588f37e0a56404c6e1a98a0eb35a6620e7ac32fa
[cascardo/linux.git] / fs / btrfs / volumes.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/random.h>
24 #include <linux/iocontext.h>
25 #include <linux/capability.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <linux/raid/pq.h>
29 #include <linux/semaphore.h>
30 #include <asm/div64.h>
31 #include "ctree.h"
32 #include "extent_map.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "raid56.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
41 #include "math.h"
42 #include "dev-replace.h"
43 #include "sysfs.h"
44
45 static int init_first_rw_device(struct btrfs_trans_handle *trans,
46                                 struct btrfs_root *root,
47                                 struct btrfs_device *device);
48 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
49 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
50 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
51 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
52
53 DEFINE_MUTEX(uuid_mutex);
54 static LIST_HEAD(fs_uuids);
55
56 static struct btrfs_fs_devices *__alloc_fs_devices(void)
57 {
58         struct btrfs_fs_devices *fs_devs;
59
60         fs_devs = kzalloc(sizeof(*fs_devs), GFP_NOFS);
61         if (!fs_devs)
62                 return ERR_PTR(-ENOMEM);
63
64         mutex_init(&fs_devs->device_list_mutex);
65
66         INIT_LIST_HEAD(&fs_devs->devices);
67         INIT_LIST_HEAD(&fs_devs->resized_devices);
68         INIT_LIST_HEAD(&fs_devs->alloc_list);
69         INIT_LIST_HEAD(&fs_devs->list);
70
71         return fs_devs;
72 }
73
74 /**
75  * alloc_fs_devices - allocate struct btrfs_fs_devices
76  * @fsid:       a pointer to UUID for this FS.  If NULL a new UUID is
77  *              generated.
78  *
79  * Return: a pointer to a new &struct btrfs_fs_devices on success;
80  * ERR_PTR() on error.  Returned struct is not linked onto any lists and
81  * can be destroyed with kfree() right away.
82  */
83 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
84 {
85         struct btrfs_fs_devices *fs_devs;
86
87         fs_devs = __alloc_fs_devices();
88         if (IS_ERR(fs_devs))
89                 return fs_devs;
90
91         if (fsid)
92                 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
93         else
94                 generate_random_uuid(fs_devs->fsid);
95
96         return fs_devs;
97 }
98
99 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
100 {
101         struct btrfs_device *device;
102         WARN_ON(fs_devices->opened);
103         while (!list_empty(&fs_devices->devices)) {
104                 device = list_entry(fs_devices->devices.next,
105                                     struct btrfs_device, dev_list);
106                 list_del(&device->dev_list);
107                 rcu_string_free(device->name);
108                 kfree(device);
109         }
110         kfree(fs_devices);
111 }
112
113 static void btrfs_kobject_uevent(struct block_device *bdev,
114                                  enum kobject_action action)
115 {
116         int ret;
117
118         ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
119         if (ret)
120                 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
121                         action,
122                         kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
123                         &disk_to_dev(bdev->bd_disk)->kobj);
124 }
125
126 void btrfs_cleanup_fs_uuids(void)
127 {
128         struct btrfs_fs_devices *fs_devices;
129
130         while (!list_empty(&fs_uuids)) {
131                 fs_devices = list_entry(fs_uuids.next,
132                                         struct btrfs_fs_devices, list);
133                 list_del(&fs_devices->list);
134                 free_fs_devices(fs_devices);
135         }
136 }
137
138 static struct btrfs_device *__alloc_device(void)
139 {
140         struct btrfs_device *dev;
141
142         dev = kzalloc(sizeof(*dev), GFP_NOFS);
143         if (!dev)
144                 return ERR_PTR(-ENOMEM);
145
146         INIT_LIST_HEAD(&dev->dev_list);
147         INIT_LIST_HEAD(&dev->dev_alloc_list);
148         INIT_LIST_HEAD(&dev->resized_list);
149
150         spin_lock_init(&dev->io_lock);
151
152         spin_lock_init(&dev->reada_lock);
153         atomic_set(&dev->reada_in_flight, 0);
154         atomic_set(&dev->dev_stats_ccnt, 0);
155         INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_WAIT);
156         INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_WAIT);
157
158         return dev;
159 }
160
161 static noinline struct btrfs_device *__find_device(struct list_head *head,
162                                                    u64 devid, u8 *uuid)
163 {
164         struct btrfs_device *dev;
165
166         list_for_each_entry(dev, head, dev_list) {
167                 if (dev->devid == devid &&
168                     (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
169                         return dev;
170                 }
171         }
172         return NULL;
173 }
174
175 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
176 {
177         struct btrfs_fs_devices *fs_devices;
178
179         list_for_each_entry(fs_devices, &fs_uuids, list) {
180                 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
181                         return fs_devices;
182         }
183         return NULL;
184 }
185
186 static int
187 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
188                       int flush, struct block_device **bdev,
189                       struct buffer_head **bh)
190 {
191         int ret;
192
193         *bdev = blkdev_get_by_path(device_path, flags, holder);
194
195         if (IS_ERR(*bdev)) {
196                 ret = PTR_ERR(*bdev);
197                 printk(KERN_INFO "BTRFS: open %s failed\n", device_path);
198                 goto error;
199         }
200
201         if (flush)
202                 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
203         ret = set_blocksize(*bdev, 4096);
204         if (ret) {
205                 blkdev_put(*bdev, flags);
206                 goto error;
207         }
208         invalidate_bdev(*bdev);
209         *bh = btrfs_read_dev_super(*bdev);
210         if (!*bh) {
211                 ret = -EINVAL;
212                 blkdev_put(*bdev, flags);
213                 goto error;
214         }
215
216         return 0;
217
218 error:
219         *bdev = NULL;
220         *bh = NULL;
221         return ret;
222 }
223
224 static void requeue_list(struct btrfs_pending_bios *pending_bios,
225                         struct bio *head, struct bio *tail)
226 {
227
228         struct bio *old_head;
229
230         old_head = pending_bios->head;
231         pending_bios->head = head;
232         if (pending_bios->tail)
233                 tail->bi_next = old_head;
234         else
235                 pending_bios->tail = tail;
236 }
237
238 /*
239  * we try to collect pending bios for a device so we don't get a large
240  * number of procs sending bios down to the same device.  This greatly
241  * improves the schedulers ability to collect and merge the bios.
242  *
243  * But, it also turns into a long list of bios to process and that is sure
244  * to eventually make the worker thread block.  The solution here is to
245  * make some progress and then put this work struct back at the end of
246  * the list if the block device is congested.  This way, multiple devices
247  * can make progress from a single worker thread.
248  */
249 static noinline void run_scheduled_bios(struct btrfs_device *device)
250 {
251         struct bio *pending;
252         struct backing_dev_info *bdi;
253         struct btrfs_fs_info *fs_info;
254         struct btrfs_pending_bios *pending_bios;
255         struct bio *tail;
256         struct bio *cur;
257         int again = 0;
258         unsigned long num_run;
259         unsigned long batch_run = 0;
260         unsigned long limit;
261         unsigned long last_waited = 0;
262         int force_reg = 0;
263         int sync_pending = 0;
264         struct blk_plug plug;
265
266         /*
267          * this function runs all the bios we've collected for
268          * a particular device.  We don't want to wander off to
269          * another device without first sending all of these down.
270          * So, setup a plug here and finish it off before we return
271          */
272         blk_start_plug(&plug);
273
274         bdi = blk_get_backing_dev_info(device->bdev);
275         fs_info = device->dev_root->fs_info;
276         limit = btrfs_async_submit_limit(fs_info);
277         limit = limit * 2 / 3;
278
279 loop:
280         spin_lock(&device->io_lock);
281
282 loop_lock:
283         num_run = 0;
284
285         /* take all the bios off the list at once and process them
286          * later on (without the lock held).  But, remember the
287          * tail and other pointers so the bios can be properly reinserted
288          * into the list if we hit congestion
289          */
290         if (!force_reg && device->pending_sync_bios.head) {
291                 pending_bios = &device->pending_sync_bios;
292                 force_reg = 1;
293         } else {
294                 pending_bios = &device->pending_bios;
295                 force_reg = 0;
296         }
297
298         pending = pending_bios->head;
299         tail = pending_bios->tail;
300         WARN_ON(pending && !tail);
301
302         /*
303          * if pending was null this time around, no bios need processing
304          * at all and we can stop.  Otherwise it'll loop back up again
305          * and do an additional check so no bios are missed.
306          *
307          * device->running_pending is used to synchronize with the
308          * schedule_bio code.
309          */
310         if (device->pending_sync_bios.head == NULL &&
311             device->pending_bios.head == NULL) {
312                 again = 0;
313                 device->running_pending = 0;
314         } else {
315                 again = 1;
316                 device->running_pending = 1;
317         }
318
319         pending_bios->head = NULL;
320         pending_bios->tail = NULL;
321
322         spin_unlock(&device->io_lock);
323
324         while (pending) {
325
326                 rmb();
327                 /* we want to work on both lists, but do more bios on the
328                  * sync list than the regular list
329                  */
330                 if ((num_run > 32 &&
331                     pending_bios != &device->pending_sync_bios &&
332                     device->pending_sync_bios.head) ||
333                    (num_run > 64 && pending_bios == &device->pending_sync_bios &&
334                     device->pending_bios.head)) {
335                         spin_lock(&device->io_lock);
336                         requeue_list(pending_bios, pending, tail);
337                         goto loop_lock;
338                 }
339
340                 cur = pending;
341                 pending = pending->bi_next;
342                 cur->bi_next = NULL;
343
344                 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
345                     waitqueue_active(&fs_info->async_submit_wait))
346                         wake_up(&fs_info->async_submit_wait);
347
348                 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
349
350                 /*
351                  * if we're doing the sync list, record that our
352                  * plug has some sync requests on it
353                  *
354                  * If we're doing the regular list and there are
355                  * sync requests sitting around, unplug before
356                  * we add more
357                  */
358                 if (pending_bios == &device->pending_sync_bios) {
359                         sync_pending = 1;
360                 } else if (sync_pending) {
361                         blk_finish_plug(&plug);
362                         blk_start_plug(&plug);
363                         sync_pending = 0;
364                 }
365
366                 btrfsic_submit_bio(cur->bi_rw, cur);
367                 num_run++;
368                 batch_run++;
369                 if (need_resched())
370                         cond_resched();
371
372                 /*
373                  * we made progress, there is more work to do and the bdi
374                  * is now congested.  Back off and let other work structs
375                  * run instead
376                  */
377                 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
378                     fs_info->fs_devices->open_devices > 1) {
379                         struct io_context *ioc;
380
381                         ioc = current->io_context;
382
383                         /*
384                          * the main goal here is that we don't want to
385                          * block if we're going to be able to submit
386                          * more requests without blocking.
387                          *
388                          * This code does two great things, it pokes into
389                          * the elevator code from a filesystem _and_
390                          * it makes assumptions about how batching works.
391                          */
392                         if (ioc && ioc->nr_batch_requests > 0 &&
393                             time_before(jiffies, ioc->last_waited + HZ/50UL) &&
394                             (last_waited == 0 ||
395                              ioc->last_waited == last_waited)) {
396                                 /*
397                                  * we want to go through our batch of
398                                  * requests and stop.  So, we copy out
399                                  * the ioc->last_waited time and test
400                                  * against it before looping
401                                  */
402                                 last_waited = ioc->last_waited;
403                                 if (need_resched())
404                                         cond_resched();
405                                 continue;
406                         }
407                         spin_lock(&device->io_lock);
408                         requeue_list(pending_bios, pending, tail);
409                         device->running_pending = 1;
410
411                         spin_unlock(&device->io_lock);
412                         btrfs_queue_work(fs_info->submit_workers,
413                                          &device->work);
414                         goto done;
415                 }
416                 /* unplug every 64 requests just for good measure */
417                 if (batch_run % 64 == 0) {
418                         blk_finish_plug(&plug);
419                         blk_start_plug(&plug);
420                         sync_pending = 0;
421                 }
422         }
423
424         cond_resched();
425         if (again)
426                 goto loop;
427
428         spin_lock(&device->io_lock);
429         if (device->pending_bios.head || device->pending_sync_bios.head)
430                 goto loop_lock;
431         spin_unlock(&device->io_lock);
432
433 done:
434         blk_finish_plug(&plug);
435 }
436
437 static void pending_bios_fn(struct btrfs_work *work)
438 {
439         struct btrfs_device *device;
440
441         device = container_of(work, struct btrfs_device, work);
442         run_scheduled_bios(device);
443 }
444
445 /*
446  * Add new device to list of registered devices
447  *
448  * Returns:
449  * 1   - first time device is seen
450  * 0   - device already known
451  * < 0 - error
452  */
453 static noinline int device_list_add(const char *path,
454                            struct btrfs_super_block *disk_super,
455                            u64 devid, struct btrfs_fs_devices **fs_devices_ret)
456 {
457         struct btrfs_device *device;
458         struct btrfs_fs_devices *fs_devices;
459         struct rcu_string *name;
460         int ret = 0;
461         u64 found_transid = btrfs_super_generation(disk_super);
462
463         fs_devices = find_fsid(disk_super->fsid);
464         if (!fs_devices) {
465                 fs_devices = alloc_fs_devices(disk_super->fsid);
466                 if (IS_ERR(fs_devices))
467                         return PTR_ERR(fs_devices);
468
469                 list_add(&fs_devices->list, &fs_uuids);
470
471                 device = NULL;
472         } else {
473                 device = __find_device(&fs_devices->devices, devid,
474                                        disk_super->dev_item.uuid);
475         }
476
477         if (!device) {
478                 if (fs_devices->opened)
479                         return -EBUSY;
480
481                 device = btrfs_alloc_device(NULL, &devid,
482                                             disk_super->dev_item.uuid);
483                 if (IS_ERR(device)) {
484                         /* we can safely leave the fs_devices entry around */
485                         return PTR_ERR(device);
486                 }
487
488                 name = rcu_string_strdup(path, GFP_NOFS);
489                 if (!name) {
490                         kfree(device);
491                         return -ENOMEM;
492                 }
493                 rcu_assign_pointer(device->name, name);
494
495                 mutex_lock(&fs_devices->device_list_mutex);
496                 list_add_rcu(&device->dev_list, &fs_devices->devices);
497                 fs_devices->num_devices++;
498                 mutex_unlock(&fs_devices->device_list_mutex);
499
500                 ret = 1;
501                 device->fs_devices = fs_devices;
502         } else if (!device->name || strcmp(device->name->str, path)) {
503                 /*
504                  * When FS is already mounted.
505                  * 1. If you are here and if the device->name is NULL that
506                  *    means this device was missing at time of FS mount.
507                  * 2. If you are here and if the device->name is different
508                  *    from 'path' that means either
509                  *      a. The same device disappeared and reappeared with
510                  *         different name. or
511                  *      b. The missing-disk-which-was-replaced, has
512                  *         reappeared now.
513                  *
514                  * We must allow 1 and 2a above. But 2b would be a spurious
515                  * and unintentional.
516                  *
517                  * Further in case of 1 and 2a above, the disk at 'path'
518                  * would have missed some transaction when it was away and
519                  * in case of 2a the stale bdev has to be updated as well.
520                  * 2b must not be allowed at all time.
521                  */
522
523                 /*
524                  * For now, we do allow update to btrfs_fs_device through the
525                  * btrfs dev scan cli after FS has been mounted.  We're still
526                  * tracking a problem where systems fail mount by subvolume id
527                  * when we reject replacement on a mounted FS.
528                  */
529                 if (!fs_devices->opened && found_transid < device->generation) {
530                         /*
531                          * That is if the FS is _not_ mounted and if you
532                          * are here, that means there is more than one
533                          * disk with same uuid and devid.We keep the one
534                          * with larger generation number or the last-in if
535                          * generation are equal.
536                          */
537                         return -EEXIST;
538                 }
539
540                 name = rcu_string_strdup(path, GFP_NOFS);
541                 if (!name)
542                         return -ENOMEM;
543                 rcu_string_free(device->name);
544                 rcu_assign_pointer(device->name, name);
545                 if (device->missing) {
546                         fs_devices->missing_devices--;
547                         device->missing = 0;
548                 }
549         }
550
551         /*
552          * Unmount does not free the btrfs_device struct but would zero
553          * generation along with most of the other members. So just update
554          * it back. We need it to pick the disk with largest generation
555          * (as above).
556          */
557         if (!fs_devices->opened)
558                 device->generation = found_transid;
559
560         *fs_devices_ret = fs_devices;
561
562         return ret;
563 }
564
565 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
566 {
567         struct btrfs_fs_devices *fs_devices;
568         struct btrfs_device *device;
569         struct btrfs_device *orig_dev;
570
571         fs_devices = alloc_fs_devices(orig->fsid);
572         if (IS_ERR(fs_devices))
573                 return fs_devices;
574
575         mutex_lock(&orig->device_list_mutex);
576         fs_devices->total_devices = orig->total_devices;
577
578         /* We have held the volume lock, it is safe to get the devices. */
579         list_for_each_entry(orig_dev, &orig->devices, dev_list) {
580                 struct rcu_string *name;
581
582                 device = btrfs_alloc_device(NULL, &orig_dev->devid,
583                                             orig_dev->uuid);
584                 if (IS_ERR(device))
585                         goto error;
586
587                 /*
588                  * This is ok to do without rcu read locked because we hold the
589                  * uuid mutex so nothing we touch in here is going to disappear.
590                  */
591                 if (orig_dev->name) {
592                         name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
593                         if (!name) {
594                                 kfree(device);
595                                 goto error;
596                         }
597                         rcu_assign_pointer(device->name, name);
598                 }
599
600                 list_add(&device->dev_list, &fs_devices->devices);
601                 device->fs_devices = fs_devices;
602                 fs_devices->num_devices++;
603         }
604         mutex_unlock(&orig->device_list_mutex);
605         return fs_devices;
606 error:
607         mutex_unlock(&orig->device_list_mutex);
608         free_fs_devices(fs_devices);
609         return ERR_PTR(-ENOMEM);
610 }
611
612 void btrfs_close_extra_devices(struct btrfs_fs_info *fs_info,
613                                struct btrfs_fs_devices *fs_devices, int step)
614 {
615         struct btrfs_device *device, *next;
616         struct btrfs_device *latest_dev = NULL;
617
618         mutex_lock(&uuid_mutex);
619 again:
620         /* This is the initialized path, it is safe to release the devices. */
621         list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
622                 if (device->in_fs_metadata) {
623                         if (!device->is_tgtdev_for_dev_replace &&
624                             (!latest_dev ||
625                              device->generation > latest_dev->generation)) {
626                                 latest_dev = device;
627                         }
628                         continue;
629                 }
630
631                 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
632                         /*
633                          * In the first step, keep the device which has
634                          * the correct fsid and the devid that is used
635                          * for the dev_replace procedure.
636                          * In the second step, the dev_replace state is
637                          * read from the device tree and it is known
638                          * whether the procedure is really active or
639                          * not, which means whether this device is
640                          * used or whether it should be removed.
641                          */
642                         if (step == 0 || device->is_tgtdev_for_dev_replace) {
643                                 continue;
644                         }
645                 }
646                 if (device->bdev) {
647                         blkdev_put(device->bdev, device->mode);
648                         device->bdev = NULL;
649                         fs_devices->open_devices--;
650                 }
651                 if (device->writeable) {
652                         list_del_init(&device->dev_alloc_list);
653                         device->writeable = 0;
654                         if (!device->is_tgtdev_for_dev_replace)
655                                 fs_devices->rw_devices--;
656                 }
657                 list_del_init(&device->dev_list);
658                 fs_devices->num_devices--;
659                 rcu_string_free(device->name);
660                 kfree(device);
661         }
662
663         if (fs_devices->seed) {
664                 fs_devices = fs_devices->seed;
665                 goto again;
666         }
667
668         fs_devices->latest_bdev = latest_dev->bdev;
669
670         mutex_unlock(&uuid_mutex);
671 }
672
673 static void __free_device(struct work_struct *work)
674 {
675         struct btrfs_device *device;
676
677         device = container_of(work, struct btrfs_device, rcu_work);
678
679         if (device->bdev)
680                 blkdev_put(device->bdev, device->mode);
681
682         rcu_string_free(device->name);
683         kfree(device);
684 }
685
686 static void free_device(struct rcu_head *head)
687 {
688         struct btrfs_device *device;
689
690         device = container_of(head, struct btrfs_device, rcu);
691
692         INIT_WORK(&device->rcu_work, __free_device);
693         schedule_work(&device->rcu_work);
694 }
695
696 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
697 {
698         struct btrfs_device *device;
699
700         if (--fs_devices->opened > 0)
701                 return 0;
702
703         mutex_lock(&fs_devices->device_list_mutex);
704         list_for_each_entry(device, &fs_devices->devices, dev_list) {
705                 struct btrfs_device *new_device;
706                 struct rcu_string *name;
707
708                 if (device->bdev)
709                         fs_devices->open_devices--;
710
711                 if (device->writeable &&
712                     device->devid != BTRFS_DEV_REPLACE_DEVID) {
713                         list_del_init(&device->dev_alloc_list);
714                         fs_devices->rw_devices--;
715                 }
716
717                 if (device->missing)
718                         fs_devices->missing_devices--;
719
720                 new_device = btrfs_alloc_device(NULL, &device->devid,
721                                                 device->uuid);
722                 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
723
724                 /* Safe because we are under uuid_mutex */
725                 if (device->name) {
726                         name = rcu_string_strdup(device->name->str, GFP_NOFS);
727                         BUG_ON(!name); /* -ENOMEM */
728                         rcu_assign_pointer(new_device->name, name);
729                 }
730
731                 list_replace_rcu(&device->dev_list, &new_device->dev_list);
732                 new_device->fs_devices = device->fs_devices;
733
734                 call_rcu(&device->rcu, free_device);
735         }
736         mutex_unlock(&fs_devices->device_list_mutex);
737
738         WARN_ON(fs_devices->open_devices);
739         WARN_ON(fs_devices->rw_devices);
740         fs_devices->opened = 0;
741         fs_devices->seeding = 0;
742
743         return 0;
744 }
745
746 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
747 {
748         struct btrfs_fs_devices *seed_devices = NULL;
749         int ret;
750
751         mutex_lock(&uuid_mutex);
752         ret = __btrfs_close_devices(fs_devices);
753         if (!fs_devices->opened) {
754                 seed_devices = fs_devices->seed;
755                 fs_devices->seed = NULL;
756         }
757         mutex_unlock(&uuid_mutex);
758
759         while (seed_devices) {
760                 fs_devices = seed_devices;
761                 seed_devices = fs_devices->seed;
762                 __btrfs_close_devices(fs_devices);
763                 free_fs_devices(fs_devices);
764         }
765         /*
766          * Wait for rcu kworkers under __btrfs_close_devices
767          * to finish all blkdev_puts so device is really
768          * free when umount is done.
769          */
770         rcu_barrier();
771         return ret;
772 }
773
774 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
775                                 fmode_t flags, void *holder)
776 {
777         struct request_queue *q;
778         struct block_device *bdev;
779         struct list_head *head = &fs_devices->devices;
780         struct btrfs_device *device;
781         struct btrfs_device *latest_dev = NULL;
782         struct buffer_head *bh;
783         struct btrfs_super_block *disk_super;
784         u64 devid;
785         int seeding = 1;
786         int ret = 0;
787
788         flags |= FMODE_EXCL;
789
790         list_for_each_entry(device, head, dev_list) {
791                 if (device->bdev)
792                         continue;
793                 if (!device->name)
794                         continue;
795
796                 /* Just open everything we can; ignore failures here */
797                 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
798                                             &bdev, &bh))
799                         continue;
800
801                 disk_super = (struct btrfs_super_block *)bh->b_data;
802                 devid = btrfs_stack_device_id(&disk_super->dev_item);
803                 if (devid != device->devid)
804                         goto error_brelse;
805
806                 if (memcmp(device->uuid, disk_super->dev_item.uuid,
807                            BTRFS_UUID_SIZE))
808                         goto error_brelse;
809
810                 device->generation = btrfs_super_generation(disk_super);
811                 if (!latest_dev ||
812                     device->generation > latest_dev->generation)
813                         latest_dev = device;
814
815                 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
816                         device->writeable = 0;
817                 } else {
818                         device->writeable = !bdev_read_only(bdev);
819                         seeding = 0;
820                 }
821
822                 q = bdev_get_queue(bdev);
823                 if (blk_queue_discard(q))
824                         device->can_discard = 1;
825
826                 device->bdev = bdev;
827                 device->in_fs_metadata = 0;
828                 device->mode = flags;
829
830                 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
831                         fs_devices->rotating = 1;
832
833                 fs_devices->open_devices++;
834                 if (device->writeable &&
835                     device->devid != BTRFS_DEV_REPLACE_DEVID) {
836                         fs_devices->rw_devices++;
837                         list_add(&device->dev_alloc_list,
838                                  &fs_devices->alloc_list);
839                 }
840                 brelse(bh);
841                 continue;
842
843 error_brelse:
844                 brelse(bh);
845                 blkdev_put(bdev, flags);
846                 continue;
847         }
848         if (fs_devices->open_devices == 0) {
849                 ret = -EINVAL;
850                 goto out;
851         }
852         fs_devices->seeding = seeding;
853         fs_devices->opened = 1;
854         fs_devices->latest_bdev = latest_dev->bdev;
855         fs_devices->total_rw_bytes = 0;
856 out:
857         return ret;
858 }
859
860 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
861                        fmode_t flags, void *holder)
862 {
863         int ret;
864
865         mutex_lock(&uuid_mutex);
866         if (fs_devices->opened) {
867                 fs_devices->opened++;
868                 ret = 0;
869         } else {
870                 ret = __btrfs_open_devices(fs_devices, flags, holder);
871         }
872         mutex_unlock(&uuid_mutex);
873         return ret;
874 }
875
876 /*
877  * Look for a btrfs signature on a device. This may be called out of the mount path
878  * and we are not allowed to call set_blocksize during the scan. The superblock
879  * is read via pagecache
880  */
881 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
882                           struct btrfs_fs_devices **fs_devices_ret)
883 {
884         struct btrfs_super_block *disk_super;
885         struct block_device *bdev;
886         struct page *page;
887         void *p;
888         int ret = -EINVAL;
889         u64 devid;
890         u64 transid;
891         u64 total_devices;
892         u64 bytenr;
893         pgoff_t index;
894
895         /*
896          * we would like to check all the supers, but that would make
897          * a btrfs mount succeed after a mkfs from a different FS.
898          * So, we need to add a special mount option to scan for
899          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
900          */
901         bytenr = btrfs_sb_offset(0);
902         flags |= FMODE_EXCL;
903         mutex_lock(&uuid_mutex);
904
905         bdev = blkdev_get_by_path(path, flags, holder);
906
907         if (IS_ERR(bdev)) {
908                 ret = PTR_ERR(bdev);
909                 goto error;
910         }
911
912         /* make sure our super fits in the device */
913         if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode))
914                 goto error_bdev_put;
915
916         /* make sure our super fits in the page */
917         if (sizeof(*disk_super) > PAGE_CACHE_SIZE)
918                 goto error_bdev_put;
919
920         /* make sure our super doesn't straddle pages on disk */
921         index = bytenr >> PAGE_CACHE_SHIFT;
922         if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index)
923                 goto error_bdev_put;
924
925         /* pull in the page with our super */
926         page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
927                                    index, GFP_NOFS);
928
929         if (IS_ERR_OR_NULL(page))
930                 goto error_bdev_put;
931
932         p = kmap(page);
933
934         /* align our pointer to the offset of the super block */
935         disk_super = p + (bytenr & ~PAGE_CACHE_MASK);
936
937         if (btrfs_super_bytenr(disk_super) != bytenr ||
938             btrfs_super_magic(disk_super) != BTRFS_MAGIC)
939                 goto error_unmap;
940
941         devid = btrfs_stack_device_id(&disk_super->dev_item);
942         transid = btrfs_super_generation(disk_super);
943         total_devices = btrfs_super_num_devices(disk_super);
944
945         ret = device_list_add(path, disk_super, devid, fs_devices_ret);
946         if (ret > 0) {
947                 if (disk_super->label[0]) {
948                         if (disk_super->label[BTRFS_LABEL_SIZE - 1])
949                                 disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0';
950                         printk(KERN_INFO "BTRFS: device label %s ", disk_super->label);
951                 } else {
952                         printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid);
953                 }
954
955                 printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
956                 ret = 0;
957         }
958         if (!ret && fs_devices_ret)
959                 (*fs_devices_ret)->total_devices = total_devices;
960
961 error_unmap:
962         kunmap(page);
963         page_cache_release(page);
964
965 error_bdev_put:
966         blkdev_put(bdev, flags);
967 error:
968         mutex_unlock(&uuid_mutex);
969         return ret;
970 }
971
972 /* helper to account the used device space in the range */
973 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
974                                    u64 end, u64 *length)
975 {
976         struct btrfs_key key;
977         struct btrfs_root *root = device->dev_root;
978         struct btrfs_dev_extent *dev_extent;
979         struct btrfs_path *path;
980         u64 extent_end;
981         int ret;
982         int slot;
983         struct extent_buffer *l;
984
985         *length = 0;
986
987         if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
988                 return 0;
989
990         path = btrfs_alloc_path();
991         if (!path)
992                 return -ENOMEM;
993         path->reada = 2;
994
995         key.objectid = device->devid;
996         key.offset = start;
997         key.type = BTRFS_DEV_EXTENT_KEY;
998
999         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1000         if (ret < 0)
1001                 goto out;
1002         if (ret > 0) {
1003                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1004                 if (ret < 0)
1005                         goto out;
1006         }
1007
1008         while (1) {
1009                 l = path->nodes[0];
1010                 slot = path->slots[0];
1011                 if (slot >= btrfs_header_nritems(l)) {
1012                         ret = btrfs_next_leaf(root, path);
1013                         if (ret == 0)
1014                                 continue;
1015                         if (ret < 0)
1016                                 goto out;
1017
1018                         break;
1019                 }
1020                 btrfs_item_key_to_cpu(l, &key, slot);
1021
1022                 if (key.objectid < device->devid)
1023                         goto next;
1024
1025                 if (key.objectid > device->devid)
1026                         break;
1027
1028                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1029                         goto next;
1030
1031                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1032                 extent_end = key.offset + btrfs_dev_extent_length(l,
1033                                                                   dev_extent);
1034                 if (key.offset <= start && extent_end > end) {
1035                         *length = end - start + 1;
1036                         break;
1037                 } else if (key.offset <= start && extent_end > start)
1038                         *length += extent_end - start;
1039                 else if (key.offset > start && extent_end <= end)
1040                         *length += extent_end - key.offset;
1041                 else if (key.offset > start && key.offset <= end) {
1042                         *length += end - key.offset + 1;
1043                         break;
1044                 } else if (key.offset > end)
1045                         break;
1046
1047 next:
1048                 path->slots[0]++;
1049         }
1050         ret = 0;
1051 out:
1052         btrfs_free_path(path);
1053         return ret;
1054 }
1055
1056 static int contains_pending_extent(struct btrfs_trans_handle *trans,
1057                                    struct btrfs_device *device,
1058                                    u64 *start, u64 len)
1059 {
1060         struct extent_map *em;
1061         struct list_head *search_list = &trans->transaction->pending_chunks;
1062         int ret = 0;
1063
1064 again:
1065         list_for_each_entry(em, search_list, list) {
1066                 struct map_lookup *map;
1067                 int i;
1068
1069                 map = (struct map_lookup *)em->bdev;
1070                 for (i = 0; i < map->num_stripes; i++) {
1071                         if (map->stripes[i].dev != device)
1072                                 continue;
1073                         if (map->stripes[i].physical >= *start + len ||
1074                             map->stripes[i].physical + em->orig_block_len <=
1075                             *start)
1076                                 continue;
1077                         *start = map->stripes[i].physical +
1078                                 em->orig_block_len;
1079                         ret = 1;
1080                 }
1081         }
1082         if (search_list == &trans->transaction->pending_chunks) {
1083                 search_list = &trans->root->fs_info->pinned_chunks;
1084                 goto again;
1085         }
1086
1087         return ret;
1088 }
1089
1090
1091 /*
1092  * find_free_dev_extent - find free space in the specified device
1093  * @device:     the device which we search the free space in
1094  * @num_bytes:  the size of the free space that we need
1095  * @start:      store the start of the free space.
1096  * @len:        the size of the free space. that we find, or the size of the max
1097  *              free space if we don't find suitable free space
1098  *
1099  * this uses a pretty simple search, the expectation is that it is
1100  * called very infrequently and that a given device has a small number
1101  * of extents
1102  *
1103  * @start is used to store the start of the free space if we find. But if we
1104  * don't find suitable free space, it will be used to store the start position
1105  * of the max free space.
1106  *
1107  * @len is used to store the size of the free space that we find.
1108  * But if we don't find suitable free space, it is used to store the size of
1109  * the max free space.
1110  */
1111 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1112                          struct btrfs_device *device, u64 num_bytes,
1113                          u64 *start, u64 *len)
1114 {
1115         struct btrfs_key key;
1116         struct btrfs_root *root = device->dev_root;
1117         struct btrfs_dev_extent *dev_extent;
1118         struct btrfs_path *path;
1119         u64 hole_size;
1120         u64 max_hole_start;
1121         u64 max_hole_size;
1122         u64 extent_end;
1123         u64 search_start;
1124         u64 search_end = device->total_bytes;
1125         int ret;
1126         int slot;
1127         struct extent_buffer *l;
1128
1129         /* FIXME use last free of some kind */
1130
1131         /* we don't want to overwrite the superblock on the drive,
1132          * so we make sure to start at an offset of at least 1MB
1133          */
1134         search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
1135
1136         path = btrfs_alloc_path();
1137         if (!path)
1138                 return -ENOMEM;
1139 again:
1140         max_hole_start = search_start;
1141         max_hole_size = 0;
1142         hole_size = 0;
1143
1144         if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1145                 ret = -ENOSPC;
1146                 goto out;
1147         }
1148
1149         path->reada = 2;
1150         path->search_commit_root = 1;
1151         path->skip_locking = 1;
1152
1153         key.objectid = device->devid;
1154         key.offset = search_start;
1155         key.type = BTRFS_DEV_EXTENT_KEY;
1156
1157         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1158         if (ret < 0)
1159                 goto out;
1160         if (ret > 0) {
1161                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1162                 if (ret < 0)
1163                         goto out;
1164         }
1165
1166         while (1) {
1167                 l = path->nodes[0];
1168                 slot = path->slots[0];
1169                 if (slot >= btrfs_header_nritems(l)) {
1170                         ret = btrfs_next_leaf(root, path);
1171                         if (ret == 0)
1172                                 continue;
1173                         if (ret < 0)
1174                                 goto out;
1175
1176                         break;
1177                 }
1178                 btrfs_item_key_to_cpu(l, &key, slot);
1179
1180                 if (key.objectid < device->devid)
1181                         goto next;
1182
1183                 if (key.objectid > device->devid)
1184                         break;
1185
1186                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1187                         goto next;
1188
1189                 if (key.offset > search_start) {
1190                         hole_size = key.offset - search_start;
1191
1192                         /*
1193                          * Have to check before we set max_hole_start, otherwise
1194                          * we could end up sending back this offset anyway.
1195                          */
1196                         if (contains_pending_extent(trans, device,
1197                                                     &search_start,
1198                                                     hole_size))
1199                                 hole_size = 0;
1200
1201                         if (hole_size > max_hole_size) {
1202                                 max_hole_start = search_start;
1203                                 max_hole_size = hole_size;
1204                         }
1205
1206                         /*
1207                          * If this free space is greater than which we need,
1208                          * it must be the max free space that we have found
1209                          * until now, so max_hole_start must point to the start
1210                          * of this free space and the length of this free space
1211                          * is stored in max_hole_size. Thus, we return
1212                          * max_hole_start and max_hole_size and go back to the
1213                          * caller.
1214                          */
1215                         if (hole_size >= num_bytes) {
1216                                 ret = 0;
1217                                 goto out;
1218                         }
1219                 }
1220
1221                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1222                 extent_end = key.offset + btrfs_dev_extent_length(l,
1223                                                                   dev_extent);
1224                 if (extent_end > search_start)
1225                         search_start = extent_end;
1226 next:
1227                 path->slots[0]++;
1228                 cond_resched();
1229         }
1230
1231         /*
1232          * At this point, search_start should be the end of
1233          * allocated dev extents, and when shrinking the device,
1234          * search_end may be smaller than search_start.
1235          */
1236         if (search_end > search_start)
1237                 hole_size = search_end - search_start;
1238
1239         if (hole_size > max_hole_size) {
1240                 max_hole_start = search_start;
1241                 max_hole_size = hole_size;
1242         }
1243
1244         if (contains_pending_extent(trans, device, &search_start, hole_size)) {
1245                 btrfs_release_path(path);
1246                 goto again;
1247         }
1248
1249         /* See above. */
1250         if (hole_size < num_bytes)
1251                 ret = -ENOSPC;
1252         else
1253                 ret = 0;
1254
1255 out:
1256         btrfs_free_path(path);
1257         *start = max_hole_start;
1258         if (len)
1259                 *len = max_hole_size;
1260         return ret;
1261 }
1262
1263 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1264                           struct btrfs_device *device,
1265                           u64 start, u64 *dev_extent_len)
1266 {
1267         int ret;
1268         struct btrfs_path *path;
1269         struct btrfs_root *root = device->dev_root;
1270         struct btrfs_key key;
1271         struct btrfs_key found_key;
1272         struct extent_buffer *leaf = NULL;
1273         struct btrfs_dev_extent *extent = NULL;
1274
1275         path = btrfs_alloc_path();
1276         if (!path)
1277                 return -ENOMEM;
1278
1279         key.objectid = device->devid;
1280         key.offset = start;
1281         key.type = BTRFS_DEV_EXTENT_KEY;
1282 again:
1283         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1284         if (ret > 0) {
1285                 ret = btrfs_previous_item(root, path, key.objectid,
1286                                           BTRFS_DEV_EXTENT_KEY);
1287                 if (ret)
1288                         goto out;
1289                 leaf = path->nodes[0];
1290                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1291                 extent = btrfs_item_ptr(leaf, path->slots[0],
1292                                         struct btrfs_dev_extent);
1293                 BUG_ON(found_key.offset > start || found_key.offset +
1294                        btrfs_dev_extent_length(leaf, extent) < start);
1295                 key = found_key;
1296                 btrfs_release_path(path);
1297                 goto again;
1298         } else if (ret == 0) {
1299                 leaf = path->nodes[0];
1300                 extent = btrfs_item_ptr(leaf, path->slots[0],
1301                                         struct btrfs_dev_extent);
1302         } else {
1303                 btrfs_error(root->fs_info, ret, "Slot search failed");
1304                 goto out;
1305         }
1306
1307         *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1308
1309         ret = btrfs_del_item(trans, root, path);
1310         if (ret) {
1311                 btrfs_error(root->fs_info, ret,
1312                             "Failed to remove dev extent item");
1313         }
1314 out:
1315         btrfs_free_path(path);
1316         return ret;
1317 }
1318
1319 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1320                                   struct btrfs_device *device,
1321                                   u64 chunk_tree, u64 chunk_objectid,
1322                                   u64 chunk_offset, u64 start, u64 num_bytes)
1323 {
1324         int ret;
1325         struct btrfs_path *path;
1326         struct btrfs_root *root = device->dev_root;
1327         struct btrfs_dev_extent *extent;
1328         struct extent_buffer *leaf;
1329         struct btrfs_key key;
1330
1331         WARN_ON(!device->in_fs_metadata);
1332         WARN_ON(device->is_tgtdev_for_dev_replace);
1333         path = btrfs_alloc_path();
1334         if (!path)
1335                 return -ENOMEM;
1336
1337         key.objectid = device->devid;
1338         key.offset = start;
1339         key.type = BTRFS_DEV_EXTENT_KEY;
1340         ret = btrfs_insert_empty_item(trans, root, path, &key,
1341                                       sizeof(*extent));
1342         if (ret)
1343                 goto out;
1344
1345         leaf = path->nodes[0];
1346         extent = btrfs_item_ptr(leaf, path->slots[0],
1347                                 struct btrfs_dev_extent);
1348         btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1349         btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1350         btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1351
1352         write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1353                     btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
1354
1355         btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1356         btrfs_mark_buffer_dirty(leaf);
1357 out:
1358         btrfs_free_path(path);
1359         return ret;
1360 }
1361
1362 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1363 {
1364         struct extent_map_tree *em_tree;
1365         struct extent_map *em;
1366         struct rb_node *n;
1367         u64 ret = 0;
1368
1369         em_tree = &fs_info->mapping_tree.map_tree;
1370         read_lock(&em_tree->lock);
1371         n = rb_last(&em_tree->map);
1372         if (n) {
1373                 em = rb_entry(n, struct extent_map, rb_node);
1374                 ret = em->start + em->len;
1375         }
1376         read_unlock(&em_tree->lock);
1377
1378         return ret;
1379 }
1380
1381 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1382                                     u64 *devid_ret)
1383 {
1384         int ret;
1385         struct btrfs_key key;
1386         struct btrfs_key found_key;
1387         struct btrfs_path *path;
1388
1389         path = btrfs_alloc_path();
1390         if (!path)
1391                 return -ENOMEM;
1392
1393         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1394         key.type = BTRFS_DEV_ITEM_KEY;
1395         key.offset = (u64)-1;
1396
1397         ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1398         if (ret < 0)
1399                 goto error;
1400
1401         BUG_ON(ret == 0); /* Corruption */
1402
1403         ret = btrfs_previous_item(fs_info->chunk_root, path,
1404                                   BTRFS_DEV_ITEMS_OBJECTID,
1405                                   BTRFS_DEV_ITEM_KEY);
1406         if (ret) {
1407                 *devid_ret = 1;
1408         } else {
1409                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1410                                       path->slots[0]);
1411                 *devid_ret = found_key.offset + 1;
1412         }
1413         ret = 0;
1414 error:
1415         btrfs_free_path(path);
1416         return ret;
1417 }
1418
1419 /*
1420  * the device information is stored in the chunk root
1421  * the btrfs_device struct should be fully filled in
1422  */
1423 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1424                             struct btrfs_root *root,
1425                             struct btrfs_device *device)
1426 {
1427         int ret;
1428         struct btrfs_path *path;
1429         struct btrfs_dev_item *dev_item;
1430         struct extent_buffer *leaf;
1431         struct btrfs_key key;
1432         unsigned long ptr;
1433
1434         root = root->fs_info->chunk_root;
1435
1436         path = btrfs_alloc_path();
1437         if (!path)
1438                 return -ENOMEM;
1439
1440         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1441         key.type = BTRFS_DEV_ITEM_KEY;
1442         key.offset = device->devid;
1443
1444         ret = btrfs_insert_empty_item(trans, root, path, &key,
1445                                       sizeof(*dev_item));
1446         if (ret)
1447                 goto out;
1448
1449         leaf = path->nodes[0];
1450         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1451
1452         btrfs_set_device_id(leaf, dev_item, device->devid);
1453         btrfs_set_device_generation(leaf, dev_item, 0);
1454         btrfs_set_device_type(leaf, dev_item, device->type);
1455         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1456         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1457         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1458         btrfs_set_device_total_bytes(leaf, dev_item,
1459                                      btrfs_device_get_disk_total_bytes(device));
1460         btrfs_set_device_bytes_used(leaf, dev_item,
1461                                     btrfs_device_get_bytes_used(device));
1462         btrfs_set_device_group(leaf, dev_item, 0);
1463         btrfs_set_device_seek_speed(leaf, dev_item, 0);
1464         btrfs_set_device_bandwidth(leaf, dev_item, 0);
1465         btrfs_set_device_start_offset(leaf, dev_item, 0);
1466
1467         ptr = btrfs_device_uuid(dev_item);
1468         write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1469         ptr = btrfs_device_fsid(dev_item);
1470         write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1471         btrfs_mark_buffer_dirty(leaf);
1472
1473         ret = 0;
1474 out:
1475         btrfs_free_path(path);
1476         return ret;
1477 }
1478
1479 /*
1480  * Function to update ctime/mtime for a given device path.
1481  * Mainly used for ctime/mtime based probe like libblkid.
1482  */
1483 static void update_dev_time(char *path_name)
1484 {
1485         struct file *filp;
1486
1487         filp = filp_open(path_name, O_RDWR, 0);
1488         if (!filp)
1489                 return;
1490         file_update_time(filp);
1491         filp_close(filp, NULL);
1492         return;
1493 }
1494
1495 static int btrfs_rm_dev_item(struct btrfs_root *root,
1496                              struct btrfs_device *device)
1497 {
1498         int ret;
1499         struct btrfs_path *path;
1500         struct btrfs_key key;
1501         struct btrfs_trans_handle *trans;
1502
1503         root = root->fs_info->chunk_root;
1504
1505         path = btrfs_alloc_path();
1506         if (!path)
1507                 return -ENOMEM;
1508
1509         trans = btrfs_start_transaction(root, 0);
1510         if (IS_ERR(trans)) {
1511                 btrfs_free_path(path);
1512                 return PTR_ERR(trans);
1513         }
1514         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1515         key.type = BTRFS_DEV_ITEM_KEY;
1516         key.offset = device->devid;
1517
1518         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1519         if (ret < 0)
1520                 goto out;
1521
1522         if (ret > 0) {
1523                 ret = -ENOENT;
1524                 goto out;
1525         }
1526
1527         ret = btrfs_del_item(trans, root, path);
1528         if (ret)
1529                 goto out;
1530 out:
1531         btrfs_free_path(path);
1532         btrfs_commit_transaction(trans, root);
1533         return ret;
1534 }
1535
1536 int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1537 {
1538         struct btrfs_device *device;
1539         struct btrfs_device *next_device;
1540         struct block_device *bdev;
1541         struct buffer_head *bh = NULL;
1542         struct btrfs_super_block *disk_super;
1543         struct btrfs_fs_devices *cur_devices;
1544         u64 all_avail;
1545         u64 devid;
1546         u64 num_devices;
1547         u8 *dev_uuid;
1548         unsigned seq;
1549         int ret = 0;
1550         bool clear_super = false;
1551
1552         mutex_lock(&uuid_mutex);
1553
1554         do {
1555                 seq = read_seqbegin(&root->fs_info->profiles_lock);
1556
1557                 all_avail = root->fs_info->avail_data_alloc_bits |
1558                             root->fs_info->avail_system_alloc_bits |
1559                             root->fs_info->avail_metadata_alloc_bits;
1560         } while (read_seqretry(&root->fs_info->profiles_lock, seq));
1561
1562         num_devices = root->fs_info->fs_devices->num_devices;
1563         btrfs_dev_replace_lock(&root->fs_info->dev_replace);
1564         if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1565                 WARN_ON(num_devices < 1);
1566                 num_devices--;
1567         }
1568         btrfs_dev_replace_unlock(&root->fs_info->dev_replace);
1569
1570         if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) {
1571                 ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET;
1572                 goto out;
1573         }
1574
1575         if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) {
1576                 ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET;
1577                 goto out;
1578         }
1579
1580         if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) &&
1581             root->fs_info->fs_devices->rw_devices <= 2) {
1582                 ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET;
1583                 goto out;
1584         }
1585         if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) &&
1586             root->fs_info->fs_devices->rw_devices <= 3) {
1587                 ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET;
1588                 goto out;
1589         }
1590
1591         if (strcmp(device_path, "missing") == 0) {
1592                 struct list_head *devices;
1593                 struct btrfs_device *tmp;
1594
1595                 device = NULL;
1596                 devices = &root->fs_info->fs_devices->devices;
1597                 /*
1598                  * It is safe to read the devices since the volume_mutex
1599                  * is held.
1600                  */
1601                 list_for_each_entry(tmp, devices, dev_list) {
1602                         if (tmp->in_fs_metadata &&
1603                             !tmp->is_tgtdev_for_dev_replace &&
1604                             !tmp->bdev) {
1605                                 device = tmp;
1606                                 break;
1607                         }
1608                 }
1609                 bdev = NULL;
1610                 bh = NULL;
1611                 disk_super = NULL;
1612                 if (!device) {
1613                         ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
1614                         goto out;
1615                 }
1616         } else {
1617                 ret = btrfs_get_bdev_and_sb(device_path,
1618                                             FMODE_WRITE | FMODE_EXCL,
1619                                             root->fs_info->bdev_holder, 0,
1620                                             &bdev, &bh);
1621                 if (ret)
1622                         goto out;
1623                 disk_super = (struct btrfs_super_block *)bh->b_data;
1624                 devid = btrfs_stack_device_id(&disk_super->dev_item);
1625                 dev_uuid = disk_super->dev_item.uuid;
1626                 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1627                                            disk_super->fsid);
1628                 if (!device) {
1629                         ret = -ENOENT;
1630                         goto error_brelse;
1631                 }
1632         }
1633
1634         if (device->is_tgtdev_for_dev_replace) {
1635                 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1636                 goto error_brelse;
1637         }
1638
1639         if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1640                 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1641                 goto error_brelse;
1642         }
1643
1644         if (device->writeable) {
1645                 lock_chunks(root);
1646                 list_del_init(&device->dev_alloc_list);
1647                 device->fs_devices->rw_devices--;
1648                 unlock_chunks(root);
1649                 clear_super = true;
1650         }
1651
1652         mutex_unlock(&uuid_mutex);
1653         ret = btrfs_shrink_device(device, 0);
1654         mutex_lock(&uuid_mutex);
1655         if (ret)
1656                 goto error_undo;
1657
1658         /*
1659          * TODO: the superblock still includes this device in its num_devices
1660          * counter although write_all_supers() is not locked out. This
1661          * could give a filesystem state which requires a degraded mount.
1662          */
1663         ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1664         if (ret)
1665                 goto error_undo;
1666
1667         device->in_fs_metadata = 0;
1668         btrfs_scrub_cancel_dev(root->fs_info, device);
1669
1670         /*
1671          * the device list mutex makes sure that we don't change
1672          * the device list while someone else is writing out all
1673          * the device supers. Whoever is writing all supers, should
1674          * lock the device list mutex before getting the number of
1675          * devices in the super block (super_copy). Conversely,
1676          * whoever updates the number of devices in the super block
1677          * (super_copy) should hold the device list mutex.
1678          */
1679
1680         cur_devices = device->fs_devices;
1681         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1682         list_del_rcu(&device->dev_list);
1683
1684         device->fs_devices->num_devices--;
1685         device->fs_devices->total_devices--;
1686
1687         if (device->missing)
1688                 device->fs_devices->missing_devices--;
1689
1690         next_device = list_entry(root->fs_info->fs_devices->devices.next,
1691                                  struct btrfs_device, dev_list);
1692         if (device->bdev == root->fs_info->sb->s_bdev)
1693                 root->fs_info->sb->s_bdev = next_device->bdev;
1694         if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1695                 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1696
1697         if (device->bdev) {
1698                 device->fs_devices->open_devices--;
1699                 /* remove sysfs entry */
1700                 btrfs_kobj_rm_device(root->fs_info, device);
1701         }
1702
1703         call_rcu(&device->rcu, free_device);
1704
1705         num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1706         btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1707         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1708
1709         if (cur_devices->open_devices == 0) {
1710                 struct btrfs_fs_devices *fs_devices;
1711                 fs_devices = root->fs_info->fs_devices;
1712                 while (fs_devices) {
1713                         if (fs_devices->seed == cur_devices) {
1714                                 fs_devices->seed = cur_devices->seed;
1715                                 break;
1716                         }
1717                         fs_devices = fs_devices->seed;
1718                 }
1719                 cur_devices->seed = NULL;
1720                 __btrfs_close_devices(cur_devices);
1721                 free_fs_devices(cur_devices);
1722         }
1723
1724         root->fs_info->num_tolerated_disk_barrier_failures =
1725                 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1726
1727         /*
1728          * at this point, the device is zero sized.  We want to
1729          * remove it from the devices list and zero out the old super
1730          */
1731         if (clear_super && disk_super) {
1732                 u64 bytenr;
1733                 int i;
1734
1735                 /* make sure this device isn't detected as part of
1736                  * the FS anymore
1737                  */
1738                 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1739                 set_buffer_dirty(bh);
1740                 sync_dirty_buffer(bh);
1741
1742                 /* clear the mirror copies of super block on the disk
1743                  * being removed, 0th copy is been taken care above and
1744                  * the below would take of the rest
1745                  */
1746                 for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1747                         bytenr = btrfs_sb_offset(i);
1748                         if (bytenr + BTRFS_SUPER_INFO_SIZE >=
1749                                         i_size_read(bdev->bd_inode))
1750                                 break;
1751
1752                         brelse(bh);
1753                         bh = __bread(bdev, bytenr / 4096,
1754                                         BTRFS_SUPER_INFO_SIZE);
1755                         if (!bh)
1756                                 continue;
1757
1758                         disk_super = (struct btrfs_super_block *)bh->b_data;
1759
1760                         if (btrfs_super_bytenr(disk_super) != bytenr ||
1761                                 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1762                                 continue;
1763                         }
1764                         memset(&disk_super->magic, 0,
1765                                                 sizeof(disk_super->magic));
1766                         set_buffer_dirty(bh);
1767                         sync_dirty_buffer(bh);
1768                 }
1769         }
1770
1771         ret = 0;
1772
1773         if (bdev) {
1774                 /* Notify udev that device has changed */
1775                 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
1776
1777                 /* Update ctime/mtime for device path for libblkid */
1778                 update_dev_time(device_path);
1779         }
1780
1781 error_brelse:
1782         brelse(bh);
1783         if (bdev)
1784                 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1785 out:
1786         mutex_unlock(&uuid_mutex);
1787         return ret;
1788 error_undo:
1789         if (device->writeable) {
1790                 lock_chunks(root);
1791                 list_add(&device->dev_alloc_list,
1792                          &root->fs_info->fs_devices->alloc_list);
1793                 device->fs_devices->rw_devices++;
1794                 unlock_chunks(root);
1795         }
1796         goto error_brelse;
1797 }
1798
1799 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1800                                         struct btrfs_device *srcdev)
1801 {
1802         struct btrfs_fs_devices *fs_devices;
1803
1804         WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1805
1806         /*
1807          * in case of fs with no seed, srcdev->fs_devices will point
1808          * to fs_devices of fs_info. However when the dev being replaced is
1809          * a seed dev it will point to the seed's local fs_devices. In short
1810          * srcdev will have its correct fs_devices in both the cases.
1811          */
1812         fs_devices = srcdev->fs_devices;
1813
1814         list_del_rcu(&srcdev->dev_list);
1815         list_del_rcu(&srcdev->dev_alloc_list);
1816         fs_devices->num_devices--;
1817         if (srcdev->missing)
1818                 fs_devices->missing_devices--;
1819
1820         if (srcdev->writeable) {
1821                 fs_devices->rw_devices--;
1822                 /* zero out the old super if it is writable */
1823                 btrfs_scratch_superblock(srcdev);
1824         }
1825
1826         if (srcdev->bdev)
1827                 fs_devices->open_devices--;
1828 }
1829
1830 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
1831                                       struct btrfs_device *srcdev)
1832 {
1833         struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
1834
1835         call_rcu(&srcdev->rcu, free_device);
1836
1837         /*
1838          * unless fs_devices is seed fs, num_devices shouldn't go
1839          * zero
1840          */
1841         BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
1842
1843         /* if this is no devs we rather delete the fs_devices */
1844         if (!fs_devices->num_devices) {
1845                 struct btrfs_fs_devices *tmp_fs_devices;
1846
1847                 tmp_fs_devices = fs_info->fs_devices;
1848                 while (tmp_fs_devices) {
1849                         if (tmp_fs_devices->seed == fs_devices) {
1850                                 tmp_fs_devices->seed = fs_devices->seed;
1851                                 break;
1852                         }
1853                         tmp_fs_devices = tmp_fs_devices->seed;
1854                 }
1855                 fs_devices->seed = NULL;
1856                 __btrfs_close_devices(fs_devices);
1857                 free_fs_devices(fs_devices);
1858         }
1859 }
1860
1861 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
1862                                       struct btrfs_device *tgtdev)
1863 {
1864         struct btrfs_device *next_device;
1865
1866         mutex_lock(&uuid_mutex);
1867         WARN_ON(!tgtdev);
1868         mutex_lock(&fs_info->fs_devices->device_list_mutex);
1869         if (tgtdev->bdev) {
1870                 btrfs_scratch_superblock(tgtdev);
1871                 fs_info->fs_devices->open_devices--;
1872         }
1873         fs_info->fs_devices->num_devices--;
1874
1875         next_device = list_entry(fs_info->fs_devices->devices.next,
1876                                  struct btrfs_device, dev_list);
1877         if (tgtdev->bdev == fs_info->sb->s_bdev)
1878                 fs_info->sb->s_bdev = next_device->bdev;
1879         if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
1880                 fs_info->fs_devices->latest_bdev = next_device->bdev;
1881         list_del_rcu(&tgtdev->dev_list);
1882
1883         call_rcu(&tgtdev->rcu, free_device);
1884
1885         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1886         mutex_unlock(&uuid_mutex);
1887 }
1888
1889 static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
1890                                      struct btrfs_device **device)
1891 {
1892         int ret = 0;
1893         struct btrfs_super_block *disk_super;
1894         u64 devid;
1895         u8 *dev_uuid;
1896         struct block_device *bdev;
1897         struct buffer_head *bh;
1898
1899         *device = NULL;
1900         ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
1901                                     root->fs_info->bdev_holder, 0, &bdev, &bh);
1902         if (ret)
1903                 return ret;
1904         disk_super = (struct btrfs_super_block *)bh->b_data;
1905         devid = btrfs_stack_device_id(&disk_super->dev_item);
1906         dev_uuid = disk_super->dev_item.uuid;
1907         *device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1908                                     disk_super->fsid);
1909         brelse(bh);
1910         if (!*device)
1911                 ret = -ENOENT;
1912         blkdev_put(bdev, FMODE_READ);
1913         return ret;
1914 }
1915
1916 int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
1917                                          char *device_path,
1918                                          struct btrfs_device **device)
1919 {
1920         *device = NULL;
1921         if (strcmp(device_path, "missing") == 0) {
1922                 struct list_head *devices;
1923                 struct btrfs_device *tmp;
1924
1925                 devices = &root->fs_info->fs_devices->devices;
1926                 /*
1927                  * It is safe to read the devices since the volume_mutex
1928                  * is held by the caller.
1929                  */
1930                 list_for_each_entry(tmp, devices, dev_list) {
1931                         if (tmp->in_fs_metadata && !tmp->bdev) {
1932                                 *device = tmp;
1933                                 break;
1934                         }
1935                 }
1936
1937                 if (!*device) {
1938                         btrfs_err(root->fs_info, "no missing device found");
1939                         return -ENOENT;
1940                 }
1941
1942                 return 0;
1943         } else {
1944                 return btrfs_find_device_by_path(root, device_path, device);
1945         }
1946 }
1947
1948 /*
1949  * does all the dirty work required for changing file system's UUID.
1950  */
1951 static int btrfs_prepare_sprout(struct btrfs_root *root)
1952 {
1953         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1954         struct btrfs_fs_devices *old_devices;
1955         struct btrfs_fs_devices *seed_devices;
1956         struct btrfs_super_block *disk_super = root->fs_info->super_copy;
1957         struct btrfs_device *device;
1958         u64 super_flags;
1959
1960         BUG_ON(!mutex_is_locked(&uuid_mutex));
1961         if (!fs_devices->seeding)
1962                 return -EINVAL;
1963
1964         seed_devices = __alloc_fs_devices();
1965         if (IS_ERR(seed_devices))
1966                 return PTR_ERR(seed_devices);
1967
1968         old_devices = clone_fs_devices(fs_devices);
1969         if (IS_ERR(old_devices)) {
1970                 kfree(seed_devices);
1971                 return PTR_ERR(old_devices);
1972         }
1973
1974         list_add(&old_devices->list, &fs_uuids);
1975
1976         memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1977         seed_devices->opened = 1;
1978         INIT_LIST_HEAD(&seed_devices->devices);
1979         INIT_LIST_HEAD(&seed_devices->alloc_list);
1980         mutex_init(&seed_devices->device_list_mutex);
1981
1982         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1983         list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
1984                               synchronize_rcu);
1985         list_for_each_entry(device, &seed_devices->devices, dev_list)
1986                 device->fs_devices = seed_devices;
1987
1988         lock_chunks(root);
1989         list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1990         unlock_chunks(root);
1991
1992         fs_devices->seeding = 0;
1993         fs_devices->num_devices = 0;
1994         fs_devices->open_devices = 0;
1995         fs_devices->missing_devices = 0;
1996         fs_devices->rotating = 0;
1997         fs_devices->seed = seed_devices;
1998
1999         generate_random_uuid(fs_devices->fsid);
2000         memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2001         memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2002         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2003
2004         super_flags = btrfs_super_flags(disk_super) &
2005                       ~BTRFS_SUPER_FLAG_SEEDING;
2006         btrfs_set_super_flags(disk_super, super_flags);
2007
2008         return 0;
2009 }
2010
2011 /*
2012  * strore the expected generation for seed devices in device items.
2013  */
2014 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2015                                struct btrfs_root *root)
2016 {
2017         struct btrfs_path *path;
2018         struct extent_buffer *leaf;
2019         struct btrfs_dev_item *dev_item;
2020         struct btrfs_device *device;
2021         struct btrfs_key key;
2022         u8 fs_uuid[BTRFS_UUID_SIZE];
2023         u8 dev_uuid[BTRFS_UUID_SIZE];
2024         u64 devid;
2025         int ret;
2026
2027         path = btrfs_alloc_path();
2028         if (!path)
2029                 return -ENOMEM;
2030
2031         root = root->fs_info->chunk_root;
2032         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2033         key.offset = 0;
2034         key.type = BTRFS_DEV_ITEM_KEY;
2035
2036         while (1) {
2037                 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2038                 if (ret < 0)
2039                         goto error;
2040
2041                 leaf = path->nodes[0];
2042 next_slot:
2043                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2044                         ret = btrfs_next_leaf(root, path);
2045                         if (ret > 0)
2046                                 break;
2047                         if (ret < 0)
2048                                 goto error;
2049                         leaf = path->nodes[0];
2050                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2051                         btrfs_release_path(path);
2052                         continue;
2053                 }
2054
2055                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2056                 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2057                     key.type != BTRFS_DEV_ITEM_KEY)
2058                         break;
2059
2060                 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2061                                           struct btrfs_dev_item);
2062                 devid = btrfs_device_id(leaf, dev_item);
2063                 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2064                                    BTRFS_UUID_SIZE);
2065                 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2066                                    BTRFS_UUID_SIZE);
2067                 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2068                                            fs_uuid);
2069                 BUG_ON(!device); /* Logic error */
2070
2071                 if (device->fs_devices->seeding) {
2072                         btrfs_set_device_generation(leaf, dev_item,
2073                                                     device->generation);
2074                         btrfs_mark_buffer_dirty(leaf);
2075                 }
2076
2077                 path->slots[0]++;
2078                 goto next_slot;
2079         }
2080         ret = 0;
2081 error:
2082         btrfs_free_path(path);
2083         return ret;
2084 }
2085
2086 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
2087 {
2088         struct request_queue *q;
2089         struct btrfs_trans_handle *trans;
2090         struct btrfs_device *device;
2091         struct block_device *bdev;
2092         struct list_head *devices;
2093         struct super_block *sb = root->fs_info->sb;
2094         struct rcu_string *name;
2095         u64 tmp;
2096         int seeding_dev = 0;
2097         int ret = 0;
2098
2099         if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
2100                 return -EROFS;
2101
2102         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2103                                   root->fs_info->bdev_holder);
2104         if (IS_ERR(bdev))
2105                 return PTR_ERR(bdev);
2106
2107         if (root->fs_info->fs_devices->seeding) {
2108                 seeding_dev = 1;
2109                 down_write(&sb->s_umount);
2110                 mutex_lock(&uuid_mutex);
2111         }
2112
2113         filemap_write_and_wait(bdev->bd_inode->i_mapping);
2114
2115         devices = &root->fs_info->fs_devices->devices;
2116
2117         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2118         list_for_each_entry(device, devices, dev_list) {
2119                 if (device->bdev == bdev) {
2120                         ret = -EEXIST;
2121                         mutex_unlock(
2122                                 &root->fs_info->fs_devices->device_list_mutex);
2123                         goto error;
2124                 }
2125         }
2126         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2127
2128         device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2129         if (IS_ERR(device)) {
2130                 /* we can safely leave the fs_devices entry around */
2131                 ret = PTR_ERR(device);
2132                 goto error;
2133         }
2134
2135         name = rcu_string_strdup(device_path, GFP_NOFS);
2136         if (!name) {
2137                 kfree(device);
2138                 ret = -ENOMEM;
2139                 goto error;
2140         }
2141         rcu_assign_pointer(device->name, name);
2142
2143         trans = btrfs_start_transaction(root, 0);
2144         if (IS_ERR(trans)) {
2145                 rcu_string_free(device->name);
2146                 kfree(device);
2147                 ret = PTR_ERR(trans);
2148                 goto error;
2149         }
2150
2151         q = bdev_get_queue(bdev);
2152         if (blk_queue_discard(q))
2153                 device->can_discard = 1;
2154         device->writeable = 1;
2155         device->generation = trans->transid;
2156         device->io_width = root->sectorsize;
2157         device->io_align = root->sectorsize;
2158         device->sector_size = root->sectorsize;
2159         device->total_bytes = i_size_read(bdev->bd_inode);
2160         device->disk_total_bytes = device->total_bytes;
2161         device->commit_total_bytes = device->total_bytes;
2162         device->dev_root = root->fs_info->dev_root;
2163         device->bdev = bdev;
2164         device->in_fs_metadata = 1;
2165         device->is_tgtdev_for_dev_replace = 0;
2166         device->mode = FMODE_EXCL;
2167         device->dev_stats_valid = 1;
2168         set_blocksize(device->bdev, 4096);
2169
2170         if (seeding_dev) {
2171                 sb->s_flags &= ~MS_RDONLY;
2172                 ret = btrfs_prepare_sprout(root);
2173                 BUG_ON(ret); /* -ENOMEM */
2174         }
2175
2176         device->fs_devices = root->fs_info->fs_devices;
2177
2178         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2179         lock_chunks(root);
2180         list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2181         list_add(&device->dev_alloc_list,
2182                  &root->fs_info->fs_devices->alloc_list);
2183         root->fs_info->fs_devices->num_devices++;
2184         root->fs_info->fs_devices->open_devices++;
2185         root->fs_info->fs_devices->rw_devices++;
2186         root->fs_info->fs_devices->total_devices++;
2187         root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2188
2189         spin_lock(&root->fs_info->free_chunk_lock);
2190         root->fs_info->free_chunk_space += device->total_bytes;
2191         spin_unlock(&root->fs_info->free_chunk_lock);
2192
2193         if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2194                 root->fs_info->fs_devices->rotating = 1;
2195
2196         tmp = btrfs_super_total_bytes(root->fs_info->super_copy);
2197         btrfs_set_super_total_bytes(root->fs_info->super_copy,
2198                                     tmp + device->total_bytes);
2199
2200         tmp = btrfs_super_num_devices(root->fs_info->super_copy);
2201         btrfs_set_super_num_devices(root->fs_info->super_copy,
2202                                     tmp + 1);
2203
2204         /* add sysfs device entry */
2205         btrfs_kobj_add_device(root->fs_info, device);
2206
2207         /*
2208          * we've got more storage, clear any full flags on the space
2209          * infos
2210          */
2211         btrfs_clear_space_info_full(root->fs_info);
2212
2213         unlock_chunks(root);
2214         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2215
2216         if (seeding_dev) {
2217                 lock_chunks(root);
2218                 ret = init_first_rw_device(trans, root, device);
2219                 unlock_chunks(root);
2220                 if (ret) {
2221                         btrfs_abort_transaction(trans, root, ret);
2222                         goto error_trans;
2223                 }
2224         }
2225
2226         ret = btrfs_add_device(trans, root, device);
2227         if (ret) {
2228                 btrfs_abort_transaction(trans, root, ret);
2229                 goto error_trans;
2230         }
2231
2232         if (seeding_dev) {
2233                 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2234
2235                 ret = btrfs_finish_sprout(trans, root);
2236                 if (ret) {
2237                         btrfs_abort_transaction(trans, root, ret);
2238                         goto error_trans;
2239                 }
2240
2241                 /* Sprouting would change fsid of the mounted root,
2242                  * so rename the fsid on the sysfs
2243                  */
2244                 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2245                                                 root->fs_info->fsid);
2246                 if (kobject_rename(&root->fs_info->super_kobj, fsid_buf))
2247                         goto error_trans;
2248         }
2249
2250         root->fs_info->num_tolerated_disk_barrier_failures =
2251                 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
2252         ret = btrfs_commit_transaction(trans, root);
2253
2254         if (seeding_dev) {
2255                 mutex_unlock(&uuid_mutex);
2256                 up_write(&sb->s_umount);
2257
2258                 if (ret) /* transaction commit */
2259                         return ret;
2260
2261                 ret = btrfs_relocate_sys_chunks(root);
2262                 if (ret < 0)
2263                         btrfs_error(root->fs_info, ret,
2264                                     "Failed to relocate sys chunks after "
2265                                     "device initialization. This can be fixed "
2266                                     "using the \"btrfs balance\" command.");
2267                 trans = btrfs_attach_transaction(root);
2268                 if (IS_ERR(trans)) {
2269                         if (PTR_ERR(trans) == -ENOENT)
2270                                 return 0;
2271                         return PTR_ERR(trans);
2272                 }
2273                 ret = btrfs_commit_transaction(trans, root);
2274         }
2275
2276         /* Update ctime/mtime for libblkid */
2277         update_dev_time(device_path);
2278         return ret;
2279
2280 error_trans:
2281         btrfs_end_transaction(trans, root);
2282         rcu_string_free(device->name);
2283         btrfs_kobj_rm_device(root->fs_info, device);
2284         kfree(device);
2285 error:
2286         blkdev_put(bdev, FMODE_EXCL);
2287         if (seeding_dev) {
2288                 mutex_unlock(&uuid_mutex);
2289                 up_write(&sb->s_umount);
2290         }
2291         return ret;
2292 }
2293
2294 int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2295                                   struct btrfs_device *srcdev,
2296                                   struct btrfs_device **device_out)
2297 {
2298         struct request_queue *q;
2299         struct btrfs_device *device;
2300         struct block_device *bdev;
2301         struct btrfs_fs_info *fs_info = root->fs_info;
2302         struct list_head *devices;
2303         struct rcu_string *name;
2304         u64 devid = BTRFS_DEV_REPLACE_DEVID;
2305         int ret = 0;
2306
2307         *device_out = NULL;
2308         if (fs_info->fs_devices->seeding) {
2309                 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2310                 return -EINVAL;
2311         }
2312
2313         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2314                                   fs_info->bdev_holder);
2315         if (IS_ERR(bdev)) {
2316                 btrfs_err(fs_info, "target device %s is invalid!", device_path);
2317                 return PTR_ERR(bdev);
2318         }
2319
2320         filemap_write_and_wait(bdev->bd_inode->i_mapping);
2321
2322         devices = &fs_info->fs_devices->devices;
2323         list_for_each_entry(device, devices, dev_list) {
2324                 if (device->bdev == bdev) {
2325                         btrfs_err(fs_info, "target device is in the filesystem!");
2326                         ret = -EEXIST;
2327                         goto error;
2328                 }
2329         }
2330
2331
2332         if (i_size_read(bdev->bd_inode) <
2333             btrfs_device_get_total_bytes(srcdev)) {
2334                 btrfs_err(fs_info, "target device is smaller than source device!");
2335                 ret = -EINVAL;
2336                 goto error;
2337         }
2338
2339
2340         device = btrfs_alloc_device(NULL, &devid, NULL);
2341         if (IS_ERR(device)) {
2342                 ret = PTR_ERR(device);
2343                 goto error;
2344         }
2345
2346         name = rcu_string_strdup(device_path, GFP_NOFS);
2347         if (!name) {
2348                 kfree(device);
2349                 ret = -ENOMEM;
2350                 goto error;
2351         }
2352         rcu_assign_pointer(device->name, name);
2353
2354         q = bdev_get_queue(bdev);
2355         if (blk_queue_discard(q))
2356                 device->can_discard = 1;
2357         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2358         device->writeable = 1;
2359         device->generation = 0;
2360         device->io_width = root->sectorsize;
2361         device->io_align = root->sectorsize;
2362         device->sector_size = root->sectorsize;
2363         device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2364         device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2365         device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2366         ASSERT(list_empty(&srcdev->resized_list));
2367         device->commit_total_bytes = srcdev->commit_total_bytes;
2368         device->commit_bytes_used = device->bytes_used;
2369         device->dev_root = fs_info->dev_root;
2370         device->bdev = bdev;
2371         device->in_fs_metadata = 1;
2372         device->is_tgtdev_for_dev_replace = 1;
2373         device->mode = FMODE_EXCL;
2374         device->dev_stats_valid = 1;
2375         set_blocksize(device->bdev, 4096);
2376         device->fs_devices = fs_info->fs_devices;
2377         list_add(&device->dev_list, &fs_info->fs_devices->devices);
2378         fs_info->fs_devices->num_devices++;
2379         fs_info->fs_devices->open_devices++;
2380         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2381
2382         *device_out = device;
2383         return ret;
2384
2385 error:
2386         blkdev_put(bdev, FMODE_EXCL);
2387         return ret;
2388 }
2389
2390 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2391                                               struct btrfs_device *tgtdev)
2392 {
2393         WARN_ON(fs_info->fs_devices->rw_devices == 0);
2394         tgtdev->io_width = fs_info->dev_root->sectorsize;
2395         tgtdev->io_align = fs_info->dev_root->sectorsize;
2396         tgtdev->sector_size = fs_info->dev_root->sectorsize;
2397         tgtdev->dev_root = fs_info->dev_root;
2398         tgtdev->in_fs_metadata = 1;
2399 }
2400
2401 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2402                                         struct btrfs_device *device)
2403 {
2404         int ret;
2405         struct btrfs_path *path;
2406         struct btrfs_root *root;
2407         struct btrfs_dev_item *dev_item;
2408         struct extent_buffer *leaf;
2409         struct btrfs_key key;
2410
2411         root = device->dev_root->fs_info->chunk_root;
2412
2413         path = btrfs_alloc_path();
2414         if (!path)
2415                 return -ENOMEM;
2416
2417         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2418         key.type = BTRFS_DEV_ITEM_KEY;
2419         key.offset = device->devid;
2420
2421         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2422         if (ret < 0)
2423                 goto out;
2424
2425         if (ret > 0) {
2426                 ret = -ENOENT;
2427                 goto out;
2428         }
2429
2430         leaf = path->nodes[0];
2431         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2432
2433         btrfs_set_device_id(leaf, dev_item, device->devid);
2434         btrfs_set_device_type(leaf, dev_item, device->type);
2435         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2436         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2437         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2438         btrfs_set_device_total_bytes(leaf, dev_item,
2439                                      btrfs_device_get_disk_total_bytes(device));
2440         btrfs_set_device_bytes_used(leaf, dev_item,
2441                                     btrfs_device_get_bytes_used(device));
2442         btrfs_mark_buffer_dirty(leaf);
2443
2444 out:
2445         btrfs_free_path(path);
2446         return ret;
2447 }
2448
2449 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2450                       struct btrfs_device *device, u64 new_size)
2451 {
2452         struct btrfs_super_block *super_copy =
2453                 device->dev_root->fs_info->super_copy;
2454         struct btrfs_fs_devices *fs_devices;
2455         u64 old_total;
2456         u64 diff;
2457
2458         if (!device->writeable)
2459                 return -EACCES;
2460
2461         lock_chunks(device->dev_root);
2462         old_total = btrfs_super_total_bytes(super_copy);
2463         diff = new_size - device->total_bytes;
2464
2465         if (new_size <= device->total_bytes ||
2466             device->is_tgtdev_for_dev_replace) {
2467                 unlock_chunks(device->dev_root);
2468                 return -EINVAL;
2469         }
2470
2471         fs_devices = device->dev_root->fs_info->fs_devices;
2472
2473         btrfs_set_super_total_bytes(super_copy, old_total + diff);
2474         device->fs_devices->total_rw_bytes += diff;
2475
2476         btrfs_device_set_total_bytes(device, new_size);
2477         btrfs_device_set_disk_total_bytes(device, new_size);
2478         btrfs_clear_space_info_full(device->dev_root->fs_info);
2479         if (list_empty(&device->resized_list))
2480                 list_add_tail(&device->resized_list,
2481                               &fs_devices->resized_devices);
2482         unlock_chunks(device->dev_root);
2483
2484         return btrfs_update_device(trans, device);
2485 }
2486
2487 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2488                             struct btrfs_root *root,
2489                             u64 chunk_tree, u64 chunk_objectid,
2490                             u64 chunk_offset)
2491 {
2492         int ret;
2493         struct btrfs_path *path;
2494         struct btrfs_key key;
2495
2496         root = root->fs_info->chunk_root;
2497         path = btrfs_alloc_path();
2498         if (!path)
2499                 return -ENOMEM;
2500
2501         key.objectid = chunk_objectid;
2502         key.offset = chunk_offset;
2503         key.type = BTRFS_CHUNK_ITEM_KEY;
2504
2505         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2506         if (ret < 0)
2507                 goto out;
2508         else if (ret > 0) { /* Logic error or corruption */
2509                 btrfs_error(root->fs_info, -ENOENT,
2510                             "Failed lookup while freeing chunk.");
2511                 ret = -ENOENT;
2512                 goto out;
2513         }
2514
2515         ret = btrfs_del_item(trans, root, path);
2516         if (ret < 0)
2517                 btrfs_error(root->fs_info, ret,
2518                             "Failed to delete chunk item.");
2519 out:
2520         btrfs_free_path(path);
2521         return ret;
2522 }
2523
2524 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
2525                         chunk_offset)
2526 {
2527         struct btrfs_super_block *super_copy = root->fs_info->super_copy;
2528         struct btrfs_disk_key *disk_key;
2529         struct btrfs_chunk *chunk;
2530         u8 *ptr;
2531         int ret = 0;
2532         u32 num_stripes;
2533         u32 array_size;
2534         u32 len = 0;
2535         u32 cur;
2536         struct btrfs_key key;
2537
2538         lock_chunks(root);
2539         array_size = btrfs_super_sys_array_size(super_copy);
2540
2541         ptr = super_copy->sys_chunk_array;
2542         cur = 0;
2543
2544         while (cur < array_size) {
2545                 disk_key = (struct btrfs_disk_key *)ptr;
2546                 btrfs_disk_key_to_cpu(&key, disk_key);
2547
2548                 len = sizeof(*disk_key);
2549
2550                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2551                         chunk = (struct btrfs_chunk *)(ptr + len);
2552                         num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2553                         len += btrfs_chunk_item_size(num_stripes);
2554                 } else {
2555                         ret = -EIO;
2556                         break;
2557                 }
2558                 if (key.objectid == chunk_objectid &&
2559                     key.offset == chunk_offset) {
2560                         memmove(ptr, ptr + len, array_size - (cur + len));
2561                         array_size -= len;
2562                         btrfs_set_super_sys_array_size(super_copy, array_size);
2563                 } else {
2564                         ptr += len;
2565                         cur += len;
2566                 }
2567         }
2568         unlock_chunks(root);
2569         return ret;
2570 }
2571
2572 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2573                        struct btrfs_root *root, u64 chunk_offset)
2574 {
2575         struct extent_map_tree *em_tree;
2576         struct extent_map *em;
2577         struct btrfs_root *extent_root = root->fs_info->extent_root;
2578         struct map_lookup *map;
2579         u64 dev_extent_len = 0;
2580         u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2581         u64 chunk_tree = root->fs_info->chunk_root->objectid;
2582         int i, ret = 0;
2583
2584         /* Just in case */
2585         root = root->fs_info->chunk_root;
2586         em_tree = &root->fs_info->mapping_tree.map_tree;
2587
2588         read_lock(&em_tree->lock);
2589         em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2590         read_unlock(&em_tree->lock);
2591
2592         if (!em || em->start > chunk_offset ||
2593             em->start + em->len < chunk_offset) {
2594                 /*
2595                  * This is a logic error, but we don't want to just rely on the
2596                  * user having built with ASSERT enabled, so if ASSERT doens't
2597                  * do anything we still error out.
2598                  */
2599                 ASSERT(0);
2600                 if (em)
2601                         free_extent_map(em);
2602                 return -EINVAL;
2603         }
2604         map = (struct map_lookup *)em->bdev;
2605
2606         for (i = 0; i < map->num_stripes; i++) {
2607                 struct btrfs_device *device = map->stripes[i].dev;
2608                 ret = btrfs_free_dev_extent(trans, device,
2609                                             map->stripes[i].physical,
2610                                             &dev_extent_len);
2611                 if (ret) {
2612                         btrfs_abort_transaction(trans, root, ret);
2613                         goto out;
2614                 }
2615
2616                 if (device->bytes_used > 0) {
2617                         lock_chunks(root);
2618                         btrfs_device_set_bytes_used(device,
2619                                         device->bytes_used - dev_extent_len);
2620                         spin_lock(&root->fs_info->free_chunk_lock);
2621                         root->fs_info->free_chunk_space += dev_extent_len;
2622                         spin_unlock(&root->fs_info->free_chunk_lock);
2623                         btrfs_clear_space_info_full(root->fs_info);
2624                         unlock_chunks(root);
2625                 }
2626
2627                 if (map->stripes[i].dev) {
2628                         ret = btrfs_update_device(trans, map->stripes[i].dev);
2629                         if (ret) {
2630                                 btrfs_abort_transaction(trans, root, ret);
2631                                 goto out;
2632                         }
2633                 }
2634         }
2635         ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
2636                                chunk_offset);
2637         if (ret) {
2638                 btrfs_abort_transaction(trans, root, ret);
2639                 goto out;
2640         }
2641
2642         trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2643
2644         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2645                 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2646                 if (ret) {
2647                         btrfs_abort_transaction(trans, root, ret);
2648                         goto out;
2649                 }
2650         }
2651
2652         ret = btrfs_remove_block_group(trans, extent_root, chunk_offset, em);
2653         if (ret) {
2654                 btrfs_abort_transaction(trans, extent_root, ret);
2655                 goto out;
2656         }
2657
2658 out:
2659         /* once for us */
2660         free_extent_map(em);
2661         return ret;
2662 }
2663
2664 static int btrfs_relocate_chunk(struct btrfs_root *root,
2665                          u64 chunk_tree, u64 chunk_objectid,
2666                          u64 chunk_offset)
2667 {
2668         struct btrfs_root *extent_root;
2669         struct btrfs_trans_handle *trans;
2670         int ret;
2671
2672         root = root->fs_info->chunk_root;
2673         extent_root = root->fs_info->extent_root;
2674
2675         ret = btrfs_can_relocate(extent_root, chunk_offset);
2676         if (ret)
2677                 return -ENOSPC;
2678
2679         /* step one, relocate all the extents inside this chunk */
2680         ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2681         if (ret)
2682                 return ret;
2683
2684         trans = btrfs_start_transaction(root, 0);
2685         if (IS_ERR(trans)) {
2686                 ret = PTR_ERR(trans);
2687                 btrfs_std_error(root->fs_info, ret);
2688                 return ret;
2689         }
2690
2691         /*
2692          * step two, delete the device extents and the
2693          * chunk tree entries
2694          */
2695         ret = btrfs_remove_chunk(trans, root, chunk_offset);
2696         btrfs_end_transaction(trans, root);
2697         return ret;
2698 }
2699
2700 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2701 {
2702         struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2703         struct btrfs_path *path;
2704         struct extent_buffer *leaf;
2705         struct btrfs_chunk *chunk;
2706         struct btrfs_key key;
2707         struct btrfs_key found_key;
2708         u64 chunk_tree = chunk_root->root_key.objectid;
2709         u64 chunk_type;
2710         bool retried = false;
2711         int failed = 0;
2712         int ret;
2713
2714         path = btrfs_alloc_path();
2715         if (!path)
2716                 return -ENOMEM;
2717
2718 again:
2719         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2720         key.offset = (u64)-1;
2721         key.type = BTRFS_CHUNK_ITEM_KEY;
2722
2723         while (1) {
2724                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2725                 if (ret < 0)
2726                         goto error;
2727                 BUG_ON(ret == 0); /* Corruption */
2728
2729                 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2730                                           key.type);
2731                 if (ret < 0)
2732                         goto error;
2733                 if (ret > 0)
2734                         break;
2735
2736                 leaf = path->nodes[0];
2737                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2738
2739                 chunk = btrfs_item_ptr(leaf, path->slots[0],
2740                                        struct btrfs_chunk);
2741                 chunk_type = btrfs_chunk_type(leaf, chunk);
2742                 btrfs_release_path(path);
2743
2744                 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2745                         ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
2746                                                    found_key.objectid,
2747                                                    found_key.offset);
2748                         if (ret == -ENOSPC)
2749                                 failed++;
2750                         else
2751                                 BUG_ON(ret);
2752                 }
2753
2754                 if (found_key.offset == 0)
2755                         break;
2756                 key.offset = found_key.offset - 1;
2757         }
2758         ret = 0;
2759         if (failed && !retried) {
2760                 failed = 0;
2761                 retried = true;
2762                 goto again;
2763         } else if (WARN_ON(failed && retried)) {
2764                 ret = -ENOSPC;
2765         }
2766 error:
2767         btrfs_free_path(path);
2768         return ret;
2769 }
2770
2771 static int insert_balance_item(struct btrfs_root *root,
2772                                struct btrfs_balance_control *bctl)
2773 {
2774         struct btrfs_trans_handle *trans;
2775         struct btrfs_balance_item *item;
2776         struct btrfs_disk_balance_args disk_bargs;
2777         struct btrfs_path *path;
2778         struct extent_buffer *leaf;
2779         struct btrfs_key key;
2780         int ret, err;
2781
2782         path = btrfs_alloc_path();
2783         if (!path)
2784                 return -ENOMEM;
2785
2786         trans = btrfs_start_transaction(root, 0);
2787         if (IS_ERR(trans)) {
2788                 btrfs_free_path(path);
2789                 return PTR_ERR(trans);
2790         }
2791
2792         key.objectid = BTRFS_BALANCE_OBJECTID;
2793         key.type = BTRFS_BALANCE_ITEM_KEY;
2794         key.offset = 0;
2795
2796         ret = btrfs_insert_empty_item(trans, root, path, &key,
2797                                       sizeof(*item));
2798         if (ret)
2799                 goto out;
2800
2801         leaf = path->nodes[0];
2802         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2803
2804         memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2805
2806         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2807         btrfs_set_balance_data(leaf, item, &disk_bargs);
2808         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2809         btrfs_set_balance_meta(leaf, item, &disk_bargs);
2810         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2811         btrfs_set_balance_sys(leaf, item, &disk_bargs);
2812
2813         btrfs_set_balance_flags(leaf, item, bctl->flags);
2814
2815         btrfs_mark_buffer_dirty(leaf);
2816 out:
2817         btrfs_free_path(path);
2818         err = btrfs_commit_transaction(trans, root);
2819         if (err && !ret)
2820                 ret = err;
2821         return ret;
2822 }
2823
2824 static int del_balance_item(struct btrfs_root *root)
2825 {
2826         struct btrfs_trans_handle *trans;
2827         struct btrfs_path *path;
2828         struct btrfs_key key;
2829         int ret, err;
2830
2831         path = btrfs_alloc_path();
2832         if (!path)
2833                 return -ENOMEM;
2834
2835         trans = btrfs_start_transaction(root, 0);
2836         if (IS_ERR(trans)) {
2837                 btrfs_free_path(path);
2838                 return PTR_ERR(trans);
2839         }
2840
2841         key.objectid = BTRFS_BALANCE_OBJECTID;
2842         key.type = BTRFS_BALANCE_ITEM_KEY;
2843         key.offset = 0;
2844
2845         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2846         if (ret < 0)
2847                 goto out;
2848         if (ret > 0) {
2849                 ret = -ENOENT;
2850                 goto out;
2851         }
2852
2853         ret = btrfs_del_item(trans, root, path);
2854 out:
2855         btrfs_free_path(path);
2856         err = btrfs_commit_transaction(trans, root);
2857         if (err && !ret)
2858                 ret = err;
2859         return ret;
2860 }
2861
2862 /*
2863  * This is a heuristic used to reduce the number of chunks balanced on
2864  * resume after balance was interrupted.
2865  */
2866 static void update_balance_args(struct btrfs_balance_control *bctl)
2867 {
2868         /*
2869          * Turn on soft mode for chunk types that were being converted.
2870          */
2871         if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
2872                 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
2873         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
2874                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
2875         if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
2876                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
2877
2878         /*
2879          * Turn on usage filter if is not already used.  The idea is
2880          * that chunks that we have already balanced should be
2881          * reasonably full.  Don't do it for chunks that are being
2882          * converted - that will keep us from relocating unconverted
2883          * (albeit full) chunks.
2884          */
2885         if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2886             !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2887                 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
2888                 bctl->data.usage = 90;
2889         }
2890         if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2891             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2892                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
2893                 bctl->sys.usage = 90;
2894         }
2895         if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2896             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2897                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
2898                 bctl->meta.usage = 90;
2899         }
2900 }
2901
2902 /*
2903  * Should be called with both balance and volume mutexes held to
2904  * serialize other volume operations (add_dev/rm_dev/resize) with
2905  * restriper.  Same goes for unset_balance_control.
2906  */
2907 static void set_balance_control(struct btrfs_balance_control *bctl)
2908 {
2909         struct btrfs_fs_info *fs_info = bctl->fs_info;
2910
2911         BUG_ON(fs_info->balance_ctl);
2912
2913         spin_lock(&fs_info->balance_lock);
2914         fs_info->balance_ctl = bctl;
2915         spin_unlock(&fs_info->balance_lock);
2916 }
2917
2918 static void unset_balance_control(struct btrfs_fs_info *fs_info)
2919 {
2920         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2921
2922         BUG_ON(!fs_info->balance_ctl);
2923
2924         spin_lock(&fs_info->balance_lock);
2925         fs_info->balance_ctl = NULL;
2926         spin_unlock(&fs_info->balance_lock);
2927
2928         kfree(bctl);
2929 }
2930
2931 /*
2932  * Balance filters.  Return 1 if chunk should be filtered out
2933  * (should not be balanced).
2934  */
2935 static int chunk_profiles_filter(u64 chunk_type,
2936                                  struct btrfs_balance_args *bargs)
2937 {
2938         chunk_type = chunk_to_extended(chunk_type) &
2939                                 BTRFS_EXTENDED_PROFILE_MASK;
2940
2941         if (bargs->profiles & chunk_type)
2942                 return 0;
2943
2944         return 1;
2945 }
2946
2947 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
2948                               struct btrfs_balance_args *bargs)
2949 {
2950         struct btrfs_block_group_cache *cache;
2951         u64 chunk_used, user_thresh;
2952         int ret = 1;
2953
2954         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2955         chunk_used = btrfs_block_group_used(&cache->item);
2956
2957         if (bargs->usage == 0)
2958                 user_thresh = 1;
2959         else if (bargs->usage > 100)
2960                 user_thresh = cache->key.offset;
2961         else
2962                 user_thresh = div_factor_fine(cache->key.offset,
2963                                               bargs->usage);
2964
2965         if (chunk_used < user_thresh)
2966                 ret = 0;
2967
2968         btrfs_put_block_group(cache);
2969         return ret;
2970 }
2971
2972 static int chunk_devid_filter(struct extent_buffer *leaf,
2973                               struct btrfs_chunk *chunk,
2974                               struct btrfs_balance_args *bargs)
2975 {
2976         struct btrfs_stripe *stripe;
2977         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2978         int i;
2979
2980         for (i = 0; i < num_stripes; i++) {
2981                 stripe = btrfs_stripe_nr(chunk, i);
2982                 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
2983                         return 0;
2984         }
2985
2986         return 1;
2987 }
2988
2989 /* [pstart, pend) */
2990 static int chunk_drange_filter(struct extent_buffer *leaf,
2991                                struct btrfs_chunk *chunk,
2992                                u64 chunk_offset,
2993                                struct btrfs_balance_args *bargs)
2994 {
2995         struct btrfs_stripe *stripe;
2996         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2997         u64 stripe_offset;
2998         u64 stripe_length;
2999         int factor;
3000         int i;
3001
3002         if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3003                 return 0;
3004
3005         if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3006              BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3007                 factor = num_stripes / 2;
3008         } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3009                 factor = num_stripes - 1;
3010         } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3011                 factor = num_stripes - 2;
3012         } else {
3013                 factor = num_stripes;
3014         }
3015
3016         for (i = 0; i < num_stripes; i++) {
3017                 stripe = btrfs_stripe_nr(chunk, i);
3018                 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3019                         continue;
3020
3021                 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3022                 stripe_length = btrfs_chunk_length(leaf, chunk);
3023                 do_div(stripe_length, factor);
3024
3025                 if (stripe_offset < bargs->pend &&
3026                     stripe_offset + stripe_length > bargs->pstart)
3027                         return 0;
3028         }
3029
3030         return 1;
3031 }
3032
3033 /* [vstart, vend) */
3034 static int chunk_vrange_filter(struct extent_buffer *leaf,
3035                                struct btrfs_chunk *chunk,
3036                                u64 chunk_offset,
3037                                struct btrfs_balance_args *bargs)
3038 {
3039         if (chunk_offset < bargs->vend &&
3040             chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3041                 /* at least part of the chunk is inside this vrange */
3042                 return 0;
3043
3044         return 1;
3045 }
3046
3047 static int chunk_soft_convert_filter(u64 chunk_type,
3048                                      struct btrfs_balance_args *bargs)
3049 {
3050         if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3051                 return 0;
3052
3053         chunk_type = chunk_to_extended(chunk_type) &
3054                                 BTRFS_EXTENDED_PROFILE_MASK;
3055
3056         if (bargs->target == chunk_type)
3057                 return 1;
3058
3059         return 0;
3060 }
3061
3062 static int should_balance_chunk(struct btrfs_root *root,
3063                                 struct extent_buffer *leaf,
3064                                 struct btrfs_chunk *chunk, u64 chunk_offset)
3065 {
3066         struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
3067         struct btrfs_balance_args *bargs = NULL;
3068         u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3069
3070         /* type filter */
3071         if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3072               (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3073                 return 0;
3074         }
3075
3076         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3077                 bargs = &bctl->data;
3078         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3079                 bargs = &bctl->sys;
3080         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3081                 bargs = &bctl->meta;
3082
3083         /* profiles filter */
3084         if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3085             chunk_profiles_filter(chunk_type, bargs)) {
3086                 return 0;
3087         }
3088
3089         /* usage filter */
3090         if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3091             chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
3092                 return 0;
3093         }
3094
3095         /* devid filter */
3096         if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3097             chunk_devid_filter(leaf, chunk, bargs)) {
3098                 return 0;
3099         }
3100
3101         /* drange filter, makes sense only with devid filter */
3102         if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3103             chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3104                 return 0;
3105         }
3106
3107         /* vrange filter */
3108         if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3109             chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3110                 return 0;
3111         }
3112
3113         /* soft profile changing mode */
3114         if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3115             chunk_soft_convert_filter(chunk_type, bargs)) {
3116                 return 0;
3117         }
3118
3119         /*
3120          * limited by count, must be the last filter
3121          */
3122         if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3123                 if (bargs->limit == 0)
3124                         return 0;
3125                 else
3126                         bargs->limit--;
3127         }
3128
3129         return 1;
3130 }
3131
3132 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3133 {
3134         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3135         struct btrfs_root *chunk_root = fs_info->chunk_root;
3136         struct btrfs_root *dev_root = fs_info->dev_root;
3137         struct list_head *devices;
3138         struct btrfs_device *device;
3139         u64 old_size;
3140         u64 size_to_free;
3141         struct btrfs_chunk *chunk;
3142         struct btrfs_path *path;
3143         struct btrfs_key key;
3144         struct btrfs_key found_key;
3145         struct btrfs_trans_handle *trans;
3146         struct extent_buffer *leaf;
3147         int slot;
3148         int ret;
3149         int enospc_errors = 0;
3150         bool counting = true;
3151         u64 limit_data = bctl->data.limit;
3152         u64 limit_meta = bctl->meta.limit;
3153         u64 limit_sys = bctl->sys.limit;
3154
3155         /* step one make some room on all the devices */
3156         devices = &fs_info->fs_devices->devices;
3157         list_for_each_entry(device, devices, dev_list) {
3158                 old_size = btrfs_device_get_total_bytes(device);
3159                 size_to_free = div_factor(old_size, 1);
3160                 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
3161                 if (!device->writeable ||
3162                     btrfs_device_get_total_bytes(device) -
3163                     btrfs_device_get_bytes_used(device) > size_to_free ||
3164                     device->is_tgtdev_for_dev_replace)
3165                         continue;
3166
3167                 ret = btrfs_shrink_device(device, old_size - size_to_free);
3168                 if (ret == -ENOSPC)
3169                         break;
3170                 BUG_ON(ret);
3171
3172                 trans = btrfs_start_transaction(dev_root, 0);
3173                 BUG_ON(IS_ERR(trans));
3174
3175                 ret = btrfs_grow_device(trans, device, old_size);
3176                 BUG_ON(ret);
3177
3178                 btrfs_end_transaction(trans, dev_root);
3179         }
3180
3181         /* step two, relocate all the chunks */
3182         path = btrfs_alloc_path();
3183         if (!path) {
3184                 ret = -ENOMEM;
3185                 goto error;
3186         }
3187
3188         /* zero out stat counters */
3189         spin_lock(&fs_info->balance_lock);
3190         memset(&bctl->stat, 0, sizeof(bctl->stat));
3191         spin_unlock(&fs_info->balance_lock);
3192 again:
3193         if (!counting) {
3194                 bctl->data.limit = limit_data;
3195                 bctl->meta.limit = limit_meta;
3196                 bctl->sys.limit = limit_sys;
3197         }
3198         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3199         key.offset = (u64)-1;
3200         key.type = BTRFS_CHUNK_ITEM_KEY;
3201
3202         while (1) {
3203                 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3204                     atomic_read(&fs_info->balance_cancel_req)) {
3205                         ret = -ECANCELED;
3206                         goto error;
3207                 }
3208
3209                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3210                 if (ret < 0)
3211                         goto error;
3212
3213                 /*
3214                  * this shouldn't happen, it means the last relocate
3215                  * failed
3216                  */
3217                 if (ret == 0)
3218                         BUG(); /* FIXME break ? */
3219
3220                 ret = btrfs_previous_item(chunk_root, path, 0,
3221                                           BTRFS_CHUNK_ITEM_KEY);
3222                 if (ret) {
3223                         ret = 0;
3224                         break;
3225                 }
3226
3227                 leaf = path->nodes[0];
3228                 slot = path->slots[0];
3229                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3230
3231                 if (found_key.objectid != key.objectid)
3232                         break;
3233
3234                 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3235
3236                 if (!counting) {
3237                         spin_lock(&fs_info->balance_lock);
3238                         bctl->stat.considered++;
3239                         spin_unlock(&fs_info->balance_lock);
3240                 }
3241
3242                 ret = should_balance_chunk(chunk_root, leaf, chunk,
3243                                            found_key.offset);
3244                 btrfs_release_path(path);
3245                 if (!ret)
3246                         goto loop;
3247
3248                 if (counting) {
3249                         spin_lock(&fs_info->balance_lock);
3250                         bctl->stat.expected++;
3251                         spin_unlock(&fs_info->balance_lock);
3252                         goto loop;
3253                 }
3254
3255                 ret = btrfs_relocate_chunk(chunk_root,
3256                                            chunk_root->root_key.objectid,
3257                                            found_key.objectid,
3258                                            found_key.offset);
3259                 if (ret && ret != -ENOSPC)
3260                         goto error;
3261                 if (ret == -ENOSPC) {
3262                         enospc_errors++;
3263                 } else {
3264                         spin_lock(&fs_info->balance_lock);
3265                         bctl->stat.completed++;
3266                         spin_unlock(&fs_info->balance_lock);
3267                 }
3268 loop:
3269                 if (found_key.offset == 0)
3270                         break;
3271                 key.offset = found_key.offset - 1;
3272         }
3273
3274         if (counting) {
3275                 btrfs_release_path(path);
3276                 counting = false;
3277                 goto again;
3278         }
3279 error:
3280         btrfs_free_path(path);
3281         if (enospc_errors) {
3282                 btrfs_info(fs_info, "%d enospc errors during balance",
3283                        enospc_errors);
3284                 if (!ret)
3285                         ret = -ENOSPC;
3286         }
3287
3288         return ret;
3289 }
3290
3291 /**
3292  * alloc_profile_is_valid - see if a given profile is valid and reduced
3293  * @flags: profile to validate
3294  * @extended: if true @flags is treated as an extended profile
3295  */
3296 static int alloc_profile_is_valid(u64 flags, int extended)
3297 {
3298         u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3299                                BTRFS_BLOCK_GROUP_PROFILE_MASK);
3300
3301         flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3302
3303         /* 1) check that all other bits are zeroed */
3304         if (flags & ~mask)
3305                 return 0;
3306
3307         /* 2) see if profile is reduced */
3308         if (flags == 0)
3309                 return !extended; /* "0" is valid for usual profiles */
3310
3311         /* true if exactly one bit set */
3312         return (flags & (flags - 1)) == 0;
3313 }
3314
3315 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3316 {
3317         /* cancel requested || normal exit path */
3318         return atomic_read(&fs_info->balance_cancel_req) ||
3319                 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3320                  atomic_read(&fs_info->balance_cancel_req) == 0);
3321 }
3322
3323 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3324 {
3325         int ret;
3326
3327         unset_balance_control(fs_info);
3328         ret = del_balance_item(fs_info->tree_root);
3329         if (ret)
3330                 btrfs_std_error(fs_info, ret);
3331
3332         atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3333 }
3334
3335 /*
3336  * Should be called with both balance and volume mutexes held
3337  */
3338 int btrfs_balance(struct btrfs_balance_control *bctl,
3339                   struct btrfs_ioctl_balance_args *bargs)
3340 {
3341         struct btrfs_fs_info *fs_info = bctl->fs_info;
3342         u64 allowed;
3343         int mixed = 0;
3344         int ret;
3345         u64 num_devices;
3346         unsigned seq;
3347
3348         if (btrfs_fs_closing(fs_info) ||
3349             atomic_read(&fs_info->balance_pause_req) ||
3350             atomic_read(&fs_info->balance_cancel_req)) {
3351                 ret = -EINVAL;
3352                 goto out;
3353         }
3354
3355         allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3356         if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3357                 mixed = 1;
3358
3359         /*
3360          * In case of mixed groups both data and meta should be picked,
3361          * and identical options should be given for both of them.
3362          */
3363         allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3364         if (mixed && (bctl->flags & allowed)) {
3365                 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3366                     !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3367                     memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3368                         btrfs_err(fs_info, "with mixed groups data and "
3369                                    "metadata balance options must be the same");
3370                         ret = -EINVAL;
3371                         goto out;
3372                 }
3373         }
3374
3375         num_devices = fs_info->fs_devices->num_devices;
3376         btrfs_dev_replace_lock(&fs_info->dev_replace);
3377         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3378                 BUG_ON(num_devices < 1);
3379                 num_devices--;
3380         }
3381         btrfs_dev_replace_unlock(&fs_info->dev_replace);
3382         allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
3383         if (num_devices == 1)
3384                 allowed |= BTRFS_BLOCK_GROUP_DUP;
3385         else if (num_devices > 1)
3386                 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3387         if (num_devices > 2)
3388                 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3389         if (num_devices > 3)
3390                 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3391                             BTRFS_BLOCK_GROUP_RAID6);
3392         if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3393             (!alloc_profile_is_valid(bctl->data.target, 1) ||
3394              (bctl->data.target & ~allowed))) {
3395                 btrfs_err(fs_info, "unable to start balance with target "
3396                            "data profile %llu",
3397                        bctl->data.target);
3398                 ret = -EINVAL;
3399                 goto out;
3400         }
3401         if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3402             (!alloc_profile_is_valid(bctl->meta.target, 1) ||
3403              (bctl->meta.target & ~allowed))) {
3404                 btrfs_err(fs_info,
3405                            "unable to start balance with target metadata profile %llu",
3406                        bctl->meta.target);
3407                 ret = -EINVAL;
3408                 goto out;
3409         }
3410         if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3411             (!alloc_profile_is_valid(bctl->sys.target, 1) ||
3412              (bctl->sys.target & ~allowed))) {
3413                 btrfs_err(fs_info,
3414                            "unable to start balance with target system profile %llu",
3415                        bctl->sys.target);
3416                 ret = -EINVAL;
3417                 goto out;
3418         }
3419
3420         /* allow dup'ed data chunks only in mixed mode */
3421         if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3422             (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
3423                 btrfs_err(fs_info, "dup for data is not allowed");
3424                 ret = -EINVAL;
3425                 goto out;
3426         }
3427
3428         /* allow to reduce meta or sys integrity only if force set */
3429         allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3430                         BTRFS_BLOCK_GROUP_RAID10 |
3431                         BTRFS_BLOCK_GROUP_RAID5 |
3432                         BTRFS_BLOCK_GROUP_RAID6;
3433         do {
3434                 seq = read_seqbegin(&fs_info->profiles_lock);
3435
3436                 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3437                      (fs_info->avail_system_alloc_bits & allowed) &&
3438                      !(bctl->sys.target & allowed)) ||
3439                     ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3440                      (fs_info->avail_metadata_alloc_bits & allowed) &&
3441                      !(bctl->meta.target & allowed))) {
3442                         if (bctl->flags & BTRFS_BALANCE_FORCE) {
3443                                 btrfs_info(fs_info, "force reducing metadata integrity");
3444                         } else {
3445                                 btrfs_err(fs_info, "balance will reduce metadata "
3446                                            "integrity, use force if you want this");
3447                                 ret = -EINVAL;
3448                                 goto out;
3449                         }
3450                 }
3451         } while (read_seqretry(&fs_info->profiles_lock, seq));
3452
3453         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3454                 int num_tolerated_disk_barrier_failures;
3455                 u64 target = bctl->sys.target;
3456
3457                 num_tolerated_disk_barrier_failures =
3458                         btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3459                 if (num_tolerated_disk_barrier_failures > 0 &&
3460                     (target &
3461                      (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3462                       BTRFS_AVAIL_ALLOC_BIT_SINGLE)))
3463                         num_tolerated_disk_barrier_failures = 0;
3464                 else if (num_tolerated_disk_barrier_failures > 1 &&
3465                          (target &
3466                           (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)))
3467                         num_tolerated_disk_barrier_failures = 1;
3468
3469                 fs_info->num_tolerated_disk_barrier_failures =
3470                         num_tolerated_disk_barrier_failures;
3471         }
3472
3473         ret = insert_balance_item(fs_info->tree_root, bctl);
3474         if (ret && ret != -EEXIST)
3475                 goto out;
3476
3477         if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3478                 BUG_ON(ret == -EEXIST);
3479                 set_balance_control(bctl);
3480         } else {
3481                 BUG_ON(ret != -EEXIST);
3482                 spin_lock(&fs_info->balance_lock);
3483                 update_balance_args(bctl);
3484                 spin_unlock(&fs_info->balance_lock);
3485         }
3486
3487         atomic_inc(&fs_info->balance_running);
3488         mutex_unlock(&fs_info->balance_mutex);
3489
3490         ret = __btrfs_balance(fs_info);
3491
3492         mutex_lock(&fs_info->balance_mutex);
3493         atomic_dec(&fs_info->balance_running);
3494
3495         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3496                 fs_info->num_tolerated_disk_barrier_failures =
3497                         btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3498         }
3499
3500         if (bargs) {
3501                 memset(bargs, 0, sizeof(*bargs));
3502                 update_ioctl_balance_args(fs_info, 0, bargs);
3503         }
3504
3505         if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3506             balance_need_close(fs_info)) {
3507                 __cancel_balance(fs_info);
3508         }
3509
3510         wake_up(&fs_info->balance_wait_q);
3511
3512         return ret;
3513 out:
3514         if (bctl->flags & BTRFS_BALANCE_RESUME)
3515                 __cancel_balance(fs_info);
3516         else {
3517                 kfree(bctl);
3518                 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3519         }
3520         return ret;
3521 }
3522
3523 static int balance_kthread(void *data)
3524 {
3525         struct btrfs_fs_info *fs_info = data;
3526         int ret = 0;
3527
3528         mutex_lock(&fs_info->volume_mutex);
3529         mutex_lock(&fs_info->balance_mutex);
3530
3531         if (fs_info->balance_ctl) {
3532                 btrfs_info(fs_info, "continuing balance");
3533                 ret = btrfs_balance(fs_info->balance_ctl, NULL);
3534         }
3535
3536         mutex_unlock(&fs_info->balance_mutex);
3537         mutex_unlock(&fs_info->volume_mutex);
3538
3539         return ret;
3540 }
3541
3542 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3543 {
3544         struct task_struct *tsk;
3545
3546         spin_lock(&fs_info->balance_lock);
3547         if (!fs_info->balance_ctl) {
3548                 spin_unlock(&fs_info->balance_lock);
3549                 return 0;
3550         }
3551         spin_unlock(&fs_info->balance_lock);
3552
3553         if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
3554                 btrfs_info(fs_info, "force skipping balance");
3555                 return 0;
3556         }
3557
3558         tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3559         return PTR_ERR_OR_ZERO(tsk);
3560 }
3561
3562 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3563 {
3564         struct btrfs_balance_control *bctl;
3565         struct btrfs_balance_item *item;
3566         struct btrfs_disk_balance_args disk_bargs;
3567         struct btrfs_path *path;
3568         struct extent_buffer *leaf;
3569         struct btrfs_key key;
3570         int ret;
3571
3572         path = btrfs_alloc_path();
3573         if (!path)
3574                 return -ENOMEM;
3575
3576         key.objectid = BTRFS_BALANCE_OBJECTID;
3577         key.type = BTRFS_BALANCE_ITEM_KEY;
3578         key.offset = 0;
3579
3580         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3581         if (ret < 0)
3582                 goto out;
3583         if (ret > 0) { /* ret = -ENOENT; */
3584                 ret = 0;
3585                 goto out;
3586         }
3587
3588         bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3589         if (!bctl) {
3590                 ret = -ENOMEM;
3591                 goto out;
3592         }
3593
3594         leaf = path->nodes[0];
3595         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3596
3597         bctl->fs_info = fs_info;
3598         bctl->flags = btrfs_balance_flags(leaf, item);
3599         bctl->flags |= BTRFS_BALANCE_RESUME;
3600
3601         btrfs_balance_data(leaf, item, &disk_bargs);
3602         btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3603         btrfs_balance_meta(leaf, item, &disk_bargs);
3604         btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3605         btrfs_balance_sys(leaf, item, &disk_bargs);
3606         btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3607
3608         WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3609
3610         mutex_lock(&fs_info->volume_mutex);
3611         mutex_lock(&fs_info->balance_mutex);
3612
3613         set_balance_control(bctl);
3614
3615         mutex_unlock(&fs_info->balance_mutex);
3616         mutex_unlock(&fs_info->volume_mutex);
3617 out:
3618         btrfs_free_path(path);
3619         return ret;
3620 }
3621
3622 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3623 {
3624         int ret = 0;
3625
3626         mutex_lock(&fs_info->balance_mutex);
3627         if (!fs_info->balance_ctl) {
3628                 mutex_unlock(&fs_info->balance_mutex);
3629                 return -ENOTCONN;
3630         }
3631
3632         if (atomic_read(&fs_info->balance_running)) {
3633                 atomic_inc(&fs_info->balance_pause_req);
3634                 mutex_unlock(&fs_info->balance_mutex);
3635
3636                 wait_event(fs_info->balance_wait_q,
3637                            atomic_read(&fs_info->balance_running) == 0);
3638
3639                 mutex_lock(&fs_info->balance_mutex);
3640                 /* we are good with balance_ctl ripped off from under us */
3641                 BUG_ON(atomic_read(&fs_info->balance_running));
3642                 atomic_dec(&fs_info->balance_pause_req);
3643         } else {
3644                 ret = -ENOTCONN;
3645         }
3646
3647         mutex_unlock(&fs_info->balance_mutex);
3648         return ret;
3649 }
3650
3651 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3652 {
3653         if (fs_info->sb->s_flags & MS_RDONLY)
3654                 return -EROFS;
3655
3656         mutex_lock(&fs_info->balance_mutex);
3657         if (!fs_info->balance_ctl) {
3658                 mutex_unlock(&fs_info->balance_mutex);
3659                 return -ENOTCONN;
3660         }
3661
3662         atomic_inc(&fs_info->balance_cancel_req);
3663         /*
3664          * if we are running just wait and return, balance item is
3665          * deleted in btrfs_balance in this case
3666          */
3667         if (atomic_read(&fs_info->balance_running)) {
3668                 mutex_unlock(&fs_info->balance_mutex);
3669                 wait_event(fs_info->balance_wait_q,
3670                            atomic_read(&fs_info->balance_running) == 0);
3671                 mutex_lock(&fs_info->balance_mutex);
3672         } else {
3673                 /* __cancel_balance needs volume_mutex */
3674                 mutex_unlock(&fs_info->balance_mutex);
3675                 mutex_lock(&fs_info->volume_mutex);
3676                 mutex_lock(&fs_info->balance_mutex);
3677
3678                 if (fs_info->balance_ctl)
3679                         __cancel_balance(fs_info);
3680
3681                 mutex_unlock(&fs_info->volume_mutex);
3682         }
3683
3684         BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3685         atomic_dec(&fs_info->balance_cancel_req);
3686         mutex_unlock(&fs_info->balance_mutex);
3687         return 0;
3688 }
3689
3690 static int btrfs_uuid_scan_kthread(void *data)
3691 {
3692         struct btrfs_fs_info *fs_info = data;
3693         struct btrfs_root *root = fs_info->tree_root;
3694         struct btrfs_key key;
3695         struct btrfs_key max_key;
3696         struct btrfs_path *path = NULL;
3697         int ret = 0;
3698         struct extent_buffer *eb;
3699         int slot;
3700         struct btrfs_root_item root_item;
3701         u32 item_size;
3702         struct btrfs_trans_handle *trans = NULL;
3703
3704         path = btrfs_alloc_path();
3705         if (!path) {
3706                 ret = -ENOMEM;
3707                 goto out;
3708         }
3709
3710         key.objectid = 0;
3711         key.type = BTRFS_ROOT_ITEM_KEY;
3712         key.offset = 0;
3713
3714         max_key.objectid = (u64)-1;
3715         max_key.type = BTRFS_ROOT_ITEM_KEY;
3716         max_key.offset = (u64)-1;
3717
3718         while (1) {
3719                 ret = btrfs_search_forward(root, &key, path, 0);
3720                 if (ret) {
3721                         if (ret > 0)
3722                                 ret = 0;
3723                         break;
3724                 }
3725
3726                 if (key.type != BTRFS_ROOT_ITEM_KEY ||
3727                     (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
3728                      key.objectid != BTRFS_FS_TREE_OBJECTID) ||
3729                     key.objectid > BTRFS_LAST_FREE_OBJECTID)
3730                         goto skip;
3731
3732                 eb = path->nodes[0];
3733                 slot = path->slots[0];
3734                 item_size = btrfs_item_size_nr(eb, slot);
3735                 if (item_size < sizeof(root_item))
3736                         goto skip;
3737
3738                 read_extent_buffer(eb, &root_item,
3739                                    btrfs_item_ptr_offset(eb, slot),
3740                                    (int)sizeof(root_item));
3741                 if (btrfs_root_refs(&root_item) == 0)
3742                         goto skip;
3743
3744                 if (!btrfs_is_empty_uuid(root_item.uuid) ||
3745                     !btrfs_is_empty_uuid(root_item.received_uuid)) {
3746                         if (trans)
3747                                 goto update_tree;
3748
3749                         btrfs_release_path(path);
3750                         /*
3751                          * 1 - subvol uuid item
3752                          * 1 - received_subvol uuid item
3753                          */
3754                         trans = btrfs_start_transaction(fs_info->uuid_root, 2);
3755                         if (IS_ERR(trans)) {
3756                                 ret = PTR_ERR(trans);
3757                                 break;
3758                         }
3759                         continue;
3760                 } else {
3761                         goto skip;
3762                 }
3763 update_tree:
3764                 if (!btrfs_is_empty_uuid(root_item.uuid)) {
3765                         ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3766                                                   root_item.uuid,
3767                                                   BTRFS_UUID_KEY_SUBVOL,
3768                                                   key.objectid);
3769                         if (ret < 0) {
3770                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
3771                                         ret);
3772                                 break;
3773                         }
3774                 }
3775
3776                 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
3777                         ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3778                                                   root_item.received_uuid,
3779                                                  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
3780                                                   key.objectid);
3781                         if (ret < 0) {
3782                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
3783                                         ret);
3784                                 break;
3785                         }
3786                 }
3787
3788 skip:
3789                 if (trans) {
3790                         ret = btrfs_end_transaction(trans, fs_info->uuid_root);
3791                         trans = NULL;
3792                         if (ret)
3793                                 break;
3794                 }
3795
3796                 btrfs_release_path(path);
3797                 if (key.offset < (u64)-1) {
3798                         key.offset++;
3799                 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
3800                         key.offset = 0;
3801                         key.type = BTRFS_ROOT_ITEM_KEY;
3802                 } else if (key.objectid < (u64)-1) {
3803                         key.offset = 0;
3804                         key.type = BTRFS_ROOT_ITEM_KEY;
3805                         key.objectid++;
3806                 } else {
3807                         break;
3808                 }
3809                 cond_resched();
3810         }
3811
3812 out:
3813         btrfs_free_path(path);
3814         if (trans && !IS_ERR(trans))
3815                 btrfs_end_transaction(trans, fs_info->uuid_root);
3816         if (ret)
3817                 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
3818         else
3819                 fs_info->update_uuid_tree_gen = 1;
3820         up(&fs_info->uuid_tree_rescan_sem);
3821         return 0;
3822 }
3823
3824 /*
3825  * Callback for btrfs_uuid_tree_iterate().
3826  * returns:
3827  * 0    check succeeded, the entry is not outdated.
3828  * < 0  if an error occured.
3829  * > 0  if the check failed, which means the caller shall remove the entry.
3830  */
3831 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
3832                                        u8 *uuid, u8 type, u64 subid)
3833 {
3834         struct btrfs_key key;
3835         int ret = 0;
3836         struct btrfs_root *subvol_root;
3837
3838         if (type != BTRFS_UUID_KEY_SUBVOL &&
3839             type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
3840                 goto out;
3841
3842         key.objectid = subid;
3843         key.type = BTRFS_ROOT_ITEM_KEY;
3844         key.offset = (u64)-1;
3845         subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
3846         if (IS_ERR(subvol_root)) {
3847                 ret = PTR_ERR(subvol_root);
3848                 if (ret == -ENOENT)
3849                         ret = 1;
3850                 goto out;
3851         }
3852
3853         switch (type) {
3854         case BTRFS_UUID_KEY_SUBVOL:
3855                 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
3856                         ret = 1;
3857                 break;
3858         case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
3859                 if (memcmp(uuid, subvol_root->root_item.received_uuid,
3860                            BTRFS_UUID_SIZE))
3861                         ret = 1;
3862                 break;
3863         }
3864
3865 out:
3866         return ret;
3867 }
3868
3869 static int btrfs_uuid_rescan_kthread(void *data)
3870 {
3871         struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
3872         int ret;
3873
3874         /*
3875          * 1st step is to iterate through the existing UUID tree and
3876          * to delete all entries that contain outdated data.
3877          * 2nd step is to add all missing entries to the UUID tree.
3878          */
3879         ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
3880         if (ret < 0) {
3881                 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
3882                 up(&fs_info->uuid_tree_rescan_sem);
3883                 return ret;
3884         }
3885         return btrfs_uuid_scan_kthread(data);
3886 }
3887
3888 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
3889 {
3890         struct btrfs_trans_handle *trans;
3891         struct btrfs_root *tree_root = fs_info->tree_root;
3892         struct btrfs_root *uuid_root;
3893         struct task_struct *task;
3894         int ret;
3895
3896         /*
3897          * 1 - root node
3898          * 1 - root item
3899          */
3900         trans = btrfs_start_transaction(tree_root, 2);
3901         if (IS_ERR(trans))
3902                 return PTR_ERR(trans);
3903
3904         uuid_root = btrfs_create_tree(trans, fs_info,
3905                                       BTRFS_UUID_TREE_OBJECTID);
3906         if (IS_ERR(uuid_root)) {
3907                 btrfs_abort_transaction(trans, tree_root,
3908                                         PTR_ERR(uuid_root));
3909                 return PTR_ERR(uuid_root);
3910         }
3911
3912         fs_info->uuid_root = uuid_root;
3913
3914         ret = btrfs_commit_transaction(trans, tree_root);
3915         if (ret)
3916                 return ret;
3917
3918         down(&fs_info->uuid_tree_rescan_sem);
3919         task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
3920         if (IS_ERR(task)) {
3921                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3922                 btrfs_warn(fs_info, "failed to start uuid_scan task");
3923                 up(&fs_info->uuid_tree_rescan_sem);
3924                 return PTR_ERR(task);
3925         }
3926
3927         return 0;
3928 }
3929
3930 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3931 {
3932         struct task_struct *task;
3933
3934         down(&fs_info->uuid_tree_rescan_sem);
3935         task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3936         if (IS_ERR(task)) {
3937                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3938                 btrfs_warn(fs_info, "failed to start uuid_rescan task");
3939                 up(&fs_info->uuid_tree_rescan_sem);
3940                 return PTR_ERR(task);
3941         }
3942
3943         return 0;
3944 }
3945
3946 /*
3947  * shrinking a device means finding all of the device extents past
3948  * the new size, and then following the back refs to the chunks.
3949  * The chunk relocation code actually frees the device extent
3950  */
3951 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
3952 {
3953         struct btrfs_trans_handle *trans;
3954         struct btrfs_root *root = device->dev_root;
3955         struct btrfs_dev_extent *dev_extent = NULL;
3956         struct btrfs_path *path;
3957         u64 length;
3958         u64 chunk_tree;
3959         u64 chunk_objectid;
3960         u64 chunk_offset;
3961         int ret;
3962         int slot;
3963         int failed = 0;
3964         bool retried = false;
3965         struct extent_buffer *l;
3966         struct btrfs_key key;
3967         struct btrfs_super_block *super_copy = root->fs_info->super_copy;
3968         u64 old_total = btrfs_super_total_bytes(super_copy);
3969         u64 old_size = btrfs_device_get_total_bytes(device);
3970         u64 diff = old_size - new_size;
3971
3972         if (device->is_tgtdev_for_dev_replace)
3973                 return -EINVAL;
3974
3975         path = btrfs_alloc_path();
3976         if (!path)
3977                 return -ENOMEM;
3978
3979         path->reada = 2;
3980
3981         lock_chunks(root);
3982
3983         btrfs_device_set_total_bytes(device, new_size);
3984         if (device->writeable) {
3985                 device->fs_devices->total_rw_bytes -= diff;
3986                 spin_lock(&root->fs_info->free_chunk_lock);
3987                 root->fs_info->free_chunk_space -= diff;
3988                 spin_unlock(&root->fs_info->free_chunk_lock);
3989         }
3990         unlock_chunks(root);
3991
3992 again:
3993         key.objectid = device->devid;
3994         key.offset = (u64)-1;
3995         key.type = BTRFS_DEV_EXTENT_KEY;
3996
3997         do {
3998                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3999                 if (ret < 0)
4000                         goto done;
4001
4002                 ret = btrfs_previous_item(root, path, 0, key.type);
4003                 if (ret < 0)
4004                         goto done;
4005                 if (ret) {
4006                         ret = 0;
4007                         btrfs_release_path(path);
4008                         break;
4009                 }
4010
4011                 l = path->nodes[0];
4012                 slot = path->slots[0];
4013                 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4014
4015                 if (key.objectid != device->devid) {
4016                         btrfs_release_path(path);
4017                         break;
4018                 }
4019
4020                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4021                 length = btrfs_dev_extent_length(l, dev_extent);
4022
4023                 if (key.offset + length <= new_size) {
4024                         btrfs_release_path(path);
4025                         break;
4026                 }
4027
4028                 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
4029                 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
4030                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4031                 btrfs_release_path(path);
4032
4033                 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
4034                                            chunk_offset);
4035                 if (ret && ret != -ENOSPC)
4036                         goto done;
4037                 if (ret == -ENOSPC)
4038                         failed++;
4039         } while (key.offset-- > 0);
4040
4041         if (failed && !retried) {
4042                 failed = 0;
4043                 retried = true;
4044                 goto again;
4045         } else if (failed && retried) {
4046                 ret = -ENOSPC;
4047                 lock_chunks(root);
4048
4049                 btrfs_device_set_total_bytes(device, old_size);
4050                 if (device->writeable)
4051                         device->fs_devices->total_rw_bytes += diff;
4052                 spin_lock(&root->fs_info->free_chunk_lock);
4053                 root->fs_info->free_chunk_space += diff;
4054                 spin_unlock(&root->fs_info->free_chunk_lock);
4055                 unlock_chunks(root);
4056                 goto done;
4057         }
4058
4059         /* Shrinking succeeded, else we would be at "done". */
4060         trans = btrfs_start_transaction(root, 0);
4061         if (IS_ERR(trans)) {
4062                 ret = PTR_ERR(trans);
4063                 goto done;
4064         }
4065
4066         lock_chunks(root);
4067         btrfs_device_set_disk_total_bytes(device, new_size);
4068         if (list_empty(&device->resized_list))
4069                 list_add_tail(&device->resized_list,
4070                               &root->fs_info->fs_devices->resized_devices);
4071
4072         WARN_ON(diff > old_total);
4073         btrfs_set_super_total_bytes(super_copy, old_total - diff);
4074         unlock_chunks(root);
4075
4076         /* Now btrfs_update_device() will change the on-disk size. */
4077         ret = btrfs_update_device(trans, device);
4078         btrfs_end_transaction(trans, root);
4079 done:
4080         btrfs_free_path(path);
4081         return ret;
4082 }
4083
4084 static int btrfs_add_system_chunk(struct btrfs_root *root,
4085                            struct btrfs_key *key,
4086                            struct btrfs_chunk *chunk, int item_size)
4087 {
4088         struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4089         struct btrfs_disk_key disk_key;
4090         u32 array_size;
4091         u8 *ptr;
4092
4093         lock_chunks(root);
4094         array_size = btrfs_super_sys_array_size(super_copy);
4095         if (array_size + item_size + sizeof(disk_key)
4096                         > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4097                 unlock_chunks(root);
4098                 return -EFBIG;
4099         }
4100
4101         ptr = super_copy->sys_chunk_array + array_size;
4102         btrfs_cpu_key_to_disk(&disk_key, key);
4103         memcpy(ptr, &disk_key, sizeof(disk_key));
4104         ptr += sizeof(disk_key);
4105         memcpy(ptr, chunk, item_size);
4106         item_size += sizeof(disk_key);
4107         btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4108         unlock_chunks(root);
4109
4110         return 0;
4111 }
4112
4113 /*
4114  * sort the devices in descending order by max_avail, total_avail
4115  */
4116 static int btrfs_cmp_device_info(const void *a, const void *b)
4117 {
4118         const struct btrfs_device_info *di_a = a;
4119         const struct btrfs_device_info *di_b = b;
4120
4121         if (di_a->max_avail > di_b->max_avail)
4122                 return -1;
4123         if (di_a->max_avail < di_b->max_avail)
4124                 return 1;
4125         if (di_a->total_avail > di_b->total_avail)
4126                 return -1;
4127         if (di_a->total_avail < di_b->total_avail)
4128                 return 1;
4129         return 0;
4130 }
4131
4132 static struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
4133         [BTRFS_RAID_RAID10] = {
4134                 .sub_stripes    = 2,
4135                 .dev_stripes    = 1,
4136                 .devs_max       = 0,    /* 0 == as many as possible */
4137                 .devs_min       = 4,
4138                 .devs_increment = 2,
4139                 .ncopies        = 2,
4140         },
4141         [BTRFS_RAID_RAID1] = {
4142                 .sub_stripes    = 1,
4143                 .dev_stripes    = 1,
4144                 .devs_max       = 2,
4145                 .devs_min       = 2,
4146                 .devs_increment = 2,
4147                 .ncopies        = 2,
4148         },
4149         [BTRFS_RAID_DUP] = {
4150                 .sub_stripes    = 1,
4151                 .dev_stripes    = 2,
4152                 .devs_max       = 1,
4153                 .devs_min       = 1,
4154                 .devs_increment = 1,
4155                 .ncopies        = 2,
4156         },
4157         [BTRFS_RAID_RAID0] = {
4158                 .sub_stripes    = 1,
4159                 .dev_stripes    = 1,
4160                 .devs_max       = 0,
4161                 .devs_min       = 2,
4162                 .devs_increment = 1,
4163                 .ncopies        = 1,
4164         },
4165         [BTRFS_RAID_SINGLE] = {
4166                 .sub_stripes    = 1,
4167                 .dev_stripes    = 1,
4168                 .devs_max       = 1,
4169                 .devs_min       = 1,
4170                 .devs_increment = 1,
4171                 .ncopies        = 1,
4172         },
4173         [BTRFS_RAID_RAID5] = {
4174                 .sub_stripes    = 1,
4175                 .dev_stripes    = 1,
4176                 .devs_max       = 0,
4177                 .devs_min       = 2,
4178                 .devs_increment = 1,
4179                 .ncopies        = 2,
4180         },
4181         [BTRFS_RAID_RAID6] = {
4182                 .sub_stripes    = 1,
4183                 .dev_stripes    = 1,
4184                 .devs_max       = 0,
4185                 .devs_min       = 3,
4186                 .devs_increment = 1,
4187                 .ncopies        = 3,
4188         },
4189 };
4190
4191 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4192 {
4193         /* TODO allow them to set a preferred stripe size */
4194         return 64 * 1024;
4195 }
4196
4197 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4198 {
4199         if (!(type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)))
4200                 return;
4201
4202         btrfs_set_fs_incompat(info, RAID56);
4203 }
4204
4205 #define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r)             \
4206                         - sizeof(struct btrfs_item)             \
4207                         - sizeof(struct btrfs_chunk))           \
4208                         / sizeof(struct btrfs_stripe) + 1)
4209
4210 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE        \
4211                                 - 2 * sizeof(struct btrfs_disk_key)     \
4212                                 - 2 * sizeof(struct btrfs_chunk))       \
4213                                 / sizeof(struct btrfs_stripe) + 1)
4214
4215 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4216                                struct btrfs_root *extent_root, u64 start,
4217                                u64 type)
4218 {
4219         struct btrfs_fs_info *info = extent_root->fs_info;
4220         struct btrfs_fs_devices *fs_devices = info->fs_devices;
4221         struct list_head *cur;
4222         struct map_lookup *map = NULL;
4223         struct extent_map_tree *em_tree;
4224         struct extent_map *em;
4225         struct btrfs_device_info *devices_info = NULL;
4226         u64 total_avail;
4227         int num_stripes;        /* total number of stripes to allocate */
4228         int data_stripes;       /* number of stripes that count for
4229                                    block group size */
4230         int sub_stripes;        /* sub_stripes info for map */
4231         int dev_stripes;        /* stripes per dev */
4232         int devs_max;           /* max devs to use */
4233         int devs_min;           /* min devs needed */
4234         int devs_increment;     /* ndevs has to be a multiple of this */
4235         int ncopies;            /* how many copies to data has */
4236         int ret;
4237         u64 max_stripe_size;
4238         u64 max_chunk_size;
4239         u64 stripe_size;
4240         u64 num_bytes;
4241         u64 raid_stripe_len = BTRFS_STRIPE_LEN;
4242         int ndevs;
4243         int i;
4244         int j;
4245         int index;
4246
4247         BUG_ON(!alloc_profile_is_valid(type, 0));
4248
4249         if (list_empty(&fs_devices->alloc_list))
4250                 return -ENOSPC;
4251
4252         index = __get_raid_index(type);
4253
4254         sub_stripes = btrfs_raid_array[index].sub_stripes;
4255         dev_stripes = btrfs_raid_array[index].dev_stripes;
4256         devs_max = btrfs_raid_array[index].devs_max;
4257         devs_min = btrfs_raid_array[index].devs_min;
4258         devs_increment = btrfs_raid_array[index].devs_increment;
4259         ncopies = btrfs_raid_array[index].ncopies;
4260
4261         if (type & BTRFS_BLOCK_GROUP_DATA) {
4262                 max_stripe_size = 1024 * 1024 * 1024;
4263                 max_chunk_size = 10 * max_stripe_size;
4264                 if (!devs_max)
4265                         devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4266         } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4267                 /* for larger filesystems, use larger metadata chunks */
4268                 if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
4269                         max_stripe_size = 1024 * 1024 * 1024;
4270                 else
4271                         max_stripe_size = 256 * 1024 * 1024;
4272                 max_chunk_size = max_stripe_size;
4273                 if (!devs_max)
4274                         devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4275         } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4276                 max_stripe_size = 32 * 1024 * 1024;
4277                 max_chunk_size = 2 * max_stripe_size;
4278                 if (!devs_max)
4279                         devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4280         } else {
4281                 btrfs_err(info, "invalid chunk type 0x%llx requested",
4282                        type);
4283                 BUG_ON(1);
4284         }
4285
4286         /* we don't want a chunk larger than 10% of writeable space */
4287         max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4288                              max_chunk_size);
4289
4290         devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
4291                                GFP_NOFS);
4292         if (!devices_info)
4293                 return -ENOMEM;
4294
4295         cur = fs_devices->alloc_list.next;
4296
4297         /*
4298          * in the first pass through the devices list, we gather information
4299          * about the available holes on each device.
4300          */
4301         ndevs = 0;
4302         while (cur != &fs_devices->alloc_list) {
4303                 struct btrfs_device *device;
4304                 u64 max_avail;
4305                 u64 dev_offset;
4306
4307                 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
4308
4309                 cur = cur->next;
4310
4311                 if (!device->writeable) {
4312                         WARN(1, KERN_ERR
4313                                "BTRFS: read-only device in alloc_list\n");
4314                         continue;
4315                 }
4316
4317                 if (!device->in_fs_metadata ||
4318                     device->is_tgtdev_for_dev_replace)
4319                         continue;
4320
4321                 if (device->total_bytes > device->bytes_used)
4322                         total_avail = device->total_bytes - device->bytes_used;
4323                 else
4324                         total_avail = 0;
4325
4326                 /* If there is no space on this device, skip it. */
4327                 if (total_avail == 0)
4328                         continue;
4329
4330                 ret = find_free_dev_extent(trans, device,
4331                                            max_stripe_size * dev_stripes,
4332                                            &dev_offset, &max_avail);
4333                 if (ret && ret != -ENOSPC)
4334                         goto error;
4335
4336                 if (ret == 0)
4337                         max_avail = max_stripe_size * dev_stripes;
4338
4339                 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4340                         continue;
4341
4342                 if (ndevs == fs_devices->rw_devices) {
4343                         WARN(1, "%s: found more than %llu devices\n",
4344                              __func__, fs_devices->rw_devices);
4345                         break;
4346                 }
4347                 devices_info[ndevs].dev_offset = dev_offset;
4348                 devices_info[ndevs].max_avail = max_avail;
4349                 devices_info[ndevs].total_avail = total_avail;
4350                 devices_info[ndevs].dev = device;
4351                 ++ndevs;
4352         }
4353
4354         /*
4355          * now sort the devices by hole size / available space
4356          */
4357         sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4358              btrfs_cmp_device_info, NULL);
4359
4360         /* round down to number of usable stripes */
4361         ndevs -= ndevs % devs_increment;
4362
4363         if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4364                 ret = -ENOSPC;
4365                 goto error;
4366         }
4367
4368         if (devs_max && ndevs > devs_max)
4369                 ndevs = devs_max;
4370         /*
4371          * the primary goal is to maximize the number of stripes, so use as many
4372          * devices as possible, even if the stripes are not maximum sized.
4373          */
4374         stripe_size = devices_info[ndevs-1].max_avail;
4375         num_stripes = ndevs * dev_stripes;
4376
4377         /*
4378          * this will have to be fixed for RAID1 and RAID10 over
4379          * more drives
4380          */
4381         data_stripes = num_stripes / ncopies;
4382
4383         if (type & BTRFS_BLOCK_GROUP_RAID5) {
4384                 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4385                                  btrfs_super_stripesize(info->super_copy));
4386                 data_stripes = num_stripes - 1;
4387         }
4388         if (type & BTRFS_BLOCK_GROUP_RAID6) {
4389                 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4390                                  btrfs_super_stripesize(info->super_copy));
4391                 data_stripes = num_stripes - 2;
4392         }
4393
4394         /*
4395          * Use the number of data stripes to figure out how big this chunk
4396          * is really going to be in terms of logical address space,
4397          * and compare that answer with the max chunk size
4398          */
4399         if (stripe_size * data_stripes > max_chunk_size) {
4400                 u64 mask = (1ULL << 24) - 1;
4401                 stripe_size = max_chunk_size;
4402                 do_div(stripe_size, data_stripes);
4403
4404                 /* bump the answer up to a 16MB boundary */
4405                 stripe_size = (stripe_size + mask) & ~mask;
4406
4407                 /* but don't go higher than the limits we found
4408                  * while searching for free extents
4409                  */
4410                 if (stripe_size > devices_info[ndevs-1].max_avail)
4411                         stripe_size = devices_info[ndevs-1].max_avail;
4412         }
4413
4414         do_div(stripe_size, dev_stripes);
4415
4416         /* align to BTRFS_STRIPE_LEN */
4417         do_div(stripe_size, raid_stripe_len);
4418         stripe_size *= raid_stripe_len;
4419
4420         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4421         if (!map) {
4422                 ret = -ENOMEM;
4423                 goto error;
4424         }
4425         map->num_stripes = num_stripes;
4426
4427         for (i = 0; i < ndevs; ++i) {
4428                 for (j = 0; j < dev_stripes; ++j) {
4429                         int s = i * dev_stripes + j;
4430                         map->stripes[s].dev = devices_info[i].dev;
4431                         map->stripes[s].physical = devices_info[i].dev_offset +
4432                                                    j * stripe_size;
4433                 }
4434         }
4435         map->sector_size = extent_root->sectorsize;
4436         map->stripe_len = raid_stripe_len;
4437         map->io_align = raid_stripe_len;
4438         map->io_width = raid_stripe_len;
4439         map->type = type;
4440         map->sub_stripes = sub_stripes;
4441
4442         num_bytes = stripe_size * data_stripes;
4443
4444         trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
4445
4446         em = alloc_extent_map();
4447         if (!em) {
4448                 kfree(map);
4449                 ret = -ENOMEM;
4450                 goto error;
4451         }
4452         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4453         em->bdev = (struct block_device *)map;
4454         em->start = start;
4455         em->len = num_bytes;
4456         em->block_start = 0;
4457         em->block_len = em->len;
4458         em->orig_block_len = stripe_size;
4459
4460         em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4461         write_lock(&em_tree->lock);
4462         ret = add_extent_mapping(em_tree, em, 0);
4463         if (!ret) {
4464                 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4465                 atomic_inc(&em->refs);
4466         }
4467         write_unlock(&em_tree->lock);
4468         if (ret) {
4469                 free_extent_map(em);
4470                 goto error;
4471         }
4472
4473         ret = btrfs_make_block_group(trans, extent_root, 0, type,
4474                                      BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4475                                      start, num_bytes);
4476         if (ret)
4477                 goto error_del_extent;
4478
4479         for (i = 0; i < map->num_stripes; i++) {
4480                 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4481                 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4482         }
4483
4484         spin_lock(&extent_root->fs_info->free_chunk_lock);
4485         extent_root->fs_info->free_chunk_space -= (stripe_size *
4486                                                    map->num_stripes);
4487         spin_unlock(&extent_root->fs_info->free_chunk_lock);
4488
4489         free_extent_map(em);
4490         check_raid56_incompat_flag(extent_root->fs_info, type);
4491
4492         kfree(devices_info);
4493         return 0;
4494
4495 error_del_extent:
4496         write_lock(&em_tree->lock);
4497         remove_extent_mapping(em_tree, em);
4498         write_unlock(&em_tree->lock);
4499
4500         /* One for our allocation */
4501         free_extent_map(em);
4502         /* One for the tree reference */
4503         free_extent_map(em);
4504 error:
4505         kfree(devices_info);
4506         return ret;
4507 }
4508
4509 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4510                                 struct btrfs_root *extent_root,
4511                                 u64 chunk_offset, u64 chunk_size)
4512 {
4513         struct btrfs_key key;
4514         struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4515         struct btrfs_device *device;
4516         struct btrfs_chunk *chunk;
4517         struct btrfs_stripe *stripe;
4518         struct extent_map_tree *em_tree;
4519         struct extent_map *em;
4520         struct map_lookup *map;
4521         size_t item_size;
4522         u64 dev_offset;
4523         u64 stripe_size;
4524         int i = 0;
4525         int ret;
4526
4527         em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4528         read_lock(&em_tree->lock);
4529         em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4530         read_unlock(&em_tree->lock);
4531
4532         if (!em) {
4533                 btrfs_crit(extent_root->fs_info, "unable to find logical "
4534                            "%Lu len %Lu", chunk_offset, chunk_size);
4535                 return -EINVAL;
4536         }
4537
4538         if (em->start != chunk_offset || em->len != chunk_size) {
4539                 btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
4540                           " %Lu-%Lu, found %Lu-%Lu", chunk_offset,
4541                           chunk_size, em->start, em->len);
4542                 free_extent_map(em);
4543                 return -EINVAL;
4544         }
4545
4546         map = (struct map_lookup *)em->bdev;
4547         item_size = btrfs_chunk_item_size(map->num_stripes);
4548         stripe_size = em->orig_block_len;
4549
4550         chunk = kzalloc(item_size, GFP_NOFS);
4551         if (!chunk) {
4552                 ret = -ENOMEM;
4553                 goto out;
4554         }
4555
4556         for (i = 0; i < map->num_stripes; i++) {
4557                 device = map->stripes[i].dev;
4558                 dev_offset = map->stripes[i].physical;
4559
4560                 ret = btrfs_update_device(trans, device);
4561                 if (ret)
4562                         goto out;
4563                 ret = btrfs_alloc_dev_extent(trans, device,
4564                                              chunk_root->root_key.objectid,
4565                                              BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4566                                              chunk_offset, dev_offset,
4567                                              stripe_size);
4568                 if (ret)
4569                         goto out;
4570         }
4571
4572         stripe = &chunk->stripe;
4573         for (i = 0; i < map->num_stripes; i++) {
4574                 device = map->stripes[i].dev;
4575                 dev_offset = map->stripes[i].physical;
4576
4577                 btrfs_set_stack_stripe_devid(stripe, device->devid);
4578                 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4579                 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4580                 stripe++;
4581         }
4582
4583         btrfs_set_stack_chunk_length(chunk, chunk_size);
4584         btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4585         btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4586         btrfs_set_stack_chunk_type(chunk, map->type);
4587         btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4588         btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4589         btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4590         btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
4591         btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4592
4593         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4594         key.type = BTRFS_CHUNK_ITEM_KEY;
4595         key.offset = chunk_offset;
4596
4597         ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4598         if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4599                 /*
4600                  * TODO: Cleanup of inserted chunk root in case of
4601                  * failure.
4602                  */
4603                 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
4604                                              item_size);
4605         }
4606
4607 out:
4608         kfree(chunk);
4609         free_extent_map(em);
4610         return ret;
4611 }
4612
4613 /*
4614  * Chunk allocation falls into two parts. The first part does works
4615  * that make the new allocated chunk useable, but not do any operation
4616  * that modifies the chunk tree. The second part does the works that
4617  * require modifying the chunk tree. This division is important for the
4618  * bootstrap process of adding storage to a seed btrfs.
4619  */
4620 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4621                       struct btrfs_root *extent_root, u64 type)
4622 {
4623         u64 chunk_offset;
4624
4625         chunk_offset = find_next_chunk(extent_root->fs_info);
4626         return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
4627 }
4628
4629 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
4630                                          struct btrfs_root *root,
4631                                          struct btrfs_device *device)
4632 {
4633         u64 chunk_offset;
4634         u64 sys_chunk_offset;
4635         u64 alloc_profile;
4636         struct btrfs_fs_info *fs_info = root->fs_info;
4637         struct btrfs_root *extent_root = fs_info->extent_root;
4638         int ret;
4639
4640         chunk_offset = find_next_chunk(fs_info);
4641         alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
4642         ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
4643                                   alloc_profile);
4644         if (ret)
4645                 return ret;
4646
4647         sys_chunk_offset = find_next_chunk(root->fs_info);
4648         alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
4649         ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
4650                                   alloc_profile);
4651         return ret;
4652 }
4653
4654 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
4655 {
4656         int max_errors;
4657
4658         if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
4659                          BTRFS_BLOCK_GROUP_RAID10 |
4660                          BTRFS_BLOCK_GROUP_RAID5 |
4661                          BTRFS_BLOCK_GROUP_DUP)) {
4662                 max_errors = 1;
4663         } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
4664                 max_errors = 2;
4665         } else {
4666                 max_errors = 0;
4667         }
4668
4669         return max_errors;
4670 }
4671
4672 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
4673 {
4674         struct extent_map *em;
4675         struct map_lookup *map;
4676         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4677         int readonly = 0;
4678         int miss_ndevs = 0;
4679         int i;
4680
4681         read_lock(&map_tree->map_tree.lock);
4682         em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
4683         read_unlock(&map_tree->map_tree.lock);
4684         if (!em)
4685                 return 1;
4686
4687         map = (struct map_lookup *)em->bdev;
4688         for (i = 0; i < map->num_stripes; i++) {
4689                 if (map->stripes[i].dev->missing) {
4690                         miss_ndevs++;
4691                         continue;
4692                 }
4693
4694                 if (!map->stripes[i].dev->writeable) {
4695                         readonly = 1;
4696                         goto end;
4697                 }
4698         }
4699
4700         /*
4701          * If the number of missing devices is larger than max errors,
4702          * we can not write the data into that chunk successfully, so
4703          * set it readonly.
4704          */
4705         if (miss_ndevs > btrfs_chunk_max_errors(map))
4706                 readonly = 1;
4707 end:
4708         free_extent_map(em);
4709         return readonly;
4710 }
4711
4712 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
4713 {
4714         extent_map_tree_init(&tree->map_tree);
4715 }
4716
4717 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
4718 {
4719         struct extent_map *em;
4720
4721         while (1) {
4722                 write_lock(&tree->map_tree.lock);
4723                 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
4724                 if (em)
4725                         remove_extent_mapping(&tree->map_tree, em);
4726                 write_unlock(&tree->map_tree.lock);
4727                 if (!em)
4728                         break;
4729                 /* once for us */
4730                 free_extent_map(em);
4731                 /* once for the tree */
4732                 free_extent_map(em);
4733         }
4734 }
4735
4736 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
4737 {
4738         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4739         struct extent_map *em;
4740         struct map_lookup *map;
4741         struct extent_map_tree *em_tree = &map_tree->map_tree;
4742         int ret;
4743
4744         read_lock(&em_tree->lock);
4745         em = lookup_extent_mapping(em_tree, logical, len);
4746         read_unlock(&em_tree->lock);
4747
4748         /*
4749          * We could return errors for these cases, but that could get ugly and
4750          * we'd probably do the same thing which is just not do anything else
4751          * and exit, so return 1 so the callers don't try to use other copies.
4752          */
4753         if (!em) {
4754                 btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
4755                             logical+len);
4756                 return 1;
4757         }
4758
4759         if (em->start > logical || em->start + em->len < logical) {
4760                 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
4761                             "%Lu-%Lu", logical, logical+len, em->start,
4762                             em->start + em->len);
4763                 free_extent_map(em);
4764                 return 1;
4765         }
4766
4767         map = (struct map_lookup *)em->bdev;
4768         if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
4769                 ret = map->num_stripes;
4770         else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
4771                 ret = map->sub_stripes;
4772         else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
4773                 ret = 2;
4774         else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4775                 ret = 3;
4776         else
4777                 ret = 1;
4778         free_extent_map(em);
4779
4780         btrfs_dev_replace_lock(&fs_info->dev_replace);
4781         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
4782                 ret++;
4783         btrfs_dev_replace_unlock(&fs_info->dev_replace);
4784
4785         return ret;
4786 }
4787
4788 unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
4789                                     struct btrfs_mapping_tree *map_tree,
4790                                     u64 logical)
4791 {
4792         struct extent_map *em;
4793         struct map_lookup *map;
4794         struct extent_map_tree *em_tree = &map_tree->map_tree;
4795         unsigned long len = root->sectorsize;
4796
4797         read_lock(&em_tree->lock);
4798         em = lookup_extent_mapping(em_tree, logical, len);
4799         read_unlock(&em_tree->lock);
4800         BUG_ON(!em);
4801
4802         BUG_ON(em->start > logical || em->start + em->len < logical);
4803         map = (struct map_lookup *)em->bdev;
4804         if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4805                          BTRFS_BLOCK_GROUP_RAID6)) {
4806                 len = map->stripe_len * nr_data_stripes(map);
4807         }
4808         free_extent_map(em);
4809         return len;
4810 }
4811
4812 int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
4813                            u64 logical, u64 len, int mirror_num)
4814 {
4815         struct extent_map *em;
4816         struct map_lookup *map;
4817         struct extent_map_tree *em_tree = &map_tree->map_tree;
4818         int ret = 0;
4819
4820         read_lock(&em_tree->lock);
4821         em = lookup_extent_mapping(em_tree, logical, len);
4822         read_unlock(&em_tree->lock);
4823         BUG_ON(!em);
4824
4825         BUG_ON(em->start > logical || em->start + em->len < logical);
4826         map = (struct map_lookup *)em->bdev;
4827         if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4828                          BTRFS_BLOCK_GROUP_RAID6))
4829                 ret = 1;
4830         free_extent_map(em);
4831         return ret;
4832 }
4833
4834 static int find_live_mirror(struct btrfs_fs_info *fs_info,
4835                             struct map_lookup *map, int first, int num,
4836                             int optimal, int dev_replace_is_ongoing)
4837 {
4838         int i;
4839         int tolerance;
4840         struct btrfs_device *srcdev;
4841
4842         if (dev_replace_is_ongoing &&
4843             fs_info->dev_replace.cont_reading_from_srcdev_mode ==
4844              BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
4845                 srcdev = fs_info->dev_replace.srcdev;
4846         else
4847                 srcdev = NULL;
4848
4849         /*
4850          * try to avoid the drive that is the source drive for a
4851          * dev-replace procedure, only choose it if no other non-missing
4852          * mirror is available
4853          */
4854         for (tolerance = 0; tolerance < 2; tolerance++) {
4855                 if (map->stripes[optimal].dev->bdev &&
4856                     (tolerance || map->stripes[optimal].dev != srcdev))
4857                         return optimal;
4858                 for (i = first; i < first + num; i++) {
4859                         if (map->stripes[i].dev->bdev &&
4860                             (tolerance || map->stripes[i].dev != srcdev))
4861                                 return i;
4862                 }
4863         }
4864
4865         /* we couldn't find one that doesn't fail.  Just return something
4866          * and the io error handling code will clean up eventually
4867          */
4868         return optimal;
4869 }
4870
4871 static inline int parity_smaller(u64 a, u64 b)
4872 {
4873         return a > b;
4874 }
4875
4876 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
4877 static void sort_parity_stripes(struct btrfs_bio *bbio, u64 *raid_map)
4878 {
4879         struct btrfs_bio_stripe s;
4880         int i;
4881         u64 l;
4882         int again = 1;
4883
4884         while (again) {
4885                 again = 0;
4886                 for (i = 0; i < bbio->num_stripes - 1; i++) {
4887                         if (parity_smaller(raid_map[i], raid_map[i+1])) {
4888                                 s = bbio->stripes[i];
4889                                 l = raid_map[i];
4890                                 bbio->stripes[i] = bbio->stripes[i+1];
4891                                 raid_map[i] = raid_map[i+1];
4892                                 bbio->stripes[i+1] = s;
4893                                 raid_map[i+1] = l;
4894                                 again = 1;
4895                         }
4896                 }
4897         }
4898 }
4899
4900 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
4901                              u64 logical, u64 *length,
4902                              struct btrfs_bio **bbio_ret,
4903                              int mirror_num, u64 **raid_map_ret)
4904 {
4905         struct extent_map *em;
4906         struct map_lookup *map;
4907         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4908         struct extent_map_tree *em_tree = &map_tree->map_tree;
4909         u64 offset;
4910         u64 stripe_offset;
4911         u64 stripe_end_offset;
4912         u64 stripe_nr;
4913         u64 stripe_nr_orig;
4914         u64 stripe_nr_end;
4915         u64 stripe_len;
4916         u64 *raid_map = NULL;
4917         int stripe_index;
4918         int i;
4919         int ret = 0;
4920         int num_stripes;
4921         int max_errors = 0;
4922         struct btrfs_bio *bbio = NULL;
4923         struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
4924         int dev_replace_is_ongoing = 0;
4925         int num_alloc_stripes;
4926         int patch_the_first_stripe_for_dev_replace = 0;
4927         u64 physical_to_patch_in_first_stripe = 0;
4928         u64 raid56_full_stripe_start = (u64)-1;
4929
4930         read_lock(&em_tree->lock);
4931         em = lookup_extent_mapping(em_tree, logical, *length);
4932         read_unlock(&em_tree->lock);
4933
4934         if (!em) {
4935                 btrfs_crit(fs_info, "unable to find logical %llu len %llu",
4936                         logical, *length);
4937                 return -EINVAL;
4938         }
4939
4940         if (em->start > logical || em->start + em->len < logical) {
4941                 btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
4942                            "found %Lu-%Lu", logical, em->start,
4943                            em->start + em->len);
4944                 free_extent_map(em);
4945                 return -EINVAL;
4946         }
4947
4948         map = (struct map_lookup *)em->bdev;
4949         offset = logical - em->start;
4950
4951         stripe_len = map->stripe_len;
4952         stripe_nr = offset;
4953         /*
4954          * stripe_nr counts the total number of stripes we have to stride
4955          * to get to this block
4956          */
4957         do_div(stripe_nr, stripe_len);
4958
4959         stripe_offset = stripe_nr * stripe_len;
4960         BUG_ON(offset < stripe_offset);
4961
4962         /* stripe_offset is the offset of this block in its stripe*/
4963         stripe_offset = offset - stripe_offset;
4964
4965         /* if we're here for raid56, we need to know the stripe aligned start */
4966         if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) {
4967                 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
4968                 raid56_full_stripe_start = offset;
4969
4970                 /* allow a write of a full stripe, but make sure we don't
4971                  * allow straddling of stripes
4972                  */
4973                 do_div(raid56_full_stripe_start, full_stripe_len);
4974                 raid56_full_stripe_start *= full_stripe_len;
4975         }
4976
4977         if (rw & REQ_DISCARD) {
4978                 /* we don't discard raid56 yet */
4979                 if (map->type &
4980                     (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) {
4981                         ret = -EOPNOTSUPP;
4982                         goto out;
4983                 }
4984                 *length = min_t(u64, em->len - offset, *length);
4985         } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
4986                 u64 max_len;
4987                 /* For writes to RAID[56], allow a full stripeset across all disks.
4988                    For other RAID types and for RAID[56] reads, just allow a single
4989                    stripe (on a single disk). */
4990                 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6) &&
4991                     (rw & REQ_WRITE)) {
4992                         max_len = stripe_len * nr_data_stripes(map) -
4993                                 (offset - raid56_full_stripe_start);
4994                 } else {
4995                         /* we limit the length of each bio to what fits in a stripe */
4996                         max_len = stripe_len - stripe_offset;
4997                 }
4998                 *length = min_t(u64, em->len - offset, max_len);
4999         } else {
5000                 *length = em->len - offset;
5001         }
5002
5003         /* This is for when we're called from btrfs_merge_bio_hook() and all
5004            it cares about is the length */
5005         if (!bbio_ret)
5006                 goto out;
5007
5008         btrfs_dev_replace_lock(dev_replace);
5009         dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5010         if (!dev_replace_is_ongoing)
5011                 btrfs_dev_replace_unlock(dev_replace);
5012
5013         if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5014             !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
5015             dev_replace->tgtdev != NULL) {
5016                 /*
5017                  * in dev-replace case, for repair case (that's the only
5018                  * case where the mirror is selected explicitly when
5019                  * calling btrfs_map_block), blocks left of the left cursor
5020                  * can also be read from the target drive.
5021                  * For REQ_GET_READ_MIRRORS, the target drive is added as
5022                  * the last one to the array of stripes. For READ, it also
5023                  * needs to be supported using the same mirror number.
5024                  * If the requested block is not left of the left cursor,
5025                  * EIO is returned. This can happen because btrfs_num_copies()
5026                  * returns one more in the dev-replace case.
5027                  */
5028                 u64 tmp_length = *length;
5029                 struct btrfs_bio *tmp_bbio = NULL;
5030                 int tmp_num_stripes;
5031                 u64 srcdev_devid = dev_replace->srcdev->devid;
5032                 int index_srcdev = 0;
5033                 int found = 0;
5034                 u64 physical_of_found = 0;
5035
5036                 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
5037                              logical, &tmp_length, &tmp_bbio, 0, NULL);
5038                 if (ret) {
5039                         WARN_ON(tmp_bbio != NULL);
5040                         goto out;
5041                 }
5042
5043                 tmp_num_stripes = tmp_bbio->num_stripes;
5044                 if (mirror_num > tmp_num_stripes) {
5045                         /*
5046                          * REQ_GET_READ_MIRRORS does not contain this
5047                          * mirror, that means that the requested area
5048                          * is not left of the left cursor
5049                          */
5050                         ret = -EIO;
5051                         kfree(tmp_bbio);
5052                         goto out;
5053                 }
5054
5055                 /*
5056                  * process the rest of the function using the mirror_num
5057                  * of the source drive. Therefore look it up first.
5058                  * At the end, patch the device pointer to the one of the
5059                  * target drive.
5060                  */
5061                 for (i = 0; i < tmp_num_stripes; i++) {
5062                         if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) {
5063                                 /*
5064                                  * In case of DUP, in order to keep it
5065                                  * simple, only add the mirror with the
5066                                  * lowest physical address
5067                                  */
5068                                 if (found &&
5069                                     physical_of_found <=
5070                                      tmp_bbio->stripes[i].physical)
5071                                         continue;
5072                                 index_srcdev = i;
5073                                 found = 1;
5074                                 physical_of_found =
5075                                         tmp_bbio->stripes[i].physical;
5076                         }
5077                 }
5078
5079                 if (found) {
5080                         mirror_num = index_srcdev + 1;
5081                         patch_the_first_stripe_for_dev_replace = 1;
5082                         physical_to_patch_in_first_stripe = physical_of_found;
5083                 } else {
5084                         WARN_ON(1);
5085                         ret = -EIO;
5086                         kfree(tmp_bbio);
5087                         goto out;
5088                 }
5089
5090                 kfree(tmp_bbio);
5091         } else if (mirror_num > map->num_stripes) {
5092                 mirror_num = 0;
5093         }
5094
5095         num_stripes = 1;
5096         stripe_index = 0;
5097         stripe_nr_orig = stripe_nr;
5098         stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
5099         do_div(stripe_nr_end, map->stripe_len);
5100         stripe_end_offset = stripe_nr_end * map->stripe_len -
5101                             (offset + *length);
5102
5103         if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5104                 if (rw & REQ_DISCARD)
5105                         num_stripes = min_t(u64, map->num_stripes,
5106                                             stripe_nr_end - stripe_nr_orig);
5107                 stripe_index = do_div(stripe_nr, map->num_stripes);
5108                 if (!(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)))
5109                         mirror_num = 1;
5110         } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5111                 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
5112                         num_stripes = map->num_stripes;
5113                 else if (mirror_num)
5114                         stripe_index = mirror_num - 1;
5115                 else {
5116                         stripe_index = find_live_mirror(fs_info, map, 0,
5117                                             map->num_stripes,
5118                                             current->pid % map->num_stripes,
5119                                             dev_replace_is_ongoing);
5120                         mirror_num = stripe_index + 1;
5121                 }
5122
5123         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5124                 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
5125                         num_stripes = map->num_stripes;
5126                 } else if (mirror_num) {
5127                         stripe_index = mirror_num - 1;
5128                 } else {
5129                         mirror_num = 1;
5130                 }
5131
5132         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5133                 int factor = map->num_stripes / map->sub_stripes;
5134
5135                 stripe_index = do_div(stripe_nr, factor);
5136                 stripe_index *= map->sub_stripes;
5137
5138                 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5139                         num_stripes = map->sub_stripes;
5140                 else if (rw & REQ_DISCARD)
5141                         num_stripes = min_t(u64, map->sub_stripes *
5142                                             (stripe_nr_end - stripe_nr_orig),
5143                                             map->num_stripes);
5144                 else if (mirror_num)
5145                         stripe_index += mirror_num - 1;
5146                 else {
5147                         int old_stripe_index = stripe_index;
5148                         stripe_index = find_live_mirror(fs_info, map,
5149                                               stripe_index,
5150                                               map->sub_stripes, stripe_index +
5151                                               current->pid % map->sub_stripes,
5152                                               dev_replace_is_ongoing);
5153                         mirror_num = stripe_index - old_stripe_index + 1;
5154                 }
5155
5156         } else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
5157                                 BTRFS_BLOCK_GROUP_RAID6)) {
5158                 u64 tmp;
5159
5160                 if (bbio_ret && ((rw & REQ_WRITE) || mirror_num > 1)
5161                     && raid_map_ret) {
5162                         int i, rot;
5163
5164                         /* push stripe_nr back to the start of the full stripe */
5165                         stripe_nr = raid56_full_stripe_start;
5166                         do_div(stripe_nr, stripe_len);
5167
5168                         stripe_index = do_div(stripe_nr, nr_data_stripes(map));
5169
5170                         /* RAID[56] write or recovery. Return all stripes */
5171                         num_stripes = map->num_stripes;
5172                         max_errors = nr_parity_stripes(map);
5173
5174                         raid_map = kmalloc_array(num_stripes, sizeof(u64),
5175                                            GFP_NOFS);
5176                         if (!raid_map) {
5177                                 ret = -ENOMEM;
5178                                 goto out;
5179                         }
5180
5181                         /* Work out the disk rotation on this stripe-set */
5182                         tmp = stripe_nr;
5183                         rot = do_div(tmp, num_stripes);
5184
5185                         /* Fill in the logical address of each stripe */
5186                         tmp = stripe_nr * nr_data_stripes(map);
5187                         for (i = 0; i < nr_data_stripes(map); i++)
5188                                 raid_map[(i+rot) % num_stripes] =
5189                                         em->start + (tmp + i) * map->stripe_len;
5190
5191                         raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5192                         if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5193                                 raid_map[(i+rot+1) % num_stripes] =
5194                                         RAID6_Q_STRIPE;
5195
5196                         *length = map->stripe_len;
5197                         stripe_index = 0;
5198                         stripe_offset = 0;
5199                 } else {
5200                         /*
5201                          * Mirror #0 or #1 means the original data block.
5202                          * Mirror #2 is RAID5 parity block.
5203                          * Mirror #3 is RAID6 Q block.
5204                          */
5205                         stripe_index = do_div(stripe_nr, nr_data_stripes(map));
5206                         if (mirror_num > 1)
5207                                 stripe_index = nr_data_stripes(map) +
5208                                                 mirror_num - 2;
5209
5210                         /* We distribute the parity blocks across stripes */
5211                         tmp = stripe_nr + stripe_index;
5212                         stripe_index = do_div(tmp, map->num_stripes);
5213                         if (!(rw & (REQ_WRITE | REQ_DISCARD |
5214                                     REQ_GET_READ_MIRRORS)) && mirror_num <= 1)
5215                                 mirror_num = 1;
5216                 }
5217         } else {
5218                 /*
5219                  * after this do_div call, stripe_nr is the number of stripes
5220                  * on this device we have to walk to find the data, and
5221                  * stripe_index is the number of our device in the stripe array
5222                  */
5223                 stripe_index = do_div(stripe_nr, map->num_stripes);
5224                 mirror_num = stripe_index + 1;
5225         }
5226         BUG_ON(stripe_index >= map->num_stripes);
5227
5228         num_alloc_stripes = num_stripes;
5229         if (dev_replace_is_ongoing) {
5230                 if (rw & (REQ_WRITE | REQ_DISCARD))
5231                         num_alloc_stripes <<= 1;
5232                 if (rw & REQ_GET_READ_MIRRORS)
5233                         num_alloc_stripes++;
5234         }
5235         bbio = kzalloc(btrfs_bio_size(num_alloc_stripes), GFP_NOFS);
5236         if (!bbio) {
5237                 kfree(raid_map);
5238                 ret = -ENOMEM;
5239                 goto out;
5240         }
5241         atomic_set(&bbio->error, 0);
5242
5243         if (rw & REQ_DISCARD) {
5244                 int factor = 0;
5245                 int sub_stripes = 0;
5246                 u64 stripes_per_dev = 0;
5247                 u32 remaining_stripes = 0;
5248                 u32 last_stripe = 0;
5249
5250                 if (map->type &
5251                     (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5252                         if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5253                                 sub_stripes = 1;
5254                         else
5255                                 sub_stripes = map->sub_stripes;
5256
5257                         factor = map->num_stripes / sub_stripes;
5258                         stripes_per_dev = div_u64_rem(stripe_nr_end -
5259                                                       stripe_nr_orig,
5260                                                       factor,
5261                                                       &remaining_stripes);
5262                         div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5263                         last_stripe *= sub_stripes;
5264                 }
5265
5266                 for (i = 0; i < num_stripes; i++) {
5267                         bbio->stripes[i].physical =
5268                                 map->stripes[stripe_index].physical +
5269                                 stripe_offset + stripe_nr * map->stripe_len;
5270                         bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5271
5272                         if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5273                                          BTRFS_BLOCK_GROUP_RAID10)) {
5274                                 bbio->stripes[i].length = stripes_per_dev *
5275                                                           map->stripe_len;
5276
5277                                 if (i / sub_stripes < remaining_stripes)
5278                                         bbio->stripes[i].length +=
5279                                                 map->stripe_len;
5280
5281                                 /*
5282                                  * Special for the first stripe and
5283                                  * the last stripe:
5284                                  *
5285                                  * |-------|...|-------|
5286                                  *     |----------|
5287                                  *    off     end_off
5288                                  */
5289                                 if (i < sub_stripes)
5290                                         bbio->stripes[i].length -=
5291                                                 stripe_offset;
5292
5293                                 if (stripe_index >= last_stripe &&
5294                                     stripe_index <= (last_stripe +
5295                                                      sub_stripes - 1))
5296                                         bbio->stripes[i].length -=
5297                                                 stripe_end_offset;
5298
5299                                 if (i == sub_stripes - 1)
5300                                         stripe_offset = 0;
5301                         } else
5302                                 bbio->stripes[i].length = *length;
5303
5304                         stripe_index++;
5305                         if (stripe_index == map->num_stripes) {
5306                                 /* This could only happen for RAID0/10 */
5307                                 stripe_index = 0;
5308                                 stripe_nr++;
5309                         }
5310                 }
5311         } else {
5312                 for (i = 0; i < num_stripes; i++) {
5313                         bbio->stripes[i].physical =
5314                                 map->stripes[stripe_index].physical +
5315                                 stripe_offset +
5316                                 stripe_nr * map->stripe_len;
5317                         bbio->stripes[i].dev =
5318                                 map->stripes[stripe_index].dev;
5319                         stripe_index++;
5320                 }
5321         }
5322
5323         if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5324                 max_errors = btrfs_chunk_max_errors(map);
5325
5326         if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
5327             dev_replace->tgtdev != NULL) {
5328                 int index_where_to_add;
5329                 u64 srcdev_devid = dev_replace->srcdev->devid;
5330
5331                 /*
5332                  * duplicate the write operations while the dev replace
5333                  * procedure is running. Since the copying of the old disk
5334                  * to the new disk takes place at run time while the
5335                  * filesystem is mounted writable, the regular write
5336                  * operations to the old disk have to be duplicated to go
5337                  * to the new disk as well.
5338                  * Note that device->missing is handled by the caller, and
5339                  * that the write to the old disk is already set up in the
5340                  * stripes array.
5341                  */
5342                 index_where_to_add = num_stripes;
5343                 for (i = 0; i < num_stripes; i++) {
5344                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5345                                 /* write to new disk, too */
5346                                 struct btrfs_bio_stripe *new =
5347                                         bbio->stripes + index_where_to_add;
5348                                 struct btrfs_bio_stripe *old =
5349                                         bbio->stripes + i;
5350
5351                                 new->physical = old->physical;
5352                                 new->length = old->length;
5353                                 new->dev = dev_replace->tgtdev;
5354                                 index_where_to_add++;
5355                                 max_errors++;
5356                         }
5357                 }
5358                 num_stripes = index_where_to_add;
5359         } else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
5360                    dev_replace->tgtdev != NULL) {
5361                 u64 srcdev_devid = dev_replace->srcdev->devid;
5362                 int index_srcdev = 0;
5363                 int found = 0;
5364                 u64 physical_of_found = 0;
5365
5366                 /*
5367                  * During the dev-replace procedure, the target drive can
5368                  * also be used to read data in case it is needed to repair
5369                  * a corrupt block elsewhere. This is possible if the
5370                  * requested area is left of the left cursor. In this area,
5371                  * the target drive is a full copy of the source drive.
5372                  */
5373                 for (i = 0; i < num_stripes; i++) {
5374                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5375                                 /*
5376                                  * In case of DUP, in order to keep it
5377                                  * simple, only add the mirror with the
5378                                  * lowest physical address
5379                                  */
5380                                 if (found &&
5381                                     physical_of_found <=
5382                                      bbio->stripes[i].physical)
5383                                         continue;
5384                                 index_srcdev = i;
5385                                 found = 1;
5386                                 physical_of_found = bbio->stripes[i].physical;
5387                         }
5388                 }
5389                 if (found) {
5390                         u64 length = map->stripe_len;
5391
5392                         if (physical_of_found + length <=
5393                             dev_replace->cursor_left) {
5394                                 struct btrfs_bio_stripe *tgtdev_stripe =
5395                                         bbio->stripes + num_stripes;
5396
5397                                 tgtdev_stripe->physical = physical_of_found;
5398                                 tgtdev_stripe->length =
5399                                         bbio->stripes[index_srcdev].length;
5400                                 tgtdev_stripe->dev = dev_replace->tgtdev;
5401
5402                                 num_stripes++;
5403                         }
5404                 }
5405         }
5406
5407         *bbio_ret = bbio;
5408         bbio->num_stripes = num_stripes;
5409         bbio->max_errors = max_errors;
5410         bbio->mirror_num = mirror_num;
5411
5412         /*
5413          * this is the case that REQ_READ && dev_replace_is_ongoing &&
5414          * mirror_num == num_stripes + 1 && dev_replace target drive is
5415          * available as a mirror
5416          */
5417         if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5418                 WARN_ON(num_stripes > 1);
5419                 bbio->stripes[0].dev = dev_replace->tgtdev;
5420                 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5421                 bbio->mirror_num = map->num_stripes + 1;
5422         }
5423         if (raid_map) {
5424                 sort_parity_stripes(bbio, raid_map);
5425                 *raid_map_ret = raid_map;
5426         }
5427 out:
5428         if (dev_replace_is_ongoing)
5429                 btrfs_dev_replace_unlock(dev_replace);
5430         free_extent_map(em);
5431         return ret;
5432 }
5433
5434 int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
5435                       u64 logical, u64 *length,
5436                       struct btrfs_bio **bbio_ret, int mirror_num)
5437 {
5438         return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5439                                  mirror_num, NULL);
5440 }
5441
5442 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5443                      u64 chunk_start, u64 physical, u64 devid,
5444                      u64 **logical, int *naddrs, int *stripe_len)
5445 {
5446         struct extent_map_tree *em_tree = &map_tree->map_tree;
5447         struct extent_map *em;
5448         struct map_lookup *map;
5449         u64 *buf;
5450         u64 bytenr;
5451         u64 length;
5452         u64 stripe_nr;
5453         u64 rmap_len;
5454         int i, j, nr = 0;
5455
5456         read_lock(&em_tree->lock);
5457         em = lookup_extent_mapping(em_tree, chunk_start, 1);
5458         read_unlock(&em_tree->lock);
5459
5460         if (!em) {
5461                 printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n",
5462                        chunk_start);
5463                 return -EIO;
5464         }
5465
5466         if (em->start != chunk_start) {
5467                 printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
5468                        em->start, chunk_start);
5469                 free_extent_map(em);
5470                 return -EIO;
5471         }
5472         map = (struct map_lookup *)em->bdev;
5473
5474         length = em->len;
5475         rmap_len = map->stripe_len;
5476
5477         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5478                 do_div(length, map->num_stripes / map->sub_stripes);
5479         else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5480                 do_div(length, map->num_stripes);
5481         else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
5482                               BTRFS_BLOCK_GROUP_RAID6)) {
5483                 do_div(length, nr_data_stripes(map));
5484                 rmap_len = map->stripe_len * nr_data_stripes(map);
5485         }
5486
5487         buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
5488         BUG_ON(!buf); /* -ENOMEM */
5489
5490         for (i = 0; i < map->num_stripes; i++) {
5491                 if (devid && map->stripes[i].dev->devid != devid)
5492                         continue;
5493                 if (map->stripes[i].physical > physical ||
5494                     map->stripes[i].physical + length <= physical)
5495                         continue;
5496
5497                 stripe_nr = physical - map->stripes[i].physical;
5498                 do_div(stripe_nr, map->stripe_len);
5499
5500                 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5501                         stripe_nr = stripe_nr * map->num_stripes + i;
5502                         do_div(stripe_nr, map->sub_stripes);
5503                 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5504                         stripe_nr = stripe_nr * map->num_stripes + i;
5505                 } /* else if RAID[56], multiply by nr_data_stripes().
5506                    * Alternatively, just use rmap_len below instead of
5507                    * map->stripe_len */
5508
5509                 bytenr = chunk_start + stripe_nr * rmap_len;
5510                 WARN_ON(nr >= map->num_stripes);
5511                 for (j = 0; j < nr; j++) {
5512                         if (buf[j] == bytenr)
5513                                 break;
5514                 }
5515                 if (j == nr) {
5516                         WARN_ON(nr >= map->num_stripes);
5517                         buf[nr++] = bytenr;
5518                 }
5519         }
5520
5521         *logical = buf;
5522         *naddrs = nr;
5523         *stripe_len = rmap_len;
5524
5525         free_extent_map(em);
5526         return 0;
5527 }
5528
5529 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio, int err)
5530 {
5531         if (likely(bbio->flags & BTRFS_BIO_ORIG_BIO_SUBMITTED))
5532                 bio_endio_nodec(bio, err);
5533         else
5534                 bio_endio(bio, err);
5535         kfree(bbio);
5536 }
5537
5538 static void btrfs_end_bio(struct bio *bio, int err)
5539 {
5540         struct btrfs_bio *bbio = bio->bi_private;
5541         struct btrfs_device *dev = bbio->stripes[0].dev;
5542         int is_orig_bio = 0;
5543
5544         if (err) {
5545                 atomic_inc(&bbio->error);
5546                 if (err == -EIO || err == -EREMOTEIO) {
5547                         unsigned int stripe_index =
5548                                 btrfs_io_bio(bio)->stripe_index;
5549
5550                         BUG_ON(stripe_index >= bbio->num_stripes);
5551                         dev = bbio->stripes[stripe_index].dev;
5552                         if (dev->bdev) {
5553                                 if (bio->bi_rw & WRITE)
5554                                         btrfs_dev_stat_inc(dev,
5555                                                 BTRFS_DEV_STAT_WRITE_ERRS);
5556                                 else
5557                                         btrfs_dev_stat_inc(dev,
5558                                                 BTRFS_DEV_STAT_READ_ERRS);
5559                                 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
5560                                         btrfs_dev_stat_inc(dev,
5561                                                 BTRFS_DEV_STAT_FLUSH_ERRS);
5562                                 btrfs_dev_stat_print_on_error(dev);
5563                         }
5564                 }
5565         }
5566
5567         if (bio == bbio->orig_bio)
5568                 is_orig_bio = 1;
5569
5570         btrfs_bio_counter_dec(bbio->fs_info);
5571
5572         if (atomic_dec_and_test(&bbio->stripes_pending)) {
5573                 if (!is_orig_bio) {
5574                         bio_put(bio);
5575                         bio = bbio->orig_bio;
5576                 }
5577
5578                 bio->bi_private = bbio->private;
5579                 bio->bi_end_io = bbio->end_io;
5580                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5581                 /* only send an error to the higher layers if it is
5582                  * beyond the tolerance of the btrfs bio
5583                  */
5584                 if (atomic_read(&bbio->error) > bbio->max_errors) {
5585                         err = -EIO;
5586                 } else {
5587                         /*
5588                          * this bio is actually up to date, we didn't
5589                          * go over the max number of errors
5590                          */
5591                         set_bit(BIO_UPTODATE, &bio->bi_flags);
5592                         err = 0;
5593                 }
5594
5595                 btrfs_end_bbio(bbio, bio, err);
5596         } else if (!is_orig_bio) {
5597                 bio_put(bio);
5598         }
5599 }
5600
5601 /*
5602  * see run_scheduled_bios for a description of why bios are collected for
5603  * async submit.
5604  *
5605  * This will add one bio to the pending list for a device and make sure
5606  * the work struct is scheduled.
5607  */
5608 static noinline void btrfs_schedule_bio(struct btrfs_root *root,
5609                                         struct btrfs_device *device,
5610                                         int rw, struct bio *bio)
5611 {
5612         int should_queue = 1;
5613         struct btrfs_pending_bios *pending_bios;
5614
5615         if (device->missing || !device->bdev) {
5616                 bio_endio(bio, -EIO);
5617                 return;
5618         }
5619
5620         /* don't bother with additional async steps for reads, right now */
5621         if (!(rw & REQ_WRITE)) {
5622                 bio_get(bio);
5623                 btrfsic_submit_bio(rw, bio);
5624                 bio_put(bio);
5625                 return;
5626         }
5627
5628         /*
5629          * nr_async_bios allows us to reliably return congestion to the
5630          * higher layers.  Otherwise, the async bio makes it appear we have
5631          * made progress against dirty pages when we've really just put it
5632          * on a queue for later
5633          */
5634         atomic_inc(&root->fs_info->nr_async_bios);
5635         WARN_ON(bio->bi_next);
5636         bio->bi_next = NULL;
5637         bio->bi_rw |= rw;
5638
5639         spin_lock(&device->io_lock);
5640         if (bio->bi_rw & REQ_SYNC)
5641                 pending_bios = &device->pending_sync_bios;
5642         else
5643                 pending_bios = &device->pending_bios;
5644
5645         if (pending_bios->tail)
5646                 pending_bios->tail->bi_next = bio;
5647
5648         pending_bios->tail = bio;
5649         if (!pending_bios->head)
5650                 pending_bios->head = bio;
5651         if (device->running_pending)
5652                 should_queue = 0;
5653
5654         spin_unlock(&device->io_lock);
5655
5656         if (should_queue)
5657                 btrfs_queue_work(root->fs_info->submit_workers,
5658                                  &device->work);
5659 }
5660
5661 static int bio_size_ok(struct block_device *bdev, struct bio *bio,
5662                        sector_t sector)
5663 {
5664         struct bio_vec *prev;
5665         struct request_queue *q = bdev_get_queue(bdev);
5666         unsigned int max_sectors = queue_max_sectors(q);
5667         struct bvec_merge_data bvm = {
5668                 .bi_bdev = bdev,
5669                 .bi_sector = sector,
5670                 .bi_rw = bio->bi_rw,
5671         };
5672
5673         if (WARN_ON(bio->bi_vcnt == 0))
5674                 return 1;
5675
5676         prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
5677         if (bio_sectors(bio) > max_sectors)
5678                 return 0;
5679
5680         if (!q->merge_bvec_fn)
5681                 return 1;
5682
5683         bvm.bi_size = bio->bi_iter.bi_size - prev->bv_len;
5684         if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len)
5685                 return 0;
5686         return 1;
5687 }
5688
5689 static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5690                               struct bio *bio, u64 physical, int dev_nr,
5691                               int rw, int async)
5692 {
5693         struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
5694
5695         bio->bi_private = bbio;
5696         btrfs_io_bio(bio)->stripe_index = dev_nr;
5697         bio->bi_end_io = btrfs_end_bio;
5698         bio->bi_iter.bi_sector = physical >> 9;
5699 #ifdef DEBUG
5700         {
5701                 struct rcu_string *name;
5702
5703                 rcu_read_lock();
5704                 name = rcu_dereference(dev->name);
5705                 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
5706                          "(%s id %llu), size=%u\n", rw,
5707                          (u64)bio->bi_iter.bi_sector, (u_long)dev->bdev->bd_dev,
5708                          name->str, dev->devid, bio->bi_iter.bi_size);
5709                 rcu_read_unlock();
5710         }
5711 #endif
5712         bio->bi_bdev = dev->bdev;
5713
5714         btrfs_bio_counter_inc_noblocked(root->fs_info);
5715
5716         if (async)
5717                 btrfs_schedule_bio(root, dev, rw, bio);
5718         else
5719                 btrfsic_submit_bio(rw, bio);
5720 }
5721
5722 static int breakup_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5723                               struct bio *first_bio, struct btrfs_device *dev,
5724                               int dev_nr, int rw, int async)
5725 {
5726         struct bio_vec *bvec = first_bio->bi_io_vec;
5727         struct bio *bio;
5728         int nr_vecs = bio_get_nr_vecs(dev->bdev);
5729         u64 physical = bbio->stripes[dev_nr].physical;
5730
5731 again:
5732         bio = btrfs_bio_alloc(dev->bdev, physical >> 9, nr_vecs, GFP_NOFS);
5733         if (!bio)
5734                 return -ENOMEM;
5735
5736         while (bvec <= (first_bio->bi_io_vec + first_bio->bi_vcnt - 1)) {
5737                 if (bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5738                                  bvec->bv_offset) < bvec->bv_len) {
5739                         u64 len = bio->bi_iter.bi_size;
5740
5741                         atomic_inc(&bbio->stripes_pending);
5742                         submit_stripe_bio(root, bbio, bio, physical, dev_nr,
5743                                           rw, async);
5744                         physical += len;
5745                         goto again;
5746                 }
5747                 bvec++;
5748         }
5749
5750         submit_stripe_bio(root, bbio, bio, physical, dev_nr, rw, async);
5751         return 0;
5752 }
5753
5754 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
5755 {
5756         atomic_inc(&bbio->error);
5757         if (atomic_dec_and_test(&bbio->stripes_pending)) {
5758                 /* Shoud be the original bio. */
5759                 WARN_ON(bio != bbio->orig_bio);
5760
5761                 bio->bi_private = bbio->private;
5762                 bio->bi_end_io = bbio->end_io;
5763                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5764                 bio->bi_iter.bi_sector = logical >> 9;
5765
5766                 btrfs_end_bbio(bbio, bio, -EIO);
5767         }
5768 }
5769
5770 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
5771                   int mirror_num, int async_submit)
5772 {
5773         struct btrfs_device *dev;
5774         struct bio *first_bio = bio;
5775         u64 logical = (u64)bio->bi_iter.bi_sector << 9;
5776         u64 length = 0;
5777         u64 map_length;
5778         u64 *raid_map = NULL;
5779         int ret;
5780         int dev_nr = 0;
5781         int total_devs = 1;
5782         struct btrfs_bio *bbio = NULL;
5783
5784         length = bio->bi_iter.bi_size;
5785         map_length = length;
5786
5787         btrfs_bio_counter_inc_blocked(root->fs_info);
5788         ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
5789                               mirror_num, &raid_map);
5790         if (ret) {
5791                 btrfs_bio_counter_dec(root->fs_info);
5792                 return ret;
5793         }
5794
5795         total_devs = bbio->num_stripes;
5796         bbio->orig_bio = first_bio;
5797         bbio->private = first_bio->bi_private;
5798         bbio->end_io = first_bio->bi_end_io;
5799         bbio->fs_info = root->fs_info;
5800         atomic_set(&bbio->stripes_pending, bbio->num_stripes);
5801
5802         if (raid_map) {
5803                 /* In this case, map_length has been set to the length of
5804                    a single stripe; not the whole write */
5805                 if (rw & WRITE) {
5806                         ret = raid56_parity_write(root, bio, bbio,
5807                                                   raid_map, map_length);
5808                 } else {
5809                         ret = raid56_parity_recover(root, bio, bbio,
5810                                                     raid_map, map_length,
5811                                                     mirror_num);
5812                 }
5813                 /*
5814                  * FIXME, replace dosen't support raid56 yet, please fix
5815                  * it in the future.
5816                  */
5817                 btrfs_bio_counter_dec(root->fs_info);
5818                 return ret;
5819         }
5820
5821         if (map_length < length) {
5822                 btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
5823                         logical, length, map_length);
5824                 BUG();
5825         }
5826
5827         while (dev_nr < total_devs) {
5828                 dev = bbio->stripes[dev_nr].dev;
5829                 if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
5830                         bbio_error(bbio, first_bio, logical);
5831                         dev_nr++;
5832                         continue;
5833                 }
5834
5835                 /*
5836                  * Check and see if we're ok with this bio based on it's size
5837                  * and offset with the given device.
5838                  */
5839                 if (!bio_size_ok(dev->bdev, first_bio,
5840                                  bbio->stripes[dev_nr].physical >> 9)) {
5841                         ret = breakup_stripe_bio(root, bbio, first_bio, dev,
5842                                                  dev_nr, rw, async_submit);
5843                         BUG_ON(ret);
5844                         dev_nr++;
5845                         continue;
5846                 }
5847
5848                 if (dev_nr < total_devs - 1) {
5849                         bio = btrfs_bio_clone(first_bio, GFP_NOFS);
5850                         BUG_ON(!bio); /* -ENOMEM */
5851                 } else {
5852                         bio = first_bio;
5853                         bbio->flags |= BTRFS_BIO_ORIG_BIO_SUBMITTED;
5854                 }
5855
5856                 submit_stripe_bio(root, bbio, bio,
5857                                   bbio->stripes[dev_nr].physical, dev_nr, rw,
5858                                   async_submit);
5859                 dev_nr++;
5860         }
5861         btrfs_bio_counter_dec(root->fs_info);
5862         return 0;
5863 }
5864
5865 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
5866                                        u8 *uuid, u8 *fsid)
5867 {
5868         struct btrfs_device *device;
5869         struct btrfs_fs_devices *cur_devices;
5870
5871         cur_devices = fs_info->fs_devices;
5872         while (cur_devices) {
5873                 if (!fsid ||
5874                     !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5875                         device = __find_device(&cur_devices->devices,
5876                                                devid, uuid);
5877                         if (device)
5878                                 return device;
5879                 }
5880                 cur_devices = cur_devices->seed;
5881         }
5882         return NULL;
5883 }
5884
5885 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
5886                                             struct btrfs_fs_devices *fs_devices,
5887                                             u64 devid, u8 *dev_uuid)
5888 {
5889         struct btrfs_device *device;
5890
5891         device = btrfs_alloc_device(NULL, &devid, dev_uuid);
5892         if (IS_ERR(device))
5893                 return NULL;
5894
5895         list_add(&device->dev_list, &fs_devices->devices);
5896         device->fs_devices = fs_devices;
5897         fs_devices->num_devices++;
5898
5899         device->missing = 1;
5900         fs_devices->missing_devices++;
5901
5902         return device;
5903 }
5904
5905 /**
5906  * btrfs_alloc_device - allocate struct btrfs_device
5907  * @fs_info:    used only for generating a new devid, can be NULL if
5908  *              devid is provided (i.e. @devid != NULL).
5909  * @devid:      a pointer to devid for this device.  If NULL a new devid
5910  *              is generated.
5911  * @uuid:       a pointer to UUID for this device.  If NULL a new UUID
5912  *              is generated.
5913  *
5914  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
5915  * on error.  Returned struct is not linked onto any lists and can be
5916  * destroyed with kfree() right away.
5917  */
5918 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
5919                                         const u64 *devid,
5920                                         const u8 *uuid)
5921 {
5922         struct btrfs_device *dev;
5923         u64 tmp;
5924
5925         if (WARN_ON(!devid && !fs_info))
5926                 return ERR_PTR(-EINVAL);
5927
5928         dev = __alloc_device();
5929         if (IS_ERR(dev))
5930                 return dev;
5931
5932         if (devid)
5933                 tmp = *devid;
5934         else {
5935                 int ret;
5936
5937                 ret = find_next_devid(fs_info, &tmp);
5938                 if (ret) {
5939                         kfree(dev);
5940                         return ERR_PTR(ret);
5941                 }
5942         }
5943         dev->devid = tmp;
5944
5945         if (uuid)
5946                 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
5947         else
5948                 generate_random_uuid(dev->uuid);
5949
5950         btrfs_init_work(&dev->work, btrfs_submit_helper,
5951                         pending_bios_fn, NULL, NULL);
5952
5953         return dev;
5954 }
5955
5956 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
5957                           struct extent_buffer *leaf,
5958                           struct btrfs_chunk *chunk)
5959 {
5960         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5961         struct map_lookup *map;
5962         struct extent_map *em;
5963         u64 logical;
5964         u64 length;
5965         u64 devid;
5966         u8 uuid[BTRFS_UUID_SIZE];
5967         int num_stripes;
5968         int ret;
5969         int i;
5970
5971         logical = key->offset;
5972         length = btrfs_chunk_length(leaf, chunk);
5973
5974         read_lock(&map_tree->map_tree.lock);
5975         em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
5976         read_unlock(&map_tree->map_tree.lock);
5977
5978         /* already mapped? */
5979         if (em && em->start <= logical && em->start + em->len > logical) {
5980                 free_extent_map(em);
5981                 return 0;
5982         } else if (em) {
5983                 free_extent_map(em);
5984         }
5985
5986         em = alloc_extent_map();
5987         if (!em)
5988                 return -ENOMEM;
5989         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
5990         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
5991         if (!map) {
5992                 free_extent_map(em);
5993                 return -ENOMEM;
5994         }
5995
5996         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5997         em->bdev = (struct block_device *)map;
5998         em->start = logical;
5999         em->len = length;
6000         em->orig_start = 0;
6001         em->block_start = 0;
6002         em->block_len = em->len;
6003
6004         map->num_stripes = num_stripes;
6005         map->io_width = btrfs_chunk_io_width(leaf, chunk);
6006         map->io_align = btrfs_chunk_io_align(leaf, chunk);
6007         map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6008         map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6009         map->type = btrfs_chunk_type(leaf, chunk);
6010         map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6011         for (i = 0; i < num_stripes; i++) {
6012                 map->stripes[i].physical =
6013                         btrfs_stripe_offset_nr(leaf, chunk, i);
6014                 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6015                 read_extent_buffer(leaf, uuid, (unsigned long)
6016                                    btrfs_stripe_dev_uuid_nr(chunk, i),
6017                                    BTRFS_UUID_SIZE);
6018                 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
6019                                                         uuid, NULL);
6020                 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
6021                         free_extent_map(em);
6022                         return -EIO;
6023                 }
6024                 if (!map->stripes[i].dev) {
6025                         map->stripes[i].dev =
6026                                 add_missing_dev(root, root->fs_info->fs_devices,
6027                                                 devid, uuid);
6028                         if (!map->stripes[i].dev) {
6029                                 free_extent_map(em);
6030                                 return -EIO;
6031                         }
6032                 }
6033                 map->stripes[i].dev->in_fs_metadata = 1;
6034         }
6035
6036         write_lock(&map_tree->map_tree.lock);
6037         ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6038         write_unlock(&map_tree->map_tree.lock);
6039         BUG_ON(ret); /* Tree corruption */
6040         free_extent_map(em);
6041
6042         return 0;
6043 }
6044
6045 static void fill_device_from_item(struct extent_buffer *leaf,
6046                                  struct btrfs_dev_item *dev_item,
6047                                  struct btrfs_device *device)
6048 {
6049         unsigned long ptr;
6050
6051         device->devid = btrfs_device_id(leaf, dev_item);
6052         device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6053         device->total_bytes = device->disk_total_bytes;
6054         device->commit_total_bytes = device->disk_total_bytes;
6055         device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6056         device->commit_bytes_used = device->bytes_used;
6057         device->type = btrfs_device_type(leaf, dev_item);
6058         device->io_align = btrfs_device_io_align(leaf, dev_item);
6059         device->io_width = btrfs_device_io_width(leaf, dev_item);
6060         device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6061         WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6062         device->is_tgtdev_for_dev_replace = 0;
6063
6064         ptr = btrfs_device_uuid(dev_item);
6065         read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6066 }
6067
6068 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_root *root,
6069                                                   u8 *fsid)
6070 {
6071         struct btrfs_fs_devices *fs_devices;
6072         int ret;
6073
6074         BUG_ON(!mutex_is_locked(&uuid_mutex));
6075
6076         fs_devices = root->fs_info->fs_devices->seed;
6077         while (fs_devices) {
6078                 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6079                         return fs_devices;
6080
6081                 fs_devices = fs_devices->seed;
6082         }
6083
6084         fs_devices = find_fsid(fsid);
6085         if (!fs_devices) {
6086                 if (!btrfs_test_opt(root, DEGRADED))
6087                         return ERR_PTR(-ENOENT);
6088
6089                 fs_devices = alloc_fs_devices(fsid);
6090                 if (IS_ERR(fs_devices))
6091                         return fs_devices;
6092
6093                 fs_devices->seeding = 1;
6094                 fs_devices->opened = 1;
6095                 return fs_devices;
6096         }
6097
6098         fs_devices = clone_fs_devices(fs_devices);
6099         if (IS_ERR(fs_devices))
6100                 return fs_devices;
6101
6102         ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6103                                    root->fs_info->bdev_holder);
6104         if (ret) {
6105                 free_fs_devices(fs_devices);
6106                 fs_devices = ERR_PTR(ret);
6107                 goto out;
6108         }
6109
6110         if (!fs_devices->seeding) {
6111                 __btrfs_close_devices(fs_devices);
6112                 free_fs_devices(fs_devices);
6113                 fs_devices = ERR_PTR(-EINVAL);
6114                 goto out;
6115         }
6116
6117         fs_devices->seed = root->fs_info->fs_devices->seed;
6118         root->fs_info->fs_devices->seed = fs_devices;
6119 out:
6120         return fs_devices;
6121 }
6122
6123 static int read_one_dev(struct btrfs_root *root,
6124                         struct extent_buffer *leaf,
6125                         struct btrfs_dev_item *dev_item)
6126 {
6127         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6128         struct btrfs_device *device;
6129         u64 devid;
6130         int ret;
6131         u8 fs_uuid[BTRFS_UUID_SIZE];
6132         u8 dev_uuid[BTRFS_UUID_SIZE];
6133
6134         devid = btrfs_device_id(leaf, dev_item);
6135         read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6136                            BTRFS_UUID_SIZE);
6137         read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6138                            BTRFS_UUID_SIZE);
6139
6140         if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
6141                 fs_devices = open_seed_devices(root, fs_uuid);
6142                 if (IS_ERR(fs_devices))
6143                         return PTR_ERR(fs_devices);
6144         }
6145
6146         device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
6147         if (!device) {
6148                 if (!btrfs_test_opt(root, DEGRADED))
6149                         return -EIO;
6150
6151                 btrfs_warn(root->fs_info, "devid %llu missing", devid);
6152                 device = add_missing_dev(root, fs_devices, devid, dev_uuid);
6153                 if (!device)
6154                         return -ENOMEM;
6155         } else {
6156                 if (!device->bdev && !btrfs_test_opt(root, DEGRADED))
6157                         return -EIO;
6158
6159                 if(!device->bdev && !device->missing) {
6160                         /*
6161                          * this happens when a device that was properly setup
6162                          * in the device info lists suddenly goes bad.
6163                          * device->bdev is NULL, and so we have to set
6164                          * device->missing to one here
6165                          */
6166                         device->fs_devices->missing_devices++;
6167                         device->missing = 1;
6168                 }
6169
6170                 /* Move the device to its own fs_devices */
6171                 if (device->fs_devices != fs_devices) {
6172                         ASSERT(device->missing);
6173
6174                         list_move(&device->dev_list, &fs_devices->devices);
6175                         device->fs_devices->num_devices--;
6176                         fs_devices->num_devices++;
6177
6178                         device->fs_devices->missing_devices--;
6179                         fs_devices->missing_devices++;
6180
6181                         device->fs_devices = fs_devices;
6182                 }
6183         }
6184
6185         if (device->fs_devices != root->fs_info->fs_devices) {
6186                 BUG_ON(device->writeable);
6187                 if (device->generation !=
6188                     btrfs_device_generation(leaf, dev_item))
6189                         return -EINVAL;
6190         }
6191
6192         fill_device_from_item(leaf, dev_item, device);
6193         device->in_fs_metadata = 1;
6194         if (device->writeable && !device->is_tgtdev_for_dev_replace) {
6195                 device->fs_devices->total_rw_bytes += device->total_bytes;
6196                 spin_lock(&root->fs_info->free_chunk_lock);
6197                 root->fs_info->free_chunk_space += device->total_bytes -
6198                         device->bytes_used;
6199                 spin_unlock(&root->fs_info->free_chunk_lock);
6200         }
6201         ret = 0;
6202         return ret;
6203 }
6204
6205 int btrfs_read_sys_array(struct btrfs_root *root)
6206 {
6207         struct btrfs_super_block *super_copy = root->fs_info->super_copy;
6208         struct extent_buffer *sb;
6209         struct btrfs_disk_key *disk_key;
6210         struct btrfs_chunk *chunk;
6211         u8 *ptr;
6212         unsigned long sb_ptr;
6213         int ret = 0;
6214         u32 num_stripes;
6215         u32 array_size;
6216         u32 len = 0;
6217         u32 cur;
6218         struct btrfs_key key;
6219
6220         sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
6221                                           BTRFS_SUPER_INFO_SIZE);
6222         if (!sb)
6223                 return -ENOMEM;
6224         btrfs_set_buffer_uptodate(sb);
6225         btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6226         /*
6227          * The sb extent buffer is artifical and just used to read the system array.
6228          * btrfs_set_buffer_uptodate() call does not properly mark all it's
6229          * pages up-to-date when the page is larger: extent does not cover the
6230          * whole page and consequently check_page_uptodate does not find all
6231          * the page's extents up-to-date (the hole beyond sb),
6232          * write_extent_buffer then triggers a WARN_ON.
6233          *
6234          * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6235          * but sb spans only this function. Add an explicit SetPageUptodate call
6236          * to silence the warning eg. on PowerPC 64.
6237          */
6238         if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
6239                 SetPageUptodate(sb->pages[0]);
6240
6241         write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6242         array_size = btrfs_super_sys_array_size(super_copy);
6243
6244         ptr = super_copy->sys_chunk_array;
6245         sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
6246         cur = 0;
6247
6248         while (cur < array_size) {
6249                 disk_key = (struct btrfs_disk_key *)ptr;
6250                 btrfs_disk_key_to_cpu(&key, disk_key);
6251
6252                 len = sizeof(*disk_key); ptr += len;
6253                 sb_ptr += len;
6254                 cur += len;
6255
6256                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6257                         chunk = (struct btrfs_chunk *)sb_ptr;
6258                         ret = read_one_chunk(root, &key, sb, chunk);
6259                         if (ret)
6260                                 break;
6261                         num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6262                         len = btrfs_chunk_item_size(num_stripes);
6263                 } else {
6264                         ret = -EIO;
6265                         break;
6266                 }
6267                 ptr += len;
6268                 sb_ptr += len;
6269                 cur += len;
6270         }
6271         free_extent_buffer(sb);
6272         return ret;
6273 }
6274
6275 int btrfs_read_chunk_tree(struct btrfs_root *root)
6276 {
6277         struct btrfs_path *path;
6278         struct extent_buffer *leaf;
6279         struct btrfs_key key;
6280         struct btrfs_key found_key;
6281         int ret;
6282         int slot;
6283
6284         root = root->fs_info->chunk_root;
6285
6286         path = btrfs_alloc_path();
6287         if (!path)
6288                 return -ENOMEM;
6289
6290         mutex_lock(&uuid_mutex);
6291         lock_chunks(root);
6292
6293         /*
6294          * Read all device items, and then all the chunk items. All
6295          * device items are found before any chunk item (their object id
6296          * is smaller than the lowest possible object id for a chunk
6297          * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6298          */
6299         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6300         key.offset = 0;
6301         key.type = 0;
6302         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6303         if (ret < 0)
6304                 goto error;
6305         while (1) {
6306                 leaf = path->nodes[0];
6307                 slot = path->slots[0];
6308                 if (slot >= btrfs_header_nritems(leaf)) {
6309                         ret = btrfs_next_leaf(root, path);
6310                         if (ret == 0)
6311                                 continue;
6312                         if (ret < 0)
6313                                 goto error;
6314                         break;
6315                 }
6316                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6317                 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6318                         struct btrfs_dev_item *dev_item;
6319                         dev_item = btrfs_item_ptr(leaf, slot,
6320                                                   struct btrfs_dev_item);
6321                         ret = read_one_dev(root, leaf, dev_item);
6322                         if (ret)
6323                                 goto error;
6324                 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6325                         struct btrfs_chunk *chunk;
6326                         chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6327                         ret = read_one_chunk(root, &found_key, leaf, chunk);
6328                         if (ret)
6329                                 goto error;
6330                 }
6331                 path->slots[0]++;
6332         }
6333         ret = 0;
6334 error:
6335         unlock_chunks(root);
6336         mutex_unlock(&uuid_mutex);
6337
6338         btrfs_free_path(path);
6339         return ret;
6340 }
6341
6342 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6343 {
6344         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6345         struct btrfs_device *device;
6346
6347         while (fs_devices) {
6348                 mutex_lock(&fs_devices->device_list_mutex);
6349                 list_for_each_entry(device, &fs_devices->devices, dev_list)
6350                         device->dev_root = fs_info->dev_root;
6351                 mutex_unlock(&fs_devices->device_list_mutex);
6352
6353                 fs_devices = fs_devices->seed;
6354         }
6355 }
6356
6357 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6358 {
6359         int i;
6360
6361         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6362                 btrfs_dev_stat_reset(dev, i);
6363 }
6364
6365 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6366 {
6367         struct btrfs_key key;
6368         struct btrfs_key found_key;
6369         struct btrfs_root *dev_root = fs_info->dev_root;
6370         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6371         struct extent_buffer *eb;
6372         int slot;
6373         int ret = 0;
6374         struct btrfs_device *device;
6375         struct btrfs_path *path = NULL;
6376         int i;
6377
6378         path = btrfs_alloc_path();
6379         if (!path) {
6380                 ret = -ENOMEM;
6381                 goto out;
6382         }
6383
6384         mutex_lock(&fs_devices->device_list_mutex);
6385         list_for_each_entry(device, &fs_devices->devices, dev_list) {
6386                 int item_size;
6387                 struct btrfs_dev_stats_item *ptr;
6388
6389                 key.objectid = 0;
6390                 key.type = BTRFS_DEV_STATS_KEY;
6391                 key.offset = device->devid;
6392                 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6393                 if (ret) {
6394                         __btrfs_reset_dev_stats(device);
6395                         device->dev_stats_valid = 1;
6396                         btrfs_release_path(path);
6397                         continue;
6398                 }
6399                 slot = path->slots[0];
6400                 eb = path->nodes[0];
6401                 btrfs_item_key_to_cpu(eb, &found_key, slot);
6402                 item_size = btrfs_item_size_nr(eb, slot);
6403
6404                 ptr = btrfs_item_ptr(eb, slot,
6405                                      struct btrfs_dev_stats_item);
6406
6407                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6408                         if (item_size >= (1 + i) * sizeof(__le64))
6409                                 btrfs_dev_stat_set(device, i,
6410                                         btrfs_dev_stats_value(eb, ptr, i));
6411                         else
6412                                 btrfs_dev_stat_reset(device, i);
6413                 }
6414
6415                 device->dev_stats_valid = 1;
6416                 btrfs_dev_stat_print_on_load(device);
6417                 btrfs_release_path(path);
6418         }
6419         mutex_unlock(&fs_devices->device_list_mutex);
6420
6421 out:
6422         btrfs_free_path(path);
6423         return ret < 0 ? ret : 0;
6424 }
6425
6426 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6427                                 struct btrfs_root *dev_root,
6428                                 struct btrfs_device *device)
6429 {
6430         struct btrfs_path *path;
6431         struct btrfs_key key;
6432         struct extent_buffer *eb;
6433         struct btrfs_dev_stats_item *ptr;
6434         int ret;
6435         int i;
6436
6437         key.objectid = 0;
6438         key.type = BTRFS_DEV_STATS_KEY;
6439         key.offset = device->devid;
6440
6441         path = btrfs_alloc_path();
6442         BUG_ON(!path);
6443         ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6444         if (ret < 0) {
6445                 printk_in_rcu(KERN_WARNING "BTRFS: "
6446                         "error %d while searching for dev_stats item for device %s!\n",
6447                               ret, rcu_str_deref(device->name));
6448                 goto out;
6449         }
6450
6451         if (ret == 0 &&
6452             btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6453                 /* need to delete old one and insert a new one */
6454                 ret = btrfs_del_item(trans, dev_root, path);
6455                 if (ret != 0) {
6456                         printk_in_rcu(KERN_WARNING "BTRFS: "
6457                                 "delete too small dev_stats item for device %s failed %d!\n",
6458                                       rcu_str_deref(device->name), ret);
6459                         goto out;
6460                 }
6461                 ret = 1;
6462         }
6463
6464         if (ret == 1) {
6465                 /* need to insert a new item */
6466                 btrfs_release_path(path);
6467                 ret = btrfs_insert_empty_item(trans, dev_root, path,
6468                                               &key, sizeof(*ptr));
6469                 if (ret < 0) {
6470                         printk_in_rcu(KERN_WARNING "BTRFS: "
6471                                           "insert dev_stats item for device %s failed %d!\n",
6472                                       rcu_str_deref(device->name), ret);
6473                         goto out;
6474                 }
6475         }
6476
6477         eb = path->nodes[0];
6478         ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6479         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6480                 btrfs_set_dev_stats_value(eb, ptr, i,
6481                                           btrfs_dev_stat_read(device, i));
6482         btrfs_mark_buffer_dirty(eb);
6483
6484 out:
6485         btrfs_free_path(path);
6486         return ret;
6487 }
6488
6489 /*
6490  * called from commit_transaction. Writes all changed device stats to disk.
6491  */
6492 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
6493                         struct btrfs_fs_info *fs_info)
6494 {
6495         struct btrfs_root *dev_root = fs_info->dev_root;
6496         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6497         struct btrfs_device *device;
6498         int stats_cnt;
6499         int ret = 0;
6500
6501         mutex_lock(&fs_devices->device_list_mutex);
6502         list_for_each_entry(device, &fs_devices->devices, dev_list) {
6503                 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
6504                         continue;
6505
6506                 stats_cnt = atomic_read(&device->dev_stats_ccnt);
6507                 ret = update_dev_stat_item(trans, dev_root, device);
6508                 if (!ret)
6509                         atomic_sub(stats_cnt, &device->dev_stats_ccnt);
6510         }
6511         mutex_unlock(&fs_devices->device_list_mutex);
6512
6513         return ret;
6514 }
6515
6516 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
6517 {
6518         btrfs_dev_stat_inc(dev, index);
6519         btrfs_dev_stat_print_on_error(dev);
6520 }
6521
6522 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
6523 {
6524         if (!dev->dev_stats_valid)
6525                 return;
6526         printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
6527                            "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6528                            rcu_str_deref(dev->name),
6529                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6530                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6531                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6532                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6533                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6534 }
6535
6536 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
6537 {
6538         int i;
6539
6540         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6541                 if (btrfs_dev_stat_read(dev, i) != 0)
6542                         break;
6543         if (i == BTRFS_DEV_STAT_VALUES_MAX)
6544                 return; /* all values == 0, suppress message */
6545
6546         printk_in_rcu(KERN_INFO "BTRFS: "
6547                    "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6548                rcu_str_deref(dev->name),
6549                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6550                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6551                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6552                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6553                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6554 }
6555
6556 int btrfs_get_dev_stats(struct btrfs_root *root,
6557                         struct btrfs_ioctl_get_dev_stats *stats)
6558 {
6559         struct btrfs_device *dev;
6560         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6561         int i;
6562
6563         mutex_lock(&fs_devices->device_list_mutex);
6564         dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
6565         mutex_unlock(&fs_devices->device_list_mutex);
6566
6567         if (!dev) {
6568                 btrfs_warn(root->fs_info, "get dev_stats failed, device not found");
6569                 return -ENODEV;
6570         } else if (!dev->dev_stats_valid) {
6571                 btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid");
6572                 return -ENODEV;
6573         } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
6574                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6575                         if (stats->nr_items > i)
6576                                 stats->values[i] =
6577                                         btrfs_dev_stat_read_and_reset(dev, i);
6578                         else
6579                                 btrfs_dev_stat_reset(dev, i);
6580                 }
6581         } else {
6582                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6583                         if (stats->nr_items > i)
6584                                 stats->values[i] = btrfs_dev_stat_read(dev, i);
6585         }
6586         if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
6587                 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
6588         return 0;
6589 }
6590
6591 int btrfs_scratch_superblock(struct btrfs_device *device)
6592 {
6593         struct buffer_head *bh;
6594         struct btrfs_super_block *disk_super;
6595
6596         bh = btrfs_read_dev_super(device->bdev);
6597         if (!bh)
6598                 return -EINVAL;
6599         disk_super = (struct btrfs_super_block *)bh->b_data;
6600
6601         memset(&disk_super->magic, 0, sizeof(disk_super->magic));
6602         set_buffer_dirty(bh);
6603         sync_dirty_buffer(bh);
6604         brelse(bh);
6605
6606         return 0;
6607 }
6608
6609 /*
6610  * Update the size of all devices, which is used for writing out the
6611  * super blocks.
6612  */
6613 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
6614 {
6615         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6616         struct btrfs_device *curr, *next;
6617
6618         if (list_empty(&fs_devices->resized_devices))
6619                 return;
6620
6621         mutex_lock(&fs_devices->device_list_mutex);
6622         lock_chunks(fs_info->dev_root);
6623         list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
6624                                  resized_list) {
6625                 list_del_init(&curr->resized_list);
6626                 curr->commit_total_bytes = curr->disk_total_bytes;
6627         }
6628         unlock_chunks(fs_info->dev_root);
6629         mutex_unlock(&fs_devices->device_list_mutex);
6630 }
6631
6632 /* Must be invoked during the transaction commit */
6633 void btrfs_update_commit_device_bytes_used(struct btrfs_root *root,
6634                                         struct btrfs_transaction *transaction)
6635 {
6636         struct extent_map *em;
6637         struct map_lookup *map;
6638         struct btrfs_device *dev;
6639         int i;
6640
6641         if (list_empty(&transaction->pending_chunks))
6642                 return;
6643
6644         /* In order to kick the device replace finish process */
6645         lock_chunks(root);
6646         list_for_each_entry(em, &transaction->pending_chunks, list) {
6647                 map = (struct map_lookup *)em->bdev;
6648
6649                 for (i = 0; i < map->num_stripes; i++) {
6650                         dev = map->stripes[i].dev;
6651                         dev->commit_bytes_used = dev->bytes_used;
6652                 }
6653         }
6654         unlock_chunks(root);
6655 }