728e8fe5d2ccd063c6b43e2473c4160d00bde63e
[cascardo/linux.git] / fs / btrfs / transaction.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/sched.h>
21 #include <linux/writeback.h>
22 #include <linux/pagemap.h>
23 #include <linux/blkdev.h>
24 #include "ctree.h"
25 #include "disk-io.h"
26 #include "transaction.h"
27 #include "locking.h"
28 #include "tree-log.h"
29
30 #define BTRFS_ROOT_TRANS_TAG 0
31
32 static noinline void put_transaction(struct btrfs_transaction *transaction)
33 {
34         WARN_ON(transaction->use_count == 0);
35         transaction->use_count--;
36         if (transaction->use_count == 0) {
37                 list_del_init(&transaction->list);
38                 memset(transaction, 0, sizeof(*transaction));
39                 kmem_cache_free(btrfs_transaction_cachep, transaction);
40         }
41 }
42
43 static noinline void switch_commit_root(struct btrfs_root *root)
44 {
45         free_extent_buffer(root->commit_root);
46         root->commit_root = btrfs_root_node(root);
47 }
48
49 /*
50  * either allocate a new transaction or hop into the existing one
51  */
52 static noinline int join_transaction(struct btrfs_root *root)
53 {
54         struct btrfs_transaction *cur_trans;
55         cur_trans = root->fs_info->running_transaction;
56         if (!cur_trans) {
57                 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep,
58                                              GFP_NOFS);
59                 BUG_ON(!cur_trans);
60                 root->fs_info->generation++;
61                 cur_trans->num_writers = 1;
62                 cur_trans->num_joined = 0;
63                 cur_trans->transid = root->fs_info->generation;
64                 init_waitqueue_head(&cur_trans->writer_wait);
65                 init_waitqueue_head(&cur_trans->commit_wait);
66                 cur_trans->in_commit = 0;
67                 cur_trans->blocked = 0;
68                 cur_trans->use_count = 1;
69                 cur_trans->commit_done = 0;
70                 cur_trans->start_time = get_seconds();
71
72                 cur_trans->delayed_refs.root.rb_node = NULL;
73                 cur_trans->delayed_refs.num_entries = 0;
74                 cur_trans->delayed_refs.num_heads_ready = 0;
75                 cur_trans->delayed_refs.num_heads = 0;
76                 cur_trans->delayed_refs.flushing = 0;
77                 cur_trans->delayed_refs.run_delayed_start = 0;
78                 spin_lock_init(&cur_trans->delayed_refs.lock);
79
80                 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
81                 list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
82                 extent_io_tree_init(&cur_trans->dirty_pages,
83                                      root->fs_info->btree_inode->i_mapping,
84                                      GFP_NOFS);
85                 spin_lock(&root->fs_info->new_trans_lock);
86                 root->fs_info->running_transaction = cur_trans;
87                 spin_unlock(&root->fs_info->new_trans_lock);
88         } else {
89                 cur_trans->num_writers++;
90                 cur_trans->num_joined++;
91         }
92
93         return 0;
94 }
95
96 /*
97  * this does all the record keeping required to make sure that a reference
98  * counted root is properly recorded in a given transaction.  This is required
99  * to make sure the old root from before we joined the transaction is deleted
100  * when the transaction commits
101  */
102 static noinline int record_root_in_trans(struct btrfs_trans_handle *trans,
103                                          struct btrfs_root *root)
104 {
105         if (root->ref_cows && root->last_trans < trans->transid) {
106                 WARN_ON(root == root->fs_info->extent_root);
107                 WARN_ON(root->commit_root != root->node);
108
109                 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
110                            (unsigned long)root->root_key.objectid,
111                            BTRFS_ROOT_TRANS_TAG);
112                 root->last_trans = trans->transid;
113                 btrfs_init_reloc_root(trans, root);
114         }
115         return 0;
116 }
117
118 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
119                                struct btrfs_root *root)
120 {
121         if (!root->ref_cows)
122                 return 0;
123
124         mutex_lock(&root->fs_info->trans_mutex);
125         if (root->last_trans == trans->transid) {
126                 mutex_unlock(&root->fs_info->trans_mutex);
127                 return 0;
128         }
129
130         record_root_in_trans(trans, root);
131         mutex_unlock(&root->fs_info->trans_mutex);
132         return 0;
133 }
134
135 /* wait for commit against the current transaction to become unblocked
136  * when this is done, it is safe to start a new transaction, but the current
137  * transaction might not be fully on disk.
138  */
139 static void wait_current_trans(struct btrfs_root *root)
140 {
141         struct btrfs_transaction *cur_trans;
142
143         cur_trans = root->fs_info->running_transaction;
144         if (cur_trans && cur_trans->blocked) {
145                 DEFINE_WAIT(wait);
146                 cur_trans->use_count++;
147                 while (1) {
148                         prepare_to_wait(&root->fs_info->transaction_wait, &wait,
149                                         TASK_UNINTERRUPTIBLE);
150                         if (cur_trans->blocked) {
151                                 mutex_unlock(&root->fs_info->trans_mutex);
152                                 schedule();
153                                 mutex_lock(&root->fs_info->trans_mutex);
154                                 finish_wait(&root->fs_info->transaction_wait,
155                                             &wait);
156                         } else {
157                                 finish_wait(&root->fs_info->transaction_wait,
158                                             &wait);
159                                 break;
160                         }
161                 }
162                 put_transaction(cur_trans);
163         }
164 }
165
166 enum btrfs_trans_type {
167         TRANS_START,
168         TRANS_JOIN,
169         TRANS_USERSPACE,
170 };
171
172 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
173                                              int num_blocks, int type)
174 {
175         struct btrfs_trans_handle *h =
176                 kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
177         int ret;
178
179         mutex_lock(&root->fs_info->trans_mutex);
180         if (!root->fs_info->log_root_recovering &&
181             ((type == TRANS_START && !root->fs_info->open_ioctl_trans) ||
182              type == TRANS_USERSPACE))
183                 wait_current_trans(root);
184         ret = join_transaction(root);
185         BUG_ON(ret);
186
187         h->transid = root->fs_info->running_transaction->transid;
188         h->transaction = root->fs_info->running_transaction;
189         h->blocks_reserved = num_blocks;
190         h->blocks_used = 0;
191         h->block_group = 0;
192         h->alloc_exclude_nr = 0;
193         h->alloc_exclude_start = 0;
194         h->delayed_ref_updates = 0;
195
196         if (!current->journal_info && type != TRANS_USERSPACE)
197                 current->journal_info = h;
198
199         root->fs_info->running_transaction->use_count++;
200         record_root_in_trans(h, root);
201         mutex_unlock(&root->fs_info->trans_mutex);
202         return h;
203 }
204
205 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
206                                                    int num_blocks)
207 {
208         return start_transaction(root, num_blocks, TRANS_START);
209 }
210 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root,
211                                                    int num_blocks)
212 {
213         return start_transaction(root, num_blocks, TRANS_JOIN);
214 }
215
216 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *r,
217                                                          int num_blocks)
218 {
219         return start_transaction(r, num_blocks, TRANS_USERSPACE);
220 }
221
222 /* wait for a transaction commit to be fully complete */
223 static noinline int wait_for_commit(struct btrfs_root *root,
224                                     struct btrfs_transaction *commit)
225 {
226         DEFINE_WAIT(wait);
227         mutex_lock(&root->fs_info->trans_mutex);
228         while (!commit->commit_done) {
229                 prepare_to_wait(&commit->commit_wait, &wait,
230                                 TASK_UNINTERRUPTIBLE);
231                 if (commit->commit_done)
232                         break;
233                 mutex_unlock(&root->fs_info->trans_mutex);
234                 schedule();
235                 mutex_lock(&root->fs_info->trans_mutex);
236         }
237         mutex_unlock(&root->fs_info->trans_mutex);
238         finish_wait(&commit->commit_wait, &wait);
239         return 0;
240 }
241
242 #if 0
243 /*
244  * rate limit against the drop_snapshot code.  This helps to slow down new
245  * operations if the drop_snapshot code isn't able to keep up.
246  */
247 static void throttle_on_drops(struct btrfs_root *root)
248 {
249         struct btrfs_fs_info *info = root->fs_info;
250         int harder_count = 0;
251
252 harder:
253         if (atomic_read(&info->throttles)) {
254                 DEFINE_WAIT(wait);
255                 int thr;
256                 thr = atomic_read(&info->throttle_gen);
257
258                 do {
259                         prepare_to_wait(&info->transaction_throttle,
260                                         &wait, TASK_UNINTERRUPTIBLE);
261                         if (!atomic_read(&info->throttles)) {
262                                 finish_wait(&info->transaction_throttle, &wait);
263                                 break;
264                         }
265                         schedule();
266                         finish_wait(&info->transaction_throttle, &wait);
267                 } while (thr == atomic_read(&info->throttle_gen));
268                 harder_count++;
269
270                 if (root->fs_info->total_ref_cache_size > 1 * 1024 * 1024 &&
271                     harder_count < 2)
272                         goto harder;
273
274                 if (root->fs_info->total_ref_cache_size > 5 * 1024 * 1024 &&
275                     harder_count < 10)
276                         goto harder;
277
278                 if (root->fs_info->total_ref_cache_size > 10 * 1024 * 1024 &&
279                     harder_count < 20)
280                         goto harder;
281         }
282 }
283 #endif
284
285 void btrfs_throttle(struct btrfs_root *root)
286 {
287         mutex_lock(&root->fs_info->trans_mutex);
288         if (!root->fs_info->open_ioctl_trans)
289                 wait_current_trans(root);
290         mutex_unlock(&root->fs_info->trans_mutex);
291 }
292
293 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
294                           struct btrfs_root *root, int throttle)
295 {
296         struct btrfs_transaction *cur_trans;
297         struct btrfs_fs_info *info = root->fs_info;
298         int count = 0;
299
300         while (count < 4) {
301                 unsigned long cur = trans->delayed_ref_updates;
302                 trans->delayed_ref_updates = 0;
303                 if (cur &&
304                     trans->transaction->delayed_refs.num_heads_ready > 64) {
305                         trans->delayed_ref_updates = 0;
306
307                         /*
308                          * do a full flush if the transaction is trying
309                          * to close
310                          */
311                         if (trans->transaction->delayed_refs.flushing)
312                                 cur = 0;
313                         btrfs_run_delayed_refs(trans, root, cur);
314                 } else {
315                         break;
316                 }
317                 count++;
318         }
319
320         mutex_lock(&info->trans_mutex);
321         cur_trans = info->running_transaction;
322         WARN_ON(cur_trans != trans->transaction);
323         WARN_ON(cur_trans->num_writers < 1);
324         cur_trans->num_writers--;
325
326         if (waitqueue_active(&cur_trans->writer_wait))
327                 wake_up(&cur_trans->writer_wait);
328         put_transaction(cur_trans);
329         mutex_unlock(&info->trans_mutex);
330
331         if (current->journal_info == trans)
332                 current->journal_info = NULL;
333         memset(trans, 0, sizeof(*trans));
334         kmem_cache_free(btrfs_trans_handle_cachep, trans);
335
336         return 0;
337 }
338
339 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
340                           struct btrfs_root *root)
341 {
342         return __btrfs_end_transaction(trans, root, 0);
343 }
344
345 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
346                                    struct btrfs_root *root)
347 {
348         return __btrfs_end_transaction(trans, root, 1);
349 }
350
351 /*
352  * when btree blocks are allocated, they have some corresponding bits set for
353  * them in one of two extent_io trees.  This is used to make sure all of
354  * those extents are sent to disk but does not wait on them
355  */
356 int btrfs_write_marked_extents(struct btrfs_root *root,
357                                struct extent_io_tree *dirty_pages, int mark)
358 {
359         int ret;
360         int err = 0;
361         int werr = 0;
362         struct page *page;
363         struct inode *btree_inode = root->fs_info->btree_inode;
364         u64 start = 0;
365         u64 end;
366         unsigned long index;
367
368         while (1) {
369                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
370                                             mark);
371                 if (ret)
372                         break;
373                 while (start <= end) {
374                         cond_resched();
375
376                         index = start >> PAGE_CACHE_SHIFT;
377                         start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
378                         page = find_get_page(btree_inode->i_mapping, index);
379                         if (!page)
380                                 continue;
381
382                         btree_lock_page_hook(page);
383                         if (!page->mapping) {
384                                 unlock_page(page);
385                                 page_cache_release(page);
386                                 continue;
387                         }
388
389                         if (PageWriteback(page)) {
390                                 if (PageDirty(page))
391                                         wait_on_page_writeback(page);
392                                 else {
393                                         unlock_page(page);
394                                         page_cache_release(page);
395                                         continue;
396                                 }
397                         }
398                         err = write_one_page(page, 0);
399                         if (err)
400                                 werr = err;
401                         page_cache_release(page);
402                 }
403         }
404         if (err)
405                 werr = err;
406         return werr;
407 }
408
409 /*
410  * when btree blocks are allocated, they have some corresponding bits set for
411  * them in one of two extent_io trees.  This is used to make sure all of
412  * those extents are on disk for transaction or log commit.  We wait
413  * on all the pages and clear them from the dirty pages state tree
414  */
415 int btrfs_wait_marked_extents(struct btrfs_root *root,
416                               struct extent_io_tree *dirty_pages, int mark)
417 {
418         int ret;
419         int err = 0;
420         int werr = 0;
421         struct page *page;
422         struct inode *btree_inode = root->fs_info->btree_inode;
423         u64 start = 0;
424         u64 end;
425         unsigned long index;
426
427         while (1) {
428                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
429                                             mark);
430                 if (ret)
431                         break;
432
433                 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
434                 while (start <= end) {
435                         index = start >> PAGE_CACHE_SHIFT;
436                         start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
437                         page = find_get_page(btree_inode->i_mapping, index);
438                         if (!page)
439                                 continue;
440                         if (PageDirty(page)) {
441                                 btree_lock_page_hook(page);
442                                 wait_on_page_writeback(page);
443                                 err = write_one_page(page, 0);
444                                 if (err)
445                                         werr = err;
446                         }
447                         wait_on_page_writeback(page);
448                         page_cache_release(page);
449                         cond_resched();
450                 }
451         }
452         if (err)
453                 werr = err;
454         return werr;
455 }
456
457 /*
458  * when btree blocks are allocated, they have some corresponding bits set for
459  * them in one of two extent_io trees.  This is used to make sure all of
460  * those extents are on disk for transaction or log commit
461  */
462 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
463                                 struct extent_io_tree *dirty_pages, int mark)
464 {
465         int ret;
466         int ret2;
467
468         ret = btrfs_write_marked_extents(root, dirty_pages, mark);
469         ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
470         return ret || ret2;
471 }
472
473 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
474                                      struct btrfs_root *root)
475 {
476         if (!trans || !trans->transaction) {
477                 struct inode *btree_inode;
478                 btree_inode = root->fs_info->btree_inode;
479                 return filemap_write_and_wait(btree_inode->i_mapping);
480         }
481         return btrfs_write_and_wait_marked_extents(root,
482                                            &trans->transaction->dirty_pages,
483                                            EXTENT_DIRTY);
484 }
485
486 /*
487  * this is used to update the root pointer in the tree of tree roots.
488  *
489  * But, in the case of the extent allocation tree, updating the root
490  * pointer may allocate blocks which may change the root of the extent
491  * allocation tree.
492  *
493  * So, this loops and repeats and makes sure the cowonly root didn't
494  * change while the root pointer was being updated in the metadata.
495  */
496 static int update_cowonly_root(struct btrfs_trans_handle *trans,
497                                struct btrfs_root *root)
498 {
499         int ret;
500         u64 old_root_bytenr;
501         struct btrfs_root *tree_root = root->fs_info->tree_root;
502
503         btrfs_write_dirty_block_groups(trans, root);
504
505         while (1) {
506                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
507                 if (old_root_bytenr == root->node->start)
508                         break;
509
510                 btrfs_set_root_node(&root->root_item, root->node);
511                 ret = btrfs_update_root(trans, tree_root,
512                                         &root->root_key,
513                                         &root->root_item);
514                 BUG_ON(ret);
515
516                 ret = btrfs_write_dirty_block_groups(trans, root);
517                 BUG_ON(ret);
518         }
519
520         if (root != root->fs_info->extent_root)
521                 switch_commit_root(root);
522
523         return 0;
524 }
525
526 /*
527  * update all the cowonly tree roots on disk
528  */
529 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
530                                          struct btrfs_root *root)
531 {
532         struct btrfs_fs_info *fs_info = root->fs_info;
533         struct list_head *next;
534         struct extent_buffer *eb;
535         int ret;
536
537         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
538         BUG_ON(ret);
539
540         eb = btrfs_lock_root_node(fs_info->tree_root);
541         btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
542         btrfs_tree_unlock(eb);
543         free_extent_buffer(eb);
544
545         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
546         BUG_ON(ret);
547
548         while (!list_empty(&fs_info->dirty_cowonly_roots)) {
549                 next = fs_info->dirty_cowonly_roots.next;
550                 list_del_init(next);
551                 root = list_entry(next, struct btrfs_root, dirty_list);
552
553                 update_cowonly_root(trans, root);
554         }
555
556         down_write(&fs_info->extent_commit_sem);
557         switch_commit_root(fs_info->extent_root);
558         up_write(&fs_info->extent_commit_sem);
559
560         return 0;
561 }
562
563 /*
564  * dead roots are old snapshots that need to be deleted.  This allocates
565  * a dirty root struct and adds it into the list of dead roots that need to
566  * be deleted
567  */
568 int btrfs_add_dead_root(struct btrfs_root *root)
569 {
570         mutex_lock(&root->fs_info->trans_mutex);
571         list_add(&root->root_list, &root->fs_info->dead_roots);
572         mutex_unlock(&root->fs_info->trans_mutex);
573         return 0;
574 }
575
576 /*
577  * update all the cowonly tree roots on disk
578  */
579 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
580                                     struct btrfs_root *root)
581 {
582         struct btrfs_root *gang[8];
583         struct btrfs_fs_info *fs_info = root->fs_info;
584         int i;
585         int ret;
586         int err = 0;
587
588         while (1) {
589                 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
590                                                  (void **)gang, 0,
591                                                  ARRAY_SIZE(gang),
592                                                  BTRFS_ROOT_TRANS_TAG);
593                 if (ret == 0)
594                         break;
595                 for (i = 0; i < ret; i++) {
596                         root = gang[i];
597                         radix_tree_tag_clear(&fs_info->fs_roots_radix,
598                                         (unsigned long)root->root_key.objectid,
599                                         BTRFS_ROOT_TRANS_TAG);
600
601                         btrfs_free_log(trans, root);
602                         btrfs_update_reloc_root(trans, root);
603
604                         if (root->commit_root != root->node) {
605                                 switch_commit_root(root);
606                                 btrfs_set_root_node(&root->root_item,
607                                                     root->node);
608                         }
609
610                         err = btrfs_update_root(trans, fs_info->tree_root,
611                                                 &root->root_key,
612                                                 &root->root_item);
613                         if (err)
614                                 break;
615                 }
616         }
617         return err;
618 }
619
620 /*
621  * defrag a given btree.  If cacheonly == 1, this won't read from the disk,
622  * otherwise every leaf in the btree is read and defragged.
623  */
624 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
625 {
626         struct btrfs_fs_info *info = root->fs_info;
627         int ret;
628         struct btrfs_trans_handle *trans;
629         unsigned long nr;
630
631         smp_mb();
632         if (root->defrag_running)
633                 return 0;
634         trans = btrfs_start_transaction(root, 1);
635         while (1) {
636                 root->defrag_running = 1;
637                 ret = btrfs_defrag_leaves(trans, root, cacheonly);
638                 nr = trans->blocks_used;
639                 btrfs_end_transaction(trans, root);
640                 btrfs_btree_balance_dirty(info->tree_root, nr);
641                 cond_resched();
642
643                 trans = btrfs_start_transaction(root, 1);
644                 if (root->fs_info->closing || ret != -EAGAIN)
645                         break;
646         }
647         root->defrag_running = 0;
648         smp_mb();
649         btrfs_end_transaction(trans, root);
650         return 0;
651 }
652
653 #if 0
654 /*
655  * when dropping snapshots, we generate a ton of delayed refs, and it makes
656  * sense not to join the transaction while it is trying to flush the current
657  * queue of delayed refs out.
658  *
659  * This is used by the drop snapshot code only
660  */
661 static noinline int wait_transaction_pre_flush(struct btrfs_fs_info *info)
662 {
663         DEFINE_WAIT(wait);
664
665         mutex_lock(&info->trans_mutex);
666         while (info->running_transaction &&
667                info->running_transaction->delayed_refs.flushing) {
668                 prepare_to_wait(&info->transaction_wait, &wait,
669                                 TASK_UNINTERRUPTIBLE);
670                 mutex_unlock(&info->trans_mutex);
671
672                 schedule();
673
674                 mutex_lock(&info->trans_mutex);
675                 finish_wait(&info->transaction_wait, &wait);
676         }
677         mutex_unlock(&info->trans_mutex);
678         return 0;
679 }
680
681 /*
682  * Given a list of roots that need to be deleted, call btrfs_drop_snapshot on
683  * all of them
684  */
685 int btrfs_drop_dead_root(struct btrfs_root *root)
686 {
687         struct btrfs_trans_handle *trans;
688         struct btrfs_root *tree_root = root->fs_info->tree_root;
689         unsigned long nr;
690         int ret;
691
692         while (1) {
693                 /*
694                  * we don't want to jump in and create a bunch of
695                  * delayed refs if the transaction is starting to close
696                  */
697                 wait_transaction_pre_flush(tree_root->fs_info);
698                 trans = btrfs_start_transaction(tree_root, 1);
699
700                 /*
701                  * we've joined a transaction, make sure it isn't
702                  * closing right now
703                  */
704                 if (trans->transaction->delayed_refs.flushing) {
705                         btrfs_end_transaction(trans, tree_root);
706                         continue;
707                 }
708
709                 ret = btrfs_drop_snapshot(trans, root);
710                 if (ret != -EAGAIN)
711                         break;
712
713                 ret = btrfs_update_root(trans, tree_root,
714                                         &root->root_key,
715                                         &root->root_item);
716                 if (ret)
717                         break;
718
719                 nr = trans->blocks_used;
720                 ret = btrfs_end_transaction(trans, tree_root);
721                 BUG_ON(ret);
722
723                 btrfs_btree_balance_dirty(tree_root, nr);
724                 cond_resched();
725         }
726         BUG_ON(ret);
727
728         ret = btrfs_del_root(trans, tree_root, &root->root_key);
729         BUG_ON(ret);
730
731         nr = trans->blocks_used;
732         ret = btrfs_end_transaction(trans, tree_root);
733         BUG_ON(ret);
734
735         free_extent_buffer(root->node);
736         free_extent_buffer(root->commit_root);
737         kfree(root);
738
739         btrfs_btree_balance_dirty(tree_root, nr);
740         return ret;
741 }
742 #endif
743
744 /*
745  * new snapshots need to be created at a very specific time in the
746  * transaction commit.  This does the actual creation
747  */
748 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
749                                    struct btrfs_fs_info *fs_info,
750                                    struct btrfs_pending_snapshot *pending)
751 {
752         struct btrfs_key key;
753         struct btrfs_root_item *new_root_item;
754         struct btrfs_root *tree_root = fs_info->tree_root;
755         struct btrfs_root *root = pending->root;
756         struct extent_buffer *tmp;
757         struct extent_buffer *old;
758         int ret;
759         u64 objectid;
760
761         new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
762         if (!new_root_item) {
763                 ret = -ENOMEM;
764                 goto fail;
765         }
766         ret = btrfs_find_free_objectid(trans, tree_root, 0, &objectid);
767         if (ret)
768                 goto fail;
769
770         record_root_in_trans(trans, root);
771         btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
772         memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
773
774         key.objectid = objectid;
775         /* record when the snapshot was created in key.offset */
776         key.offset = trans->transid;
777         btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
778
779         old = btrfs_lock_root_node(root);
780         btrfs_cow_block(trans, root, old, NULL, 0, &old);
781         btrfs_set_lock_blocking(old);
782
783         btrfs_copy_root(trans, root, old, &tmp, objectid);
784         btrfs_tree_unlock(old);
785         free_extent_buffer(old);
786
787         btrfs_set_root_node(new_root_item, tmp);
788         ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
789                                 new_root_item);
790         btrfs_tree_unlock(tmp);
791         free_extent_buffer(tmp);
792         if (ret)
793                 goto fail;
794
795         key.offset = (u64)-1;
796         memcpy(&pending->root_key, &key, sizeof(key));
797 fail:
798         kfree(new_root_item);
799         return ret;
800 }
801
802 static noinline int finish_pending_snapshot(struct btrfs_fs_info *fs_info,
803                                    struct btrfs_pending_snapshot *pending)
804 {
805         int ret;
806         int namelen;
807         u64 index = 0;
808         struct btrfs_trans_handle *trans;
809         struct inode *parent_inode;
810         struct btrfs_root *parent_root;
811
812         parent_inode = pending->dentry->d_parent->d_inode;
813         parent_root = BTRFS_I(parent_inode)->root;
814         trans = btrfs_join_transaction(parent_root, 1);
815
816         /*
817          * insert the directory item
818          */
819         namelen = strlen(pending->name);
820         ret = btrfs_set_inode_index(parent_inode, &index);
821         ret = btrfs_insert_dir_item(trans, parent_root,
822                             pending->name, namelen,
823                             parent_inode->i_ino,
824                             &pending->root_key, BTRFS_FT_DIR, index);
825
826         if (ret)
827                 goto fail;
828
829         btrfs_i_size_write(parent_inode, parent_inode->i_size + namelen * 2);
830         ret = btrfs_update_inode(trans, parent_root, parent_inode);
831         BUG_ON(ret);
832
833         ret = btrfs_add_root_ref(trans, parent_root->fs_info->tree_root,
834                                  pending->root_key.objectid,
835                                  parent_root->root_key.objectid,
836                                  parent_inode->i_ino, index, pending->name,
837                                  namelen);
838
839         BUG_ON(ret);
840
841 fail:
842         btrfs_end_transaction(trans, fs_info->fs_root);
843         return ret;
844 }
845
846 /*
847  * create all the snapshots we've scheduled for creation
848  */
849 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
850                                              struct btrfs_fs_info *fs_info)
851 {
852         struct btrfs_pending_snapshot *pending;
853         struct list_head *head = &trans->transaction->pending_snapshots;
854         int ret;
855
856         list_for_each_entry(pending, head, list) {
857                 ret = create_pending_snapshot(trans, fs_info, pending);
858                 BUG_ON(ret);
859         }
860         return 0;
861 }
862
863 static noinline int finish_pending_snapshots(struct btrfs_trans_handle *trans,
864                                              struct btrfs_fs_info *fs_info)
865 {
866         struct btrfs_pending_snapshot *pending;
867         struct list_head *head = &trans->transaction->pending_snapshots;
868         int ret;
869
870         while (!list_empty(head)) {
871                 pending = list_entry(head->next,
872                                      struct btrfs_pending_snapshot, list);
873                 ret = finish_pending_snapshot(fs_info, pending);
874                 BUG_ON(ret);
875                 list_del(&pending->list);
876                 kfree(pending->name);
877                 kfree(pending);
878         }
879         return 0;
880 }
881
882 static void update_super_roots(struct btrfs_root *root)
883 {
884         struct btrfs_root_item *root_item;
885         struct btrfs_super_block *super;
886
887         super = &root->fs_info->super_copy;
888
889         root_item = &root->fs_info->chunk_root->root_item;
890         super->chunk_root = root_item->bytenr;
891         super->chunk_root_generation = root_item->generation;
892         super->chunk_root_level = root_item->level;
893
894         root_item = &root->fs_info->tree_root->root_item;
895         super->root = root_item->bytenr;
896         super->generation = root_item->generation;
897         super->root_level = root_item->level;
898 }
899
900 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
901 {
902         int ret = 0;
903         spin_lock(&info->new_trans_lock);
904         if (info->running_transaction)
905                 ret = info->running_transaction->in_commit;
906         spin_unlock(&info->new_trans_lock);
907         return ret;
908 }
909
910 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
911                              struct btrfs_root *root)
912 {
913         unsigned long joined = 0;
914         unsigned long timeout = 1;
915         struct btrfs_transaction *cur_trans;
916         struct btrfs_transaction *prev_trans = NULL;
917         DEFINE_WAIT(wait);
918         int ret;
919         int should_grow = 0;
920         unsigned long now = get_seconds();
921         int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
922
923         btrfs_run_ordered_operations(root, 0);
924
925         /* make a pass through all the delayed refs we have so far
926          * any runnings procs may add more while we are here
927          */
928         ret = btrfs_run_delayed_refs(trans, root, 0);
929         BUG_ON(ret);
930
931         cur_trans = trans->transaction;
932         /*
933          * set the flushing flag so procs in this transaction have to
934          * start sending their work down.
935          */
936         cur_trans->delayed_refs.flushing = 1;
937
938         ret = btrfs_run_delayed_refs(trans, root, 0);
939         BUG_ON(ret);
940
941         mutex_lock(&root->fs_info->trans_mutex);
942         if (cur_trans->in_commit) {
943                 cur_trans->use_count++;
944                 mutex_unlock(&root->fs_info->trans_mutex);
945                 btrfs_end_transaction(trans, root);
946
947                 ret = wait_for_commit(root, cur_trans);
948                 BUG_ON(ret);
949
950                 mutex_lock(&root->fs_info->trans_mutex);
951                 put_transaction(cur_trans);
952                 mutex_unlock(&root->fs_info->trans_mutex);
953
954                 return 0;
955         }
956
957         trans->transaction->in_commit = 1;
958         trans->transaction->blocked = 1;
959         if (cur_trans->list.prev != &root->fs_info->trans_list) {
960                 prev_trans = list_entry(cur_trans->list.prev,
961                                         struct btrfs_transaction, list);
962                 if (!prev_trans->commit_done) {
963                         prev_trans->use_count++;
964                         mutex_unlock(&root->fs_info->trans_mutex);
965
966                         wait_for_commit(root, prev_trans);
967
968                         mutex_lock(&root->fs_info->trans_mutex);
969                         put_transaction(prev_trans);
970                 }
971         }
972
973         if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
974                 should_grow = 1;
975
976         do {
977                 int snap_pending = 0;
978                 joined = cur_trans->num_joined;
979                 if (!list_empty(&trans->transaction->pending_snapshots))
980                         snap_pending = 1;
981
982                 WARN_ON(cur_trans != trans->transaction);
983                 prepare_to_wait(&cur_trans->writer_wait, &wait,
984                                 TASK_UNINTERRUPTIBLE);
985
986                 if (cur_trans->num_writers > 1)
987                         timeout = MAX_SCHEDULE_TIMEOUT;
988                 else if (should_grow)
989                         timeout = 1;
990
991                 mutex_unlock(&root->fs_info->trans_mutex);
992
993                 if (flush_on_commit) {
994                         btrfs_start_delalloc_inodes(root);
995                         ret = btrfs_wait_ordered_extents(root, 0);
996                         BUG_ON(ret);
997                 } else if (snap_pending) {
998                         ret = btrfs_wait_ordered_extents(root, 1);
999                         BUG_ON(ret);
1000                 }
1001
1002                 /*
1003                  * rename don't use btrfs_join_transaction, so, once we
1004                  * set the transaction to blocked above, we aren't going
1005                  * to get any new ordered operations.  We can safely run
1006                  * it here and no for sure that nothing new will be added
1007                  * to the list
1008                  */
1009                 btrfs_run_ordered_operations(root, 1);
1010
1011                 smp_mb();
1012                 if (cur_trans->num_writers > 1 || should_grow)
1013                         schedule_timeout(timeout);
1014
1015                 mutex_lock(&root->fs_info->trans_mutex);
1016                 finish_wait(&cur_trans->writer_wait, &wait);
1017         } while (cur_trans->num_writers > 1 ||
1018                  (should_grow && cur_trans->num_joined != joined));
1019
1020         ret = create_pending_snapshots(trans, root->fs_info);
1021         BUG_ON(ret);
1022
1023         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1024         BUG_ON(ret);
1025
1026         WARN_ON(cur_trans != trans->transaction);
1027
1028         /* btrfs_commit_tree_roots is responsible for getting the
1029          * various roots consistent with each other.  Every pointer
1030          * in the tree of tree roots has to point to the most up to date
1031          * root for every subvolume and other tree.  So, we have to keep
1032          * the tree logging code from jumping in and changing any
1033          * of the trees.
1034          *
1035          * At this point in the commit, there can't be any tree-log
1036          * writers, but a little lower down we drop the trans mutex
1037          * and let new people in.  By holding the tree_log_mutex
1038          * from now until after the super is written, we avoid races
1039          * with the tree-log code.
1040          */
1041         mutex_lock(&root->fs_info->tree_log_mutex);
1042
1043         ret = commit_fs_roots(trans, root);
1044         BUG_ON(ret);
1045
1046         /* commit_fs_roots gets rid of all the tree log roots, it is now
1047          * safe to free the root of tree log roots
1048          */
1049         btrfs_free_log_root_tree(trans, root->fs_info);
1050
1051         ret = commit_cowonly_roots(trans, root);
1052         BUG_ON(ret);
1053
1054         btrfs_prepare_extent_commit(trans, root);
1055
1056         cur_trans = root->fs_info->running_transaction;
1057         spin_lock(&root->fs_info->new_trans_lock);
1058         root->fs_info->running_transaction = NULL;
1059         spin_unlock(&root->fs_info->new_trans_lock);
1060
1061         btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1062                             root->fs_info->tree_root->node);
1063         switch_commit_root(root->fs_info->tree_root);
1064
1065         btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1066                             root->fs_info->chunk_root->node);
1067         switch_commit_root(root->fs_info->chunk_root);
1068
1069         update_super_roots(root);
1070
1071         if (!root->fs_info->log_root_recovering) {
1072                 btrfs_set_super_log_root(&root->fs_info->super_copy, 0);
1073                 btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0);
1074         }
1075
1076         memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy,
1077                sizeof(root->fs_info->super_copy));
1078
1079         trans->transaction->blocked = 0;
1080
1081         wake_up(&root->fs_info->transaction_wait);
1082
1083         mutex_unlock(&root->fs_info->trans_mutex);
1084         ret = btrfs_write_and_wait_transaction(trans, root);
1085         BUG_ON(ret);
1086         write_ctree_super(trans, root, 0);
1087
1088         /*
1089          * the super is written, we can safely allow the tree-loggers
1090          * to go about their business
1091          */
1092         mutex_unlock(&root->fs_info->tree_log_mutex);
1093
1094         btrfs_finish_extent_commit(trans, root);
1095
1096         /* do the directory inserts of any pending snapshot creations */
1097         finish_pending_snapshots(trans, root->fs_info);
1098
1099         mutex_lock(&root->fs_info->trans_mutex);
1100
1101         cur_trans->commit_done = 1;
1102
1103         root->fs_info->last_trans_committed = cur_trans->transid;
1104
1105         wake_up(&cur_trans->commit_wait);
1106
1107         put_transaction(cur_trans);
1108         put_transaction(cur_trans);
1109
1110         mutex_unlock(&root->fs_info->trans_mutex);
1111
1112         if (current->journal_info == trans)
1113                 current->journal_info = NULL;
1114
1115         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1116         return ret;
1117 }
1118
1119 /*
1120  * interface function to delete all the snapshots we have scheduled for deletion
1121  */
1122 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1123 {
1124         LIST_HEAD(list);
1125         struct btrfs_fs_info *fs_info = root->fs_info;
1126
1127         mutex_lock(&fs_info->trans_mutex);
1128         list_splice_init(&fs_info->dead_roots, &list);
1129         mutex_unlock(&fs_info->trans_mutex);
1130
1131         while (!list_empty(&list)) {
1132                 root = list_entry(list.next, struct btrfs_root, root_list);
1133                 list_del(&root->root_list);
1134
1135                 if (btrfs_header_backref_rev(root->node) <
1136                     BTRFS_MIXED_BACKREF_REV)
1137                         btrfs_drop_snapshot(root, 0);
1138                 else
1139                         btrfs_drop_snapshot(root, 1);
1140         }
1141         return 0;
1142 }