Btrfs: add transaction space reservation tracepoints
[cascardo/linux.git] / fs / btrfs / transaction.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 #include "qgroup.h"
35
36 #define BTRFS_ROOT_TRANS_TAG 0
37
38 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39         [TRANS_STATE_RUNNING]           = 0U,
40         [TRANS_STATE_BLOCKED]           = (__TRANS_USERSPACE |
41                                            __TRANS_START),
42         [TRANS_STATE_COMMIT_START]      = (__TRANS_USERSPACE |
43                                            __TRANS_START |
44                                            __TRANS_ATTACH),
45         [TRANS_STATE_COMMIT_DOING]      = (__TRANS_USERSPACE |
46                                            __TRANS_START |
47                                            __TRANS_ATTACH |
48                                            __TRANS_JOIN),
49         [TRANS_STATE_UNBLOCKED]         = (__TRANS_USERSPACE |
50                                            __TRANS_START |
51                                            __TRANS_ATTACH |
52                                            __TRANS_JOIN |
53                                            __TRANS_JOIN_NOLOCK),
54         [TRANS_STATE_COMPLETED]         = (__TRANS_USERSPACE |
55                                            __TRANS_START |
56                                            __TRANS_ATTACH |
57                                            __TRANS_JOIN |
58                                            __TRANS_JOIN_NOLOCK),
59 };
60
61 void btrfs_put_transaction(struct btrfs_transaction *transaction)
62 {
63         WARN_ON(atomic_read(&transaction->use_count) == 0);
64         if (atomic_dec_and_test(&transaction->use_count)) {
65                 BUG_ON(!list_empty(&transaction->list));
66                 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67                 if (transaction->delayed_refs.pending_csums)
68                         printk(KERN_ERR "pending csums is %llu\n",
69                                transaction->delayed_refs.pending_csums);
70                 while (!list_empty(&transaction->pending_chunks)) {
71                         struct extent_map *em;
72
73                         em = list_first_entry(&transaction->pending_chunks,
74                                               struct extent_map, list);
75                         list_del_init(&em->list);
76                         free_extent_map(em);
77                 }
78                 /*
79                  * If any block groups are found in ->deleted_bgs then it's
80                  * because the transaction was aborted and a commit did not
81                  * happen (things failed before writing the new superblock
82                  * and calling btrfs_finish_extent_commit()), so we can not
83                  * discard the physical locations of the block groups.
84                  */
85                 while (!list_empty(&transaction->deleted_bgs)) {
86                         struct btrfs_block_group_cache *cache;
87
88                         cache = list_first_entry(&transaction->deleted_bgs,
89                                                  struct btrfs_block_group_cache,
90                                                  bg_list);
91                         list_del_init(&cache->bg_list);
92                         btrfs_put_block_group_trimming(cache);
93                         btrfs_put_block_group(cache);
94                 }
95                 kmem_cache_free(btrfs_transaction_cachep, transaction);
96         }
97 }
98
99 static void clear_btree_io_tree(struct extent_io_tree *tree)
100 {
101         spin_lock(&tree->lock);
102         /*
103          * Do a single barrier for the waitqueue_active check here, the state
104          * of the waitqueue should not change once clear_btree_io_tree is
105          * called.
106          */
107         smp_mb();
108         while (!RB_EMPTY_ROOT(&tree->state)) {
109                 struct rb_node *node;
110                 struct extent_state *state;
111
112                 node = rb_first(&tree->state);
113                 state = rb_entry(node, struct extent_state, rb_node);
114                 rb_erase(&state->rb_node, &tree->state);
115                 RB_CLEAR_NODE(&state->rb_node);
116                 /*
117                  * btree io trees aren't supposed to have tasks waiting for
118                  * changes in the flags of extent states ever.
119                  */
120                 ASSERT(!waitqueue_active(&state->wq));
121                 free_extent_state(state);
122
123                 cond_resched_lock(&tree->lock);
124         }
125         spin_unlock(&tree->lock);
126 }
127
128 static noinline void switch_commit_roots(struct btrfs_transaction *trans,
129                                          struct btrfs_fs_info *fs_info)
130 {
131         struct btrfs_root *root, *tmp;
132
133         down_write(&fs_info->commit_root_sem);
134         list_for_each_entry_safe(root, tmp, &trans->switch_commits,
135                                  dirty_list) {
136                 list_del_init(&root->dirty_list);
137                 free_extent_buffer(root->commit_root);
138                 root->commit_root = btrfs_root_node(root);
139                 if (is_fstree(root->objectid))
140                         btrfs_unpin_free_ino(root);
141                 clear_btree_io_tree(&root->dirty_log_pages);
142         }
143
144         /* We can free old roots now. */
145         spin_lock(&trans->dropped_roots_lock);
146         while (!list_empty(&trans->dropped_roots)) {
147                 root = list_first_entry(&trans->dropped_roots,
148                                         struct btrfs_root, root_list);
149                 list_del_init(&root->root_list);
150                 spin_unlock(&trans->dropped_roots_lock);
151                 btrfs_drop_and_free_fs_root(fs_info, root);
152                 spin_lock(&trans->dropped_roots_lock);
153         }
154         spin_unlock(&trans->dropped_roots_lock);
155         up_write(&fs_info->commit_root_sem);
156 }
157
158 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
159                                          unsigned int type)
160 {
161         if (type & TRANS_EXTWRITERS)
162                 atomic_inc(&trans->num_extwriters);
163 }
164
165 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
166                                          unsigned int type)
167 {
168         if (type & TRANS_EXTWRITERS)
169                 atomic_dec(&trans->num_extwriters);
170 }
171
172 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
173                                           unsigned int type)
174 {
175         atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
176 }
177
178 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
179 {
180         return atomic_read(&trans->num_extwriters);
181 }
182
183 /*
184  * either allocate a new transaction or hop into the existing one
185  */
186 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
187 {
188         struct btrfs_transaction *cur_trans;
189         struct btrfs_fs_info *fs_info = root->fs_info;
190
191         spin_lock(&fs_info->trans_lock);
192 loop:
193         /* The file system has been taken offline. No new transactions. */
194         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
195                 spin_unlock(&fs_info->trans_lock);
196                 return -EROFS;
197         }
198
199         cur_trans = fs_info->running_transaction;
200         if (cur_trans) {
201                 if (cur_trans->aborted) {
202                         spin_unlock(&fs_info->trans_lock);
203                         return cur_trans->aborted;
204                 }
205                 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
206                         spin_unlock(&fs_info->trans_lock);
207                         return -EBUSY;
208                 }
209                 atomic_inc(&cur_trans->use_count);
210                 atomic_inc(&cur_trans->num_writers);
211                 extwriter_counter_inc(cur_trans, type);
212                 spin_unlock(&fs_info->trans_lock);
213                 return 0;
214         }
215         spin_unlock(&fs_info->trans_lock);
216
217         /*
218          * If we are ATTACH, we just want to catch the current transaction,
219          * and commit it. If there is no transaction, just return ENOENT.
220          */
221         if (type == TRANS_ATTACH)
222                 return -ENOENT;
223
224         /*
225          * JOIN_NOLOCK only happens during the transaction commit, so
226          * it is impossible that ->running_transaction is NULL
227          */
228         BUG_ON(type == TRANS_JOIN_NOLOCK);
229
230         cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
231         if (!cur_trans)
232                 return -ENOMEM;
233
234         spin_lock(&fs_info->trans_lock);
235         if (fs_info->running_transaction) {
236                 /*
237                  * someone started a transaction after we unlocked.  Make sure
238                  * to redo the checks above
239                  */
240                 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
241                 goto loop;
242         } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
243                 spin_unlock(&fs_info->trans_lock);
244                 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
245                 return -EROFS;
246         }
247
248         atomic_set(&cur_trans->num_writers, 1);
249         extwriter_counter_init(cur_trans, type);
250         init_waitqueue_head(&cur_trans->writer_wait);
251         init_waitqueue_head(&cur_trans->commit_wait);
252         init_waitqueue_head(&cur_trans->pending_wait);
253         cur_trans->state = TRANS_STATE_RUNNING;
254         /*
255          * One for this trans handle, one so it will live on until we
256          * commit the transaction.
257          */
258         atomic_set(&cur_trans->use_count, 2);
259         atomic_set(&cur_trans->pending_ordered, 0);
260         cur_trans->flags = 0;
261         cur_trans->start_time = get_seconds();
262
263         memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
264
265         cur_trans->delayed_refs.href_root = RB_ROOT;
266         cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
267         atomic_set(&cur_trans->delayed_refs.num_entries, 0);
268
269         /*
270          * although the tree mod log is per file system and not per transaction,
271          * the log must never go across transaction boundaries.
272          */
273         smp_mb();
274         if (!list_empty(&fs_info->tree_mod_seq_list))
275                 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when "
276                         "creating a fresh transaction\n");
277         if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
278                 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when "
279                         "creating a fresh transaction\n");
280         atomic64_set(&fs_info->tree_mod_seq, 0);
281
282         spin_lock_init(&cur_trans->delayed_refs.lock);
283
284         INIT_LIST_HEAD(&cur_trans->pending_snapshots);
285         INIT_LIST_HEAD(&cur_trans->pending_chunks);
286         INIT_LIST_HEAD(&cur_trans->switch_commits);
287         INIT_LIST_HEAD(&cur_trans->dirty_bgs);
288         INIT_LIST_HEAD(&cur_trans->io_bgs);
289         INIT_LIST_HEAD(&cur_trans->dropped_roots);
290         mutex_init(&cur_trans->cache_write_mutex);
291         cur_trans->num_dirty_bgs = 0;
292         spin_lock_init(&cur_trans->dirty_bgs_lock);
293         INIT_LIST_HEAD(&cur_trans->deleted_bgs);
294         spin_lock_init(&cur_trans->dropped_roots_lock);
295         list_add_tail(&cur_trans->list, &fs_info->trans_list);
296         extent_io_tree_init(&cur_trans->dirty_pages,
297                              fs_info->btree_inode->i_mapping);
298         fs_info->generation++;
299         cur_trans->transid = fs_info->generation;
300         fs_info->running_transaction = cur_trans;
301         cur_trans->aborted = 0;
302         spin_unlock(&fs_info->trans_lock);
303
304         return 0;
305 }
306
307 /*
308  * this does all the record keeping required to make sure that a reference
309  * counted root is properly recorded in a given transaction.  This is required
310  * to make sure the old root from before we joined the transaction is deleted
311  * when the transaction commits
312  */
313 static int record_root_in_trans(struct btrfs_trans_handle *trans,
314                                struct btrfs_root *root)
315 {
316         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
317             root->last_trans < trans->transid) {
318                 WARN_ON(root == root->fs_info->extent_root);
319                 WARN_ON(root->commit_root != root->node);
320
321                 /*
322                  * see below for IN_TRANS_SETUP usage rules
323                  * we have the reloc mutex held now, so there
324                  * is only one writer in this function
325                  */
326                 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
327
328                 /* make sure readers find IN_TRANS_SETUP before
329                  * they find our root->last_trans update
330                  */
331                 smp_wmb();
332
333                 spin_lock(&root->fs_info->fs_roots_radix_lock);
334                 if (root->last_trans == trans->transid) {
335                         spin_unlock(&root->fs_info->fs_roots_radix_lock);
336                         return 0;
337                 }
338                 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
339                            (unsigned long)root->root_key.objectid,
340                            BTRFS_ROOT_TRANS_TAG);
341                 spin_unlock(&root->fs_info->fs_roots_radix_lock);
342                 root->last_trans = trans->transid;
343
344                 /* this is pretty tricky.  We don't want to
345                  * take the relocation lock in btrfs_record_root_in_trans
346                  * unless we're really doing the first setup for this root in
347                  * this transaction.
348                  *
349                  * Normally we'd use root->last_trans as a flag to decide
350                  * if we want to take the expensive mutex.
351                  *
352                  * But, we have to set root->last_trans before we
353                  * init the relocation root, otherwise, we trip over warnings
354                  * in ctree.c.  The solution used here is to flag ourselves
355                  * with root IN_TRANS_SETUP.  When this is 1, we're still
356                  * fixing up the reloc trees and everyone must wait.
357                  *
358                  * When this is zero, they can trust root->last_trans and fly
359                  * through btrfs_record_root_in_trans without having to take the
360                  * lock.  smp_wmb() makes sure that all the writes above are
361                  * done before we pop in the zero below
362                  */
363                 btrfs_init_reloc_root(trans, root);
364                 smp_mb__before_atomic();
365                 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
366         }
367         return 0;
368 }
369
370
371 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
372                             struct btrfs_root *root)
373 {
374         struct btrfs_transaction *cur_trans = trans->transaction;
375
376         /* Add ourselves to the transaction dropped list */
377         spin_lock(&cur_trans->dropped_roots_lock);
378         list_add_tail(&root->root_list, &cur_trans->dropped_roots);
379         spin_unlock(&cur_trans->dropped_roots_lock);
380
381         /* Make sure we don't try to update the root at commit time */
382         spin_lock(&root->fs_info->fs_roots_radix_lock);
383         radix_tree_tag_clear(&root->fs_info->fs_roots_radix,
384                              (unsigned long)root->root_key.objectid,
385                              BTRFS_ROOT_TRANS_TAG);
386         spin_unlock(&root->fs_info->fs_roots_radix_lock);
387 }
388
389 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
390                                struct btrfs_root *root)
391 {
392         if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
393                 return 0;
394
395         /*
396          * see record_root_in_trans for comments about IN_TRANS_SETUP usage
397          * and barriers
398          */
399         smp_rmb();
400         if (root->last_trans == trans->transid &&
401             !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
402                 return 0;
403
404         mutex_lock(&root->fs_info->reloc_mutex);
405         record_root_in_trans(trans, root);
406         mutex_unlock(&root->fs_info->reloc_mutex);
407
408         return 0;
409 }
410
411 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
412 {
413         return (trans->state >= TRANS_STATE_BLOCKED &&
414                 trans->state < TRANS_STATE_UNBLOCKED &&
415                 !trans->aborted);
416 }
417
418 /* wait for commit against the current transaction to become unblocked
419  * when this is done, it is safe to start a new transaction, but the current
420  * transaction might not be fully on disk.
421  */
422 static void wait_current_trans(struct btrfs_root *root)
423 {
424         struct btrfs_transaction *cur_trans;
425
426         spin_lock(&root->fs_info->trans_lock);
427         cur_trans = root->fs_info->running_transaction;
428         if (cur_trans && is_transaction_blocked(cur_trans)) {
429                 atomic_inc(&cur_trans->use_count);
430                 spin_unlock(&root->fs_info->trans_lock);
431
432                 wait_event(root->fs_info->transaction_wait,
433                            cur_trans->state >= TRANS_STATE_UNBLOCKED ||
434                            cur_trans->aborted);
435                 btrfs_put_transaction(cur_trans);
436         } else {
437                 spin_unlock(&root->fs_info->trans_lock);
438         }
439 }
440
441 static int may_wait_transaction(struct btrfs_root *root, int type)
442 {
443         if (root->fs_info->log_root_recovering)
444                 return 0;
445
446         if (type == TRANS_USERSPACE)
447                 return 1;
448
449         if (type == TRANS_START &&
450             !atomic_read(&root->fs_info->open_ioctl_trans))
451                 return 1;
452
453         return 0;
454 }
455
456 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
457 {
458         if (!root->fs_info->reloc_ctl ||
459             !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
460             root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
461             root->reloc_root)
462                 return false;
463
464         return true;
465 }
466
467 static struct btrfs_trans_handle *
468 start_transaction(struct btrfs_root *root, unsigned int num_items,
469                   unsigned int type, enum btrfs_reserve_flush_enum flush)
470 {
471         struct btrfs_trans_handle *h;
472         struct btrfs_transaction *cur_trans;
473         u64 num_bytes = 0;
474         u64 qgroup_reserved = 0;
475         bool reloc_reserved = false;
476         int ret;
477
478         /* Send isn't supposed to start transactions. */
479         ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
480
481         if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
482                 return ERR_PTR(-EROFS);
483
484         if (current->journal_info) {
485                 WARN_ON(type & TRANS_EXTWRITERS);
486                 h = current->journal_info;
487                 h->use_count++;
488                 WARN_ON(h->use_count > 2);
489                 h->orig_rsv = h->block_rsv;
490                 h->block_rsv = NULL;
491                 goto got_it;
492         }
493
494         /*
495          * Do the reservation before we join the transaction so we can do all
496          * the appropriate flushing if need be.
497          */
498         if (num_items > 0 && root != root->fs_info->chunk_root) {
499                 qgroup_reserved = num_items * root->nodesize;
500                 ret = btrfs_qgroup_reserve_meta(root, qgroup_reserved);
501                 if (ret)
502                         return ERR_PTR(ret);
503
504                 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
505                 /*
506                  * Do the reservation for the relocation root creation
507                  */
508                 if (need_reserve_reloc_root(root)) {
509                         num_bytes += root->nodesize;
510                         reloc_reserved = true;
511                 }
512
513                 ret = btrfs_block_rsv_add(root,
514                                           &root->fs_info->trans_block_rsv,
515                                           num_bytes, flush);
516                 if (ret)
517                         goto reserve_fail;
518         }
519 again:
520         h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
521         if (!h) {
522                 ret = -ENOMEM;
523                 goto alloc_fail;
524         }
525
526         /*
527          * If we are JOIN_NOLOCK we're already committing a transaction and
528          * waiting on this guy, so we don't need to do the sb_start_intwrite
529          * because we're already holding a ref.  We need this because we could
530          * have raced in and did an fsync() on a file which can kick a commit
531          * and then we deadlock with somebody doing a freeze.
532          *
533          * If we are ATTACH, it means we just want to catch the current
534          * transaction and commit it, so we needn't do sb_start_intwrite(). 
535          */
536         if (type & __TRANS_FREEZABLE)
537                 sb_start_intwrite(root->fs_info->sb);
538
539         if (may_wait_transaction(root, type))
540                 wait_current_trans(root);
541
542         do {
543                 ret = join_transaction(root, type);
544                 if (ret == -EBUSY) {
545                         wait_current_trans(root);
546                         if (unlikely(type == TRANS_ATTACH))
547                                 ret = -ENOENT;
548                 }
549         } while (ret == -EBUSY);
550
551         if (ret < 0) {
552                 /* We must get the transaction if we are JOIN_NOLOCK. */
553                 BUG_ON(type == TRANS_JOIN_NOLOCK);
554                 goto join_fail;
555         }
556
557         cur_trans = root->fs_info->running_transaction;
558
559         h->transid = cur_trans->transid;
560         h->transaction = cur_trans;
561         h->root = root;
562         h->use_count = 1;
563
564         h->type = type;
565         h->can_flush_pending_bgs = true;
566         INIT_LIST_HEAD(&h->qgroup_ref_list);
567         INIT_LIST_HEAD(&h->new_bgs);
568
569         smp_mb();
570         if (cur_trans->state >= TRANS_STATE_BLOCKED &&
571             may_wait_transaction(root, type)) {
572                 current->journal_info = h;
573                 btrfs_commit_transaction(h, root);
574                 goto again;
575         }
576
577         if (num_bytes) {
578                 trace_btrfs_space_reservation(root->fs_info, "transaction",
579                                               h->transid, num_bytes, 1);
580                 h->block_rsv = &root->fs_info->trans_block_rsv;
581                 h->bytes_reserved = num_bytes;
582                 h->reloc_reserved = reloc_reserved;
583         }
584
585 got_it:
586         btrfs_record_root_in_trans(h, root);
587
588         if (!current->journal_info && type != TRANS_USERSPACE)
589                 current->journal_info = h;
590         return h;
591
592 join_fail:
593         if (type & __TRANS_FREEZABLE)
594                 sb_end_intwrite(root->fs_info->sb);
595         kmem_cache_free(btrfs_trans_handle_cachep, h);
596 alloc_fail:
597         if (num_bytes)
598                 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
599                                         num_bytes);
600 reserve_fail:
601         btrfs_qgroup_free_meta(root, qgroup_reserved);
602         return ERR_PTR(ret);
603 }
604
605 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
606                                                    unsigned int num_items)
607 {
608         return start_transaction(root, num_items, TRANS_START,
609                                  BTRFS_RESERVE_FLUSH_ALL);
610 }
611 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
612                                         struct btrfs_root *root,
613                                         unsigned int num_items,
614                                         int min_factor)
615 {
616         struct btrfs_trans_handle *trans;
617         u64 num_bytes;
618         int ret;
619
620         trans = btrfs_start_transaction(root, num_items);
621         if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
622                 return trans;
623
624         trans = btrfs_start_transaction(root, 0);
625         if (IS_ERR(trans))
626                 return trans;
627
628         num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
629         ret = btrfs_cond_migrate_bytes(root->fs_info,
630                                        &root->fs_info->trans_block_rsv,
631                                        num_bytes,
632                                        min_factor);
633         if (ret) {
634                 btrfs_end_transaction(trans, root);
635                 return ERR_PTR(ret);
636         }
637
638         trans->block_rsv = &root->fs_info->trans_block_rsv;
639         trans->bytes_reserved = num_bytes;
640         trace_btrfs_space_reservation(root->fs_info, "transaction",
641                                       trans->transid, num_bytes, 1);
642
643         return trans;
644 }
645
646 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
647                                         struct btrfs_root *root,
648                                         unsigned int num_items)
649 {
650         return start_transaction(root, num_items, TRANS_START,
651                                  BTRFS_RESERVE_FLUSH_LIMIT);
652 }
653
654 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
655 {
656         return start_transaction(root, 0, TRANS_JOIN,
657                                  BTRFS_RESERVE_NO_FLUSH);
658 }
659
660 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
661 {
662         return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
663                                  BTRFS_RESERVE_NO_FLUSH);
664 }
665
666 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
667 {
668         return start_transaction(root, 0, TRANS_USERSPACE,
669                                  BTRFS_RESERVE_NO_FLUSH);
670 }
671
672 /*
673  * btrfs_attach_transaction() - catch the running transaction
674  *
675  * It is used when we want to commit the current the transaction, but
676  * don't want to start a new one.
677  *
678  * Note: If this function return -ENOENT, it just means there is no
679  * running transaction. But it is possible that the inactive transaction
680  * is still in the memory, not fully on disk. If you hope there is no
681  * inactive transaction in the fs when -ENOENT is returned, you should
682  * invoke
683  *     btrfs_attach_transaction_barrier()
684  */
685 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
686 {
687         return start_transaction(root, 0, TRANS_ATTACH,
688                                  BTRFS_RESERVE_NO_FLUSH);
689 }
690
691 /*
692  * btrfs_attach_transaction_barrier() - catch the running transaction
693  *
694  * It is similar to the above function, the differentia is this one
695  * will wait for all the inactive transactions until they fully
696  * complete.
697  */
698 struct btrfs_trans_handle *
699 btrfs_attach_transaction_barrier(struct btrfs_root *root)
700 {
701         struct btrfs_trans_handle *trans;
702
703         trans = start_transaction(root, 0, TRANS_ATTACH,
704                                   BTRFS_RESERVE_NO_FLUSH);
705         if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
706                 btrfs_wait_for_commit(root, 0);
707
708         return trans;
709 }
710
711 /* wait for a transaction commit to be fully complete */
712 static noinline void wait_for_commit(struct btrfs_root *root,
713                                     struct btrfs_transaction *commit)
714 {
715         wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
716 }
717
718 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
719 {
720         struct btrfs_transaction *cur_trans = NULL, *t;
721         int ret = 0;
722
723         if (transid) {
724                 if (transid <= root->fs_info->last_trans_committed)
725                         goto out;
726
727                 /* find specified transaction */
728                 spin_lock(&root->fs_info->trans_lock);
729                 list_for_each_entry(t, &root->fs_info->trans_list, list) {
730                         if (t->transid == transid) {
731                                 cur_trans = t;
732                                 atomic_inc(&cur_trans->use_count);
733                                 ret = 0;
734                                 break;
735                         }
736                         if (t->transid > transid) {
737                                 ret = 0;
738                                 break;
739                         }
740                 }
741                 spin_unlock(&root->fs_info->trans_lock);
742
743                 /*
744                  * The specified transaction doesn't exist, or we
745                  * raced with btrfs_commit_transaction
746                  */
747                 if (!cur_trans) {
748                         if (transid > root->fs_info->last_trans_committed)
749                                 ret = -EINVAL;
750                         goto out;
751                 }
752         } else {
753                 /* find newest transaction that is committing | committed */
754                 spin_lock(&root->fs_info->trans_lock);
755                 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
756                                             list) {
757                         if (t->state >= TRANS_STATE_COMMIT_START) {
758                                 if (t->state == TRANS_STATE_COMPLETED)
759                                         break;
760                                 cur_trans = t;
761                                 atomic_inc(&cur_trans->use_count);
762                                 break;
763                         }
764                 }
765                 spin_unlock(&root->fs_info->trans_lock);
766                 if (!cur_trans)
767                         goto out;  /* nothing committing|committed */
768         }
769
770         wait_for_commit(root, cur_trans);
771         btrfs_put_transaction(cur_trans);
772 out:
773         return ret;
774 }
775
776 void btrfs_throttle(struct btrfs_root *root)
777 {
778         if (!atomic_read(&root->fs_info->open_ioctl_trans))
779                 wait_current_trans(root);
780 }
781
782 static int should_end_transaction(struct btrfs_trans_handle *trans,
783                                   struct btrfs_root *root)
784 {
785         if (root->fs_info->global_block_rsv.space_info->full &&
786             btrfs_check_space_for_delayed_refs(trans, root))
787                 return 1;
788
789         return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
790 }
791
792 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
793                                  struct btrfs_root *root)
794 {
795         struct btrfs_transaction *cur_trans = trans->transaction;
796         int updates;
797         int err;
798
799         smp_mb();
800         if (cur_trans->state >= TRANS_STATE_BLOCKED ||
801             cur_trans->delayed_refs.flushing)
802                 return 1;
803
804         updates = trans->delayed_ref_updates;
805         trans->delayed_ref_updates = 0;
806         if (updates) {
807                 err = btrfs_run_delayed_refs(trans, root, updates * 2);
808                 if (err) /* Error code will also eval true */
809                         return err;
810         }
811
812         return should_end_transaction(trans, root);
813 }
814
815 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
816                           struct btrfs_root *root, int throttle)
817 {
818         struct btrfs_transaction *cur_trans = trans->transaction;
819         struct btrfs_fs_info *info = root->fs_info;
820         unsigned long cur = trans->delayed_ref_updates;
821         int lock = (trans->type != TRANS_JOIN_NOLOCK);
822         int err = 0;
823         int must_run_delayed_refs = 0;
824
825         if (trans->use_count > 1) {
826                 trans->use_count--;
827                 trans->block_rsv = trans->orig_rsv;
828                 return 0;
829         }
830
831         btrfs_trans_release_metadata(trans, root);
832         trans->block_rsv = NULL;
833
834         if (!list_empty(&trans->new_bgs))
835                 btrfs_create_pending_block_groups(trans, root);
836
837         trans->delayed_ref_updates = 0;
838         if (!trans->sync) {
839                 must_run_delayed_refs =
840                         btrfs_should_throttle_delayed_refs(trans, root);
841                 cur = max_t(unsigned long, cur, 32);
842
843                 /*
844                  * don't make the caller wait if they are from a NOLOCK
845                  * or ATTACH transaction, it will deadlock with commit
846                  */
847                 if (must_run_delayed_refs == 1 &&
848                     (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
849                         must_run_delayed_refs = 2;
850         }
851
852         btrfs_trans_release_metadata(trans, root);
853         trans->block_rsv = NULL;
854
855         if (!list_empty(&trans->new_bgs))
856                 btrfs_create_pending_block_groups(trans, root);
857
858         btrfs_trans_release_chunk_metadata(trans);
859
860         if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
861             should_end_transaction(trans, root) &&
862             ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
863                 spin_lock(&info->trans_lock);
864                 if (cur_trans->state == TRANS_STATE_RUNNING)
865                         cur_trans->state = TRANS_STATE_BLOCKED;
866                 spin_unlock(&info->trans_lock);
867         }
868
869         if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
870                 if (throttle)
871                         return btrfs_commit_transaction(trans, root);
872                 else
873                         wake_up_process(info->transaction_kthread);
874         }
875
876         if (trans->type & __TRANS_FREEZABLE)
877                 sb_end_intwrite(root->fs_info->sb);
878
879         WARN_ON(cur_trans != info->running_transaction);
880         WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
881         atomic_dec(&cur_trans->num_writers);
882         extwriter_counter_dec(cur_trans, trans->type);
883
884         /*
885          * Make sure counter is updated before we wake up waiters.
886          */
887         smp_mb();
888         if (waitqueue_active(&cur_trans->writer_wait))
889                 wake_up(&cur_trans->writer_wait);
890         btrfs_put_transaction(cur_trans);
891
892         if (current->journal_info == trans)
893                 current->journal_info = NULL;
894
895         if (throttle)
896                 btrfs_run_delayed_iputs(root);
897
898         if (trans->aborted ||
899             test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
900                 wake_up_process(info->transaction_kthread);
901                 err = -EIO;
902         }
903         assert_qgroups_uptodate(trans);
904
905         kmem_cache_free(btrfs_trans_handle_cachep, trans);
906         if (must_run_delayed_refs) {
907                 btrfs_async_run_delayed_refs(root, cur,
908                                              must_run_delayed_refs == 1);
909         }
910         return err;
911 }
912
913 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
914                           struct btrfs_root *root)
915 {
916         return __btrfs_end_transaction(trans, root, 0);
917 }
918
919 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
920                                    struct btrfs_root *root)
921 {
922         return __btrfs_end_transaction(trans, root, 1);
923 }
924
925 /*
926  * when btree blocks are allocated, they have some corresponding bits set for
927  * them in one of two extent_io trees.  This is used to make sure all of
928  * those extents are sent to disk but does not wait on them
929  */
930 int btrfs_write_marked_extents(struct btrfs_root *root,
931                                struct extent_io_tree *dirty_pages, int mark)
932 {
933         int err = 0;
934         int werr = 0;
935         struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
936         struct extent_state *cached_state = NULL;
937         u64 start = 0;
938         u64 end;
939
940         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
941                                       mark, &cached_state)) {
942                 bool wait_writeback = false;
943
944                 err = convert_extent_bit(dirty_pages, start, end,
945                                          EXTENT_NEED_WAIT,
946                                          mark, &cached_state, GFP_NOFS);
947                 /*
948                  * convert_extent_bit can return -ENOMEM, which is most of the
949                  * time a temporary error. So when it happens, ignore the error
950                  * and wait for writeback of this range to finish - because we
951                  * failed to set the bit EXTENT_NEED_WAIT for the range, a call
952                  * to btrfs_wait_marked_extents() would not know that writeback
953                  * for this range started and therefore wouldn't wait for it to
954                  * finish - we don't want to commit a superblock that points to
955                  * btree nodes/leafs for which writeback hasn't finished yet
956                  * (and without errors).
957                  * We cleanup any entries left in the io tree when committing
958                  * the transaction (through clear_btree_io_tree()).
959                  */
960                 if (err == -ENOMEM) {
961                         err = 0;
962                         wait_writeback = true;
963                 }
964                 if (!err)
965                         err = filemap_fdatawrite_range(mapping, start, end);
966                 if (err)
967                         werr = err;
968                 else if (wait_writeback)
969                         werr = filemap_fdatawait_range(mapping, start, end);
970                 free_extent_state(cached_state);
971                 cached_state = NULL;
972                 cond_resched();
973                 start = end + 1;
974         }
975         return werr;
976 }
977
978 /*
979  * when btree blocks are allocated, they have some corresponding bits set for
980  * them in one of two extent_io trees.  This is used to make sure all of
981  * those extents are on disk for transaction or log commit.  We wait
982  * on all the pages and clear them from the dirty pages state tree
983  */
984 int btrfs_wait_marked_extents(struct btrfs_root *root,
985                               struct extent_io_tree *dirty_pages, int mark)
986 {
987         int err = 0;
988         int werr = 0;
989         struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
990         struct extent_state *cached_state = NULL;
991         u64 start = 0;
992         u64 end;
993         struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
994         bool errors = false;
995
996         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
997                                       EXTENT_NEED_WAIT, &cached_state)) {
998                 /*
999                  * Ignore -ENOMEM errors returned by clear_extent_bit().
1000                  * When committing the transaction, we'll remove any entries
1001                  * left in the io tree. For a log commit, we don't remove them
1002                  * after committing the log because the tree can be accessed
1003                  * concurrently - we do it only at transaction commit time when
1004                  * it's safe to do it (through clear_btree_io_tree()).
1005                  */
1006                 err = clear_extent_bit(dirty_pages, start, end,
1007                                        EXTENT_NEED_WAIT,
1008                                        0, 0, &cached_state, GFP_NOFS);
1009                 if (err == -ENOMEM)
1010                         err = 0;
1011                 if (!err)
1012                         err = filemap_fdatawait_range(mapping, start, end);
1013                 if (err)
1014                         werr = err;
1015                 free_extent_state(cached_state);
1016                 cached_state = NULL;
1017                 cond_resched();
1018                 start = end + 1;
1019         }
1020         if (err)
1021                 werr = err;
1022
1023         if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
1024                 if ((mark & EXTENT_DIRTY) &&
1025                     test_and_clear_bit(BTRFS_INODE_BTREE_LOG1_ERR,
1026                                        &btree_ino->runtime_flags))
1027                         errors = true;
1028
1029                 if ((mark & EXTENT_NEW) &&
1030                     test_and_clear_bit(BTRFS_INODE_BTREE_LOG2_ERR,
1031                                        &btree_ino->runtime_flags))
1032                         errors = true;
1033         } else {
1034                 if (test_and_clear_bit(BTRFS_INODE_BTREE_ERR,
1035                                        &btree_ino->runtime_flags))
1036                         errors = true;
1037         }
1038
1039         if (errors && !werr)
1040                 werr = -EIO;
1041
1042         return werr;
1043 }
1044
1045 /*
1046  * when btree blocks are allocated, they have some corresponding bits set for
1047  * them in one of two extent_io trees.  This is used to make sure all of
1048  * those extents are on disk for transaction or log commit
1049  */
1050 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
1051                                 struct extent_io_tree *dirty_pages, int mark)
1052 {
1053         int ret;
1054         int ret2;
1055         struct blk_plug plug;
1056
1057         blk_start_plug(&plug);
1058         ret = btrfs_write_marked_extents(root, dirty_pages, mark);
1059         blk_finish_plug(&plug);
1060         ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
1061
1062         if (ret)
1063                 return ret;
1064         if (ret2)
1065                 return ret2;
1066         return 0;
1067 }
1068
1069 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
1070                                      struct btrfs_root *root)
1071 {
1072         int ret;
1073
1074         ret = btrfs_write_and_wait_marked_extents(root,
1075                                            &trans->transaction->dirty_pages,
1076                                            EXTENT_DIRTY);
1077         clear_btree_io_tree(&trans->transaction->dirty_pages);
1078
1079         return ret;
1080 }
1081
1082 /*
1083  * this is used to update the root pointer in the tree of tree roots.
1084  *
1085  * But, in the case of the extent allocation tree, updating the root
1086  * pointer may allocate blocks which may change the root of the extent
1087  * allocation tree.
1088  *
1089  * So, this loops and repeats and makes sure the cowonly root didn't
1090  * change while the root pointer was being updated in the metadata.
1091  */
1092 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1093                                struct btrfs_root *root)
1094 {
1095         int ret;
1096         u64 old_root_bytenr;
1097         u64 old_root_used;
1098         struct btrfs_root *tree_root = root->fs_info->tree_root;
1099
1100         old_root_used = btrfs_root_used(&root->root_item);
1101
1102         while (1) {
1103                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1104                 if (old_root_bytenr == root->node->start &&
1105                     old_root_used == btrfs_root_used(&root->root_item))
1106                         break;
1107
1108                 btrfs_set_root_node(&root->root_item, root->node);
1109                 ret = btrfs_update_root(trans, tree_root,
1110                                         &root->root_key,
1111                                         &root->root_item);
1112                 if (ret)
1113                         return ret;
1114
1115                 old_root_used = btrfs_root_used(&root->root_item);
1116         }
1117
1118         return 0;
1119 }
1120
1121 /*
1122  * update all the cowonly tree roots on disk
1123  *
1124  * The error handling in this function may not be obvious. Any of the
1125  * failures will cause the file system to go offline. We still need
1126  * to clean up the delayed refs.
1127  */
1128 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
1129                                          struct btrfs_root *root)
1130 {
1131         struct btrfs_fs_info *fs_info = root->fs_info;
1132         struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1133         struct list_head *io_bgs = &trans->transaction->io_bgs;
1134         struct list_head *next;
1135         struct extent_buffer *eb;
1136         int ret;
1137
1138         eb = btrfs_lock_root_node(fs_info->tree_root);
1139         ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1140                               0, &eb);
1141         btrfs_tree_unlock(eb);
1142         free_extent_buffer(eb);
1143
1144         if (ret)
1145                 return ret;
1146
1147         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1148         if (ret)
1149                 return ret;
1150
1151         ret = btrfs_run_dev_stats(trans, root->fs_info);
1152         if (ret)
1153                 return ret;
1154         ret = btrfs_run_dev_replace(trans, root->fs_info);
1155         if (ret)
1156                 return ret;
1157         ret = btrfs_run_qgroups(trans, root->fs_info);
1158         if (ret)
1159                 return ret;
1160
1161         ret = btrfs_setup_space_cache(trans, root);
1162         if (ret)
1163                 return ret;
1164
1165         /* run_qgroups might have added some more refs */
1166         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1167         if (ret)
1168                 return ret;
1169 again:
1170         while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1171                 next = fs_info->dirty_cowonly_roots.next;
1172                 list_del_init(next);
1173                 root = list_entry(next, struct btrfs_root, dirty_list);
1174                 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1175
1176                 if (root != fs_info->extent_root)
1177                         list_add_tail(&root->dirty_list,
1178                                       &trans->transaction->switch_commits);
1179                 ret = update_cowonly_root(trans, root);
1180                 if (ret)
1181                         return ret;
1182                 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1183                 if (ret)
1184                         return ret;
1185         }
1186
1187         while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1188                 ret = btrfs_write_dirty_block_groups(trans, root);
1189                 if (ret)
1190                         return ret;
1191                 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1192                 if (ret)
1193                         return ret;
1194         }
1195
1196         if (!list_empty(&fs_info->dirty_cowonly_roots))
1197                 goto again;
1198
1199         list_add_tail(&fs_info->extent_root->dirty_list,
1200                       &trans->transaction->switch_commits);
1201         btrfs_after_dev_replace_commit(fs_info);
1202
1203         return 0;
1204 }
1205
1206 /*
1207  * dead roots are old snapshots that need to be deleted.  This allocates
1208  * a dirty root struct and adds it into the list of dead roots that need to
1209  * be deleted
1210  */
1211 void btrfs_add_dead_root(struct btrfs_root *root)
1212 {
1213         spin_lock(&root->fs_info->trans_lock);
1214         if (list_empty(&root->root_list))
1215                 list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1216         spin_unlock(&root->fs_info->trans_lock);
1217 }
1218
1219 /*
1220  * update all the cowonly tree roots on disk
1221  */
1222 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1223                                     struct btrfs_root *root)
1224 {
1225         struct btrfs_root *gang[8];
1226         struct btrfs_fs_info *fs_info = root->fs_info;
1227         int i;
1228         int ret;
1229         int err = 0;
1230
1231         spin_lock(&fs_info->fs_roots_radix_lock);
1232         while (1) {
1233                 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1234                                                  (void **)gang, 0,
1235                                                  ARRAY_SIZE(gang),
1236                                                  BTRFS_ROOT_TRANS_TAG);
1237                 if (ret == 0)
1238                         break;
1239                 for (i = 0; i < ret; i++) {
1240                         root = gang[i];
1241                         radix_tree_tag_clear(&fs_info->fs_roots_radix,
1242                                         (unsigned long)root->root_key.objectid,
1243                                         BTRFS_ROOT_TRANS_TAG);
1244                         spin_unlock(&fs_info->fs_roots_radix_lock);
1245
1246                         btrfs_free_log(trans, root);
1247                         btrfs_update_reloc_root(trans, root);
1248                         btrfs_orphan_commit_root(trans, root);
1249
1250                         btrfs_save_ino_cache(root, trans);
1251
1252                         /* see comments in should_cow_block() */
1253                         clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1254                         smp_mb__after_atomic();
1255
1256                         if (root->commit_root != root->node) {
1257                                 list_add_tail(&root->dirty_list,
1258                                         &trans->transaction->switch_commits);
1259                                 btrfs_set_root_node(&root->root_item,
1260                                                     root->node);
1261                         }
1262
1263                         err = btrfs_update_root(trans, fs_info->tree_root,
1264                                                 &root->root_key,
1265                                                 &root->root_item);
1266                         spin_lock(&fs_info->fs_roots_radix_lock);
1267                         if (err)
1268                                 break;
1269                         btrfs_qgroup_free_meta_all(root);
1270                 }
1271         }
1272         spin_unlock(&fs_info->fs_roots_radix_lock);
1273         return err;
1274 }
1275
1276 /*
1277  * defrag a given btree.
1278  * Every leaf in the btree is read and defragged.
1279  */
1280 int btrfs_defrag_root(struct btrfs_root *root)
1281 {
1282         struct btrfs_fs_info *info = root->fs_info;
1283         struct btrfs_trans_handle *trans;
1284         int ret;
1285
1286         if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1287                 return 0;
1288
1289         while (1) {
1290                 trans = btrfs_start_transaction(root, 0);
1291                 if (IS_ERR(trans))
1292                         return PTR_ERR(trans);
1293
1294                 ret = btrfs_defrag_leaves(trans, root);
1295
1296                 btrfs_end_transaction(trans, root);
1297                 btrfs_btree_balance_dirty(info->tree_root);
1298                 cond_resched();
1299
1300                 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1301                         break;
1302
1303                 if (btrfs_defrag_cancelled(root->fs_info)) {
1304                         pr_debug("BTRFS: defrag_root cancelled\n");
1305                         ret = -EAGAIN;
1306                         break;
1307                 }
1308         }
1309         clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1310         return ret;
1311 }
1312
1313 /*
1314  * new snapshots need to be created at a very specific time in the
1315  * transaction commit.  This does the actual creation.
1316  *
1317  * Note:
1318  * If the error which may affect the commitment of the current transaction
1319  * happens, we should return the error number. If the error which just affect
1320  * the creation of the pending snapshots, just return 0.
1321  */
1322 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1323                                    struct btrfs_fs_info *fs_info,
1324                                    struct btrfs_pending_snapshot *pending)
1325 {
1326         struct btrfs_key key;
1327         struct btrfs_root_item *new_root_item;
1328         struct btrfs_root *tree_root = fs_info->tree_root;
1329         struct btrfs_root *root = pending->root;
1330         struct btrfs_root *parent_root;
1331         struct btrfs_block_rsv *rsv;
1332         struct inode *parent_inode;
1333         struct btrfs_path *path;
1334         struct btrfs_dir_item *dir_item;
1335         struct dentry *dentry;
1336         struct extent_buffer *tmp;
1337         struct extent_buffer *old;
1338         struct timespec cur_time = CURRENT_TIME;
1339         int ret = 0;
1340         u64 to_reserve = 0;
1341         u64 index = 0;
1342         u64 objectid;
1343         u64 root_flags;
1344         uuid_le new_uuid;
1345
1346         ASSERT(pending->path);
1347         path = pending->path;
1348
1349         ASSERT(pending->root_item);
1350         new_root_item = pending->root_item;
1351
1352         pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1353         if (pending->error)
1354                 goto no_free_objectid;
1355
1356         /*
1357          * Make qgroup to skip current new snapshot's qgroupid, as it is
1358          * accounted by later btrfs_qgroup_inherit().
1359          */
1360         btrfs_set_skip_qgroup(trans, objectid);
1361
1362         btrfs_reloc_pre_snapshot(pending, &to_reserve);
1363
1364         if (to_reserve > 0) {
1365                 pending->error = btrfs_block_rsv_add(root,
1366                                                      &pending->block_rsv,
1367                                                      to_reserve,
1368                                                      BTRFS_RESERVE_NO_FLUSH);
1369                 if (pending->error)
1370                         goto clear_skip_qgroup;
1371         }
1372
1373         key.objectid = objectid;
1374         key.offset = (u64)-1;
1375         key.type = BTRFS_ROOT_ITEM_KEY;
1376
1377         rsv = trans->block_rsv;
1378         trans->block_rsv = &pending->block_rsv;
1379         trans->bytes_reserved = trans->block_rsv->reserved;
1380         trace_btrfs_space_reservation(root->fs_info, "transaction",
1381                                       trans->transid,
1382                                       trans->bytes_reserved, 1);
1383         dentry = pending->dentry;
1384         parent_inode = pending->dir;
1385         parent_root = BTRFS_I(parent_inode)->root;
1386         record_root_in_trans(trans, parent_root);
1387
1388         /*
1389          * insert the directory item
1390          */
1391         ret = btrfs_set_inode_index(parent_inode, &index);
1392         BUG_ON(ret); /* -ENOMEM */
1393
1394         /* check if there is a file/dir which has the same name. */
1395         dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1396                                          btrfs_ino(parent_inode),
1397                                          dentry->d_name.name,
1398                                          dentry->d_name.len, 0);
1399         if (dir_item != NULL && !IS_ERR(dir_item)) {
1400                 pending->error = -EEXIST;
1401                 goto dir_item_existed;
1402         } else if (IS_ERR(dir_item)) {
1403                 ret = PTR_ERR(dir_item);
1404                 btrfs_abort_transaction(trans, root, ret);
1405                 goto fail;
1406         }
1407         btrfs_release_path(path);
1408
1409         /*
1410          * pull in the delayed directory update
1411          * and the delayed inode item
1412          * otherwise we corrupt the FS during
1413          * snapshot
1414          */
1415         ret = btrfs_run_delayed_items(trans, root);
1416         if (ret) {      /* Transaction aborted */
1417                 btrfs_abort_transaction(trans, root, ret);
1418                 goto fail;
1419         }
1420
1421         record_root_in_trans(trans, root);
1422         btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1423         memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1424         btrfs_check_and_init_root_item(new_root_item);
1425
1426         root_flags = btrfs_root_flags(new_root_item);
1427         if (pending->readonly)
1428                 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1429         else
1430                 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1431         btrfs_set_root_flags(new_root_item, root_flags);
1432
1433         btrfs_set_root_generation_v2(new_root_item,
1434                         trans->transid);
1435         uuid_le_gen(&new_uuid);
1436         memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1437         memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1438                         BTRFS_UUID_SIZE);
1439         if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1440                 memset(new_root_item->received_uuid, 0,
1441                        sizeof(new_root_item->received_uuid));
1442                 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1443                 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1444                 btrfs_set_root_stransid(new_root_item, 0);
1445                 btrfs_set_root_rtransid(new_root_item, 0);
1446         }
1447         btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1448         btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1449         btrfs_set_root_otransid(new_root_item, trans->transid);
1450
1451         old = btrfs_lock_root_node(root);
1452         ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1453         if (ret) {
1454                 btrfs_tree_unlock(old);
1455                 free_extent_buffer(old);
1456                 btrfs_abort_transaction(trans, root, ret);
1457                 goto fail;
1458         }
1459
1460         btrfs_set_lock_blocking(old);
1461
1462         ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1463         /* clean up in any case */
1464         btrfs_tree_unlock(old);
1465         free_extent_buffer(old);
1466         if (ret) {
1467                 btrfs_abort_transaction(trans, root, ret);
1468                 goto fail;
1469         }
1470         /* see comments in should_cow_block() */
1471         set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1472         smp_wmb();
1473
1474         btrfs_set_root_node(new_root_item, tmp);
1475         /* record when the snapshot was created in key.offset */
1476         key.offset = trans->transid;
1477         ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1478         btrfs_tree_unlock(tmp);
1479         free_extent_buffer(tmp);
1480         if (ret) {
1481                 btrfs_abort_transaction(trans, root, ret);
1482                 goto fail;
1483         }
1484
1485         /*
1486          * insert root back/forward references
1487          */
1488         ret = btrfs_add_root_ref(trans, tree_root, objectid,
1489                                  parent_root->root_key.objectid,
1490                                  btrfs_ino(parent_inode), index,
1491                                  dentry->d_name.name, dentry->d_name.len);
1492         if (ret) {
1493                 btrfs_abort_transaction(trans, root, ret);
1494                 goto fail;
1495         }
1496
1497         key.offset = (u64)-1;
1498         pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1499         if (IS_ERR(pending->snap)) {
1500                 ret = PTR_ERR(pending->snap);
1501                 btrfs_abort_transaction(trans, root, ret);
1502                 goto fail;
1503         }
1504
1505         ret = btrfs_reloc_post_snapshot(trans, pending);
1506         if (ret) {
1507                 btrfs_abort_transaction(trans, root, ret);
1508                 goto fail;
1509         }
1510
1511         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1512         if (ret) {
1513                 btrfs_abort_transaction(trans, root, ret);
1514                 goto fail;
1515         }
1516
1517         ret = btrfs_insert_dir_item(trans, parent_root,
1518                                     dentry->d_name.name, dentry->d_name.len,
1519                                     parent_inode, &key,
1520                                     BTRFS_FT_DIR, index);
1521         /* We have check then name at the beginning, so it is impossible. */
1522         BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1523         if (ret) {
1524                 btrfs_abort_transaction(trans, root, ret);
1525                 goto fail;
1526         }
1527
1528         btrfs_i_size_write(parent_inode, parent_inode->i_size +
1529                                          dentry->d_name.len * 2);
1530         parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1531         ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1532         if (ret) {
1533                 btrfs_abort_transaction(trans, root, ret);
1534                 goto fail;
1535         }
1536         ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1537                                   BTRFS_UUID_KEY_SUBVOL, objectid);
1538         if (ret) {
1539                 btrfs_abort_transaction(trans, root, ret);
1540                 goto fail;
1541         }
1542         if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1543                 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1544                                           new_root_item->received_uuid,
1545                                           BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1546                                           objectid);
1547                 if (ret && ret != -EEXIST) {
1548                         btrfs_abort_transaction(trans, root, ret);
1549                         goto fail;
1550                 }
1551         }
1552
1553         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1554         if (ret) {
1555                 btrfs_abort_transaction(trans, root, ret);
1556                 goto fail;
1557         }
1558
1559         /*
1560          * account qgroup counters before qgroup_inherit()
1561          */
1562         ret = btrfs_qgroup_prepare_account_extents(trans, fs_info);
1563         if (ret)
1564                 goto fail;
1565         ret = btrfs_qgroup_account_extents(trans, fs_info);
1566         if (ret)
1567                 goto fail;
1568         ret = btrfs_qgroup_inherit(trans, fs_info,
1569                                    root->root_key.objectid,
1570                                    objectid, pending->inherit);
1571         if (ret) {
1572                 btrfs_abort_transaction(trans, root, ret);
1573                 goto fail;
1574         }
1575
1576 fail:
1577         pending->error = ret;
1578 dir_item_existed:
1579         trans->block_rsv = rsv;
1580         trans->bytes_reserved = 0;
1581 clear_skip_qgroup:
1582         btrfs_clear_skip_qgroup(trans);
1583 no_free_objectid:
1584         kfree(new_root_item);
1585         pending->root_item = NULL;
1586         btrfs_free_path(path);
1587         pending->path = NULL;
1588
1589         return ret;
1590 }
1591
1592 /*
1593  * create all the snapshots we've scheduled for creation
1594  */
1595 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1596                                              struct btrfs_fs_info *fs_info)
1597 {
1598         struct btrfs_pending_snapshot *pending, *next;
1599         struct list_head *head = &trans->transaction->pending_snapshots;
1600         int ret = 0;
1601
1602         list_for_each_entry_safe(pending, next, head, list) {
1603                 list_del(&pending->list);
1604                 ret = create_pending_snapshot(trans, fs_info, pending);
1605                 if (ret)
1606                         break;
1607         }
1608         return ret;
1609 }
1610
1611 static void update_super_roots(struct btrfs_root *root)
1612 {
1613         struct btrfs_root_item *root_item;
1614         struct btrfs_super_block *super;
1615
1616         super = root->fs_info->super_copy;
1617
1618         root_item = &root->fs_info->chunk_root->root_item;
1619         super->chunk_root = root_item->bytenr;
1620         super->chunk_root_generation = root_item->generation;
1621         super->chunk_root_level = root_item->level;
1622
1623         root_item = &root->fs_info->tree_root->root_item;
1624         super->root = root_item->bytenr;
1625         super->generation = root_item->generation;
1626         super->root_level = root_item->level;
1627         if (btrfs_test_opt(root, SPACE_CACHE))
1628                 super->cache_generation = root_item->generation;
1629         if (root->fs_info->update_uuid_tree_gen)
1630                 super->uuid_tree_generation = root_item->generation;
1631 }
1632
1633 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1634 {
1635         struct btrfs_transaction *trans;
1636         int ret = 0;
1637
1638         spin_lock(&info->trans_lock);
1639         trans = info->running_transaction;
1640         if (trans)
1641                 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1642         spin_unlock(&info->trans_lock);
1643         return ret;
1644 }
1645
1646 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1647 {
1648         struct btrfs_transaction *trans;
1649         int ret = 0;
1650
1651         spin_lock(&info->trans_lock);
1652         trans = info->running_transaction;
1653         if (trans)
1654                 ret = is_transaction_blocked(trans);
1655         spin_unlock(&info->trans_lock);
1656         return ret;
1657 }
1658
1659 /*
1660  * wait for the current transaction commit to start and block subsequent
1661  * transaction joins
1662  */
1663 static void wait_current_trans_commit_start(struct btrfs_root *root,
1664                                             struct btrfs_transaction *trans)
1665 {
1666         wait_event(root->fs_info->transaction_blocked_wait,
1667                    trans->state >= TRANS_STATE_COMMIT_START ||
1668                    trans->aborted);
1669 }
1670
1671 /*
1672  * wait for the current transaction to start and then become unblocked.
1673  * caller holds ref.
1674  */
1675 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1676                                          struct btrfs_transaction *trans)
1677 {
1678         wait_event(root->fs_info->transaction_wait,
1679                    trans->state >= TRANS_STATE_UNBLOCKED ||
1680                    trans->aborted);
1681 }
1682
1683 /*
1684  * commit transactions asynchronously. once btrfs_commit_transaction_async
1685  * returns, any subsequent transaction will not be allowed to join.
1686  */
1687 struct btrfs_async_commit {
1688         struct btrfs_trans_handle *newtrans;
1689         struct btrfs_root *root;
1690         struct work_struct work;
1691 };
1692
1693 static void do_async_commit(struct work_struct *work)
1694 {
1695         struct btrfs_async_commit *ac =
1696                 container_of(work, struct btrfs_async_commit, work);
1697
1698         /*
1699          * We've got freeze protection passed with the transaction.
1700          * Tell lockdep about it.
1701          */
1702         if (ac->newtrans->type & __TRANS_FREEZABLE)
1703                 __sb_writers_acquired(ac->root->fs_info->sb, SB_FREEZE_FS);
1704
1705         current->journal_info = ac->newtrans;
1706
1707         btrfs_commit_transaction(ac->newtrans, ac->root);
1708         kfree(ac);
1709 }
1710
1711 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1712                                    struct btrfs_root *root,
1713                                    int wait_for_unblock)
1714 {
1715         struct btrfs_async_commit *ac;
1716         struct btrfs_transaction *cur_trans;
1717
1718         ac = kmalloc(sizeof(*ac), GFP_NOFS);
1719         if (!ac)
1720                 return -ENOMEM;
1721
1722         INIT_WORK(&ac->work, do_async_commit);
1723         ac->root = root;
1724         ac->newtrans = btrfs_join_transaction(root);
1725         if (IS_ERR(ac->newtrans)) {
1726                 int err = PTR_ERR(ac->newtrans);
1727                 kfree(ac);
1728                 return err;
1729         }
1730
1731         /* take transaction reference */
1732         cur_trans = trans->transaction;
1733         atomic_inc(&cur_trans->use_count);
1734
1735         btrfs_end_transaction(trans, root);
1736
1737         /*
1738          * Tell lockdep we've released the freeze rwsem, since the
1739          * async commit thread will be the one to unlock it.
1740          */
1741         if (ac->newtrans->type & __TRANS_FREEZABLE)
1742                 __sb_writers_release(root->fs_info->sb, SB_FREEZE_FS);
1743
1744         schedule_work(&ac->work);
1745
1746         /* wait for transaction to start and unblock */
1747         if (wait_for_unblock)
1748                 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1749         else
1750                 wait_current_trans_commit_start(root, cur_trans);
1751
1752         if (current->journal_info == trans)
1753                 current->journal_info = NULL;
1754
1755         btrfs_put_transaction(cur_trans);
1756         return 0;
1757 }
1758
1759
1760 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1761                                 struct btrfs_root *root, int err)
1762 {
1763         struct btrfs_transaction *cur_trans = trans->transaction;
1764         DEFINE_WAIT(wait);
1765
1766         WARN_ON(trans->use_count > 1);
1767
1768         btrfs_abort_transaction(trans, root, err);
1769
1770         spin_lock(&root->fs_info->trans_lock);
1771
1772         /*
1773          * If the transaction is removed from the list, it means this
1774          * transaction has been committed successfully, so it is impossible
1775          * to call the cleanup function.
1776          */
1777         BUG_ON(list_empty(&cur_trans->list));
1778
1779         list_del_init(&cur_trans->list);
1780         if (cur_trans == root->fs_info->running_transaction) {
1781                 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1782                 spin_unlock(&root->fs_info->trans_lock);
1783                 wait_event(cur_trans->writer_wait,
1784                            atomic_read(&cur_trans->num_writers) == 1);
1785
1786                 spin_lock(&root->fs_info->trans_lock);
1787         }
1788         spin_unlock(&root->fs_info->trans_lock);
1789
1790         btrfs_cleanup_one_transaction(trans->transaction, root);
1791
1792         spin_lock(&root->fs_info->trans_lock);
1793         if (cur_trans == root->fs_info->running_transaction)
1794                 root->fs_info->running_transaction = NULL;
1795         spin_unlock(&root->fs_info->trans_lock);
1796
1797         if (trans->type & __TRANS_FREEZABLE)
1798                 sb_end_intwrite(root->fs_info->sb);
1799         btrfs_put_transaction(cur_trans);
1800         btrfs_put_transaction(cur_trans);
1801
1802         trace_btrfs_transaction_commit(root);
1803
1804         if (current->journal_info == trans)
1805                 current->journal_info = NULL;
1806         btrfs_scrub_cancel(root->fs_info);
1807
1808         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1809 }
1810
1811 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1812 {
1813         if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1814                 return btrfs_start_delalloc_roots(fs_info, 1, -1);
1815         return 0;
1816 }
1817
1818 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1819 {
1820         if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1821                 btrfs_wait_ordered_roots(fs_info, -1);
1822 }
1823
1824 static inline void
1825 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans)
1826 {
1827         wait_event(cur_trans->pending_wait,
1828                    atomic_read(&cur_trans->pending_ordered) == 0);
1829 }
1830
1831 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1832                              struct btrfs_root *root)
1833 {
1834         struct btrfs_transaction *cur_trans = trans->transaction;
1835         struct btrfs_transaction *prev_trans = NULL;
1836         struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
1837         int ret;
1838
1839         /* Stop the commit early if ->aborted is set */
1840         if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1841                 ret = cur_trans->aborted;
1842                 btrfs_end_transaction(trans, root);
1843                 return ret;
1844         }
1845
1846         /* make a pass through all the delayed refs we have so far
1847          * any runnings procs may add more while we are here
1848          */
1849         ret = btrfs_run_delayed_refs(trans, root, 0);
1850         if (ret) {
1851                 btrfs_end_transaction(trans, root);
1852                 return ret;
1853         }
1854
1855         btrfs_trans_release_metadata(trans, root);
1856         trans->block_rsv = NULL;
1857
1858         cur_trans = trans->transaction;
1859
1860         /*
1861          * set the flushing flag so procs in this transaction have to
1862          * start sending their work down.
1863          */
1864         cur_trans->delayed_refs.flushing = 1;
1865         smp_wmb();
1866
1867         if (!list_empty(&trans->new_bgs))
1868                 btrfs_create_pending_block_groups(trans, root);
1869
1870         ret = btrfs_run_delayed_refs(trans, root, 0);
1871         if (ret) {
1872                 btrfs_end_transaction(trans, root);
1873                 return ret;
1874         }
1875
1876         if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1877                 int run_it = 0;
1878
1879                 /* this mutex is also taken before trying to set
1880                  * block groups readonly.  We need to make sure
1881                  * that nobody has set a block group readonly
1882                  * after a extents from that block group have been
1883                  * allocated for cache files.  btrfs_set_block_group_ro
1884                  * will wait for the transaction to commit if it
1885                  * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1886                  *
1887                  * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
1888                  * only one process starts all the block group IO.  It wouldn't
1889                  * hurt to have more than one go through, but there's no
1890                  * real advantage to it either.
1891                  */
1892                 mutex_lock(&root->fs_info->ro_block_group_mutex);
1893                 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
1894                                       &cur_trans->flags))
1895                         run_it = 1;
1896                 mutex_unlock(&root->fs_info->ro_block_group_mutex);
1897
1898                 if (run_it)
1899                         ret = btrfs_start_dirty_block_groups(trans, root);
1900         }
1901         if (ret) {
1902                 btrfs_end_transaction(trans, root);
1903                 return ret;
1904         }
1905
1906         spin_lock(&root->fs_info->trans_lock);
1907         if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1908                 spin_unlock(&root->fs_info->trans_lock);
1909                 atomic_inc(&cur_trans->use_count);
1910                 ret = btrfs_end_transaction(trans, root);
1911
1912                 wait_for_commit(root, cur_trans);
1913
1914                 if (unlikely(cur_trans->aborted))
1915                         ret = cur_trans->aborted;
1916
1917                 btrfs_put_transaction(cur_trans);
1918
1919                 return ret;
1920         }
1921
1922         cur_trans->state = TRANS_STATE_COMMIT_START;
1923         wake_up(&root->fs_info->transaction_blocked_wait);
1924
1925         if (cur_trans->list.prev != &root->fs_info->trans_list) {
1926                 prev_trans = list_entry(cur_trans->list.prev,
1927                                         struct btrfs_transaction, list);
1928                 if (prev_trans->state != TRANS_STATE_COMPLETED) {
1929                         atomic_inc(&prev_trans->use_count);
1930                         spin_unlock(&root->fs_info->trans_lock);
1931
1932                         wait_for_commit(root, prev_trans);
1933                         ret = prev_trans->aborted;
1934
1935                         btrfs_put_transaction(prev_trans);
1936                         if (ret)
1937                                 goto cleanup_transaction;
1938                 } else {
1939                         spin_unlock(&root->fs_info->trans_lock);
1940                 }
1941         } else {
1942                 spin_unlock(&root->fs_info->trans_lock);
1943         }
1944
1945         extwriter_counter_dec(cur_trans, trans->type);
1946
1947         ret = btrfs_start_delalloc_flush(root->fs_info);
1948         if (ret)
1949                 goto cleanup_transaction;
1950
1951         ret = btrfs_run_delayed_items(trans, root);
1952         if (ret)
1953                 goto cleanup_transaction;
1954
1955         wait_event(cur_trans->writer_wait,
1956                    extwriter_counter_read(cur_trans) == 0);
1957
1958         /* some pending stuffs might be added after the previous flush. */
1959         ret = btrfs_run_delayed_items(trans, root);
1960         if (ret)
1961                 goto cleanup_transaction;
1962
1963         btrfs_wait_delalloc_flush(root->fs_info);
1964
1965         btrfs_wait_pending_ordered(cur_trans);
1966
1967         btrfs_scrub_pause(root);
1968         /*
1969          * Ok now we need to make sure to block out any other joins while we
1970          * commit the transaction.  We could have started a join before setting
1971          * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1972          */
1973         spin_lock(&root->fs_info->trans_lock);
1974         cur_trans->state = TRANS_STATE_COMMIT_DOING;
1975         spin_unlock(&root->fs_info->trans_lock);
1976         wait_event(cur_trans->writer_wait,
1977                    atomic_read(&cur_trans->num_writers) == 1);
1978
1979         /* ->aborted might be set after the previous check, so check it */
1980         if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1981                 ret = cur_trans->aborted;
1982                 goto scrub_continue;
1983         }
1984         /*
1985          * the reloc mutex makes sure that we stop
1986          * the balancing code from coming in and moving
1987          * extents around in the middle of the commit
1988          */
1989         mutex_lock(&root->fs_info->reloc_mutex);
1990
1991         /*
1992          * We needn't worry about the delayed items because we will
1993          * deal with them in create_pending_snapshot(), which is the
1994          * core function of the snapshot creation.
1995          */
1996         ret = create_pending_snapshots(trans, root->fs_info);
1997         if (ret) {
1998                 mutex_unlock(&root->fs_info->reloc_mutex);
1999                 goto scrub_continue;
2000         }
2001
2002         /*
2003          * We insert the dir indexes of the snapshots and update the inode
2004          * of the snapshots' parents after the snapshot creation, so there
2005          * are some delayed items which are not dealt with. Now deal with
2006          * them.
2007          *
2008          * We needn't worry that this operation will corrupt the snapshots,
2009          * because all the tree which are snapshoted will be forced to COW
2010          * the nodes and leaves.
2011          */
2012         ret = btrfs_run_delayed_items(trans, root);
2013         if (ret) {
2014                 mutex_unlock(&root->fs_info->reloc_mutex);
2015                 goto scrub_continue;
2016         }
2017
2018         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
2019         if (ret) {
2020                 mutex_unlock(&root->fs_info->reloc_mutex);
2021                 goto scrub_continue;
2022         }
2023
2024         /* Reocrd old roots for later qgroup accounting */
2025         ret = btrfs_qgroup_prepare_account_extents(trans, root->fs_info);
2026         if (ret) {
2027                 mutex_unlock(&root->fs_info->reloc_mutex);
2028                 goto scrub_continue;
2029         }
2030
2031         /*
2032          * make sure none of the code above managed to slip in a
2033          * delayed item
2034          */
2035         btrfs_assert_delayed_root_empty(root);
2036
2037         WARN_ON(cur_trans != trans->transaction);
2038
2039         /* btrfs_commit_tree_roots is responsible for getting the
2040          * various roots consistent with each other.  Every pointer
2041          * in the tree of tree roots has to point to the most up to date
2042          * root for every subvolume and other tree.  So, we have to keep
2043          * the tree logging code from jumping in and changing any
2044          * of the trees.
2045          *
2046          * At this point in the commit, there can't be any tree-log
2047          * writers, but a little lower down we drop the trans mutex
2048          * and let new people in.  By holding the tree_log_mutex
2049          * from now until after the super is written, we avoid races
2050          * with the tree-log code.
2051          */
2052         mutex_lock(&root->fs_info->tree_log_mutex);
2053
2054         ret = commit_fs_roots(trans, root);
2055         if (ret) {
2056                 mutex_unlock(&root->fs_info->tree_log_mutex);
2057                 mutex_unlock(&root->fs_info->reloc_mutex);
2058                 goto scrub_continue;
2059         }
2060
2061         /*
2062          * Since the transaction is done, we can apply the pending changes
2063          * before the next transaction.
2064          */
2065         btrfs_apply_pending_changes(root->fs_info);
2066
2067         /* commit_fs_roots gets rid of all the tree log roots, it is now
2068          * safe to free the root of tree log roots
2069          */
2070         btrfs_free_log_root_tree(trans, root->fs_info);
2071
2072         /*
2073          * Since fs roots are all committed, we can get a quite accurate
2074          * new_roots. So let's do quota accounting.
2075          */
2076         ret = btrfs_qgroup_account_extents(trans, root->fs_info);
2077         if (ret < 0) {
2078                 mutex_unlock(&root->fs_info->tree_log_mutex);
2079                 mutex_unlock(&root->fs_info->reloc_mutex);
2080                 goto scrub_continue;
2081         }
2082
2083         ret = commit_cowonly_roots(trans, root);
2084         if (ret) {
2085                 mutex_unlock(&root->fs_info->tree_log_mutex);
2086                 mutex_unlock(&root->fs_info->reloc_mutex);
2087                 goto scrub_continue;
2088         }
2089
2090         /*
2091          * The tasks which save the space cache and inode cache may also
2092          * update ->aborted, check it.
2093          */
2094         if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
2095                 ret = cur_trans->aborted;
2096                 mutex_unlock(&root->fs_info->tree_log_mutex);
2097                 mutex_unlock(&root->fs_info->reloc_mutex);
2098                 goto scrub_continue;
2099         }
2100
2101         btrfs_prepare_extent_commit(trans, root);
2102
2103         cur_trans = root->fs_info->running_transaction;
2104
2105         btrfs_set_root_node(&root->fs_info->tree_root->root_item,
2106                             root->fs_info->tree_root->node);
2107         list_add_tail(&root->fs_info->tree_root->dirty_list,
2108                       &cur_trans->switch_commits);
2109
2110         btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
2111                             root->fs_info->chunk_root->node);
2112         list_add_tail(&root->fs_info->chunk_root->dirty_list,
2113                       &cur_trans->switch_commits);
2114
2115         switch_commit_roots(cur_trans, root->fs_info);
2116
2117         assert_qgroups_uptodate(trans);
2118         ASSERT(list_empty(&cur_trans->dirty_bgs));
2119         ASSERT(list_empty(&cur_trans->io_bgs));
2120         update_super_roots(root);
2121
2122         btrfs_set_super_log_root(root->fs_info->super_copy, 0);
2123         btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
2124         memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
2125                sizeof(*root->fs_info->super_copy));
2126
2127         btrfs_update_commit_device_size(root->fs_info);
2128         btrfs_update_commit_device_bytes_used(root, cur_trans);
2129
2130         clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
2131         clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
2132
2133         btrfs_trans_release_chunk_metadata(trans);
2134
2135         spin_lock(&root->fs_info->trans_lock);
2136         cur_trans->state = TRANS_STATE_UNBLOCKED;
2137         root->fs_info->running_transaction = NULL;
2138         spin_unlock(&root->fs_info->trans_lock);
2139         mutex_unlock(&root->fs_info->reloc_mutex);
2140
2141         wake_up(&root->fs_info->transaction_wait);
2142
2143         ret = btrfs_write_and_wait_transaction(trans, root);
2144         if (ret) {
2145                 btrfs_std_error(root->fs_info, ret,
2146                             "Error while writing out transaction");
2147                 mutex_unlock(&root->fs_info->tree_log_mutex);
2148                 goto scrub_continue;
2149         }
2150
2151         ret = write_ctree_super(trans, root, 0);
2152         if (ret) {
2153                 mutex_unlock(&root->fs_info->tree_log_mutex);
2154                 goto scrub_continue;
2155         }
2156
2157         /*
2158          * the super is written, we can safely allow the tree-loggers
2159          * to go about their business
2160          */
2161         mutex_unlock(&root->fs_info->tree_log_mutex);
2162
2163         btrfs_finish_extent_commit(trans, root);
2164
2165         if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2166                 btrfs_clear_space_info_full(root->fs_info);
2167
2168         root->fs_info->last_trans_committed = cur_trans->transid;
2169         /*
2170          * We needn't acquire the lock here because there is no other task
2171          * which can change it.
2172          */
2173         cur_trans->state = TRANS_STATE_COMPLETED;
2174         wake_up(&cur_trans->commit_wait);
2175
2176         spin_lock(&root->fs_info->trans_lock);
2177         list_del_init(&cur_trans->list);
2178         spin_unlock(&root->fs_info->trans_lock);
2179
2180         btrfs_put_transaction(cur_trans);
2181         btrfs_put_transaction(cur_trans);
2182
2183         if (trans->type & __TRANS_FREEZABLE)
2184                 sb_end_intwrite(root->fs_info->sb);
2185
2186         trace_btrfs_transaction_commit(root);
2187
2188         btrfs_scrub_continue(root);
2189
2190         if (current->journal_info == trans)
2191                 current->journal_info = NULL;
2192
2193         kmem_cache_free(btrfs_trans_handle_cachep, trans);
2194
2195         if (current != root->fs_info->transaction_kthread &&
2196             current != root->fs_info->cleaner_kthread)
2197                 btrfs_run_delayed_iputs(root);
2198
2199         return ret;
2200
2201 scrub_continue:
2202         btrfs_scrub_continue(root);
2203 cleanup_transaction:
2204         btrfs_trans_release_metadata(trans, root);
2205         btrfs_trans_release_chunk_metadata(trans);
2206         trans->block_rsv = NULL;
2207         btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
2208         if (current->journal_info == trans)
2209                 current->journal_info = NULL;
2210         cleanup_transaction(trans, root, ret);
2211
2212         return ret;
2213 }
2214
2215 /*
2216  * return < 0 if error
2217  * 0 if there are no more dead_roots at the time of call
2218  * 1 there are more to be processed, call me again
2219  *
2220  * The return value indicates there are certainly more snapshots to delete, but
2221  * if there comes a new one during processing, it may return 0. We don't mind,
2222  * because btrfs_commit_super will poke cleaner thread and it will process it a
2223  * few seconds later.
2224  */
2225 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2226 {
2227         int ret;
2228         struct btrfs_fs_info *fs_info = root->fs_info;
2229
2230         spin_lock(&fs_info->trans_lock);
2231         if (list_empty(&fs_info->dead_roots)) {
2232                 spin_unlock(&fs_info->trans_lock);
2233                 return 0;
2234         }
2235         root = list_first_entry(&fs_info->dead_roots,
2236                         struct btrfs_root, root_list);
2237         list_del_init(&root->root_list);
2238         spin_unlock(&fs_info->trans_lock);
2239
2240         pr_debug("BTRFS: cleaner removing %llu\n", root->objectid);
2241
2242         btrfs_kill_all_delayed_nodes(root);
2243
2244         if (btrfs_header_backref_rev(root->node) <
2245                         BTRFS_MIXED_BACKREF_REV)
2246                 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2247         else
2248                 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2249
2250         return (ret < 0) ? 0 : 1;
2251 }
2252
2253 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2254 {
2255         unsigned long prev;
2256         unsigned long bit;
2257
2258         prev = xchg(&fs_info->pending_changes, 0);
2259         if (!prev)
2260                 return;
2261
2262         bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2263         if (prev & bit)
2264                 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2265         prev &= ~bit;
2266
2267         bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2268         if (prev & bit)
2269                 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2270         prev &= ~bit;
2271
2272         bit = 1 << BTRFS_PENDING_COMMIT;
2273         if (prev & bit)
2274                 btrfs_debug(fs_info, "pending commit done");
2275         prev &= ~bit;
2276
2277         if (prev)
2278                 btrfs_warn(fs_info,
2279                         "unknown pending changes left 0x%lx, ignoring", prev);
2280 }