63e632746d8a95a29f716bf12b1a8f9c0c1e74b1
[cascardo/linux.git] / fs / btrfs / volumes.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/random.h>
24 #include <linux/iocontext.h>
25 #include <linux/capability.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <linux/raid/pq.h>
29 #include <linux/semaphore.h>
30 #include <asm/div64.h>
31 #include "ctree.h"
32 #include "extent_map.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "raid56.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
41 #include "math.h"
42 #include "dev-replace.h"
43 #include "sysfs.h"
44
45 static int init_first_rw_device(struct btrfs_trans_handle *trans,
46                                 struct btrfs_root *root,
47                                 struct btrfs_device *device);
48 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
49 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
50 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
51 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
52
53 DEFINE_MUTEX(uuid_mutex);
54 static LIST_HEAD(fs_uuids);
55
56 static void lock_chunks(struct btrfs_root *root)
57 {
58         mutex_lock(&root->fs_info->chunk_mutex);
59 }
60
61 static void unlock_chunks(struct btrfs_root *root)
62 {
63         mutex_unlock(&root->fs_info->chunk_mutex);
64 }
65
66 static struct btrfs_fs_devices *__alloc_fs_devices(void)
67 {
68         struct btrfs_fs_devices *fs_devs;
69
70         fs_devs = kzalloc(sizeof(*fs_devs), GFP_NOFS);
71         if (!fs_devs)
72                 return ERR_PTR(-ENOMEM);
73
74         mutex_init(&fs_devs->device_list_mutex);
75
76         INIT_LIST_HEAD(&fs_devs->devices);
77         INIT_LIST_HEAD(&fs_devs->resized_devices);
78         INIT_LIST_HEAD(&fs_devs->alloc_list);
79         INIT_LIST_HEAD(&fs_devs->list);
80
81         return fs_devs;
82 }
83
84 /**
85  * alloc_fs_devices - allocate struct btrfs_fs_devices
86  * @fsid:       a pointer to UUID for this FS.  If NULL a new UUID is
87  *              generated.
88  *
89  * Return: a pointer to a new &struct btrfs_fs_devices on success;
90  * ERR_PTR() on error.  Returned struct is not linked onto any lists and
91  * can be destroyed with kfree() right away.
92  */
93 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
94 {
95         struct btrfs_fs_devices *fs_devs;
96
97         fs_devs = __alloc_fs_devices();
98         if (IS_ERR(fs_devs))
99                 return fs_devs;
100
101         if (fsid)
102                 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
103         else
104                 generate_random_uuid(fs_devs->fsid);
105
106         return fs_devs;
107 }
108
109 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
110 {
111         struct btrfs_device *device;
112         WARN_ON(fs_devices->opened);
113         while (!list_empty(&fs_devices->devices)) {
114                 device = list_entry(fs_devices->devices.next,
115                                     struct btrfs_device, dev_list);
116                 list_del(&device->dev_list);
117                 rcu_string_free(device->name);
118                 kfree(device);
119         }
120         kfree(fs_devices);
121 }
122
123 static void btrfs_kobject_uevent(struct block_device *bdev,
124                                  enum kobject_action action)
125 {
126         int ret;
127
128         ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
129         if (ret)
130                 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
131                         action,
132                         kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
133                         &disk_to_dev(bdev->bd_disk)->kobj);
134 }
135
136 void btrfs_cleanup_fs_uuids(void)
137 {
138         struct btrfs_fs_devices *fs_devices;
139
140         while (!list_empty(&fs_uuids)) {
141                 fs_devices = list_entry(fs_uuids.next,
142                                         struct btrfs_fs_devices, list);
143                 list_del(&fs_devices->list);
144                 free_fs_devices(fs_devices);
145         }
146 }
147
148 static struct btrfs_device *__alloc_device(void)
149 {
150         struct btrfs_device *dev;
151
152         dev = kzalloc(sizeof(*dev), GFP_NOFS);
153         if (!dev)
154                 return ERR_PTR(-ENOMEM);
155
156         INIT_LIST_HEAD(&dev->dev_list);
157         INIT_LIST_HEAD(&dev->dev_alloc_list);
158         INIT_LIST_HEAD(&dev->resized_list);
159
160         spin_lock_init(&dev->io_lock);
161
162         spin_lock_init(&dev->reada_lock);
163         atomic_set(&dev->reada_in_flight, 0);
164         atomic_set(&dev->dev_stats_ccnt, 0);
165         INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_WAIT);
166         INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_WAIT);
167
168         return dev;
169 }
170
171 static noinline struct btrfs_device *__find_device(struct list_head *head,
172                                                    u64 devid, u8 *uuid)
173 {
174         struct btrfs_device *dev;
175
176         list_for_each_entry(dev, head, dev_list) {
177                 if (dev->devid == devid &&
178                     (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
179                         return dev;
180                 }
181         }
182         return NULL;
183 }
184
185 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
186 {
187         struct btrfs_fs_devices *fs_devices;
188
189         list_for_each_entry(fs_devices, &fs_uuids, list) {
190                 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
191                         return fs_devices;
192         }
193         return NULL;
194 }
195
196 static int
197 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
198                       int flush, struct block_device **bdev,
199                       struct buffer_head **bh)
200 {
201         int ret;
202
203         *bdev = blkdev_get_by_path(device_path, flags, holder);
204
205         if (IS_ERR(*bdev)) {
206                 ret = PTR_ERR(*bdev);
207                 printk(KERN_INFO "BTRFS: open %s failed\n", device_path);
208                 goto error;
209         }
210
211         if (flush)
212                 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
213         ret = set_blocksize(*bdev, 4096);
214         if (ret) {
215                 blkdev_put(*bdev, flags);
216                 goto error;
217         }
218         invalidate_bdev(*bdev);
219         *bh = btrfs_read_dev_super(*bdev);
220         if (!*bh) {
221                 ret = -EINVAL;
222                 blkdev_put(*bdev, flags);
223                 goto error;
224         }
225
226         return 0;
227
228 error:
229         *bdev = NULL;
230         *bh = NULL;
231         return ret;
232 }
233
234 static void requeue_list(struct btrfs_pending_bios *pending_bios,
235                         struct bio *head, struct bio *tail)
236 {
237
238         struct bio *old_head;
239
240         old_head = pending_bios->head;
241         pending_bios->head = head;
242         if (pending_bios->tail)
243                 tail->bi_next = old_head;
244         else
245                 pending_bios->tail = tail;
246 }
247
248 /*
249  * we try to collect pending bios for a device so we don't get a large
250  * number of procs sending bios down to the same device.  This greatly
251  * improves the schedulers ability to collect and merge the bios.
252  *
253  * But, it also turns into a long list of bios to process and that is sure
254  * to eventually make the worker thread block.  The solution here is to
255  * make some progress and then put this work struct back at the end of
256  * the list if the block device is congested.  This way, multiple devices
257  * can make progress from a single worker thread.
258  */
259 static noinline void run_scheduled_bios(struct btrfs_device *device)
260 {
261         struct bio *pending;
262         struct backing_dev_info *bdi;
263         struct btrfs_fs_info *fs_info;
264         struct btrfs_pending_bios *pending_bios;
265         struct bio *tail;
266         struct bio *cur;
267         int again = 0;
268         unsigned long num_run;
269         unsigned long batch_run = 0;
270         unsigned long limit;
271         unsigned long last_waited = 0;
272         int force_reg = 0;
273         int sync_pending = 0;
274         struct blk_plug plug;
275
276         /*
277          * this function runs all the bios we've collected for
278          * a particular device.  We don't want to wander off to
279          * another device without first sending all of these down.
280          * So, setup a plug here and finish it off before we return
281          */
282         blk_start_plug(&plug);
283
284         bdi = blk_get_backing_dev_info(device->bdev);
285         fs_info = device->dev_root->fs_info;
286         limit = btrfs_async_submit_limit(fs_info);
287         limit = limit * 2 / 3;
288
289 loop:
290         spin_lock(&device->io_lock);
291
292 loop_lock:
293         num_run = 0;
294
295         /* take all the bios off the list at once and process them
296          * later on (without the lock held).  But, remember the
297          * tail and other pointers so the bios can be properly reinserted
298          * into the list if we hit congestion
299          */
300         if (!force_reg && device->pending_sync_bios.head) {
301                 pending_bios = &device->pending_sync_bios;
302                 force_reg = 1;
303         } else {
304                 pending_bios = &device->pending_bios;
305                 force_reg = 0;
306         }
307
308         pending = pending_bios->head;
309         tail = pending_bios->tail;
310         WARN_ON(pending && !tail);
311
312         /*
313          * if pending was null this time around, no bios need processing
314          * at all and we can stop.  Otherwise it'll loop back up again
315          * and do an additional check so no bios are missed.
316          *
317          * device->running_pending is used to synchronize with the
318          * schedule_bio code.
319          */
320         if (device->pending_sync_bios.head == NULL &&
321             device->pending_bios.head == NULL) {
322                 again = 0;
323                 device->running_pending = 0;
324         } else {
325                 again = 1;
326                 device->running_pending = 1;
327         }
328
329         pending_bios->head = NULL;
330         pending_bios->tail = NULL;
331
332         spin_unlock(&device->io_lock);
333
334         while (pending) {
335
336                 rmb();
337                 /* we want to work on both lists, but do more bios on the
338                  * sync list than the regular list
339                  */
340                 if ((num_run > 32 &&
341                     pending_bios != &device->pending_sync_bios &&
342                     device->pending_sync_bios.head) ||
343                    (num_run > 64 && pending_bios == &device->pending_sync_bios &&
344                     device->pending_bios.head)) {
345                         spin_lock(&device->io_lock);
346                         requeue_list(pending_bios, pending, tail);
347                         goto loop_lock;
348                 }
349
350                 cur = pending;
351                 pending = pending->bi_next;
352                 cur->bi_next = NULL;
353
354                 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
355                     waitqueue_active(&fs_info->async_submit_wait))
356                         wake_up(&fs_info->async_submit_wait);
357
358                 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
359
360                 /*
361                  * if we're doing the sync list, record that our
362                  * plug has some sync requests on it
363                  *
364                  * If we're doing the regular list and there are
365                  * sync requests sitting around, unplug before
366                  * we add more
367                  */
368                 if (pending_bios == &device->pending_sync_bios) {
369                         sync_pending = 1;
370                 } else if (sync_pending) {
371                         blk_finish_plug(&plug);
372                         blk_start_plug(&plug);
373                         sync_pending = 0;
374                 }
375
376                 btrfsic_submit_bio(cur->bi_rw, cur);
377                 num_run++;
378                 batch_run++;
379                 if (need_resched())
380                         cond_resched();
381
382                 /*
383                  * we made progress, there is more work to do and the bdi
384                  * is now congested.  Back off and let other work structs
385                  * run instead
386                  */
387                 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
388                     fs_info->fs_devices->open_devices > 1) {
389                         struct io_context *ioc;
390
391                         ioc = current->io_context;
392
393                         /*
394                          * the main goal here is that we don't want to
395                          * block if we're going to be able to submit
396                          * more requests without blocking.
397                          *
398                          * This code does two great things, it pokes into
399                          * the elevator code from a filesystem _and_
400                          * it makes assumptions about how batching works.
401                          */
402                         if (ioc && ioc->nr_batch_requests > 0 &&
403                             time_before(jiffies, ioc->last_waited + HZ/50UL) &&
404                             (last_waited == 0 ||
405                              ioc->last_waited == last_waited)) {
406                                 /*
407                                  * we want to go through our batch of
408                                  * requests and stop.  So, we copy out
409                                  * the ioc->last_waited time and test
410                                  * against it before looping
411                                  */
412                                 last_waited = ioc->last_waited;
413                                 if (need_resched())
414                                         cond_resched();
415                                 continue;
416                         }
417                         spin_lock(&device->io_lock);
418                         requeue_list(pending_bios, pending, tail);
419                         device->running_pending = 1;
420
421                         spin_unlock(&device->io_lock);
422                         btrfs_queue_work(fs_info->submit_workers,
423                                          &device->work);
424                         goto done;
425                 }
426                 /* unplug every 64 requests just for good measure */
427                 if (batch_run % 64 == 0) {
428                         blk_finish_plug(&plug);
429                         blk_start_plug(&plug);
430                         sync_pending = 0;
431                 }
432         }
433
434         cond_resched();
435         if (again)
436                 goto loop;
437
438         spin_lock(&device->io_lock);
439         if (device->pending_bios.head || device->pending_sync_bios.head)
440                 goto loop_lock;
441         spin_unlock(&device->io_lock);
442
443 done:
444         blk_finish_plug(&plug);
445 }
446
447 static void pending_bios_fn(struct btrfs_work *work)
448 {
449         struct btrfs_device *device;
450
451         device = container_of(work, struct btrfs_device, work);
452         run_scheduled_bios(device);
453 }
454
455 /*
456  * Add new device to list of registered devices
457  *
458  * Returns:
459  * 1   - first time device is seen
460  * 0   - device already known
461  * < 0 - error
462  */
463 static noinline int device_list_add(const char *path,
464                            struct btrfs_super_block *disk_super,
465                            u64 devid, struct btrfs_fs_devices **fs_devices_ret)
466 {
467         struct btrfs_device *device;
468         struct btrfs_fs_devices *fs_devices;
469         struct rcu_string *name;
470         int ret = 0;
471         u64 found_transid = btrfs_super_generation(disk_super);
472
473         fs_devices = find_fsid(disk_super->fsid);
474         if (!fs_devices) {
475                 fs_devices = alloc_fs_devices(disk_super->fsid);
476                 if (IS_ERR(fs_devices))
477                         return PTR_ERR(fs_devices);
478
479                 list_add(&fs_devices->list, &fs_uuids);
480
481                 device = NULL;
482         } else {
483                 device = __find_device(&fs_devices->devices, devid,
484                                        disk_super->dev_item.uuid);
485         }
486
487         if (!device) {
488                 if (fs_devices->opened)
489                         return -EBUSY;
490
491                 device = btrfs_alloc_device(NULL, &devid,
492                                             disk_super->dev_item.uuid);
493                 if (IS_ERR(device)) {
494                         /* we can safely leave the fs_devices entry around */
495                         return PTR_ERR(device);
496                 }
497
498                 name = rcu_string_strdup(path, GFP_NOFS);
499                 if (!name) {
500                         kfree(device);
501                         return -ENOMEM;
502                 }
503                 rcu_assign_pointer(device->name, name);
504
505                 mutex_lock(&fs_devices->device_list_mutex);
506                 list_add_rcu(&device->dev_list, &fs_devices->devices);
507                 fs_devices->num_devices++;
508                 mutex_unlock(&fs_devices->device_list_mutex);
509
510                 ret = 1;
511                 device->fs_devices = fs_devices;
512         } else if (!device->name || strcmp(device->name->str, path)) {
513                 /*
514                  * When FS is already mounted.
515                  * 1. If you are here and if the device->name is NULL that
516                  *    means this device was missing at time of FS mount.
517                  * 2. If you are here and if the device->name is different
518                  *    from 'path' that means either
519                  *      a. The same device disappeared and reappeared with
520                  *         different name. or
521                  *      b. The missing-disk-which-was-replaced, has
522                  *         reappeared now.
523                  *
524                  * We must allow 1 and 2a above. But 2b would be a spurious
525                  * and unintentional.
526                  *
527                  * Further in case of 1 and 2a above, the disk at 'path'
528                  * would have missed some transaction when it was away and
529                  * in case of 2a the stale bdev has to be updated as well.
530                  * 2b must not be allowed at all time.
531                  */
532
533                 /*
534                  * As of now don't allow update to btrfs_fs_device through
535                  * the btrfs dev scan cli, after FS has been mounted.
536                  */
537                 if (fs_devices->opened) {
538                         return -EBUSY;
539                 } else {
540                         /*
541                          * That is if the FS is _not_ mounted and if you
542                          * are here, that means there is more than one
543                          * disk with same uuid and devid.We keep the one
544                          * with larger generation number or the last-in if
545                          * generation are equal.
546                          */
547                         if (found_transid < device->generation)
548                                 return -EEXIST;
549                 }
550
551                 name = rcu_string_strdup(path, GFP_NOFS);
552                 if (!name)
553                         return -ENOMEM;
554                 rcu_string_free(device->name);
555                 rcu_assign_pointer(device->name, name);
556                 if (device->missing) {
557                         fs_devices->missing_devices--;
558                         device->missing = 0;
559                 }
560         }
561
562         /*
563          * Unmount does not free the btrfs_device struct but would zero
564          * generation along with most of the other members. So just update
565          * it back. We need it to pick the disk with largest generation
566          * (as above).
567          */
568         if (!fs_devices->opened)
569                 device->generation = found_transid;
570
571         *fs_devices_ret = fs_devices;
572
573         return ret;
574 }
575
576 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
577 {
578         struct btrfs_fs_devices *fs_devices;
579         struct btrfs_device *device;
580         struct btrfs_device *orig_dev;
581
582         fs_devices = alloc_fs_devices(orig->fsid);
583         if (IS_ERR(fs_devices))
584                 return fs_devices;
585
586         mutex_lock(&orig->device_list_mutex);
587         fs_devices->total_devices = orig->total_devices;
588
589         /* We have held the volume lock, it is safe to get the devices. */
590         list_for_each_entry(orig_dev, &orig->devices, dev_list) {
591                 struct rcu_string *name;
592
593                 device = btrfs_alloc_device(NULL, &orig_dev->devid,
594                                             orig_dev->uuid);
595                 if (IS_ERR(device))
596                         goto error;
597
598                 /*
599                  * This is ok to do without rcu read locked because we hold the
600                  * uuid mutex so nothing we touch in here is going to disappear.
601                  */
602                 if (orig_dev->name) {
603                         name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
604                         if (!name) {
605                                 kfree(device);
606                                 goto error;
607                         }
608                         rcu_assign_pointer(device->name, name);
609                 }
610
611                 list_add(&device->dev_list, &fs_devices->devices);
612                 device->fs_devices = fs_devices;
613                 fs_devices->num_devices++;
614         }
615         mutex_unlock(&orig->device_list_mutex);
616         return fs_devices;
617 error:
618         mutex_unlock(&orig->device_list_mutex);
619         free_fs_devices(fs_devices);
620         return ERR_PTR(-ENOMEM);
621 }
622
623 void btrfs_close_extra_devices(struct btrfs_fs_info *fs_info,
624                                struct btrfs_fs_devices *fs_devices, int step)
625 {
626         struct btrfs_device *device, *next;
627         struct btrfs_device *latest_dev = NULL;
628
629         mutex_lock(&uuid_mutex);
630 again:
631         /* This is the initialized path, it is safe to release the devices. */
632         list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
633                 if (device->in_fs_metadata) {
634                         if (!device->is_tgtdev_for_dev_replace &&
635                             (!latest_dev ||
636                              device->generation > latest_dev->generation)) {
637                                 latest_dev = device;
638                         }
639                         continue;
640                 }
641
642                 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
643                         /*
644                          * In the first step, keep the device which has
645                          * the correct fsid and the devid that is used
646                          * for the dev_replace procedure.
647                          * In the second step, the dev_replace state is
648                          * read from the device tree and it is known
649                          * whether the procedure is really active or
650                          * not, which means whether this device is
651                          * used or whether it should be removed.
652                          */
653                         if (step == 0 || device->is_tgtdev_for_dev_replace) {
654                                 continue;
655                         }
656                 }
657                 if (device->bdev) {
658                         blkdev_put(device->bdev, device->mode);
659                         device->bdev = NULL;
660                         fs_devices->open_devices--;
661                 }
662                 if (device->writeable) {
663                         list_del_init(&device->dev_alloc_list);
664                         device->writeable = 0;
665                         if (!device->is_tgtdev_for_dev_replace)
666                                 fs_devices->rw_devices--;
667                 }
668                 list_del_init(&device->dev_list);
669                 fs_devices->num_devices--;
670                 rcu_string_free(device->name);
671                 kfree(device);
672         }
673
674         if (fs_devices->seed) {
675                 fs_devices = fs_devices->seed;
676                 goto again;
677         }
678
679         fs_devices->latest_bdev = latest_dev->bdev;
680
681         mutex_unlock(&uuid_mutex);
682 }
683
684 static void __free_device(struct work_struct *work)
685 {
686         struct btrfs_device *device;
687
688         device = container_of(work, struct btrfs_device, rcu_work);
689
690         if (device->bdev)
691                 blkdev_put(device->bdev, device->mode);
692
693         rcu_string_free(device->name);
694         kfree(device);
695 }
696
697 static void free_device(struct rcu_head *head)
698 {
699         struct btrfs_device *device;
700
701         device = container_of(head, struct btrfs_device, rcu);
702
703         INIT_WORK(&device->rcu_work, __free_device);
704         schedule_work(&device->rcu_work);
705 }
706
707 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
708 {
709         struct btrfs_device *device;
710
711         if (--fs_devices->opened > 0)
712                 return 0;
713
714         mutex_lock(&fs_devices->device_list_mutex);
715         list_for_each_entry(device, &fs_devices->devices, dev_list) {
716                 struct btrfs_device *new_device;
717                 struct rcu_string *name;
718
719                 if (device->bdev)
720                         fs_devices->open_devices--;
721
722                 if (device->writeable &&
723                     device->devid != BTRFS_DEV_REPLACE_DEVID) {
724                         list_del_init(&device->dev_alloc_list);
725                         fs_devices->rw_devices--;
726                 }
727
728                 if (device->missing)
729                         fs_devices->missing_devices--;
730
731                 new_device = btrfs_alloc_device(NULL, &device->devid,
732                                                 device->uuid);
733                 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
734
735                 /* Safe because we are under uuid_mutex */
736                 if (device->name) {
737                         name = rcu_string_strdup(device->name->str, GFP_NOFS);
738                         BUG_ON(!name); /* -ENOMEM */
739                         rcu_assign_pointer(new_device->name, name);
740                 }
741
742                 list_replace_rcu(&device->dev_list, &new_device->dev_list);
743                 new_device->fs_devices = device->fs_devices;
744
745                 call_rcu(&device->rcu, free_device);
746         }
747         mutex_unlock(&fs_devices->device_list_mutex);
748
749         WARN_ON(fs_devices->open_devices);
750         WARN_ON(fs_devices->rw_devices);
751         fs_devices->opened = 0;
752         fs_devices->seeding = 0;
753
754         return 0;
755 }
756
757 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
758 {
759         struct btrfs_fs_devices *seed_devices = NULL;
760         int ret;
761
762         mutex_lock(&uuid_mutex);
763         ret = __btrfs_close_devices(fs_devices);
764         if (!fs_devices->opened) {
765                 seed_devices = fs_devices->seed;
766                 fs_devices->seed = NULL;
767         }
768         mutex_unlock(&uuid_mutex);
769
770         while (seed_devices) {
771                 fs_devices = seed_devices;
772                 seed_devices = fs_devices->seed;
773                 __btrfs_close_devices(fs_devices);
774                 free_fs_devices(fs_devices);
775         }
776         /*
777          * Wait for rcu kworkers under __btrfs_close_devices
778          * to finish all blkdev_puts so device is really
779          * free when umount is done.
780          */
781         rcu_barrier();
782         return ret;
783 }
784
785 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
786                                 fmode_t flags, void *holder)
787 {
788         struct request_queue *q;
789         struct block_device *bdev;
790         struct list_head *head = &fs_devices->devices;
791         struct btrfs_device *device;
792         struct btrfs_device *latest_dev = NULL;
793         struct buffer_head *bh;
794         struct btrfs_super_block *disk_super;
795         u64 devid;
796         int seeding = 1;
797         int ret = 0;
798
799         flags |= FMODE_EXCL;
800
801         list_for_each_entry(device, head, dev_list) {
802                 if (device->bdev)
803                         continue;
804                 if (!device->name)
805                         continue;
806
807                 /* Just open everything we can; ignore failures here */
808                 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
809                                             &bdev, &bh))
810                         continue;
811
812                 disk_super = (struct btrfs_super_block *)bh->b_data;
813                 devid = btrfs_stack_device_id(&disk_super->dev_item);
814                 if (devid != device->devid)
815                         goto error_brelse;
816
817                 if (memcmp(device->uuid, disk_super->dev_item.uuid,
818                            BTRFS_UUID_SIZE))
819                         goto error_brelse;
820
821                 device->generation = btrfs_super_generation(disk_super);
822                 if (!latest_dev ||
823                     device->generation > latest_dev->generation)
824                         latest_dev = device;
825
826                 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
827                         device->writeable = 0;
828                 } else {
829                         device->writeable = !bdev_read_only(bdev);
830                         seeding = 0;
831                 }
832
833                 q = bdev_get_queue(bdev);
834                 if (blk_queue_discard(q))
835                         device->can_discard = 1;
836
837                 device->bdev = bdev;
838                 device->in_fs_metadata = 0;
839                 device->mode = flags;
840
841                 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
842                         fs_devices->rotating = 1;
843
844                 fs_devices->open_devices++;
845                 if (device->writeable &&
846                     device->devid != BTRFS_DEV_REPLACE_DEVID) {
847                         fs_devices->rw_devices++;
848                         list_add(&device->dev_alloc_list,
849                                  &fs_devices->alloc_list);
850                 }
851                 brelse(bh);
852                 continue;
853
854 error_brelse:
855                 brelse(bh);
856                 blkdev_put(bdev, flags);
857                 continue;
858         }
859         if (fs_devices->open_devices == 0) {
860                 ret = -EINVAL;
861                 goto out;
862         }
863         fs_devices->seeding = seeding;
864         fs_devices->opened = 1;
865         fs_devices->latest_bdev = latest_dev->bdev;
866         fs_devices->total_rw_bytes = 0;
867 out:
868         return ret;
869 }
870
871 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
872                        fmode_t flags, void *holder)
873 {
874         int ret;
875
876         mutex_lock(&uuid_mutex);
877         if (fs_devices->opened) {
878                 fs_devices->opened++;
879                 ret = 0;
880         } else {
881                 ret = __btrfs_open_devices(fs_devices, flags, holder);
882         }
883         mutex_unlock(&uuid_mutex);
884         return ret;
885 }
886
887 /*
888  * Look for a btrfs signature on a device. This may be called out of the mount path
889  * and we are not allowed to call set_blocksize during the scan. The superblock
890  * is read via pagecache
891  */
892 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
893                           struct btrfs_fs_devices **fs_devices_ret)
894 {
895         struct btrfs_super_block *disk_super;
896         struct block_device *bdev;
897         struct page *page;
898         void *p;
899         int ret = -EINVAL;
900         u64 devid;
901         u64 transid;
902         u64 total_devices;
903         u64 bytenr;
904         pgoff_t index;
905
906         /*
907          * we would like to check all the supers, but that would make
908          * a btrfs mount succeed after a mkfs from a different FS.
909          * So, we need to add a special mount option to scan for
910          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
911          */
912         bytenr = btrfs_sb_offset(0);
913         flags |= FMODE_EXCL;
914         mutex_lock(&uuid_mutex);
915
916         bdev = blkdev_get_by_path(path, flags, holder);
917
918         if (IS_ERR(bdev)) {
919                 ret = PTR_ERR(bdev);
920                 goto error;
921         }
922
923         /* make sure our super fits in the device */
924         if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode))
925                 goto error_bdev_put;
926
927         /* make sure our super fits in the page */
928         if (sizeof(*disk_super) > PAGE_CACHE_SIZE)
929                 goto error_bdev_put;
930
931         /* make sure our super doesn't straddle pages on disk */
932         index = bytenr >> PAGE_CACHE_SHIFT;
933         if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index)
934                 goto error_bdev_put;
935
936         /* pull in the page with our super */
937         page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
938                                    index, GFP_NOFS);
939
940         if (IS_ERR_OR_NULL(page))
941                 goto error_bdev_put;
942
943         p = kmap(page);
944
945         /* align our pointer to the offset of the super block */
946         disk_super = p + (bytenr & ~PAGE_CACHE_MASK);
947
948         if (btrfs_super_bytenr(disk_super) != bytenr ||
949             btrfs_super_magic(disk_super) != BTRFS_MAGIC)
950                 goto error_unmap;
951
952         devid = btrfs_stack_device_id(&disk_super->dev_item);
953         transid = btrfs_super_generation(disk_super);
954         total_devices = btrfs_super_num_devices(disk_super);
955
956         ret = device_list_add(path, disk_super, devid, fs_devices_ret);
957         if (ret > 0) {
958                 if (disk_super->label[0]) {
959                         if (disk_super->label[BTRFS_LABEL_SIZE - 1])
960                                 disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0';
961                         printk(KERN_INFO "BTRFS: device label %s ", disk_super->label);
962                 } else {
963                         printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid);
964                 }
965
966                 printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
967                 ret = 0;
968         }
969         if (!ret && fs_devices_ret)
970                 (*fs_devices_ret)->total_devices = total_devices;
971
972 error_unmap:
973         kunmap(page);
974         page_cache_release(page);
975
976 error_bdev_put:
977         blkdev_put(bdev, flags);
978 error:
979         mutex_unlock(&uuid_mutex);
980         return ret;
981 }
982
983 /* helper to account the used device space in the range */
984 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
985                                    u64 end, u64 *length)
986 {
987         struct btrfs_key key;
988         struct btrfs_root *root = device->dev_root;
989         struct btrfs_dev_extent *dev_extent;
990         struct btrfs_path *path;
991         u64 extent_end;
992         int ret;
993         int slot;
994         struct extent_buffer *l;
995
996         *length = 0;
997
998         if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
999                 return 0;
1000
1001         path = btrfs_alloc_path();
1002         if (!path)
1003                 return -ENOMEM;
1004         path->reada = 2;
1005
1006         key.objectid = device->devid;
1007         key.offset = start;
1008         key.type = BTRFS_DEV_EXTENT_KEY;
1009
1010         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1011         if (ret < 0)
1012                 goto out;
1013         if (ret > 0) {
1014                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1015                 if (ret < 0)
1016                         goto out;
1017         }
1018
1019         while (1) {
1020                 l = path->nodes[0];
1021                 slot = path->slots[0];
1022                 if (slot >= btrfs_header_nritems(l)) {
1023                         ret = btrfs_next_leaf(root, path);
1024                         if (ret == 0)
1025                                 continue;
1026                         if (ret < 0)
1027                                 goto out;
1028
1029                         break;
1030                 }
1031                 btrfs_item_key_to_cpu(l, &key, slot);
1032
1033                 if (key.objectid < device->devid)
1034                         goto next;
1035
1036                 if (key.objectid > device->devid)
1037                         break;
1038
1039                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1040                         goto next;
1041
1042                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1043                 extent_end = key.offset + btrfs_dev_extent_length(l,
1044                                                                   dev_extent);
1045                 if (key.offset <= start && extent_end > end) {
1046                         *length = end - start + 1;
1047                         break;
1048                 } else if (key.offset <= start && extent_end > start)
1049                         *length += extent_end - start;
1050                 else if (key.offset > start && extent_end <= end)
1051                         *length += extent_end - key.offset;
1052                 else if (key.offset > start && key.offset <= end) {
1053                         *length += end - key.offset + 1;
1054                         break;
1055                 } else if (key.offset > end)
1056                         break;
1057
1058 next:
1059                 path->slots[0]++;
1060         }
1061         ret = 0;
1062 out:
1063         btrfs_free_path(path);
1064         return ret;
1065 }
1066
1067 static int contains_pending_extent(struct btrfs_trans_handle *trans,
1068                                    struct btrfs_device *device,
1069                                    u64 *start, u64 len)
1070 {
1071         struct extent_map *em;
1072         int ret = 0;
1073
1074         list_for_each_entry(em, &trans->transaction->pending_chunks, list) {
1075                 struct map_lookup *map;
1076                 int i;
1077
1078                 map = (struct map_lookup *)em->bdev;
1079                 for (i = 0; i < map->num_stripes; i++) {
1080                         if (map->stripes[i].dev != device)
1081                                 continue;
1082                         if (map->stripes[i].physical >= *start + len ||
1083                             map->stripes[i].physical + em->orig_block_len <=
1084                             *start)
1085                                 continue;
1086                         *start = map->stripes[i].physical +
1087                                 em->orig_block_len;
1088                         ret = 1;
1089                 }
1090         }
1091
1092         return ret;
1093 }
1094
1095
1096 /*
1097  * find_free_dev_extent - find free space in the specified device
1098  * @device:     the device which we search the free space in
1099  * @num_bytes:  the size of the free space that we need
1100  * @start:      store the start of the free space.
1101  * @len:        the size of the free space. that we find, or the size of the max
1102  *              free space if we don't find suitable free space
1103  *
1104  * this uses a pretty simple search, the expectation is that it is
1105  * called very infrequently and that a given device has a small number
1106  * of extents
1107  *
1108  * @start is used to store the start of the free space if we find. But if we
1109  * don't find suitable free space, it will be used to store the start position
1110  * of the max free space.
1111  *
1112  * @len is used to store the size of the free space that we find.
1113  * But if we don't find suitable free space, it is used to store the size of
1114  * the max free space.
1115  */
1116 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1117                          struct btrfs_device *device, u64 num_bytes,
1118                          u64 *start, u64 *len)
1119 {
1120         struct btrfs_key key;
1121         struct btrfs_root *root = device->dev_root;
1122         struct btrfs_dev_extent *dev_extent;
1123         struct btrfs_path *path;
1124         u64 hole_size;
1125         u64 max_hole_start;
1126         u64 max_hole_size;
1127         u64 extent_end;
1128         u64 search_start;
1129         u64 search_end = device->total_bytes;
1130         int ret;
1131         int slot;
1132         struct extent_buffer *l;
1133
1134         /* FIXME use last free of some kind */
1135
1136         /* we don't want to overwrite the superblock on the drive,
1137          * so we make sure to start at an offset of at least 1MB
1138          */
1139         search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
1140
1141         path = btrfs_alloc_path();
1142         if (!path)
1143                 return -ENOMEM;
1144 again:
1145         max_hole_start = search_start;
1146         max_hole_size = 0;
1147         hole_size = 0;
1148
1149         if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1150                 ret = -ENOSPC;
1151                 goto out;
1152         }
1153
1154         path->reada = 2;
1155         path->search_commit_root = 1;
1156         path->skip_locking = 1;
1157
1158         key.objectid = device->devid;
1159         key.offset = search_start;
1160         key.type = BTRFS_DEV_EXTENT_KEY;
1161
1162         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1163         if (ret < 0)
1164                 goto out;
1165         if (ret > 0) {
1166                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1167                 if (ret < 0)
1168                         goto out;
1169         }
1170
1171         while (1) {
1172                 l = path->nodes[0];
1173                 slot = path->slots[0];
1174                 if (slot >= btrfs_header_nritems(l)) {
1175                         ret = btrfs_next_leaf(root, path);
1176                         if (ret == 0)
1177                                 continue;
1178                         if (ret < 0)
1179                                 goto out;
1180
1181                         break;
1182                 }
1183                 btrfs_item_key_to_cpu(l, &key, slot);
1184
1185                 if (key.objectid < device->devid)
1186                         goto next;
1187
1188                 if (key.objectid > device->devid)
1189                         break;
1190
1191                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1192                         goto next;
1193
1194                 if (key.offset > search_start) {
1195                         hole_size = key.offset - search_start;
1196
1197                         /*
1198                          * Have to check before we set max_hole_start, otherwise
1199                          * we could end up sending back this offset anyway.
1200                          */
1201                         if (contains_pending_extent(trans, device,
1202                                                     &search_start,
1203                                                     hole_size))
1204                                 hole_size = 0;
1205
1206                         if (hole_size > max_hole_size) {
1207                                 max_hole_start = search_start;
1208                                 max_hole_size = hole_size;
1209                         }
1210
1211                         /*
1212                          * If this free space is greater than which we need,
1213                          * it must be the max free space that we have found
1214                          * until now, so max_hole_start must point to the start
1215                          * of this free space and the length of this free space
1216                          * is stored in max_hole_size. Thus, we return
1217                          * max_hole_start and max_hole_size and go back to the
1218                          * caller.
1219                          */
1220                         if (hole_size >= num_bytes) {
1221                                 ret = 0;
1222                                 goto out;
1223                         }
1224                 }
1225
1226                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1227                 extent_end = key.offset + btrfs_dev_extent_length(l,
1228                                                                   dev_extent);
1229                 if (extent_end > search_start)
1230                         search_start = extent_end;
1231 next:
1232                 path->slots[0]++;
1233                 cond_resched();
1234         }
1235
1236         /*
1237          * At this point, search_start should be the end of
1238          * allocated dev extents, and when shrinking the device,
1239          * search_end may be smaller than search_start.
1240          */
1241         if (search_end > search_start)
1242                 hole_size = search_end - search_start;
1243
1244         if (hole_size > max_hole_size) {
1245                 max_hole_start = search_start;
1246                 max_hole_size = hole_size;
1247         }
1248
1249         if (contains_pending_extent(trans, device, &search_start, hole_size)) {
1250                 btrfs_release_path(path);
1251                 goto again;
1252         }
1253
1254         /* See above. */
1255         if (hole_size < num_bytes)
1256                 ret = -ENOSPC;
1257         else
1258                 ret = 0;
1259
1260 out:
1261         btrfs_free_path(path);
1262         *start = max_hole_start;
1263         if (len)
1264                 *len = max_hole_size;
1265         return ret;
1266 }
1267
1268 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1269                           struct btrfs_device *device,
1270                           u64 start, u64 *dev_extent_len)
1271 {
1272         int ret;
1273         struct btrfs_path *path;
1274         struct btrfs_root *root = device->dev_root;
1275         struct btrfs_key key;
1276         struct btrfs_key found_key;
1277         struct extent_buffer *leaf = NULL;
1278         struct btrfs_dev_extent *extent = NULL;
1279
1280         path = btrfs_alloc_path();
1281         if (!path)
1282                 return -ENOMEM;
1283
1284         key.objectid = device->devid;
1285         key.offset = start;
1286         key.type = BTRFS_DEV_EXTENT_KEY;
1287 again:
1288         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1289         if (ret > 0) {
1290                 ret = btrfs_previous_item(root, path, key.objectid,
1291                                           BTRFS_DEV_EXTENT_KEY);
1292                 if (ret)
1293                         goto out;
1294                 leaf = path->nodes[0];
1295                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1296                 extent = btrfs_item_ptr(leaf, path->slots[0],
1297                                         struct btrfs_dev_extent);
1298                 BUG_ON(found_key.offset > start || found_key.offset +
1299                        btrfs_dev_extent_length(leaf, extent) < start);
1300                 key = found_key;
1301                 btrfs_release_path(path);
1302                 goto again;
1303         } else if (ret == 0) {
1304                 leaf = path->nodes[0];
1305                 extent = btrfs_item_ptr(leaf, path->slots[0],
1306                                         struct btrfs_dev_extent);
1307         } else {
1308                 btrfs_error(root->fs_info, ret, "Slot search failed");
1309                 goto out;
1310         }
1311
1312         *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1313
1314         ret = btrfs_del_item(trans, root, path);
1315         if (ret) {
1316                 btrfs_error(root->fs_info, ret,
1317                             "Failed to remove dev extent item");
1318         }
1319 out:
1320         btrfs_free_path(path);
1321         return ret;
1322 }
1323
1324 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1325                                   struct btrfs_device *device,
1326                                   u64 chunk_tree, u64 chunk_objectid,
1327                                   u64 chunk_offset, u64 start, u64 num_bytes)
1328 {
1329         int ret;
1330         struct btrfs_path *path;
1331         struct btrfs_root *root = device->dev_root;
1332         struct btrfs_dev_extent *extent;
1333         struct extent_buffer *leaf;
1334         struct btrfs_key key;
1335
1336         WARN_ON(!device->in_fs_metadata);
1337         WARN_ON(device->is_tgtdev_for_dev_replace);
1338         path = btrfs_alloc_path();
1339         if (!path)
1340                 return -ENOMEM;
1341
1342         key.objectid = device->devid;
1343         key.offset = start;
1344         key.type = BTRFS_DEV_EXTENT_KEY;
1345         ret = btrfs_insert_empty_item(trans, root, path, &key,
1346                                       sizeof(*extent));
1347         if (ret)
1348                 goto out;
1349
1350         leaf = path->nodes[0];
1351         extent = btrfs_item_ptr(leaf, path->slots[0],
1352                                 struct btrfs_dev_extent);
1353         btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1354         btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1355         btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1356
1357         write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1358                     btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
1359
1360         btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1361         btrfs_mark_buffer_dirty(leaf);
1362 out:
1363         btrfs_free_path(path);
1364         return ret;
1365 }
1366
1367 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1368 {
1369         struct extent_map_tree *em_tree;
1370         struct extent_map *em;
1371         struct rb_node *n;
1372         u64 ret = 0;
1373
1374         em_tree = &fs_info->mapping_tree.map_tree;
1375         read_lock(&em_tree->lock);
1376         n = rb_last(&em_tree->map);
1377         if (n) {
1378                 em = rb_entry(n, struct extent_map, rb_node);
1379                 ret = em->start + em->len;
1380         }
1381         read_unlock(&em_tree->lock);
1382
1383         return ret;
1384 }
1385
1386 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1387                                     u64 *devid_ret)
1388 {
1389         int ret;
1390         struct btrfs_key key;
1391         struct btrfs_key found_key;
1392         struct btrfs_path *path;
1393
1394         path = btrfs_alloc_path();
1395         if (!path)
1396                 return -ENOMEM;
1397
1398         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1399         key.type = BTRFS_DEV_ITEM_KEY;
1400         key.offset = (u64)-1;
1401
1402         ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1403         if (ret < 0)
1404                 goto error;
1405
1406         BUG_ON(ret == 0); /* Corruption */
1407
1408         ret = btrfs_previous_item(fs_info->chunk_root, path,
1409                                   BTRFS_DEV_ITEMS_OBJECTID,
1410                                   BTRFS_DEV_ITEM_KEY);
1411         if (ret) {
1412                 *devid_ret = 1;
1413         } else {
1414                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1415                                       path->slots[0]);
1416                 *devid_ret = found_key.offset + 1;
1417         }
1418         ret = 0;
1419 error:
1420         btrfs_free_path(path);
1421         return ret;
1422 }
1423
1424 /*
1425  * the device information is stored in the chunk root
1426  * the btrfs_device struct should be fully filled in
1427  */
1428 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1429                             struct btrfs_root *root,
1430                             struct btrfs_device *device)
1431 {
1432         int ret;
1433         struct btrfs_path *path;
1434         struct btrfs_dev_item *dev_item;
1435         struct extent_buffer *leaf;
1436         struct btrfs_key key;
1437         unsigned long ptr;
1438
1439         root = root->fs_info->chunk_root;
1440
1441         path = btrfs_alloc_path();
1442         if (!path)
1443                 return -ENOMEM;
1444
1445         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1446         key.type = BTRFS_DEV_ITEM_KEY;
1447         key.offset = device->devid;
1448
1449         ret = btrfs_insert_empty_item(trans, root, path, &key,
1450                                       sizeof(*dev_item));
1451         if (ret)
1452                 goto out;
1453
1454         leaf = path->nodes[0];
1455         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1456
1457         btrfs_set_device_id(leaf, dev_item, device->devid);
1458         btrfs_set_device_generation(leaf, dev_item, 0);
1459         btrfs_set_device_type(leaf, dev_item, device->type);
1460         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1461         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1462         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1463         btrfs_set_device_total_bytes(leaf, dev_item,
1464                                      btrfs_device_get_disk_total_bytes(device));
1465         btrfs_set_device_bytes_used(leaf, dev_item,
1466                                     btrfs_device_get_bytes_used(device));
1467         btrfs_set_device_group(leaf, dev_item, 0);
1468         btrfs_set_device_seek_speed(leaf, dev_item, 0);
1469         btrfs_set_device_bandwidth(leaf, dev_item, 0);
1470         btrfs_set_device_start_offset(leaf, dev_item, 0);
1471
1472         ptr = btrfs_device_uuid(dev_item);
1473         write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1474         ptr = btrfs_device_fsid(dev_item);
1475         write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1476         btrfs_mark_buffer_dirty(leaf);
1477
1478         ret = 0;
1479 out:
1480         btrfs_free_path(path);
1481         return ret;
1482 }
1483
1484 /*
1485  * Function to update ctime/mtime for a given device path.
1486  * Mainly used for ctime/mtime based probe like libblkid.
1487  */
1488 static void update_dev_time(char *path_name)
1489 {
1490         struct file *filp;
1491
1492         filp = filp_open(path_name, O_RDWR, 0);
1493         if (!filp)
1494                 return;
1495         file_update_time(filp);
1496         filp_close(filp, NULL);
1497         return;
1498 }
1499
1500 static int btrfs_rm_dev_item(struct btrfs_root *root,
1501                              struct btrfs_device *device)
1502 {
1503         int ret;
1504         struct btrfs_path *path;
1505         struct btrfs_key key;
1506         struct btrfs_trans_handle *trans;
1507
1508         root = root->fs_info->chunk_root;
1509
1510         path = btrfs_alloc_path();
1511         if (!path)
1512                 return -ENOMEM;
1513
1514         trans = btrfs_start_transaction(root, 0);
1515         if (IS_ERR(trans)) {
1516                 btrfs_free_path(path);
1517                 return PTR_ERR(trans);
1518         }
1519         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1520         key.type = BTRFS_DEV_ITEM_KEY;
1521         key.offset = device->devid;
1522
1523         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1524         if (ret < 0)
1525                 goto out;
1526
1527         if (ret > 0) {
1528                 ret = -ENOENT;
1529                 goto out;
1530         }
1531
1532         ret = btrfs_del_item(trans, root, path);
1533         if (ret)
1534                 goto out;
1535 out:
1536         btrfs_free_path(path);
1537         btrfs_commit_transaction(trans, root);
1538         return ret;
1539 }
1540
1541 int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1542 {
1543         struct btrfs_device *device;
1544         struct btrfs_device *next_device;
1545         struct block_device *bdev;
1546         struct buffer_head *bh = NULL;
1547         struct btrfs_super_block *disk_super;
1548         struct btrfs_fs_devices *cur_devices;
1549         u64 all_avail;
1550         u64 devid;
1551         u64 num_devices;
1552         u8 *dev_uuid;
1553         unsigned seq;
1554         int ret = 0;
1555         bool clear_super = false;
1556
1557         mutex_lock(&uuid_mutex);
1558
1559         do {
1560                 seq = read_seqbegin(&root->fs_info->profiles_lock);
1561
1562                 all_avail = root->fs_info->avail_data_alloc_bits |
1563                             root->fs_info->avail_system_alloc_bits |
1564                             root->fs_info->avail_metadata_alloc_bits;
1565         } while (read_seqretry(&root->fs_info->profiles_lock, seq));
1566
1567         num_devices = root->fs_info->fs_devices->num_devices;
1568         btrfs_dev_replace_lock(&root->fs_info->dev_replace);
1569         if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1570                 WARN_ON(num_devices < 1);
1571                 num_devices--;
1572         }
1573         btrfs_dev_replace_unlock(&root->fs_info->dev_replace);
1574
1575         if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) {
1576                 ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET;
1577                 goto out;
1578         }
1579
1580         if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) {
1581                 ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET;
1582                 goto out;
1583         }
1584
1585         if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) &&
1586             root->fs_info->fs_devices->rw_devices <= 2) {
1587                 ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET;
1588                 goto out;
1589         }
1590         if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) &&
1591             root->fs_info->fs_devices->rw_devices <= 3) {
1592                 ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET;
1593                 goto out;
1594         }
1595
1596         if (strcmp(device_path, "missing") == 0) {
1597                 struct list_head *devices;
1598                 struct btrfs_device *tmp;
1599
1600                 device = NULL;
1601                 devices = &root->fs_info->fs_devices->devices;
1602                 /*
1603                  * It is safe to read the devices since the volume_mutex
1604                  * is held.
1605                  */
1606                 list_for_each_entry(tmp, devices, dev_list) {
1607                         if (tmp->in_fs_metadata &&
1608                             !tmp->is_tgtdev_for_dev_replace &&
1609                             !tmp->bdev) {
1610                                 device = tmp;
1611                                 break;
1612                         }
1613                 }
1614                 bdev = NULL;
1615                 bh = NULL;
1616                 disk_super = NULL;
1617                 if (!device) {
1618                         ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
1619                         goto out;
1620                 }
1621         } else {
1622                 ret = btrfs_get_bdev_and_sb(device_path,
1623                                             FMODE_WRITE | FMODE_EXCL,
1624                                             root->fs_info->bdev_holder, 0,
1625                                             &bdev, &bh);
1626                 if (ret)
1627                         goto out;
1628                 disk_super = (struct btrfs_super_block *)bh->b_data;
1629                 devid = btrfs_stack_device_id(&disk_super->dev_item);
1630                 dev_uuid = disk_super->dev_item.uuid;
1631                 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1632                                            disk_super->fsid);
1633                 if (!device) {
1634                         ret = -ENOENT;
1635                         goto error_brelse;
1636                 }
1637         }
1638
1639         if (device->is_tgtdev_for_dev_replace) {
1640                 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1641                 goto error_brelse;
1642         }
1643
1644         if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1645                 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1646                 goto error_brelse;
1647         }
1648
1649         if (device->writeable) {
1650                 lock_chunks(root);
1651                 list_del_init(&device->dev_alloc_list);
1652                 device->fs_devices->rw_devices--;
1653                 unlock_chunks(root);
1654                 clear_super = true;
1655         }
1656
1657         mutex_unlock(&uuid_mutex);
1658         ret = btrfs_shrink_device(device, 0);
1659         mutex_lock(&uuid_mutex);
1660         if (ret)
1661                 goto error_undo;
1662
1663         /*
1664          * TODO: the superblock still includes this device in its num_devices
1665          * counter although write_all_supers() is not locked out. This
1666          * could give a filesystem state which requires a degraded mount.
1667          */
1668         ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1669         if (ret)
1670                 goto error_undo;
1671
1672         device->in_fs_metadata = 0;
1673         btrfs_scrub_cancel_dev(root->fs_info, device);
1674
1675         /*
1676          * the device list mutex makes sure that we don't change
1677          * the device list while someone else is writing out all
1678          * the device supers. Whoever is writing all supers, should
1679          * lock the device list mutex before getting the number of
1680          * devices in the super block (super_copy). Conversely,
1681          * whoever updates the number of devices in the super block
1682          * (super_copy) should hold the device list mutex.
1683          */
1684
1685         cur_devices = device->fs_devices;
1686         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1687         list_del_rcu(&device->dev_list);
1688
1689         device->fs_devices->num_devices--;
1690         device->fs_devices->total_devices--;
1691
1692         if (device->missing)
1693                 device->fs_devices->missing_devices--;
1694
1695         next_device = list_entry(root->fs_info->fs_devices->devices.next,
1696                                  struct btrfs_device, dev_list);
1697         if (device->bdev == root->fs_info->sb->s_bdev)
1698                 root->fs_info->sb->s_bdev = next_device->bdev;
1699         if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1700                 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1701
1702         if (device->bdev) {
1703                 device->fs_devices->open_devices--;
1704                 /* remove sysfs entry */
1705                 btrfs_kobj_rm_device(root->fs_info, device);
1706         }
1707
1708         call_rcu(&device->rcu, free_device);
1709
1710         num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1711         btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1712         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1713
1714         if (cur_devices->open_devices == 0) {
1715                 struct btrfs_fs_devices *fs_devices;
1716                 fs_devices = root->fs_info->fs_devices;
1717                 while (fs_devices) {
1718                         if (fs_devices->seed == cur_devices) {
1719                                 fs_devices->seed = cur_devices->seed;
1720                                 break;
1721                         }
1722                         fs_devices = fs_devices->seed;
1723                 }
1724                 cur_devices->seed = NULL;
1725                 __btrfs_close_devices(cur_devices);
1726                 free_fs_devices(cur_devices);
1727         }
1728
1729         root->fs_info->num_tolerated_disk_barrier_failures =
1730                 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1731
1732         /*
1733          * at this point, the device is zero sized.  We want to
1734          * remove it from the devices list and zero out the old super
1735          */
1736         if (clear_super && disk_super) {
1737                 u64 bytenr;
1738                 int i;
1739
1740                 /* make sure this device isn't detected as part of
1741                  * the FS anymore
1742                  */
1743                 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1744                 set_buffer_dirty(bh);
1745                 sync_dirty_buffer(bh);
1746
1747                 /* clear the mirror copies of super block on the disk
1748                  * being removed, 0th copy is been taken care above and
1749                  * the below would take of the rest
1750                  */
1751                 for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1752                         bytenr = btrfs_sb_offset(i);
1753                         if (bytenr + BTRFS_SUPER_INFO_SIZE >=
1754                                         i_size_read(bdev->bd_inode))
1755                                 break;
1756
1757                         brelse(bh);
1758                         bh = __bread(bdev, bytenr / 4096,
1759                                         BTRFS_SUPER_INFO_SIZE);
1760                         if (!bh)
1761                                 continue;
1762
1763                         disk_super = (struct btrfs_super_block *)bh->b_data;
1764
1765                         if (btrfs_super_bytenr(disk_super) != bytenr ||
1766                                 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1767                                 continue;
1768                         }
1769                         memset(&disk_super->magic, 0,
1770                                                 sizeof(disk_super->magic));
1771                         set_buffer_dirty(bh);
1772                         sync_dirty_buffer(bh);
1773                 }
1774         }
1775
1776         ret = 0;
1777
1778         if (bdev) {
1779                 /* Notify udev that device has changed */
1780                 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
1781
1782                 /* Update ctime/mtime for device path for libblkid */
1783                 update_dev_time(device_path);
1784         }
1785
1786 error_brelse:
1787         brelse(bh);
1788         if (bdev)
1789                 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1790 out:
1791         mutex_unlock(&uuid_mutex);
1792         return ret;
1793 error_undo:
1794         if (device->writeable) {
1795                 lock_chunks(root);
1796                 list_add(&device->dev_alloc_list,
1797                          &root->fs_info->fs_devices->alloc_list);
1798                 device->fs_devices->rw_devices++;
1799                 unlock_chunks(root);
1800         }
1801         goto error_brelse;
1802 }
1803
1804 void btrfs_rm_dev_replace_srcdev(struct btrfs_fs_info *fs_info,
1805                                  struct btrfs_device *srcdev)
1806 {
1807         struct btrfs_fs_devices *fs_devices;
1808
1809         WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1810
1811         /*
1812          * in case of fs with no seed, srcdev->fs_devices will point
1813          * to fs_devices of fs_info. However when the dev being replaced is
1814          * a seed dev it will point to the seed's local fs_devices. In short
1815          * srcdev will have its correct fs_devices in both the cases.
1816          */
1817         fs_devices = srcdev->fs_devices;
1818
1819         list_del_rcu(&srcdev->dev_list);
1820         list_del_rcu(&srcdev->dev_alloc_list);
1821         fs_devices->num_devices--;
1822         if (srcdev->missing)
1823                 fs_devices->missing_devices--;
1824
1825         if (srcdev->writeable) {
1826                 fs_devices->rw_devices--;
1827                 /* zero out the old super if it is writable */
1828                 btrfs_scratch_superblock(srcdev);
1829         }
1830
1831         if (srcdev->bdev)
1832                 fs_devices->open_devices--;
1833
1834         call_rcu(&srcdev->rcu, free_device);
1835
1836         /*
1837          * unless fs_devices is seed fs, num_devices shouldn't go
1838          * zero
1839          */
1840         BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
1841
1842         /* if this is no devs we rather delete the fs_devices */
1843         if (!fs_devices->num_devices) {
1844                 struct btrfs_fs_devices *tmp_fs_devices;
1845
1846                 tmp_fs_devices = fs_info->fs_devices;
1847                 while (tmp_fs_devices) {
1848                         if (tmp_fs_devices->seed == fs_devices) {
1849                                 tmp_fs_devices->seed = fs_devices->seed;
1850                                 break;
1851                         }
1852                         tmp_fs_devices = tmp_fs_devices->seed;
1853                 }
1854                 fs_devices->seed = NULL;
1855                 __btrfs_close_devices(fs_devices);
1856                 free_fs_devices(fs_devices);
1857         }
1858 }
1859
1860 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
1861                                       struct btrfs_device *tgtdev)
1862 {
1863         struct btrfs_device *next_device;
1864
1865         mutex_lock(&uuid_mutex);
1866         WARN_ON(!tgtdev);
1867         mutex_lock(&fs_info->fs_devices->device_list_mutex);
1868         if (tgtdev->bdev) {
1869                 btrfs_scratch_superblock(tgtdev);
1870                 fs_info->fs_devices->open_devices--;
1871         }
1872         fs_info->fs_devices->num_devices--;
1873
1874         next_device = list_entry(fs_info->fs_devices->devices.next,
1875                                  struct btrfs_device, dev_list);
1876         if (tgtdev->bdev == fs_info->sb->s_bdev)
1877                 fs_info->sb->s_bdev = next_device->bdev;
1878         if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
1879                 fs_info->fs_devices->latest_bdev = next_device->bdev;
1880         list_del_rcu(&tgtdev->dev_list);
1881
1882         call_rcu(&tgtdev->rcu, free_device);
1883
1884         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1885         mutex_unlock(&uuid_mutex);
1886 }
1887
1888 static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
1889                                      struct btrfs_device **device)
1890 {
1891         int ret = 0;
1892         struct btrfs_super_block *disk_super;
1893         u64 devid;
1894         u8 *dev_uuid;
1895         struct block_device *bdev;
1896         struct buffer_head *bh;
1897
1898         *device = NULL;
1899         ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
1900                                     root->fs_info->bdev_holder, 0, &bdev, &bh);
1901         if (ret)
1902                 return ret;
1903         disk_super = (struct btrfs_super_block *)bh->b_data;
1904         devid = btrfs_stack_device_id(&disk_super->dev_item);
1905         dev_uuid = disk_super->dev_item.uuid;
1906         *device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1907                                     disk_super->fsid);
1908         brelse(bh);
1909         if (!*device)
1910                 ret = -ENOENT;
1911         blkdev_put(bdev, FMODE_READ);
1912         return ret;
1913 }
1914
1915 int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
1916                                          char *device_path,
1917                                          struct btrfs_device **device)
1918 {
1919         *device = NULL;
1920         if (strcmp(device_path, "missing") == 0) {
1921                 struct list_head *devices;
1922                 struct btrfs_device *tmp;
1923
1924                 devices = &root->fs_info->fs_devices->devices;
1925                 /*
1926                  * It is safe to read the devices since the volume_mutex
1927                  * is held by the caller.
1928                  */
1929                 list_for_each_entry(tmp, devices, dev_list) {
1930                         if (tmp->in_fs_metadata && !tmp->bdev) {
1931                                 *device = tmp;
1932                                 break;
1933                         }
1934                 }
1935
1936                 if (!*device) {
1937                         btrfs_err(root->fs_info, "no missing device found");
1938                         return -ENOENT;
1939                 }
1940
1941                 return 0;
1942         } else {
1943                 return btrfs_find_device_by_path(root, device_path, device);
1944         }
1945 }
1946
1947 /*
1948  * does all the dirty work required for changing file system's UUID.
1949  */
1950 static int btrfs_prepare_sprout(struct btrfs_root *root)
1951 {
1952         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1953         struct btrfs_fs_devices *old_devices;
1954         struct btrfs_fs_devices *seed_devices;
1955         struct btrfs_super_block *disk_super = root->fs_info->super_copy;
1956         struct btrfs_device *device;
1957         u64 super_flags;
1958
1959         BUG_ON(!mutex_is_locked(&uuid_mutex));
1960         if (!fs_devices->seeding)
1961                 return -EINVAL;
1962
1963         seed_devices = __alloc_fs_devices();
1964         if (IS_ERR(seed_devices))
1965                 return PTR_ERR(seed_devices);
1966
1967         old_devices = clone_fs_devices(fs_devices);
1968         if (IS_ERR(old_devices)) {
1969                 kfree(seed_devices);
1970                 return PTR_ERR(old_devices);
1971         }
1972
1973         list_add(&old_devices->list, &fs_uuids);
1974
1975         memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1976         seed_devices->opened = 1;
1977         INIT_LIST_HEAD(&seed_devices->devices);
1978         INIT_LIST_HEAD(&seed_devices->alloc_list);
1979         mutex_init(&seed_devices->device_list_mutex);
1980
1981         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1982         list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
1983                               synchronize_rcu);
1984         list_for_each_entry(device, &seed_devices->devices, dev_list)
1985                 device->fs_devices = seed_devices;
1986
1987         lock_chunks(root);
1988         list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1989         unlock_chunks(root);
1990
1991         fs_devices->seeding = 0;
1992         fs_devices->num_devices = 0;
1993         fs_devices->open_devices = 0;
1994         fs_devices->missing_devices = 0;
1995         fs_devices->rotating = 0;
1996         fs_devices->seed = seed_devices;
1997
1998         generate_random_uuid(fs_devices->fsid);
1999         memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2000         memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2001         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2002
2003         super_flags = btrfs_super_flags(disk_super) &
2004                       ~BTRFS_SUPER_FLAG_SEEDING;
2005         btrfs_set_super_flags(disk_super, super_flags);
2006
2007         return 0;
2008 }
2009
2010 /*
2011  * strore the expected generation for seed devices in device items.
2012  */
2013 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2014                                struct btrfs_root *root)
2015 {
2016         struct btrfs_path *path;
2017         struct extent_buffer *leaf;
2018         struct btrfs_dev_item *dev_item;
2019         struct btrfs_device *device;
2020         struct btrfs_key key;
2021         u8 fs_uuid[BTRFS_UUID_SIZE];
2022         u8 dev_uuid[BTRFS_UUID_SIZE];
2023         u64 devid;
2024         int ret;
2025
2026         path = btrfs_alloc_path();
2027         if (!path)
2028                 return -ENOMEM;
2029
2030         root = root->fs_info->chunk_root;
2031         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2032         key.offset = 0;
2033         key.type = BTRFS_DEV_ITEM_KEY;
2034
2035         while (1) {
2036                 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2037                 if (ret < 0)
2038                         goto error;
2039
2040                 leaf = path->nodes[0];
2041 next_slot:
2042                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2043                         ret = btrfs_next_leaf(root, path);
2044                         if (ret > 0)
2045                                 break;
2046                         if (ret < 0)
2047                                 goto error;
2048                         leaf = path->nodes[0];
2049                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2050                         btrfs_release_path(path);
2051                         continue;
2052                 }
2053
2054                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2055                 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2056                     key.type != BTRFS_DEV_ITEM_KEY)
2057                         break;
2058
2059                 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2060                                           struct btrfs_dev_item);
2061                 devid = btrfs_device_id(leaf, dev_item);
2062                 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2063                                    BTRFS_UUID_SIZE);
2064                 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2065                                    BTRFS_UUID_SIZE);
2066                 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2067                                            fs_uuid);
2068                 BUG_ON(!device); /* Logic error */
2069
2070                 if (device->fs_devices->seeding) {
2071                         btrfs_set_device_generation(leaf, dev_item,
2072                                                     device->generation);
2073                         btrfs_mark_buffer_dirty(leaf);
2074                 }
2075
2076                 path->slots[0]++;
2077                 goto next_slot;
2078         }
2079         ret = 0;
2080 error:
2081         btrfs_free_path(path);
2082         return ret;
2083 }
2084
2085 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
2086 {
2087         struct request_queue *q;
2088         struct btrfs_trans_handle *trans;
2089         struct btrfs_device *device;
2090         struct block_device *bdev;
2091         struct list_head *devices;
2092         struct super_block *sb = root->fs_info->sb;
2093         struct rcu_string *name;
2094         u64 tmp;
2095         int seeding_dev = 0;
2096         int ret = 0;
2097
2098         if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
2099                 return -EROFS;
2100
2101         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2102                                   root->fs_info->bdev_holder);
2103         if (IS_ERR(bdev))
2104                 return PTR_ERR(bdev);
2105
2106         if (root->fs_info->fs_devices->seeding) {
2107                 seeding_dev = 1;
2108                 down_write(&sb->s_umount);
2109                 mutex_lock(&uuid_mutex);
2110         }
2111
2112         filemap_write_and_wait(bdev->bd_inode->i_mapping);
2113
2114         devices = &root->fs_info->fs_devices->devices;
2115
2116         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2117         list_for_each_entry(device, devices, dev_list) {
2118                 if (device->bdev == bdev) {
2119                         ret = -EEXIST;
2120                         mutex_unlock(
2121                                 &root->fs_info->fs_devices->device_list_mutex);
2122                         goto error;
2123                 }
2124         }
2125         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2126
2127         device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2128         if (IS_ERR(device)) {
2129                 /* we can safely leave the fs_devices entry around */
2130                 ret = PTR_ERR(device);
2131                 goto error;
2132         }
2133
2134         name = rcu_string_strdup(device_path, GFP_NOFS);
2135         if (!name) {
2136                 kfree(device);
2137                 ret = -ENOMEM;
2138                 goto error;
2139         }
2140         rcu_assign_pointer(device->name, name);
2141
2142         trans = btrfs_start_transaction(root, 0);
2143         if (IS_ERR(trans)) {
2144                 rcu_string_free(device->name);
2145                 kfree(device);
2146                 ret = PTR_ERR(trans);
2147                 goto error;
2148         }
2149
2150         q = bdev_get_queue(bdev);
2151         if (blk_queue_discard(q))
2152                 device->can_discard = 1;
2153         device->writeable = 1;
2154         device->generation = trans->transid;
2155         device->io_width = root->sectorsize;
2156         device->io_align = root->sectorsize;
2157         device->sector_size = root->sectorsize;
2158         device->total_bytes = i_size_read(bdev->bd_inode);
2159         device->disk_total_bytes = device->total_bytes;
2160         device->commit_total_bytes = device->total_bytes;
2161         device->dev_root = root->fs_info->dev_root;
2162         device->bdev = bdev;
2163         device->in_fs_metadata = 1;
2164         device->is_tgtdev_for_dev_replace = 0;
2165         device->mode = FMODE_EXCL;
2166         device->dev_stats_valid = 1;
2167         set_blocksize(device->bdev, 4096);
2168
2169         if (seeding_dev) {
2170                 sb->s_flags &= ~MS_RDONLY;
2171                 ret = btrfs_prepare_sprout(root);
2172                 BUG_ON(ret); /* -ENOMEM */
2173         }
2174
2175         device->fs_devices = root->fs_info->fs_devices;
2176
2177         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2178         lock_chunks(root);
2179         list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2180         list_add(&device->dev_alloc_list,
2181                  &root->fs_info->fs_devices->alloc_list);
2182         root->fs_info->fs_devices->num_devices++;
2183         root->fs_info->fs_devices->open_devices++;
2184         root->fs_info->fs_devices->rw_devices++;
2185         root->fs_info->fs_devices->total_devices++;
2186         root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2187
2188         spin_lock(&root->fs_info->free_chunk_lock);
2189         root->fs_info->free_chunk_space += device->total_bytes;
2190         spin_unlock(&root->fs_info->free_chunk_lock);
2191
2192         if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2193                 root->fs_info->fs_devices->rotating = 1;
2194
2195         tmp = btrfs_super_total_bytes(root->fs_info->super_copy);
2196         btrfs_set_super_total_bytes(root->fs_info->super_copy,
2197                                     tmp + device->total_bytes);
2198
2199         tmp = btrfs_super_num_devices(root->fs_info->super_copy);
2200         btrfs_set_super_num_devices(root->fs_info->super_copy,
2201                                     tmp + 1);
2202
2203         /* add sysfs device entry */
2204         btrfs_kobj_add_device(root->fs_info, device);
2205
2206         /*
2207          * we've got more storage, clear any full flags on the space
2208          * infos
2209          */
2210         btrfs_clear_space_info_full(root->fs_info);
2211
2212         unlock_chunks(root);
2213         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2214
2215         if (seeding_dev) {
2216                 lock_chunks(root);
2217                 ret = init_first_rw_device(trans, root, device);
2218                 unlock_chunks(root);
2219                 if (ret) {
2220                         btrfs_abort_transaction(trans, root, ret);
2221                         goto error_trans;
2222                 }
2223         }
2224
2225         ret = btrfs_add_device(trans, root, device);
2226         if (ret) {
2227                 btrfs_abort_transaction(trans, root, ret);
2228                 goto error_trans;
2229         }
2230
2231         if (seeding_dev) {
2232                 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2233
2234                 ret = btrfs_finish_sprout(trans, root);
2235                 if (ret) {
2236                         btrfs_abort_transaction(trans, root, ret);
2237                         goto error_trans;
2238                 }
2239
2240                 /* Sprouting would change fsid of the mounted root,
2241                  * so rename the fsid on the sysfs
2242                  */
2243                 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2244                                                 root->fs_info->fsid);
2245                 if (kobject_rename(&root->fs_info->super_kobj, fsid_buf))
2246                         goto error_trans;
2247         }
2248
2249         root->fs_info->num_tolerated_disk_barrier_failures =
2250                 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
2251         ret = btrfs_commit_transaction(trans, root);
2252
2253         if (seeding_dev) {
2254                 mutex_unlock(&uuid_mutex);
2255                 up_write(&sb->s_umount);
2256
2257                 if (ret) /* transaction commit */
2258                         return ret;
2259
2260                 ret = btrfs_relocate_sys_chunks(root);
2261                 if (ret < 0)
2262                         btrfs_error(root->fs_info, ret,
2263                                     "Failed to relocate sys chunks after "
2264                                     "device initialization. This can be fixed "
2265                                     "using the \"btrfs balance\" command.");
2266                 trans = btrfs_attach_transaction(root);
2267                 if (IS_ERR(trans)) {
2268                         if (PTR_ERR(trans) == -ENOENT)
2269                                 return 0;
2270                         return PTR_ERR(trans);
2271                 }
2272                 ret = btrfs_commit_transaction(trans, root);
2273         }
2274
2275         /* Update ctime/mtime for libblkid */
2276         update_dev_time(device_path);
2277         return ret;
2278
2279 error_trans:
2280         btrfs_end_transaction(trans, root);
2281         rcu_string_free(device->name);
2282         btrfs_kobj_rm_device(root->fs_info, device);
2283         kfree(device);
2284 error:
2285         blkdev_put(bdev, FMODE_EXCL);
2286         if (seeding_dev) {
2287                 mutex_unlock(&uuid_mutex);
2288                 up_write(&sb->s_umount);
2289         }
2290         return ret;
2291 }
2292
2293 int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2294                                   struct btrfs_device *srcdev,
2295                                   struct btrfs_device **device_out)
2296 {
2297         struct request_queue *q;
2298         struct btrfs_device *device;
2299         struct block_device *bdev;
2300         struct btrfs_fs_info *fs_info = root->fs_info;
2301         struct list_head *devices;
2302         struct rcu_string *name;
2303         u64 devid = BTRFS_DEV_REPLACE_DEVID;
2304         int ret = 0;
2305
2306         *device_out = NULL;
2307         if (fs_info->fs_devices->seeding) {
2308                 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2309                 return -EINVAL;
2310         }
2311
2312         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2313                                   fs_info->bdev_holder);
2314         if (IS_ERR(bdev)) {
2315                 btrfs_err(fs_info, "target device %s is invalid!", device_path);
2316                 return PTR_ERR(bdev);
2317         }
2318
2319         filemap_write_and_wait(bdev->bd_inode->i_mapping);
2320
2321         devices = &fs_info->fs_devices->devices;
2322         list_for_each_entry(device, devices, dev_list) {
2323                 if (device->bdev == bdev) {
2324                         btrfs_err(fs_info, "target device is in the filesystem!");
2325                         ret = -EEXIST;
2326                         goto error;
2327                 }
2328         }
2329
2330
2331         if (i_size_read(bdev->bd_inode) <
2332             btrfs_device_get_total_bytes(srcdev)) {
2333                 btrfs_err(fs_info, "target device is smaller than source device!");
2334                 ret = -EINVAL;
2335                 goto error;
2336         }
2337
2338
2339         device = btrfs_alloc_device(NULL, &devid, NULL);
2340         if (IS_ERR(device)) {
2341                 ret = PTR_ERR(device);
2342                 goto error;
2343         }
2344
2345         name = rcu_string_strdup(device_path, GFP_NOFS);
2346         if (!name) {
2347                 kfree(device);
2348                 ret = -ENOMEM;
2349                 goto error;
2350         }
2351         rcu_assign_pointer(device->name, name);
2352
2353         q = bdev_get_queue(bdev);
2354         if (blk_queue_discard(q))
2355                 device->can_discard = 1;
2356         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2357         device->writeable = 1;
2358         device->generation = 0;
2359         device->io_width = root->sectorsize;
2360         device->io_align = root->sectorsize;
2361         device->sector_size = root->sectorsize;
2362         device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2363         device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2364         device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2365         ASSERT(list_empty(&srcdev->resized_list));
2366         device->commit_total_bytes = srcdev->commit_total_bytes;
2367         device->commit_bytes_used = device->bytes_used;
2368         device->dev_root = fs_info->dev_root;
2369         device->bdev = bdev;
2370         device->in_fs_metadata = 1;
2371         device->is_tgtdev_for_dev_replace = 1;
2372         device->mode = FMODE_EXCL;
2373         device->dev_stats_valid = 1;
2374         set_blocksize(device->bdev, 4096);
2375         device->fs_devices = fs_info->fs_devices;
2376         list_add(&device->dev_list, &fs_info->fs_devices->devices);
2377         fs_info->fs_devices->num_devices++;
2378         fs_info->fs_devices->open_devices++;
2379         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2380
2381         *device_out = device;
2382         return ret;
2383
2384 error:
2385         blkdev_put(bdev, FMODE_EXCL);
2386         return ret;
2387 }
2388
2389 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2390                                               struct btrfs_device *tgtdev)
2391 {
2392         WARN_ON(fs_info->fs_devices->rw_devices == 0);
2393         tgtdev->io_width = fs_info->dev_root->sectorsize;
2394         tgtdev->io_align = fs_info->dev_root->sectorsize;
2395         tgtdev->sector_size = fs_info->dev_root->sectorsize;
2396         tgtdev->dev_root = fs_info->dev_root;
2397         tgtdev->in_fs_metadata = 1;
2398 }
2399
2400 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2401                                         struct btrfs_device *device)
2402 {
2403         int ret;
2404         struct btrfs_path *path;
2405         struct btrfs_root *root;
2406         struct btrfs_dev_item *dev_item;
2407         struct extent_buffer *leaf;
2408         struct btrfs_key key;
2409
2410         root = device->dev_root->fs_info->chunk_root;
2411
2412         path = btrfs_alloc_path();
2413         if (!path)
2414                 return -ENOMEM;
2415
2416         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2417         key.type = BTRFS_DEV_ITEM_KEY;
2418         key.offset = device->devid;
2419
2420         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2421         if (ret < 0)
2422                 goto out;
2423
2424         if (ret > 0) {
2425                 ret = -ENOENT;
2426                 goto out;
2427         }
2428
2429         leaf = path->nodes[0];
2430         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2431
2432         btrfs_set_device_id(leaf, dev_item, device->devid);
2433         btrfs_set_device_type(leaf, dev_item, device->type);
2434         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2435         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2436         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2437         btrfs_set_device_total_bytes(leaf, dev_item,
2438                                      btrfs_device_get_disk_total_bytes(device));
2439         btrfs_set_device_bytes_used(leaf, dev_item,
2440                                     btrfs_device_get_bytes_used(device));
2441         btrfs_mark_buffer_dirty(leaf);
2442
2443 out:
2444         btrfs_free_path(path);
2445         return ret;
2446 }
2447
2448 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2449                       struct btrfs_device *device, u64 new_size)
2450 {
2451         struct btrfs_super_block *super_copy =
2452                 device->dev_root->fs_info->super_copy;
2453         struct btrfs_fs_devices *fs_devices;
2454         u64 old_total;
2455         u64 diff;
2456
2457         if (!device->writeable)
2458                 return -EACCES;
2459
2460         lock_chunks(device->dev_root);
2461         old_total = btrfs_super_total_bytes(super_copy);
2462         diff = new_size - device->total_bytes;
2463
2464         if (new_size <= device->total_bytes ||
2465             device->is_tgtdev_for_dev_replace) {
2466                 unlock_chunks(device->dev_root);
2467                 return -EINVAL;
2468         }
2469
2470         fs_devices = device->dev_root->fs_info->fs_devices;
2471
2472         btrfs_set_super_total_bytes(super_copy, old_total + diff);
2473         device->fs_devices->total_rw_bytes += diff;
2474
2475         btrfs_device_set_total_bytes(device, new_size);
2476         btrfs_device_set_disk_total_bytes(device, new_size);
2477         btrfs_clear_space_info_full(device->dev_root->fs_info);
2478         if (list_empty(&device->resized_list))
2479                 list_add_tail(&device->resized_list,
2480                               &fs_devices->resized_devices);
2481         unlock_chunks(device->dev_root);
2482
2483         return btrfs_update_device(trans, device);
2484 }
2485
2486 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2487                             struct btrfs_root *root,
2488                             u64 chunk_tree, u64 chunk_objectid,
2489                             u64 chunk_offset)
2490 {
2491         int ret;
2492         struct btrfs_path *path;
2493         struct btrfs_key key;
2494
2495         root = root->fs_info->chunk_root;
2496         path = btrfs_alloc_path();
2497         if (!path)
2498                 return -ENOMEM;
2499
2500         key.objectid = chunk_objectid;
2501         key.offset = chunk_offset;
2502         key.type = BTRFS_CHUNK_ITEM_KEY;
2503
2504         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2505         if (ret < 0)
2506                 goto out;
2507         else if (ret > 0) { /* Logic error or corruption */
2508                 btrfs_error(root->fs_info, -ENOENT,
2509                             "Failed lookup while freeing chunk.");
2510                 ret = -ENOENT;
2511                 goto out;
2512         }
2513
2514         ret = btrfs_del_item(trans, root, path);
2515         if (ret < 0)
2516                 btrfs_error(root->fs_info, ret,
2517                             "Failed to delete chunk item.");
2518 out:
2519         btrfs_free_path(path);
2520         return ret;
2521 }
2522
2523 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
2524                         chunk_offset)
2525 {
2526         struct btrfs_super_block *super_copy = root->fs_info->super_copy;
2527         struct btrfs_disk_key *disk_key;
2528         struct btrfs_chunk *chunk;
2529         u8 *ptr;
2530         int ret = 0;
2531         u32 num_stripes;
2532         u32 array_size;
2533         u32 len = 0;
2534         u32 cur;
2535         struct btrfs_key key;
2536
2537         lock_chunks(root);
2538         array_size = btrfs_super_sys_array_size(super_copy);
2539
2540         ptr = super_copy->sys_chunk_array;
2541         cur = 0;
2542
2543         while (cur < array_size) {
2544                 disk_key = (struct btrfs_disk_key *)ptr;
2545                 btrfs_disk_key_to_cpu(&key, disk_key);
2546
2547                 len = sizeof(*disk_key);
2548
2549                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2550                         chunk = (struct btrfs_chunk *)(ptr + len);
2551                         num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2552                         len += btrfs_chunk_item_size(num_stripes);
2553                 } else {
2554                         ret = -EIO;
2555                         break;
2556                 }
2557                 if (key.objectid == chunk_objectid &&
2558                     key.offset == chunk_offset) {
2559                         memmove(ptr, ptr + len, array_size - (cur + len));
2560                         array_size -= len;
2561                         btrfs_set_super_sys_array_size(super_copy, array_size);
2562                 } else {
2563                         ptr += len;
2564                         cur += len;
2565                 }
2566         }
2567         unlock_chunks(root);
2568         return ret;
2569 }
2570
2571 static int btrfs_relocate_chunk(struct btrfs_root *root,
2572                          u64 chunk_tree, u64 chunk_objectid,
2573                          u64 chunk_offset)
2574 {
2575         struct extent_map_tree *em_tree;
2576         struct btrfs_root *extent_root;
2577         struct btrfs_trans_handle *trans;
2578         struct btrfs_device *device;
2579         struct extent_map *em;
2580         struct map_lookup *map;
2581         u64 dev_extent_len = 0;
2582         int ret;
2583         int i;
2584
2585         root = root->fs_info->chunk_root;
2586         extent_root = root->fs_info->extent_root;
2587         em_tree = &root->fs_info->mapping_tree.map_tree;
2588
2589         ret = btrfs_can_relocate(extent_root, chunk_offset);
2590         if (ret)
2591                 return -ENOSPC;
2592
2593         /* step one, relocate all the extents inside this chunk */
2594         ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2595         if (ret)
2596                 return ret;
2597
2598         trans = btrfs_start_transaction(root, 0);
2599         if (IS_ERR(trans)) {
2600                 ret = PTR_ERR(trans);
2601                 btrfs_std_error(root->fs_info, ret);
2602                 return ret;
2603         }
2604
2605         /*
2606          * step two, delete the device extents and the
2607          * chunk tree entries
2608          */
2609         read_lock(&em_tree->lock);
2610         em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2611         read_unlock(&em_tree->lock);
2612
2613         BUG_ON(!em || em->start > chunk_offset ||
2614                em->start + em->len < chunk_offset);
2615         map = (struct map_lookup *)em->bdev;
2616
2617         for (i = 0; i < map->num_stripes; i++) {
2618                 device = map->stripes[i].dev;
2619                 ret = btrfs_free_dev_extent(trans, device,
2620                                             map->stripes[i].physical,
2621                                             &dev_extent_len);
2622                 BUG_ON(ret);
2623
2624                 if (device->bytes_used > 0) {
2625                         lock_chunks(root);
2626                         btrfs_device_set_bytes_used(device,
2627                                         device->bytes_used - dev_extent_len);
2628                         spin_lock(&root->fs_info->free_chunk_lock);
2629                         root->fs_info->free_chunk_space += dev_extent_len;
2630                         spin_unlock(&root->fs_info->free_chunk_lock);
2631                         btrfs_clear_space_info_full(root->fs_info);
2632                         unlock_chunks(root);
2633                 }
2634
2635                 if (map->stripes[i].dev) {
2636                         ret = btrfs_update_device(trans, map->stripes[i].dev);
2637                         BUG_ON(ret);
2638                 }
2639         }
2640         ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
2641                                chunk_offset);
2642
2643         BUG_ON(ret);
2644
2645         trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2646
2647         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2648                 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2649                 BUG_ON(ret);
2650         }
2651
2652         ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
2653         BUG_ON(ret);
2654
2655         write_lock(&em_tree->lock);
2656         remove_extent_mapping(em_tree, em);
2657         write_unlock(&em_tree->lock);
2658
2659         /* once for the tree */
2660         free_extent_map(em);
2661         /* once for us */
2662         free_extent_map(em);
2663
2664         btrfs_end_transaction(trans, root);
2665         return 0;
2666 }
2667
2668 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2669 {
2670         struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2671         struct btrfs_path *path;
2672         struct extent_buffer *leaf;
2673         struct btrfs_chunk *chunk;
2674         struct btrfs_key key;
2675         struct btrfs_key found_key;
2676         u64 chunk_tree = chunk_root->root_key.objectid;
2677         u64 chunk_type;
2678         bool retried = false;
2679         int failed = 0;
2680         int ret;
2681
2682         path = btrfs_alloc_path();
2683         if (!path)
2684                 return -ENOMEM;
2685
2686 again:
2687         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2688         key.offset = (u64)-1;
2689         key.type = BTRFS_CHUNK_ITEM_KEY;
2690
2691         while (1) {
2692                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2693                 if (ret < 0)
2694                         goto error;
2695                 BUG_ON(ret == 0); /* Corruption */
2696
2697                 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2698                                           key.type);
2699                 if (ret < 0)
2700                         goto error;
2701                 if (ret > 0)
2702                         break;
2703
2704                 leaf = path->nodes[0];
2705                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2706
2707                 chunk = btrfs_item_ptr(leaf, path->slots[0],
2708                                        struct btrfs_chunk);
2709                 chunk_type = btrfs_chunk_type(leaf, chunk);
2710                 btrfs_release_path(path);
2711
2712                 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2713                         ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
2714                                                    found_key.objectid,
2715                                                    found_key.offset);
2716                         if (ret == -ENOSPC)
2717                                 failed++;
2718                         else
2719                                 BUG_ON(ret);
2720                 }
2721
2722                 if (found_key.offset == 0)
2723                         break;
2724                 key.offset = found_key.offset - 1;
2725         }
2726         ret = 0;
2727         if (failed && !retried) {
2728                 failed = 0;
2729                 retried = true;
2730                 goto again;
2731         } else if (WARN_ON(failed && retried)) {
2732                 ret = -ENOSPC;
2733         }
2734 error:
2735         btrfs_free_path(path);
2736         return ret;
2737 }
2738
2739 static int insert_balance_item(struct btrfs_root *root,
2740                                struct btrfs_balance_control *bctl)
2741 {
2742         struct btrfs_trans_handle *trans;
2743         struct btrfs_balance_item *item;
2744         struct btrfs_disk_balance_args disk_bargs;
2745         struct btrfs_path *path;
2746         struct extent_buffer *leaf;
2747         struct btrfs_key key;
2748         int ret, err;
2749
2750         path = btrfs_alloc_path();
2751         if (!path)
2752                 return -ENOMEM;
2753
2754         trans = btrfs_start_transaction(root, 0);
2755         if (IS_ERR(trans)) {
2756                 btrfs_free_path(path);
2757                 return PTR_ERR(trans);
2758         }
2759
2760         key.objectid = BTRFS_BALANCE_OBJECTID;
2761         key.type = BTRFS_BALANCE_ITEM_KEY;
2762         key.offset = 0;
2763
2764         ret = btrfs_insert_empty_item(trans, root, path, &key,
2765                                       sizeof(*item));
2766         if (ret)
2767                 goto out;
2768
2769         leaf = path->nodes[0];
2770         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2771
2772         memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2773
2774         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2775         btrfs_set_balance_data(leaf, item, &disk_bargs);
2776         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2777         btrfs_set_balance_meta(leaf, item, &disk_bargs);
2778         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2779         btrfs_set_balance_sys(leaf, item, &disk_bargs);
2780
2781         btrfs_set_balance_flags(leaf, item, bctl->flags);
2782
2783         btrfs_mark_buffer_dirty(leaf);
2784 out:
2785         btrfs_free_path(path);
2786         err = btrfs_commit_transaction(trans, root);
2787         if (err && !ret)
2788                 ret = err;
2789         return ret;
2790 }
2791
2792 static int del_balance_item(struct btrfs_root *root)
2793 {
2794         struct btrfs_trans_handle *trans;
2795         struct btrfs_path *path;
2796         struct btrfs_key key;
2797         int ret, err;
2798
2799         path = btrfs_alloc_path();
2800         if (!path)
2801                 return -ENOMEM;
2802
2803         trans = btrfs_start_transaction(root, 0);
2804         if (IS_ERR(trans)) {
2805                 btrfs_free_path(path);
2806                 return PTR_ERR(trans);
2807         }
2808
2809         key.objectid = BTRFS_BALANCE_OBJECTID;
2810         key.type = BTRFS_BALANCE_ITEM_KEY;
2811         key.offset = 0;
2812
2813         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2814         if (ret < 0)
2815                 goto out;
2816         if (ret > 0) {
2817                 ret = -ENOENT;
2818                 goto out;
2819         }
2820
2821         ret = btrfs_del_item(trans, root, path);
2822 out:
2823         btrfs_free_path(path);
2824         err = btrfs_commit_transaction(trans, root);
2825         if (err && !ret)
2826                 ret = err;
2827         return ret;
2828 }
2829
2830 /*
2831  * This is a heuristic used to reduce the number of chunks balanced on
2832  * resume after balance was interrupted.
2833  */
2834 static void update_balance_args(struct btrfs_balance_control *bctl)
2835 {
2836         /*
2837          * Turn on soft mode for chunk types that were being converted.
2838          */
2839         if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
2840                 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
2841         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
2842                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
2843         if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
2844                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
2845
2846         /*
2847          * Turn on usage filter if is not already used.  The idea is
2848          * that chunks that we have already balanced should be
2849          * reasonably full.  Don't do it for chunks that are being
2850          * converted - that will keep us from relocating unconverted
2851          * (albeit full) chunks.
2852          */
2853         if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2854             !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2855                 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
2856                 bctl->data.usage = 90;
2857         }
2858         if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2859             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2860                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
2861                 bctl->sys.usage = 90;
2862         }
2863         if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2864             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2865                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
2866                 bctl->meta.usage = 90;
2867         }
2868 }
2869
2870 /*
2871  * Should be called with both balance and volume mutexes held to
2872  * serialize other volume operations (add_dev/rm_dev/resize) with
2873  * restriper.  Same goes for unset_balance_control.
2874  */
2875 static void set_balance_control(struct btrfs_balance_control *bctl)
2876 {
2877         struct btrfs_fs_info *fs_info = bctl->fs_info;
2878
2879         BUG_ON(fs_info->balance_ctl);
2880
2881         spin_lock(&fs_info->balance_lock);
2882         fs_info->balance_ctl = bctl;
2883         spin_unlock(&fs_info->balance_lock);
2884 }
2885
2886 static void unset_balance_control(struct btrfs_fs_info *fs_info)
2887 {
2888         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2889
2890         BUG_ON(!fs_info->balance_ctl);
2891
2892         spin_lock(&fs_info->balance_lock);
2893         fs_info->balance_ctl = NULL;
2894         spin_unlock(&fs_info->balance_lock);
2895
2896         kfree(bctl);
2897 }
2898
2899 /*
2900  * Balance filters.  Return 1 if chunk should be filtered out
2901  * (should not be balanced).
2902  */
2903 static int chunk_profiles_filter(u64 chunk_type,
2904                                  struct btrfs_balance_args *bargs)
2905 {
2906         chunk_type = chunk_to_extended(chunk_type) &
2907                                 BTRFS_EXTENDED_PROFILE_MASK;
2908
2909         if (bargs->profiles & chunk_type)
2910                 return 0;
2911
2912         return 1;
2913 }
2914
2915 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
2916                               struct btrfs_balance_args *bargs)
2917 {
2918         struct btrfs_block_group_cache *cache;
2919         u64 chunk_used, user_thresh;
2920         int ret = 1;
2921
2922         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2923         chunk_used = btrfs_block_group_used(&cache->item);
2924
2925         if (bargs->usage == 0)
2926                 user_thresh = 1;
2927         else if (bargs->usage > 100)
2928                 user_thresh = cache->key.offset;
2929         else
2930                 user_thresh = div_factor_fine(cache->key.offset,
2931                                               bargs->usage);
2932
2933         if (chunk_used < user_thresh)
2934                 ret = 0;
2935
2936         btrfs_put_block_group(cache);
2937         return ret;
2938 }
2939
2940 static int chunk_devid_filter(struct extent_buffer *leaf,
2941                               struct btrfs_chunk *chunk,
2942                               struct btrfs_balance_args *bargs)
2943 {
2944         struct btrfs_stripe *stripe;
2945         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2946         int i;
2947
2948         for (i = 0; i < num_stripes; i++) {
2949                 stripe = btrfs_stripe_nr(chunk, i);
2950                 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
2951                         return 0;
2952         }
2953
2954         return 1;
2955 }
2956
2957 /* [pstart, pend) */
2958 static int chunk_drange_filter(struct extent_buffer *leaf,
2959                                struct btrfs_chunk *chunk,
2960                                u64 chunk_offset,
2961                                struct btrfs_balance_args *bargs)
2962 {
2963         struct btrfs_stripe *stripe;
2964         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2965         u64 stripe_offset;
2966         u64 stripe_length;
2967         int factor;
2968         int i;
2969
2970         if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
2971                 return 0;
2972
2973         if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
2974              BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
2975                 factor = num_stripes / 2;
2976         } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
2977                 factor = num_stripes - 1;
2978         } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
2979                 factor = num_stripes - 2;
2980         } else {
2981                 factor = num_stripes;
2982         }
2983
2984         for (i = 0; i < num_stripes; i++) {
2985                 stripe = btrfs_stripe_nr(chunk, i);
2986                 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
2987                         continue;
2988
2989                 stripe_offset = btrfs_stripe_offset(leaf, stripe);
2990                 stripe_length = btrfs_chunk_length(leaf, chunk);
2991                 do_div(stripe_length, factor);
2992
2993                 if (stripe_offset < bargs->pend &&
2994                     stripe_offset + stripe_length > bargs->pstart)
2995                         return 0;
2996         }
2997
2998         return 1;
2999 }
3000
3001 /* [vstart, vend) */
3002 static int chunk_vrange_filter(struct extent_buffer *leaf,
3003                                struct btrfs_chunk *chunk,
3004                                u64 chunk_offset,
3005                                struct btrfs_balance_args *bargs)
3006 {
3007         if (chunk_offset < bargs->vend &&
3008             chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3009                 /* at least part of the chunk is inside this vrange */
3010                 return 0;
3011
3012         return 1;
3013 }
3014
3015 static int chunk_soft_convert_filter(u64 chunk_type,
3016                                      struct btrfs_balance_args *bargs)
3017 {
3018         if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3019                 return 0;
3020
3021         chunk_type = chunk_to_extended(chunk_type) &
3022                                 BTRFS_EXTENDED_PROFILE_MASK;
3023
3024         if (bargs->target == chunk_type)
3025                 return 1;
3026
3027         return 0;
3028 }
3029
3030 static int should_balance_chunk(struct btrfs_root *root,
3031                                 struct extent_buffer *leaf,
3032                                 struct btrfs_chunk *chunk, u64 chunk_offset)
3033 {
3034         struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
3035         struct btrfs_balance_args *bargs = NULL;
3036         u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3037
3038         /* type filter */
3039         if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3040               (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3041                 return 0;
3042         }
3043
3044         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3045                 bargs = &bctl->data;
3046         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3047                 bargs = &bctl->sys;
3048         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3049                 bargs = &bctl->meta;
3050
3051         /* profiles filter */
3052         if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3053             chunk_profiles_filter(chunk_type, bargs)) {
3054                 return 0;
3055         }
3056
3057         /* usage filter */
3058         if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3059             chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
3060                 return 0;
3061         }
3062
3063         /* devid filter */
3064         if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3065             chunk_devid_filter(leaf, chunk, bargs)) {
3066                 return 0;
3067         }
3068
3069         /* drange filter, makes sense only with devid filter */
3070         if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3071             chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3072                 return 0;
3073         }
3074
3075         /* vrange filter */
3076         if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3077             chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3078                 return 0;
3079         }
3080
3081         /* soft profile changing mode */
3082         if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3083             chunk_soft_convert_filter(chunk_type, bargs)) {
3084                 return 0;
3085         }
3086
3087         /*
3088          * limited by count, must be the last filter
3089          */
3090         if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3091                 if (bargs->limit == 0)
3092                         return 0;
3093                 else
3094                         bargs->limit--;
3095         }
3096
3097         return 1;
3098 }
3099
3100 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3101 {
3102         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3103         struct btrfs_root *chunk_root = fs_info->chunk_root;
3104         struct btrfs_root *dev_root = fs_info->dev_root;
3105         struct list_head *devices;
3106         struct btrfs_device *device;
3107         u64 old_size;
3108         u64 size_to_free;
3109         struct btrfs_chunk *chunk;
3110         struct btrfs_path *path;
3111         struct btrfs_key key;
3112         struct btrfs_key found_key;
3113         struct btrfs_trans_handle *trans;
3114         struct extent_buffer *leaf;
3115         int slot;
3116         int ret;
3117         int enospc_errors = 0;
3118         bool counting = true;
3119         u64 limit_data = bctl->data.limit;
3120         u64 limit_meta = bctl->meta.limit;
3121         u64 limit_sys = bctl->sys.limit;
3122
3123         /* step one make some room on all the devices */
3124         devices = &fs_info->fs_devices->devices;
3125         list_for_each_entry(device, devices, dev_list) {
3126                 old_size = btrfs_device_get_total_bytes(device);
3127                 size_to_free = div_factor(old_size, 1);
3128                 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
3129                 if (!device->writeable ||
3130                     btrfs_device_get_total_bytes(device) -
3131                     btrfs_device_get_bytes_used(device) > size_to_free ||
3132                     device->is_tgtdev_for_dev_replace)
3133                         continue;
3134
3135                 ret = btrfs_shrink_device(device, old_size - size_to_free);
3136                 if (ret == -ENOSPC)
3137                         break;
3138                 BUG_ON(ret);
3139
3140                 trans = btrfs_start_transaction(dev_root, 0);
3141                 BUG_ON(IS_ERR(trans));
3142
3143                 ret = btrfs_grow_device(trans, device, old_size);
3144                 BUG_ON(ret);
3145
3146                 btrfs_end_transaction(trans, dev_root);
3147         }
3148
3149         /* step two, relocate all the chunks */
3150         path = btrfs_alloc_path();
3151         if (!path) {
3152                 ret = -ENOMEM;
3153                 goto error;
3154         }
3155
3156         /* zero out stat counters */
3157         spin_lock(&fs_info->balance_lock);
3158         memset(&bctl->stat, 0, sizeof(bctl->stat));
3159         spin_unlock(&fs_info->balance_lock);
3160 again:
3161         if (!counting) {
3162                 bctl->data.limit = limit_data;
3163                 bctl->meta.limit = limit_meta;
3164                 bctl->sys.limit = limit_sys;
3165         }
3166         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3167         key.offset = (u64)-1;
3168         key.type = BTRFS_CHUNK_ITEM_KEY;
3169
3170         while (1) {
3171                 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3172                     atomic_read(&fs_info->balance_cancel_req)) {
3173                         ret = -ECANCELED;
3174                         goto error;
3175                 }
3176
3177                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3178                 if (ret < 0)
3179                         goto error;
3180
3181                 /*
3182                  * this shouldn't happen, it means the last relocate
3183                  * failed
3184                  */
3185                 if (ret == 0)
3186                         BUG(); /* FIXME break ? */
3187
3188                 ret = btrfs_previous_item(chunk_root, path, 0,
3189                                           BTRFS_CHUNK_ITEM_KEY);
3190                 if (ret) {
3191                         ret = 0;
3192                         break;
3193                 }
3194
3195                 leaf = path->nodes[0];
3196                 slot = path->slots[0];
3197                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3198
3199                 if (found_key.objectid != key.objectid)
3200                         break;
3201
3202                 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3203
3204                 if (!counting) {
3205                         spin_lock(&fs_info->balance_lock);
3206                         bctl->stat.considered++;
3207                         spin_unlock(&fs_info->balance_lock);
3208                 }
3209
3210                 ret = should_balance_chunk(chunk_root, leaf, chunk,
3211                                            found_key.offset);
3212                 btrfs_release_path(path);
3213                 if (!ret)
3214                         goto loop;
3215
3216                 if (counting) {
3217                         spin_lock(&fs_info->balance_lock);
3218                         bctl->stat.expected++;
3219                         spin_unlock(&fs_info->balance_lock);
3220                         goto loop;
3221                 }
3222
3223                 ret = btrfs_relocate_chunk(chunk_root,
3224                                            chunk_root->root_key.objectid,
3225                                            found_key.objectid,
3226                                            found_key.offset);
3227                 if (ret && ret != -ENOSPC)
3228                         goto error;
3229                 if (ret == -ENOSPC) {
3230                         enospc_errors++;
3231                 } else {
3232                         spin_lock(&fs_info->balance_lock);
3233                         bctl->stat.completed++;
3234                         spin_unlock(&fs_info->balance_lock);
3235                 }
3236 loop:
3237                 if (found_key.offset == 0)
3238                         break;
3239                 key.offset = found_key.offset - 1;
3240         }
3241
3242         if (counting) {
3243                 btrfs_release_path(path);
3244                 counting = false;
3245                 goto again;
3246         }
3247 error:
3248         btrfs_free_path(path);
3249         if (enospc_errors) {
3250                 btrfs_info(fs_info, "%d enospc errors during balance",
3251                        enospc_errors);
3252                 if (!ret)
3253                         ret = -ENOSPC;
3254         }
3255
3256         return ret;
3257 }
3258
3259 /**
3260  * alloc_profile_is_valid - see if a given profile is valid and reduced
3261  * @flags: profile to validate
3262  * @extended: if true @flags is treated as an extended profile
3263  */
3264 static int alloc_profile_is_valid(u64 flags, int extended)
3265 {
3266         u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3267                                BTRFS_BLOCK_GROUP_PROFILE_MASK);
3268
3269         flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3270
3271         /* 1) check that all other bits are zeroed */
3272         if (flags & ~mask)
3273                 return 0;
3274
3275         /* 2) see if profile is reduced */
3276         if (flags == 0)
3277                 return !extended; /* "0" is valid for usual profiles */
3278
3279         /* true if exactly one bit set */
3280         return (flags & (flags - 1)) == 0;
3281 }
3282
3283 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3284 {
3285         /* cancel requested || normal exit path */
3286         return atomic_read(&fs_info->balance_cancel_req) ||
3287                 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3288                  atomic_read(&fs_info->balance_cancel_req) == 0);
3289 }
3290
3291 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3292 {
3293         int ret;
3294
3295         unset_balance_control(fs_info);
3296         ret = del_balance_item(fs_info->tree_root);
3297         if (ret)
3298                 btrfs_std_error(fs_info, ret);
3299
3300         atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3301 }
3302
3303 /*
3304  * Should be called with both balance and volume mutexes held
3305  */
3306 int btrfs_balance(struct btrfs_balance_control *bctl,
3307                   struct btrfs_ioctl_balance_args *bargs)
3308 {
3309         struct btrfs_fs_info *fs_info = bctl->fs_info;
3310         u64 allowed;
3311         int mixed = 0;
3312         int ret;
3313         u64 num_devices;
3314         unsigned seq;
3315
3316         if (btrfs_fs_closing(fs_info) ||
3317             atomic_read(&fs_info->balance_pause_req) ||
3318             atomic_read(&fs_info->balance_cancel_req)) {
3319                 ret = -EINVAL;
3320                 goto out;
3321         }
3322
3323         allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3324         if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3325                 mixed = 1;
3326
3327         /*
3328          * In case of mixed groups both data and meta should be picked,
3329          * and identical options should be given for both of them.
3330          */
3331         allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3332         if (mixed && (bctl->flags & allowed)) {
3333                 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3334                     !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3335                     memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3336                         btrfs_err(fs_info, "with mixed groups data and "
3337                                    "metadata balance options must be the same");
3338                         ret = -EINVAL;
3339                         goto out;
3340                 }
3341         }
3342
3343         num_devices = fs_info->fs_devices->num_devices;
3344         btrfs_dev_replace_lock(&fs_info->dev_replace);
3345         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3346                 BUG_ON(num_devices < 1);
3347                 num_devices--;
3348         }
3349         btrfs_dev_replace_unlock(&fs_info->dev_replace);
3350         allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
3351         if (num_devices == 1)
3352                 allowed |= BTRFS_BLOCK_GROUP_DUP;
3353         else if (num_devices > 1)
3354                 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3355         if (num_devices > 2)
3356                 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3357         if (num_devices > 3)
3358                 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3359                             BTRFS_BLOCK_GROUP_RAID6);
3360         if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3361             (!alloc_profile_is_valid(bctl->data.target, 1) ||
3362              (bctl->data.target & ~allowed))) {
3363                 btrfs_err(fs_info, "unable to start balance with target "
3364                            "data profile %llu",
3365                        bctl->data.target);
3366                 ret = -EINVAL;
3367                 goto out;
3368         }
3369         if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3370             (!alloc_profile_is_valid(bctl->meta.target, 1) ||
3371              (bctl->meta.target & ~allowed))) {
3372                 btrfs_err(fs_info,
3373                            "unable to start balance with target metadata profile %llu",
3374                        bctl->meta.target);
3375                 ret = -EINVAL;
3376                 goto out;
3377         }
3378         if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3379             (!alloc_profile_is_valid(bctl->sys.target, 1) ||
3380              (bctl->sys.target & ~allowed))) {
3381                 btrfs_err(fs_info,
3382                            "unable to start balance with target system profile %llu",
3383                        bctl->sys.target);
3384                 ret = -EINVAL;
3385                 goto out;
3386         }
3387
3388         /* allow dup'ed data chunks only in mixed mode */
3389         if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3390             (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
3391                 btrfs_err(fs_info, "dup for data is not allowed");
3392                 ret = -EINVAL;
3393                 goto out;
3394         }
3395
3396         /* allow to reduce meta or sys integrity only if force set */
3397         allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3398                         BTRFS_BLOCK_GROUP_RAID10 |
3399                         BTRFS_BLOCK_GROUP_RAID5 |
3400                         BTRFS_BLOCK_GROUP_RAID6;
3401         do {
3402                 seq = read_seqbegin(&fs_info->profiles_lock);
3403
3404                 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3405                      (fs_info->avail_system_alloc_bits & allowed) &&
3406                      !(bctl->sys.target & allowed)) ||
3407                     ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3408                      (fs_info->avail_metadata_alloc_bits & allowed) &&
3409                      !(bctl->meta.target & allowed))) {
3410                         if (bctl->flags & BTRFS_BALANCE_FORCE) {
3411                                 btrfs_info(fs_info, "force reducing metadata integrity");
3412                         } else {
3413                                 btrfs_err(fs_info, "balance will reduce metadata "
3414                                            "integrity, use force if you want this");
3415                                 ret = -EINVAL;
3416                                 goto out;
3417                         }
3418                 }
3419         } while (read_seqretry(&fs_info->profiles_lock, seq));
3420
3421         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3422                 int num_tolerated_disk_barrier_failures;
3423                 u64 target = bctl->sys.target;
3424
3425                 num_tolerated_disk_barrier_failures =
3426                         btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3427                 if (num_tolerated_disk_barrier_failures > 0 &&
3428                     (target &
3429                      (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3430                       BTRFS_AVAIL_ALLOC_BIT_SINGLE)))
3431                         num_tolerated_disk_barrier_failures = 0;
3432                 else if (num_tolerated_disk_barrier_failures > 1 &&
3433                          (target &
3434                           (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)))
3435                         num_tolerated_disk_barrier_failures = 1;
3436
3437                 fs_info->num_tolerated_disk_barrier_failures =
3438                         num_tolerated_disk_barrier_failures;
3439         }
3440
3441         ret = insert_balance_item(fs_info->tree_root, bctl);
3442         if (ret && ret != -EEXIST)
3443                 goto out;
3444
3445         if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3446                 BUG_ON(ret == -EEXIST);
3447                 set_balance_control(bctl);
3448         } else {
3449                 BUG_ON(ret != -EEXIST);
3450                 spin_lock(&fs_info->balance_lock);
3451                 update_balance_args(bctl);
3452                 spin_unlock(&fs_info->balance_lock);
3453         }
3454
3455         atomic_inc(&fs_info->balance_running);
3456         mutex_unlock(&fs_info->balance_mutex);
3457
3458         ret = __btrfs_balance(fs_info);
3459
3460         mutex_lock(&fs_info->balance_mutex);
3461         atomic_dec(&fs_info->balance_running);
3462
3463         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3464                 fs_info->num_tolerated_disk_barrier_failures =
3465                         btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3466         }
3467
3468         if (bargs) {
3469                 memset(bargs, 0, sizeof(*bargs));
3470                 update_ioctl_balance_args(fs_info, 0, bargs);
3471         }
3472
3473         if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3474             balance_need_close(fs_info)) {
3475                 __cancel_balance(fs_info);
3476         }
3477
3478         wake_up(&fs_info->balance_wait_q);
3479
3480         return ret;
3481 out:
3482         if (bctl->flags & BTRFS_BALANCE_RESUME)
3483                 __cancel_balance(fs_info);
3484         else {
3485                 kfree(bctl);
3486                 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3487         }
3488         return ret;
3489 }
3490
3491 static int balance_kthread(void *data)
3492 {
3493         struct btrfs_fs_info *fs_info = data;
3494         int ret = 0;
3495
3496         mutex_lock(&fs_info->volume_mutex);
3497         mutex_lock(&fs_info->balance_mutex);
3498
3499         if (fs_info->balance_ctl) {
3500                 btrfs_info(fs_info, "continuing balance");
3501                 ret = btrfs_balance(fs_info->balance_ctl, NULL);
3502         }
3503
3504         mutex_unlock(&fs_info->balance_mutex);
3505         mutex_unlock(&fs_info->volume_mutex);
3506
3507         return ret;
3508 }
3509
3510 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3511 {
3512         struct task_struct *tsk;
3513
3514         spin_lock(&fs_info->balance_lock);
3515         if (!fs_info->balance_ctl) {
3516                 spin_unlock(&fs_info->balance_lock);
3517                 return 0;
3518         }
3519         spin_unlock(&fs_info->balance_lock);
3520
3521         if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
3522                 btrfs_info(fs_info, "force skipping balance");
3523                 return 0;
3524         }
3525
3526         tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3527         return PTR_ERR_OR_ZERO(tsk);
3528 }
3529
3530 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3531 {
3532         struct btrfs_balance_control *bctl;
3533         struct btrfs_balance_item *item;
3534         struct btrfs_disk_balance_args disk_bargs;
3535         struct btrfs_path *path;
3536         struct extent_buffer *leaf;
3537         struct btrfs_key key;
3538         int ret;
3539
3540         path = btrfs_alloc_path();
3541         if (!path)
3542                 return -ENOMEM;
3543
3544         key.objectid = BTRFS_BALANCE_OBJECTID;
3545         key.type = BTRFS_BALANCE_ITEM_KEY;
3546         key.offset = 0;
3547
3548         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3549         if (ret < 0)
3550                 goto out;
3551         if (ret > 0) { /* ret = -ENOENT; */
3552                 ret = 0;
3553                 goto out;
3554         }
3555
3556         bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3557         if (!bctl) {
3558                 ret = -ENOMEM;
3559                 goto out;
3560         }
3561
3562         leaf = path->nodes[0];
3563         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3564
3565         bctl->fs_info = fs_info;
3566         bctl->flags = btrfs_balance_flags(leaf, item);
3567         bctl->flags |= BTRFS_BALANCE_RESUME;
3568
3569         btrfs_balance_data(leaf, item, &disk_bargs);
3570         btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3571         btrfs_balance_meta(leaf, item, &disk_bargs);
3572         btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3573         btrfs_balance_sys(leaf, item, &disk_bargs);
3574         btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3575
3576         WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3577
3578         mutex_lock(&fs_info->volume_mutex);
3579         mutex_lock(&fs_info->balance_mutex);
3580
3581         set_balance_control(bctl);
3582
3583         mutex_unlock(&fs_info->balance_mutex);
3584         mutex_unlock(&fs_info->volume_mutex);
3585 out:
3586         btrfs_free_path(path);
3587         return ret;
3588 }
3589
3590 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3591 {
3592         int ret = 0;
3593
3594         mutex_lock(&fs_info->balance_mutex);
3595         if (!fs_info->balance_ctl) {
3596                 mutex_unlock(&fs_info->balance_mutex);
3597                 return -ENOTCONN;
3598         }
3599
3600         if (atomic_read(&fs_info->balance_running)) {
3601                 atomic_inc(&fs_info->balance_pause_req);
3602                 mutex_unlock(&fs_info->balance_mutex);
3603
3604                 wait_event(fs_info->balance_wait_q,
3605                            atomic_read(&fs_info->balance_running) == 0);
3606
3607                 mutex_lock(&fs_info->balance_mutex);
3608                 /* we are good with balance_ctl ripped off from under us */
3609                 BUG_ON(atomic_read(&fs_info->balance_running));
3610                 atomic_dec(&fs_info->balance_pause_req);
3611         } else {
3612                 ret = -ENOTCONN;
3613         }
3614
3615         mutex_unlock(&fs_info->balance_mutex);
3616         return ret;
3617 }
3618
3619 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3620 {
3621         if (fs_info->sb->s_flags & MS_RDONLY)
3622                 return -EROFS;
3623
3624         mutex_lock(&fs_info->balance_mutex);
3625         if (!fs_info->balance_ctl) {
3626                 mutex_unlock(&fs_info->balance_mutex);
3627                 return -ENOTCONN;
3628         }
3629
3630         atomic_inc(&fs_info->balance_cancel_req);
3631         /*
3632          * if we are running just wait and return, balance item is
3633          * deleted in btrfs_balance in this case
3634          */
3635         if (atomic_read(&fs_info->balance_running)) {
3636                 mutex_unlock(&fs_info->balance_mutex);
3637                 wait_event(fs_info->balance_wait_q,
3638                            atomic_read(&fs_info->balance_running) == 0);
3639                 mutex_lock(&fs_info->balance_mutex);
3640         } else {
3641                 /* __cancel_balance needs volume_mutex */
3642                 mutex_unlock(&fs_info->balance_mutex);
3643                 mutex_lock(&fs_info->volume_mutex);
3644                 mutex_lock(&fs_info->balance_mutex);
3645
3646                 if (fs_info->balance_ctl)
3647                         __cancel_balance(fs_info);
3648
3649                 mutex_unlock(&fs_info->volume_mutex);
3650         }
3651
3652         BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3653         atomic_dec(&fs_info->balance_cancel_req);
3654         mutex_unlock(&fs_info->balance_mutex);
3655         return 0;
3656 }
3657
3658 static int btrfs_uuid_scan_kthread(void *data)
3659 {
3660         struct btrfs_fs_info *fs_info = data;
3661         struct btrfs_root *root = fs_info->tree_root;
3662         struct btrfs_key key;
3663         struct btrfs_key max_key;
3664         struct btrfs_path *path = NULL;
3665         int ret = 0;
3666         struct extent_buffer *eb;
3667         int slot;
3668         struct btrfs_root_item root_item;
3669         u32 item_size;
3670         struct btrfs_trans_handle *trans = NULL;
3671
3672         path = btrfs_alloc_path();
3673         if (!path) {
3674                 ret = -ENOMEM;
3675                 goto out;
3676         }
3677
3678         key.objectid = 0;
3679         key.type = BTRFS_ROOT_ITEM_KEY;
3680         key.offset = 0;
3681
3682         max_key.objectid = (u64)-1;
3683         max_key.type = BTRFS_ROOT_ITEM_KEY;
3684         max_key.offset = (u64)-1;
3685
3686         while (1) {
3687                 ret = btrfs_search_forward(root, &key, path, 0);
3688                 if (ret) {
3689                         if (ret > 0)
3690                                 ret = 0;
3691                         break;
3692                 }
3693
3694                 if (key.type != BTRFS_ROOT_ITEM_KEY ||
3695                     (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
3696                      key.objectid != BTRFS_FS_TREE_OBJECTID) ||
3697                     key.objectid > BTRFS_LAST_FREE_OBJECTID)
3698                         goto skip;
3699
3700                 eb = path->nodes[0];
3701                 slot = path->slots[0];
3702                 item_size = btrfs_item_size_nr(eb, slot);
3703                 if (item_size < sizeof(root_item))
3704                         goto skip;
3705
3706                 read_extent_buffer(eb, &root_item,
3707                                    btrfs_item_ptr_offset(eb, slot),
3708                                    (int)sizeof(root_item));
3709                 if (btrfs_root_refs(&root_item) == 0)
3710                         goto skip;
3711
3712                 if (!btrfs_is_empty_uuid(root_item.uuid) ||
3713                     !btrfs_is_empty_uuid(root_item.received_uuid)) {
3714                         if (trans)
3715                                 goto update_tree;
3716
3717                         btrfs_release_path(path);
3718                         /*
3719                          * 1 - subvol uuid item
3720                          * 1 - received_subvol uuid item
3721                          */
3722                         trans = btrfs_start_transaction(fs_info->uuid_root, 2);
3723                         if (IS_ERR(trans)) {
3724                                 ret = PTR_ERR(trans);
3725                                 break;
3726                         }
3727                         continue;
3728                 } else {
3729                         goto skip;
3730                 }
3731 update_tree:
3732                 if (!btrfs_is_empty_uuid(root_item.uuid)) {
3733                         ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3734                                                   root_item.uuid,
3735                                                   BTRFS_UUID_KEY_SUBVOL,
3736                                                   key.objectid);
3737                         if (ret < 0) {
3738                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
3739                                         ret);
3740                                 break;
3741                         }
3742                 }
3743
3744                 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
3745                         ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3746                                                   root_item.received_uuid,
3747                                                  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
3748                                                   key.objectid);
3749                         if (ret < 0) {
3750                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
3751                                         ret);
3752                                 break;
3753                         }
3754                 }
3755
3756 skip:
3757                 if (trans) {
3758                         ret = btrfs_end_transaction(trans, fs_info->uuid_root);
3759                         trans = NULL;
3760                         if (ret)
3761                                 break;
3762                 }
3763
3764                 btrfs_release_path(path);
3765                 if (key.offset < (u64)-1) {
3766                         key.offset++;
3767                 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
3768                         key.offset = 0;
3769                         key.type = BTRFS_ROOT_ITEM_KEY;
3770                 } else if (key.objectid < (u64)-1) {
3771                         key.offset = 0;
3772                         key.type = BTRFS_ROOT_ITEM_KEY;
3773                         key.objectid++;
3774                 } else {
3775                         break;
3776                 }
3777                 cond_resched();
3778         }
3779
3780 out:
3781         btrfs_free_path(path);
3782         if (trans && !IS_ERR(trans))
3783                 btrfs_end_transaction(trans, fs_info->uuid_root);
3784         if (ret)
3785                 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
3786         else
3787                 fs_info->update_uuid_tree_gen = 1;
3788         up(&fs_info->uuid_tree_rescan_sem);
3789         return 0;
3790 }
3791
3792 /*
3793  * Callback for btrfs_uuid_tree_iterate().
3794  * returns:
3795  * 0    check succeeded, the entry is not outdated.
3796  * < 0  if an error occured.
3797  * > 0  if the check failed, which means the caller shall remove the entry.
3798  */
3799 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
3800                                        u8 *uuid, u8 type, u64 subid)
3801 {
3802         struct btrfs_key key;
3803         int ret = 0;
3804         struct btrfs_root *subvol_root;
3805
3806         if (type != BTRFS_UUID_KEY_SUBVOL &&
3807             type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
3808                 goto out;
3809
3810         key.objectid = subid;
3811         key.type = BTRFS_ROOT_ITEM_KEY;
3812         key.offset = (u64)-1;
3813         subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
3814         if (IS_ERR(subvol_root)) {
3815                 ret = PTR_ERR(subvol_root);
3816                 if (ret == -ENOENT)
3817                         ret = 1;
3818                 goto out;
3819         }
3820
3821         switch (type) {
3822         case BTRFS_UUID_KEY_SUBVOL:
3823                 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
3824                         ret = 1;
3825                 break;
3826         case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
3827                 if (memcmp(uuid, subvol_root->root_item.received_uuid,
3828                            BTRFS_UUID_SIZE))
3829                         ret = 1;
3830                 break;
3831         }
3832
3833 out:
3834         return ret;
3835 }
3836
3837 static int btrfs_uuid_rescan_kthread(void *data)
3838 {
3839         struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
3840         int ret;
3841
3842         /*
3843          * 1st step is to iterate through the existing UUID tree and
3844          * to delete all entries that contain outdated data.
3845          * 2nd step is to add all missing entries to the UUID tree.
3846          */
3847         ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
3848         if (ret < 0) {
3849                 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
3850                 up(&fs_info->uuid_tree_rescan_sem);
3851                 return ret;
3852         }
3853         return btrfs_uuid_scan_kthread(data);
3854 }
3855
3856 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
3857 {
3858         struct btrfs_trans_handle *trans;
3859         struct btrfs_root *tree_root = fs_info->tree_root;
3860         struct btrfs_root *uuid_root;
3861         struct task_struct *task;
3862         int ret;
3863
3864         /*
3865          * 1 - root node
3866          * 1 - root item
3867          */
3868         trans = btrfs_start_transaction(tree_root, 2);
3869         if (IS_ERR(trans))
3870                 return PTR_ERR(trans);
3871
3872         uuid_root = btrfs_create_tree(trans, fs_info,
3873                                       BTRFS_UUID_TREE_OBJECTID);
3874         if (IS_ERR(uuid_root)) {
3875                 btrfs_abort_transaction(trans, tree_root,
3876                                         PTR_ERR(uuid_root));
3877                 return PTR_ERR(uuid_root);
3878         }
3879
3880         fs_info->uuid_root = uuid_root;
3881
3882         ret = btrfs_commit_transaction(trans, tree_root);
3883         if (ret)
3884                 return ret;
3885
3886         down(&fs_info->uuid_tree_rescan_sem);
3887         task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
3888         if (IS_ERR(task)) {
3889                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3890                 btrfs_warn(fs_info, "failed to start uuid_scan task");
3891                 up(&fs_info->uuid_tree_rescan_sem);
3892                 return PTR_ERR(task);
3893         }
3894
3895         return 0;
3896 }
3897
3898 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3899 {
3900         struct task_struct *task;
3901
3902         down(&fs_info->uuid_tree_rescan_sem);
3903         task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3904         if (IS_ERR(task)) {
3905                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3906                 btrfs_warn(fs_info, "failed to start uuid_rescan task");
3907                 up(&fs_info->uuid_tree_rescan_sem);
3908                 return PTR_ERR(task);
3909         }
3910
3911         return 0;
3912 }
3913
3914 /*
3915  * shrinking a device means finding all of the device extents past
3916  * the new size, and then following the back refs to the chunks.
3917  * The chunk relocation code actually frees the device extent
3918  */
3919 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
3920 {
3921         struct btrfs_trans_handle *trans;
3922         struct btrfs_root *root = device->dev_root;
3923         struct btrfs_dev_extent *dev_extent = NULL;
3924         struct btrfs_path *path;
3925         u64 length;
3926         u64 chunk_tree;
3927         u64 chunk_objectid;
3928         u64 chunk_offset;
3929         int ret;
3930         int slot;
3931         int failed = 0;
3932         bool retried = false;
3933         struct extent_buffer *l;
3934         struct btrfs_key key;
3935         struct btrfs_super_block *super_copy = root->fs_info->super_copy;
3936         u64 old_total = btrfs_super_total_bytes(super_copy);
3937         u64 old_size = btrfs_device_get_total_bytes(device);
3938         u64 diff = old_size - new_size;
3939
3940         if (device->is_tgtdev_for_dev_replace)
3941                 return -EINVAL;
3942
3943         path = btrfs_alloc_path();
3944         if (!path)
3945                 return -ENOMEM;
3946
3947         path->reada = 2;
3948
3949         lock_chunks(root);
3950
3951         btrfs_device_set_total_bytes(device, new_size);
3952         if (device->writeable) {
3953                 device->fs_devices->total_rw_bytes -= diff;
3954                 spin_lock(&root->fs_info->free_chunk_lock);
3955                 root->fs_info->free_chunk_space -= diff;
3956                 spin_unlock(&root->fs_info->free_chunk_lock);
3957         }
3958         unlock_chunks(root);
3959
3960 again:
3961         key.objectid = device->devid;
3962         key.offset = (u64)-1;
3963         key.type = BTRFS_DEV_EXTENT_KEY;
3964
3965         do {
3966                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3967                 if (ret < 0)
3968                         goto done;
3969
3970                 ret = btrfs_previous_item(root, path, 0, key.type);
3971                 if (ret < 0)
3972                         goto done;
3973                 if (ret) {
3974                         ret = 0;
3975                         btrfs_release_path(path);
3976                         break;
3977                 }
3978
3979                 l = path->nodes[0];
3980                 slot = path->slots[0];
3981                 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
3982
3983                 if (key.objectid != device->devid) {
3984                         btrfs_release_path(path);
3985                         break;
3986                 }
3987
3988                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3989                 length = btrfs_dev_extent_length(l, dev_extent);
3990
3991                 if (key.offset + length <= new_size) {
3992                         btrfs_release_path(path);
3993                         break;
3994                 }
3995
3996                 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
3997                 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
3998                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3999                 btrfs_release_path(path);
4000
4001                 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
4002                                            chunk_offset);
4003                 if (ret && ret != -ENOSPC)
4004                         goto done;
4005                 if (ret == -ENOSPC)
4006                         failed++;
4007         } while (key.offset-- > 0);
4008
4009         if (failed && !retried) {
4010                 failed = 0;
4011                 retried = true;
4012                 goto again;
4013         } else if (failed && retried) {
4014                 ret = -ENOSPC;
4015                 lock_chunks(root);
4016
4017                 btrfs_device_set_total_bytes(device, old_size);
4018                 if (device->writeable)
4019                         device->fs_devices->total_rw_bytes += diff;
4020                 spin_lock(&root->fs_info->free_chunk_lock);
4021                 root->fs_info->free_chunk_space += diff;
4022                 spin_unlock(&root->fs_info->free_chunk_lock);
4023                 unlock_chunks(root);
4024                 goto done;
4025         }
4026
4027         /* Shrinking succeeded, else we would be at "done". */
4028         trans = btrfs_start_transaction(root, 0);
4029         if (IS_ERR(trans)) {
4030                 ret = PTR_ERR(trans);
4031                 goto done;
4032         }
4033
4034         lock_chunks(root);
4035         btrfs_device_set_disk_total_bytes(device, new_size);
4036         if (list_empty(&device->resized_list))
4037                 list_add_tail(&device->resized_list,
4038                               &root->fs_info->fs_devices->resized_devices);
4039
4040         WARN_ON(diff > old_total);
4041         btrfs_set_super_total_bytes(super_copy, old_total - diff);
4042         unlock_chunks(root);
4043
4044         /* Now btrfs_update_device() will change the on-disk size. */
4045         ret = btrfs_update_device(trans, device);
4046         btrfs_end_transaction(trans, root);
4047 done:
4048         btrfs_free_path(path);
4049         return ret;
4050 }
4051
4052 static int btrfs_add_system_chunk(struct btrfs_root *root,
4053                            struct btrfs_key *key,
4054                            struct btrfs_chunk *chunk, int item_size)
4055 {
4056         struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4057         struct btrfs_disk_key disk_key;
4058         u32 array_size;
4059         u8 *ptr;
4060
4061         lock_chunks(root);
4062         array_size = btrfs_super_sys_array_size(super_copy);
4063         if (array_size + item_size + sizeof(disk_key)
4064                         > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4065                 unlock_chunks(root);
4066                 return -EFBIG;
4067         }
4068
4069         ptr = super_copy->sys_chunk_array + array_size;
4070         btrfs_cpu_key_to_disk(&disk_key, key);
4071         memcpy(ptr, &disk_key, sizeof(disk_key));
4072         ptr += sizeof(disk_key);
4073         memcpy(ptr, chunk, item_size);
4074         item_size += sizeof(disk_key);
4075         btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4076         unlock_chunks(root);
4077
4078         return 0;
4079 }
4080
4081 /*
4082  * sort the devices in descending order by max_avail, total_avail
4083  */
4084 static int btrfs_cmp_device_info(const void *a, const void *b)
4085 {
4086         const struct btrfs_device_info *di_a = a;
4087         const struct btrfs_device_info *di_b = b;
4088
4089         if (di_a->max_avail > di_b->max_avail)
4090                 return -1;
4091         if (di_a->max_avail < di_b->max_avail)
4092                 return 1;
4093         if (di_a->total_avail > di_b->total_avail)
4094                 return -1;
4095         if (di_a->total_avail < di_b->total_avail)
4096                 return 1;
4097         return 0;
4098 }
4099
4100 static struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
4101         [BTRFS_RAID_RAID10] = {
4102                 .sub_stripes    = 2,
4103                 .dev_stripes    = 1,
4104                 .devs_max       = 0,    /* 0 == as many as possible */
4105                 .devs_min       = 4,
4106                 .devs_increment = 2,
4107                 .ncopies        = 2,
4108         },
4109         [BTRFS_RAID_RAID1] = {
4110                 .sub_stripes    = 1,
4111                 .dev_stripes    = 1,
4112                 .devs_max       = 2,
4113                 .devs_min       = 2,
4114                 .devs_increment = 2,
4115                 .ncopies        = 2,
4116         },
4117         [BTRFS_RAID_DUP] = {
4118                 .sub_stripes    = 1,
4119                 .dev_stripes    = 2,
4120                 .devs_max       = 1,
4121                 .devs_min       = 1,
4122                 .devs_increment = 1,
4123                 .ncopies        = 2,
4124         },
4125         [BTRFS_RAID_RAID0] = {
4126                 .sub_stripes    = 1,
4127                 .dev_stripes    = 1,
4128                 .devs_max       = 0,
4129                 .devs_min       = 2,
4130                 .devs_increment = 1,
4131                 .ncopies        = 1,
4132         },
4133         [BTRFS_RAID_SINGLE] = {
4134                 .sub_stripes    = 1,
4135                 .dev_stripes    = 1,
4136                 .devs_max       = 1,
4137                 .devs_min       = 1,
4138                 .devs_increment = 1,
4139                 .ncopies        = 1,
4140         },
4141         [BTRFS_RAID_RAID5] = {
4142                 .sub_stripes    = 1,
4143                 .dev_stripes    = 1,
4144                 .devs_max       = 0,
4145                 .devs_min       = 2,
4146                 .devs_increment = 1,
4147                 .ncopies        = 2,
4148         },
4149         [BTRFS_RAID_RAID6] = {
4150                 .sub_stripes    = 1,
4151                 .dev_stripes    = 1,
4152                 .devs_max       = 0,
4153                 .devs_min       = 3,
4154                 .devs_increment = 1,
4155                 .ncopies        = 3,
4156         },
4157 };
4158
4159 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4160 {
4161         /* TODO allow them to set a preferred stripe size */
4162         return 64 * 1024;
4163 }
4164
4165 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4166 {
4167         if (!(type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)))
4168                 return;
4169
4170         btrfs_set_fs_incompat(info, RAID56);
4171 }
4172
4173 #define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r)             \
4174                         - sizeof(struct btrfs_item)             \
4175                         - sizeof(struct btrfs_chunk))           \
4176                         / sizeof(struct btrfs_stripe) + 1)
4177
4178 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE        \
4179                                 - 2 * sizeof(struct btrfs_disk_key)     \
4180                                 - 2 * sizeof(struct btrfs_chunk))       \
4181                                 / sizeof(struct btrfs_stripe) + 1)
4182
4183 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4184                                struct btrfs_root *extent_root, u64 start,
4185                                u64 type)
4186 {
4187         struct btrfs_fs_info *info = extent_root->fs_info;
4188         struct btrfs_fs_devices *fs_devices = info->fs_devices;
4189         struct list_head *cur;
4190         struct map_lookup *map = NULL;
4191         struct extent_map_tree *em_tree;
4192         struct extent_map *em;
4193         struct btrfs_device_info *devices_info = NULL;
4194         u64 total_avail;
4195         int num_stripes;        /* total number of stripes to allocate */
4196         int data_stripes;       /* number of stripes that count for
4197                                    block group size */
4198         int sub_stripes;        /* sub_stripes info for map */
4199         int dev_stripes;        /* stripes per dev */
4200         int devs_max;           /* max devs to use */
4201         int devs_min;           /* min devs needed */
4202         int devs_increment;     /* ndevs has to be a multiple of this */
4203         int ncopies;            /* how many copies to data has */
4204         int ret;
4205         u64 max_stripe_size;
4206         u64 max_chunk_size;
4207         u64 stripe_size;
4208         u64 num_bytes;
4209         u64 raid_stripe_len = BTRFS_STRIPE_LEN;
4210         int ndevs;
4211         int i;
4212         int j;
4213         int index;
4214
4215         BUG_ON(!alloc_profile_is_valid(type, 0));
4216
4217         if (list_empty(&fs_devices->alloc_list))
4218                 return -ENOSPC;
4219
4220         index = __get_raid_index(type);
4221
4222         sub_stripes = btrfs_raid_array[index].sub_stripes;
4223         dev_stripes = btrfs_raid_array[index].dev_stripes;
4224         devs_max = btrfs_raid_array[index].devs_max;
4225         devs_min = btrfs_raid_array[index].devs_min;
4226         devs_increment = btrfs_raid_array[index].devs_increment;
4227         ncopies = btrfs_raid_array[index].ncopies;
4228
4229         if (type & BTRFS_BLOCK_GROUP_DATA) {
4230                 max_stripe_size = 1024 * 1024 * 1024;
4231                 max_chunk_size = 10 * max_stripe_size;
4232                 if (!devs_max)
4233                         devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4234         } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4235                 /* for larger filesystems, use larger metadata chunks */
4236                 if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
4237                         max_stripe_size = 1024 * 1024 * 1024;
4238                 else
4239                         max_stripe_size = 256 * 1024 * 1024;
4240                 max_chunk_size = max_stripe_size;
4241                 if (!devs_max)
4242                         devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4243         } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4244                 max_stripe_size = 32 * 1024 * 1024;
4245                 max_chunk_size = 2 * max_stripe_size;
4246                 if (!devs_max)
4247                         devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4248         } else {
4249                 btrfs_err(info, "invalid chunk type 0x%llx requested",
4250                        type);
4251                 BUG_ON(1);
4252         }
4253
4254         /* we don't want a chunk larger than 10% of writeable space */
4255         max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4256                              max_chunk_size);
4257
4258         devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
4259                                GFP_NOFS);
4260         if (!devices_info)
4261                 return -ENOMEM;
4262
4263         cur = fs_devices->alloc_list.next;
4264
4265         /*
4266          * in the first pass through the devices list, we gather information
4267          * about the available holes on each device.
4268          */
4269         ndevs = 0;
4270         while (cur != &fs_devices->alloc_list) {
4271                 struct btrfs_device *device;
4272                 u64 max_avail;
4273                 u64 dev_offset;
4274
4275                 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
4276
4277                 cur = cur->next;
4278
4279                 if (!device->writeable) {
4280                         WARN(1, KERN_ERR
4281                                "BTRFS: read-only device in alloc_list\n");
4282                         continue;
4283                 }
4284
4285                 if (!device->in_fs_metadata ||
4286                     device->is_tgtdev_for_dev_replace)
4287                         continue;
4288
4289                 if (device->total_bytes > device->bytes_used)
4290                         total_avail = device->total_bytes - device->bytes_used;
4291                 else
4292                         total_avail = 0;
4293
4294                 /* If there is no space on this device, skip it. */
4295                 if (total_avail == 0)
4296                         continue;
4297
4298                 ret = find_free_dev_extent(trans, device,
4299                                            max_stripe_size * dev_stripes,
4300                                            &dev_offset, &max_avail);
4301                 if (ret && ret != -ENOSPC)
4302                         goto error;
4303
4304                 if (ret == 0)
4305                         max_avail = max_stripe_size * dev_stripes;
4306
4307                 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4308                         continue;
4309
4310                 if (ndevs == fs_devices->rw_devices) {
4311                         WARN(1, "%s: found more than %llu devices\n",
4312                              __func__, fs_devices->rw_devices);
4313                         break;
4314                 }
4315                 devices_info[ndevs].dev_offset = dev_offset;
4316                 devices_info[ndevs].max_avail = max_avail;
4317                 devices_info[ndevs].total_avail = total_avail;
4318                 devices_info[ndevs].dev = device;
4319                 ++ndevs;
4320         }
4321
4322         /*
4323          * now sort the devices by hole size / available space
4324          */
4325         sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4326              btrfs_cmp_device_info, NULL);
4327
4328         /* round down to number of usable stripes */
4329         ndevs -= ndevs % devs_increment;
4330
4331         if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4332                 ret = -ENOSPC;
4333                 goto error;
4334         }
4335
4336         if (devs_max && ndevs > devs_max)
4337                 ndevs = devs_max;
4338         /*
4339          * the primary goal is to maximize the number of stripes, so use as many
4340          * devices as possible, even if the stripes are not maximum sized.
4341          */
4342         stripe_size = devices_info[ndevs-1].max_avail;
4343         num_stripes = ndevs * dev_stripes;
4344
4345         /*
4346          * this will have to be fixed for RAID1 and RAID10 over
4347          * more drives
4348          */
4349         data_stripes = num_stripes / ncopies;
4350
4351         if (type & BTRFS_BLOCK_GROUP_RAID5) {
4352                 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4353                                  btrfs_super_stripesize(info->super_copy));
4354                 data_stripes = num_stripes - 1;
4355         }
4356         if (type & BTRFS_BLOCK_GROUP_RAID6) {
4357                 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4358                                  btrfs_super_stripesize(info->super_copy));
4359                 data_stripes = num_stripes - 2;
4360         }
4361
4362         /*
4363          * Use the number of data stripes to figure out how big this chunk
4364          * is really going to be in terms of logical address space,
4365          * and compare that answer with the max chunk size
4366          */
4367         if (stripe_size * data_stripes > max_chunk_size) {
4368                 u64 mask = (1ULL << 24) - 1;
4369                 stripe_size = max_chunk_size;
4370                 do_div(stripe_size, data_stripes);
4371
4372                 /* bump the answer up to a 16MB boundary */
4373                 stripe_size = (stripe_size + mask) & ~mask;
4374
4375                 /* but don't go higher than the limits we found
4376                  * while searching for free extents
4377                  */
4378                 if (stripe_size > devices_info[ndevs-1].max_avail)
4379                         stripe_size = devices_info[ndevs-1].max_avail;
4380         }
4381
4382         do_div(stripe_size, dev_stripes);
4383
4384         /* align to BTRFS_STRIPE_LEN */
4385         do_div(stripe_size, raid_stripe_len);
4386         stripe_size *= raid_stripe_len;
4387
4388         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4389         if (!map) {
4390                 ret = -ENOMEM;
4391                 goto error;
4392         }
4393         map->num_stripes = num_stripes;
4394
4395         for (i = 0; i < ndevs; ++i) {
4396                 for (j = 0; j < dev_stripes; ++j) {
4397                         int s = i * dev_stripes + j;
4398                         map->stripes[s].dev = devices_info[i].dev;
4399                         map->stripes[s].physical = devices_info[i].dev_offset +
4400                                                    j * stripe_size;
4401                 }
4402         }
4403         map->sector_size = extent_root->sectorsize;
4404         map->stripe_len = raid_stripe_len;
4405         map->io_align = raid_stripe_len;
4406         map->io_width = raid_stripe_len;
4407         map->type = type;
4408         map->sub_stripes = sub_stripes;
4409
4410         num_bytes = stripe_size * data_stripes;
4411
4412         trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
4413
4414         em = alloc_extent_map();
4415         if (!em) {
4416                 kfree(map);
4417                 ret = -ENOMEM;
4418                 goto error;
4419         }
4420         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4421         em->bdev = (struct block_device *)map;
4422         em->start = start;
4423         em->len = num_bytes;
4424         em->block_start = 0;
4425         em->block_len = em->len;
4426         em->orig_block_len = stripe_size;
4427
4428         em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4429         write_lock(&em_tree->lock);
4430         ret = add_extent_mapping(em_tree, em, 0);
4431         if (!ret) {
4432                 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4433                 atomic_inc(&em->refs);
4434         }
4435         write_unlock(&em_tree->lock);
4436         if (ret) {
4437                 free_extent_map(em);
4438                 goto error;
4439         }
4440
4441         ret = btrfs_make_block_group(trans, extent_root, 0, type,
4442                                      BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4443                                      start, num_bytes);
4444         if (ret)
4445                 goto error_del_extent;
4446
4447         for (i = 0; i < map->num_stripes; i++) {
4448                 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4449                 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4450         }
4451
4452         spin_lock(&extent_root->fs_info->free_chunk_lock);
4453         extent_root->fs_info->free_chunk_space -= (stripe_size *
4454                                                    map->num_stripes);
4455         spin_unlock(&extent_root->fs_info->free_chunk_lock);
4456
4457         free_extent_map(em);
4458         check_raid56_incompat_flag(extent_root->fs_info, type);
4459
4460         kfree(devices_info);
4461         return 0;
4462
4463 error_del_extent:
4464         write_lock(&em_tree->lock);
4465         remove_extent_mapping(em_tree, em);
4466         write_unlock(&em_tree->lock);
4467
4468         /* One for our allocation */
4469         free_extent_map(em);
4470         /* One for the tree reference */
4471         free_extent_map(em);
4472 error:
4473         kfree(devices_info);
4474         return ret;
4475 }
4476
4477 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4478                                 struct btrfs_root *extent_root,
4479                                 u64 chunk_offset, u64 chunk_size)
4480 {
4481         struct btrfs_key key;
4482         struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4483         struct btrfs_device *device;
4484         struct btrfs_chunk *chunk;
4485         struct btrfs_stripe *stripe;
4486         struct extent_map_tree *em_tree;
4487         struct extent_map *em;
4488         struct map_lookup *map;
4489         size_t item_size;
4490         u64 dev_offset;
4491         u64 stripe_size;
4492         int i = 0;
4493         int ret;
4494
4495         em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4496         read_lock(&em_tree->lock);
4497         em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4498         read_unlock(&em_tree->lock);
4499
4500         if (!em) {
4501                 btrfs_crit(extent_root->fs_info, "unable to find logical "
4502                            "%Lu len %Lu", chunk_offset, chunk_size);
4503                 return -EINVAL;
4504         }
4505
4506         if (em->start != chunk_offset || em->len != chunk_size) {
4507                 btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
4508                           " %Lu-%Lu, found %Lu-%Lu", chunk_offset,
4509                           chunk_size, em->start, em->len);
4510                 free_extent_map(em);
4511                 return -EINVAL;
4512         }
4513
4514         map = (struct map_lookup *)em->bdev;
4515         item_size = btrfs_chunk_item_size(map->num_stripes);
4516         stripe_size = em->orig_block_len;
4517
4518         chunk = kzalloc(item_size, GFP_NOFS);
4519         if (!chunk) {
4520                 ret = -ENOMEM;
4521                 goto out;
4522         }
4523
4524         for (i = 0; i < map->num_stripes; i++) {
4525                 device = map->stripes[i].dev;
4526                 dev_offset = map->stripes[i].physical;
4527
4528                 ret = btrfs_update_device(trans, device);
4529                 if (ret)
4530                         goto out;
4531                 ret = btrfs_alloc_dev_extent(trans, device,
4532                                              chunk_root->root_key.objectid,
4533                                              BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4534                                              chunk_offset, dev_offset,
4535                                              stripe_size);
4536                 if (ret)
4537                         goto out;
4538         }
4539
4540         stripe = &chunk->stripe;
4541         for (i = 0; i < map->num_stripes; i++) {
4542                 device = map->stripes[i].dev;
4543                 dev_offset = map->stripes[i].physical;
4544
4545                 btrfs_set_stack_stripe_devid(stripe, device->devid);
4546                 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4547                 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4548                 stripe++;
4549         }
4550
4551         btrfs_set_stack_chunk_length(chunk, chunk_size);
4552         btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4553         btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4554         btrfs_set_stack_chunk_type(chunk, map->type);
4555         btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4556         btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4557         btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4558         btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
4559         btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4560
4561         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4562         key.type = BTRFS_CHUNK_ITEM_KEY;
4563         key.offset = chunk_offset;
4564
4565         ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4566         if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4567                 /*
4568                  * TODO: Cleanup of inserted chunk root in case of
4569                  * failure.
4570                  */
4571                 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
4572                                              item_size);
4573         }
4574
4575 out:
4576         kfree(chunk);
4577         free_extent_map(em);
4578         return ret;
4579 }
4580
4581 /*
4582  * Chunk allocation falls into two parts. The first part does works
4583  * that make the new allocated chunk useable, but not do any operation
4584  * that modifies the chunk tree. The second part does the works that
4585  * require modifying the chunk tree. This division is important for the
4586  * bootstrap process of adding storage to a seed btrfs.
4587  */
4588 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4589                       struct btrfs_root *extent_root, u64 type)
4590 {
4591         u64 chunk_offset;
4592
4593         chunk_offset = find_next_chunk(extent_root->fs_info);
4594         return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
4595 }
4596
4597 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
4598                                          struct btrfs_root *root,
4599                                          struct btrfs_device *device)
4600 {
4601         u64 chunk_offset;
4602         u64 sys_chunk_offset;
4603         u64 alloc_profile;
4604         struct btrfs_fs_info *fs_info = root->fs_info;
4605         struct btrfs_root *extent_root = fs_info->extent_root;
4606         int ret;
4607
4608         chunk_offset = find_next_chunk(fs_info);
4609         alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
4610         ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
4611                                   alloc_profile);
4612         if (ret)
4613                 return ret;
4614
4615         sys_chunk_offset = find_next_chunk(root->fs_info);
4616         alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
4617         ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
4618                                   alloc_profile);
4619         return ret;
4620 }
4621
4622 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
4623 {
4624         int max_errors;
4625
4626         if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
4627                          BTRFS_BLOCK_GROUP_RAID10 |
4628                          BTRFS_BLOCK_GROUP_RAID5 |
4629                          BTRFS_BLOCK_GROUP_DUP)) {
4630                 max_errors = 1;
4631         } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
4632                 max_errors = 2;
4633         } else {
4634                 max_errors = 0;
4635         }
4636
4637         return max_errors;
4638 }
4639
4640 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
4641 {
4642         struct extent_map *em;
4643         struct map_lookup *map;
4644         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4645         int readonly = 0;
4646         int miss_ndevs = 0;
4647         int i;
4648
4649         read_lock(&map_tree->map_tree.lock);
4650         em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
4651         read_unlock(&map_tree->map_tree.lock);
4652         if (!em)
4653                 return 1;
4654
4655         map = (struct map_lookup *)em->bdev;
4656         for (i = 0; i < map->num_stripes; i++) {
4657                 if (map->stripes[i].dev->missing) {
4658                         miss_ndevs++;
4659                         continue;
4660                 }
4661
4662                 if (!map->stripes[i].dev->writeable) {
4663                         readonly = 1;
4664                         goto end;
4665                 }
4666         }
4667
4668         /*
4669          * If the number of missing devices is larger than max errors,
4670          * we can not write the data into that chunk successfully, so
4671          * set it readonly.
4672          */
4673         if (miss_ndevs > btrfs_chunk_max_errors(map))
4674                 readonly = 1;
4675 end:
4676         free_extent_map(em);
4677         return readonly;
4678 }
4679
4680 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
4681 {
4682         extent_map_tree_init(&tree->map_tree);
4683 }
4684
4685 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
4686 {
4687         struct extent_map *em;
4688
4689         while (1) {
4690                 write_lock(&tree->map_tree.lock);
4691                 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
4692                 if (em)
4693                         remove_extent_mapping(&tree->map_tree, em);
4694                 write_unlock(&tree->map_tree.lock);
4695                 if (!em)
4696                         break;
4697                 /* once for us */
4698                 free_extent_map(em);
4699                 /* once for the tree */
4700                 free_extent_map(em);
4701         }
4702 }
4703
4704 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
4705 {
4706         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4707         struct extent_map *em;
4708         struct map_lookup *map;
4709         struct extent_map_tree *em_tree = &map_tree->map_tree;
4710         int ret;
4711
4712         read_lock(&em_tree->lock);
4713         em = lookup_extent_mapping(em_tree, logical, len);
4714         read_unlock(&em_tree->lock);
4715
4716         /*
4717          * We could return errors for these cases, but that could get ugly and
4718          * we'd probably do the same thing which is just not do anything else
4719          * and exit, so return 1 so the callers don't try to use other copies.
4720          */
4721         if (!em) {
4722                 btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
4723                             logical+len);
4724                 return 1;
4725         }
4726
4727         if (em->start > logical || em->start + em->len < logical) {
4728                 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
4729                             "%Lu-%Lu", logical, logical+len, em->start,
4730                             em->start + em->len);
4731                 free_extent_map(em);
4732                 return 1;
4733         }
4734
4735         map = (struct map_lookup *)em->bdev;
4736         if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
4737                 ret = map->num_stripes;
4738         else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
4739                 ret = map->sub_stripes;
4740         else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
4741                 ret = 2;
4742         else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4743                 ret = 3;
4744         else
4745                 ret = 1;
4746         free_extent_map(em);
4747
4748         btrfs_dev_replace_lock(&fs_info->dev_replace);
4749         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
4750                 ret++;
4751         btrfs_dev_replace_unlock(&fs_info->dev_replace);
4752
4753         return ret;
4754 }
4755
4756 unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
4757                                     struct btrfs_mapping_tree *map_tree,
4758                                     u64 logical)
4759 {
4760         struct extent_map *em;
4761         struct map_lookup *map;
4762         struct extent_map_tree *em_tree = &map_tree->map_tree;
4763         unsigned long len = root->sectorsize;
4764
4765         read_lock(&em_tree->lock);
4766         em = lookup_extent_mapping(em_tree, logical, len);
4767         read_unlock(&em_tree->lock);
4768         BUG_ON(!em);
4769
4770         BUG_ON(em->start > logical || em->start + em->len < logical);
4771         map = (struct map_lookup *)em->bdev;
4772         if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4773                          BTRFS_BLOCK_GROUP_RAID6)) {
4774                 len = map->stripe_len * nr_data_stripes(map);
4775         }
4776         free_extent_map(em);
4777         return len;
4778 }
4779
4780 int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
4781                            u64 logical, u64 len, int mirror_num)
4782 {
4783         struct extent_map *em;
4784         struct map_lookup *map;
4785         struct extent_map_tree *em_tree = &map_tree->map_tree;
4786         int ret = 0;
4787
4788         read_lock(&em_tree->lock);
4789         em = lookup_extent_mapping(em_tree, logical, len);
4790         read_unlock(&em_tree->lock);
4791         BUG_ON(!em);
4792
4793         BUG_ON(em->start > logical || em->start + em->len < logical);
4794         map = (struct map_lookup *)em->bdev;
4795         if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4796                          BTRFS_BLOCK_GROUP_RAID6))
4797                 ret = 1;
4798         free_extent_map(em);
4799         return ret;
4800 }
4801
4802 static int find_live_mirror(struct btrfs_fs_info *fs_info,
4803                             struct map_lookup *map, int first, int num,
4804                             int optimal, int dev_replace_is_ongoing)
4805 {
4806         int i;
4807         int tolerance;
4808         struct btrfs_device *srcdev;
4809
4810         if (dev_replace_is_ongoing &&
4811             fs_info->dev_replace.cont_reading_from_srcdev_mode ==
4812              BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
4813                 srcdev = fs_info->dev_replace.srcdev;
4814         else
4815                 srcdev = NULL;
4816
4817         /*
4818          * try to avoid the drive that is the source drive for a
4819          * dev-replace procedure, only choose it if no other non-missing
4820          * mirror is available
4821          */
4822         for (tolerance = 0; tolerance < 2; tolerance++) {
4823                 if (map->stripes[optimal].dev->bdev &&
4824                     (tolerance || map->stripes[optimal].dev != srcdev))
4825                         return optimal;
4826                 for (i = first; i < first + num; i++) {
4827                         if (map->stripes[i].dev->bdev &&
4828                             (tolerance || map->stripes[i].dev != srcdev))
4829                                 return i;
4830                 }
4831         }
4832
4833         /* we couldn't find one that doesn't fail.  Just return something
4834          * and the io error handling code will clean up eventually
4835          */
4836         return optimal;
4837 }
4838
4839 static inline int parity_smaller(u64 a, u64 b)
4840 {
4841         return a > b;
4842 }
4843
4844 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
4845 static void sort_parity_stripes(struct btrfs_bio *bbio, u64 *raid_map)
4846 {
4847         struct btrfs_bio_stripe s;
4848         int i;
4849         u64 l;
4850         int again = 1;
4851
4852         while (again) {
4853                 again = 0;
4854                 for (i = 0; i < bbio->num_stripes - 1; i++) {
4855                         if (parity_smaller(raid_map[i], raid_map[i+1])) {
4856                                 s = bbio->stripes[i];
4857                                 l = raid_map[i];
4858                                 bbio->stripes[i] = bbio->stripes[i+1];
4859                                 raid_map[i] = raid_map[i+1];
4860                                 bbio->stripes[i+1] = s;
4861                                 raid_map[i+1] = l;
4862                                 again = 1;
4863                         }
4864                 }
4865         }
4866 }
4867
4868 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
4869                              u64 logical, u64 *length,
4870                              struct btrfs_bio **bbio_ret,
4871                              int mirror_num, u64 **raid_map_ret)
4872 {
4873         struct extent_map *em;
4874         struct map_lookup *map;
4875         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4876         struct extent_map_tree *em_tree = &map_tree->map_tree;
4877         u64 offset;
4878         u64 stripe_offset;
4879         u64 stripe_end_offset;
4880         u64 stripe_nr;
4881         u64 stripe_nr_orig;
4882         u64 stripe_nr_end;
4883         u64 stripe_len;
4884         u64 *raid_map = NULL;
4885         int stripe_index;
4886         int i;
4887         int ret = 0;
4888         int num_stripes;
4889         int max_errors = 0;
4890         struct btrfs_bio *bbio = NULL;
4891         struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
4892         int dev_replace_is_ongoing = 0;
4893         int num_alloc_stripes;
4894         int patch_the_first_stripe_for_dev_replace = 0;
4895         u64 physical_to_patch_in_first_stripe = 0;
4896         u64 raid56_full_stripe_start = (u64)-1;
4897
4898         read_lock(&em_tree->lock);
4899         em = lookup_extent_mapping(em_tree, logical, *length);
4900         read_unlock(&em_tree->lock);
4901
4902         if (!em) {
4903                 btrfs_crit(fs_info, "unable to find logical %llu len %llu",
4904                         logical, *length);
4905                 return -EINVAL;
4906         }
4907
4908         if (em->start > logical || em->start + em->len < logical) {
4909                 btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
4910                            "found %Lu-%Lu", logical, em->start,
4911                            em->start + em->len);
4912                 free_extent_map(em);
4913                 return -EINVAL;
4914         }
4915
4916         map = (struct map_lookup *)em->bdev;
4917         offset = logical - em->start;
4918
4919         stripe_len = map->stripe_len;
4920         stripe_nr = offset;
4921         /*
4922          * stripe_nr counts the total number of stripes we have to stride
4923          * to get to this block
4924          */
4925         do_div(stripe_nr, stripe_len);
4926
4927         stripe_offset = stripe_nr * stripe_len;
4928         BUG_ON(offset < stripe_offset);
4929
4930         /* stripe_offset is the offset of this block in its stripe*/
4931         stripe_offset = offset - stripe_offset;
4932
4933         /* if we're here for raid56, we need to know the stripe aligned start */
4934         if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) {
4935                 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
4936                 raid56_full_stripe_start = offset;
4937
4938                 /* allow a write of a full stripe, but make sure we don't
4939                  * allow straddling of stripes
4940                  */
4941                 do_div(raid56_full_stripe_start, full_stripe_len);
4942                 raid56_full_stripe_start *= full_stripe_len;
4943         }
4944
4945         if (rw & REQ_DISCARD) {
4946                 /* we don't discard raid56 yet */
4947                 if (map->type &
4948                     (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) {
4949                         ret = -EOPNOTSUPP;
4950                         goto out;
4951                 }
4952                 *length = min_t(u64, em->len - offset, *length);
4953         } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
4954                 u64 max_len;
4955                 /* For writes to RAID[56], allow a full stripeset across all disks.
4956                    For other RAID types and for RAID[56] reads, just allow a single
4957                    stripe (on a single disk). */
4958                 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6) &&
4959                     (rw & REQ_WRITE)) {
4960                         max_len = stripe_len * nr_data_stripes(map) -
4961                                 (offset - raid56_full_stripe_start);
4962                 } else {
4963                         /* we limit the length of each bio to what fits in a stripe */
4964                         max_len = stripe_len - stripe_offset;
4965                 }
4966                 *length = min_t(u64, em->len - offset, max_len);
4967         } else {
4968                 *length = em->len - offset;
4969         }
4970
4971         /* This is for when we're called from btrfs_merge_bio_hook() and all
4972            it cares about is the length */
4973         if (!bbio_ret)
4974                 goto out;
4975
4976         btrfs_dev_replace_lock(dev_replace);
4977         dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
4978         if (!dev_replace_is_ongoing)
4979                 btrfs_dev_replace_unlock(dev_replace);
4980
4981         if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
4982             !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
4983             dev_replace->tgtdev != NULL) {
4984                 /*
4985                  * in dev-replace case, for repair case (that's the only
4986                  * case where the mirror is selected explicitly when
4987                  * calling btrfs_map_block), blocks left of the left cursor
4988                  * can also be read from the target drive.
4989                  * For REQ_GET_READ_MIRRORS, the target drive is added as
4990                  * the last one to the array of stripes. For READ, it also
4991                  * needs to be supported using the same mirror number.
4992                  * If the requested block is not left of the left cursor,
4993                  * EIO is returned. This can happen because btrfs_num_copies()
4994                  * returns one more in the dev-replace case.
4995                  */
4996                 u64 tmp_length = *length;
4997                 struct btrfs_bio *tmp_bbio = NULL;
4998                 int tmp_num_stripes;
4999                 u64 srcdev_devid = dev_replace->srcdev->devid;
5000                 int index_srcdev = 0;
5001                 int found = 0;
5002                 u64 physical_of_found = 0;
5003
5004                 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
5005                              logical, &tmp_length, &tmp_bbio, 0, NULL);
5006                 if (ret) {
5007                         WARN_ON(tmp_bbio != NULL);
5008                         goto out;
5009                 }
5010
5011                 tmp_num_stripes = tmp_bbio->num_stripes;
5012                 if (mirror_num > tmp_num_stripes) {
5013                         /*
5014                          * REQ_GET_READ_MIRRORS does not contain this
5015                          * mirror, that means that the requested area
5016                          * is not left of the left cursor
5017                          */
5018                         ret = -EIO;
5019                         kfree(tmp_bbio);
5020                         goto out;
5021                 }
5022
5023                 /*
5024                  * process the rest of the function using the mirror_num
5025                  * of the source drive. Therefore look it up first.
5026                  * At the end, patch the device pointer to the one of the
5027                  * target drive.
5028                  */
5029                 for (i = 0; i < tmp_num_stripes; i++) {
5030                         if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) {
5031                                 /*
5032                                  * In case of DUP, in order to keep it
5033                                  * simple, only add the mirror with the
5034                                  * lowest physical address
5035                                  */
5036                                 if (found &&
5037                                     physical_of_found <=
5038                                      tmp_bbio->stripes[i].physical)
5039                                         continue;
5040                                 index_srcdev = i;
5041                                 found = 1;
5042                                 physical_of_found =
5043                                         tmp_bbio->stripes[i].physical;
5044                         }
5045                 }
5046
5047                 if (found) {
5048                         mirror_num = index_srcdev + 1;
5049                         patch_the_first_stripe_for_dev_replace = 1;
5050                         physical_to_patch_in_first_stripe = physical_of_found;
5051                 } else {
5052                         WARN_ON(1);
5053                         ret = -EIO;
5054                         kfree(tmp_bbio);
5055                         goto out;
5056                 }
5057
5058                 kfree(tmp_bbio);
5059         } else if (mirror_num > map->num_stripes) {
5060                 mirror_num = 0;
5061         }
5062
5063         num_stripes = 1;
5064         stripe_index = 0;
5065         stripe_nr_orig = stripe_nr;
5066         stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
5067         do_div(stripe_nr_end, map->stripe_len);
5068         stripe_end_offset = stripe_nr_end * map->stripe_len -
5069                             (offset + *length);
5070
5071         if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5072                 if (rw & REQ_DISCARD)
5073                         num_stripes = min_t(u64, map->num_stripes,
5074                                             stripe_nr_end - stripe_nr_orig);
5075                 stripe_index = do_div(stripe_nr, map->num_stripes);
5076                 if (!(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)))
5077                         mirror_num = 1;
5078         } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5079                 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
5080                         num_stripes = map->num_stripes;
5081                 else if (mirror_num)
5082                         stripe_index = mirror_num - 1;
5083                 else {
5084                         stripe_index = find_live_mirror(fs_info, map, 0,
5085                                             map->num_stripes,
5086                                             current->pid % map->num_stripes,
5087                                             dev_replace_is_ongoing);
5088                         mirror_num = stripe_index + 1;
5089                 }
5090
5091         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5092                 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
5093                         num_stripes = map->num_stripes;
5094                 } else if (mirror_num) {
5095                         stripe_index = mirror_num - 1;
5096                 } else {
5097                         mirror_num = 1;
5098                 }
5099
5100         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5101                 int factor = map->num_stripes / map->sub_stripes;
5102
5103                 stripe_index = do_div(stripe_nr, factor);
5104                 stripe_index *= map->sub_stripes;
5105
5106                 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5107                         num_stripes = map->sub_stripes;
5108                 else if (rw & REQ_DISCARD)
5109                         num_stripes = min_t(u64, map->sub_stripes *
5110                                             (stripe_nr_end - stripe_nr_orig),
5111                                             map->num_stripes);
5112                 else if (mirror_num)
5113                         stripe_index += mirror_num - 1;
5114                 else {
5115                         int old_stripe_index = stripe_index;
5116                         stripe_index = find_live_mirror(fs_info, map,
5117                                               stripe_index,
5118                                               map->sub_stripes, stripe_index +
5119                                               current->pid % map->sub_stripes,
5120                                               dev_replace_is_ongoing);
5121                         mirror_num = stripe_index - old_stripe_index + 1;
5122                 }
5123
5124         } else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
5125                                 BTRFS_BLOCK_GROUP_RAID6)) {
5126                 u64 tmp;
5127
5128                 if (bbio_ret && ((rw & REQ_WRITE) || mirror_num > 1)
5129                     && raid_map_ret) {
5130                         int i, rot;
5131
5132                         /* push stripe_nr back to the start of the full stripe */
5133                         stripe_nr = raid56_full_stripe_start;
5134                         do_div(stripe_nr, stripe_len);
5135
5136                         stripe_index = do_div(stripe_nr, nr_data_stripes(map));
5137
5138                         /* RAID[56] write or recovery. Return all stripes */
5139                         num_stripes = map->num_stripes;
5140                         max_errors = nr_parity_stripes(map);
5141
5142                         raid_map = kmalloc_array(num_stripes, sizeof(u64),
5143                                            GFP_NOFS);
5144                         if (!raid_map) {
5145                                 ret = -ENOMEM;
5146                                 goto out;
5147                         }
5148
5149                         /* Work out the disk rotation on this stripe-set */
5150                         tmp = stripe_nr;
5151                         rot = do_div(tmp, num_stripes);
5152
5153                         /* Fill in the logical address of each stripe */
5154                         tmp = stripe_nr * nr_data_stripes(map);
5155                         for (i = 0; i < nr_data_stripes(map); i++)
5156                                 raid_map[(i+rot) % num_stripes] =
5157                                         em->start + (tmp + i) * map->stripe_len;
5158
5159                         raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5160                         if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5161                                 raid_map[(i+rot+1) % num_stripes] =
5162                                         RAID6_Q_STRIPE;
5163
5164                         *length = map->stripe_len;
5165                         stripe_index = 0;
5166                         stripe_offset = 0;
5167                 } else {
5168                         /*
5169                          * Mirror #0 or #1 means the original data block.
5170                          * Mirror #2 is RAID5 parity block.
5171                          * Mirror #3 is RAID6 Q block.
5172                          */
5173                         stripe_index = do_div(stripe_nr, nr_data_stripes(map));
5174                         if (mirror_num > 1)
5175                                 stripe_index = nr_data_stripes(map) +
5176                                                 mirror_num - 2;
5177
5178                         /* We distribute the parity blocks across stripes */
5179                         tmp = stripe_nr + stripe_index;
5180                         stripe_index = do_div(tmp, map->num_stripes);
5181                         if (!(rw & (REQ_WRITE | REQ_DISCARD |
5182                                     REQ_GET_READ_MIRRORS)) && mirror_num <= 1)
5183                                 mirror_num = 1;
5184                 }
5185         } else {
5186                 /*
5187                  * after this do_div call, stripe_nr is the number of stripes
5188                  * on this device we have to walk to find the data, and
5189                  * stripe_index is the number of our device in the stripe array
5190                  */
5191                 stripe_index = do_div(stripe_nr, map->num_stripes);
5192                 mirror_num = stripe_index + 1;
5193         }
5194         BUG_ON(stripe_index >= map->num_stripes);
5195
5196         num_alloc_stripes = num_stripes;
5197         if (dev_replace_is_ongoing) {
5198                 if (rw & (REQ_WRITE | REQ_DISCARD))
5199                         num_alloc_stripes <<= 1;
5200                 if (rw & REQ_GET_READ_MIRRORS)
5201                         num_alloc_stripes++;
5202         }
5203         bbio = kzalloc(btrfs_bio_size(num_alloc_stripes), GFP_NOFS);
5204         if (!bbio) {
5205                 kfree(raid_map);
5206                 ret = -ENOMEM;
5207                 goto out;
5208         }
5209         atomic_set(&bbio->error, 0);
5210
5211         if (rw & REQ_DISCARD) {
5212                 int factor = 0;
5213                 int sub_stripes = 0;
5214                 u64 stripes_per_dev = 0;
5215                 u32 remaining_stripes = 0;
5216                 u32 last_stripe = 0;
5217
5218                 if (map->type &
5219                     (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5220                         if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5221                                 sub_stripes = 1;
5222                         else
5223                                 sub_stripes = map->sub_stripes;
5224
5225                         factor = map->num_stripes / sub_stripes;
5226                         stripes_per_dev = div_u64_rem(stripe_nr_end -
5227                                                       stripe_nr_orig,
5228                                                       factor,
5229                                                       &remaining_stripes);
5230                         div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5231                         last_stripe *= sub_stripes;
5232                 }
5233
5234                 for (i = 0; i < num_stripes; i++) {
5235                         bbio->stripes[i].physical =
5236                                 map->stripes[stripe_index].physical +
5237                                 stripe_offset + stripe_nr * map->stripe_len;
5238                         bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5239
5240                         if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5241                                          BTRFS_BLOCK_GROUP_RAID10)) {
5242                                 bbio->stripes[i].length = stripes_per_dev *
5243                                                           map->stripe_len;
5244
5245                                 if (i / sub_stripes < remaining_stripes)
5246                                         bbio->stripes[i].length +=
5247                                                 map->stripe_len;
5248
5249                                 /*
5250                                  * Special for the first stripe and
5251                                  * the last stripe:
5252                                  *
5253                                  * |-------|...|-------|
5254                                  *     |----------|
5255                                  *    off     end_off
5256                                  */
5257                                 if (i < sub_stripes)
5258                                         bbio->stripes[i].length -=
5259                                                 stripe_offset;
5260
5261                                 if (stripe_index >= last_stripe &&
5262                                     stripe_index <= (last_stripe +
5263                                                      sub_stripes - 1))
5264                                         bbio->stripes[i].length -=
5265                                                 stripe_end_offset;
5266
5267                                 if (i == sub_stripes - 1)
5268                                         stripe_offset = 0;
5269                         } else
5270                                 bbio->stripes[i].length = *length;
5271
5272                         stripe_index++;
5273                         if (stripe_index == map->num_stripes) {
5274                                 /* This could only happen for RAID0/10 */
5275                                 stripe_index = 0;
5276                                 stripe_nr++;
5277                         }
5278                 }
5279         } else {
5280                 for (i = 0; i < num_stripes; i++) {
5281                         bbio->stripes[i].physical =
5282                                 map->stripes[stripe_index].physical +
5283                                 stripe_offset +
5284                                 stripe_nr * map->stripe_len;
5285                         bbio->stripes[i].dev =
5286                                 map->stripes[stripe_index].dev;
5287                         stripe_index++;
5288                 }
5289         }
5290
5291         if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5292                 max_errors = btrfs_chunk_max_errors(map);
5293
5294         if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
5295             dev_replace->tgtdev != NULL) {
5296                 int index_where_to_add;
5297                 u64 srcdev_devid = dev_replace->srcdev->devid;
5298
5299                 /*
5300                  * duplicate the write operations while the dev replace
5301                  * procedure is running. Since the copying of the old disk
5302                  * to the new disk takes place at run time while the
5303                  * filesystem is mounted writable, the regular write
5304                  * operations to the old disk have to be duplicated to go
5305                  * to the new disk as well.
5306                  * Note that device->missing is handled by the caller, and
5307                  * that the write to the old disk is already set up in the
5308                  * stripes array.
5309                  */
5310                 index_where_to_add = num_stripes;
5311                 for (i = 0; i < num_stripes; i++) {
5312                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5313                                 /* write to new disk, too */
5314                                 struct btrfs_bio_stripe *new =
5315                                         bbio->stripes + index_where_to_add;
5316                                 struct btrfs_bio_stripe *old =
5317                                         bbio->stripes + i;
5318
5319                                 new->physical = old->physical;
5320                                 new->length = old->length;
5321                                 new->dev = dev_replace->tgtdev;
5322                                 index_where_to_add++;
5323                                 max_errors++;
5324                         }
5325                 }
5326                 num_stripes = index_where_to_add;
5327         } else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
5328                    dev_replace->tgtdev != NULL) {
5329                 u64 srcdev_devid = dev_replace->srcdev->devid;
5330                 int index_srcdev = 0;
5331                 int found = 0;
5332                 u64 physical_of_found = 0;
5333
5334                 /*
5335                  * During the dev-replace procedure, the target drive can
5336                  * also be used to read data in case it is needed to repair
5337                  * a corrupt block elsewhere. This is possible if the
5338                  * requested area is left of the left cursor. In this area,
5339                  * the target drive is a full copy of the source drive.
5340                  */
5341                 for (i = 0; i < num_stripes; i++) {
5342                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5343                                 /*
5344                                  * In case of DUP, in order to keep it
5345                                  * simple, only add the mirror with the
5346                                  * lowest physical address
5347                                  */
5348                                 if (found &&
5349                                     physical_of_found <=
5350                                      bbio->stripes[i].physical)
5351                                         continue;
5352                                 index_srcdev = i;
5353                                 found = 1;
5354                                 physical_of_found = bbio->stripes[i].physical;
5355                         }
5356                 }
5357                 if (found) {
5358                         u64 length = map->stripe_len;
5359
5360                         if (physical_of_found + length <=
5361                             dev_replace->cursor_left) {
5362                                 struct btrfs_bio_stripe *tgtdev_stripe =
5363                                         bbio->stripes + num_stripes;
5364
5365                                 tgtdev_stripe->physical = physical_of_found;
5366                                 tgtdev_stripe->length =
5367                                         bbio->stripes[index_srcdev].length;
5368                                 tgtdev_stripe->dev = dev_replace->tgtdev;
5369
5370                                 num_stripes++;
5371                         }
5372                 }
5373         }
5374
5375         *bbio_ret = bbio;
5376         bbio->num_stripes = num_stripes;
5377         bbio->max_errors = max_errors;
5378         bbio->mirror_num = mirror_num;
5379
5380         /*
5381          * this is the case that REQ_READ && dev_replace_is_ongoing &&
5382          * mirror_num == num_stripes + 1 && dev_replace target drive is
5383          * available as a mirror
5384          */
5385         if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5386                 WARN_ON(num_stripes > 1);
5387                 bbio->stripes[0].dev = dev_replace->tgtdev;
5388                 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5389                 bbio->mirror_num = map->num_stripes + 1;
5390         }
5391         if (raid_map) {
5392                 sort_parity_stripes(bbio, raid_map);
5393                 *raid_map_ret = raid_map;
5394         }
5395 out:
5396         if (dev_replace_is_ongoing)
5397                 btrfs_dev_replace_unlock(dev_replace);
5398         free_extent_map(em);
5399         return ret;
5400 }
5401
5402 int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
5403                       u64 logical, u64 *length,
5404                       struct btrfs_bio **bbio_ret, int mirror_num)
5405 {
5406         return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5407                                  mirror_num, NULL);
5408 }
5409
5410 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5411                      u64 chunk_start, u64 physical, u64 devid,
5412                      u64 **logical, int *naddrs, int *stripe_len)
5413 {
5414         struct extent_map_tree *em_tree = &map_tree->map_tree;
5415         struct extent_map *em;
5416         struct map_lookup *map;
5417         u64 *buf;
5418         u64 bytenr;
5419         u64 length;
5420         u64 stripe_nr;
5421         u64 rmap_len;
5422         int i, j, nr = 0;
5423
5424         read_lock(&em_tree->lock);
5425         em = lookup_extent_mapping(em_tree, chunk_start, 1);
5426         read_unlock(&em_tree->lock);
5427
5428         if (!em) {
5429                 printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n",
5430                        chunk_start);
5431                 return -EIO;
5432         }
5433
5434         if (em->start != chunk_start) {
5435                 printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
5436                        em->start, chunk_start);
5437                 free_extent_map(em);
5438                 return -EIO;
5439         }
5440         map = (struct map_lookup *)em->bdev;
5441
5442         length = em->len;
5443         rmap_len = map->stripe_len;
5444
5445         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5446                 do_div(length, map->num_stripes / map->sub_stripes);
5447         else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5448                 do_div(length, map->num_stripes);
5449         else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
5450                               BTRFS_BLOCK_GROUP_RAID6)) {
5451                 do_div(length, nr_data_stripes(map));
5452                 rmap_len = map->stripe_len * nr_data_stripes(map);
5453         }
5454
5455         buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
5456         BUG_ON(!buf); /* -ENOMEM */
5457
5458         for (i = 0; i < map->num_stripes; i++) {
5459                 if (devid && map->stripes[i].dev->devid != devid)
5460                         continue;
5461                 if (map->stripes[i].physical > physical ||
5462                     map->stripes[i].physical + length <= physical)
5463                         continue;
5464
5465                 stripe_nr = physical - map->stripes[i].physical;
5466                 do_div(stripe_nr, map->stripe_len);
5467
5468                 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5469                         stripe_nr = stripe_nr * map->num_stripes + i;
5470                         do_div(stripe_nr, map->sub_stripes);
5471                 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5472                         stripe_nr = stripe_nr * map->num_stripes + i;
5473                 } /* else if RAID[56], multiply by nr_data_stripes().
5474                    * Alternatively, just use rmap_len below instead of
5475                    * map->stripe_len */
5476
5477                 bytenr = chunk_start + stripe_nr * rmap_len;
5478                 WARN_ON(nr >= map->num_stripes);
5479                 for (j = 0; j < nr; j++) {
5480                         if (buf[j] == bytenr)
5481                                 break;
5482                 }
5483                 if (j == nr) {
5484                         WARN_ON(nr >= map->num_stripes);
5485                         buf[nr++] = bytenr;
5486                 }
5487         }
5488
5489         *logical = buf;
5490         *naddrs = nr;
5491         *stripe_len = rmap_len;
5492
5493         free_extent_map(em);
5494         return 0;
5495 }
5496
5497 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio, int err)
5498 {
5499         if (likely(bbio->flags & BTRFS_BIO_ORIG_BIO_SUBMITTED))
5500                 bio_endio_nodec(bio, err);
5501         else
5502                 bio_endio(bio, err);
5503         kfree(bbio);
5504 }
5505
5506 static void btrfs_end_bio(struct bio *bio, int err)
5507 {
5508         struct btrfs_bio *bbio = bio->bi_private;
5509         struct btrfs_device *dev = bbio->stripes[0].dev;
5510         int is_orig_bio = 0;
5511
5512         if (err) {
5513                 atomic_inc(&bbio->error);
5514                 if (err == -EIO || err == -EREMOTEIO) {
5515                         unsigned int stripe_index =
5516                                 btrfs_io_bio(bio)->stripe_index;
5517
5518                         BUG_ON(stripe_index >= bbio->num_stripes);
5519                         dev = bbio->stripes[stripe_index].dev;
5520                         if (dev->bdev) {
5521                                 if (bio->bi_rw & WRITE)
5522                                         btrfs_dev_stat_inc(dev,
5523                                                 BTRFS_DEV_STAT_WRITE_ERRS);
5524                                 else
5525                                         btrfs_dev_stat_inc(dev,
5526                                                 BTRFS_DEV_STAT_READ_ERRS);
5527                                 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
5528                                         btrfs_dev_stat_inc(dev,
5529                                                 BTRFS_DEV_STAT_FLUSH_ERRS);
5530                                 btrfs_dev_stat_print_on_error(dev);
5531                         }
5532                 }
5533         }
5534
5535         if (bio == bbio->orig_bio)
5536                 is_orig_bio = 1;
5537
5538         btrfs_bio_counter_dec(bbio->fs_info);
5539
5540         if (atomic_dec_and_test(&bbio->stripes_pending)) {
5541                 if (!is_orig_bio) {
5542                         bio_put(bio);
5543                         bio = bbio->orig_bio;
5544                 }
5545
5546                 bio->bi_private = bbio->private;
5547                 bio->bi_end_io = bbio->end_io;
5548                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5549                 /* only send an error to the higher layers if it is
5550                  * beyond the tolerance of the btrfs bio
5551                  */
5552                 if (atomic_read(&bbio->error) > bbio->max_errors) {
5553                         err = -EIO;
5554                 } else {
5555                         /*
5556                          * this bio is actually up to date, we didn't
5557                          * go over the max number of errors
5558                          */
5559                         set_bit(BIO_UPTODATE, &bio->bi_flags);
5560                         err = 0;
5561                 }
5562
5563                 btrfs_end_bbio(bbio, bio, err);
5564         } else if (!is_orig_bio) {
5565                 bio_put(bio);
5566         }
5567 }
5568
5569 /*
5570  * see run_scheduled_bios for a description of why bios are collected for
5571  * async submit.
5572  *
5573  * This will add one bio to the pending list for a device and make sure
5574  * the work struct is scheduled.
5575  */
5576 static noinline void btrfs_schedule_bio(struct btrfs_root *root,
5577                                         struct btrfs_device *device,
5578                                         int rw, struct bio *bio)
5579 {
5580         int should_queue = 1;
5581         struct btrfs_pending_bios *pending_bios;
5582
5583         if (device->missing || !device->bdev) {
5584                 bio_endio(bio, -EIO);
5585                 return;
5586         }
5587
5588         /* don't bother with additional async steps for reads, right now */
5589         if (!(rw & REQ_WRITE)) {
5590                 bio_get(bio);
5591                 btrfsic_submit_bio(rw, bio);
5592                 bio_put(bio);
5593                 return;
5594         }
5595
5596         /*
5597          * nr_async_bios allows us to reliably return congestion to the
5598          * higher layers.  Otherwise, the async bio makes it appear we have
5599          * made progress against dirty pages when we've really just put it
5600          * on a queue for later
5601          */
5602         atomic_inc(&root->fs_info->nr_async_bios);
5603         WARN_ON(bio->bi_next);
5604         bio->bi_next = NULL;
5605         bio->bi_rw |= rw;
5606
5607         spin_lock(&device->io_lock);
5608         if (bio->bi_rw & REQ_SYNC)
5609                 pending_bios = &device->pending_sync_bios;
5610         else
5611                 pending_bios = &device->pending_bios;
5612
5613         if (pending_bios->tail)
5614                 pending_bios->tail->bi_next = bio;
5615
5616         pending_bios->tail = bio;
5617         if (!pending_bios->head)
5618                 pending_bios->head = bio;
5619         if (device->running_pending)
5620                 should_queue = 0;
5621
5622         spin_unlock(&device->io_lock);
5623
5624         if (should_queue)
5625                 btrfs_queue_work(root->fs_info->submit_workers,
5626                                  &device->work);
5627 }
5628
5629 static int bio_size_ok(struct block_device *bdev, struct bio *bio,
5630                        sector_t sector)
5631 {
5632         struct bio_vec *prev;
5633         struct request_queue *q = bdev_get_queue(bdev);
5634         unsigned int max_sectors = queue_max_sectors(q);
5635         struct bvec_merge_data bvm = {
5636                 .bi_bdev = bdev,
5637                 .bi_sector = sector,
5638                 .bi_rw = bio->bi_rw,
5639         };
5640
5641         if (WARN_ON(bio->bi_vcnt == 0))
5642                 return 1;
5643
5644         prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
5645         if (bio_sectors(bio) > max_sectors)
5646                 return 0;
5647
5648         if (!q->merge_bvec_fn)
5649                 return 1;
5650
5651         bvm.bi_size = bio->bi_iter.bi_size - prev->bv_len;
5652         if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len)
5653                 return 0;
5654         return 1;
5655 }
5656
5657 static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5658                               struct bio *bio, u64 physical, int dev_nr,
5659                               int rw, int async)
5660 {
5661         struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
5662
5663         bio->bi_private = bbio;
5664         btrfs_io_bio(bio)->stripe_index = dev_nr;
5665         bio->bi_end_io = btrfs_end_bio;
5666         bio->bi_iter.bi_sector = physical >> 9;
5667 #ifdef DEBUG
5668         {
5669                 struct rcu_string *name;
5670
5671                 rcu_read_lock();
5672                 name = rcu_dereference(dev->name);
5673                 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
5674                          "(%s id %llu), size=%u\n", rw,
5675                          (u64)bio->bi_sector, (u_long)dev->bdev->bd_dev,
5676                          name->str, dev->devid, bio->bi_size);
5677                 rcu_read_unlock();
5678         }
5679 #endif
5680         bio->bi_bdev = dev->bdev;
5681
5682         btrfs_bio_counter_inc_noblocked(root->fs_info);
5683
5684         if (async)
5685                 btrfs_schedule_bio(root, dev, rw, bio);
5686         else
5687                 btrfsic_submit_bio(rw, bio);
5688 }
5689
5690 static int breakup_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5691                               struct bio *first_bio, struct btrfs_device *dev,
5692                               int dev_nr, int rw, int async)
5693 {
5694         struct bio_vec *bvec = first_bio->bi_io_vec;
5695         struct bio *bio;
5696         int nr_vecs = bio_get_nr_vecs(dev->bdev);
5697         u64 physical = bbio->stripes[dev_nr].physical;
5698
5699 again:
5700         bio = btrfs_bio_alloc(dev->bdev, physical >> 9, nr_vecs, GFP_NOFS);
5701         if (!bio)
5702                 return -ENOMEM;
5703
5704         while (bvec <= (first_bio->bi_io_vec + first_bio->bi_vcnt - 1)) {
5705                 if (bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5706                                  bvec->bv_offset) < bvec->bv_len) {
5707                         u64 len = bio->bi_iter.bi_size;
5708
5709                         atomic_inc(&bbio->stripes_pending);
5710                         submit_stripe_bio(root, bbio, bio, physical, dev_nr,
5711                                           rw, async);
5712                         physical += len;
5713                         goto again;
5714                 }
5715                 bvec++;
5716         }
5717
5718         submit_stripe_bio(root, bbio, bio, physical, dev_nr, rw, async);
5719         return 0;
5720 }
5721
5722 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
5723 {
5724         atomic_inc(&bbio->error);
5725         if (atomic_dec_and_test(&bbio->stripes_pending)) {
5726                 /* Shoud be the original bio. */
5727                 WARN_ON(bio != bbio->orig_bio);
5728
5729                 bio->bi_private = bbio->private;
5730                 bio->bi_end_io = bbio->end_io;
5731                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5732                 bio->bi_iter.bi_sector = logical >> 9;
5733
5734                 btrfs_end_bbio(bbio, bio, -EIO);
5735         }
5736 }
5737
5738 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
5739                   int mirror_num, int async_submit)
5740 {
5741         struct btrfs_device *dev;
5742         struct bio *first_bio = bio;
5743         u64 logical = (u64)bio->bi_iter.bi_sector << 9;
5744         u64 length = 0;
5745         u64 map_length;
5746         u64 *raid_map = NULL;
5747         int ret;
5748         int dev_nr = 0;
5749         int total_devs = 1;
5750         struct btrfs_bio *bbio = NULL;
5751
5752         length = bio->bi_iter.bi_size;
5753         map_length = length;
5754
5755         btrfs_bio_counter_inc_blocked(root->fs_info);
5756         ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
5757                               mirror_num, &raid_map);
5758         if (ret) {
5759                 btrfs_bio_counter_dec(root->fs_info);
5760                 return ret;
5761         }
5762
5763         total_devs = bbio->num_stripes;
5764         bbio->orig_bio = first_bio;
5765         bbio->private = first_bio->bi_private;
5766         bbio->end_io = first_bio->bi_end_io;
5767         bbio->fs_info = root->fs_info;
5768         atomic_set(&bbio->stripes_pending, bbio->num_stripes);
5769
5770         if (raid_map) {
5771                 /* In this case, map_length has been set to the length of
5772                    a single stripe; not the whole write */
5773                 if (rw & WRITE) {
5774                         ret = raid56_parity_write(root, bio, bbio,
5775                                                   raid_map, map_length);
5776                 } else {
5777                         ret = raid56_parity_recover(root, bio, bbio,
5778                                                     raid_map, map_length,
5779                                                     mirror_num);
5780                 }
5781                 /*
5782                  * FIXME, replace dosen't support raid56 yet, please fix
5783                  * it in the future.
5784                  */
5785                 btrfs_bio_counter_dec(root->fs_info);
5786                 return ret;
5787         }
5788
5789         if (map_length < length) {
5790                 btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
5791                         logical, length, map_length);
5792                 BUG();
5793         }
5794
5795         while (dev_nr < total_devs) {
5796                 dev = bbio->stripes[dev_nr].dev;
5797                 if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
5798                         bbio_error(bbio, first_bio, logical);
5799                         dev_nr++;
5800                         continue;
5801                 }
5802
5803                 /*
5804                  * Check and see if we're ok with this bio based on it's size
5805                  * and offset with the given device.
5806                  */
5807                 if (!bio_size_ok(dev->bdev, first_bio,
5808                                  bbio->stripes[dev_nr].physical >> 9)) {
5809                         ret = breakup_stripe_bio(root, bbio, first_bio, dev,
5810                                                  dev_nr, rw, async_submit);
5811                         BUG_ON(ret);
5812                         dev_nr++;
5813                         continue;
5814                 }
5815
5816                 if (dev_nr < total_devs - 1) {
5817                         bio = btrfs_bio_clone(first_bio, GFP_NOFS);
5818                         BUG_ON(!bio); /* -ENOMEM */
5819                 } else {
5820                         bio = first_bio;
5821                         bbio->flags |= BTRFS_BIO_ORIG_BIO_SUBMITTED;
5822                 }
5823
5824                 submit_stripe_bio(root, bbio, bio,
5825                                   bbio->stripes[dev_nr].physical, dev_nr, rw,
5826                                   async_submit);
5827                 dev_nr++;
5828         }
5829         btrfs_bio_counter_dec(root->fs_info);
5830         return 0;
5831 }
5832
5833 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
5834                                        u8 *uuid, u8 *fsid)
5835 {
5836         struct btrfs_device *device;
5837         struct btrfs_fs_devices *cur_devices;
5838
5839         cur_devices = fs_info->fs_devices;
5840         while (cur_devices) {
5841                 if (!fsid ||
5842                     !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5843                         device = __find_device(&cur_devices->devices,
5844                                                devid, uuid);
5845                         if (device)
5846                                 return device;
5847                 }
5848                 cur_devices = cur_devices->seed;
5849         }
5850         return NULL;
5851 }
5852
5853 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
5854                                             struct btrfs_fs_devices *fs_devices,
5855                                             u64 devid, u8 *dev_uuid)
5856 {
5857         struct btrfs_device *device;
5858
5859         device = btrfs_alloc_device(NULL, &devid, dev_uuid);
5860         if (IS_ERR(device))
5861                 return NULL;
5862
5863         list_add(&device->dev_list, &fs_devices->devices);
5864         device->fs_devices = fs_devices;
5865         fs_devices->num_devices++;
5866
5867         device->missing = 1;
5868         fs_devices->missing_devices++;
5869
5870         return device;
5871 }
5872
5873 /**
5874  * btrfs_alloc_device - allocate struct btrfs_device
5875  * @fs_info:    used only for generating a new devid, can be NULL if
5876  *              devid is provided (i.e. @devid != NULL).
5877  * @devid:      a pointer to devid for this device.  If NULL a new devid
5878  *              is generated.
5879  * @uuid:       a pointer to UUID for this device.  If NULL a new UUID
5880  *              is generated.
5881  *
5882  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
5883  * on error.  Returned struct is not linked onto any lists and can be
5884  * destroyed with kfree() right away.
5885  */
5886 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
5887                                         const u64 *devid,
5888                                         const u8 *uuid)
5889 {
5890         struct btrfs_device *dev;
5891         u64 tmp;
5892
5893         if (WARN_ON(!devid && !fs_info))
5894                 return ERR_PTR(-EINVAL);
5895
5896         dev = __alloc_device();
5897         if (IS_ERR(dev))
5898                 return dev;
5899
5900         if (devid)
5901                 tmp = *devid;
5902         else {
5903                 int ret;
5904
5905                 ret = find_next_devid(fs_info, &tmp);
5906                 if (ret) {
5907                         kfree(dev);
5908                         return ERR_PTR(ret);
5909                 }
5910         }
5911         dev->devid = tmp;
5912
5913         if (uuid)
5914                 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
5915         else
5916                 generate_random_uuid(dev->uuid);
5917
5918         btrfs_init_work(&dev->work, btrfs_submit_helper,
5919                         pending_bios_fn, NULL, NULL);
5920
5921         return dev;
5922 }
5923
5924 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
5925                           struct extent_buffer *leaf,
5926                           struct btrfs_chunk *chunk)
5927 {
5928         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5929         struct map_lookup *map;
5930         struct extent_map *em;
5931         u64 logical;
5932         u64 length;
5933         u64 devid;
5934         u8 uuid[BTRFS_UUID_SIZE];
5935         int num_stripes;
5936         int ret;
5937         int i;
5938
5939         logical = key->offset;
5940         length = btrfs_chunk_length(leaf, chunk);
5941
5942         read_lock(&map_tree->map_tree.lock);
5943         em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
5944         read_unlock(&map_tree->map_tree.lock);
5945
5946         /* already mapped? */
5947         if (em && em->start <= logical && em->start + em->len > logical) {
5948                 free_extent_map(em);
5949                 return 0;
5950         } else if (em) {
5951                 free_extent_map(em);
5952         }
5953
5954         em = alloc_extent_map();
5955         if (!em)
5956                 return -ENOMEM;
5957         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
5958         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
5959         if (!map) {
5960                 free_extent_map(em);
5961                 return -ENOMEM;
5962         }
5963
5964         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5965         em->bdev = (struct block_device *)map;
5966         em->start = logical;
5967         em->len = length;
5968         em->orig_start = 0;
5969         em->block_start = 0;
5970         em->block_len = em->len;
5971
5972         map->num_stripes = num_stripes;
5973         map->io_width = btrfs_chunk_io_width(leaf, chunk);
5974         map->io_align = btrfs_chunk_io_align(leaf, chunk);
5975         map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
5976         map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
5977         map->type = btrfs_chunk_type(leaf, chunk);
5978         map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
5979         for (i = 0; i < num_stripes; i++) {
5980                 map->stripes[i].physical =
5981                         btrfs_stripe_offset_nr(leaf, chunk, i);
5982                 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
5983                 read_extent_buffer(leaf, uuid, (unsigned long)
5984                                    btrfs_stripe_dev_uuid_nr(chunk, i),
5985                                    BTRFS_UUID_SIZE);
5986                 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
5987                                                         uuid, NULL);
5988                 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
5989                         free_extent_map(em);
5990                         return -EIO;
5991                 }
5992                 if (!map->stripes[i].dev) {
5993                         map->stripes[i].dev =
5994                                 add_missing_dev(root, root->fs_info->fs_devices,
5995                                                 devid, uuid);
5996                         if (!map->stripes[i].dev) {
5997                                 free_extent_map(em);
5998                                 return -EIO;
5999                         }
6000                 }
6001                 map->stripes[i].dev->in_fs_metadata = 1;
6002         }
6003
6004         write_lock(&map_tree->map_tree.lock);
6005         ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6006         write_unlock(&map_tree->map_tree.lock);
6007         BUG_ON(ret); /* Tree corruption */
6008         free_extent_map(em);
6009
6010         return 0;
6011 }
6012
6013 static void fill_device_from_item(struct extent_buffer *leaf,
6014                                  struct btrfs_dev_item *dev_item,
6015                                  struct btrfs_device *device)
6016 {
6017         unsigned long ptr;
6018
6019         device->devid = btrfs_device_id(leaf, dev_item);
6020         device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6021         device->total_bytes = device->disk_total_bytes;
6022         device->commit_total_bytes = device->disk_total_bytes;
6023         device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6024         device->commit_bytes_used = device->bytes_used;
6025         device->type = btrfs_device_type(leaf, dev_item);
6026         device->io_align = btrfs_device_io_align(leaf, dev_item);
6027         device->io_width = btrfs_device_io_width(leaf, dev_item);
6028         device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6029         WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6030         device->is_tgtdev_for_dev_replace = 0;
6031
6032         ptr = btrfs_device_uuid(dev_item);
6033         read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6034 }
6035
6036 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_root *root,
6037                                                   u8 *fsid)
6038 {
6039         struct btrfs_fs_devices *fs_devices;
6040         int ret;
6041
6042         BUG_ON(!mutex_is_locked(&uuid_mutex));
6043
6044         fs_devices = root->fs_info->fs_devices->seed;
6045         while (fs_devices) {
6046                 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6047                         return fs_devices;
6048
6049                 fs_devices = fs_devices->seed;
6050         }
6051
6052         fs_devices = find_fsid(fsid);
6053         if (!fs_devices) {
6054                 if (!btrfs_test_opt(root, DEGRADED))
6055                         return ERR_PTR(-ENOENT);
6056
6057                 fs_devices = alloc_fs_devices(fsid);
6058                 if (IS_ERR(fs_devices))
6059                         return fs_devices;
6060
6061                 fs_devices->seeding = 1;
6062                 fs_devices->opened = 1;
6063                 return fs_devices;
6064         }
6065
6066         fs_devices = clone_fs_devices(fs_devices);
6067         if (IS_ERR(fs_devices))
6068                 return fs_devices;
6069
6070         ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6071                                    root->fs_info->bdev_holder);
6072         if (ret) {
6073                 free_fs_devices(fs_devices);
6074                 fs_devices = ERR_PTR(ret);
6075                 goto out;
6076         }
6077
6078         if (!fs_devices->seeding) {
6079                 __btrfs_close_devices(fs_devices);
6080                 free_fs_devices(fs_devices);
6081                 fs_devices = ERR_PTR(-EINVAL);
6082                 goto out;
6083         }
6084
6085         fs_devices->seed = root->fs_info->fs_devices->seed;
6086         root->fs_info->fs_devices->seed = fs_devices;
6087 out:
6088         return fs_devices;
6089 }
6090
6091 static int read_one_dev(struct btrfs_root *root,
6092                         struct extent_buffer *leaf,
6093                         struct btrfs_dev_item *dev_item)
6094 {
6095         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6096         struct btrfs_device *device;
6097         u64 devid;
6098         int ret;
6099         u8 fs_uuid[BTRFS_UUID_SIZE];
6100         u8 dev_uuid[BTRFS_UUID_SIZE];
6101
6102         devid = btrfs_device_id(leaf, dev_item);
6103         read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6104                            BTRFS_UUID_SIZE);
6105         read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6106                            BTRFS_UUID_SIZE);
6107
6108         if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
6109                 fs_devices = open_seed_devices(root, fs_uuid);
6110                 if (IS_ERR(fs_devices))
6111                         return PTR_ERR(fs_devices);
6112         }
6113
6114         device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
6115         if (!device) {
6116                 if (!btrfs_test_opt(root, DEGRADED))
6117                         return -EIO;
6118
6119                 btrfs_warn(root->fs_info, "devid %llu missing", devid);
6120                 device = add_missing_dev(root, fs_devices, devid, dev_uuid);
6121                 if (!device)
6122                         return -ENOMEM;
6123         } else {
6124                 if (!device->bdev && !btrfs_test_opt(root, DEGRADED))
6125                         return -EIO;
6126
6127                 if(!device->bdev && !device->missing) {
6128                         /*
6129                          * this happens when a device that was properly setup
6130                          * in the device info lists suddenly goes bad.
6131                          * device->bdev is NULL, and so we have to set
6132                          * device->missing to one here
6133                          */
6134                         device->fs_devices->missing_devices++;
6135                         device->missing = 1;
6136                 }
6137
6138                 /* Move the device to its own fs_devices */
6139                 if (device->fs_devices != fs_devices) {
6140                         ASSERT(device->missing);
6141
6142                         list_move(&device->dev_list, &fs_devices->devices);
6143                         device->fs_devices->num_devices--;
6144                         fs_devices->num_devices++;
6145
6146                         device->fs_devices->missing_devices--;
6147                         fs_devices->missing_devices++;
6148
6149                         device->fs_devices = fs_devices;
6150                 }
6151         }
6152
6153         if (device->fs_devices != root->fs_info->fs_devices) {
6154                 BUG_ON(device->writeable);
6155                 if (device->generation !=
6156                     btrfs_device_generation(leaf, dev_item))
6157                         return -EINVAL;
6158         }
6159
6160         fill_device_from_item(leaf, dev_item, device);
6161         device->in_fs_metadata = 1;
6162         if (device->writeable && !device->is_tgtdev_for_dev_replace) {
6163                 device->fs_devices->total_rw_bytes += device->total_bytes;
6164                 spin_lock(&root->fs_info->free_chunk_lock);
6165                 root->fs_info->free_chunk_space += device->total_bytes -
6166                         device->bytes_used;
6167                 spin_unlock(&root->fs_info->free_chunk_lock);
6168         }
6169         ret = 0;
6170         return ret;
6171 }
6172
6173 int btrfs_read_sys_array(struct btrfs_root *root)
6174 {
6175         struct btrfs_super_block *super_copy = root->fs_info->super_copy;
6176         struct extent_buffer *sb;
6177         struct btrfs_disk_key *disk_key;
6178         struct btrfs_chunk *chunk;
6179         u8 *ptr;
6180         unsigned long sb_ptr;
6181         int ret = 0;
6182         u32 num_stripes;
6183         u32 array_size;
6184         u32 len = 0;
6185         u32 cur;
6186         struct btrfs_key key;
6187
6188         sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
6189                                           BTRFS_SUPER_INFO_SIZE);
6190         if (!sb)
6191                 return -ENOMEM;
6192         btrfs_set_buffer_uptodate(sb);
6193         btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6194         /*
6195          * The sb extent buffer is artifical and just used to read the system array.
6196          * btrfs_set_buffer_uptodate() call does not properly mark all it's
6197          * pages up-to-date when the page is larger: extent does not cover the
6198          * whole page and consequently check_page_uptodate does not find all
6199          * the page's extents up-to-date (the hole beyond sb),
6200          * write_extent_buffer then triggers a WARN_ON.
6201          *
6202          * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6203          * but sb spans only this function. Add an explicit SetPageUptodate call
6204          * to silence the warning eg. on PowerPC 64.
6205          */
6206         if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
6207                 SetPageUptodate(sb->pages[0]);
6208
6209         write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6210         array_size = btrfs_super_sys_array_size(super_copy);
6211
6212         ptr = super_copy->sys_chunk_array;
6213         sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
6214         cur = 0;
6215
6216         while (cur < array_size) {
6217                 disk_key = (struct btrfs_disk_key *)ptr;
6218                 btrfs_disk_key_to_cpu(&key, disk_key);
6219
6220                 len = sizeof(*disk_key); ptr += len;
6221                 sb_ptr += len;
6222                 cur += len;
6223
6224                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6225                         chunk = (struct btrfs_chunk *)sb_ptr;
6226                         ret = read_one_chunk(root, &key, sb, chunk);
6227                         if (ret)
6228                                 break;
6229                         num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6230                         len = btrfs_chunk_item_size(num_stripes);
6231                 } else {
6232                         ret = -EIO;
6233                         break;
6234                 }
6235                 ptr += len;
6236                 sb_ptr += len;
6237                 cur += len;
6238         }
6239         free_extent_buffer(sb);
6240         return ret;
6241 }
6242
6243 int btrfs_read_chunk_tree(struct btrfs_root *root)
6244 {
6245         struct btrfs_path *path;
6246         struct extent_buffer *leaf;
6247         struct btrfs_key key;
6248         struct btrfs_key found_key;
6249         int ret;
6250         int slot;
6251
6252         root = root->fs_info->chunk_root;
6253
6254         path = btrfs_alloc_path();
6255         if (!path)
6256                 return -ENOMEM;
6257
6258         mutex_lock(&uuid_mutex);
6259         lock_chunks(root);
6260
6261         /*
6262          * Read all device items, and then all the chunk items. All
6263          * device items are found before any chunk item (their object id
6264          * is smaller than the lowest possible object id for a chunk
6265          * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6266          */
6267         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6268         key.offset = 0;
6269         key.type = 0;
6270         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6271         if (ret < 0)
6272                 goto error;
6273         while (1) {
6274                 leaf = path->nodes[0];
6275                 slot = path->slots[0];
6276                 if (slot >= btrfs_header_nritems(leaf)) {
6277                         ret = btrfs_next_leaf(root, path);
6278                         if (ret == 0)
6279                                 continue;
6280                         if (ret < 0)
6281                                 goto error;
6282                         break;
6283                 }
6284                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6285                 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6286                         struct btrfs_dev_item *dev_item;
6287                         dev_item = btrfs_item_ptr(leaf, slot,
6288                                                   struct btrfs_dev_item);
6289                         ret = read_one_dev(root, leaf, dev_item);
6290                         if (ret)
6291                                 goto error;
6292                 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6293                         struct btrfs_chunk *chunk;
6294                         chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6295                         ret = read_one_chunk(root, &found_key, leaf, chunk);
6296                         if (ret)
6297                                 goto error;
6298                 }
6299                 path->slots[0]++;
6300         }
6301         ret = 0;
6302 error:
6303         unlock_chunks(root);
6304         mutex_unlock(&uuid_mutex);
6305
6306         btrfs_free_path(path);
6307         return ret;
6308 }
6309
6310 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6311 {
6312         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6313         struct btrfs_device *device;
6314
6315         while (fs_devices) {
6316                 mutex_lock(&fs_devices->device_list_mutex);
6317                 list_for_each_entry(device, &fs_devices->devices, dev_list)
6318                         device->dev_root = fs_info->dev_root;
6319                 mutex_unlock(&fs_devices->device_list_mutex);
6320
6321                 fs_devices = fs_devices->seed;
6322         }
6323 }
6324
6325 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6326 {
6327         int i;
6328
6329         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6330                 btrfs_dev_stat_reset(dev, i);
6331 }
6332
6333 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6334 {
6335         struct btrfs_key key;
6336         struct btrfs_key found_key;
6337         struct btrfs_root *dev_root = fs_info->dev_root;
6338         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6339         struct extent_buffer *eb;
6340         int slot;
6341         int ret = 0;
6342         struct btrfs_device *device;
6343         struct btrfs_path *path = NULL;
6344         int i;
6345
6346         path = btrfs_alloc_path();
6347         if (!path) {
6348                 ret = -ENOMEM;
6349                 goto out;
6350         }
6351
6352         mutex_lock(&fs_devices->device_list_mutex);
6353         list_for_each_entry(device, &fs_devices->devices, dev_list) {
6354                 int item_size;
6355                 struct btrfs_dev_stats_item *ptr;
6356
6357                 key.objectid = 0;
6358                 key.type = BTRFS_DEV_STATS_KEY;
6359                 key.offset = device->devid;
6360                 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6361                 if (ret) {
6362                         __btrfs_reset_dev_stats(device);
6363                         device->dev_stats_valid = 1;
6364                         btrfs_release_path(path);
6365                         continue;
6366                 }
6367                 slot = path->slots[0];
6368                 eb = path->nodes[0];
6369                 btrfs_item_key_to_cpu(eb, &found_key, slot);
6370                 item_size = btrfs_item_size_nr(eb, slot);
6371
6372                 ptr = btrfs_item_ptr(eb, slot,
6373                                      struct btrfs_dev_stats_item);
6374
6375                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6376                         if (item_size >= (1 + i) * sizeof(__le64))
6377                                 btrfs_dev_stat_set(device, i,
6378                                         btrfs_dev_stats_value(eb, ptr, i));
6379                         else
6380                                 btrfs_dev_stat_reset(device, i);
6381                 }
6382
6383                 device->dev_stats_valid = 1;
6384                 btrfs_dev_stat_print_on_load(device);
6385                 btrfs_release_path(path);
6386         }
6387         mutex_unlock(&fs_devices->device_list_mutex);
6388
6389 out:
6390         btrfs_free_path(path);
6391         return ret < 0 ? ret : 0;
6392 }
6393
6394 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6395                                 struct btrfs_root *dev_root,
6396                                 struct btrfs_device *device)
6397 {
6398         struct btrfs_path *path;
6399         struct btrfs_key key;
6400         struct extent_buffer *eb;
6401         struct btrfs_dev_stats_item *ptr;
6402         int ret;
6403         int i;
6404
6405         key.objectid = 0;
6406         key.type = BTRFS_DEV_STATS_KEY;
6407         key.offset = device->devid;
6408
6409         path = btrfs_alloc_path();
6410         BUG_ON(!path);
6411         ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6412         if (ret < 0) {
6413                 printk_in_rcu(KERN_WARNING "BTRFS: "
6414                         "error %d while searching for dev_stats item for device %s!\n",
6415                               ret, rcu_str_deref(device->name));
6416                 goto out;
6417         }
6418
6419         if (ret == 0 &&
6420             btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6421                 /* need to delete old one and insert a new one */
6422                 ret = btrfs_del_item(trans, dev_root, path);
6423                 if (ret != 0) {
6424                         printk_in_rcu(KERN_WARNING "BTRFS: "
6425                                 "delete too small dev_stats item for device %s failed %d!\n",
6426                                       rcu_str_deref(device->name), ret);
6427                         goto out;
6428                 }
6429                 ret = 1;
6430         }
6431
6432         if (ret == 1) {
6433                 /* need to insert a new item */
6434                 btrfs_release_path(path);
6435                 ret = btrfs_insert_empty_item(trans, dev_root, path,
6436                                               &key, sizeof(*ptr));
6437                 if (ret < 0) {
6438                         printk_in_rcu(KERN_WARNING "BTRFS: "
6439                                           "insert dev_stats item for device %s failed %d!\n",
6440                                       rcu_str_deref(device->name), ret);
6441                         goto out;
6442                 }
6443         }
6444
6445         eb = path->nodes[0];
6446         ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6447         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6448                 btrfs_set_dev_stats_value(eb, ptr, i,
6449                                           btrfs_dev_stat_read(device, i));
6450         btrfs_mark_buffer_dirty(eb);
6451
6452 out:
6453         btrfs_free_path(path);
6454         return ret;
6455 }
6456
6457 /*
6458  * called from commit_transaction. Writes all changed device stats to disk.
6459  */
6460 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
6461                         struct btrfs_fs_info *fs_info)
6462 {
6463         struct btrfs_root *dev_root = fs_info->dev_root;
6464         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6465         struct btrfs_device *device;
6466         int stats_cnt;
6467         int ret = 0;
6468
6469         mutex_lock(&fs_devices->device_list_mutex);
6470         list_for_each_entry(device, &fs_devices->devices, dev_list) {
6471                 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
6472                         continue;
6473
6474                 stats_cnt = atomic_read(&device->dev_stats_ccnt);
6475                 ret = update_dev_stat_item(trans, dev_root, device);
6476                 if (!ret)
6477                         atomic_sub(stats_cnt, &device->dev_stats_ccnt);
6478         }
6479         mutex_unlock(&fs_devices->device_list_mutex);
6480
6481         return ret;
6482 }
6483
6484 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
6485 {
6486         btrfs_dev_stat_inc(dev, index);
6487         btrfs_dev_stat_print_on_error(dev);
6488 }
6489
6490 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
6491 {
6492         if (!dev->dev_stats_valid)
6493                 return;
6494         printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
6495                            "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6496                            rcu_str_deref(dev->name),
6497                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6498                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6499                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6500                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6501                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6502 }
6503
6504 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
6505 {
6506         int i;
6507
6508         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6509                 if (btrfs_dev_stat_read(dev, i) != 0)
6510                         break;
6511         if (i == BTRFS_DEV_STAT_VALUES_MAX)
6512                 return; /* all values == 0, suppress message */
6513
6514         printk_in_rcu(KERN_INFO "BTRFS: "
6515                    "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6516                rcu_str_deref(dev->name),
6517                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6518                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6519                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6520                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6521                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6522 }
6523
6524 int btrfs_get_dev_stats(struct btrfs_root *root,
6525                         struct btrfs_ioctl_get_dev_stats *stats)
6526 {
6527         struct btrfs_device *dev;
6528         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6529         int i;
6530
6531         mutex_lock(&fs_devices->device_list_mutex);
6532         dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
6533         mutex_unlock(&fs_devices->device_list_mutex);
6534
6535         if (!dev) {
6536                 btrfs_warn(root->fs_info, "get dev_stats failed, device not found");
6537                 return -ENODEV;
6538         } else if (!dev->dev_stats_valid) {
6539                 btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid");
6540                 return -ENODEV;
6541         } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
6542                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6543                         if (stats->nr_items > i)
6544                                 stats->values[i] =
6545                                         btrfs_dev_stat_read_and_reset(dev, i);
6546                         else
6547                                 btrfs_dev_stat_reset(dev, i);
6548                 }
6549         } else {
6550                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6551                         if (stats->nr_items > i)
6552                                 stats->values[i] = btrfs_dev_stat_read(dev, i);
6553         }
6554         if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
6555                 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
6556         return 0;
6557 }
6558
6559 int btrfs_scratch_superblock(struct btrfs_device *device)
6560 {
6561         struct buffer_head *bh;
6562         struct btrfs_super_block *disk_super;
6563
6564         bh = btrfs_read_dev_super(device->bdev);
6565         if (!bh)
6566                 return -EINVAL;
6567         disk_super = (struct btrfs_super_block *)bh->b_data;
6568
6569         memset(&disk_super->magic, 0, sizeof(disk_super->magic));
6570         set_buffer_dirty(bh);
6571         sync_dirty_buffer(bh);
6572         brelse(bh);
6573
6574         return 0;
6575 }
6576
6577 /*
6578  * Update the size of all devices, which is used for writing out the
6579  * super blocks.
6580  */
6581 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
6582 {
6583         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6584         struct btrfs_device *curr, *next;
6585
6586         if (list_empty(&fs_devices->resized_devices))
6587                 return;
6588
6589         mutex_lock(&fs_devices->device_list_mutex);
6590         lock_chunks(fs_info->dev_root);
6591         list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
6592                                  resized_list) {
6593                 list_del_init(&curr->resized_list);
6594                 curr->commit_total_bytes = curr->disk_total_bytes;
6595         }
6596         unlock_chunks(fs_info->dev_root);
6597         mutex_unlock(&fs_devices->device_list_mutex);
6598 }
6599
6600 /* Must be invoked during the transaction commit */
6601 void btrfs_update_commit_device_bytes_used(struct btrfs_root *root,
6602                                         struct btrfs_transaction *transaction)
6603 {
6604         struct extent_map *em;
6605         struct map_lookup *map;
6606         struct btrfs_device *dev;
6607         int i;
6608
6609         if (list_empty(&transaction->pending_chunks))
6610                 return;
6611
6612         /* In order to kick the device replace finish process */
6613         lock_chunks(root);
6614         list_for_each_entry(em, &transaction->pending_chunks, list) {
6615                 map = (struct map_lookup *)em->bdev;
6616
6617                 for (i = 0; i < map->num_stripes; i++) {
6618                         dev = map->stripes[i].dev;
6619                         dev->commit_bytes_used = dev->bytes_used;
6620                 }
6621         }
6622         unlock_chunks(root);
6623 }