __TRANS_FREEZABLE)
1655                 rwsem_release(
1656                         &root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1657                         1, _THIS_IP_);
1658
1659         schedule_work(&ac->work);
1660
1661         /* wait for transaction to start and unblock */
1662         if (wait_for_unblock)
1663                 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1664         else
1665                 wait_current_trans_commit_start(root, cur_trans);
1666
1667         if (current->journal_info == trans)
1668                 current->journal_info = NULL;
1669
1670         btrfs_put_transaction(cur_trans);
1671         return 0;
1672 }
1673
1674
1675 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1676                                 struct btrfs_root *root, int err)
1677 {
1678         struct btrfs_transaction *cur_trans = trans->transaction;
1679         DEFINE_WAIT(wait);
1680
1681         WARN_ON(trans->use_count > 1);
1682
1683         btrfs_abort_transaction(trans, root, err);
1684
1685         spin_lock(&root->fs_info->trans_lock);
1686
1687         /*
1688          * If the transaction is removed from the list, it means this
1689          * transaction has been committed successfully, so it is impossible
1690          * to call the cleanup function.
1691          */
1692         BUG_ON(list_empty(&cur_trans->list));
1693
1694         list_del_init(&cur_trans->list);
1695         if (cur_trans == root->fs_info->running_transaction) {
1696                 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1697                 spin_unlock(&root->fs_info->trans_lock);
1698                 wait_event(cur_trans->writer_wait,
1699                            atomic_read(&cur_trans->num_writers) == 1);
1700
1701                 spin_lock(&root->fs_info->trans_lock);
1702         }
1703         spin_unlock(&root->fs_info->trans_lock);
1704
1705         btrfs_cleanup_one_transaction(trans->transaction, root);
1706
1707         spin_lock(&root->fs_info->trans_lock);
1708         if (cur_trans == root->fs_info->running_transaction)
1709                 root->fs_info->running_transaction = NULL;
1710         spin_unlock(&root->fs_info->trans_lock);
1711
1712         if (trans->type & __TRANS_FREEZABLE)
1713                 sb_end_intwrite(root->fs_info->sb);
1714         btrfs_put_transaction(cur_trans);
1715         btrfs_put_transaction(cur_trans);
1716
1717         trace_btrfs_transaction_commit(root);
1718
1719         if (current->journal_info == trans)
1720                 current->journal_info = NULL;
1721         btrfs_scrub_cancel(root->fs_info);
1722
1723         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1724 }
1725
1726 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1727 {
1728         if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1729                 return btrfs_start_delalloc_roots(fs_info, 1, -1);
1730         return 0;
1731 }
1732
1733 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1734 {
1735         if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1736                 btrfs_wait_ordered_roots(fs_info, -1);
1737 }
1738
1739 static inline void
1740 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans,
1741                            struct btrfs_fs_info *fs_info)
1742 {
1743         struct btrfs_ordered_extent *ordered;
1744
1745         spin_lock(&fs_info->trans_lock);
1746         while (!list_empty(&cur_trans->pending_ordered)) {
1747                 ordered = list_first_entry(&cur_trans->pending_ordered,
1748                                            struct btrfs_ordered_extent,
1749                                            trans_list);
1750                 list_del_init(&ordered->trans_list);
1751                 spin_unlock(&fs_info->trans_lock);
1752
1753                 wait_event(ordered->wait, test_bit(BTRFS_ORDERED_COMPLETE,
1754                                                    &ordered->flags));
1755                 btrfs_put_ordered_extent(ordered);
1756                 spin_lock(&fs_info->trans_lock);
1757         }
1758         spin_unlock(&fs_info->trans_lock);
1759 }
1760
1761 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1762                              struct btrfs_root *root)
1763 {
1764         struct btrfs_transaction *cur_trans = trans->transaction;
1765         struct btrfs_transaction *prev_trans = NULL;
1766         struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
1767         int ret;
1768
1769         /* Stop the commit early if ->aborted is set */
1770         if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1771                 ret = cur_trans->aborted;
1772                 btrfs_end_transaction(trans, root);
1773                 return ret;
1774         }
1775
1776         /* make a pass through all the delayed refs we have so far
1777          * any runnings procs may add more while we are here
1778          */
1779         ret = btrfs_run_delayed_refs(trans, root, 0);
1780         if (ret) {
1781                 btrfs_end_transaction(trans, root);
1782                 return ret;
1783         }
1784
1785         btrfs_trans_release_metadata(trans, root);
1786         trans->block_rsv = NULL;
1787         if (trans->qgroup_reserved) {
1788                 btrfs_qgroup_free(root, trans->qgroup_reserved);
1789                 trans->qgroup_reserved = 0;
1790         }
1791
1792         cur_trans = trans->transaction;
1793
1794         /*
1795          * set the flushing flag so procs in this transaction have to
1796          * start sending their work down.
1797          */
1798         cur_trans->delayed_refs.flushing = 1;
1799         smp_wmb();
1800
1801         if (!list_empty(&trans->new_bgs))
1802                 btrfs_create_pending_block_groups(trans, root);
1803
1804         ret = btrfs_run_delayed_refs(trans, root, 0);
1805         if (ret) {
1806                 btrfs_end_transaction(trans, root);
1807                 return ret;
1808         }
1809
1810         spin_lock(&root->fs_info->trans_lock);
1811         list_splice(&trans->ordered, &cur_trans->pending_ordered);
1812         if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1813                 spin_unlock(&root->fs_info->trans_lock);
1814                 atomic_inc(&cur_trans->use_count);
1815                 ret = btrfs_end_transaction(trans, root);
1816
1817                 wait_for_commit(root, cur_trans);
1818
1819                 if (unlikely(cur_trans->aborted))
1820                         ret = cur_trans->aborted;
1821
1822                 btrfs_put_transaction(cur_trans);
1823
1824                 return ret;
1825         }
1826
1827         cur_trans->state = TRANS_STATE_COMMIT_START;
1828         wake_up(&root->fs_info->transaction_blocked_wait);
1829
1830         if (cur_trans->list.prev != &root->fs_info->trans_list) {
1831                 prev_trans = list_entry(cur_trans->list.prev,
1832                                         struct btrfs_transaction, list);
1833                 if (prev_trans->state != TRANS_STATE_COMPLETED) {
1834                         atomic_inc(&prev_trans->use_count);
1835                         spin_unlock(&root->fs_info->trans_lock);
1836
1837                         wait_for_commit(root, prev_trans);
1838
1839                         btrfs_put_transaction(prev_trans);
1840                 } else {
1841                         spin_unlock(&root->fs_info->trans_lock);
1842                 }
1843         } else {
1844                 spin_unlock(&root->fs_info->trans_lock);
1845         }
1846
1847         extwriter_counter_dec(cur_trans, trans->type);
1848
1849         ret = btrfs_start_delalloc_flush(root->fs_info);
1850         if (ret)
1851                 goto cleanup_transaction;
1852
1853         ret = btrfs_run_delayed_items(trans, root);
1854         if (ret)
1855                 goto cleanup_transaction;
1856
1857         wait_event(cur_trans->writer_wait,
1858                    extwriter_counter_read(cur_trans) == 0);
1859
1860         /* some pending stuffs might be added after the previous flush. */
1861         ret = btrfs_run_delayed_items(trans, root);
1862         if (ret)
1863                 goto cleanup_transaction;
1864
1865         btrfs_wait_delalloc_flush(root->fs_info);
1866
1867         btrfs_wait_pending_ordered(cur_trans, root->fs_info);
1868
1869         btrfs_scrub_pause(root);
1870         /*
1871          * Ok now we need to make sure to block out any other joins while we
1872          * commit the transaction.  We could have started a join before setting
1873          * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1874          */
1875         spin_lock(&root->fs_info->trans_lock);
1876         cur_trans->state = TRANS_STATE_COMMIT_DOING;
1877         spin_unlock(&root->fs_info->trans_lock);
1878         wait_event(cur_trans->writer_wait,
1879                    atomic_read(&cur_trans->num_writers) == 1);
1880
1881         /* ->aborted might be set after the previous check, so check it */
1882         if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1883                 ret = cur_trans->aborted;
1884                 goto scrub_continue;
1885         }
1886         /*
1887          * the reloc mutex makes sure that we stop
1888          * the balancing code from coming in and moving
1889          * extents around in the middle of the commit
1890          */
1891         mutex_lock(&root->fs_info->reloc_mutex);
1892
1893         /*
1894          * We needn't worry about the delayed items because we will
1895          * deal with them in create_pending_snapshot(), which is the
1896          * core function of the snapshot creation.
1897          */
1898         ret = create_pending_snapshots(trans, root->fs_info);
1899         if (ret) {
1900                 mutex_unlock(&root->fs_info->reloc_mutex);
1901                 goto scrub_continue;
1902         }
1903
1904         /*
1905          * We insert the dir indexes of the snapshots and update the inode
1906          * of the snapshots' parents after the snapshot creation, so there
1907          * are some delayed items which are not dealt with. Now deal with
1908          * them.
1909          *
1910          * We needn't worry that this operation will corrupt the snapshots,
1911          * because all the tree which are snapshoted will be forced to COW
1912          * the nodes and leaves.
1913          */
1914         ret = btrfs_run_delayed_items(trans, root);
1915         if (ret) {
1916                 mutex_unlock(&root->fs_info->reloc_mutex);
1917                 goto scrub_continue;
1918         }
1919
1920         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1921         if (ret) {
1922                 mutex_unlock(&root->fs_info->reloc_mutex);
1923                 goto scrub_continue;
1924         }
1925
1926         /*
1927          * make sure none of the code above managed to slip in a
1928          * delayed item
1929          */
1930         btrfs_assert_delayed_root_empty(root);
1931
1932         WARN_ON(cur_trans != trans->transaction);
1933
1934         /* btrfs_commit_tree_roots is responsible for getting the
1935          * various roots consistent with each other.  Every pointer
1936          * in the tree of tree roots has to point to the most up to date
1937          * root for every subvolume and other tree.  So, we have to keep
1938          * the tree logging code from jumping in and changing any
1939          * of the trees.
1940          *
1941          * At this point in the commit, there can't be any tree-log
1942          * writers, but a little lower down we drop the trans mutex
1943          * and let new people in.  By holding the tree_log_mutex
1944          * from now until after the super is written, we avoid races
1945          * with the tree-log code.
1946          */
1947         mutex_lock(&root->fs_info->tree_log_mutex);
1948
1949         ret = commit_fs_roots(trans, root);
1950         if (ret) {
1951                 mutex_unlock(&root->fs_info->tree_log_mutex);
1952                 mutex_unlock(&root->fs_info->reloc_mutex);
1953                 goto scrub_continue;
1954         }
1955
1956         /*
1957          * Since the transaction is done, we can apply the pending changes
1958          * before the next transaction.
1959          */
1960         btrfs_apply_pending_changes(root->fs_info);
1961
1962         /* commit_fs_roots gets rid of all the tree log roots, it is now
1963          * safe to free the root of tree log roots
1964          */
1965         btrfs_free_log_root_tree(trans, root->fs_info);
1966
1967         ret = commit_cowonly_roots(trans, root);
1968         if (ret) {
1969                 mutex_unlock(&root->fs_info->tree_log_mutex);
1970                 mutex_unlock(&root->fs_info->reloc_mutex);
1971                 goto scrub_continue;
1972         }
1973
1974         /*
1975          * The tasks which save the space cache and inode cache may also
1976          * update ->aborted, check it.
1977          */
1978         if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1979                 ret = cur_trans->aborted;
1980                 mutex_unlock(&root->fs_info->tree_log_mutex);
1981                 mutex_unlock(&root->fs_info->reloc_mutex);
1982                 goto scrub_continue;
1983         }
1984
1985         btrfs_prepare_extent_commit(trans, root);
1986
1987         cur_trans = root->fs_info->running_transaction;
1988
1989         btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1990                             root->fs_info->tree_root->node);
1991         list_add_tail(&root->fs_info->tree_root->dirty_list,
1992                       &cur_trans->switch_commits);
1993
1994         btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1995                             root->fs_info->chunk_root->node);
1996         list_add_tail(&root->fs_info->chunk_root->dirty_list,
1997                       &cur_trans->switch_commits);
1998
1999         switch_commit_roots(cur_trans, root->fs_info);
2000
2001         assert_qgroups_uptodate(trans);
2002         ASSERT(list_empty(&cur_trans->dirty_bgs));
2003         update_super_roots(root);
2004
2005         btrfs_set_super_log_root(root->fs_info->super_copy, 0);
2006         btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
2007         memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
2008                sizeof(*root->fs_info->super_copy));
2009
2010         btrfs_update_commit_device_size(root->fs_info);
2011         btrfs_update_commit_device_bytes_used(root, cur_trans);
2012
2013         clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
2014         clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
2015
2016         spin_lock(&root->fs_info->trans_lock);
2017         cur_trans->state = TRANS_STATE_UNBLOCKED;
2018         root->fs_info->running_transaction = NULL;
2019         spin_unlock(&root->fs_info->trans_lock);
2020         mutex_unlock(&root->fs_info->reloc_mutex);
2021
2022         wake_up(&root->fs_info->transaction_wait);
2023
2024         ret = btrfs_write_and_wait_transaction(trans, root);
2025         if (ret) {
2026                 btrfs_error(root->fs_info, ret,
2027                             "Error while writing out transaction");
2028                 mutex_unlock(&root->fs_info->tree_log_mutex);
2029                 goto scrub_continue;
2030         }
2031
2032         ret = write_ctree_super(trans, root, 0);
2033         if (ret) {
2034                 mutex_unlock(&root->fs_info->tree_log_mutex);
2035                 goto scrub_continue;
2036         }
2037
2038         /*
2039          * the super is written, we can safely allow the tree-loggers
2040          * to go about their business
2041          */
2042         mutex_unlock(&root->fs_info->tree_log_mutex);
2043
2044         btrfs_finish_extent_commit(trans, root);
2045
2046         if (cur_trans->have_free_bgs)
2047                 btrfs_clear_space_info_full(root->fs_info);
2048
2049         root->fs_info->last_trans_committed = cur_trans->transid;
2050         /*
2051          * We needn't acquire the lock here because there is no other task
2052          * which can change it.
2053          */
2054         cur_trans->state = TRANS_STATE_COMPLETED;
2055         wake_up(&cur_trans->commit_wait);
2056
2057         spin_lock(&root->fs_info->trans_lock);
2058         list_del_init(&cur_trans->list);
2059         spin_unlock(&root->fs_info->trans_lock);
2060
2061         btrfs_put_transaction(cur_trans);
2062         btrfs_put_transaction(cur_trans);
2063
2064         if (trans->type & __TRANS_FREEZABLE)
2065                 sb_end_intwrite(root->fs_info->sb);
2066
2067         trace_btrfs_transaction_commit(root);
2068
2069         btrfs_scrub_continue(root);
2070
2071         if (current->journal_info == trans)
2072                 current->journal_info = NULL;
2073
2074         kmem_cache_free(btrfs_trans_handle_cachep, trans);
2075
2076         if (current != root->fs_info->transaction_kthread)
2077                 btrfs_run_delayed_iputs(root);
2078
2079         return ret;
2080
2081 scrub_continue:
2082         btrfs_scrub_continue(root);
2083 cleanup_transaction:
2084         btrfs_trans_release_metadata(trans, root);
2085         trans->block_rsv = NULL;
2086         if (trans->qgroup_reserved) {
2087                 btrfs_qgroup_free(root, trans->qgroup_reserved);
2088                 trans->qgroup_reserved = 0;
2089         }
2090         btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
2091         if (current->journal_info == trans)
2092                 current->journal_info = NULL;
2093         cleanup_transaction(trans, root, ret);
2094
2095         return ret;
2096 }
2097
2098 /*
2099  * return < 0 if error
2100  * 0 if there are no more dead_roots at the time of call
2101  * 1 there are more to be processed, call me again
2102  *
2103  * The return value indicates there are certainly more snapshots to delete, but
2104  * if there comes a new one during processing, it may return 0. We don't mind,
2105  * because btrfs_commit_super will poke cleaner thread and it will process it a
2106  * few seconds later.
2107  */
2108 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2109 {
2110         int ret;
2111         struct btrfs_fs_info *fs_info = root->fs_info;
2112
2113         spin_lock(&fs_info->trans_lock);
2114         if (list_empty(&fs_info->dead_roots)) {
2115                 spin_unlock(&fs_info->trans_lock);
2116                 return 0;
2117         }
2118         root = list_first_entry(&fs_info->dead_roots,
2119                         struct btrfs_root, root_list);
2120         list_del_init(&root->root_list);
2121         spin_unlock(&fs_info->trans_lock);
2122
2123         pr_debug("BTRFS: cleaner removing %llu\n", root->objectid);
2124
2125         btrfs_kill_all_delayed_nodes(root);
2126
2127         if (btrfs_header_backref_rev(root->node) <
2128                         BTRFS_MIXED_BACKREF_REV)
2129                 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2130         else
2131                 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2132
2133         return (ret < 0) ? 0 : 1;
2134 }
2135
2136 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2137 {
2138         unsigned long prev;
2139         unsigned long bit;
2140
2141         prev = cmpxchg(&fs_info->pending_changes, 0, 0);
2142         if (!prev)
2143                 return;
2144
2145         bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2146         if (prev & bit)
2147                 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2148         prev &= ~bit;
2149
2150         bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2151         if (prev & bit)
2152                 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2153         prev &= ~bit;
2154
2155         bit = 1 << BTRFS_PENDING_COMMIT;
2156         if (prev & bit)
2157                 btrfs_debug(fs_info, "pending commit done");
2158         prev &= ~bit;
2159
2160         if (prev)
2161                 btrfs_warn(fs_info,
2162                         "unknown pending changes left 0x%lx, ignoring", prev);
2163 }