Btrfs: don't wait for unrelated IO to finish before relocation
[cascardo/linux.git] / fs / btrfs / transaction.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 #include "qgroup.h"
35
36 #define BTRFS_ROOT_TRANS_TAG 0
37
38 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39         [TRANS_STATE_RUNNING]           = 0U,
40         [TRANS_STATE_BLOCKED]           = (__TRANS_USERSPACE |
41                                            __TRANS_START),
42         [TRANS_STATE_COMMIT_START]      = (__TRANS_USERSPACE |
43                                            __TRANS_START |
44                                            __TRANS_ATTACH),
45         [TRANS_STATE_COMMIT_DOING]      = (__TRANS_USERSPACE |
46                                            __TRANS_START |
47                                            __TRANS_ATTACH |
48                                            __TRANS_JOIN),
49         [TRANS_STATE_UNBLOCKED]         = (__TRANS_USERSPACE |
50                                            __TRANS_START |
51                                            __TRANS_ATTACH |
52                                            __TRANS_JOIN |
53                                            __TRANS_JOIN_NOLOCK),
54         [TRANS_STATE_COMPLETED]         = (__TRANS_USERSPACE |
55                                            __TRANS_START |
56                                            __TRANS_ATTACH |
57                                            __TRANS_JOIN |
58                                            __TRANS_JOIN_NOLOCK),
59 };
60
61 void btrfs_put_transaction(struct btrfs_transaction *transaction)
62 {
63         WARN_ON(atomic_read(&transaction->use_count) == 0);
64         if (atomic_dec_and_test(&transaction->use_count)) {
65                 BUG_ON(!list_empty(&transaction->list));
66                 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67                 if (transaction->delayed_refs.pending_csums)
68                         printk(KERN_ERR "pending csums is %llu\n",
69                                transaction->delayed_refs.pending_csums);
70                 while (!list_empty(&transaction->pending_chunks)) {
71                         struct extent_map *em;
72
73                         em = list_first_entry(&transaction->pending_chunks,
74                                               struct extent_map, list);
75                         list_del_init(&em->list);
76                         free_extent_map(em);
77                 }
78                 /*
79                  * If any block groups are found in ->deleted_bgs then it's
80                  * because the transaction was aborted and a commit did not
81                  * happen (things failed before writing the new superblock
82                  * and calling btrfs_finish_extent_commit()), so we can not
83                  * discard the physical locations of the block groups.
84                  */
85                 while (!list_empty(&transaction->deleted_bgs)) {
86                         struct btrfs_block_group_cache *cache;
87
88                         cache = list_first_entry(&transaction->deleted_bgs,
89                                                  struct btrfs_block_group_cache,
90                                                  bg_list);
91                         list_del_init(&cache->bg_list);
92                         btrfs_put_block_group_trimming(cache);
93                         btrfs_put_block_group(cache);
94                 }
95                 kmem_cache_free(btrfs_transaction_cachep, transaction);
96         }
97 }
98
99 static void clear_btree_io_tree(struct extent_io_tree *tree)
100 {
101         spin_lock(&tree->lock);
102         /*
103          * Do a single barrier for the waitqueue_active check here, the state
104          * of the waitqueue should not change once clear_btree_io_tree is
105          * called.
106          */
107         smp_mb();
108         while (!RB_EMPTY_ROOT(&tree->state)) {
109                 struct rb_node *node;
110                 struct extent_state *state;
111
112                 node = rb_first(&tree->state);
113                 state = rb_entry(node, struct extent_state, rb_node);
114                 rb_erase(&state->rb_node, &tree->state);
115                 RB_CLEAR_NODE(&state->rb_node);
116                 /*
117                  * btree io trees aren't supposed to have tasks waiting for
118                  * changes in the flags of extent states ever.
119                  */
120                 ASSERT(!waitqueue_active(&state->wq));
121                 free_extent_state(state);
122
123                 cond_resched_lock(&tree->lock);
124         }
125         spin_unlock(&tree->lock);
126 }
127
128 static noinline void switch_commit_roots(struct btrfs_transaction *trans,
129                                          struct btrfs_fs_info *fs_info)
130 {
131         struct btrfs_root *root, *tmp;
132
133         down_write(&fs_info->commit_root_sem);
134         list_for_each_entry_safe(root, tmp, &trans->switch_commits,
135                                  dirty_list) {
136                 list_del_init(&root->dirty_list);
137                 free_extent_buffer(root->commit_root);
138                 root->commit_root = btrfs_root_node(root);
139                 if (is_fstree(root->objectid))
140                         btrfs_unpin_free_ino(root);
141                 clear_btree_io_tree(&root->dirty_log_pages);
142         }
143
144         /* We can free old roots now. */
145         spin_lock(&trans->dropped_roots_lock);
146         while (!list_empty(&trans->dropped_roots)) {
147                 root = list_first_entry(&trans->dropped_roots,
148                                         struct btrfs_root, root_list);
149                 list_del_init(&root->root_list);
150                 spin_unlock(&trans->dropped_roots_lock);
151                 btrfs_drop_and_free_fs_root(fs_info, root);
152                 spin_lock(&trans->dropped_roots_lock);
153         }
154         spin_unlock(&trans->dropped_roots_lock);
155         up_write(&fs_info->commit_root_sem);
156 }
157
158 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
159                                          unsigned int type)
160 {
161         if (type & TRANS_EXTWRITERS)
162                 atomic_inc(&trans->num_extwriters);
163 }
164
165 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
166                                          unsigned int type)
167 {
168         if (type & TRANS_EXTWRITERS)
169                 atomic_dec(&trans->num_extwriters);
170 }
171
172 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
173                                           unsigned int type)
174 {
175         atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
176 }
177
178 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
179 {
180         return atomic_read(&trans->num_extwriters);
181 }
182
183 /*
184  * either allocate a new transaction or hop into the existing one
185  */
186 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
187 {
188         struct btrfs_transaction *cur_trans;
189         struct btrfs_fs_info *fs_info = root->fs_info;
190
191         spin_lock(&fs_info->trans_lock);
192 loop:
193         /* The file system has been taken offline. No new transactions. */
194         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
195                 spin_unlock(&fs_info->trans_lock);
196                 return -EROFS;
197         }
198
199         cur_trans = fs_info->running_transaction;
200         if (cur_trans) {
201                 if (cur_trans->aborted) {
202                         spin_unlock(&fs_info->trans_lock);
203                         return cur_trans->aborted;
204                 }
205                 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
206                         spin_unlock(&fs_info->trans_lock);
207                         return -EBUSY;
208                 }
209                 atomic_inc(&cur_trans->use_count);
210                 atomic_inc(&cur_trans->num_writers);
211                 extwriter_counter_inc(cur_trans, type);
212                 spin_unlock(&fs_info->trans_lock);
213                 return 0;
214         }
215         spin_unlock(&fs_info->trans_lock);
216
217         /*
218          * If we are ATTACH, we just want to catch the current transaction,
219          * and commit it. If there is no transaction, just return ENOENT.
220          */
221         if (type == TRANS_ATTACH)
222                 return -ENOENT;
223
224         /*
225          * JOIN_NOLOCK only happens during the transaction commit, so
226          * it is impossible that ->running_transaction is NULL
227          */
228         BUG_ON(type == TRANS_JOIN_NOLOCK);
229
230         cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
231         if (!cur_trans)
232                 return -ENOMEM;
233
234         spin_lock(&fs_info->trans_lock);
235         if (fs_info->running_transaction) {
236                 /*
237                  * someone started a transaction after we unlocked.  Make sure
238                  * to redo the checks above
239                  */
240                 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
241                 goto loop;
242         } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
243                 spin_unlock(&fs_info->trans_lock);
244                 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
245                 return -EROFS;
246         }
247
248         atomic_set(&cur_trans->num_writers, 1);
249         extwriter_counter_init(cur_trans, type);
250         init_waitqueue_head(&cur_trans->writer_wait);
251         init_waitqueue_head(&cur_trans->commit_wait);
252         init_waitqueue_head(&cur_trans->pending_wait);
253         cur_trans->state = TRANS_STATE_RUNNING;
254         /*
255          * One for this trans handle, one so it will live on until we
256          * commit the transaction.
257          */
258         atomic_set(&cur_trans->use_count, 2);
259         atomic_set(&cur_trans->pending_ordered, 0);
260         cur_trans->flags = 0;
261         cur_trans->start_time = get_seconds();
262
263         memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
264
265         cur_trans->delayed_refs.href_root = RB_ROOT;
266         cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
267         atomic_set(&cur_trans->delayed_refs.num_entries, 0);
268
269         /*
270          * although the tree mod log is per file system and not per transaction,
271          * the log must never go across transaction boundaries.
272          */
273         smp_mb();
274         if (!list_empty(&fs_info->tree_mod_seq_list))
275                 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when "
276                         "creating a fresh transaction\n");
277         if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
278                 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when "
279                         "creating a fresh transaction\n");
280         atomic64_set(&fs_info->tree_mod_seq, 0);
281
282         spin_lock_init(&cur_trans->delayed_refs.lock);
283
284         INIT_LIST_HEAD(&cur_trans->pending_snapshots);
285         INIT_LIST_HEAD(&cur_trans->pending_chunks);
286         INIT_LIST_HEAD(&cur_trans->switch_commits);
287         INIT_LIST_HEAD(&cur_trans->dirty_bgs);
288         INIT_LIST_HEAD(&cur_trans->io_bgs);
289         INIT_LIST_HEAD(&cur_trans->dropped_roots);
290         mutex_init(&cur_trans->cache_write_mutex);
291         cur_trans->num_dirty_bgs = 0;
292         spin_lock_init(&cur_trans->dirty_bgs_lock);
293         INIT_LIST_HEAD(&cur_trans->deleted_bgs);
294         spin_lock_init(&cur_trans->dropped_roots_lock);
295         list_add_tail(&cur_trans->list, &fs_info->trans_list);
296         extent_io_tree_init(&cur_trans->dirty_pages,
297                              fs_info->btree_inode->i_mapping);
298         fs_info->generation++;
299         cur_trans->transid = fs_info->generation;
300         fs_info->running_transaction = cur_trans;
301         cur_trans->aborted = 0;
302         spin_unlock(&fs_info->trans_lock);
303
304         return 0;
305 }
306
307 /*
308  * this does all the record keeping required to make sure that a reference
309  * counted root is properly recorded in a given transaction.  This is required
310  * to make sure the old root from before we joined the transaction is deleted
311  * when the transaction commits
312  */
313 static int record_root_in_trans(struct btrfs_trans_handle *trans,
314                                struct btrfs_root *root)
315 {
316         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
317             root->last_trans < trans->transid) {
318                 WARN_ON(root == root->fs_info->extent_root);
319                 WARN_ON(root->commit_root != root->node);
320
321                 /*
322                  * see below for IN_TRANS_SETUP usage rules
323                  * we have the reloc mutex held now, so there
324                  * is only one writer in this function
325                  */
326                 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
327
328                 /* make sure readers find IN_TRANS_SETUP before
329                  * they find our root->last_trans update
330                  */
331                 smp_wmb();
332
333                 spin_lock(&root->fs_info->fs_roots_radix_lock);
334                 if (root->last_trans == trans->transid) {
335                         spin_unlock(&root->fs_info->fs_roots_radix_lock);
336                         return 0;
337                 }
338                 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
339                            (unsigned long)root->root_key.objectid,
340                            BTRFS_ROOT_TRANS_TAG);
341                 spin_unlock(&root->fs_info->fs_roots_radix_lock);
342                 root->last_trans = trans->transid;
343
344                 /* this is pretty tricky.  We don't want to
345                  * take the relocation lock in btrfs_record_root_in_trans
346                  * unless we're really doing the first setup for this root in
347                  * this transaction.
348                  *
349                  * Normally we'd use root->last_trans as a flag to decide
350                  * if we want to take the expensive mutex.
351                  *
352                  * But, we have to set root->last_trans before we
353                  * init the relocation root, otherwise, we trip over warnings
354                  * in ctree.c.  The solution used here is to flag ourselves
355                  * with root IN_TRANS_SETUP.  When this is 1, we're still
356                  * fixing up the reloc trees and everyone must wait.
357                  *
358                  * When this is zero, they can trust root->last_trans and fly
359                  * through btrfs_record_root_in_trans without having to take the
360                  * lock.  smp_wmb() makes sure that all the writes above are
361                  * done before we pop in the zero below
362                  */
363                 btrfs_init_reloc_root(trans, root);
364                 smp_mb__before_atomic();
365                 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
366         }
367         return 0;
368 }
369
370
371 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
372                             struct btrfs_root *root)
373 {
374         struct btrfs_transaction *cur_trans = trans->transaction;
375
376         /* Add ourselves to the transaction dropped list */
377         spin_lock(&cur_trans->dropped_roots_lock);
378         list_add_tail(&root->root_list, &cur_trans->dropped_roots);
379         spin_unlock(&cur_trans->dropped_roots_lock);
380
381         /* Make sure we don't try to update the root at commit time */
382         spin_lock(&root->fs_info->fs_roots_radix_lock);
383         radix_tree_tag_clear(&root->fs_info->fs_roots_radix,
384                              (unsigned long)root->root_key.objectid,
385                              BTRFS_ROOT_TRANS_TAG);
386         spin_unlock(&root->fs_info->fs_roots_radix_lock);
387 }
388
389 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
390                                struct btrfs_root *root)
391 {
392         if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
393                 return 0;
394
395         /*
396          * see record_root_in_trans for comments about IN_TRANS_SETUP usage
397          * and barriers
398          */
399         smp_rmb();
400         if (root->last_trans == trans->transid &&
401             !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
402                 return 0;
403
404         mutex_lock(&root->fs_info->reloc_mutex);
405         record_root_in_trans(trans, root);
406         mutex_unlock(&root->fs_info->reloc_mutex);
407
408         return 0;
409 }
410
411 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
412 {
413         return (trans->state >= TRANS_STATE_BLOCKED &&
414                 trans->state < TRANS_STATE_UNBLOCKED &&
415                 !trans->aborted);
416 }
417
418 /* wait for commit against the current transaction to become unblocked
419  * when this is done, it is safe to start a new transaction, but the current
420  * transaction might not be fully on disk.
421  */
422 static void wait_current_trans(struct btrfs_root *root)
423 {
424         struct btrfs_transaction *cur_trans;
425
426         spin_lock(&root->fs_info->trans_lock);
427         cur_trans = root->fs_info->running_transaction;
428         if (cur_trans && is_transaction_blocked(cur_trans)) {
429                 atomic_inc(&cur_trans->use_count);
430                 spin_unlock(&root->fs_info->trans_lock);
431
432                 wait_event(root->fs_info->transaction_wait,
433                            cur_trans->state >= TRANS_STATE_UNBLOCKED ||
434                            cur_trans->aborted);
435                 btrfs_put_transaction(cur_trans);
436         } else {
437                 spin_unlock(&root->fs_info->trans_lock);
438         }
439 }
440
441 static int may_wait_transaction(struct btrfs_root *root, int type)
442 {
443         if (root->fs_info->log_root_recovering)
444                 return 0;
445
446         if (type == TRANS_USERSPACE)
447                 return 1;
448
449         if (type == TRANS_START &&
450             !atomic_read(&root->fs_info->open_ioctl_trans))
451                 return 1;
452
453         return 0;
454 }
455
456 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
457 {
458         if (!root->fs_info->reloc_ctl ||
459             !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
460             root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
461             root->reloc_root)
462                 return false;
463
464         return true;
465 }
466
467 static struct btrfs_trans_handle *
468 start_transaction(struct btrfs_root *root, unsigned int num_items,
469                   unsigned int type, enum btrfs_reserve_flush_enum flush)
470 {
471         struct btrfs_trans_handle *h;
472         struct btrfs_transaction *cur_trans;
473         u64 num_bytes = 0;
474         u64 qgroup_reserved = 0;
475         bool reloc_reserved = false;
476         int ret;
477
478         /* Send isn't supposed to start transactions. */
479         ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
480
481         if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
482                 return ERR_PTR(-EROFS);
483
484         if (current->journal_info) {
485                 WARN_ON(type & TRANS_EXTWRITERS);
486                 h = current->journal_info;
487                 h->use_count++;
488                 WARN_ON(h->use_count > 2);
489                 h->orig_rsv = h->block_rsv;
490                 h->block_rsv = NULL;
491                 goto got_it;
492         }
493
494         /*
495          * Do the reservation before we join the transaction so we can do all
496          * the appropriate flushing if need be.
497          */
498         if (num_items > 0 && root != root->fs_info->chunk_root) {
499                 qgroup_reserved = num_items * root->nodesize;
500                 ret = btrfs_qgroup_reserve_meta(root, qgroup_reserved);
501                 if (ret)
502                         return ERR_PTR(ret);
503
504                 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
505                 /*
506                  * Do the reservation for the relocation root creation
507                  */
508                 if (need_reserve_reloc_root(root)) {
509                         num_bytes += root->nodesize;
510                         reloc_reserved = true;
511                 }
512
513                 ret = btrfs_block_rsv_add(root,
514                                           &root->fs_info->trans_block_rsv,
515                                           num_bytes, flush);
516                 if (ret)
517                         goto reserve_fail;
518         }
519 again:
520         h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
521         if (!h) {
522                 ret = -ENOMEM;
523                 goto alloc_fail;
524         }
525
526         /*
527          * If we are JOIN_NOLOCK we're already committing a transaction and
528          * waiting on this guy, so we don't need to do the sb_start_intwrite
529          * because we're already holding a ref.  We need this because we could
530          * have raced in and did an fsync() on a file which can kick a commit
531          * and then we deadlock with somebody doing a freeze.
532          *
533          * If we are ATTACH, it means we just want to catch the current
534          * transaction and commit it, so we needn't do sb_start_intwrite(). 
535          */
536         if (type & __TRANS_FREEZABLE)
537                 sb_start_intwrite(root->fs_info->sb);
538
539         if (may_wait_transaction(root, type))
540                 wait_current_trans(root);
541
542         do {
543                 ret = join_transaction(root, type);
544                 if (ret == -EBUSY) {
545                         wait_current_trans(root);
546                         if (unlikely(type == TRANS_ATTACH))
547                                 ret = -ENOENT;
548                 }
549         } while (ret == -EBUSY);
550
551         if (ret < 0) {
552                 /* We must get the transaction if we are JOIN_NOLOCK. */
553                 BUG_ON(type == TRANS_JOIN_NOLOCK);
554                 goto join_fail;
555         }
556
557         cur_trans = root->fs_info->running_transaction;
558
559         h->transid = cur_trans->transid;
560         h->transaction = cur_trans;
561         h->root = root;
562         h->use_count = 1;
563
564         h->type = type;
565         h->can_flush_pending_bgs = true;
566         INIT_LIST_HEAD(&h->qgroup_ref_list);
567         INIT_LIST_HEAD(&h->new_bgs);
568
569         smp_mb();
570         if (cur_trans->state >= TRANS_STATE_BLOCKED &&
571             may_wait_transaction(root, type)) {
572                 current->journal_info = h;
573                 btrfs_commit_transaction(h, root);
574                 goto again;
575         }
576
577         if (num_bytes) {
578                 trace_btrfs_space_reservation(root->fs_info, "transaction",
579                                               h->transid, num_bytes, 1);
580                 h->block_rsv = &root->fs_info->trans_block_rsv;
581                 h->bytes_reserved = num_bytes;
582                 h->reloc_reserved = reloc_reserved;
583         }
584
585 got_it:
586         btrfs_record_root_in_trans(h, root);
587
588         if (!current->journal_info && type != TRANS_USERSPACE)
589                 current->journal_info = h;
590         return h;
591
592 join_fail:
593         if (type & __TRANS_FREEZABLE)
594                 sb_end_intwrite(root->fs_info->sb);
595         kmem_cache_free(btrfs_trans_handle_cachep, h);
596 alloc_fail:
597         if (num_bytes)
598                 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
599                                         num_bytes);
600 reserve_fail:
601         btrfs_qgroup_free_meta(root, qgroup_reserved);
602         return ERR_PTR(ret);
603 }
604
605 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
606                                                    unsigned int num_items)
607 {
608         return start_transaction(root, num_items, TRANS_START,
609                                  BTRFS_RESERVE_FLUSH_ALL);
610 }
611 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
612                                         struct btrfs_root *root,
613                                         unsigned int num_items,
614                                         int min_factor)
615 {
616         struct btrfs_trans_handle *trans;
617         u64 num_bytes;
618         int ret;
619
620         trans = btrfs_start_transaction(root, num_items);
621         if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
622                 return trans;
623
624         trans = btrfs_start_transaction(root, 0);
625         if (IS_ERR(trans))
626                 return trans;
627
628         num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
629         ret = btrfs_cond_migrate_bytes(root->fs_info,
630                                        &root->fs_info->trans_block_rsv,
631                                        num_bytes,
632                                        min_factor);
633         if (ret) {
634                 btrfs_end_transaction(trans, root);
635                 return ERR_PTR(ret);
636         }
637
638         trans->block_rsv = &root->fs_info->trans_block_rsv;
639         trans->bytes_reserved = num_bytes;
640         trace_btrfs_space_reservation(root->fs_info, "transaction",
641                                       trans->transid, num_bytes, 1);
642
643         return trans;
644 }
645
646 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
647                                         struct btrfs_root *root,
648                                         unsigned int num_items)
649 {
650         return start_transaction(root, num_items, TRANS_START,
651                                  BTRFS_RESERVE_FLUSH_LIMIT);
652 }
653
654 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
655 {
656         return start_transaction(root, 0, TRANS_JOIN,
657                                  BTRFS_RESERVE_NO_FLUSH);
658 }
659
660 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
661 {
662         return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
663                                  BTRFS_RESERVE_NO_FLUSH);
664 }
665
666 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
667 {
668         return start_transaction(root, 0, TRANS_USERSPACE,
669                                  BTRFS_RESERVE_NO_FLUSH);
670 }
671
672 /*
673  * btrfs_attach_transaction() - catch the running transaction
674  *
675  * It is used when we want to commit the current the transaction, but
676  * don't want to start a new one.
677  *
678  * Note: If this function return -ENOENT, it just means there is no
679  * running transaction. But it is possible that the inactive transaction
680  * is still in the memory, not fully on disk. If you hope there is no
681  * inactive transaction in the fs when -ENOENT is returned, you should
682  * invoke
683  *     btrfs_attach_transaction_barrier()
684  */
685 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
686 {
687         return start_transaction(root, 0, TRANS_ATTACH,
688                                  BTRFS_RESERVE_NO_FLUSH);
689 }
690
691 /*
692  * btrfs_attach_transaction_barrier() - catch the running transaction
693  *
694  * It is similar to the above function, the differentia is this one
695  * will wait for all the inactive transactions until they fully
696  * complete.
697  */
698 struct btrfs_trans_handle *
699 btrfs_attach_transaction_barrier(struct btrfs_root *root)
700 {
701         struct btrfs_trans_handle *trans;
702
703         trans = start_transaction(root, 0, TRANS_ATTACH,
704                                   BTRFS_RESERVE_NO_FLUSH);
705         if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
706                 btrfs_wait_for_commit(root, 0);
707
708         return trans;
709 }
710
711 /* wait for a transaction commit to be fully complete */
712 static noinline void wait_for_commit(struct btrfs_root *root,
713                                     struct btrfs_transaction *commit)
714 {
715         wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
716 }
717
718 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
719 {
720         struct btrfs_transaction *cur_trans = NULL, *t;
721         int ret = 0;
722
723         if (transid) {
724                 if (transid <= root->fs_info->last_trans_committed)
725                         goto out;
726
727                 /* find specified transaction */
728                 spin_lock(&root->fs_info->trans_lock);
729                 list_for_each_entry(t, &root->fs_info->trans_list, list) {
730                         if (t->transid == transid) {
731                                 cur_trans = t;
732                                 atomic_inc(&cur_trans->use_count);
733                                 ret = 0;
734                                 break;
735                         }
736                         if (t->transid > transid) {
737                                 ret = 0;
738                                 break;
739                         }
740                 }
741                 spin_unlock(&root->fs_info->trans_lock);
742
743                 /*
744                  * The specified transaction doesn't exist, or we
745                  * raced with btrfs_commit_transaction
746                  */
747                 if (!cur_trans) {
748                         if (transid > root->fs_info->last_trans_committed)
749                                 ret = -EINVAL;
750                         goto out;
751                 }
752         } else {
753                 /* find newest transaction that is committing | committed */
754                 spin_lock(&root->fs_info->trans_lock);
755                 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
756                                             list) {
757                         if (t->state >= TRANS_STATE_COMMIT_START) {
758                                 if (t->state == TRANS_STATE_COMPLETED)
759                                         break;
760                                 cur_trans = t;
761                                 atomic_inc(&cur_trans->use_count);
762                                 break;
763                         }
764                 }
765                 spin_unlock(&root->fs_info->trans_lock);
766                 if (!cur_trans)
767                         goto out;  /* nothing committing|committed */
768         }
769
770         wait_for_commit(root, cur_trans);
771         btrfs_put_transaction(cur_trans);
772 out:
773         return ret;
774 }
775
776 void btrfs_throttle(struct btrfs_root *root)
777 {
778         if (!atomic_read(&root->fs_info->open_ioctl_trans))
779                 wait_current_trans(root);
780 }
781
782 static int should_end_transaction(struct btrfs_trans_handle *trans,
783                                   struct btrfs_root *root)
784 {
785         if (root->fs_info->global_block_rsv.space_info->full &&
786             btrfs_check_space_for_delayed_refs(trans, root))
787                 return 1;
788
789         return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
790 }
791
792 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
793                                  struct btrfs_root *root)
794 {
795         struct btrfs_transaction *cur_trans = trans->transaction;
796         int updates;
797         int err;
798
799         smp_mb();
800         if (cur_trans->state >= TRANS_STATE_BLOCKED ||
801             cur_trans->delayed_refs.flushing)
802                 return 1;
803
804         updates = trans->delayed_ref_updates;
805         trans->delayed_ref_updates = 0;
806         if (updates) {
807                 err = btrfs_run_delayed_refs(trans, root, updates * 2);
808                 if (err) /* Error code will also eval true */
809                         return err;
810         }
811
812         return should_end_transaction(trans, root);
813 }
814
815 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
816                           struct btrfs_root *root, int throttle)
817 {
818         struct btrfs_transaction *cur_trans = trans->transaction;
819         struct btrfs_fs_info *info = root->fs_info;
820         unsigned long cur = trans->delayed_ref_updates;
821         int lock = (trans->type != TRANS_JOIN_NOLOCK);
822         int err = 0;
823         int must_run_delayed_refs = 0;
824
825         if (trans->use_count > 1) {
826                 trans->use_count--;
827                 trans->block_rsv = trans->orig_rsv;
828                 return 0;
829         }
830
831         btrfs_trans_release_metadata(trans, root);
832         trans->block_rsv = NULL;
833
834         if (!list_empty(&trans->new_bgs))
835                 btrfs_create_pending_block_groups(trans, root);
836
837         trans->delayed_ref_updates = 0;
838         if (!trans->sync) {
839                 must_run_delayed_refs =
840                         btrfs_should_throttle_delayed_refs(trans, root);
841                 cur = max_t(unsigned long, cur, 32);
842
843                 /*
844                  * don't make the caller wait if they are from a NOLOCK
845                  * or ATTACH transaction, it will deadlock with commit
846                  */
847                 if (must_run_delayed_refs == 1 &&
848                     (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
849                         must_run_delayed_refs = 2;
850         }
851
852         btrfs_trans_release_metadata(trans, root);
853         trans->block_rsv = NULL;
854
855         if (!list_empty(&trans->new_bgs))
856                 btrfs_create_pending_block_groups(trans, root);
857
858         btrfs_trans_release_chunk_metadata(trans);
859
860         if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
861             should_end_transaction(trans, root) &&
862             ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
863                 spin_lock(&info->trans_lock);
864                 if (cur_trans->state == TRANS_STATE_RUNNING)
865                         cur_trans->state = TRANS_STATE_BLOCKED;
866                 spin_unlock(&info->trans_lock);
867         }
868
869         if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
870                 if (throttle)
871                         return btrfs_commit_transaction(trans, root);
872                 else
873                         wake_up_process(info->transaction_kthread);
874         }
875
876         if (trans->type & __TRANS_FREEZABLE)
877                 sb_end_intwrite(root->fs_info->sb);
878
879         WARN_ON(cur_trans != info->running_transaction);
880         WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
881         atomic_dec(&cur_trans->num_writers);
882         extwriter_counter_dec(cur_trans, trans->type);
883
884         /*
885          * Make sure counter is updated before we wake up waiters.
886          */
887         smp_mb();
888         if (waitqueue_active(&cur_trans->writer_wait))
889                 wake_up(&cur_trans->writer_wait);
890         btrfs_put_transaction(cur_trans);
891
892         if (current->journal_info == trans)
893                 current->journal_info = NULL;
894
895         if (throttle)
896                 btrfs_run_delayed_iputs(root);
897
898         if (trans->aborted ||
899             test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
900                 wake_up_process(info->transaction_kthread);
901                 err = -EIO;
902         }
903         assert_qgroups_uptodate(trans);
904
905         kmem_cache_free(btrfs_trans_handle_cachep, trans);
906         if (must_run_delayed_refs) {
907                 btrfs_async_run_delayed_refs(root, cur,
908                                              must_run_delayed_refs == 1);
909         }
910         return err;
911 }
912
913 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
914                           struct btrfs_root *root)
915 {
916         return __btrfs_end_transaction(trans, root, 0);
917 }
918
919 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
920                                    struct btrfs_root *root)
921 {
922         return __btrfs_end_transaction(trans, root, 1);
923 }
924
925 /*
926  * when btree blocks are allocated, they have some corresponding bits set for
927  * them in one of two extent_io trees.  This is used to make sure all of
928  * those extents are sent to disk but does not wait on them
929  */
930 int btrfs_write_marked_extents(struct btrfs_root *root,
931                                struct extent_io_tree *dirty_pages, int mark)
932 {
933         int err = 0;
934         int werr = 0;
935         struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
936         struct extent_state *cached_state = NULL;
937         u64 start = 0;
938         u64 end;
939
940         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
941                                       mark, &cached_state)) {
942                 bool wait_writeback = false;
943
944                 err = convert_extent_bit(dirty_pages, start, end,
945                                          EXTENT_NEED_WAIT,
946                                          mark, &cached_state, GFP_NOFS);
947                 /*
948                  * convert_extent_bit can return -ENOMEM, which is most of the
949                  * time a temporary error. So when it happens, ignore the error
950                  * and wait for writeback of this range to finish - because we
951                  * failed to set the bit EXTENT_NEED_WAIT for the range, a call
952                  * to btrfs_wait_marked_extents() would not know that writeback
953                  * for this range started and therefore wouldn't wait for it to
954                  * finish - we don't want to commit a superblock that points to
955                  * btree nodes/leafs for which writeback hasn't finished yet
956                  * (and without errors).
957                  * We cleanup any entries left in the io tree when committing
958                  * the transaction (through clear_btree_io_tree()).
959                  */
960                 if (err == -ENOMEM) {
961                         err = 0;
962                         wait_writeback = true;
963                 }
964                 if (!err)
965                         err = filemap_fdatawrite_range(mapping, start, end);
966                 if (err)
967                         werr = err;
968                 else if (wait_writeback)
969                         werr = filemap_fdatawait_range(mapping, start, end);
970                 free_extent_state(cached_state);
971                 cached_state = NULL;
972                 cond_resched();
973                 start = end + 1;
974         }
975         return werr;
976 }
977
978 /*
979  * when btree blocks are allocated, they have some corresponding bits set for
980  * them in one of two extent_io trees.  This is used to make sure all of
981  * those extents are on disk for transaction or log commit.  We wait
982  * on all the pages and clear them from the dirty pages state tree
983  */
984 int btrfs_wait_marked_extents(struct btrfs_root *root,
985                               struct extent_io_tree *dirty_pages, int mark)
986 {
987         int err = 0;
988         int werr = 0;
989         struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
990         struct extent_state *cached_state = NULL;
991         u64 start = 0;
992         u64 end;
993         struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
994         bool errors = false;
995
996         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
997                                       EXTENT_NEED_WAIT, &cached_state)) {
998                 /*
999                  * Ignore -ENOMEM errors returned by clear_extent_bit().
1000                  * When committing the transaction, we'll remove any entries
1001                  * left in the io tree. For a log commit, we don't remove them
1002                  * after committing the log because the tree can be accessed
1003                  * concurrently - we do it only at transaction commit time when
1004                  * it's safe to do it (through clear_btree_io_tree()).
1005                  */
1006                 err = clear_extent_bit(dirty_pages, start, end,
1007                                        EXTENT_NEED_WAIT,
1008                                        0, 0, &cached_state, GFP_NOFS);
1009                 if (err == -ENOMEM)
1010                         err = 0;
1011                 if (!err)
1012                         err = filemap_fdatawait_range(mapping, start, end);
1013                 if (err)
1014                         werr = err;
1015                 free_extent_state(cached_state);
1016                 cached_state = NULL;
1017                 cond_resched();
1018                 start = end + 1;
1019         }
1020         if (err)
1021                 werr = err;
1022
1023         if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
1024                 if ((mark & EXTENT_DIRTY) &&
1025                     test_and_clear_bit(BTRFS_INODE_BTREE_LOG1_ERR,
1026                                        &btree_ino->runtime_flags))
1027                         errors = true;
1028
1029                 if ((mark & EXTENT_NEW) &&
1030                     test_and_clear_bit(BTRFS_INODE_BTREE_LOG2_ERR,
1031                                        &btree_ino->runtime_flags))
1032                         errors = true;
1033         } else {
1034                 if (test_and_clear_bit(BTRFS_INODE_BTREE_ERR,
1035                                        &btree_ino->runtime_flags))
1036                         errors = true;
1037         }
1038
1039         if (errors && !werr)
1040                 werr = -EIO;
1041
1042         return werr;
1043 }
1044
1045 /*
1046  * when btree blocks are allocated, they have some corresponding bits set for
1047  * them in one of two extent_io trees.  This is used to make sure all of
1048  * those extents are on disk for transaction or log commit
1049  */
1050 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
1051                                 struct extent_io_tree *dirty_pages, int mark)
1052 {
1053         int ret;
1054         int ret2;
1055         struct blk_plug plug;
1056
1057         blk_start_plug(&plug);
1058         ret = btrfs_write_marked_extents(root, dirty_pages, mark);
1059         blk_finish_plug(&plug);
1060         ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
1061
1062         if (ret)
1063                 return ret;
1064         if (ret2)
1065                 return ret2;
1066         return 0;
1067 }
1068
1069 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
1070                                      struct btrfs_root *root)
1071 {
1072         int ret;
1073
1074         ret = btrfs_write_and_wait_marked_extents(root,
1075                                            &trans->transaction->dirty_pages,
1076                                            EXTENT_DIRTY);
1077         clear_btree_io_tree(&trans->transaction->dirty_pages);
1078
1079         return ret;
1080 }
1081
1082 /*
1083  * this is used to update the root pointer in the tree of tree roots.
1084  *
1085  * But, in the case of the extent allocation tree, updating the root
1086  * pointer may allocate blocks which may change the root of the extent
1087  * allocation tree.
1088  *
1089  * So, this loops and repeats and makes sure the cowonly root didn't
1090  * change while the root pointer was being updated in the metadata.
1091  */
1092 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1093                                struct btrfs_root *root)
1094 {
1095         int ret;
1096         u64 old_root_bytenr;
1097         u64 old_root_used;
1098         struct btrfs_root *tree_root = root->fs_info->tree_root;
1099
1100         old_root_used = btrfs_root_used(&root->root_item);
1101
1102         while (1) {
1103                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1104                 if (old_root_bytenr == root->node->start &&
1105                     old_root_used == btrfs_root_used(&root->root_item))
1106                         break;
1107
1108                 btrfs_set_root_node(&root->root_item, root->node);
1109                 ret = btrfs_update_root(trans, tree_root,
1110                                         &root->root_key,
1111                                         &root->root_item);
1112                 if (ret)
1113                         return ret;
1114
1115                 old_root_used = btrfs_root_used(&root->root_item);
1116         }
1117
1118         return 0;
1119 }
1120
1121 /*
1122  * update all the cowonly tree roots on disk
1123  *
1124  * The error handling in this function may not be obvious. Any of the
1125  * failures will cause the file system to go offline. We still need
1126  * to clean up the delayed refs.
1127  */
1128 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
1129                                          struct btrfs_root *root)
1130 {
1131         struct btrfs_fs_info *fs_info = root->fs_info;
1132         struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1133         struct list_head *io_bgs = &trans->transaction->io_bgs;
1134         struct list_head *next;
1135         struct extent_buffer *eb;
1136         int ret;
1137
1138         eb = btrfs_lock_root_node(fs_info->tree_root);
1139         ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1140                               0, &eb);
1141         btrfs_tree_unlock(eb);
1142         free_extent_buffer(eb);
1143
1144         if (ret)
1145                 return ret;
1146
1147         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1148         if (ret)
1149                 return ret;
1150
1151         ret = btrfs_run_dev_stats(trans, root->fs_info);
1152         if (ret)
1153                 return ret;
1154         ret = btrfs_run_dev_replace(trans, root->fs_info);
1155         if (ret)
1156                 return ret;
1157         ret = btrfs_run_qgroups(trans, root->fs_info);
1158         if (ret)
1159                 return ret;
1160
1161         ret = btrfs_setup_space_cache(trans, root);
1162         if (ret)
1163                 return ret;
1164
1165         /* run_qgroups might have added some more refs */
1166         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1167         if (ret)
1168                 return ret;
1169 again:
1170         while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1171                 next = fs_info->dirty_cowonly_roots.next;
1172                 list_del_init(next);
1173                 root = list_entry(next, struct btrfs_root, dirty_list);
1174                 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1175
1176                 if (root != fs_info->extent_root)
1177                         list_add_tail(&root->dirty_list,
1178                                       &trans->transaction->switch_commits);
1179                 ret = update_cowonly_root(trans, root);
1180                 if (ret)
1181                         return ret;
1182                 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1183                 if (ret)
1184                         return ret;
1185         }
1186
1187         while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1188                 ret = btrfs_write_dirty_block_groups(trans, root);
1189                 if (ret)
1190                         return ret;
1191                 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1192                 if (ret)
1193                         return ret;
1194         }
1195
1196         if (!list_empty(&fs_info->dirty_cowonly_roots))
1197                 goto again;
1198
1199         list_add_tail(&fs_info->extent_root->dirty_list,
1200                       &trans->transaction->switch_commits);
1201         btrfs_after_dev_replace_commit(fs_info);
1202
1203         return 0;
1204 }
1205
1206 /*
1207  * dead roots are old snapshots that need to be deleted.  This allocates
1208  * a dirty root struct and adds it into the list of dead roots that need to
1209  * be deleted
1210  */
1211 void btrfs_add_dead_root(struct btrfs_root *root)
1212 {
1213         spin_lock(&root->fs_info->trans_lock);
1214         if (list_empty(&root->root_list))
1215                 list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1216         spin_unlock(&root->fs_info->trans_lock);
1217 }
1218
1219 /*
1220  * update all the cowonly tree roots on disk
1221  */
1222 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1223                                     struct btrfs_root *root)
1224 {
1225         struct btrfs_root *gang[8];
1226         struct btrfs_fs_info *fs_info = root->fs_info;
1227         int i;
1228         int ret;
1229         int err = 0;
1230
1231         spin_lock(&fs_info->fs_roots_radix_lock);
1232         while (1) {
1233                 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1234                                                  (void **)gang, 0,
1235                                                  ARRAY_SIZE(gang),
1236                                                  BTRFS_ROOT_TRANS_TAG);
1237                 if (ret == 0)
1238                         break;
1239                 for (i = 0; i < ret; i++) {
1240                         root = gang[i];
1241                         radix_tree_tag_clear(&fs_info->fs_roots_radix,
1242                                         (unsigned long)root->root_key.objectid,
1243                                         BTRFS_ROOT_TRANS_TAG);
1244                         spin_unlock(&fs_info->fs_roots_radix_lock);
1245
1246                         btrfs_free_log(trans, root);
1247                         btrfs_update_reloc_root(trans, root);
1248                         btrfs_orphan_commit_root(trans, root);
1249
1250                         btrfs_save_ino_cache(root, trans);
1251
1252                         /* see comments in should_cow_block() */
1253                         clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1254                         smp_mb__after_atomic();
1255
1256                         if (root->commit_root != root->node) {
1257                                 list_add_tail(&root->dirty_list,
1258                                         &trans->transaction->switch_commits);
1259                                 btrfs_set_root_node(&root->root_item,
1260                                                     root->node);
1261                         }
1262
1263                         err = btrfs_update_root(trans, fs_info->tree_root,
1264                                                 &root->root_key,
1265                                                 &root->root_item);
1266                         spin_lock(&fs_info->fs_roots_radix_lock);
1267                         if (err)
1268                                 break;
1269                         btrfs_qgroup_free_meta_all(root);
1270                 }
1271         }
1272         spin_unlock(&fs_info->fs_roots_radix_lock);
1273         return err;
1274 }
1275
1276 /*
1277  * defrag a given btree.
1278  * Every leaf in the btree is read and defragged.
1279  */
1280 int btrfs_defrag_root(struct btrfs_root *root)
1281 {
1282         struct btrfs_fs_info *info = root->fs_info;
1283         struct btrfs_trans_handle *trans;
1284         int ret;
1285
1286         if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1287                 return 0;
1288
1289         while (1) {
1290                 trans = btrfs_start_transaction(root, 0);
1291                 if (IS_ERR(trans))
1292                         return PTR_ERR(trans);
1293
1294                 ret = btrfs_defrag_leaves(trans, root);
1295
1296                 btrfs_end_transaction(trans, root);
1297                 btrfs_btree_balance_dirty(info->tree_root);
1298                 cond_resched();
1299
1300                 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1301                         break;
1302
1303                 if (btrfs_defrag_cancelled(root->fs_info)) {
1304                         pr_debug("BTRFS: defrag_root cancelled\n");
1305                         ret = -EAGAIN;
1306                         break;
1307                 }
1308         }
1309         clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1310         return ret;
1311 }
1312
1313 /*
1314  * new snapshots need to be created at a very specific time in the
1315  * transaction commit.  This does the actual creation.
1316  *
1317  * Note:
1318  * If the error which may affect the commitment of the current transaction
1319  * happens, we should return the error number. If the error which just affect
1320  * the creation of the pending snapshots, just return 0.
1321  */
1322 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1323                                    struct btrfs_fs_info *fs_info,
1324                                    struct btrfs_pending_snapshot *pending)
1325 {
1326         struct btrfs_key key;
1327         struct btrfs_root_item *new_root_item;
1328         struct btrfs_root *tree_root = fs_info->tree_root;
1329         struct btrfs_root *root = pending->root;
1330         struct btrfs_root *parent_root;
1331         struct btrfs_block_rsv *rsv;
1332         struct inode *parent_inode;
1333         struct btrfs_path *path;
1334         struct btrfs_dir_item *dir_item;
1335         struct dentry *dentry;
1336         struct extent_buffer *tmp;
1337         struct extent_buffer *old;
1338         struct timespec cur_time;
1339         int ret = 0;
1340         u64 to_reserve = 0;
1341         u64 index = 0;
1342         u64 objectid;
1343         u64 root_flags;
1344         uuid_le new_uuid;
1345
1346         ASSERT(pending->path);
1347         path = pending->path;
1348
1349         ASSERT(pending->root_item);
1350         new_root_item = pending->root_item;
1351
1352         pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1353         if (pending->error)
1354                 goto no_free_objectid;
1355
1356         /*
1357          * Make qgroup to skip current new snapshot's qgroupid, as it is
1358          * accounted by later btrfs_qgroup_inherit().
1359          */
1360         btrfs_set_skip_qgroup(trans, objectid);
1361
1362         btrfs_reloc_pre_snapshot(pending, &to_reserve);
1363
1364         if (to_reserve > 0) {
1365                 pending->error = btrfs_block_rsv_add(root,
1366                                                      &pending->block_rsv,
1367                                                      to_reserve,
1368                                                      BTRFS_RESERVE_NO_FLUSH);
1369                 if (pending->error)
1370                         goto clear_skip_qgroup;
1371         }
1372
1373         key.objectid = objectid;
1374         key.offset = (u64)-1;
1375         key.type = BTRFS_ROOT_ITEM_KEY;
1376
1377         rsv = trans->block_rsv;
1378         trans->block_rsv = &pending->block_rsv;
1379         trans->bytes_reserved = trans->block_rsv->reserved;
1380         trace_btrfs_space_reservation(root->fs_info, "transaction",
1381                                       trans->transid,
1382                                       trans->bytes_reserved, 1);
1383         dentry = pending->dentry;
1384         parent_inode = pending->dir;
1385         parent_root = BTRFS_I(parent_inode)->root;
1386         record_root_in_trans(trans, parent_root);
1387
1388         cur_time = current_fs_time(parent_inode->i_sb);
1389
1390         /*
1391          * insert the directory item
1392          */
1393         ret = btrfs_set_inode_index(parent_inode, &index);
1394         BUG_ON(ret); /* -ENOMEM */
1395
1396         /* check if there is a file/dir which has the same name. */
1397         dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1398                                          btrfs_ino(parent_inode),
1399                                          dentry->d_name.name,
1400                                          dentry->d_name.len, 0);
1401         if (dir_item != NULL && !IS_ERR(dir_item)) {
1402                 pending->error = -EEXIST;
1403                 goto dir_item_existed;
1404         } else if (IS_ERR(dir_item)) {
1405                 ret = PTR_ERR(dir_item);
1406                 btrfs_abort_transaction(trans, root, ret);
1407                 goto fail;
1408         }
1409         btrfs_release_path(path);
1410
1411         /*
1412          * pull in the delayed directory update
1413          * and the delayed inode item
1414          * otherwise we corrupt the FS during
1415          * snapshot
1416          */
1417         ret = btrfs_run_delayed_items(trans, root);
1418         if (ret) {      /* Transaction aborted */
1419                 btrfs_abort_transaction(trans, root, ret);
1420                 goto fail;
1421         }
1422
1423         record_root_in_trans(trans, root);
1424         btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1425         memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1426         btrfs_check_and_init_root_item(new_root_item);
1427
1428         root_flags = btrfs_root_flags(new_root_item);
1429         if (pending->readonly)
1430                 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1431         else
1432                 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1433         btrfs_set_root_flags(new_root_item, root_flags);
1434
1435         btrfs_set_root_generation_v2(new_root_item,
1436                         trans->transid);
1437         uuid_le_gen(&new_uuid);
1438         memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1439         memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1440                         BTRFS_UUID_SIZE);
1441         if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1442                 memset(new_root_item->received_uuid, 0,
1443                        sizeof(new_root_item->received_uuid));
1444                 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1445                 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1446                 btrfs_set_root_stransid(new_root_item, 0);
1447                 btrfs_set_root_rtransid(new_root_item, 0);
1448         }
1449         btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1450         btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1451         btrfs_set_root_otransid(new_root_item, trans->transid);
1452
1453         old = btrfs_lock_root_node(root);
1454         ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1455         if (ret) {
1456                 btrfs_tree_unlock(old);
1457                 free_extent_buffer(old);
1458                 btrfs_abort_transaction(trans, root, ret);
1459                 goto fail;
1460         }
1461
1462         btrfs_set_lock_blocking(old);
1463
1464         ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1465         /* clean up in any case */
1466         btrfs_tree_unlock(old);
1467         free_extent_buffer(old);
1468         if (ret) {
1469                 btrfs_abort_transaction(trans, root, ret);
1470                 goto fail;
1471         }
1472         /* see comments in should_cow_block() */
1473         set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1474         smp_wmb();
1475
1476         btrfs_set_root_node(new_root_item, tmp);
1477         /* record when the snapshot was created in key.offset */
1478         key.offset = trans->transid;
1479         ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1480         btrfs_tree_unlock(tmp);
1481         free_extent_buffer(tmp);
1482         if (ret) {
1483                 btrfs_abort_transaction(trans, root, ret);
1484                 goto fail;
1485         }
1486
1487         /*
1488          * insert root back/forward references
1489          */
1490         ret = btrfs_add_root_ref(trans, tree_root, objectid,
1491                                  parent_root->root_key.objectid,
1492                                  btrfs_ino(parent_inode), index,
1493                                  dentry->d_name.name, dentry->d_name.len);
1494         if (ret) {
1495                 btrfs_abort_transaction(trans, root, ret);
1496                 goto fail;
1497         }
1498
1499         key.offset = (u64)-1;
1500         pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1501         if (IS_ERR(pending->snap)) {
1502                 ret = PTR_ERR(pending->snap);
1503                 btrfs_abort_transaction(trans, root, ret);
1504                 goto fail;
1505         }
1506
1507         ret = btrfs_reloc_post_snapshot(trans, pending);
1508         if (ret) {
1509                 btrfs_abort_transaction(trans, root, ret);
1510                 goto fail;
1511         }
1512
1513         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1514         if (ret) {
1515                 btrfs_abort_transaction(trans, root, ret);
1516                 goto fail;
1517         }
1518
1519         ret = btrfs_insert_dir_item(trans, parent_root,
1520                                     dentry->d_name.name, dentry->d_name.len,
1521                                     parent_inode, &key,
1522                                     BTRFS_FT_DIR, index);
1523         /* We have check then name at the beginning, so it is impossible. */
1524         BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1525         if (ret) {
1526                 btrfs_abort_transaction(trans, root, ret);
1527                 goto fail;
1528         }
1529
1530         btrfs_i_size_write(parent_inode, parent_inode->i_size +
1531                                          dentry->d_name.len * 2);
1532         parent_inode->i_mtime = parent_inode->i_ctime =
1533                 current_fs_time(parent_inode->i_sb);
1534         ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1535         if (ret) {
1536                 btrfs_abort_transaction(trans, root, ret);
1537                 goto fail;
1538         }
1539         ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1540                                   BTRFS_UUID_KEY_SUBVOL, objectid);
1541         if (ret) {
1542                 btrfs_abort_transaction(trans, root, ret);
1543                 goto fail;
1544         }
1545         if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1546                 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1547                                           new_root_item->received_uuid,
1548                                           BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1549                                           objectid);
1550                 if (ret && ret != -EEXIST) {
1551                         btrfs_abort_transaction(trans, root, ret);
1552                         goto fail;
1553                 }
1554         }
1555
1556         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1557         if (ret) {
1558                 btrfs_abort_transaction(trans, root, ret);
1559                 goto fail;
1560         }
1561
1562         /*
1563          * account qgroup counters before qgroup_inherit()
1564          */
1565         ret = btrfs_qgroup_prepare_account_extents(trans, fs_info);
1566         if (ret)
1567                 goto fail;
1568         ret = btrfs_qgroup_account_extents(trans, fs_info);
1569         if (ret)
1570                 goto fail;
1571         ret = btrfs_qgroup_inherit(trans, fs_info,
1572                                    root->root_key.objectid,
1573                                    objectid, pending->inherit);
1574         if (ret) {
1575                 btrfs_abort_transaction(trans, root, ret);
1576                 goto fail;
1577         }
1578
1579 fail:
1580         pending->error = ret;
1581 dir_item_existed:
1582         trans->block_rsv = rsv;
1583         trans->bytes_reserved = 0;
1584 clear_skip_qgroup:
1585         btrfs_clear_skip_qgroup(trans);
1586 no_free_objectid:
1587         kfree(new_root_item);
1588         pending->root_item = NULL;
1589         btrfs_free_path(path);
1590         pending->path = NULL;
1591
1592         return ret;
1593 }
1594
1595 /*
1596  * create all the snapshots we've scheduled for creation
1597  */
1598 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1599                                              struct btrfs_fs_info *fs_info)
1600 {
1601         struct btrfs_pending_snapshot *pending, *next;
1602         struct list_head *head = &trans->transaction->pending_snapshots;
1603         int ret = 0;
1604
1605         list_for_each_entry_safe(pending, next, head, list) {
1606                 list_del(&pending->list);
1607                 ret = create_pending_snapshot(trans, fs_info, pending);
1608                 if (ret)
1609                         break;
1610         }
1611         return ret;
1612 }
1613
1614 static void update_super_roots(struct btrfs_root *root)
1615 {
1616         struct btrfs_root_item *root_item;
1617         struct btrfs_super_block *super;
1618
1619         super = root->fs_info->super_copy;
1620
1621         root_item = &root->fs_info->chunk_root->root_item;
1622         super->chunk_root = root_item->bytenr;
1623         super->chunk_root_generation = root_item->generation;
1624         super->chunk_root_level = root_item->level;
1625
1626         root_item = &root->fs_info->tree_root->root_item;
1627         super->root = root_item->bytenr;
1628         super->generation = root_item->generation;
1629         super->root_level = root_item->level;
1630         if (btrfs_test_opt(root, SPACE_CACHE))
1631                 super->cache_generation = root_item->generation;
1632         if (root->fs_info->update_uuid_tree_gen)
1633                 super->uuid_tree_generation = root_item->generation;
1634 }
1635
1636 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1637 {
1638         struct btrfs_transaction *trans;
1639         int ret = 0;
1640
1641         spin_lock(&info->trans_lock);
1642         trans = info->running_transaction;
1643         if (trans)
1644                 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1645         spin_unlock(&info->trans_lock);
1646         return ret;
1647 }
1648
1649 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1650 {
1651         struct btrfs_transaction *trans;
1652         int ret = 0;
1653
1654         spin_lock(&info->trans_lock);
1655         trans = info->running_transaction;
1656         if (trans)
1657                 ret = is_transaction_blocked(trans);
1658         spin_unlock(&info->trans_lock);
1659         return ret;
1660 }
1661
1662 /*
1663  * wait for the current transaction commit to start and block subsequent
1664  * transaction joins
1665  */
1666 static void wait_current_trans_commit_start(struct btrfs_root *root,
1667                                             struct btrfs_transaction *trans)
1668 {
1669         wait_event(root->fs_info->transaction_blocked_wait,
1670                    trans->state >= TRANS_STATE_COMMIT_START ||
1671                    trans->aborted);
1672 }
1673
1674 /*
1675  * wait for the current transaction to start and then become unblocked.
1676  * caller holds ref.
1677  */
1678 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1679                                          struct btrfs_transaction *trans)
1680 {
1681         wait_event(root->fs_info->transaction_wait,
1682                    trans->state >= TRANS_STATE_UNBLOCKED ||
1683                    trans->aborted);
1684 }
1685
1686 /*
1687  * commit transactions asynchronously. once btrfs_commit_transaction_async
1688  * returns, any subsequent transaction will not be allowed to join.
1689  */
1690 struct btrfs_async_commit {
1691         struct btrfs_trans_handle *newtrans;
1692         struct btrfs_root *root;
1693         struct work_struct work;
1694 };
1695
1696 static void do_async_commit(struct work_struct *work)
1697 {
1698         struct btrfs_async_commit *ac =
1699                 container_of(work, struct btrfs_async_commit, work);
1700
1701         /*
1702          * We've got freeze protection passed with the transaction.
1703          * Tell lockdep about it.
1704          */
1705         if (ac->newtrans->type & __TRANS_FREEZABLE)
1706                 __sb_writers_acquired(ac->root->fs_info->sb, SB_FREEZE_FS);
1707
1708         current->journal_info = ac->newtrans;
1709
1710         btrfs_commit_transaction(ac->newtrans, ac->root);
1711         kfree(ac);
1712 }
1713
1714 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1715                                    struct btrfs_root *root,
1716                                    int wait_for_unblock)
1717 {
1718         struct btrfs_async_commit *ac;
1719         struct btrfs_transaction *cur_trans;
1720
1721         ac = kmalloc(sizeof(*ac), GFP_NOFS);
1722         if (!ac)
1723                 return -ENOMEM;
1724
1725         INIT_WORK(&ac->work, do_async_commit);
1726         ac->root = root;
1727         ac->newtrans = btrfs_join_transaction(root);
1728         if (IS_ERR(ac->newtrans)) {
1729                 int err = PTR_ERR(ac->newtrans);
1730                 kfree(ac);
1731                 return err;
1732         }
1733
1734         /* take transaction reference */
1735         cur_trans = trans->transaction;
1736         atomic_inc(&cur_trans->use_count);
1737
1738         btrfs_end_transaction(trans, root);
1739
1740         /*
1741          * Tell lockdep we've released the freeze rwsem, since the
1742          * async commit thread will be the one to unlock it.
1743          */
1744         if (ac->newtrans->type & __TRANS_FREEZABLE)
1745                 __sb_writers_release(root->fs_info->sb, SB_FREEZE_FS);
1746
1747         schedule_work(&ac->work);
1748
1749         /* wait for transaction to start and unblock */
1750         if (wait_for_unblock)
1751                 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1752         else
1753                 wait_current_trans_commit_start(root, cur_trans);
1754
1755         if (current->journal_info == trans)
1756                 current->journal_info = NULL;
1757
1758         btrfs_put_transaction(cur_trans);
1759         return 0;
1760 }
1761
1762
1763 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1764                                 struct btrfs_root *root, int err)
1765 {
1766         struct btrfs_transaction *cur_trans = trans->transaction;
1767         DEFINE_WAIT(wait);
1768
1769         WARN_ON(trans->use_count > 1);
1770
1771         btrfs_abort_transaction(trans, root, err);
1772
1773         spin_lock(&root->fs_info->trans_lock);
1774
1775         /*
1776          * If the transaction is removed from the list, it means this
1777          * transaction has been committed successfully, so it is impossible
1778          * to call the cleanup function.
1779          */
1780         BUG_ON(list_empty(&cur_trans->list));
1781
1782         list_del_init(&cur_trans->list);
1783         if (cur_trans == root->fs_info->running_transaction) {
1784                 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1785                 spin_unlock(&root->fs_info->trans_lock);
1786                 wait_event(cur_trans->writer_wait,
1787                            atomic_read(&cur_trans->num_writers) == 1);
1788
1789                 spin_lock(&root->fs_info->trans_lock);
1790         }
1791         spin_unlock(&root->fs_info->trans_lock);
1792
1793         btrfs_cleanup_one_transaction(trans->transaction, root);
1794
1795         spin_lock(&root->fs_info->trans_lock);
1796         if (cur_trans == root->fs_info->running_transaction)
1797                 root->fs_info->running_transaction = NULL;
1798         spin_unlock(&root->fs_info->trans_lock);
1799
1800         if (trans->type & __TRANS_FREEZABLE)
1801                 sb_end_intwrite(root->fs_info->sb);
1802         btrfs_put_transaction(cur_trans);
1803         btrfs_put_transaction(cur_trans);
1804
1805         trace_btrfs_transaction_commit(root);
1806
1807         if (current->journal_info == trans)
1808                 current->journal_info = NULL;
1809         btrfs_scrub_cancel(root->fs_info);
1810
1811         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1812 }
1813
1814 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1815 {
1816         if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1817                 return btrfs_start_delalloc_roots(fs_info, 1, -1);
1818         return 0;
1819 }
1820
1821 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1822 {
1823         if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1824                 btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1);
1825 }
1826
1827 static inline void
1828 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans)
1829 {
1830         wait_event(cur_trans->pending_wait,
1831                    atomic_read(&cur_trans->pending_ordered) == 0);
1832 }
1833
1834 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1835                              struct btrfs_root *root)
1836 {
1837         struct btrfs_transaction *cur_trans = trans->transaction;
1838         struct btrfs_transaction *prev_trans = NULL;
1839         struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
1840         int ret;
1841
1842         /* Stop the commit early if ->aborted is set */
1843         if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1844                 ret = cur_trans->aborted;
1845                 btrfs_end_transaction(trans, root);
1846                 return ret;
1847         }
1848
1849         /* make a pass through all the delayed refs we have so far
1850          * any runnings procs may add more while we are here
1851          */
1852         ret = btrfs_run_delayed_refs(trans, root, 0);
1853         if (ret) {
1854                 btrfs_end_transaction(trans, root);
1855                 return ret;
1856         }
1857
1858         btrfs_trans_release_metadata(trans, root);
1859         trans->block_rsv = NULL;
1860
1861         cur_trans = trans->transaction;
1862
1863         /*
1864          * set the flushing flag so procs in this transaction have to
1865          * start sending their work down.
1866          */
1867         cur_trans->delayed_refs.flushing = 1;
1868         smp_wmb();
1869
1870         if (!list_empty(&trans->new_bgs))
1871                 btrfs_create_pending_block_groups(trans, root);
1872
1873         ret = btrfs_run_delayed_refs(trans, root, 0);
1874         if (ret) {
1875                 btrfs_end_transaction(trans, root);
1876                 return ret;
1877         }
1878
1879         if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1880                 int run_it = 0;
1881
1882                 /* this mutex is also taken before trying to set
1883                  * block groups readonly.  We need to make sure
1884                  * that nobody has set a block group readonly
1885                  * after a extents from that block group have been
1886                  * allocated for cache files.  btrfs_set_block_group_ro
1887                  * will wait for the transaction to commit if it
1888                  * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1889                  *
1890                  * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
1891                  * only one process starts all the block group IO.  It wouldn't
1892                  * hurt to have more than one go through, but there's no
1893                  * real advantage to it either.
1894                  */
1895                 mutex_lock(&root->fs_info->ro_block_group_mutex);
1896                 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
1897                                       &cur_trans->flags))
1898                         run_it = 1;
1899                 mutex_unlock(&root->fs_info->ro_block_group_mutex);
1900
1901                 if (run_it)
1902                         ret = btrfs_start_dirty_block_groups(trans, root);
1903         }
1904         if (ret) {
1905                 btrfs_end_transaction(trans, root);
1906                 return ret;
1907         }
1908
1909         spin_lock(&root->fs_info->trans_lock);
1910         if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1911                 spin_unlock(&root->fs_info->trans_lock);
1912                 atomic_inc(&cur_trans->use_count);
1913                 ret = btrfs_end_transaction(trans, root);
1914
1915                 wait_for_commit(root, cur_trans);
1916
1917                 if (unlikely(cur_trans->aborted))
1918                         ret = cur_trans->aborted;
1919
1920                 btrfs_put_transaction(cur_trans);
1921
1922                 return ret;
1923         }
1924
1925         cur_trans->state = TRANS_STATE_COMMIT_START;
1926         wake_up(&root->fs_info->transaction_blocked_wait);
1927
1928         if (cur_trans->list.prev != &root->fs_info->trans_list) {
1929                 prev_trans = list_entry(cur_trans->list.prev,
1930                                         struct btrfs_transaction, list);
1931                 if (prev_trans->state != TRANS_STATE_COMPLETED) {
1932                         atomic_inc(&prev_trans->use_count);
1933                         spin_unlock(&root->fs_info->trans_lock);
1934
1935                         wait_for_commit(root, prev_trans);
1936                         ret = prev_trans->aborted;
1937
1938                         btrfs_put_transaction(prev_trans);
1939                         if (ret)
1940                                 goto cleanup_transaction;
1941                 } else {
1942                         spin_unlock(&root->fs_info->trans_lock);
1943                 }
1944         } else {
1945                 spin_unlock(&root->fs_info->trans_lock);
1946         }
1947
1948         extwriter_counter_dec(cur_trans, trans->type);
1949
1950         ret = btrfs_start_delalloc_flush(root->fs_info);
1951         if (ret)
1952                 goto cleanup_transaction;
1953
1954         ret = btrfs_run_delayed_items(trans, root);
1955         if (ret)
1956                 goto cleanup_transaction;
1957
1958         wait_event(cur_trans->writer_wait,
1959                    extwriter_counter_read(cur_trans) == 0);
1960
1961         /* some pending stuffs might be added after the previous flush. */
1962         ret = btrfs_run_delayed_items(trans, root);
1963         if (ret)
1964                 goto cleanup_transaction;
1965
1966         btrfs_wait_delalloc_flush(root->fs_info);
1967
1968         btrfs_wait_pending_ordered(cur_trans);
1969
1970         btrfs_scrub_pause(root);
1971         /*
1972          * Ok now we need to make sure to block out any other joins while we
1973          * commit the transaction.  We could have started a join before setting
1974          * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1975          */
1976         spin_lock(&root->fs_info->trans_lock);
1977         cur_trans->state = TRANS_STATE_COMMIT_DOING;
1978         spin_unlock(&root->fs_info->trans_lock);
1979         wait_event(cur_trans->writer_wait,
1980                    atomic_read(&cur_trans->num_writers) == 1);
1981
1982         /* ->aborted might be set after the previous check, so check it */
1983         if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1984                 ret = cur_trans->aborted;
1985                 goto scrub_continue;
1986         }
1987         /*
1988          * the reloc mutex makes sure that we stop
1989          * the balancing code from coming in and moving
1990          * extents around in the middle of the commit
1991          */
1992         mutex_lock(&root->fs_info->reloc_mutex);
1993
1994         /*
1995          * We needn't worry about the delayed items because we will
1996          * deal with them in create_pending_snapshot(), which is the
1997          * core function of the snapshot creation.
1998          */
1999         ret = create_pending_snapshots(trans, root->fs_info);
2000         if (ret) {
2001                 mutex_unlock(&root->fs_info->reloc_mutex);
2002                 goto scrub_continue;
2003         }
2004
2005         /*
2006          * We insert the dir indexes of the snapshots and update the inode
2007          * of the snapshots' parents after the snapshot creation, so there
2008          * are some delayed items which are not dealt with. Now deal with
2009          * them.
2010          *
2011          * We needn't worry that this operation will corrupt the snapshots,
2012          * because all the tree which are snapshoted will be forced to COW
2013          * the nodes and leaves.
2014          */
2015         ret = btrfs_run_delayed_items(trans, root);
2016         if (ret) {
2017                 mutex_unlock(&root->fs_info->reloc_mutex);
2018                 goto scrub_continue;
2019         }
2020
2021         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
2022         if (ret) {
2023                 mutex_unlock(&root->fs_info->reloc_mutex);
2024                 goto scrub_continue;
2025         }
2026
2027         /* Reocrd old roots for later qgroup accounting */
2028         ret = btrfs_qgroup_prepare_account_extents(trans, root->fs_info);
2029         if (ret) {
2030                 mutex_unlock(&root->fs_info->reloc_mutex);
2031                 goto scrub_continue;
2032         }
2033
2034         /*
2035          * make sure none of the code above managed to slip in a
2036          * delayed item
2037          */
2038         btrfs_assert_delayed_root_empty(root);
2039
2040         WARN_ON(cur_trans != trans->transaction);
2041
2042         /* btrfs_commit_tree_roots is responsible for getting the
2043          * various roots consistent with each other.  Every pointer
2044          * in the tree of tree roots has to point to the most up to date
2045          * root for every subvolume and other tree.  So, we have to keep
2046          * the tree logging code from jumping in and changing any
2047          * of the trees.
2048          *
2049          * At this point in the commit, there can't be any tree-log
2050          * writers, but a little lower down we drop the trans mutex
2051          * and let new people in.  By holding the tree_log_mutex
2052          * from now until after the super is written, we avoid races
2053          * with the tree-log code.
2054          */
2055         mutex_lock(&root->fs_info->tree_log_mutex);
2056
2057         ret = commit_fs_roots(trans, root);
2058         if (ret) {
2059                 mutex_unlock(&root->fs_info->tree_log_mutex);
2060                 mutex_unlock(&root->fs_info->reloc_mutex);
2061                 goto scrub_continue;
2062         }
2063
2064         /*
2065          * Since the transaction is done, we can apply the pending changes
2066          * before the next transaction.
2067          */
2068         btrfs_apply_pending_changes(root->fs_info);
2069
2070         /* commit_fs_roots gets rid of all the tree log roots, it is now
2071          * safe to free the root of tree log roots
2072          */
2073         btrfs_free_log_root_tree(trans, root->fs_info);
2074
2075         /*
2076          * Since fs roots are all committed, we can get a quite accurate
2077          * new_roots. So let's do quota accounting.
2078          */
2079         ret = btrfs_qgroup_account_extents(trans, root->fs_info);
2080         if (ret < 0) {
2081                 mutex_unlock(&root->fs_info->tree_log_mutex);
2082                 mutex_unlock(&root->fs_info->reloc_mutex);
2083                 goto scrub_continue;
2084         }
2085
2086         ret = commit_cowonly_roots(trans, root);
2087         if (ret) {
2088                 mutex_unlock(&root->fs_info->tree_log_mutex);
2089                 mutex_unlock(&root->fs_info->reloc_mutex);
2090                 goto scrub_continue;
2091         }
2092
2093         /*
2094          * The tasks which save the space cache and inode cache may also
2095          * update ->aborted, check it.
2096          */
2097         if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
2098                 ret = cur_trans->aborted;
2099                 mutex_unlock(&root->fs_info->tree_log_mutex);
2100                 mutex_unlock(&root->fs_info->reloc_mutex);
2101                 goto scrub_continue;
2102         }
2103
2104         btrfs_prepare_extent_commit(trans, root);
2105
2106         cur_trans = root->fs_info->running_transaction;
2107
2108         btrfs_set_root_node(&root->fs_info->tree_root->root_item,
2109                             root->fs_info->tree_root->node);
2110         list_add_tail(&root->fs_info->tree_root->dirty_list,
2111                       &cur_trans->switch_commits);
2112
2113         btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
2114                             root->fs_info->chunk_root->node);
2115         list_add_tail(&root->fs_info->chunk_root->dirty_list,
2116                       &cur_trans->switch_commits);
2117
2118         switch_commit_roots(cur_trans, root->fs_info);
2119
2120         assert_qgroups_uptodate(trans);
2121         ASSERT(list_empty(&cur_trans->dirty_bgs));
2122         ASSERT(list_empty(&cur_trans->io_bgs));
2123         update_super_roots(root);
2124
2125         btrfs_set_super_log_root(root->fs_info->super_copy, 0);
2126         btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
2127         memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
2128                sizeof(*root->fs_info->super_copy));
2129
2130         btrfs_update_commit_device_size(root->fs_info);
2131         btrfs_update_commit_device_bytes_used(root, cur_trans);
2132
2133         clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
2134         clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
2135
2136         btrfs_trans_release_chunk_metadata(trans);
2137
2138         spin_lock(&root->fs_info->trans_lock);
2139         cur_trans->state = TRANS_STATE_UNBLOCKED;
2140         root->fs_info->running_transaction = NULL;
2141         spin_unlock(&root->fs_info->trans_lock);
2142         mutex_unlock(&root->fs_info->reloc_mutex);
2143
2144         wake_up(&root->fs_info->transaction_wait);
2145
2146         ret = btrfs_write_and_wait_transaction(trans, root);
2147         if (ret) {
2148                 btrfs_std_error(root->fs_info, ret,
2149                             "Error while writing out transaction");
2150                 mutex_unlock(&root->fs_info->tree_log_mutex);
2151                 goto scrub_continue;
2152         }
2153
2154         ret = write_ctree_super(trans, root, 0);
2155         if (ret) {
2156                 mutex_unlock(&root->fs_info->tree_log_mutex);
2157                 goto scrub_continue;
2158         }
2159
2160         /*
2161          * the super is written, we can safely allow the tree-loggers
2162          * to go about their business
2163          */
2164         mutex_unlock(&root->fs_info->tree_log_mutex);
2165
2166         btrfs_finish_extent_commit(trans, root);
2167
2168         if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2169                 btrfs_clear_space_info_full(root->fs_info);
2170
2171         root->fs_info->last_trans_committed = cur_trans->transid;
2172         /*
2173          * We needn't acquire the lock here because there is no other task
2174          * which can change it.
2175          */
2176         cur_trans->state = TRANS_STATE_COMPLETED;
2177         wake_up(&cur_trans->commit_wait);
2178
2179         spin_lock(&root->fs_info->trans_lock);
2180         list_del_init(&cur_trans->list);
2181         spin_unlock(&root->fs_info->trans_lock);
2182
2183         btrfs_put_transaction(cur_trans);
2184         btrfs_put_transaction(cur_trans);
2185
2186         if (trans->type & __TRANS_FREEZABLE)
2187                 sb_end_intwrite(root->fs_info->sb);
2188
2189         trace_btrfs_transaction_commit(root);
2190
2191         btrfs_scrub_continue(root);
2192
2193         if (current->journal_info == trans)
2194                 current->journal_info = NULL;
2195
2196         kmem_cache_free(btrfs_trans_handle_cachep, trans);
2197
2198         if (current != root->fs_info->transaction_kthread &&
2199             current != root->fs_info->cleaner_kthread)
2200                 btrfs_run_delayed_iputs(root);
2201
2202         return ret;
2203
2204 scrub_continue:
2205         btrfs_scrub_continue(root);
2206 cleanup_transaction:
2207         btrfs_trans_release_metadata(trans, root);
2208         btrfs_trans_release_chunk_metadata(trans);
2209         trans->block_rsv = NULL;
2210         btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
2211         if (current->journal_info == trans)
2212                 current->journal_info = NULL;
2213         cleanup_transaction(trans, root, ret);
2214
2215         return ret;
2216 }
2217
2218 /*
2219  * return < 0 if error
2220  * 0 if there are no more dead_roots at the time of call
2221  * 1 there are more to be processed, call me again
2222  *
2223  * The return value indicates there are certainly more snapshots to delete, but
2224  * if there comes a new one during processing, it may return 0. We don't mind,
2225  * because btrfs_commit_super will poke cleaner thread and it will process it a
2226  * few seconds later.
2227  */
2228 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2229 {
2230         int ret;
2231         struct btrfs_fs_info *fs_info = root->fs_info;
2232
2233         spin_lock(&fs_info->trans_lock);
2234         if (list_empty(&fs_info->dead_roots)) {
2235                 spin_unlock(&fs_info->trans_lock);
2236                 return 0;
2237         }
2238         root = list_first_entry(&fs_info->dead_roots,
2239                         struct btrfs_root, root_list);
2240         list_del_init(&root->root_list);
2241         spin_unlock(&fs_info->trans_lock);
2242
2243         pr_debug("BTRFS: cleaner removing %llu\n", root->objectid);
2244
2245         btrfs_kill_all_delayed_nodes(root);
2246
2247         if (btrfs_header_backref_rev(root->node) <
2248                         BTRFS_MIXED_BACKREF_REV)
2249                 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2250         else
2251                 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2252
2253         return (ret < 0) ? 0 : 1;
2254 }
2255
2256 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2257 {
2258         unsigned long prev;
2259         unsigned long bit;
2260
2261         prev = xchg(&fs_info->pending_changes, 0);
2262         if (!prev)
2263                 return;
2264
2265         bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2266         if (prev & bit)
2267                 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2268         prev &= ~bit;
2269
2270         bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2271         if (prev & bit)
2272                 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2273         prev &= ~bit;
2274
2275         bit = 1 << BTRFS_PENDING_COMMIT;
2276         if (prev & bit)
2277                 btrfs_debug(fs_info, "pending commit done");
2278         prev &= ~bit;
2279
2280         if (prev)
2281                 btrfs_warn(fs_info,
2282                         "unknown pending changes left 0x%lx, ignoring", prev);
2283 }