Merge branch 'cleanup/messages' of git://git.kernel.org/pub/scm/linux/kernel/git...
[cascardo/linux.git] / fs / btrfs / volumes.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/random.h>
24 #include <linux/iocontext.h>
25 #include <linux/capability.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <linux/raid/pq.h>
29 #include <linux/semaphore.h>
30 #include <asm/div64.h>
31 #include "ctree.h"
32 #include "extent_map.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "raid56.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
41 #include "math.h"
42 #include "dev-replace.h"
43 #include "sysfs.h"
44
45 static int init_first_rw_device(struct btrfs_trans_handle *trans,
46                                 struct btrfs_root *root,
47                                 struct btrfs_device *device);
48 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
49 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
50 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
51 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
52
53 DEFINE_MUTEX(uuid_mutex);
54 static LIST_HEAD(fs_uuids);
55 struct list_head *btrfs_get_fs_uuids(void)
56 {
57         return &fs_uuids;
58 }
59
60 static struct btrfs_fs_devices *__alloc_fs_devices(void)
61 {
62         struct btrfs_fs_devices *fs_devs;
63
64         fs_devs = kzalloc(sizeof(*fs_devs), GFP_NOFS);
65         if (!fs_devs)
66                 return ERR_PTR(-ENOMEM);
67
68         mutex_init(&fs_devs->device_list_mutex);
69
70         INIT_LIST_HEAD(&fs_devs->devices);
71         INIT_LIST_HEAD(&fs_devs->resized_devices);
72         INIT_LIST_HEAD(&fs_devs->alloc_list);
73         INIT_LIST_HEAD(&fs_devs->list);
74
75         return fs_devs;
76 }
77
78 /**
79  * alloc_fs_devices - allocate struct btrfs_fs_devices
80  * @fsid:       a pointer to UUID for this FS.  If NULL a new UUID is
81  *              generated.
82  *
83  * Return: a pointer to a new &struct btrfs_fs_devices on success;
84  * ERR_PTR() on error.  Returned struct is not linked onto any lists and
85  * can be destroyed with kfree() right away.
86  */
87 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
88 {
89         struct btrfs_fs_devices *fs_devs;
90
91         fs_devs = __alloc_fs_devices();
92         if (IS_ERR(fs_devs))
93                 return fs_devs;
94
95         if (fsid)
96                 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
97         else
98                 generate_random_uuid(fs_devs->fsid);
99
100         return fs_devs;
101 }
102
103 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
104 {
105         struct btrfs_device *device;
106         WARN_ON(fs_devices->opened);
107         while (!list_empty(&fs_devices->devices)) {
108                 device = list_entry(fs_devices->devices.next,
109                                     struct btrfs_device, dev_list);
110                 list_del(&device->dev_list);
111                 rcu_string_free(device->name);
112                 kfree(device);
113         }
114         kfree(fs_devices);
115 }
116
117 static void btrfs_kobject_uevent(struct block_device *bdev,
118                                  enum kobject_action action)
119 {
120         int ret;
121
122         ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
123         if (ret)
124                 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
125                         action,
126                         kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
127                         &disk_to_dev(bdev->bd_disk)->kobj);
128 }
129
130 void btrfs_cleanup_fs_uuids(void)
131 {
132         struct btrfs_fs_devices *fs_devices;
133
134         while (!list_empty(&fs_uuids)) {
135                 fs_devices = list_entry(fs_uuids.next,
136                                         struct btrfs_fs_devices, list);
137                 list_del(&fs_devices->list);
138                 free_fs_devices(fs_devices);
139         }
140 }
141
142 static struct btrfs_device *__alloc_device(void)
143 {
144         struct btrfs_device *dev;
145
146         dev = kzalloc(sizeof(*dev), GFP_NOFS);
147         if (!dev)
148                 return ERR_PTR(-ENOMEM);
149
150         INIT_LIST_HEAD(&dev->dev_list);
151         INIT_LIST_HEAD(&dev->dev_alloc_list);
152         INIT_LIST_HEAD(&dev->resized_list);
153
154         spin_lock_init(&dev->io_lock);
155
156         spin_lock_init(&dev->reada_lock);
157         atomic_set(&dev->reada_in_flight, 0);
158         atomic_set(&dev->dev_stats_ccnt, 0);
159         INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_WAIT);
160         INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_WAIT);
161
162         return dev;
163 }
164
165 static noinline struct btrfs_device *__find_device(struct list_head *head,
166                                                    u64 devid, u8 *uuid)
167 {
168         struct btrfs_device *dev;
169
170         list_for_each_entry(dev, head, dev_list) {
171                 if (dev->devid == devid &&
172                     (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
173                         return dev;
174                 }
175         }
176         return NULL;
177 }
178
179 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
180 {
181         struct btrfs_fs_devices *fs_devices;
182
183         list_for_each_entry(fs_devices, &fs_uuids, list) {
184                 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
185                         return fs_devices;
186         }
187         return NULL;
188 }
189
190 static int
191 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
192                       int flush, struct block_device **bdev,
193                       struct buffer_head **bh)
194 {
195         int ret;
196
197         *bdev = blkdev_get_by_path(device_path, flags, holder);
198
199         if (IS_ERR(*bdev)) {
200                 ret = PTR_ERR(*bdev);
201                 printk(KERN_INFO "BTRFS: open %s failed\n", device_path);
202                 goto error;
203         }
204
205         if (flush)
206                 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
207         ret = set_blocksize(*bdev, 4096);
208         if (ret) {
209                 blkdev_put(*bdev, flags);
210                 goto error;
211         }
212         invalidate_bdev(*bdev);
213         *bh = btrfs_read_dev_super(*bdev);
214         if (!*bh) {
215                 ret = -EINVAL;
216                 blkdev_put(*bdev, flags);
217                 goto error;
218         }
219
220         return 0;
221
222 error:
223         *bdev = NULL;
224         *bh = NULL;
225         return ret;
226 }
227
228 static void requeue_list(struct btrfs_pending_bios *pending_bios,
229                         struct bio *head, struct bio *tail)
230 {
231
232         struct bio *old_head;
233
234         old_head = pending_bios->head;
235         pending_bios->head = head;
236         if (pending_bios->tail)
237                 tail->bi_next = old_head;
238         else
239                 pending_bios->tail = tail;
240 }
241
242 /*
243  * we try to collect pending bios for a device so we don't get a large
244  * number of procs sending bios down to the same device.  This greatly
245  * improves the schedulers ability to collect and merge the bios.
246  *
247  * But, it also turns into a long list of bios to process and that is sure
248  * to eventually make the worker thread block.  The solution here is to
249  * make some progress and then put this work struct back at the end of
250  * the list if the block device is congested.  This way, multiple devices
251  * can make progress from a single worker thread.
252  */
253 static noinline void run_scheduled_bios(struct btrfs_device *device)
254 {
255         struct bio *pending;
256         struct backing_dev_info *bdi;
257         struct btrfs_fs_info *fs_info;
258         struct btrfs_pending_bios *pending_bios;
259         struct bio *tail;
260         struct bio *cur;
261         int again = 0;
262         unsigned long num_run;
263         unsigned long batch_run = 0;
264         unsigned long limit;
265         unsigned long last_waited = 0;
266         int force_reg = 0;
267         int sync_pending = 0;
268         struct blk_plug plug;
269
270         /*
271          * this function runs all the bios we've collected for
272          * a particular device.  We don't want to wander off to
273          * another device without first sending all of these down.
274          * So, setup a plug here and finish it off before we return
275          */
276         blk_start_plug(&plug);
277
278         bdi = blk_get_backing_dev_info(device->bdev);
279         fs_info = device->dev_root->fs_info;
280         limit = btrfs_async_submit_limit(fs_info);
281         limit = limit * 2 / 3;
282
283 loop:
284         spin_lock(&device->io_lock);
285
286 loop_lock:
287         num_run = 0;
288
289         /* take all the bios off the list at once and process them
290          * later on (without the lock held).  But, remember the
291          * tail and other pointers so the bios can be properly reinserted
292          * into the list if we hit congestion
293          */
294         if (!force_reg && device->pending_sync_bios.head) {
295                 pending_bios = &device->pending_sync_bios;
296                 force_reg = 1;
297         } else {
298                 pending_bios = &device->pending_bios;
299                 force_reg = 0;
300         }
301
302         pending = pending_bios->head;
303         tail = pending_bios->tail;
304         WARN_ON(pending && !tail);
305
306         /*
307          * if pending was null this time around, no bios need processing
308          * at all and we can stop.  Otherwise it'll loop back up again
309          * and do an additional check so no bios are missed.
310          *
311          * device->running_pending is used to synchronize with the
312          * schedule_bio code.
313          */
314         if (device->pending_sync_bios.head == NULL &&
315             device->pending_bios.head == NULL) {
316                 again = 0;
317                 device->running_pending = 0;
318         } else {
319                 again = 1;
320                 device->running_pending = 1;
321         }
322
323         pending_bios->head = NULL;
324         pending_bios->tail = NULL;
325
326         spin_unlock(&device->io_lock);
327
328         while (pending) {
329
330                 rmb();
331                 /* we want to work on both lists, but do more bios on the
332                  * sync list than the regular list
333                  */
334                 if ((num_run > 32 &&
335                     pending_bios != &device->pending_sync_bios &&
336                     device->pending_sync_bios.head) ||
337                    (num_run > 64 && pending_bios == &device->pending_sync_bios &&
338                     device->pending_bios.head)) {
339                         spin_lock(&device->io_lock);
340                         requeue_list(pending_bios, pending, tail);
341                         goto loop_lock;
342                 }
343
344                 cur = pending;
345                 pending = pending->bi_next;
346                 cur->bi_next = NULL;
347
348                 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
349                     waitqueue_active(&fs_info->async_submit_wait))
350                         wake_up(&fs_info->async_submit_wait);
351
352                 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
353
354                 /*
355                  * if we're doing the sync list, record that our
356                  * plug has some sync requests on it
357                  *
358                  * If we're doing the regular list and there are
359                  * sync requests sitting around, unplug before
360                  * we add more
361                  */
362                 if (pending_bios == &device->pending_sync_bios) {
363                         sync_pending = 1;
364                 } else if (sync_pending) {
365                         blk_finish_plug(&plug);
366                         blk_start_plug(&plug);
367                         sync_pending = 0;
368                 }
369
370                 btrfsic_submit_bio(cur->bi_rw, cur);
371                 num_run++;
372                 batch_run++;
373
374                 cond_resched();
375
376                 /*
377                  * we made progress, there is more work to do and the bdi
378                  * is now congested.  Back off and let other work structs
379                  * run instead
380                  */
381                 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
382                     fs_info->fs_devices->open_devices > 1) {
383                         struct io_context *ioc;
384
385                         ioc = current->io_context;
386
387                         /*
388                          * the main goal here is that we don't want to
389                          * block if we're going to be able to submit
390                          * more requests without blocking.
391                          *
392                          * This code does two great things, it pokes into
393                          * the elevator code from a filesystem _and_
394                          * it makes assumptions about how batching works.
395                          */
396                         if (ioc && ioc->nr_batch_requests > 0 &&
397                             time_before(jiffies, ioc->last_waited + HZ/50UL) &&
398                             (last_waited == 0 ||
399                              ioc->last_waited == last_waited)) {
400                                 /*
401                                  * we want to go through our batch of
402                                  * requests and stop.  So, we copy out
403                                  * the ioc->last_waited time and test
404                                  * against it before looping
405                                  */
406                                 last_waited = ioc->last_waited;
407                                 cond_resched();
408                                 continue;
409                         }
410                         spin_lock(&device->io_lock);
411                         requeue_list(pending_bios, pending, tail);
412                         device->running_pending = 1;
413
414                         spin_unlock(&device->io_lock);
415                         btrfs_queue_work(fs_info->submit_workers,
416                                          &device->work);
417                         goto done;
418                 }
419                 /* unplug every 64 requests just for good measure */
420                 if (batch_run % 64 == 0) {
421                         blk_finish_plug(&plug);
422                         blk_start_plug(&plug);
423                         sync_pending = 0;
424                 }
425         }
426
427         cond_resched();
428         if (again)
429                 goto loop;
430
431         spin_lock(&device->io_lock);
432         if (device->pending_bios.head || device->pending_sync_bios.head)
433                 goto loop_lock;
434         spin_unlock(&device->io_lock);
435
436 done:
437         blk_finish_plug(&plug);
438 }
439
440 static void pending_bios_fn(struct btrfs_work *work)
441 {
442         struct btrfs_device *device;
443
444         device = container_of(work, struct btrfs_device, work);
445         run_scheduled_bios(device);
446 }
447
448
449 void btrfs_free_stale_device(struct btrfs_device *cur_dev)
450 {
451         struct btrfs_fs_devices *fs_devs;
452         struct btrfs_device *dev;
453
454         if (!cur_dev->name)
455                 return;
456
457         list_for_each_entry(fs_devs, &fs_uuids, list) {
458                 int del = 1;
459
460                 if (fs_devs->opened)
461                         continue;
462                 if (fs_devs->seeding)
463                         continue;
464
465                 list_for_each_entry(dev, &fs_devs->devices, dev_list) {
466
467                         if (dev == cur_dev)
468                                 continue;
469                         if (!dev->name)
470                                 continue;
471
472                         /*
473                          * Todo: This won't be enough. What if the same device
474                          * comes back (with new uuid and) with its mapper path?
475                          * But for now, this does help as mostly an admin will
476                          * either use mapper or non mapper path throughout.
477                          */
478                         rcu_read_lock();
479                         del = strcmp(rcu_str_deref(dev->name),
480                                                 rcu_str_deref(cur_dev->name));
481                         rcu_read_unlock();
482                         if (!del)
483                                 break;
484                 }
485
486                 if (!del) {
487                         /* delete the stale device */
488                         if (fs_devs->num_devices == 1) {
489                                 btrfs_sysfs_remove_fsid(fs_devs);
490                                 list_del(&fs_devs->list);
491                                 free_fs_devices(fs_devs);
492                         } else {
493                                 fs_devs->num_devices--;
494                                 list_del(&dev->dev_list);
495                                 rcu_string_free(dev->name);
496                                 kfree(dev);
497                         }
498                         break;
499                 }
500         }
501 }
502
503 /*
504  * Add new device to list of registered devices
505  *
506  * Returns:
507  * 1   - first time device is seen
508  * 0   - device already known
509  * < 0 - error
510  */
511 static noinline int device_list_add(const char *path,
512                            struct btrfs_super_block *disk_super,
513                            u64 devid, struct btrfs_fs_devices **fs_devices_ret)
514 {
515         struct btrfs_device *device;
516         struct btrfs_fs_devices *fs_devices;
517         struct rcu_string *name;
518         int ret = 0;
519         u64 found_transid = btrfs_super_generation(disk_super);
520
521         fs_devices = find_fsid(disk_super->fsid);
522         if (!fs_devices) {
523                 fs_devices = alloc_fs_devices(disk_super->fsid);
524                 if (IS_ERR(fs_devices))
525                         return PTR_ERR(fs_devices);
526
527                 list_add(&fs_devices->list, &fs_uuids);
528
529                 device = NULL;
530         } else {
531                 device = __find_device(&fs_devices->devices, devid,
532                                        disk_super->dev_item.uuid);
533         }
534
535         if (!device) {
536                 if (fs_devices->opened)
537                         return -EBUSY;
538
539                 device = btrfs_alloc_device(NULL, &devid,
540                                             disk_super->dev_item.uuid);
541                 if (IS_ERR(device)) {
542                         /* we can safely leave the fs_devices entry around */
543                         return PTR_ERR(device);
544                 }
545
546                 name = rcu_string_strdup(path, GFP_NOFS);
547                 if (!name) {
548                         kfree(device);
549                         return -ENOMEM;
550                 }
551                 rcu_assign_pointer(device->name, name);
552
553                 mutex_lock(&fs_devices->device_list_mutex);
554                 list_add_rcu(&device->dev_list, &fs_devices->devices);
555                 fs_devices->num_devices++;
556                 mutex_unlock(&fs_devices->device_list_mutex);
557
558                 ret = 1;
559                 device->fs_devices = fs_devices;
560         } else if (!device->name || strcmp(device->name->str, path)) {
561                 /*
562                  * When FS is already mounted.
563                  * 1. If you are here and if the device->name is NULL that
564                  *    means this device was missing at time of FS mount.
565                  * 2. If you are here and if the device->name is different
566                  *    from 'path' that means either
567                  *      a. The same device disappeared and reappeared with
568                  *         different name. or
569                  *      b. The missing-disk-which-was-replaced, has
570                  *         reappeared now.
571                  *
572                  * We must allow 1 and 2a above. But 2b would be a spurious
573                  * and unintentional.
574                  *
575                  * Further in case of 1 and 2a above, the disk at 'path'
576                  * would have missed some transaction when it was away and
577                  * in case of 2a the stale bdev has to be updated as well.
578                  * 2b must not be allowed at all time.
579                  */
580
581                 /*
582                  * For now, we do allow update to btrfs_fs_device through the
583                  * btrfs dev scan cli after FS has been mounted.  We're still
584                  * tracking a problem where systems fail mount by subvolume id
585                  * when we reject replacement on a mounted FS.
586                  */
587                 if (!fs_devices->opened && found_transid < device->generation) {
588                         /*
589                          * That is if the FS is _not_ mounted and if you
590                          * are here, that means there is more than one
591                          * disk with same uuid and devid.We keep the one
592                          * with larger generation number or the last-in if
593                          * generation are equal.
594                          */
595                         return -EEXIST;
596                 }
597
598                 name = rcu_string_strdup(path, GFP_NOFS);
599                 if (!name)
600                         return -ENOMEM;
601                 rcu_string_free(device->name);
602                 rcu_assign_pointer(device->name, name);
603                 if (device->missing) {
604                         fs_devices->missing_devices--;
605                         device->missing = 0;
606                 }
607         }
608
609         /*
610          * Unmount does not free the btrfs_device struct but would zero
611          * generation along with most of the other members. So just update
612          * it back. We need it to pick the disk with largest generation
613          * (as above).
614          */
615         if (!fs_devices->opened)
616                 device->generation = found_transid;
617
618         /*
619          * if there is new btrfs on an already registered device,
620          * then remove the stale device entry.
621          */
622         btrfs_free_stale_device(device);
623
624         *fs_devices_ret = fs_devices;
625
626         return ret;
627 }
628
629 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
630 {
631         struct btrfs_fs_devices *fs_devices;
632         struct btrfs_device *device;
633         struct btrfs_device *orig_dev;
634
635         fs_devices = alloc_fs_devices(orig->fsid);
636         if (IS_ERR(fs_devices))
637                 return fs_devices;
638
639         mutex_lock(&orig->device_list_mutex);
640         fs_devices->total_devices = orig->total_devices;
641
642         /* We have held the volume lock, it is safe to get the devices. */
643         list_for_each_entry(orig_dev, &orig->devices, dev_list) {
644                 struct rcu_string *name;
645
646                 device = btrfs_alloc_device(NULL, &orig_dev->devid,
647                                             orig_dev->uuid);
648                 if (IS_ERR(device))
649                         goto error;
650
651                 /*
652                  * This is ok to do without rcu read locked because we hold the
653                  * uuid mutex so nothing we touch in here is going to disappear.
654                  */
655                 if (orig_dev->name) {
656                         name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
657                         if (!name) {
658                                 kfree(device);
659                                 goto error;
660                         }
661                         rcu_assign_pointer(device->name, name);
662                 }
663
664                 list_add(&device->dev_list, &fs_devices->devices);
665                 device->fs_devices = fs_devices;
666                 fs_devices->num_devices++;
667         }
668         mutex_unlock(&orig->device_list_mutex);
669         return fs_devices;
670 error:
671         mutex_unlock(&orig->device_list_mutex);
672         free_fs_devices(fs_devices);
673         return ERR_PTR(-ENOMEM);
674 }
675
676 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
677 {
678         struct btrfs_device *device, *next;
679         struct btrfs_device *latest_dev = NULL;
680
681         mutex_lock(&uuid_mutex);
682 again:
683         /* This is the initialized path, it is safe to release the devices. */
684         list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
685                 if (device->in_fs_metadata) {
686                         if (!device->is_tgtdev_for_dev_replace &&
687                             (!latest_dev ||
688                              device->generation > latest_dev->generation)) {
689                                 latest_dev = device;
690                         }
691                         continue;
692                 }
693
694                 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
695                         /*
696                          * In the first step, keep the device which has
697                          * the correct fsid and the devid that is used
698                          * for the dev_replace procedure.
699                          * In the second step, the dev_replace state is
700                          * read from the device tree and it is known
701                          * whether the procedure is really active or
702                          * not, which means whether this device is
703                          * used or whether it should be removed.
704                          */
705                         if (step == 0 || device->is_tgtdev_for_dev_replace) {
706                                 continue;
707                         }
708                 }
709                 if (device->bdev) {
710                         blkdev_put(device->bdev, device->mode);
711                         device->bdev = NULL;
712                         fs_devices->open_devices--;
713                 }
714                 if (device->writeable) {
715                         list_del_init(&device->dev_alloc_list);
716                         device->writeable = 0;
717                         if (!device->is_tgtdev_for_dev_replace)
718                                 fs_devices->rw_devices--;
719                 }
720                 list_del_init(&device->dev_list);
721                 fs_devices->num_devices--;
722                 rcu_string_free(device->name);
723                 kfree(device);
724         }
725
726         if (fs_devices->seed) {
727                 fs_devices = fs_devices->seed;
728                 goto again;
729         }
730
731         fs_devices->latest_bdev = latest_dev->bdev;
732
733         mutex_unlock(&uuid_mutex);
734 }
735
736 static void __free_device(struct work_struct *work)
737 {
738         struct btrfs_device *device;
739
740         device = container_of(work, struct btrfs_device, rcu_work);
741
742         if (device->bdev)
743                 blkdev_put(device->bdev, device->mode);
744
745         rcu_string_free(device->name);
746         kfree(device);
747 }
748
749 static void free_device(struct rcu_head *head)
750 {
751         struct btrfs_device *device;
752
753         device = container_of(head, struct btrfs_device, rcu);
754
755         INIT_WORK(&device->rcu_work, __free_device);
756         schedule_work(&device->rcu_work);
757 }
758
759 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
760 {
761         struct btrfs_device *device, *tmp;
762
763         if (--fs_devices->opened > 0)
764                 return 0;
765
766         mutex_lock(&fs_devices->device_list_mutex);
767         list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
768                 struct btrfs_device *new_device;
769                 struct rcu_string *name;
770
771                 if (device->bdev)
772                         fs_devices->open_devices--;
773
774                 if (device->writeable &&
775                     device->devid != BTRFS_DEV_REPLACE_DEVID) {
776                         list_del_init(&device->dev_alloc_list);
777                         fs_devices->rw_devices--;
778                 }
779
780                 if (device->missing)
781                         fs_devices->missing_devices--;
782
783                 new_device = btrfs_alloc_device(NULL, &device->devid,
784                                                 device->uuid);
785                 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
786
787                 /* Safe because we are under uuid_mutex */
788                 if (device->name) {
789                         name = rcu_string_strdup(device->name->str, GFP_NOFS);
790                         BUG_ON(!name); /* -ENOMEM */
791                         rcu_assign_pointer(new_device->name, name);
792                 }
793
794                 list_replace_rcu(&device->dev_list, &new_device->dev_list);
795                 new_device->fs_devices = device->fs_devices;
796
797                 call_rcu(&device->rcu, free_device);
798         }
799         mutex_unlock(&fs_devices->device_list_mutex);
800
801         WARN_ON(fs_devices->open_devices);
802         WARN_ON(fs_devices->rw_devices);
803         fs_devices->opened = 0;
804         fs_devices->seeding = 0;
805
806         return 0;
807 }
808
809 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
810 {
811         struct btrfs_fs_devices *seed_devices = NULL;
812         int ret;
813
814         mutex_lock(&uuid_mutex);
815         ret = __btrfs_close_devices(fs_devices);
816         if (!fs_devices->opened) {
817                 seed_devices = fs_devices->seed;
818                 fs_devices->seed = NULL;
819         }
820         mutex_unlock(&uuid_mutex);
821
822         while (seed_devices) {
823                 fs_devices = seed_devices;
824                 seed_devices = fs_devices->seed;
825                 __btrfs_close_devices(fs_devices);
826                 free_fs_devices(fs_devices);
827         }
828         /*
829          * Wait for rcu kworkers under __btrfs_close_devices
830          * to finish all blkdev_puts so device is really
831          * free when umount is done.
832          */
833         rcu_barrier();
834         return ret;
835 }
836
837 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
838                                 fmode_t flags, void *holder)
839 {
840         struct request_queue *q;
841         struct block_device *bdev;
842         struct list_head *head = &fs_devices->devices;
843         struct btrfs_device *device;
844         struct btrfs_device *latest_dev = NULL;
845         struct buffer_head *bh;
846         struct btrfs_super_block *disk_super;
847         u64 devid;
848         int seeding = 1;
849         int ret = 0;
850
851         flags |= FMODE_EXCL;
852
853         list_for_each_entry(device, head, dev_list) {
854                 if (device->bdev)
855                         continue;
856                 if (!device->name)
857                         continue;
858
859                 /* Just open everything we can; ignore failures here */
860                 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
861                                             &bdev, &bh))
862                         continue;
863
864                 disk_super = (struct btrfs_super_block *)bh->b_data;
865                 devid = btrfs_stack_device_id(&disk_super->dev_item);
866                 if (devid != device->devid)
867                         goto error_brelse;
868
869                 if (memcmp(device->uuid, disk_super->dev_item.uuid,
870                            BTRFS_UUID_SIZE))
871                         goto error_brelse;
872
873                 device->generation = btrfs_super_generation(disk_super);
874                 if (!latest_dev ||
875                     device->generation > latest_dev->generation)
876                         latest_dev = device;
877
878                 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
879                         device->writeable = 0;
880                 } else {
881                         device->writeable = !bdev_read_only(bdev);
882                         seeding = 0;
883                 }
884
885                 q = bdev_get_queue(bdev);
886                 if (blk_queue_discard(q))
887                         device->can_discard = 1;
888
889                 device->bdev = bdev;
890                 device->in_fs_metadata = 0;
891                 device->mode = flags;
892
893                 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
894                         fs_devices->rotating = 1;
895
896                 fs_devices->open_devices++;
897                 if (device->writeable &&
898                     device->devid != BTRFS_DEV_REPLACE_DEVID) {
899                         fs_devices->rw_devices++;
900                         list_add(&device->dev_alloc_list,
901                                  &fs_devices->alloc_list);
902                 }
903                 brelse(bh);
904                 continue;
905
906 error_brelse:
907                 brelse(bh);
908                 blkdev_put(bdev, flags);
909                 continue;
910         }
911         if (fs_devices->open_devices == 0) {
912                 ret = -EINVAL;
913                 goto out;
914         }
915         fs_devices->seeding = seeding;
916         fs_devices->opened = 1;
917         fs_devices->latest_bdev = latest_dev->bdev;
918         fs_devices->total_rw_bytes = 0;
919 out:
920         return ret;
921 }
922
923 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
924                        fmode_t flags, void *holder)
925 {
926         int ret;
927
928         mutex_lock(&uuid_mutex);
929         if (fs_devices->opened) {
930                 fs_devices->opened++;
931                 ret = 0;
932         } else {
933                 ret = __btrfs_open_devices(fs_devices, flags, holder);
934         }
935         mutex_unlock(&uuid_mutex);
936         return ret;
937 }
938
939 /*
940  * Look for a btrfs signature on a device. This may be called out of the mount path
941  * and we are not allowed to call set_blocksize during the scan. The superblock
942  * is read via pagecache
943  */
944 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
945                           struct btrfs_fs_devices **fs_devices_ret)
946 {
947         struct btrfs_super_block *disk_super;
948         struct block_device *bdev;
949         struct page *page;
950         void *p;
951         int ret = -EINVAL;
952         u64 devid;
953         u64 transid;
954         u64 total_devices;
955         u64 bytenr;
956         pgoff_t index;
957
958         /*
959          * we would like to check all the supers, but that would make
960          * a btrfs mount succeed after a mkfs from a different FS.
961          * So, we need to add a special mount option to scan for
962          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
963          */
964         bytenr = btrfs_sb_offset(0);
965         flags |= FMODE_EXCL;
966         mutex_lock(&uuid_mutex);
967
968         bdev = blkdev_get_by_path(path, flags, holder);
969
970         if (IS_ERR(bdev)) {
971                 ret = PTR_ERR(bdev);
972                 goto error;
973         }
974
975         /* make sure our super fits in the device */
976         if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode))
977                 goto error_bdev_put;
978
979         /* make sure our super fits in the page */
980         if (sizeof(*disk_super) > PAGE_CACHE_SIZE)
981                 goto error_bdev_put;
982
983         /* make sure our super doesn't straddle pages on disk */
984         index = bytenr >> PAGE_CACHE_SHIFT;
985         if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index)
986                 goto error_bdev_put;
987
988         /* pull in the page with our super */
989         page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
990                                    index, GFP_NOFS);
991
992         if (IS_ERR_OR_NULL(page))
993                 goto error_bdev_put;
994
995         p = kmap(page);
996
997         /* align our pointer to the offset of the super block */
998         disk_super = p + (bytenr & ~PAGE_CACHE_MASK);
999
1000         if (btrfs_super_bytenr(disk_super) != bytenr ||
1001             btrfs_super_magic(disk_super) != BTRFS_MAGIC)
1002                 goto error_unmap;
1003
1004         devid = btrfs_stack_device_id(&disk_super->dev_item);
1005         transid = btrfs_super_generation(disk_super);
1006         total_devices = btrfs_super_num_devices(disk_super);
1007
1008         ret = device_list_add(path, disk_super, devid, fs_devices_ret);
1009         if (ret > 0) {
1010                 if (disk_super->label[0]) {
1011                         if (disk_super->label[BTRFS_LABEL_SIZE - 1])
1012                                 disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0';
1013                         printk(KERN_INFO "BTRFS: device label %s ", disk_super->label);
1014                 } else {
1015                         printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid);
1016                 }
1017
1018                 printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
1019                 ret = 0;
1020         }
1021         if (!ret && fs_devices_ret)
1022                 (*fs_devices_ret)->total_devices = total_devices;
1023
1024 error_unmap:
1025         kunmap(page);
1026         page_cache_release(page);
1027
1028 error_bdev_put:
1029         blkdev_put(bdev, flags);
1030 error:
1031         mutex_unlock(&uuid_mutex);
1032         return ret;
1033 }
1034
1035 /* helper to account the used device space in the range */
1036 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1037                                    u64 end, u64 *length)
1038 {
1039         struct btrfs_key key;
1040         struct btrfs_root *root = device->dev_root;
1041         struct btrfs_dev_extent *dev_extent;
1042         struct btrfs_path *path;
1043         u64 extent_end;
1044         int ret;
1045         int slot;
1046         struct extent_buffer *l;
1047
1048         *length = 0;
1049
1050         if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
1051                 return 0;
1052
1053         path = btrfs_alloc_path();
1054         if (!path)
1055                 return -ENOMEM;
1056         path->reada = 2;
1057
1058         key.objectid = device->devid;
1059         key.offset = start;
1060         key.type = BTRFS_DEV_EXTENT_KEY;
1061
1062         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1063         if (ret < 0)
1064                 goto out;
1065         if (ret > 0) {
1066                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1067                 if (ret < 0)
1068                         goto out;
1069         }
1070
1071         while (1) {
1072                 l = path->nodes[0];
1073                 slot = path->slots[0];
1074                 if (slot >= btrfs_header_nritems(l)) {
1075                         ret = btrfs_next_leaf(root, path);
1076                         if (ret == 0)
1077                                 continue;
1078                         if (ret < 0)
1079                                 goto out;
1080
1081                         break;
1082                 }
1083                 btrfs_item_key_to_cpu(l, &key, slot);
1084
1085                 if (key.objectid < device->devid)
1086                         goto next;
1087
1088                 if (key.objectid > device->devid)
1089                         break;
1090
1091                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1092                         goto next;
1093
1094                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1095                 extent_end = key.offset + btrfs_dev_extent_length(l,
1096                                                                   dev_extent);
1097                 if (key.offset <= start && extent_end > end) {
1098                         *length = end - start + 1;
1099                         break;
1100                 } else if (key.offset <= start && extent_end > start)
1101                         *length += extent_end - start;
1102                 else if (key.offset > start && extent_end <= end)
1103                         *length += extent_end - key.offset;
1104                 else if (key.offset > start && key.offset <= end) {
1105                         *length += end - key.offset + 1;
1106                         break;
1107                 } else if (key.offset > end)
1108                         break;
1109
1110 next:
1111                 path->slots[0]++;
1112         }
1113         ret = 0;
1114 out:
1115         btrfs_free_path(path);
1116         return ret;
1117 }
1118
1119 static int contains_pending_extent(struct btrfs_transaction *transaction,
1120                                    struct btrfs_device *device,
1121                                    u64 *start, u64 len)
1122 {
1123         struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
1124         struct extent_map *em;
1125         struct list_head *search_list = &fs_info->pinned_chunks;
1126         int ret = 0;
1127         u64 physical_start = *start;
1128
1129         if (transaction)
1130                 search_list = &transaction->pending_chunks;
1131 again:
1132         list_for_each_entry(em, search_list, list) {
1133                 struct map_lookup *map;
1134                 int i;
1135
1136                 map = (struct map_lookup *)em->bdev;
1137                 for (i = 0; i < map->num_stripes; i++) {
1138                         u64 end;
1139
1140                         if (map->stripes[i].dev != device)
1141                                 continue;
1142                         if (map->stripes[i].physical >= physical_start + len ||
1143                             map->stripes[i].physical + em->orig_block_len <=
1144                             physical_start)
1145                                 continue;
1146                         /*
1147                          * Make sure that while processing the pinned list we do
1148                          * not override our *start with a lower value, because
1149                          * we can have pinned chunks that fall within this
1150                          * device hole and that have lower physical addresses
1151                          * than the pending chunks we processed before. If we
1152                          * do not take this special care we can end up getting
1153                          * 2 pending chunks that start at the same physical
1154                          * device offsets because the end offset of a pinned
1155                          * chunk can be equal to the start offset of some
1156                          * pending chunk.
1157                          */
1158                         end = map->stripes[i].physical + em->orig_block_len;
1159                         if (end > *start) {
1160                                 *start = end;
1161                                 ret = 1;
1162                         }
1163                 }
1164         }
1165         if (search_list != &fs_info->pinned_chunks) {
1166                 search_list = &fs_info->pinned_chunks;
1167                 goto again;
1168         }
1169
1170         return ret;
1171 }
1172
1173
1174 /*
1175  * find_free_dev_extent_start - find free space in the specified device
1176  * @device:       the device which we search the free space in
1177  * @num_bytes:    the size of the free space that we need
1178  * @search_start: the position from which to begin the search
1179  * @start:        store the start of the free space.
1180  * @len:          the size of the free space. that we find, or the size
1181  *                of the max free space if we don't find suitable free space
1182  *
1183  * this uses a pretty simple search, the expectation is that it is
1184  * called very infrequently and that a given device has a small number
1185  * of extents
1186  *
1187  * @start is used to store the start of the free space if we find. But if we
1188  * don't find suitable free space, it will be used to store the start position
1189  * of the max free space.
1190  *
1191  * @len is used to store the size of the free space that we find.
1192  * But if we don't find suitable free space, it is used to store the size of
1193  * the max free space.
1194  */
1195 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1196                                struct btrfs_device *device, u64 num_bytes,
1197                                u64 search_start, u64 *start, u64 *len)
1198 {
1199         struct btrfs_key key;
1200         struct btrfs_root *root = device->dev_root;
1201         struct btrfs_dev_extent *dev_extent;
1202         struct btrfs_path *path;
1203         u64 hole_size;
1204         u64 max_hole_start;
1205         u64 max_hole_size;
1206         u64 extent_end;
1207         u64 search_end = device->total_bytes;
1208         int ret;
1209         int slot;
1210         struct extent_buffer *l;
1211
1212         path = btrfs_alloc_path();
1213         if (!path)
1214                 return -ENOMEM;
1215
1216         max_hole_start = search_start;
1217         max_hole_size = 0;
1218
1219 again:
1220         if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1221                 ret = -ENOSPC;
1222                 goto out;
1223         }
1224
1225         path->reada = 2;
1226         path->search_commit_root = 1;
1227         path->skip_locking = 1;
1228
1229         key.objectid = device->devid;
1230         key.offset = search_start;
1231         key.type = BTRFS_DEV_EXTENT_KEY;
1232
1233         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1234         if (ret < 0)
1235                 goto out;
1236         if (ret > 0) {
1237                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1238                 if (ret < 0)
1239                         goto out;
1240         }
1241
1242         while (1) {
1243                 l = path->nodes[0];
1244                 slot = path->slots[0];
1245                 if (slot >= btrfs_header_nritems(l)) {
1246                         ret = btrfs_next_leaf(root, path);
1247                         if (ret == 0)
1248                                 continue;
1249                         if (ret < 0)
1250                                 goto out;
1251
1252                         break;
1253                 }
1254                 btrfs_item_key_to_cpu(l, &key, slot);
1255
1256                 if (key.objectid < device->devid)
1257                         goto next;
1258
1259                 if (key.objectid > device->devid)
1260                         break;
1261
1262                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1263                         goto next;
1264
1265                 if (key.offset > search_start) {
1266                         hole_size = key.offset - search_start;
1267
1268                         /*
1269                          * Have to check before we set max_hole_start, otherwise
1270                          * we could end up sending back this offset anyway.
1271                          */
1272                         if (contains_pending_extent(transaction, device,
1273                                                     &search_start,
1274                                                     hole_size)) {
1275                                 if (key.offset >= search_start) {
1276                                         hole_size = key.offset - search_start;
1277                                 } else {
1278                                         WARN_ON_ONCE(1);
1279                                         hole_size = 0;
1280                                 }
1281                         }
1282
1283                         if (hole_size > max_hole_size) {
1284                                 max_hole_start = search_start;
1285                                 max_hole_size = hole_size;
1286                         }
1287
1288                         /*
1289                          * If this free space is greater than which we need,
1290                          * it must be the max free space that we have found
1291                          * until now, so max_hole_start must point to the start
1292                          * of this free space and the length of this free space
1293                          * is stored in max_hole_size. Thus, we return
1294                          * max_hole_start and max_hole_size and go back to the
1295                          * caller.
1296                          */
1297                         if (hole_size >= num_bytes) {
1298                                 ret = 0;
1299                                 goto out;
1300                         }
1301                 }
1302
1303                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1304                 extent_end = key.offset + btrfs_dev_extent_length(l,
1305                                                                   dev_extent);
1306                 if (extent_end > search_start)
1307                         search_start = extent_end;
1308 next:
1309                 path->slots[0]++;
1310                 cond_resched();
1311         }
1312
1313         /*
1314          * At this point, search_start should be the end of
1315          * allocated dev extents, and when shrinking the device,
1316          * search_end may be smaller than search_start.
1317          */
1318         if (search_end > search_start) {
1319                 hole_size = search_end - search_start;
1320
1321                 if (contains_pending_extent(transaction, device, &search_start,
1322                                             hole_size)) {
1323                         btrfs_release_path(path);
1324                         goto again;
1325                 }
1326
1327                 if (hole_size > max_hole_size) {
1328                         max_hole_start = search_start;
1329                         max_hole_size = hole_size;
1330                 }
1331         }
1332
1333         /* See above. */
1334         if (max_hole_size < num_bytes)
1335                 ret = -ENOSPC;
1336         else
1337                 ret = 0;
1338
1339 out:
1340         btrfs_free_path(path);
1341         *start = max_hole_start;
1342         if (len)
1343                 *len = max_hole_size;
1344         return ret;
1345 }
1346
1347 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1348                          struct btrfs_device *device, u64 num_bytes,
1349                          u64 *start, u64 *len)
1350 {
1351         struct btrfs_root *root = device->dev_root;
1352         u64 search_start;
1353
1354         /* FIXME use last free of some kind */
1355
1356         /*
1357          * we don't want to overwrite the superblock on the drive,
1358          * so we make sure to start at an offset of at least 1MB
1359          */
1360         search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
1361         return find_free_dev_extent_start(trans->transaction, device,
1362                                           num_bytes, search_start, start, len);
1363 }
1364
1365 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1366                           struct btrfs_device *device,
1367                           u64 start, u64 *dev_extent_len)
1368 {
1369         int ret;
1370         struct btrfs_path *path;
1371         struct btrfs_root *root = device->dev_root;
1372         struct btrfs_key key;
1373         struct btrfs_key found_key;
1374         struct extent_buffer *leaf = NULL;
1375         struct btrfs_dev_extent *extent = NULL;
1376
1377         path = btrfs_alloc_path();
1378         if (!path)
1379                 return -ENOMEM;
1380
1381         key.objectid = device->devid;
1382         key.offset = start;
1383         key.type = BTRFS_DEV_EXTENT_KEY;
1384 again:
1385         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1386         if (ret > 0) {
1387                 ret = btrfs_previous_item(root, path, key.objectid,
1388                                           BTRFS_DEV_EXTENT_KEY);
1389                 if (ret)
1390                         goto out;
1391                 leaf = path->nodes[0];
1392                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1393                 extent = btrfs_item_ptr(leaf, path->slots[0],
1394                                         struct btrfs_dev_extent);
1395                 BUG_ON(found_key.offset > start || found_key.offset +
1396                        btrfs_dev_extent_length(leaf, extent) < start);
1397                 key = found_key;
1398                 btrfs_release_path(path);
1399                 goto again;
1400         } else if (ret == 0) {
1401                 leaf = path->nodes[0];
1402                 extent = btrfs_item_ptr(leaf, path->slots[0],
1403                                         struct btrfs_dev_extent);
1404         } else {
1405                 btrfs_error(root->fs_info, ret, "Slot search failed");
1406                 goto out;
1407         }
1408
1409         *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1410
1411         ret = btrfs_del_item(trans, root, path);
1412         if (ret) {
1413                 btrfs_error(root->fs_info, ret,
1414                             "Failed to remove dev extent item");
1415         } else {
1416                 trans->transaction->have_free_bgs = 1;
1417         }
1418 out:
1419         btrfs_free_path(path);
1420         return ret;
1421 }
1422
1423 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1424                                   struct btrfs_device *device,
1425                                   u64 chunk_tree, u64 chunk_objectid,
1426                                   u64 chunk_offset, u64 start, u64 num_bytes)
1427 {
1428         int ret;
1429         struct btrfs_path *path;
1430         struct btrfs_root *root = device->dev_root;
1431         struct btrfs_dev_extent *extent;
1432         struct extent_buffer *leaf;
1433         struct btrfs_key key;
1434
1435         WARN_ON(!device->in_fs_metadata);
1436         WARN_ON(device->is_tgtdev_for_dev_replace);
1437         path = btrfs_alloc_path();
1438         if (!path)
1439                 return -ENOMEM;
1440
1441         key.objectid = device->devid;
1442         key.offset = start;
1443         key.type = BTRFS_DEV_EXTENT_KEY;
1444         ret = btrfs_insert_empty_item(trans, root, path, &key,
1445                                       sizeof(*extent));
1446         if (ret)
1447                 goto out;
1448
1449         leaf = path->nodes[0];
1450         extent = btrfs_item_ptr(leaf, path->slots[0],
1451                                 struct btrfs_dev_extent);
1452         btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1453         btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1454         btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1455
1456         write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1457                     btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
1458
1459         btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1460         btrfs_mark_buffer_dirty(leaf);
1461 out:
1462         btrfs_free_path(path);
1463         return ret;
1464 }
1465
1466 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1467 {
1468         struct extent_map_tree *em_tree;
1469         struct extent_map *em;
1470         struct rb_node *n;
1471         u64 ret = 0;
1472
1473         em_tree = &fs_info->mapping_tree.map_tree;
1474         read_lock(&em_tree->lock);
1475         n = rb_last(&em_tree->map);
1476         if (n) {
1477                 em = rb_entry(n, struct extent_map, rb_node);
1478                 ret = em->start + em->len;
1479         }
1480         read_unlock(&em_tree->lock);
1481
1482         return ret;
1483 }
1484
1485 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1486                                     u64 *devid_ret)
1487 {
1488         int ret;
1489         struct btrfs_key key;
1490         struct btrfs_key found_key;
1491         struct btrfs_path *path;
1492
1493         path = btrfs_alloc_path();
1494         if (!path)
1495                 return -ENOMEM;
1496
1497         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1498         key.type = BTRFS_DEV_ITEM_KEY;
1499         key.offset = (u64)-1;
1500
1501         ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1502         if (ret < 0)
1503                 goto error;
1504
1505         BUG_ON(ret == 0); /* Corruption */
1506
1507         ret = btrfs_previous_item(fs_info->chunk_root, path,
1508                                   BTRFS_DEV_ITEMS_OBJECTID,
1509                                   BTRFS_DEV_ITEM_KEY);
1510         if (ret) {
1511                 *devid_ret = 1;
1512         } else {
1513                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1514                                       path->slots[0]);
1515                 *devid_ret = found_key.offset + 1;
1516         }
1517         ret = 0;
1518 error:
1519         btrfs_free_path(path);
1520         return ret;
1521 }
1522
1523 /*
1524  * the device information is stored in the chunk root
1525  * the btrfs_device struct should be fully filled in
1526  */
1527 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1528                             struct btrfs_root *root,
1529                             struct btrfs_device *device)
1530 {
1531         int ret;
1532         struct btrfs_path *path;
1533         struct btrfs_dev_item *dev_item;
1534         struct extent_buffer *leaf;
1535         struct btrfs_key key;
1536         unsigned long ptr;
1537
1538         root = root->fs_info->chunk_root;
1539
1540         path = btrfs_alloc_path();
1541         if (!path)
1542                 return -ENOMEM;
1543
1544         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1545         key.type = BTRFS_DEV_ITEM_KEY;
1546         key.offset = device->devid;
1547
1548         ret = btrfs_insert_empty_item(trans, root, path, &key,
1549                                       sizeof(*dev_item));
1550         if (ret)
1551                 goto out;
1552
1553         leaf = path->nodes[0];
1554         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1555
1556         btrfs_set_device_id(leaf, dev_item, device->devid);
1557         btrfs_set_device_generation(leaf, dev_item, 0);
1558         btrfs_set_device_type(leaf, dev_item, device->type);
1559         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1560         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1561         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1562         btrfs_set_device_total_bytes(leaf, dev_item,
1563                                      btrfs_device_get_disk_total_bytes(device));
1564         btrfs_set_device_bytes_used(leaf, dev_item,
1565                                     btrfs_device_get_bytes_used(device));
1566         btrfs_set_device_group(leaf, dev_item, 0);
1567         btrfs_set_device_seek_speed(leaf, dev_item, 0);
1568         btrfs_set_device_bandwidth(leaf, dev_item, 0);
1569         btrfs_set_device_start_offset(leaf, dev_item, 0);
1570
1571         ptr = btrfs_device_uuid(dev_item);
1572         write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1573         ptr = btrfs_device_fsid(dev_item);
1574         write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1575         btrfs_mark_buffer_dirty(leaf);
1576
1577         ret = 0;
1578 out:
1579         btrfs_free_path(path);
1580         return ret;
1581 }
1582
1583 /*
1584  * Function to update ctime/mtime for a given device path.
1585  * Mainly used for ctime/mtime based probe like libblkid.
1586  */
1587 static void update_dev_time(char *path_name)
1588 {
1589         struct file *filp;
1590
1591         filp = filp_open(path_name, O_RDWR, 0);
1592         if (IS_ERR(filp))
1593                 return;
1594         file_update_time(filp);
1595         filp_close(filp, NULL);
1596         return;
1597 }
1598
1599 static int btrfs_rm_dev_item(struct btrfs_root *root,
1600                              struct btrfs_device *device)
1601 {
1602         int ret;
1603         struct btrfs_path *path;
1604         struct btrfs_key key;
1605         struct btrfs_trans_handle *trans;
1606
1607         root = root->fs_info->chunk_root;
1608
1609         path = btrfs_alloc_path();
1610         if (!path)
1611                 return -ENOMEM;
1612
1613         trans = btrfs_start_transaction(root, 0);
1614         if (IS_ERR(trans)) {
1615                 btrfs_free_path(path);
1616                 return PTR_ERR(trans);
1617         }
1618         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1619         key.type = BTRFS_DEV_ITEM_KEY;
1620         key.offset = device->devid;
1621
1622         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1623         if (ret < 0)
1624                 goto out;
1625
1626         if (ret > 0) {
1627                 ret = -ENOENT;
1628                 goto out;
1629         }
1630
1631         ret = btrfs_del_item(trans, root, path);
1632         if (ret)
1633                 goto out;
1634 out:
1635         btrfs_free_path(path);
1636         btrfs_commit_transaction(trans, root);
1637         return ret;
1638 }
1639
1640 int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1641 {
1642         struct btrfs_device *device;
1643         struct btrfs_device *next_device;
1644         struct block_device *bdev;
1645         struct buffer_head *bh = NULL;
1646         struct btrfs_super_block *disk_super;
1647         struct btrfs_fs_devices *cur_devices;
1648         u64 all_avail;
1649         u64 devid;
1650         u64 num_devices;
1651         u8 *dev_uuid;
1652         unsigned seq;
1653         int ret = 0;
1654         bool clear_super = false;
1655
1656         mutex_lock(&uuid_mutex);
1657
1658         do {
1659                 seq = read_seqbegin(&root->fs_info->profiles_lock);
1660
1661                 all_avail = root->fs_info->avail_data_alloc_bits |
1662                             root->fs_info->avail_system_alloc_bits |
1663                             root->fs_info->avail_metadata_alloc_bits;
1664         } while (read_seqretry(&root->fs_info->profiles_lock, seq));
1665
1666         num_devices = root->fs_info->fs_devices->num_devices;
1667         btrfs_dev_replace_lock(&root->fs_info->dev_replace);
1668         if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1669                 WARN_ON(num_devices < 1);
1670                 num_devices--;
1671         }
1672         btrfs_dev_replace_unlock(&root->fs_info->dev_replace);
1673
1674         if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) {
1675                 ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET;
1676                 goto out;
1677         }
1678
1679         if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) {
1680                 ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET;
1681                 goto out;
1682         }
1683
1684         if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) &&
1685             root->fs_info->fs_devices->rw_devices <= 2) {
1686                 ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET;
1687                 goto out;
1688         }
1689         if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) &&
1690             root->fs_info->fs_devices->rw_devices <= 3) {
1691                 ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET;
1692                 goto out;
1693         }
1694
1695         if (strcmp(device_path, "missing") == 0) {
1696                 struct list_head *devices;
1697                 struct btrfs_device *tmp;
1698
1699                 device = NULL;
1700                 devices = &root->fs_info->fs_devices->devices;
1701                 /*
1702                  * It is safe to read the devices since the volume_mutex
1703                  * is held.
1704                  */
1705                 list_for_each_entry(tmp, devices, dev_list) {
1706                         if (tmp->in_fs_metadata &&
1707                             !tmp->is_tgtdev_for_dev_replace &&
1708                             !tmp->bdev) {
1709                                 device = tmp;
1710                                 break;
1711                         }
1712                 }
1713                 bdev = NULL;
1714                 bh = NULL;
1715                 disk_super = NULL;
1716                 if (!device) {
1717                         ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
1718                         goto out;
1719                 }
1720         } else {
1721                 ret = btrfs_get_bdev_and_sb(device_path,
1722                                             FMODE_WRITE | FMODE_EXCL,
1723                                             root->fs_info->bdev_holder, 0,
1724                                             &bdev, &bh);
1725                 if (ret)
1726                         goto out;
1727                 disk_super = (struct btrfs_super_block *)bh->b_data;
1728                 devid = btrfs_stack_device_id(&disk_super->dev_item);
1729                 dev_uuid = disk_super->dev_item.uuid;
1730                 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1731                                            disk_super->fsid);
1732                 if (!device) {
1733                         ret = -ENOENT;
1734                         goto error_brelse;
1735                 }
1736         }
1737
1738         if (device->is_tgtdev_for_dev_replace) {
1739                 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1740                 goto error_brelse;
1741         }
1742
1743         if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1744                 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1745                 goto error_brelse;
1746         }
1747
1748         if (device->writeable) {
1749                 lock_chunks(root);
1750                 list_del_init(&device->dev_alloc_list);
1751                 device->fs_devices->rw_devices--;
1752                 unlock_chunks(root);
1753                 clear_super = true;
1754         }
1755
1756         mutex_unlock(&uuid_mutex);
1757         ret = btrfs_shrink_device(device, 0);
1758         mutex_lock(&uuid_mutex);
1759         if (ret)
1760                 goto error_undo;
1761
1762         /*
1763          * TODO: the superblock still includes this device in its num_devices
1764          * counter although write_all_supers() is not locked out. This
1765          * could give a filesystem state which requires a degraded mount.
1766          */
1767         ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1768         if (ret)
1769                 goto error_undo;
1770
1771         device->in_fs_metadata = 0;
1772         btrfs_scrub_cancel_dev(root->fs_info, device);
1773
1774         /*
1775          * the device list mutex makes sure that we don't change
1776          * the device list while someone else is writing out all
1777          * the device supers. Whoever is writing all supers, should
1778          * lock the device list mutex before getting the number of
1779          * devices in the super block (super_copy). Conversely,
1780          * whoever updates the number of devices in the super block
1781          * (super_copy) should hold the device list mutex.
1782          */
1783
1784         cur_devices = device->fs_devices;
1785         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1786         list_del_rcu(&device->dev_list);
1787
1788         device->fs_devices->num_devices--;
1789         device->fs_devices->total_devices--;
1790
1791         if (device->missing)
1792                 device->fs_devices->missing_devices--;
1793
1794         next_device = list_entry(root->fs_info->fs_devices->devices.next,
1795                                  struct btrfs_device, dev_list);
1796         if (device->bdev == root->fs_info->sb->s_bdev)
1797                 root->fs_info->sb->s_bdev = next_device->bdev;
1798         if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1799                 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1800
1801         if (device->bdev) {
1802                 device->fs_devices->open_devices--;
1803                 /* remove sysfs entry */
1804                 btrfs_kobj_rm_device(root->fs_info->fs_devices, device);
1805         }
1806
1807         call_rcu(&device->rcu, free_device);
1808
1809         num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1810         btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1811         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1812
1813         if (cur_devices->open_devices == 0) {
1814                 struct btrfs_fs_devices *fs_devices;
1815                 fs_devices = root->fs_info->fs_devices;
1816                 while (fs_devices) {
1817                         if (fs_devices->seed == cur_devices) {
1818                                 fs_devices->seed = cur_devices->seed;
1819                                 break;
1820                         }
1821                         fs_devices = fs_devices->seed;
1822                 }
1823                 cur_devices->seed = NULL;
1824                 __btrfs_close_devices(cur_devices);
1825                 free_fs_devices(cur_devices);
1826         }
1827
1828         root->fs_info->num_tolerated_disk_barrier_failures =
1829                 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1830
1831         /*
1832          * at this point, the device is zero sized.  We want to
1833          * remove it from the devices list and zero out the old super
1834          */
1835         if (clear_super && disk_super) {
1836                 u64 bytenr;
1837                 int i;
1838
1839                 /* make sure this device isn't detected as part of
1840                  * the FS anymore
1841                  */
1842                 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1843                 set_buffer_dirty(bh);
1844                 sync_dirty_buffer(bh);
1845
1846                 /* clear the mirror copies of super block on the disk
1847                  * being removed, 0th copy is been taken care above and
1848                  * the below would take of the rest
1849                  */
1850                 for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1851                         bytenr = btrfs_sb_offset(i);
1852                         if (bytenr + BTRFS_SUPER_INFO_SIZE >=
1853                                         i_size_read(bdev->bd_inode))
1854                                 break;
1855
1856                         brelse(bh);
1857                         bh = __bread(bdev, bytenr / 4096,
1858                                         BTRFS_SUPER_INFO_SIZE);
1859                         if (!bh)
1860                                 continue;
1861
1862                         disk_super = (struct btrfs_super_block *)bh->b_data;
1863
1864                         if (btrfs_super_bytenr(disk_super) != bytenr ||
1865                                 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1866                                 continue;
1867                         }
1868                         memset(&disk_super->magic, 0,
1869                                                 sizeof(disk_super->magic));
1870                         set_buffer_dirty(bh);
1871                         sync_dirty_buffer(bh);
1872                 }
1873         }
1874
1875         ret = 0;
1876
1877         if (bdev) {
1878                 /* Notify udev that device has changed */
1879                 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
1880
1881                 /* Update ctime/mtime for device path for libblkid */
1882                 update_dev_time(device_path);
1883         }
1884
1885 error_brelse:
1886         brelse(bh);
1887         if (bdev)
1888                 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1889 out:
1890         mutex_unlock(&uuid_mutex);
1891         return ret;
1892 error_undo:
1893         if (device->writeable) {
1894                 lock_chunks(root);
1895                 list_add(&device->dev_alloc_list,
1896                          &root->fs_info->fs_devices->alloc_list);
1897                 device->fs_devices->rw_devices++;
1898                 unlock_chunks(root);
1899         }
1900         goto error_brelse;
1901 }
1902
1903 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1904                                         struct btrfs_device *srcdev)
1905 {
1906         struct btrfs_fs_devices *fs_devices;
1907
1908         WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1909
1910         /*
1911          * in case of fs with no seed, srcdev->fs_devices will point
1912          * to fs_devices of fs_info. However when the dev being replaced is
1913          * a seed dev it will point to the seed's local fs_devices. In short
1914          * srcdev will have its correct fs_devices in both the cases.
1915          */
1916         fs_devices = srcdev->fs_devices;
1917
1918         list_del_rcu(&srcdev->dev_list);
1919         list_del_rcu(&srcdev->dev_alloc_list);
1920         fs_devices->num_devices--;
1921         if (srcdev->missing)
1922                 fs_devices->missing_devices--;
1923
1924         if (srcdev->writeable) {
1925                 fs_devices->rw_devices--;
1926                 /* zero out the old super if it is writable */
1927                 btrfs_scratch_superblock(srcdev);
1928         }
1929
1930         if (srcdev->bdev)
1931                 fs_devices->open_devices--;
1932 }
1933
1934 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
1935                                       struct btrfs_device *srcdev)
1936 {
1937         struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
1938
1939         call_rcu(&srcdev->rcu, free_device);
1940
1941         /*
1942          * unless fs_devices is seed fs, num_devices shouldn't go
1943          * zero
1944          */
1945         BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
1946
1947         /* if this is no devs we rather delete the fs_devices */
1948         if (!fs_devices->num_devices) {
1949                 struct btrfs_fs_devices *tmp_fs_devices;
1950
1951                 tmp_fs_devices = fs_info->fs_devices;
1952                 while (tmp_fs_devices) {
1953                         if (tmp_fs_devices->seed == fs_devices) {
1954                                 tmp_fs_devices->seed = fs_devices->seed;
1955                                 break;
1956                         }
1957                         tmp_fs_devices = tmp_fs_devices->seed;
1958                 }
1959                 fs_devices->seed = NULL;
1960                 __btrfs_close_devices(fs_devices);
1961                 free_fs_devices(fs_devices);
1962         }
1963 }
1964
1965 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
1966                                       struct btrfs_device *tgtdev)
1967 {
1968         struct btrfs_device *next_device;
1969
1970         mutex_lock(&uuid_mutex);
1971         WARN_ON(!tgtdev);
1972         mutex_lock(&fs_info->fs_devices->device_list_mutex);
1973
1974         btrfs_kobj_rm_device(fs_info->fs_devices, tgtdev);
1975
1976         if (tgtdev->bdev) {
1977                 btrfs_scratch_superblock(tgtdev);
1978                 fs_info->fs_devices->open_devices--;
1979         }
1980         fs_info->fs_devices->num_devices--;
1981
1982         next_device = list_entry(fs_info->fs_devices->devices.next,
1983                                  struct btrfs_device, dev_list);
1984         if (tgtdev->bdev == fs_info->sb->s_bdev)
1985                 fs_info->sb->s_bdev = next_device->bdev;
1986         if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
1987                 fs_info->fs_devices->latest_bdev = next_device->bdev;
1988         list_del_rcu(&tgtdev->dev_list);
1989
1990         call_rcu(&tgtdev->rcu, free_device);
1991
1992         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1993         mutex_unlock(&uuid_mutex);
1994 }
1995
1996 static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
1997                                      struct btrfs_device **device)
1998 {
1999         int ret = 0;
2000         struct btrfs_super_block *disk_super;
2001         u64 devid;
2002         u8 *dev_uuid;
2003         struct block_device *bdev;
2004         struct buffer_head *bh;
2005
2006         *device = NULL;
2007         ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2008                                     root->fs_info->bdev_holder, 0, &bdev, &bh);
2009         if (ret)
2010                 return ret;
2011         disk_super = (struct btrfs_super_block *)bh->b_data;
2012         devid = btrfs_stack_device_id(&disk_super->dev_item);
2013         dev_uuid = disk_super->dev_item.uuid;
2014         *device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2015                                     disk_super->fsid);
2016         brelse(bh);
2017         if (!*device)
2018                 ret = -ENOENT;
2019         blkdev_put(bdev, FMODE_READ);
2020         return ret;
2021 }
2022
2023 int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
2024                                          char *device_path,
2025                                          struct btrfs_device **device)
2026 {
2027         *device = NULL;
2028         if (strcmp(device_path, "missing") == 0) {
2029                 struct list_head *devices;
2030                 struct btrfs_device *tmp;
2031
2032                 devices = &root->fs_info->fs_devices->devices;
2033                 /*
2034                  * It is safe to read the devices since the volume_mutex
2035                  * is held by the caller.
2036                  */
2037                 list_for_each_entry(tmp, devices, dev_list) {
2038                         if (tmp->in_fs_metadata && !tmp->bdev) {
2039                                 *device = tmp;
2040                                 break;
2041                         }
2042                 }
2043
2044                 if (!*device) {
2045                         btrfs_err(root->fs_info, "no missing device found");
2046                         return -ENOENT;
2047                 }
2048
2049                 return 0;
2050         } else {
2051                 return btrfs_find_device_by_path(root, device_path, device);
2052         }
2053 }
2054
2055 /*
2056  * does all the dirty work required for changing file system's UUID.
2057  */
2058 static int btrfs_prepare_sprout(struct btrfs_root *root)
2059 {
2060         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2061         struct btrfs_fs_devices *old_devices;
2062         struct btrfs_fs_devices *seed_devices;
2063         struct btrfs_super_block *disk_super = root->fs_info->super_copy;
2064         struct btrfs_device *device;
2065         u64 super_flags;
2066
2067         BUG_ON(!mutex_is_locked(&uuid_mutex));
2068         if (!fs_devices->seeding)
2069                 return -EINVAL;
2070
2071         seed_devices = __alloc_fs_devices();
2072         if (IS_ERR(seed_devices))
2073                 return PTR_ERR(seed_devices);
2074
2075         old_devices = clone_fs_devices(fs_devices);
2076         if (IS_ERR(old_devices)) {
2077                 kfree(seed_devices);
2078                 return PTR_ERR(old_devices);
2079         }
2080
2081         list_add(&old_devices->list, &fs_uuids);
2082
2083         memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2084         seed_devices->opened = 1;
2085         INIT_LIST_HEAD(&seed_devices->devices);
2086         INIT_LIST_HEAD(&seed_devices->alloc_list);
2087         mutex_init(&seed_devices->device_list_mutex);
2088
2089         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2090         list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2091                               synchronize_rcu);
2092         list_for_each_entry(device, &seed_devices->devices, dev_list)
2093                 device->fs_devices = seed_devices;
2094
2095         lock_chunks(root);
2096         list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2097         unlock_chunks(root);
2098
2099         fs_devices->seeding = 0;
2100         fs_devices->num_devices = 0;
2101         fs_devices->open_devices = 0;
2102         fs_devices->missing_devices = 0;
2103         fs_devices->rotating = 0;
2104         fs_devices->seed = seed_devices;
2105
2106         generate_random_uuid(fs_devices->fsid);
2107         memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2108         memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2109         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2110
2111         super_flags = btrfs_super_flags(disk_super) &
2112                       ~BTRFS_SUPER_FLAG_SEEDING;
2113         btrfs_set_super_flags(disk_super, super_flags);
2114
2115         return 0;
2116 }
2117
2118 /*
2119  * strore the expected generation for seed devices in device items.
2120  */
2121 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2122                                struct btrfs_root *root)
2123 {
2124         struct btrfs_path *path;
2125         struct extent_buffer *leaf;
2126         struct btrfs_dev_item *dev_item;
2127         struct btrfs_device *device;
2128         struct btrfs_key key;
2129         u8 fs_uuid[BTRFS_UUID_SIZE];
2130         u8 dev_uuid[BTRFS_UUID_SIZE];
2131         u64 devid;
2132         int ret;
2133
2134         path = btrfs_alloc_path();
2135         if (!path)
2136                 return -ENOMEM;
2137
2138         root = root->fs_info->chunk_root;
2139         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2140         key.offset = 0;
2141         key.type = BTRFS_DEV_ITEM_KEY;
2142
2143         while (1) {
2144                 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2145                 if (ret < 0)
2146                         goto error;
2147
2148                 leaf = path->nodes[0];
2149 next_slot:
2150                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2151                         ret = btrfs_next_leaf(root, path);
2152                         if (ret > 0)
2153                                 break;
2154                         if (ret < 0)
2155                                 goto error;
2156                         leaf = path->nodes[0];
2157                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2158                         btrfs_release_path(path);
2159                         continue;
2160                 }
2161
2162                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2163                 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2164                     key.type != BTRFS_DEV_ITEM_KEY)
2165                         break;
2166
2167                 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2168                                           struct btrfs_dev_item);
2169                 devid = btrfs_device_id(leaf, dev_item);
2170                 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2171                                    BTRFS_UUID_SIZE);
2172                 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2173                                    BTRFS_UUID_SIZE);
2174                 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2175                                            fs_uuid);
2176                 BUG_ON(!device); /* Logic error */
2177
2178                 if (device->fs_devices->seeding) {
2179                         btrfs_set_device_generation(leaf, dev_item,
2180                                                     device->generation);
2181                         btrfs_mark_buffer_dirty(leaf);
2182                 }
2183
2184                 path->slots[0]++;
2185                 goto next_slot;
2186         }
2187         ret = 0;
2188 error:
2189         btrfs_free_path(path);
2190         return ret;
2191 }
2192
2193 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
2194 {
2195         struct request_queue *q;
2196         struct btrfs_trans_handle *trans;
2197         struct btrfs_device *device;
2198         struct block_device *bdev;
2199         struct list_head *devices;
2200         struct super_block *sb = root->fs_info->sb;
2201         struct rcu_string *name;
2202         u64 tmp;
2203         int seeding_dev = 0;
2204         int ret = 0;
2205
2206         if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
2207                 return -EROFS;
2208
2209         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2210                                   root->fs_info->bdev_holder);
2211         if (IS_ERR(bdev))
2212                 return PTR_ERR(bdev);
2213
2214         if (root->fs_info->fs_devices->seeding) {
2215                 seeding_dev = 1;
2216                 down_write(&sb->s_umount);
2217                 mutex_lock(&uuid_mutex);
2218         }
2219
2220         filemap_write_and_wait(bdev->bd_inode->i_mapping);
2221
2222         devices = &root->fs_info->fs_devices->devices;
2223
2224         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2225         list_for_each_entry(device, devices, dev_list) {
2226                 if (device->bdev == bdev) {
2227                         ret = -EEXIST;
2228                         mutex_unlock(
2229                                 &root->fs_info->fs_devices->device_list_mutex);
2230                         goto error;
2231                 }
2232         }
2233         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2234
2235         device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2236         if (IS_ERR(device)) {
2237                 /* we can safely leave the fs_devices entry around */
2238                 ret = PTR_ERR(device);
2239                 goto error;
2240         }
2241
2242         name = rcu_string_strdup(device_path, GFP_NOFS);
2243         if (!name) {
2244                 kfree(device);
2245                 ret = -ENOMEM;
2246                 goto error;
2247         }
2248         rcu_assign_pointer(device->name, name);
2249
2250         trans = btrfs_start_transaction(root, 0);
2251         if (IS_ERR(trans)) {
2252                 rcu_string_free(device->name);
2253                 kfree(device);
2254                 ret = PTR_ERR(trans);
2255                 goto error;
2256         }
2257
2258         q = bdev_get_queue(bdev);
2259         if (blk_queue_discard(q))
2260                 device->can_discard = 1;
2261         device->writeable = 1;
2262         device->generation = trans->transid;
2263         device->io_width = root->sectorsize;
2264         device->io_align = root->sectorsize;
2265         device->sector_size = root->sectorsize;
2266         device->total_bytes = i_size_read(bdev->bd_inode);
2267         device->disk_total_bytes = device->total_bytes;
2268         device->commit_total_bytes = device->total_bytes;
2269         device->dev_root = root->fs_info->dev_root;
2270         device->bdev = bdev;
2271         device->in_fs_metadata = 1;
2272         device->is_tgtdev_for_dev_replace = 0;
2273         device->mode = FMODE_EXCL;
2274         device->dev_stats_valid = 1;
2275         set_blocksize(device->bdev, 4096);
2276
2277         if (seeding_dev) {
2278                 sb->s_flags &= ~MS_RDONLY;
2279                 ret = btrfs_prepare_sprout(root);
2280                 BUG_ON(ret); /* -ENOMEM */
2281         }
2282
2283         device->fs_devices = root->fs_info->fs_devices;
2284
2285         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2286         lock_chunks(root);
2287         list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2288         list_add(&device->dev_alloc_list,
2289                  &root->fs_info->fs_devices->alloc_list);
2290         root->fs_info->fs_devices->num_devices++;
2291         root->fs_info->fs_devices->open_devices++;
2292         root->fs_info->fs_devices->rw_devices++;
2293         root->fs_info->fs_devices->total_devices++;
2294         root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2295
2296         spin_lock(&root->fs_info->free_chunk_lock);
2297         root->fs_info->free_chunk_space += device->total_bytes;
2298         spin_unlock(&root->fs_info->free_chunk_lock);
2299
2300         if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2301                 root->fs_info->fs_devices->rotating = 1;
2302
2303         tmp = btrfs_super_total_bytes(root->fs_info->super_copy);
2304         btrfs_set_super_total_bytes(root->fs_info->super_copy,
2305                                     tmp + device->total_bytes);
2306
2307         tmp = btrfs_super_num_devices(root->fs_info->super_copy);
2308         btrfs_set_super_num_devices(root->fs_info->super_copy,
2309                                     tmp + 1);
2310
2311         /* add sysfs device entry */
2312         btrfs_kobj_add_device(root->fs_info->fs_devices, device);
2313
2314         /*
2315          * we've got more storage, clear any full flags on the space
2316          * infos
2317          */
2318         btrfs_clear_space_info_full(root->fs_info);
2319
2320         unlock_chunks(root);
2321         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2322
2323         if (seeding_dev) {
2324                 lock_chunks(root);
2325                 ret = init_first_rw_device(trans, root, device);
2326                 unlock_chunks(root);
2327                 if (ret) {
2328                         btrfs_abort_transaction(trans, root, ret);
2329                         goto error_trans;
2330                 }
2331         }
2332
2333         ret = btrfs_add_device(trans, root, device);
2334         if (ret) {
2335                 btrfs_abort_transaction(trans, root, ret);
2336                 goto error_trans;
2337         }
2338
2339         if (seeding_dev) {
2340                 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2341
2342                 ret = btrfs_finish_sprout(trans, root);
2343                 if (ret) {
2344                         btrfs_abort_transaction(trans, root, ret);
2345                         goto error_trans;
2346                 }
2347
2348                 /* Sprouting would change fsid of the mounted root,
2349                  * so rename the fsid on the sysfs
2350                  */
2351                 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2352                                                 root->fs_info->fsid);
2353                 if (kobject_rename(&root->fs_info->fs_devices->super_kobj,
2354                                                                 fsid_buf))
2355                         btrfs_warn(root->fs_info,
2356                                 "sysfs: failed to create fsid for sprout");
2357         }
2358
2359         root->fs_info->num_tolerated_disk_barrier_failures =
2360                 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
2361         ret = btrfs_commit_transaction(trans, root);
2362
2363         if (seeding_dev) {
2364                 mutex_unlock(&uuid_mutex);
2365                 up_write(&sb->s_umount);
2366
2367                 if (ret) /* transaction commit */
2368                         return ret;
2369
2370                 ret = btrfs_relocate_sys_chunks(root);
2371                 if (ret < 0)
2372                         btrfs_error(root->fs_info, ret,
2373                                     "Failed to relocate sys chunks after "
2374                                     "device initialization. This can be fixed "
2375                                     "using the \"btrfs balance\" command.");
2376                 trans = btrfs_attach_transaction(root);
2377                 if (IS_ERR(trans)) {
2378                         if (PTR_ERR(trans) == -ENOENT)
2379                                 return 0;
2380                         return PTR_ERR(trans);
2381                 }
2382                 ret = btrfs_commit_transaction(trans, root);
2383         }
2384
2385         /* Update ctime/mtime for libblkid */
2386         update_dev_time(device_path);
2387         return ret;
2388
2389 error_trans:
2390         btrfs_end_transaction(trans, root);
2391         rcu_string_free(device->name);
2392         btrfs_kobj_rm_device(root->fs_info->fs_devices, device);
2393         kfree(device);
2394 error:
2395         blkdev_put(bdev, FMODE_EXCL);
2396         if (seeding_dev) {
2397                 mutex_unlock(&uuid_mutex);
2398                 up_write(&sb->s_umount);
2399         }
2400         return ret;
2401 }
2402
2403 int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2404                                   struct btrfs_device *srcdev,
2405                                   struct btrfs_device **device_out)
2406 {
2407         struct request_queue *q;
2408         struct btrfs_device *device;
2409         struct block_device *bdev;
2410         struct btrfs_fs_info *fs_info = root->fs_info;
2411         struct list_head *devices;
2412         struct rcu_string *name;
2413         u64 devid = BTRFS_DEV_REPLACE_DEVID;
2414         int ret = 0;
2415
2416         *device_out = NULL;
2417         if (fs_info->fs_devices->seeding) {
2418                 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2419                 return -EINVAL;
2420         }
2421
2422         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2423                                   fs_info->bdev_holder);
2424         if (IS_ERR(bdev)) {
2425                 btrfs_err(fs_info, "target device %s is invalid!", device_path);
2426                 return PTR_ERR(bdev);
2427         }
2428
2429         filemap_write_and_wait(bdev->bd_inode->i_mapping);
2430
2431         devices = &fs_info->fs_devices->devices;
2432         list_for_each_entry(device, devices, dev_list) {
2433                 if (device->bdev == bdev) {
2434                         btrfs_err(fs_info, "target device is in the filesystem!");
2435                         ret = -EEXIST;
2436                         goto error;
2437                 }
2438         }
2439
2440
2441         if (i_size_read(bdev->bd_inode) <
2442             btrfs_device_get_total_bytes(srcdev)) {
2443                 btrfs_err(fs_info, "target device is smaller than source device!");
2444                 ret = -EINVAL;
2445                 goto error;
2446         }
2447
2448
2449         device = btrfs_alloc_device(NULL, &devid, NULL);
2450         if (IS_ERR(device)) {
2451                 ret = PTR_ERR(device);
2452                 goto error;
2453         }
2454
2455         name = rcu_string_strdup(device_path, GFP_NOFS);
2456         if (!name) {
2457                 kfree(device);
2458                 ret = -ENOMEM;
2459                 goto error;
2460         }
2461         rcu_assign_pointer(device->name, name);
2462
2463         q = bdev_get_queue(bdev);
2464         if (blk_queue_discard(q))
2465                 device->can_discard = 1;
2466         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2467         device->writeable = 1;
2468         device->generation = 0;
2469         device->io_width = root->sectorsize;
2470         device->io_align = root->sectorsize;
2471         device->sector_size = root->sectorsize;
2472         device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2473         device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2474         device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2475         ASSERT(list_empty(&srcdev->resized_list));
2476         device->commit_total_bytes = srcdev->commit_total_bytes;
2477         device->commit_bytes_used = device->bytes_used;
2478         device->dev_root = fs_info->dev_root;
2479         device->bdev = bdev;
2480         device->in_fs_metadata = 1;
2481         device->is_tgtdev_for_dev_replace = 1;
2482         device->mode = FMODE_EXCL;
2483         device->dev_stats_valid = 1;
2484         set_blocksize(device->bdev, 4096);
2485         device->fs_devices = fs_info->fs_devices;
2486         list_add(&device->dev_list, &fs_info->fs_devices->devices);
2487         fs_info->fs_devices->num_devices++;
2488         fs_info->fs_devices->open_devices++;
2489         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2490
2491         *device_out = device;
2492         return ret;
2493
2494 error:
2495         blkdev_put(bdev, FMODE_EXCL);
2496         return ret;
2497 }
2498
2499 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2500                                               struct btrfs_device *tgtdev)
2501 {
2502         WARN_ON(fs_info->fs_devices->rw_devices == 0);
2503         tgtdev->io_width = fs_info->dev_root->sectorsize;
2504         tgtdev->io_align = fs_info->dev_root->sectorsize;
2505         tgtdev->sector_size = fs_info->dev_root->sectorsize;
2506         tgtdev->dev_root = fs_info->dev_root;
2507         tgtdev->in_fs_metadata = 1;
2508 }
2509
2510 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2511                                         struct btrfs_device *device)
2512 {
2513         int ret;
2514         struct btrfs_path *path;
2515         struct btrfs_root *root;
2516         struct btrfs_dev_item *dev_item;
2517         struct extent_buffer *leaf;
2518         struct btrfs_key key;
2519
2520         root = device->dev_root->fs_info->chunk_root;
2521
2522         path = btrfs_alloc_path();
2523         if (!path)
2524                 return -ENOMEM;
2525
2526         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2527         key.type = BTRFS_DEV_ITEM_KEY;
2528         key.offset = device->devid;
2529
2530         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2531         if (ret < 0)
2532                 goto out;
2533
2534         if (ret > 0) {
2535                 ret = -ENOENT;
2536                 goto out;
2537         }
2538
2539         leaf = path->nodes[0];
2540         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2541
2542         btrfs_set_device_id(leaf, dev_item, device->devid);
2543         btrfs_set_device_type(leaf, dev_item, device->type);
2544         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2545         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2546         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2547         btrfs_set_device_total_bytes(leaf, dev_item,
2548                                      btrfs_device_get_disk_total_bytes(device));
2549         btrfs_set_device_bytes_used(leaf, dev_item,
2550                                     btrfs_device_get_bytes_used(device));
2551         btrfs_mark_buffer_dirty(leaf);
2552
2553 out:
2554         btrfs_free_path(path);
2555         return ret;
2556 }
2557
2558 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2559                       struct btrfs_device *device, u64 new_size)
2560 {
2561         struct btrfs_super_block *super_copy =
2562                 device->dev_root->fs_info->super_copy;
2563         struct btrfs_fs_devices *fs_devices;
2564         u64 old_total;
2565         u64 diff;
2566
2567         if (!device->writeable)
2568                 return -EACCES;
2569
2570         lock_chunks(device->dev_root);
2571         old_total = btrfs_super_total_bytes(super_copy);
2572         diff = new_size - device->total_bytes;
2573
2574         if (new_size <= device->total_bytes ||
2575             device->is_tgtdev_for_dev_replace) {
2576                 unlock_chunks(device->dev_root);
2577                 return -EINVAL;
2578         }
2579
2580         fs_devices = device->dev_root->fs_info->fs_devices;
2581
2582         btrfs_set_super_total_bytes(super_copy, old_total + diff);
2583         device->fs_devices->total_rw_bytes += diff;
2584
2585         btrfs_device_set_total_bytes(device, new_size);
2586         btrfs_device_set_disk_total_bytes(device, new_size);
2587         btrfs_clear_space_info_full(device->dev_root->fs_info);
2588         if (list_empty(&device->resized_list))
2589                 list_add_tail(&device->resized_list,
2590                               &fs_devices->resized_devices);
2591         unlock_chunks(device->dev_root);
2592
2593         return btrfs_update_device(trans, device);
2594 }
2595
2596 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2597                             struct btrfs_root *root, u64 chunk_objectid,
2598                             u64 chunk_offset)
2599 {
2600         int ret;
2601         struct btrfs_path *path;
2602         struct btrfs_key key;
2603
2604         root = root->fs_info->chunk_root;
2605         path = btrfs_alloc_path();
2606         if (!path)
2607                 return -ENOMEM;
2608
2609         key.objectid = chunk_objectid;
2610         key.offset = chunk_offset;
2611         key.type = BTRFS_CHUNK_ITEM_KEY;
2612
2613         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2614         if (ret < 0)
2615                 goto out;
2616         else if (ret > 0) { /* Logic error or corruption */
2617                 btrfs_error(root->fs_info, -ENOENT,
2618                             "Failed lookup while freeing chunk.");
2619                 ret = -ENOENT;
2620                 goto out;
2621         }
2622
2623         ret = btrfs_del_item(trans, root, path);
2624         if (ret < 0)
2625                 btrfs_error(root->fs_info, ret,
2626                             "Failed to delete chunk item.");
2627 out:
2628         btrfs_free_path(path);
2629         return ret;
2630 }
2631
2632 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
2633                         chunk_offset)
2634 {
2635         struct btrfs_super_block *super_copy = root->fs_info->super_copy;
2636         struct btrfs_disk_key *disk_key;
2637         struct btrfs_chunk *chunk;
2638         u8 *ptr;
2639         int ret = 0;
2640         u32 num_stripes;
2641         u32 array_size;
2642         u32 len = 0;
2643         u32 cur;
2644         struct btrfs_key key;
2645
2646         lock_chunks(root);
2647         array_size = btrfs_super_sys_array_size(super_copy);
2648
2649         ptr = super_copy->sys_chunk_array;
2650         cur = 0;
2651
2652         while (cur < array_size) {
2653                 disk_key = (struct btrfs_disk_key *)ptr;
2654                 btrfs_disk_key_to_cpu(&key, disk_key);
2655
2656                 len = sizeof(*disk_key);
2657
2658                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2659                         chunk = (struct btrfs_chunk *)(ptr + len);
2660                         num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2661                         len += btrfs_chunk_item_size(num_stripes);
2662                 } else {
2663                         ret = -EIO;
2664                         break;
2665                 }
2666                 if (key.objectid == chunk_objectid &&
2667                     key.offset == chunk_offset) {
2668                         memmove(ptr, ptr + len, array_size - (cur + len));
2669                         array_size -= len;
2670                         btrfs_set_super_sys_array_size(super_copy, array_size);
2671                 } else {
2672                         ptr += len;
2673                         cur += len;
2674                 }
2675         }
2676         unlock_chunks(root);
2677         return ret;
2678 }
2679
2680 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2681                        struct btrfs_root *root, u64 chunk_offset)
2682 {
2683         struct extent_map_tree *em_tree;
2684         struct extent_map *em;
2685         struct btrfs_root *extent_root = root->fs_info->extent_root;
2686         struct map_lookup *map;
2687         u64 dev_extent_len = 0;
2688         u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2689         int i, ret = 0;
2690
2691         /* Just in case */
2692         root = root->fs_info->chunk_root;
2693         em_tree = &root->fs_info->mapping_tree.map_tree;
2694
2695         read_lock(&em_tree->lock);
2696         em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2697         read_unlock(&em_tree->lock);
2698
2699         if (!em || em->start > chunk_offset ||
2700             em->start + em->len < chunk_offset) {
2701                 /*
2702                  * This is a logic error, but we don't want to just rely on the
2703                  * user having built with ASSERT enabled, so if ASSERT doens't
2704                  * do anything we still error out.
2705                  */
2706                 ASSERT(0);
2707                 if (em)
2708                         free_extent_map(em);
2709                 return -EINVAL;
2710         }
2711         map = (struct map_lookup *)em->bdev;
2712         lock_chunks(root->fs_info->chunk_root);
2713         check_system_chunk(trans, extent_root, map->type);
2714         unlock_chunks(root->fs_info->chunk_root);
2715
2716         for (i = 0; i < map->num_stripes; i++) {
2717                 struct btrfs_device *device = map->stripes[i].dev;
2718                 ret = btrfs_free_dev_extent(trans, device,
2719                                             map->stripes[i].physical,
2720                                             &dev_extent_len);
2721                 if (ret) {
2722                         btrfs_abort_transaction(trans, root, ret);
2723                         goto out;
2724                 }
2725
2726                 if (device->bytes_used > 0) {
2727                         lock_chunks(root);
2728                         btrfs_device_set_bytes_used(device,
2729                                         device->bytes_used - dev_extent_len);
2730                         spin_lock(&root->fs_info->free_chunk_lock);
2731                         root->fs_info->free_chunk_space += dev_extent_len;
2732                         spin_unlock(&root->fs_info->free_chunk_lock);
2733                         btrfs_clear_space_info_full(root->fs_info);
2734                         unlock_chunks(root);
2735                 }
2736
2737                 if (map->stripes[i].dev) {
2738                         ret = btrfs_update_device(trans, map->stripes[i].dev);
2739                         if (ret) {
2740                                 btrfs_abort_transaction(trans, root, ret);
2741                                 goto out;
2742                         }
2743                 }
2744         }
2745         ret = btrfs_free_chunk(trans, root, chunk_objectid, chunk_offset);
2746         if (ret) {
2747                 btrfs_abort_transaction(trans, root, ret);
2748                 goto out;
2749         }
2750
2751         trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2752
2753         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2754                 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2755                 if (ret) {
2756                         btrfs_abort_transaction(trans, root, ret);
2757                         goto out;
2758                 }
2759         }
2760
2761         ret = btrfs_remove_block_group(trans, extent_root, chunk_offset, em);
2762         if (ret) {
2763                 btrfs_abort_transaction(trans, extent_root, ret);
2764                 goto out;
2765         }
2766
2767 out:
2768         /* once for us */
2769         free_extent_map(em);
2770         return ret;
2771 }
2772
2773 static int btrfs_relocate_chunk(struct btrfs_root *root, u64 chunk_offset)
2774 {
2775         struct btrfs_root *extent_root;
2776         struct btrfs_trans_handle *trans;
2777         int ret;
2778
2779         root = root->fs_info->chunk_root;
2780         extent_root = root->fs_info->extent_root;
2781
2782         /*
2783          * Prevent races with automatic removal of unused block groups.
2784          * After we relocate and before we remove the chunk with offset
2785          * chunk_offset, automatic removal of the block group can kick in,
2786          * resulting in a failure when calling btrfs_remove_chunk() below.
2787          *
2788          * Make sure to acquire this mutex before doing a tree search (dev
2789          * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2790          * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2791          * we release the path used to search the chunk/dev tree and before
2792          * the current task acquires this mutex and calls us.
2793          */
2794         ASSERT(mutex_is_locked(&root->fs_info->delete_unused_bgs_mutex));
2795
2796         ret = btrfs_can_relocate(extent_root, chunk_offset);
2797         if (ret)
2798                 return -ENOSPC;
2799
2800         /* step one, relocate all the extents inside this chunk */
2801         btrfs_scrub_pause(root);
2802         ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2803         btrfs_scrub_continue(root);
2804         if (ret)
2805                 return ret;
2806
2807         trans = btrfs_start_transaction(root, 0);
2808         if (IS_ERR(trans)) {
2809                 ret = PTR_ERR(trans);
2810                 btrfs_std_error(root->fs_info, ret);
2811                 return ret;
2812         }
2813
2814         /*
2815          * step two, delete the device extents and the
2816          * chunk tree entries
2817          */
2818         ret = btrfs_remove_chunk(trans, root, chunk_offset);
2819         btrfs_end_transaction(trans, root);
2820         return ret;
2821 }
2822
2823 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2824 {
2825         struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2826         struct btrfs_path *path;
2827         struct extent_buffer *leaf;
2828         struct btrfs_chunk *chunk;
2829         struct btrfs_key key;
2830         struct btrfs_key found_key;
2831         u64 chunk_type;
2832         bool retried = false;
2833         int failed = 0;
2834         int ret;
2835
2836         path = btrfs_alloc_path();
2837         if (!path)
2838                 return -ENOMEM;
2839
2840 again:
2841         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2842         key.offset = (u64)-1;
2843         key.type = BTRFS_CHUNK_ITEM_KEY;
2844
2845         while (1) {
2846                 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
2847                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2848                 if (ret < 0) {
2849                         mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2850                         goto error;
2851                 }
2852                 BUG_ON(ret == 0); /* Corruption */
2853
2854                 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2855                                           key.type);
2856                 if (ret)
2857                         mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2858                 if (ret < 0)
2859                         goto error;
2860                 if (ret > 0)
2861                         break;
2862
2863                 leaf = path->nodes[0];
2864                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2865
2866                 chunk = btrfs_item_ptr(leaf, path->slots[0],
2867                                        struct btrfs_chunk);
2868                 chunk_type = btrfs_chunk_type(leaf, chunk);
2869                 btrfs_release_path(path);
2870
2871                 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2872                         ret = btrfs_relocate_chunk(chunk_root,
2873                                                    found_key.offset);
2874                         if (ret == -ENOSPC)
2875                                 failed++;
2876                         else
2877                                 BUG_ON(ret);
2878                 }
2879                 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2880
2881                 if (found_key.offset == 0)
2882                         break;
2883                 key.offset = found_key.offset - 1;
2884         }
2885         ret = 0;
2886         if (failed && !retried) {
2887                 failed = 0;
2888                 retried = true;
2889                 goto again;
2890         } else if (WARN_ON(failed && retried)) {
2891                 ret = -ENOSPC;
2892         }
2893 error:
2894         btrfs_free_path(path);
2895         return ret;
2896 }
2897
2898 static int insert_balance_item(struct btrfs_root *root,
2899                                struct btrfs_balance_control *bctl)
2900 {
2901         struct btrfs_trans_handle *trans;
2902         struct btrfs_balance_item *item;
2903         struct btrfs_disk_balance_args disk_bargs;
2904         struct btrfs_path *path;
2905         struct extent_buffer *leaf;
2906         struct btrfs_key key;
2907         int ret, err;
2908
2909         path = btrfs_alloc_path();
2910         if (!path)
2911                 return -ENOMEM;
2912
2913         trans = btrfs_start_transaction(root, 0);
2914         if (IS_ERR(trans)) {
2915                 btrfs_free_path(path);
2916                 return PTR_ERR(trans);
2917         }
2918
2919         key.objectid = BTRFS_BALANCE_OBJECTID;
2920         key.type = BTRFS_BALANCE_ITEM_KEY;
2921         key.offset = 0;
2922
2923         ret = btrfs_insert_empty_item(trans, root, path, &key,
2924                                       sizeof(*item));
2925         if (ret)
2926                 goto out;
2927
2928         leaf = path->nodes[0];
2929         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2930
2931         memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2932
2933         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2934         btrfs_set_balance_data(leaf, item, &disk_bargs);
2935         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2936         btrfs_set_balance_meta(leaf, item, &disk_bargs);
2937         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2938         btrfs_set_balance_sys(leaf, item, &disk_bargs);
2939
2940         btrfs_set_balance_flags(leaf, item, bctl->flags);
2941
2942         btrfs_mark_buffer_dirty(leaf);
2943 out:
2944         btrfs_free_path(path);
2945         err = btrfs_commit_transaction(trans, root);
2946         if (err && !ret)
2947                 ret = err;
2948         return ret;
2949 }
2950
2951 static int del_balance_item(struct btrfs_root *root)
2952 {
2953         struct btrfs_trans_handle *trans;
2954         struct btrfs_path *path;
2955         struct btrfs_key key;
2956         int ret, err;
2957
2958         path = btrfs_alloc_path();
2959         if (!path)
2960                 return -ENOMEM;
2961
2962         trans = btrfs_start_transaction(root, 0);
2963         if (IS_ERR(trans)) {
2964                 btrfs_free_path(path);
2965                 return PTR_ERR(trans);
2966         }
2967
2968         key.objectid = BTRFS_BALANCE_OBJECTID;
2969         key.type = BTRFS_BALANCE_ITEM_KEY;
2970         key.offset = 0;
2971
2972         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2973         if (ret < 0)
2974                 goto out;
2975         if (ret > 0) {
2976                 ret = -ENOENT;
2977                 goto out;
2978         }
2979
2980         ret = btrfs_del_item(trans, root, path);
2981 out:
2982         btrfs_free_path(path);
2983         err = btrfs_commit_transaction(trans, root);
2984         if (err && !ret)
2985                 ret = err;
2986         return ret;
2987 }
2988
2989 /*
2990  * This is a heuristic used to reduce the number of chunks balanced on
2991  * resume after balance was interrupted.
2992  */
2993 static void update_balance_args(struct btrfs_balance_control *bctl)
2994 {
2995         /*
2996          * Turn on soft mode for chunk types that were being converted.
2997          */
2998         if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
2999                 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3000         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3001                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3002         if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3003                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3004
3005         /*
3006          * Turn on usage filter if is not already used.  The idea is
3007          * that chunks that we have already balanced should be
3008          * reasonably full.  Don't do it for chunks that are being
3009          * converted - that will keep us from relocating unconverted
3010          * (albeit full) chunks.
3011          */
3012         if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3013             !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3014                 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3015                 bctl->data.usage = 90;
3016         }
3017         if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3018             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3019                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3020                 bctl->sys.usage = 90;
3021         }
3022         if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3023             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3024                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3025                 bctl->meta.usage = 90;
3026         }
3027 }
3028
3029 /*
3030  * Should be called with both balance and volume mutexes held to
3031  * serialize other volume operations (add_dev/rm_dev/resize) with
3032  * restriper.  Same goes for unset_balance_control.
3033  */
3034 static void set_balance_control(struct btrfs_balance_control *bctl)
3035 {
3036         struct btrfs_fs_info *fs_info = bctl->fs_info;
3037
3038         BUG_ON(fs_info->balance_ctl);
3039
3040         spin_lock(&fs_info->balance_lock);
3041         fs_info->balance_ctl = bctl;
3042         spin_unlock(&fs_info->balance_lock);
3043 }
3044
3045 static void unset_balance_control(struct btrfs_fs_info *fs_info)
3046 {
3047         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3048
3049         BUG_ON(!fs_info->balance_ctl);
3050
3051         spin_lock(&fs_info->balance_lock);
3052         fs_info->balance_ctl = NULL;
3053         spin_unlock(&fs_info->balance_lock);
3054
3055         kfree(bctl);
3056 }
3057
3058 /*
3059  * Balance filters.  Return 1 if chunk should be filtered out
3060  * (should not be balanced).
3061  */
3062 static int chunk_profiles_filter(u64 chunk_type,
3063                                  struct btrfs_balance_args *bargs)
3064 {
3065         chunk_type = chunk_to_extended(chunk_type) &
3066                                 BTRFS_EXTENDED_PROFILE_MASK;
3067
3068         if (bargs->profiles & chunk_type)
3069                 return 0;
3070
3071         return 1;
3072 }
3073
3074 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3075                               struct btrfs_balance_args *bargs)
3076 {
3077         struct btrfs_block_group_cache *cache;
3078         u64 chunk_used, user_thresh;
3079         int ret = 1;
3080
3081         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3082         chunk_used = btrfs_block_group_used(&cache->item);
3083
3084         if (bargs->usage == 0)
3085                 user_thresh = 1;
3086         else if (bargs->usage > 100)
3087                 user_thresh = cache->key.offset;
3088         else
3089                 user_thresh = div_factor_fine(cache->key.offset,
3090                                               bargs->usage);
3091
3092         if (chunk_used < user_thresh)
3093                 ret = 0;
3094
3095         btrfs_put_block_group(cache);
3096         return ret;
3097 }
3098
3099 static int chunk_devid_filter(struct extent_buffer *leaf,
3100                               struct btrfs_chunk *chunk,
3101                               struct btrfs_balance_args *bargs)
3102 {
3103         struct btrfs_stripe *stripe;
3104         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3105         int i;
3106
3107         for (i = 0; i < num_stripes; i++) {
3108                 stripe = btrfs_stripe_nr(chunk, i);
3109                 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3110                         return 0;
3111         }
3112
3113         return 1;
3114 }
3115
3116 /* [pstart, pend) */
3117 static int chunk_drange_filter(struct extent_buffer *leaf,
3118                                struct btrfs_chunk *chunk,
3119                                u64 chunk_offset,
3120                                struct btrfs_balance_args *bargs)
3121 {
3122         struct btrfs_stripe *stripe;
3123         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3124         u64 stripe_offset;
3125         u64 stripe_length;
3126         int factor;
3127         int i;
3128
3129         if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3130                 return 0;
3131
3132         if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3133              BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3134                 factor = num_stripes / 2;
3135         } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3136                 factor = num_stripes - 1;
3137         } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3138                 factor = num_stripes - 2;
3139         } else {
3140                 factor = num_stripes;
3141         }
3142
3143         for (i = 0; i < num_stripes; i++) {
3144                 stripe = btrfs_stripe_nr(chunk, i);
3145                 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3146                         continue;
3147
3148                 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3149                 stripe_length = btrfs_chunk_length(leaf, chunk);
3150                 stripe_length = div_u64(stripe_length, factor);
3151
3152                 if (stripe_offset < bargs->pend &&
3153                     stripe_offset + stripe_length > bargs->pstart)
3154                         return 0;
3155         }
3156
3157         return 1;
3158 }
3159
3160 /* [vstart, vend) */
3161 static int chunk_vrange_filter(struct extent_buffer *leaf,
3162                                struct btrfs_chunk *chunk,
3163                                u64 chunk_offset,
3164                                struct btrfs_balance_args *bargs)
3165 {
3166         if (chunk_offset < bargs->vend &&
3167             chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3168                 /* at least part of the chunk is inside this vrange */
3169                 return 0;
3170
3171         return 1;
3172 }
3173
3174 static int chunk_soft_convert_filter(u64 chunk_type,
3175                                      struct btrfs_balance_args *bargs)
3176 {
3177         if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3178                 return 0;
3179
3180         chunk_type = chunk_to_extended(chunk_type) &
3181                                 BTRFS_EXTENDED_PROFILE_MASK;
3182
3183         if (bargs->target == chunk_type)
3184                 return 1;
3185
3186         return 0;
3187 }
3188
3189 static int should_balance_chunk(struct btrfs_root *root,
3190                                 struct extent_buffer *leaf,
3191                                 struct btrfs_chunk *chunk, u64 chunk_offset)
3192 {
3193         struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
3194         struct btrfs_balance_args *bargs = NULL;
3195         u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3196
3197         /* type filter */
3198         if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3199               (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3200                 return 0;
3201         }
3202
3203         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3204                 bargs = &bctl->data;
3205         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3206                 bargs = &bctl->sys;
3207         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3208                 bargs = &bctl->meta;
3209
3210         /* profiles filter */
3211         if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3212             chunk_profiles_filter(chunk_type, bargs)) {
3213                 return 0;
3214         }
3215
3216         /* usage filter */
3217         if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3218             chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
3219                 return 0;
3220         }
3221
3222         /* devid filter */
3223         if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3224             chunk_devid_filter(leaf, chunk, bargs)) {
3225                 return 0;
3226         }
3227
3228         /* drange filter, makes sense only with devid filter */
3229         if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3230             chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3231                 return 0;
3232         }
3233
3234         /* vrange filter */
3235         if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3236             chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3237                 return 0;
3238         }
3239
3240         /* soft profile changing mode */
3241         if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3242             chunk_soft_convert_filter(chunk_type, bargs)) {
3243                 return 0;
3244         }
3245
3246         /*
3247          * limited by count, must be the last filter
3248          */
3249         if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3250                 if (bargs->limit == 0)
3251                         return 0;
3252                 else
3253                         bargs->limit--;
3254         }
3255
3256         return 1;
3257 }
3258
3259 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3260 {
3261         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3262         struct btrfs_root *chunk_root = fs_info->chunk_root;
3263         struct btrfs_root *dev_root = fs_info->dev_root;
3264         struct list_head *devices;
3265         struct btrfs_device *device;
3266         u64 old_size;
3267         u64 size_to_free;
3268         struct btrfs_chunk *chunk;
3269         struct btrfs_path *path;
3270         struct btrfs_key key;
3271         struct btrfs_key found_key;
3272         struct btrfs_trans_handle *trans;
3273         struct extent_buffer *leaf;
3274         int slot;
3275         int ret;
3276         int enospc_errors = 0;
3277         bool counting = true;
3278         u64 limit_data = bctl->data.limit;
3279         u64 limit_meta = bctl->meta.limit;
3280         u64 limit_sys = bctl->sys.limit;
3281
3282         /* step one make some room on all the devices */
3283         devices = &fs_info->fs_devices->devices;
3284         list_for_each_entry(device, devices, dev_list) {
3285                 old_size = btrfs_device_get_total_bytes(device);
3286                 size_to_free = div_factor(old_size, 1);
3287                 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
3288                 if (!device->writeable ||
3289                     btrfs_device_get_total_bytes(device) -
3290                     btrfs_device_get_bytes_used(device) > size_to_free ||
3291                     device->is_tgtdev_for_dev_replace)
3292                         continue;
3293
3294                 ret = btrfs_shrink_device(device, old_size - size_to_free);
3295                 if (ret == -ENOSPC)
3296                         break;
3297                 BUG_ON(ret);
3298
3299                 trans = btrfs_start_transaction(dev_root, 0);
3300                 BUG_ON(IS_ERR(trans));
3301
3302                 ret = btrfs_grow_device(trans, device, old_size);
3303                 BUG_ON(ret);
3304
3305                 btrfs_end_transaction(trans, dev_root);
3306         }
3307
3308         /* step two, relocate all the chunks */
3309         path = btrfs_alloc_path();
3310         if (!path) {
3311                 ret = -ENOMEM;
3312                 goto error;
3313         }
3314
3315         /* zero out stat counters */
3316         spin_lock(&fs_info->balance_lock);
3317         memset(&bctl->stat, 0, sizeof(bctl->stat));
3318         spin_unlock(&fs_info->balance_lock);
3319 again:
3320         if (!counting) {
3321                 bctl->data.limit = limit_data;
3322                 bctl->meta.limit = limit_meta;
3323                 bctl->sys.limit = limit_sys;
3324         }
3325         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3326         key.offset = (u64)-1;
3327         key.type = BTRFS_CHUNK_ITEM_KEY;
3328
3329         while (1) {
3330                 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3331                     atomic_read(&fs_info->balance_cancel_req)) {
3332                         ret = -ECANCELED;
3333                         goto error;
3334                 }
3335
3336                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3337                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3338                 if (ret < 0) {
3339                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3340                         goto error;
3341                 }
3342
3343                 /*
3344                  * this shouldn't happen, it means the last relocate
3345                  * failed
3346                  */
3347                 if (ret == 0)
3348                         BUG(); /* FIXME break ? */
3349
3350                 ret = btrfs_previous_item(chunk_root, path, 0,
3351                                           BTRFS_CHUNK_ITEM_KEY);
3352                 if (ret) {
3353                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3354                         ret = 0;
3355                         break;
3356                 }
3357
3358                 leaf = path->nodes[0];
3359                 slot = path->slots[0];
3360                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3361
3362                 if (found_key.objectid != key.objectid) {
3363                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3364                         break;
3365                 }
3366
3367                 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3368
3369                 if (!counting) {
3370                         spin_lock(&fs_info->balance_lock);
3371                         bctl->stat.considered++;
3372                         spin_unlock(&fs_info->balance_lock);
3373                 }
3374
3375                 ret = should_balance_chunk(chunk_root, leaf, chunk,
3376                                            found_key.offset);
3377                 btrfs_release_path(path);
3378                 if (!ret) {
3379                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3380                         goto loop;
3381                 }
3382
3383                 if (counting) {
3384                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3385                         spin_lock(&fs_info->balance_lock);
3386                         bctl->stat.expected++;
3387                         spin_unlock(&fs_info->balance_lock);
3388                         goto loop;
3389                 }
3390
3391                 ret = btrfs_relocate_chunk(chunk_root,
3392                                            found_key.offset);
3393                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3394                 if (ret && ret != -ENOSPC)
3395                         goto error;
3396                 if (ret == -ENOSPC) {
3397                         enospc_errors++;
3398                 } else {
3399                         spin_lock(&fs_info->balance_lock);
3400                         bctl->stat.completed++;
3401                         spin_unlock(&fs_info->balance_lock);
3402                 }
3403 loop:
3404                 if (found_key.offset == 0)
3405                         break;
3406                 key.offset = found_key.offset - 1;
3407         }
3408
3409         if (counting) {
3410                 btrfs_release_path(path);
3411                 counting = false;
3412                 goto again;
3413         }
3414 error:
3415         btrfs_free_path(path);
3416         if (enospc_errors) {
3417                 btrfs_info(fs_info, "%d enospc errors during balance",
3418                        enospc_errors);
3419                 if (!ret)
3420                         ret = -ENOSPC;
3421         }
3422
3423         return ret;
3424 }
3425
3426 /**
3427  * alloc_profile_is_valid - see if a given profile is valid and reduced
3428  * @flags: profile to validate
3429  * @extended: if true @flags is treated as an extended profile
3430  */
3431 static int alloc_profile_is_valid(u64 flags, int extended)
3432 {
3433         u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3434                                BTRFS_BLOCK_GROUP_PROFILE_MASK);
3435
3436         flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3437
3438         /* 1) check that all other bits are zeroed */
3439         if (flags & ~mask)
3440                 return 0;
3441
3442         /* 2) see if profile is reduced */
3443         if (flags == 0)
3444                 return !extended; /* "0" is valid for usual profiles */
3445
3446         /* true if exactly one bit set */
3447         return (flags & (flags - 1)) == 0;
3448 }
3449
3450 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3451 {
3452         /* cancel requested || normal exit path */
3453         return atomic_read(&fs_info->balance_cancel_req) ||
3454                 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3455                  atomic_read(&fs_info->balance_cancel_req) == 0);
3456 }
3457
3458 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3459 {
3460         int ret;
3461
3462         unset_balance_control(fs_info);
3463         ret = del_balance_item(fs_info->tree_root);
3464         if (ret)
3465                 btrfs_std_error(fs_info, ret);
3466
3467         atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3468 }
3469
3470 /*
3471  * Should be called with both balance and volume mutexes held
3472  */
3473 int btrfs_balance(struct btrfs_balance_control *bctl,
3474                   struct btrfs_ioctl_balance_args *bargs)
3475 {
3476         struct btrfs_fs_info *fs_info = bctl->fs_info;
3477         u64 allowed;
3478         int mixed = 0;
3479         int ret;
3480         u64 num_devices;
3481         unsigned seq;
3482
3483         if (btrfs_fs_closing(fs_info) ||
3484             atomic_read(&fs_info->balance_pause_req) ||
3485             atomic_read(&fs_info->balance_cancel_req)) {
3486                 ret = -EINVAL;
3487                 goto out;
3488         }
3489
3490         allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3491         if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3492                 mixed = 1;
3493
3494         /*
3495          * In case of mixed groups both data and meta should be picked,
3496          * and identical options should be given for both of them.
3497          */
3498         allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3499         if (mixed && (bctl->flags & allowed)) {
3500                 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3501                     !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3502                     memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3503                         btrfs_err(fs_info, "with mixed groups data and "
3504                                    "metadata balance options must be the same");
3505                         ret = -EINVAL;
3506                         goto out;
3507                 }
3508         }
3509
3510         num_devices = fs_info->fs_devices->num_devices;
3511         btrfs_dev_replace_lock(&fs_info->dev_replace);
3512         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3513                 BUG_ON(num_devices < 1);
3514                 num_devices--;
3515         }
3516         btrfs_dev_replace_unlock(&fs_info->dev_replace);
3517         allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
3518         if (num_devices == 1)
3519                 allowed |= BTRFS_BLOCK_GROUP_DUP;
3520         else if (num_devices > 1)
3521                 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3522         if (num_devices > 2)
3523                 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3524         if (num_devices > 3)
3525                 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3526                             BTRFS_BLOCK_GROUP_RAID6);
3527         if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3528             (!alloc_profile_is_valid(bctl->data.target, 1) ||
3529              (bctl->data.target & ~allowed))) {
3530                 btrfs_err(fs_info, "unable to start balance with target "
3531                            "data profile %llu",
3532                        bctl->data.target);
3533                 ret = -EINVAL;
3534                 goto out;
3535         }
3536         if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3537             (!alloc_profile_is_valid(bctl->meta.target, 1) ||
3538              (bctl->meta.target & ~allowed))) {
3539                 btrfs_err(fs_info,
3540                            "unable to start balance with target metadata profile %llu",
3541                        bctl->meta.target);
3542                 ret = -EINVAL;
3543                 goto out;
3544         }
3545         if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3546             (!alloc_profile_is_valid(bctl->sys.target, 1) ||
3547              (bctl->sys.target & ~allowed))) {
3548                 btrfs_err(fs_info,
3549                            "unable to start balance with target system profile %llu",
3550                        bctl->sys.target);
3551                 ret = -EINVAL;
3552                 goto out;
3553         }
3554
3555         /* allow dup'ed data chunks only in mixed mode */
3556         if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3557             (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
3558                 btrfs_err(fs_info, "dup for data is not allowed");
3559                 ret = -EINVAL;
3560                 goto out;
3561         }
3562
3563         /* allow to reduce meta or sys integrity only if force set */
3564         allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3565                         BTRFS_BLOCK_GROUP_RAID10 |
3566                         BTRFS_BLOCK_GROUP_RAID5 |
3567                         BTRFS_BLOCK_GROUP_RAID6;
3568         do {
3569                 seq = read_seqbegin(&fs_info->profiles_lock);
3570
3571                 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3572                      (fs_info->avail_system_alloc_bits & allowed) &&
3573                      !(bctl->sys.target & allowed)) ||
3574                     ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3575                      (fs_info->avail_metadata_alloc_bits & allowed) &&
3576                      !(bctl->meta.target & allowed))) {
3577                         if (bctl->flags & BTRFS_BALANCE_FORCE) {
3578                                 btrfs_info(fs_info, "force reducing metadata integrity");
3579                         } else {
3580                                 btrfs_err(fs_info, "balance will reduce metadata "
3581                                            "integrity, use force if you want this");
3582                                 ret = -EINVAL;
3583                                 goto out;
3584                         }
3585                 }
3586         } while (read_seqretry(&fs_info->profiles_lock, seq));
3587
3588         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3589                 fs_info->num_tolerated_disk_barrier_failures = min(
3590                         btrfs_calc_num_tolerated_disk_barrier_failures(fs_info),
3591                         btrfs_get_num_tolerated_disk_barrier_failures(
3592                                 bctl->sys.target));
3593         }
3594
3595         ret = insert_balance_item(fs_info->tree_root, bctl);
3596         if (ret && ret != -EEXIST)
3597                 goto out;
3598
3599         if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3600                 BUG_ON(ret == -EEXIST);
3601                 set_balance_control(bctl);
3602         } else {
3603                 BUG_ON(ret != -EEXIST);
3604                 spin_lock(&fs_info->balance_lock);
3605                 update_balance_args(bctl);
3606                 spin_unlock(&fs_info->balance_lock);
3607         }
3608
3609         atomic_inc(&fs_info->balance_running);
3610         mutex_unlock(&fs_info->balance_mutex);
3611
3612         ret = __btrfs_balance(fs_info);
3613
3614         mutex_lock(&fs_info->balance_mutex);
3615         atomic_dec(&fs_info->balance_running);
3616
3617         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3618                 fs_info->num_tolerated_disk_barrier_failures =
3619                         btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3620         }
3621
3622         if (bargs) {
3623                 memset(bargs, 0, sizeof(*bargs));
3624                 update_ioctl_balance_args(fs_info, 0, bargs);
3625         }
3626
3627         if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3628             balance_need_close(fs_info)) {
3629                 __cancel_balance(fs_info);
3630         }
3631
3632         wake_up(&fs_info->balance_wait_q);
3633
3634         return ret;
3635 out:
3636         if (bctl->flags & BTRFS_BALANCE_RESUME)
3637                 __cancel_balance(fs_info);
3638         else {
3639                 kfree(bctl);
3640                 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3641         }
3642         return ret;
3643 }
3644
3645 static int balance_kthread(void *data)
3646 {
3647         struct btrfs_fs_info *fs_info = data;
3648         int ret = 0;
3649
3650         mutex_lock(&fs_info->volume_mutex);
3651         mutex_lock(&fs_info->balance_mutex);
3652
3653         if (fs_info->balance_ctl) {
3654                 btrfs_info(fs_info, "continuing balance");
3655                 ret = btrfs_balance(fs_info->balance_ctl, NULL);
3656         }
3657
3658         mutex_unlock(&fs_info->balance_mutex);
3659         mutex_unlock(&fs_info->volume_mutex);
3660
3661         return ret;
3662 }
3663
3664 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3665 {
3666         struct task_struct *tsk;
3667
3668         spin_lock(&fs_info->balance_lock);
3669         if (!fs_info->balance_ctl) {
3670                 spin_unlock(&fs_info->balance_lock);
3671                 return 0;
3672         }
3673         spin_unlock(&fs_info->balance_lock);
3674
3675         if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
3676                 btrfs_info(fs_info, "force skipping balance");
3677                 return 0;
3678         }
3679
3680         tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3681         return PTR_ERR_OR_ZERO(tsk);
3682 }
3683
3684 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3685 {
3686         struct btrfs_balance_control *bctl;
3687         struct btrfs_balance_item *item;
3688         struct btrfs_disk_balance_args disk_bargs;
3689         struct btrfs_path *path;
3690         struct extent_buffer *leaf;
3691         struct btrfs_key key;
3692         int ret;
3693
3694         path = btrfs_alloc_path();
3695         if (!path)
3696                 return -ENOMEM;
3697
3698         key.objectid = BTRFS_BALANCE_OBJECTID;
3699         key.type = BTRFS_BALANCE_ITEM_KEY;
3700         key.offset = 0;
3701
3702         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3703         if (ret < 0)
3704                 goto out;
3705         if (ret > 0) { /* ret = -ENOENT; */
3706                 ret = 0;
3707                 goto out;
3708         }
3709
3710         bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3711         if (!bctl) {
3712                 ret = -ENOMEM;
3713                 goto out;
3714         }
3715
3716         leaf = path->nodes[0];
3717         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3718
3719         bctl->fs_info = fs_info;
3720         bctl->flags = btrfs_balance_flags(leaf, item);
3721         bctl->flags |= BTRFS_BALANCE_RESUME;
3722
3723         btrfs_balance_data(leaf, item, &disk_bargs);
3724         btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3725         btrfs_balance_meta(leaf, item, &disk_bargs);
3726         btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3727         btrfs_balance_sys(leaf, item, &disk_bargs);
3728         btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3729
3730         WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3731
3732         mutex_lock(&fs_info->volume_mutex);
3733         mutex_lock(&fs_info->balance_mutex);
3734
3735         set_balance_control(bctl);
3736
3737         mutex_unlock(&fs_info->balance_mutex);
3738         mutex_unlock(&fs_info->volume_mutex);
3739 out:
3740         btrfs_free_path(path);
3741         return ret;
3742 }
3743
3744 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3745 {
3746         int ret = 0;
3747
3748         mutex_lock(&fs_info->balance_mutex);
3749         if (!fs_info->balance_ctl) {
3750                 mutex_unlock(&fs_info->balance_mutex);
3751                 return -ENOTCONN;
3752         }
3753
3754         if (atomic_read(&fs_info->balance_running)) {
3755                 atomic_inc(&fs_info->balance_pause_req);
3756                 mutex_unlock(&fs_info->balance_mutex);
3757
3758                 wait_event(fs_info->balance_wait_q,
3759                            atomic_read(&fs_info->balance_running) == 0);
3760
3761                 mutex_lock(&fs_info->balance_mutex);
3762                 /* we are good with balance_ctl ripped off from under us */
3763                 BUG_ON(atomic_read(&fs_info->balance_running));
3764                 atomic_dec(&fs_info->balance_pause_req);
3765         } else {
3766                 ret = -ENOTCONN;
3767         }
3768
3769         mutex_unlock(&fs_info->balance_mutex);
3770         return ret;
3771 }
3772
3773 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3774 {
3775         if (fs_info->sb->s_flags & MS_RDONLY)
3776                 return -EROFS;
3777
3778         mutex_lock(&fs_info->balance_mutex);
3779         if (!fs_info->balance_ctl) {
3780                 mutex_unlock(&fs_info->balance_mutex);
3781                 return -ENOTCONN;
3782         }
3783
3784         atomic_inc(&fs_info->balance_cancel_req);
3785         /*
3786          * if we are running just wait and return, balance item is
3787          * deleted in btrfs_balance in this case
3788          */
3789         if (atomic_read(&fs_info->balance_running)) {
3790                 mutex_unlock(&fs_info->balance_mutex);
3791                 wait_event(fs_info->balance_wait_q,
3792                            atomic_read(&fs_info->balance_running) == 0);
3793                 mutex_lock(&fs_info->balance_mutex);
3794         } else {
3795                 /* __cancel_balance needs volume_mutex */
3796                 mutex_unlock(&fs_info->balance_mutex);
3797                 mutex_lock(&fs_info->volume_mutex);
3798                 mutex_lock(&fs_info->balance_mutex);
3799
3800                 if (fs_info->balance_ctl)
3801                         __cancel_balance(fs_info);
3802
3803                 mutex_unlock(&fs_info->volume_mutex);
3804         }
3805
3806         BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3807         atomic_dec(&fs_info->balance_cancel_req);
3808         mutex_unlock(&fs_info->balance_mutex);
3809         return 0;
3810 }
3811
3812 static int btrfs_uuid_scan_kthread(void *data)
3813 {
3814         struct btrfs_fs_info *fs_info = data;
3815         struct btrfs_root *root = fs_info->tree_root;
3816         struct btrfs_key key;
3817         struct btrfs_key max_key;
3818         struct btrfs_path *path = NULL;
3819         int ret = 0;
3820         struct extent_buffer *eb;
3821         int slot;
3822         struct btrfs_root_item root_item;
3823         u32 item_size;
3824         struct btrfs_trans_handle *trans = NULL;
3825
3826         path = btrfs_alloc_path();
3827         if (!path) {
3828                 ret = -ENOMEM;
3829                 goto out;
3830         }
3831
3832         key.objectid = 0;
3833         key.type = BTRFS_ROOT_ITEM_KEY;
3834         key.offset = 0;
3835
3836         max_key.objectid = (u64)-1;
3837         max_key.type = BTRFS_ROOT_ITEM_KEY;
3838         max_key.offset = (u64)-1;
3839
3840         while (1) {
3841                 ret = btrfs_search_forward(root, &key, path, 0);
3842                 if (ret) {
3843                         if (ret > 0)
3844                                 ret = 0;
3845                         break;
3846                 }
3847
3848                 if (key.type != BTRFS_ROOT_ITEM_KEY ||
3849                     (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
3850                      key.objectid != BTRFS_FS_TREE_OBJECTID) ||
3851                     key.objectid > BTRFS_LAST_FREE_OBJECTID)
3852                         goto skip;
3853
3854                 eb = path->nodes[0];
3855                 slot = path->slots[0];
3856                 item_size = btrfs_item_size_nr(eb, slot);
3857                 if (item_size < sizeof(root_item))
3858                         goto skip;
3859
3860                 read_extent_buffer(eb, &root_item,
3861                                    btrfs_item_ptr_offset(eb, slot),
3862                                    (int)sizeof(root_item));
3863                 if (btrfs_root_refs(&root_item) == 0)
3864                         goto skip;
3865
3866                 if (!btrfs_is_empty_uuid(root_item.uuid) ||
3867                     !btrfs_is_empty_uuid(root_item.received_uuid)) {
3868                         if (trans)
3869                                 goto update_tree;
3870
3871                         btrfs_release_path(path);
3872                         /*
3873                          * 1 - subvol uuid item
3874                          * 1 - received_subvol uuid item
3875                          */
3876                         trans = btrfs_start_transaction(fs_info->uuid_root, 2);
3877                         if (IS_ERR(trans)) {
3878                                 ret = PTR_ERR(trans);
3879                                 break;
3880                         }
3881                         continue;
3882                 } else {
3883                         goto skip;
3884                 }
3885 update_tree:
3886                 if (!btrfs_is_empty_uuid(root_item.uuid)) {
3887                         ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3888                                                   root_item.uuid,
3889                                                   BTRFS_UUID_KEY_SUBVOL,
3890                                                   key.objectid);
3891                         if (ret < 0) {
3892                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
3893                                         ret);
3894                                 break;
3895                         }
3896                 }
3897
3898                 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
3899                         ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3900                                                   root_item.received_uuid,
3901                                                  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
3902                                                   key.objectid);
3903                         if (ret < 0) {
3904                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
3905                                         ret);
3906                                 break;
3907                         }
3908                 }
3909
3910 skip:
3911                 if (trans) {
3912                         ret = btrfs_end_transaction(trans, fs_info->uuid_root);
3913                         trans = NULL;
3914                         if (ret)
3915                                 break;
3916                 }
3917
3918                 btrfs_release_path(path);
3919                 if (key.offset < (u64)-1) {
3920                         key.offset++;
3921                 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
3922                         key.offset = 0;
3923                         key.type = BTRFS_ROOT_ITEM_KEY;
3924                 } else if (key.objectid < (u64)-1) {
3925                         key.offset = 0;
3926                         key.type = BTRFS_ROOT_ITEM_KEY;
3927                         key.objectid++;
3928                 } else {
3929                         break;
3930                 }
3931                 cond_resched();
3932         }
3933
3934 out:
3935         btrfs_free_path(path);
3936         if (trans && !IS_ERR(trans))
3937                 btrfs_end_transaction(trans, fs_info->uuid_root);
3938         if (ret)
3939                 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
3940         else
3941                 fs_info->update_uuid_tree_gen = 1;
3942         up(&fs_info->uuid_tree_rescan_sem);
3943         return 0;
3944 }
3945
3946 /*
3947  * Callback for btrfs_uuid_tree_iterate().
3948  * returns:
3949  * 0    check succeeded, the entry is not outdated.
3950  * < 0  if an error occured.
3951  * > 0  if the check failed, which means the caller shall remove the entry.
3952  */
3953 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
3954                                        u8 *uuid, u8 type, u64 subid)
3955 {
3956         struct btrfs_key key;
3957         int ret = 0;
3958         struct btrfs_root *subvol_root;
3959
3960         if (type != BTRFS_UUID_KEY_SUBVOL &&
3961             type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
3962                 goto out;
3963
3964         key.objectid = subid;
3965         key.type = BTRFS_ROOT_ITEM_KEY;
3966         key.offset = (u64)-1;
3967         subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
3968         if (IS_ERR(subvol_root)) {
3969                 ret = PTR_ERR(subvol_root);
3970                 if (ret == -ENOENT)
3971                         ret = 1;
3972                 goto out;
3973         }
3974
3975         switch (type) {
3976         case BTRFS_UUID_KEY_SUBVOL:
3977                 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
3978                         ret = 1;
3979                 break;
3980         case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
3981                 if (memcmp(uuid, subvol_root->root_item.received_uuid,
3982                            BTRFS_UUID_SIZE))
3983                         ret = 1;
3984                 break;
3985         }
3986
3987 out:
3988         return ret;
3989 }
3990
3991 static int btrfs_uuid_rescan_kthread(void *data)
3992 {
3993         struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
3994         int ret;
3995
3996         /*
3997          * 1st step is to iterate through the existing UUID tree and
3998          * to delete all entries that contain outdated data.
3999          * 2nd step is to add all missing entries to the UUID tree.
4000          */
4001         ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4002         if (ret < 0) {
4003                 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4004                 up(&fs_info->uuid_tree_rescan_sem);
4005                 return ret;
4006         }
4007         return btrfs_uuid_scan_kthread(data);
4008 }
4009
4010 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4011 {
4012         struct btrfs_trans_handle *trans;
4013         struct btrfs_root *tree_root = fs_info->tree_root;
4014         struct btrfs_root *uuid_root;
4015         struct task_struct *task;
4016         int ret;
4017
4018         /*
4019          * 1 - root node
4020          * 1 - root item
4021          */
4022         trans = btrfs_start_transaction(tree_root, 2);
4023         if (IS_ERR(trans))
4024                 return PTR_ERR(trans);
4025
4026         uuid_root = btrfs_create_tree(trans, fs_info,
4027                                       BTRFS_UUID_TREE_OBJECTID);
4028         if (IS_ERR(uuid_root)) {
4029                 ret = PTR_ERR(uuid_root);
4030                 btrfs_abort_transaction(trans, tree_root, ret);
4031                 return ret;
4032         }
4033
4034         fs_info->uuid_root = uuid_root;
4035
4036         ret = btrfs_commit_transaction(trans, tree_root);
4037         if (ret)
4038                 return ret;
4039
4040         down(&fs_info->uuid_tree_rescan_sem);
4041         task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4042         if (IS_ERR(task)) {
4043                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4044                 btrfs_warn(fs_info, "failed to start uuid_scan task");
4045                 up(&fs_info->uuid_tree_rescan_sem);
4046                 return PTR_ERR(task);
4047         }
4048
4049         return 0;
4050 }
4051
4052 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4053 {
4054         struct task_struct *task;
4055
4056         down(&fs_info->uuid_tree_rescan_sem);
4057         task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4058         if (IS_ERR(task)) {
4059                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4060                 btrfs_warn(fs_info, "failed to start uuid_rescan task");
4061                 up(&fs_info->uuid_tree_rescan_sem);
4062                 return PTR_ERR(task);
4063         }
4064
4065         return 0;
4066 }
4067
4068 /*
4069  * shrinking a device means finding all of the device extents past
4070  * the new size, and then following the back refs to the chunks.
4071  * The chunk relocation code actually frees the device extent
4072  */
4073 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4074 {
4075         struct btrfs_trans_handle *trans;
4076         struct btrfs_root *root = device->dev_root;
4077         struct btrfs_dev_extent *dev_extent = NULL;
4078         struct btrfs_path *path;
4079         u64 length;
4080         u64 chunk_offset;
4081         int ret;
4082         int slot;
4083         int failed = 0;
4084         bool retried = false;
4085         bool checked_pending_chunks = false;
4086         struct extent_buffer *l;
4087         struct btrfs_key key;
4088         struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4089         u64 old_total = btrfs_super_total_bytes(super_copy);
4090         u64 old_size = btrfs_device_get_total_bytes(device);
4091         u64 diff = old_size - new_size;
4092
4093         if (device->is_tgtdev_for_dev_replace)
4094                 return -EINVAL;
4095
4096         path = btrfs_alloc_path();
4097         if (!path)
4098                 return -ENOMEM;
4099
4100         path->reada = 2;
4101
4102         lock_chunks(root);
4103
4104         btrfs_device_set_total_bytes(device, new_size);
4105         if (device->writeable) {
4106                 device->fs_devices->total_rw_bytes -= diff;
4107                 spin_lock(&root->fs_info->free_chunk_lock);
4108                 root->fs_info->free_chunk_space -= diff;
4109                 spin_unlock(&root->fs_info->free_chunk_lock);
4110         }
4111         unlock_chunks(root);
4112
4113 again:
4114         key.objectid = device->devid;
4115         key.offset = (u64)-1;
4116         key.type = BTRFS_DEV_EXTENT_KEY;
4117
4118         do {
4119                 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
4120                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4121                 if (ret < 0) {
4122                         mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4123                         goto done;
4124                 }
4125
4126                 ret = btrfs_previous_item(root, path, 0, key.type);
4127                 if (ret)
4128                         mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4129                 if (ret < 0)
4130                         goto done;
4131                 if (ret) {
4132                         ret = 0;
4133                         btrfs_release_path(path);
4134                         break;
4135                 }
4136
4137                 l = path->nodes[0];
4138                 slot = path->slots[0];
4139                 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4140
4141                 if (key.objectid != device->devid) {
4142                         mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4143                         btrfs_release_path(path);
4144                         break;
4145                 }
4146
4147                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4148                 length = btrfs_dev_extent_length(l, dev_extent);
4149
4150                 if (key.offset + length <= new_size) {
4151                         mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4152                         btrfs_release_path(path);
4153                         break;
4154                 }
4155
4156                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4157                 btrfs_release_path(path);
4158
4159                 ret = btrfs_relocate_chunk(root, chunk_offset);
4160                 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4161                 if (ret && ret != -ENOSPC)
4162                         goto done;
4163                 if (ret == -ENOSPC)
4164                         failed++;
4165         } while (key.offset-- > 0);
4166
4167         if (failed && !retried) {
4168                 failed = 0;
4169                 retried = true;
4170                 goto again;
4171         } else if (failed && retried) {
4172                 ret = -ENOSPC;
4173                 goto done;
4174         }
4175
4176         /* Shrinking succeeded, else we would be at "done". */
4177         trans = btrfs_start_transaction(root, 0);
4178         if (IS_ERR(trans)) {
4179                 ret = PTR_ERR(trans);
4180                 goto done;
4181         }
4182
4183         lock_chunks(root);
4184
4185         /*
4186          * We checked in the above loop all device extents that were already in
4187          * the device tree. However before we have updated the device's
4188          * total_bytes to the new size, we might have had chunk allocations that
4189          * have not complete yet (new block groups attached to transaction
4190          * handles), and therefore their device extents were not yet in the
4191          * device tree and we missed them in the loop above. So if we have any
4192          * pending chunk using a device extent that overlaps the device range
4193          * that we can not use anymore, commit the current transaction and
4194          * repeat the search on the device tree - this way we guarantee we will
4195          * not have chunks using device extents that end beyond 'new_size'.
4196          */
4197         if (!checked_pending_chunks) {
4198                 u64 start = new_size;
4199                 u64 len = old_size - new_size;
4200
4201                 if (contains_pending_extent(trans->transaction, device,
4202                                             &start, len)) {
4203                         unlock_chunks(root);
4204                         checked_pending_chunks = true;
4205                         failed = 0;
4206                         retried = false;
4207                         ret = btrfs_commit_transaction(trans, root);
4208                         if (ret)
4209                                 goto done;
4210                         goto again;
4211                 }
4212         }
4213
4214         btrfs_device_set_disk_total_bytes(device, new_size);
4215         if (list_empty(&device->resized_list))
4216                 list_add_tail(&device->resized_list,
4217                               &root->fs_info->fs_devices->resized_devices);
4218
4219         WARN_ON(diff > old_total);
4220         btrfs_set_super_total_bytes(super_copy, old_total - diff);
4221         unlock_chunks(root);
4222
4223         /* Now btrfs_update_device() will change the on-disk size. */
4224         ret = btrfs_update_device(trans, device);
4225         btrfs_end_transaction(trans, root);
4226 done:
4227         btrfs_free_path(path);
4228         if (ret) {
4229                 lock_chunks(root);
4230                 btrfs_device_set_total_bytes(device, old_size);
4231                 if (device->writeable)
4232                         device->fs_devices->total_rw_bytes += diff;
4233                 spin_lock(&root->fs_info->free_chunk_lock);
4234                 root->fs_info->free_chunk_space += diff;
4235                 spin_unlock(&root->fs_info->free_chunk_lock);
4236                 unlock_chunks(root);
4237         }
4238         return ret;
4239 }
4240
4241 static int btrfs_add_system_chunk(struct btrfs_root *root,
4242                            struct btrfs_key *key,
4243                            struct btrfs_chunk *chunk, int item_size)
4244 {
4245         struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4246         struct btrfs_disk_key disk_key;
4247         u32 array_size;
4248         u8 *ptr;
4249
4250         lock_chunks(root);
4251         array_size = btrfs_super_sys_array_size(super_copy);
4252         if (array_size + item_size + sizeof(disk_key)
4253                         > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4254                 unlock_chunks(root);
4255                 return -EFBIG;
4256         }
4257
4258         ptr = super_copy->sys_chunk_array + array_size;
4259         btrfs_cpu_key_to_disk(&disk_key, key);
4260         memcpy(ptr, &disk_key, sizeof(disk_key));
4261         ptr += sizeof(disk_key);
4262         memcpy(ptr, chunk, item_size);
4263         item_size += sizeof(disk_key);
4264         btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4265         unlock_chunks(root);
4266
4267         return 0;
4268 }
4269
4270 /*
4271  * sort the devices in descending order by max_avail, total_avail
4272  */
4273 static int btrfs_cmp_device_info(const void *a, const void *b)
4274 {
4275         const struct btrfs_device_info *di_a = a;
4276         const struct btrfs_device_info *di_b = b;
4277
4278         if (di_a->max_avail > di_b->max_avail)
4279                 return -1;
4280         if (di_a->max_avail < di_b->max_avail)
4281                 return 1;
4282         if (di_a->total_avail > di_b->total_avail)
4283                 return -1;
4284         if (di_a->total_avail < di_b->total_avail)
4285                 return 1;
4286         return 0;
4287 }
4288
4289 static const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
4290         [BTRFS_RAID_RAID10] = {
4291                 .sub_stripes    = 2,
4292                 .dev_stripes    = 1,
4293                 .devs_max       = 0,    /* 0 == as many as possible */
4294                 .devs_min       = 4,
4295                 .devs_increment = 2,
4296                 .ncopies        = 2,
4297         },
4298         [BTRFS_RAID_RAID1] = {
4299                 .sub_stripes    = 1,
4300                 .dev_stripes    = 1,
4301                 .devs_max       = 2,
4302                 .devs_min       = 2,
4303                 .devs_increment = 2,
4304                 .ncopies        = 2,
4305         },
4306         [BTRFS_RAID_DUP] = {
4307                 .sub_stripes    = 1,
4308                 .dev_stripes    = 2,
4309                 .devs_max       = 1,
4310                 .devs_min       = 1,
4311                 .devs_increment = 1,
4312                 .ncopies        = 2,
4313         },
4314         [BTRFS_RAID_RAID0] = {
4315                 .sub_stripes    = 1,
4316                 .dev_stripes    = 1,
4317                 .devs_max       = 0,
4318                 .devs_min       = 2,
4319                 .devs_increment = 1,
4320                 .ncopies        = 1,
4321         },
4322         [BTRFS_RAID_SINGLE] = {
4323                 .sub_stripes    = 1,
4324                 .dev_stripes    = 1,
4325                 .devs_max       = 1,
4326                 .devs_min       = 1,
4327                 .devs_increment = 1,
4328                 .ncopies        = 1,
4329         },
4330         [BTRFS_RAID_RAID5] = {
4331                 .sub_stripes    = 1,
4332                 .dev_stripes    = 1,
4333                 .devs_max       = 0,
4334                 .devs_min       = 2,
4335                 .devs_increment = 1,
4336                 .ncopies        = 2,
4337         },
4338         [BTRFS_RAID_RAID6] = {
4339                 .sub_stripes    = 1,
4340                 .dev_stripes    = 1,
4341                 .devs_max       = 0,
4342                 .devs_min       = 3,
4343                 .devs_increment = 1,
4344                 .ncopies        = 3,
4345         },
4346 };
4347
4348 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4349 {
4350         /* TODO allow them to set a preferred stripe size */
4351         return 64 * 1024;
4352 }
4353
4354 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4355 {
4356         if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4357                 return;
4358
4359         btrfs_set_fs_incompat(info, RAID56);
4360 }
4361
4362 #define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r)             \
4363                         - sizeof(struct btrfs_item)             \
4364                         - sizeof(struct btrfs_chunk))           \
4365                         / sizeof(struct btrfs_stripe) + 1)
4366
4367 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE        \
4368                                 - 2 * sizeof(struct btrfs_disk_key)     \
4369                                 - 2 * sizeof(struct btrfs_chunk))       \
4370                                 / sizeof(struct btrfs_stripe) + 1)
4371
4372 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4373                                struct btrfs_root *extent_root, u64 start,
4374                                u64 type)
4375 {
4376         struct btrfs_fs_info *info = extent_root->fs_info;
4377         struct btrfs_fs_devices *fs_devices = info->fs_devices;
4378         struct list_head *cur;
4379         struct map_lookup *map = NULL;
4380         struct extent_map_tree *em_tree;
4381         struct extent_map *em;
4382         struct btrfs_device_info *devices_info = NULL;
4383         u64 total_avail;
4384         int num_stripes;        /* total number of stripes to allocate */
4385         int data_stripes;       /* number of stripes that count for
4386                                    block group size */
4387         int sub_stripes;        /* sub_stripes info for map */
4388         int dev_stripes;        /* stripes per dev */
4389         int devs_max;           /* max devs to use */
4390         int devs_min;           /* min devs needed */
4391         int devs_increment;     /* ndevs has to be a multiple of this */
4392         int ncopies;            /* how many copies to data has */
4393         int ret;
4394         u64 max_stripe_size;
4395         u64 max_chunk_size;
4396         u64 stripe_size;
4397         u64 num_bytes;
4398         u64 raid_stripe_len = BTRFS_STRIPE_LEN;
4399         int ndevs;
4400         int i;
4401         int j;
4402         int index;
4403
4404         BUG_ON(!alloc_profile_is_valid(type, 0));
4405
4406         if (list_empty(&fs_devices->alloc_list))
4407                 return -ENOSPC;
4408
4409         index = __get_raid_index(type);
4410
4411         sub_stripes = btrfs_raid_array[index].sub_stripes;
4412         dev_stripes = btrfs_raid_array[index].dev_stripes;
4413         devs_max = btrfs_raid_array[index].devs_max;
4414         devs_min = btrfs_raid_array[index].devs_min;
4415         devs_increment = btrfs_raid_array[index].devs_increment;
4416         ncopies = btrfs_raid_array[index].ncopies;
4417
4418         if (type & BTRFS_BLOCK_GROUP_DATA) {
4419                 max_stripe_size = 1024 * 1024 * 1024;
4420                 max_chunk_size = 10 * max_stripe_size;
4421                 if (!devs_max)
4422                         devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4423         } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4424                 /* for larger filesystems, use larger metadata chunks */
4425                 if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
4426                         max_stripe_size = 1024 * 1024 * 1024;
4427                 else
4428                         max_stripe_size = 256 * 1024 * 1024;
4429                 max_chunk_size = max_stripe_size;
4430                 if (!devs_max)
4431                         devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4432         } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4433                 max_stripe_size = 32 * 1024 * 1024;
4434                 max_chunk_size = 2 * max_stripe_size;
4435                 if (!devs_max)
4436                         devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4437         } else {
4438                 btrfs_err(info, "invalid chunk type 0x%llx requested",
4439                        type);
4440                 BUG_ON(1);
4441         }
4442
4443         /* we don't want a chunk larger than 10% of writeable space */
4444         max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4445                              max_chunk_size);
4446
4447         devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4448                                GFP_NOFS);
4449         if (!devices_info)
4450                 return -ENOMEM;
4451
4452         cur = fs_devices->alloc_list.next;
4453
4454         /*
4455          * in the first pass through the devices list, we gather information
4456          * about the available holes on each device.
4457          */
4458         ndevs = 0;
4459         while (cur != &fs_devices->alloc_list) {
4460                 struct btrfs_device *device;
4461                 u64 max_avail;
4462                 u64 dev_offset;
4463
4464                 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
4465
4466                 cur = cur->next;
4467
4468                 if (!device->writeable) {
4469                         WARN(1, KERN_ERR
4470                                "BTRFS: read-only device in alloc_list\n");
4471                         continue;
4472                 }
4473
4474                 if (!device->in_fs_metadata ||
4475                     device->is_tgtdev_for_dev_replace)
4476                         continue;
4477
4478                 if (device->total_bytes > device->bytes_used)
4479                         total_avail = device->total_bytes - device->bytes_used;
4480                 else
4481                         total_avail = 0;
4482
4483                 /* If there is no space on this device, skip it. */
4484                 if (total_avail == 0)
4485                         continue;
4486
4487                 ret = find_free_dev_extent(trans, device,
4488                                            max_stripe_size * dev_stripes,
4489                                            &dev_offset, &max_avail);
4490                 if (ret && ret != -ENOSPC)
4491                         goto error;
4492
4493                 if (ret == 0)
4494                         max_avail = max_stripe_size * dev_stripes;
4495
4496                 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4497                         continue;
4498
4499                 if (ndevs == fs_devices->rw_devices) {
4500                         WARN(1, "%s: found more than %llu devices\n",
4501                              __func__, fs_devices->rw_devices);
4502                         break;
4503                 }
4504                 devices_info[ndevs].dev_offset = dev_offset;
4505                 devices_info[ndevs].max_avail = max_avail;
4506                 devices_info[ndevs].total_avail = total_avail;
4507                 devices_info[ndevs].dev = device;
4508                 ++ndevs;
4509         }
4510
4511         /*
4512          * now sort the devices by hole size / available space
4513          */
4514         sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4515              btrfs_cmp_device_info, NULL);
4516
4517         /* round down to number of usable stripes */
4518         ndevs -= ndevs % devs_increment;
4519
4520         if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4521                 ret = -ENOSPC;
4522                 goto error;
4523         }
4524
4525         if (devs_max && ndevs > devs_max)
4526                 ndevs = devs_max;
4527         /*
4528          * the primary goal is to maximize the number of stripes, so use as many
4529          * devices as possible, even if the stripes are not maximum sized.
4530          */
4531         stripe_size = devices_info[ndevs-1].max_avail;
4532         num_stripes = ndevs * dev_stripes;
4533
4534         /*
4535          * this will have to be fixed for RAID1 and RAID10 over
4536          * more drives
4537          */
4538         data_stripes = num_stripes / ncopies;
4539
4540         if (type & BTRFS_BLOCK_GROUP_RAID5) {
4541                 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4542                                  btrfs_super_stripesize(info->super_copy));
4543                 data_stripes = num_stripes - 1;
4544         }
4545         if (type & BTRFS_BLOCK_GROUP_RAID6) {
4546                 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4547                                  btrfs_super_stripesize(info->super_copy));
4548                 data_stripes = num_stripes - 2;
4549         }
4550
4551         /*
4552          * Use the number of data stripes to figure out how big this chunk
4553          * is really going to be in terms of logical address space,
4554          * and compare that answer with the max chunk size
4555          */
4556         if (stripe_size * data_stripes > max_chunk_size) {
4557                 u64 mask = (1ULL << 24) - 1;
4558
4559                 stripe_size = div_u64(max_chunk_size, data_stripes);
4560
4561                 /* bump the answer up to a 16MB boundary */
4562                 stripe_size = (stripe_size + mask) & ~mask;
4563
4564                 /* but don't go higher than the limits we found
4565                  * while searching for free extents
4566                  */
4567                 if (stripe_size > devices_info[ndevs-1].max_avail)
4568                         stripe_size = devices_info[ndevs-1].max_avail;
4569         }
4570
4571         stripe_size = div_u64(stripe_size, dev_stripes);
4572
4573         /* align to BTRFS_STRIPE_LEN */
4574         stripe_size = div_u64(stripe_size, raid_stripe_len);
4575         stripe_size *= raid_stripe_len;
4576
4577         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4578         if (!map) {
4579                 ret = -ENOMEM;
4580                 goto error;
4581         }
4582         map->num_stripes = num_stripes;
4583
4584         for (i = 0; i < ndevs; ++i) {
4585                 for (j = 0; j < dev_stripes; ++j) {
4586                         int s = i * dev_stripes + j;
4587                         map->stripes[s].dev = devices_info[i].dev;
4588                         map->stripes[s].physical = devices_info[i].dev_offset +
4589                                                    j * stripe_size;
4590                 }
4591         }
4592         map->sector_size = extent_root->sectorsize;
4593         map->stripe_len = raid_stripe_len;
4594         map->io_align = raid_stripe_len;
4595         map->io_width = raid_stripe_len;
4596         map->type = type;
4597         map->sub_stripes = sub_stripes;
4598
4599         num_bytes = stripe_size * data_stripes;
4600
4601         trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
4602
4603         em = alloc_extent_map();
4604         if (!em) {
4605                 kfree(map);
4606                 ret = -ENOMEM;
4607                 goto error;
4608         }
4609         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4610         em->bdev = (struct block_device *)map;
4611         em->start = start;
4612         em->len = num_bytes;
4613         em->block_start = 0;
4614         em->block_len = em->len;
4615         em->orig_block_len = stripe_size;
4616
4617         em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4618         write_lock(&em_tree->lock);
4619         ret = add_extent_mapping(em_tree, em, 0);
4620         if (!ret) {
4621                 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4622                 atomic_inc(&em->refs);
4623         }
4624         write_unlock(&em_tree->lock);
4625         if (ret) {
4626                 free_extent_map(em);
4627                 goto error;
4628         }
4629
4630         ret = btrfs_make_block_group(trans, extent_root, 0, type,
4631                                      BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4632                                      start, num_bytes);
4633         if (ret)
4634                 goto error_del_extent;
4635
4636         for (i = 0; i < map->num_stripes; i++) {
4637                 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4638                 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4639         }
4640
4641         spin_lock(&extent_root->fs_info->free_chunk_lock);
4642         extent_root->fs_info->free_chunk_space -= (stripe_size *
4643                                                    map->num_stripes);
4644         spin_unlock(&extent_root->fs_info->free_chunk_lock);
4645
4646         free_extent_map(em);
4647         check_raid56_incompat_flag(extent_root->fs_info, type);
4648
4649         kfree(devices_info);
4650         return 0;
4651
4652 error_del_extent:
4653         write_lock(&em_tree->lock);
4654         remove_extent_mapping(em_tree, em);
4655         write_unlock(&em_tree->lock);
4656
4657         /* One for our allocation */
4658         free_extent_map(em);
4659         /* One for the tree reference */
4660         free_extent_map(em);
4661         /* One for the pending_chunks list reference */
4662         free_extent_map(em);
4663 error:
4664         kfree(devices_info);
4665         return ret;
4666 }
4667
4668 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4669                                 struct btrfs_root *extent_root,
4670                                 u64 chunk_offset, u64 chunk_size)
4671 {
4672         struct btrfs_key key;
4673         struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4674         struct btrfs_device *device;
4675         struct btrfs_chunk *chunk;
4676         struct btrfs_stripe *stripe;
4677         struct extent_map_tree *em_tree;
4678         struct extent_map *em;
4679         struct map_lookup *map;
4680         size_t item_size;
4681         u64 dev_offset;
4682         u64 stripe_size;
4683         int i = 0;
4684         int ret;
4685
4686         em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4687         read_lock(&em_tree->lock);
4688         em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4689         read_unlock(&em_tree->lock);
4690
4691         if (!em) {
4692                 btrfs_crit(extent_root->fs_info, "unable to find logical "
4693                            "%Lu len %Lu", chunk_offset, chunk_size);
4694                 return -EINVAL;
4695         }
4696
4697         if (em->start != chunk_offset || em->len != chunk_size) {
4698                 btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
4699                           " %Lu-%Lu, found %Lu-%Lu", chunk_offset,
4700                           chunk_size, em->start, em->len);
4701                 free_extent_map(em);
4702                 return -EINVAL;
4703         }
4704
4705         map = (struct map_lookup *)em->bdev;
4706         item_size = btrfs_chunk_item_size(map->num_stripes);
4707         stripe_size = em->orig_block_len;
4708
4709         chunk = kzalloc(item_size, GFP_NOFS);
4710         if (!chunk) {
4711                 ret = -ENOMEM;
4712                 goto out;
4713         }
4714
4715         for (i = 0; i < map->num_stripes; i++) {
4716                 device = map->stripes[i].dev;
4717                 dev_offset = map->stripes[i].physical;
4718
4719                 ret = btrfs_update_device(trans, device);
4720                 if (ret)
4721                         goto out;
4722                 ret = btrfs_alloc_dev_extent(trans, device,
4723                                              chunk_root->root_key.objectid,
4724                                              BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4725                                              chunk_offset, dev_offset,
4726                                              stripe_size);
4727                 if (ret)
4728                         goto out;
4729         }
4730
4731         stripe = &chunk->stripe;
4732         for (i = 0; i < map->num_stripes; i++) {
4733                 device = map->stripes[i].dev;
4734                 dev_offset = map->stripes[i].physical;
4735
4736                 btrfs_set_stack_stripe_devid(stripe, device->devid);
4737                 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4738                 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4739                 stripe++;
4740         }
4741
4742         btrfs_set_stack_chunk_length(chunk, chunk_size);
4743         btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4744         btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4745         btrfs_set_stack_chunk_type(chunk, map->type);
4746         btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4747         btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4748         btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4749         btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
4750         btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4751
4752         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4753         key.type = BTRFS_CHUNK_ITEM_KEY;
4754         key.offset = chunk_offset;
4755
4756         ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4757         if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4758                 /*
4759                  * TODO: Cleanup of inserted chunk root in case of
4760                  * failure.
4761                  */
4762                 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
4763                                              item_size);
4764         }
4765
4766 out:
4767         kfree(chunk);
4768         free_extent_map(em);
4769         return ret;
4770 }
4771
4772 /*
4773  * Chunk allocation falls into two parts. The first part does works
4774  * that make the new allocated chunk useable, but not do any operation
4775  * that modifies the chunk tree. The second part does the works that
4776  * require modifying the chunk tree. This division is important for the
4777  * bootstrap process of adding storage to a seed btrfs.
4778  */
4779 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4780                       struct btrfs_root *extent_root, u64 type)
4781 {
4782         u64 chunk_offset;
4783
4784         ASSERT(mutex_is_locked(&extent_root->fs_info->chunk_mutex));
4785         chunk_offset = find_next_chunk(extent_root->fs_info);
4786         return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
4787 }
4788
4789 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
4790                                          struct btrfs_root *root,
4791                                          struct btrfs_device *device)
4792 {
4793         u64 chunk_offset;
4794         u64 sys_chunk_offset;
4795         u64 alloc_profile;
4796         struct btrfs_fs_info *fs_info = root->fs_info;
4797         struct btrfs_root *extent_root = fs_info->extent_root;
4798         int ret;
4799
4800         chunk_offset = find_next_chunk(fs_info);
4801         alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
4802         ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
4803                                   alloc_profile);
4804         if (ret)
4805                 return ret;
4806
4807         sys_chunk_offset = find_next_chunk(root->fs_info);
4808         alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
4809         ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
4810                                   alloc_profile);
4811         return ret;
4812 }
4813
4814 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
4815 {
4816         int max_errors;
4817
4818         if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
4819                          BTRFS_BLOCK_GROUP_RAID10 |
4820                          BTRFS_BLOCK_GROUP_RAID5 |
4821                          BTRFS_BLOCK_GROUP_DUP)) {
4822                 max_errors = 1;
4823         } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
4824                 max_errors = 2;
4825         } else {
4826                 max_errors = 0;
4827         }
4828
4829         return max_errors;
4830 }
4831
4832 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
4833 {
4834         struct extent_map *em;
4835         struct map_lookup *map;
4836         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4837         int readonly = 0;
4838         int miss_ndevs = 0;
4839         int i;
4840
4841         read_lock(&map_tree->map_tree.lock);
4842         em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
4843         read_unlock(&map_tree->map_tree.lock);
4844         if (!em)
4845                 return 1;
4846
4847         map = (struct map_lookup *)em->bdev;
4848         for (i = 0; i < map->num_stripes; i++) {
4849                 if (map->stripes[i].dev->missing) {
4850                         miss_ndevs++;
4851                         continue;
4852                 }
4853
4854                 if (!map->stripes[i].dev->writeable) {
4855                         readonly = 1;
4856                         goto end;
4857                 }
4858         }
4859
4860         /*
4861          * If the number of missing devices is larger than max errors,
4862          * we can not write the data into that chunk successfully, so
4863          * set it readonly.
4864          */
4865         if (miss_ndevs > btrfs_chunk_max_errors(map))
4866                 readonly = 1;
4867 end:
4868         free_extent_map(em);
4869         return readonly;
4870 }
4871
4872 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
4873 {
4874         extent_map_tree_init(&tree->map_tree);
4875 }
4876
4877 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
4878 {
4879         struct extent_map *em;
4880
4881         while (1) {
4882                 write_lock(&tree->map_tree.lock);
4883                 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
4884                 if (em)
4885                         remove_extent_mapping(&tree->map_tree, em);
4886                 write_unlock(&tree->map_tree.lock);
4887                 if (!em)
4888                         break;
4889                 /* once for us */
4890                 free_extent_map(em);
4891                 /* once for the tree */
4892                 free_extent_map(em);
4893         }
4894 }
4895
4896 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
4897 {
4898         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4899         struct extent_map *em;
4900         struct map_lookup *map;
4901         struct extent_map_tree *em_tree = &map_tree->map_tree;
4902         int ret;
4903
4904         read_lock(&em_tree->lock);
4905         em = lookup_extent_mapping(em_tree, logical, len);
4906         read_unlock(&em_tree->lock);
4907
4908         /*
4909          * We could return errors for these cases, but that could get ugly and
4910          * we'd probably do the same thing which is just not do anything else
4911          * and exit, so return 1 so the callers don't try to use other copies.
4912          */
4913         if (!em) {
4914                 btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
4915                             logical+len);
4916                 return 1;
4917         }
4918
4919         if (em->start > logical || em->start + em->len < logical) {
4920                 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
4921                             "%Lu-%Lu", logical, logical+len, em->start,
4922                             em->start + em->len);
4923                 free_extent_map(em);
4924                 return 1;
4925         }
4926
4927         map = (struct map_lookup *)em->bdev;
4928         if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
4929                 ret = map->num_stripes;
4930         else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
4931                 ret = map->sub_stripes;
4932         else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
4933                 ret = 2;
4934         else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4935                 ret = 3;
4936         else
4937                 ret = 1;
4938         free_extent_map(em);
4939
4940         btrfs_dev_replace_lock(&fs_info->dev_replace);
4941         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
4942                 ret++;
4943         btrfs_dev_replace_unlock(&fs_info->dev_replace);
4944
4945         return ret;
4946 }
4947
4948 unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
4949                                     struct btrfs_mapping_tree *map_tree,
4950                                     u64 logical)
4951 {
4952         struct extent_map *em;
4953         struct map_lookup *map;
4954         struct extent_map_tree *em_tree = &map_tree->map_tree;
4955         unsigned long len = root->sectorsize;
4956
4957         read_lock(&em_tree->lock);
4958         em = lookup_extent_mapping(em_tree, logical, len);
4959         read_unlock(&em_tree->lock);
4960         BUG_ON(!em);
4961
4962         BUG_ON(em->start > logical || em->start + em->len < logical);
4963         map = (struct map_lookup *)em->bdev;
4964         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
4965                 len = map->stripe_len * nr_data_stripes(map);
4966         free_extent_map(em);
4967         return len;
4968 }
4969
4970 int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
4971                            u64 logical, u64 len, int mirror_num)
4972 {
4973         struct extent_map *em;
4974         struct map_lookup *map;
4975         struct extent_map_tree *em_tree = &map_tree->map_tree;
4976         int ret = 0;
4977
4978         read_lock(&em_tree->lock);
4979         em = lookup_extent_mapping(em_tree, logical, len);
4980         read_unlock(&em_tree->lock);
4981         BUG_ON(!em);
4982
4983         BUG_ON(em->start > logical || em->start + em->len < logical);
4984         map = (struct map_lookup *)em->bdev;
4985         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
4986                 ret = 1;
4987         free_extent_map(em);
4988         return ret;
4989 }
4990
4991 static int find_live_mirror(struct btrfs_fs_info *fs_info,
4992                             struct map_lookup *map, int first, int num,
4993                             int optimal, int dev_replace_is_ongoing)
4994 {
4995         int i;
4996         int tolerance;
4997         struct btrfs_device *srcdev;
4998
4999         if (dev_replace_is_ongoing &&
5000             fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5001              BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5002                 srcdev = fs_info->dev_replace.srcdev;
5003         else
5004                 srcdev = NULL;
5005
5006         /*
5007          * try to avoid the drive that is the source drive for a
5008          * dev-replace procedure, only choose it if no other non-missing
5009          * mirror is available
5010          */
5011         for (tolerance = 0; tolerance < 2; tolerance++) {
5012                 if (map->stripes[optimal].dev->bdev &&
5013                     (tolerance || map->stripes[optimal].dev != srcdev))
5014                         return optimal;
5015                 for (i = first; i < first + num; i++) {
5016                         if (map->stripes[i].dev->bdev &&
5017                             (tolerance || map->stripes[i].dev != srcdev))
5018                                 return i;
5019                 }
5020         }
5021
5022         /* we couldn't find one that doesn't fail.  Just return something
5023          * and the io error handling code will clean up eventually
5024          */
5025         return optimal;
5026 }
5027
5028 static inline int parity_smaller(u64 a, u64 b)
5029 {
5030         return a > b;
5031 }
5032
5033 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5034 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5035 {
5036         struct btrfs_bio_stripe s;
5037         int i;
5038         u64 l;
5039         int again = 1;
5040
5041         while (again) {
5042                 again = 0;
5043                 for (i = 0; i < num_stripes - 1; i++) {
5044                         if (parity_smaller(bbio->raid_map[i],
5045                                            bbio->raid_map[i+1])) {
5046                                 s = bbio->stripes[i];
5047                                 l = bbio->raid_map[i];
5048                                 bbio->stripes[i] = bbio->stripes[i+1];
5049                                 bbio->raid_map[i] = bbio->raid_map[i+1];
5050                                 bbio->stripes[i+1] = s;
5051                                 bbio->raid_map[i+1] = l;
5052
5053                                 again = 1;
5054                         }
5055                 }
5056         }
5057 }
5058
5059 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5060 {
5061         struct btrfs_bio *bbio = kzalloc(
5062                  /* the size of the btrfs_bio */
5063                 sizeof(struct btrfs_bio) +
5064                 /* plus the variable array for the stripes */
5065                 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5066                 /* plus the variable array for the tgt dev */
5067                 sizeof(int) * (real_stripes) +
5068                 /*
5069                  * plus the raid_map, which includes both the tgt dev
5070                  * and the stripes
5071                  */
5072                 sizeof(u64) * (total_stripes),
5073                 GFP_NOFS|__GFP_NOFAIL);
5074
5075         atomic_set(&bbio->error, 0);
5076         atomic_set(&bbio->refs, 1);
5077
5078         return bbio;
5079 }
5080
5081 void btrfs_get_bbio(struct btrfs_bio *bbio)
5082 {
5083         WARN_ON(!atomic_read(&bbio->refs));
5084         atomic_inc(&bbio->refs);
5085 }
5086
5087 void btrfs_put_bbio(struct btrfs_bio *bbio)
5088 {
5089         if (!bbio)
5090                 return;
5091         if (atomic_dec_and_test(&bbio->refs))
5092                 kfree(bbio);
5093 }
5094
5095 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
5096                              u64 logical, u64 *length,
5097                              struct btrfs_bio **bbio_ret,
5098                              int mirror_num, int need_raid_map)
5099 {
5100         struct extent_map *em;
5101         struct map_lookup *map;
5102         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5103         struct extent_map_tree *em_tree = &map_tree->map_tree;
5104         u64 offset;
5105         u64 stripe_offset;
5106         u64 stripe_end_offset;
5107         u64 stripe_nr;
5108         u64 stripe_nr_orig;
5109         u64 stripe_nr_end;
5110         u64 stripe_len;
5111         u32 stripe_index;
5112         int i;
5113         int ret = 0;
5114         int num_stripes;
5115         int max_errors = 0;
5116         int tgtdev_indexes = 0;
5117         struct btrfs_bio *bbio = NULL;
5118         struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5119         int dev_replace_is_ongoing = 0;
5120         int num_alloc_stripes;
5121         int patch_the_first_stripe_for_dev_replace = 0;
5122         u64 physical_to_patch_in_first_stripe = 0;
5123         u64 raid56_full_stripe_start = (u64)-1;
5124
5125         read_lock(&em_tree->lock);
5126         em = lookup_extent_mapping(em_tree, logical, *length);
5127         read_unlock(&em_tree->lock);
5128
5129         if (!em) {
5130                 btrfs_crit(fs_info, "unable to find logical %llu len %llu",
5131                         logical, *length);
5132                 return -EINVAL;
5133         }
5134
5135         if (em->start > logical || em->start + em->len < logical) {
5136                 btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
5137                            "found %Lu-%Lu", logical, em->start,
5138                            em->start + em->len);
5139                 free_extent_map(em);
5140                 return -EINVAL;
5141         }
5142
5143         map = (struct map_lookup *)em->bdev;
5144         offset = logical - em->start;
5145
5146         stripe_len = map->stripe_len;
5147         stripe_nr = offset;
5148         /*
5149          * stripe_nr counts the total number of stripes we have to stride
5150          * to get to this block
5151          */
5152         stripe_nr = div64_u64(stripe_nr, stripe_len);
5153
5154         stripe_offset = stripe_nr * stripe_len;
5155         BUG_ON(offset < stripe_offset);
5156
5157         /* stripe_offset is the offset of this block in its stripe*/
5158         stripe_offset = offset - stripe_offset;
5159
5160         /* if we're here for raid56, we need to know the stripe aligned start */
5161         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5162                 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5163                 raid56_full_stripe_start = offset;
5164
5165                 /* allow a write of a full stripe, but make sure we don't
5166                  * allow straddling of stripes
5167                  */
5168                 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5169                                 full_stripe_len);
5170                 raid56_full_stripe_start *= full_stripe_len;
5171         }
5172
5173         if (rw & REQ_DISCARD) {
5174                 /* we don't discard raid56 yet */
5175                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5176                         ret = -EOPNOTSUPP;
5177                         goto out;
5178                 }
5179                 *length = min_t(u64, em->len - offset, *length);
5180         } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5181                 u64 max_len;
5182                 /* For writes to RAID[56], allow a full stripeset across all disks.
5183                    For other RAID types and for RAID[56] reads, just allow a single
5184                    stripe (on a single disk). */
5185                 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5186                     (rw & REQ_WRITE)) {
5187                         max_len = stripe_len * nr_data_stripes(map) -
5188                                 (offset - raid56_full_stripe_start);
5189                 } else {
5190                         /* we limit the length of each bio to what fits in a stripe */
5191                         max_len = stripe_len - stripe_offset;
5192                 }
5193                 *length = min_t(u64, em->len - offset, max_len);
5194         } else {
5195                 *length = em->len - offset;
5196         }
5197
5198         /* This is for when we're called from btrfs_merge_bio_hook() and all
5199            it cares about is the length */
5200         if (!bbio_ret)
5201                 goto out;
5202
5203         btrfs_dev_replace_lock(dev_replace);
5204         dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5205         if (!dev_replace_is_ongoing)
5206                 btrfs_dev_replace_unlock(dev_replace);
5207
5208         if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5209             !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
5210             dev_replace->tgtdev != NULL) {
5211                 /*
5212                  * in dev-replace case, for repair case (that's the only
5213                  * case where the mirror is selected explicitly when
5214                  * calling btrfs_map_block), blocks left of the left cursor
5215                  * can also be read from the target drive.
5216                  * For REQ_GET_READ_MIRRORS, the target drive is added as
5217                  * the last one to the array of stripes. For READ, it also
5218                  * needs to be supported using the same mirror number.
5219                  * If the requested block is not left of the left cursor,
5220                  * EIO is returned. This can happen because btrfs_num_copies()
5221                  * returns one more in the dev-replace case.
5222                  */
5223                 u64 tmp_length = *length;
5224                 struct btrfs_bio *tmp_bbio = NULL;
5225                 int tmp_num_stripes;
5226                 u64 srcdev_devid = dev_replace->srcdev->devid;
5227                 int index_srcdev = 0;
5228                 int found = 0;
5229                 u64 physical_of_found = 0;
5230
5231                 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
5232                              logical, &tmp_length, &tmp_bbio, 0, 0);
5233                 if (ret) {
5234                         WARN_ON(tmp_bbio != NULL);
5235                         goto out;
5236                 }
5237
5238                 tmp_num_stripes = tmp_bbio->num_stripes;
5239                 if (mirror_num > tmp_num_stripes) {
5240                         /*
5241                          * REQ_GET_READ_MIRRORS does not contain this
5242                          * mirror, that means that the requested area
5243                          * is not left of the left cursor
5244                          */
5245                         ret = -EIO;
5246                         btrfs_put_bbio(tmp_bbio);
5247                         goto out;
5248                 }
5249
5250                 /*
5251                  * process the rest of the function using the mirror_num
5252                  * of the source drive. Therefore look it up first.
5253                  * At the end, patch the device pointer to the one of the
5254                  * target drive.
5255                  */
5256                 for (i = 0; i < tmp_num_stripes; i++) {
5257                         if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) {
5258                                 /*
5259                                  * In case of DUP, in order to keep it
5260                                  * simple, only add the mirror with the
5261                                  * lowest physical address
5262                                  */
5263                                 if (found &&
5264                                     physical_of_found <=
5265                                      tmp_bbio->stripes[i].physical)
5266                                         continue;
5267                                 index_srcdev = i;
5268                                 found = 1;
5269                                 physical_of_found =
5270                                         tmp_bbio->stripes[i].physical;
5271                         }
5272                 }
5273
5274                 if (found) {
5275                         mirror_num = index_srcdev + 1;
5276                         patch_the_first_stripe_for_dev_replace = 1;
5277                         physical_to_patch_in_first_stripe = physical_of_found;
5278                 } else {
5279                         WARN_ON(1);
5280                         ret = -EIO;
5281                         btrfs_put_bbio(tmp_bbio);
5282                         goto out;
5283                 }
5284
5285                 btrfs_put_bbio(tmp_bbio);
5286         } else if (mirror_num > map->num_stripes) {
5287                 mirror_num = 0;
5288         }
5289
5290         num_stripes = 1;
5291         stripe_index = 0;
5292         stripe_nr_orig = stripe_nr;
5293         stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
5294         stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len);
5295         stripe_end_offset = stripe_nr_end * map->stripe_len -
5296                             (offset + *length);
5297
5298         if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5299                 if (rw & REQ_DISCARD)
5300                         num_stripes = min_t(u64, map->num_stripes,
5301                                             stripe_nr_end - stripe_nr_orig);
5302                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5303                                 &stripe_index);
5304                 if (!(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)))
5305                         mirror_num = 1;
5306         } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5307                 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
5308                         num_stripes = map->num_stripes;
5309                 else if (mirror_num)
5310                         stripe_index = mirror_num - 1;
5311                 else {
5312                         stripe_index = find_live_mirror(fs_info, map, 0,
5313                                             map->num_stripes,
5314                                             current->pid % map->num_stripes,
5315                                             dev_replace_is_ongoing);
5316                         mirror_num = stripe_index + 1;
5317                 }
5318
5319         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5320                 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
5321                         num_stripes = map->num_stripes;
5322                 } else if (mirror_num) {
5323                         stripe_index = mirror_num - 1;
5324                 } else {
5325                         mirror_num = 1;
5326                 }
5327
5328         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5329                 u32 factor = map->num_stripes / map->sub_stripes;
5330
5331                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5332                 stripe_index *= map->sub_stripes;
5333
5334                 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5335                         num_stripes = map->sub_stripes;
5336                 else if (rw & REQ_DISCARD)
5337                         num_stripes = min_t(u64, map->sub_stripes *
5338                                             (stripe_nr_end - stripe_nr_orig),
5339                                             map->num_stripes);
5340                 else if (mirror_num)
5341                         stripe_index += mirror_num - 1;
5342                 else {
5343                         int old_stripe_index = stripe_index;
5344                         stripe_index = find_live_mirror(fs_info, map,
5345                                               stripe_index,
5346                                               map->sub_stripes, stripe_index +
5347                                               current->pid % map->sub_stripes,
5348                                               dev_replace_is_ongoing);
5349                         mirror_num = stripe_index - old_stripe_index + 1;
5350                 }
5351
5352         } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5353                 if (need_raid_map &&
5354                     ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5355                      mirror_num > 1)) {
5356                         /* push stripe_nr back to the start of the full stripe */
5357                         stripe_nr = div_u64(raid56_full_stripe_start,
5358                                         stripe_len * nr_data_stripes(map));
5359
5360                         /* RAID[56] write or recovery. Return all stripes */
5361                         num_stripes = map->num_stripes;
5362                         max_errors = nr_parity_stripes(map);
5363
5364                         *length = map->stripe_len;
5365                         stripe_index = 0;
5366                         stripe_offset = 0;
5367                 } else {
5368                         /*
5369                          * Mirror #0 or #1 means the original data block.
5370                          * Mirror #2 is RAID5 parity block.
5371                          * Mirror #3 is RAID6 Q block.
5372                          */
5373                         stripe_nr = div_u64_rem(stripe_nr,
5374                                         nr_data_stripes(map), &stripe_index);
5375                         if (mirror_num > 1)
5376                                 stripe_index = nr_data_stripes(map) +
5377                                                 mirror_num - 2;
5378
5379                         /* We distribute the parity blocks across stripes */
5380                         div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5381                                         &stripe_index);
5382                         if (!(rw & (REQ_WRITE | REQ_DISCARD |
5383                                     REQ_GET_READ_MIRRORS)) && mirror_num <= 1)
5384                                 mirror_num = 1;
5385                 }
5386         } else {
5387                 /*
5388                  * after this, stripe_nr is the number of stripes on this
5389                  * device we have to walk to find the data, and stripe_index is
5390                  * the number of our device in the stripe array
5391                  */
5392                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5393                                 &stripe_index);
5394                 mirror_num = stripe_index + 1;
5395         }
5396         BUG_ON(stripe_index >= map->num_stripes);
5397
5398         num_alloc_stripes = num_stripes;
5399         if (dev_replace_is_ongoing) {
5400                 if (rw & (REQ_WRITE | REQ_DISCARD))
5401                         num_alloc_stripes <<= 1;
5402                 if (rw & REQ_GET_READ_MIRRORS)
5403                         num_alloc_stripes++;
5404                 tgtdev_indexes = num_stripes;
5405         }
5406
5407         bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5408         if (!bbio) {
5409                 ret = -ENOMEM;
5410                 goto out;
5411         }
5412         if (dev_replace_is_ongoing)
5413                 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5414
5415         /* build raid_map */
5416         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
5417             need_raid_map && ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5418             mirror_num > 1)) {
5419                 u64 tmp;
5420                 unsigned rot;
5421
5422                 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5423                                  sizeof(struct btrfs_bio_stripe) *
5424                                  num_alloc_stripes +
5425                                  sizeof(int) * tgtdev_indexes);
5426
5427                 /* Work out the disk rotation on this stripe-set */
5428                 div_u64_rem(stripe_nr, num_stripes, &rot);
5429
5430                 /* Fill in the logical address of each stripe */
5431                 tmp = stripe_nr * nr_data_stripes(map);
5432                 for (i = 0; i < nr_data_stripes(map); i++)
5433                         bbio->raid_map[(i+rot) % num_stripes] =
5434                                 em->start + (tmp + i) * map->stripe_len;
5435
5436                 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5437                 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5438                         bbio->raid_map[(i+rot+1) % num_stripes] =
5439                                 RAID6_Q_STRIPE;
5440         }
5441
5442         if (rw & REQ_DISCARD) {
5443                 u32 factor = 0;
5444                 u32 sub_stripes = 0;
5445                 u64 stripes_per_dev = 0;
5446                 u32 remaining_stripes = 0;
5447                 u32 last_stripe = 0;
5448
5449                 if (map->type &
5450                     (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5451                         if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5452                                 sub_stripes = 1;
5453                         else
5454                                 sub_stripes = map->sub_stripes;
5455
5456                         factor = map->num_stripes / sub_stripes;
5457                         stripes_per_dev = div_u64_rem(stripe_nr_end -
5458                                                       stripe_nr_orig,
5459                                                       factor,
5460                                                       &remaining_stripes);
5461                         div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5462                         last_stripe *= sub_stripes;
5463                 }
5464
5465                 for (i = 0; i < num_stripes; i++) {
5466                         bbio->stripes[i].physical =
5467                                 map->stripes[stripe_index].physical +
5468                                 stripe_offset + stripe_nr * map->stripe_len;
5469                         bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5470
5471                         if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5472                                          BTRFS_BLOCK_GROUP_RAID10)) {
5473                                 bbio->stripes[i].length = stripes_per_dev *
5474                                                           map->stripe_len;
5475
5476                                 if (i / sub_stripes < remaining_stripes)
5477                                         bbio->stripes[i].length +=
5478                                                 map->stripe_len;
5479
5480                                 /*
5481                                  * Special for the first stripe and
5482                                  * the last stripe:
5483                                  *
5484                                  * |-------|...|-------|
5485                                  *     |----------|
5486                                  *    off     end_off
5487                                  */
5488                                 if (i < sub_stripes)
5489                                         bbio->stripes[i].length -=
5490                                                 stripe_offset;
5491
5492                                 if (stripe_index >= last_stripe &&
5493                                     stripe_index <= (last_stripe +
5494                                                      sub_stripes - 1))
5495                                         bbio->stripes[i].length -=
5496                                                 stripe_end_offset;
5497
5498                                 if (i == sub_stripes - 1)
5499                                         stripe_offset = 0;
5500                         } else
5501                                 bbio->stripes[i].length = *length;
5502
5503                         stripe_index++;
5504                         if (stripe_index == map->num_stripes) {
5505                                 /* This could only happen for RAID0/10 */
5506                                 stripe_index = 0;
5507                                 stripe_nr++;
5508                         }
5509                 }
5510         } else {
5511                 for (i = 0; i < num_stripes; i++) {
5512                         bbio->stripes[i].physical =
5513                                 map->stripes[stripe_index].physical +
5514                                 stripe_offset +
5515                                 stripe_nr * map->stripe_len;
5516                         bbio->stripes[i].dev =
5517                                 map->stripes[stripe_index].dev;
5518                         stripe_index++;
5519                 }
5520         }
5521
5522         if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5523                 max_errors = btrfs_chunk_max_errors(map);
5524
5525         if (bbio->raid_map)
5526                 sort_parity_stripes(bbio, num_stripes);
5527
5528         tgtdev_indexes = 0;
5529         if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
5530             dev_replace->tgtdev != NULL) {
5531                 int index_where_to_add;
5532                 u64 srcdev_devid = dev_replace->srcdev->devid;
5533
5534                 /*
5535                  * duplicate the write operations while the dev replace
5536                  * procedure is running. Since the copying of the old disk
5537                  * to the new disk takes place at run time while the
5538                  * filesystem is mounted writable, the regular write
5539                  * operations to the old disk have to be duplicated to go
5540                  * to the new disk as well.
5541                  * Note that device->missing is handled by the caller, and
5542                  * that the write to the old disk is already set up in the
5543                  * stripes array.
5544                  */
5545                 index_where_to_add = num_stripes;
5546                 for (i = 0; i < num_stripes; i++) {
5547                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5548                                 /* write to new disk, too */
5549                                 struct btrfs_bio_stripe *new =
5550                                         bbio->stripes + index_where_to_add;
5551                                 struct btrfs_bio_stripe *old =
5552                                         bbio->stripes + i;
5553
5554                                 new->physical = old->physical;
5555                                 new->length = old->length;
5556                                 new->dev = dev_replace->tgtdev;
5557                                 bbio->tgtdev_map[i] = index_where_to_add;
5558                                 index_where_to_add++;
5559                                 max_errors++;
5560                                 tgtdev_indexes++;
5561                         }
5562                 }
5563                 num_stripes = index_where_to_add;
5564         } else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
5565                    dev_replace->tgtdev != NULL) {
5566                 u64 srcdev_devid = dev_replace->srcdev->devid;
5567                 int index_srcdev = 0;
5568                 int found = 0;
5569                 u64 physical_of_found = 0;
5570
5571                 /*
5572                  * During the dev-replace procedure, the target drive can
5573                  * also be used to read data in case it is needed to repair
5574                  * a corrupt block elsewhere. This is possible if the
5575                  * requested area is left of the left cursor. In this area,
5576                  * the target drive is a full copy of the source drive.
5577                  */
5578                 for (i = 0; i < num_stripes; i++) {
5579                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5580                                 /*
5581                                  * In case of DUP, in order to keep it
5582                                  * simple, only add the mirror with the
5583                                  * lowest physical address
5584                                  */
5585                                 if (found &&
5586                                     physical_of_found <=
5587                                      bbio->stripes[i].physical)
5588                                         continue;
5589                                 index_srcdev = i;
5590                                 found = 1;
5591                                 physical_of_found = bbio->stripes[i].physical;
5592                         }
5593                 }
5594                 if (found) {
5595                         if (physical_of_found + map->stripe_len <=
5596                             dev_replace->cursor_left) {
5597                                 struct btrfs_bio_stripe *tgtdev_stripe =
5598                                         bbio->stripes + num_stripes;
5599
5600                                 tgtdev_stripe->physical = physical_of_found;
5601                                 tgtdev_stripe->length =
5602                                         bbio->stripes[index_srcdev].length;
5603                                 tgtdev_stripe->dev = dev_replace->tgtdev;
5604                                 bbio->tgtdev_map[index_srcdev] = num_stripes;
5605
5606                                 tgtdev_indexes++;
5607                                 num_stripes++;
5608                         }
5609                 }
5610         }
5611
5612         *bbio_ret = bbio;
5613         bbio->map_type = map->type;
5614         bbio->num_stripes = num_stripes;
5615         bbio->max_errors = max_errors;
5616         bbio->mirror_num = mirror_num;
5617         bbio->num_tgtdevs = tgtdev_indexes;
5618
5619         /*
5620          * this is the case that REQ_READ && dev_replace_is_ongoing &&
5621          * mirror_num == num_stripes + 1 && dev_replace target drive is
5622          * available as a mirror
5623          */
5624         if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5625                 WARN_ON(num_stripes > 1);
5626                 bbio->stripes[0].dev = dev_replace->tgtdev;
5627                 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5628                 bbio->mirror_num = map->num_stripes + 1;
5629         }
5630 out:
5631         if (dev_replace_is_ongoing)
5632                 btrfs_dev_replace_unlock(dev_replace);
5633         free_extent_map(em);
5634         return ret;
5635 }
5636
5637 int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
5638                       u64 logical, u64 *length,
5639                       struct btrfs_bio **bbio_ret, int mirror_num)
5640 {
5641         return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5642                                  mirror_num, 0);
5643 }
5644
5645 /* For Scrub/replace */
5646 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, int rw,
5647                      u64 logical, u64 *length,
5648                      struct btrfs_bio **bbio_ret, int mirror_num,
5649                      int need_raid_map)
5650 {
5651         return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5652                                  mirror_num, need_raid_map);
5653 }
5654
5655 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5656                      u64 chunk_start, u64 physical, u64 devid,
5657                      u64 **logical, int *naddrs, int *stripe_len)
5658 {
5659         struct extent_map_tree *em_tree = &map_tree->map_tree;
5660         struct extent_map *em;
5661         struct map_lookup *map;
5662         u64 *buf;
5663         u64 bytenr;
5664         u64 length;
5665         u64 stripe_nr;
5666         u64 rmap_len;
5667         int i, j, nr = 0;
5668
5669         read_lock(&em_tree->lock);
5670         em = lookup_extent_mapping(em_tree, chunk_start, 1);
5671         read_unlock(&em_tree->lock);
5672
5673         if (!em) {
5674                 printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n",
5675                        chunk_start);
5676                 return -EIO;
5677         }
5678
5679         if (em->start != chunk_start) {
5680                 printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
5681                        em->start, chunk_start);
5682                 free_extent_map(em);
5683                 return -EIO;
5684         }
5685         map = (struct map_lookup *)em->bdev;
5686
5687         length = em->len;
5688         rmap_len = map->stripe_len;
5689
5690         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5691                 length = div_u64(length, map->num_stripes / map->sub_stripes);
5692         else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5693                 length = div_u64(length, map->num_stripes);
5694         else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5695                 length = div_u64(length, nr_data_stripes(map));
5696                 rmap_len = map->stripe_len * nr_data_stripes(map);
5697         }
5698
5699         buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5700         BUG_ON(!buf); /* -ENOMEM */
5701
5702         for (i = 0; i < map->num_stripes; i++) {
5703                 if (devid && map->stripes[i].dev->devid != devid)
5704                         continue;
5705                 if (map->stripes[i].physical > physical ||
5706                     map->stripes[i].physical + length <= physical)
5707                         continue;
5708
5709                 stripe_nr = physical - map->stripes[i].physical;
5710                 stripe_nr = div_u64(stripe_nr, map->stripe_len);
5711
5712                 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5713                         stripe_nr = stripe_nr * map->num_stripes + i;
5714                         stripe_nr = div_u64(stripe_nr, map->sub_stripes);
5715                 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5716                         stripe_nr = stripe_nr * map->num_stripes + i;
5717                 } /* else if RAID[56], multiply by nr_data_stripes().
5718                    * Alternatively, just use rmap_len below instead of
5719                    * map->stripe_len */
5720
5721                 bytenr = chunk_start + stripe_nr * rmap_len;
5722                 WARN_ON(nr >= map->num_stripes);
5723                 for (j = 0; j < nr; j++) {
5724                         if (buf[j] == bytenr)
5725                                 break;
5726                 }
5727                 if (j == nr) {
5728                         WARN_ON(nr >= map->num_stripes);
5729                         buf[nr++] = bytenr;
5730                 }
5731         }
5732
5733         *logical = buf;
5734         *naddrs = nr;
5735         *stripe_len = rmap_len;
5736
5737         free_extent_map(em);
5738         return 0;
5739 }
5740
5741 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
5742 {
5743         bio->bi_private = bbio->private;
5744         bio->bi_end_io = bbio->end_io;
5745         bio_endio(bio);
5746
5747         btrfs_put_bbio(bbio);
5748 }
5749
5750 static void btrfs_end_bio(struct bio *bio)
5751 {
5752         struct btrfs_bio *bbio = bio->bi_private;
5753         int is_orig_bio = 0;
5754
5755         if (bio->bi_error) {
5756                 atomic_inc(&bbio->error);
5757                 if (bio->bi_error == -EIO || bio->bi_error == -EREMOTEIO) {
5758                         unsigned int stripe_index =
5759                                 btrfs_io_bio(bio)->stripe_index;
5760                         struct btrfs_device *dev;
5761
5762                         BUG_ON(stripe_index >= bbio->num_stripes);
5763                         dev = bbio->stripes[stripe_index].dev;
5764                         if (dev->bdev) {
5765                                 if (bio->bi_rw & WRITE)
5766                                         btrfs_dev_stat_inc(dev,
5767                                                 BTRFS_DEV_STAT_WRITE_ERRS);
5768                                 else
5769                                         btrfs_dev_stat_inc(dev,
5770                                                 BTRFS_DEV_STAT_READ_ERRS);
5771                                 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
5772                                         btrfs_dev_stat_inc(dev,
5773                                                 BTRFS_DEV_STAT_FLUSH_ERRS);
5774                                 btrfs_dev_stat_print_on_error(dev);
5775                         }
5776                 }
5777         }
5778
5779         if (bio == bbio->orig_bio)
5780                 is_orig_bio = 1;
5781
5782         btrfs_bio_counter_dec(bbio->fs_info);
5783
5784         if (atomic_dec_and_test(&bbio->stripes_pending)) {
5785                 if (!is_orig_bio) {
5786                         bio_put(bio);
5787                         bio = bbio->orig_bio;
5788                 }
5789
5790                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5791                 /* only send an error to the higher layers if it is
5792                  * beyond the tolerance of the btrfs bio
5793                  */
5794                 if (atomic_read(&bbio->error) > bbio->max_errors) {
5795                         bio->bi_error = -EIO;
5796                 } else {
5797                         /*
5798                          * this bio is actually up to date, we didn't
5799                          * go over the max number of errors
5800                          */
5801                         bio->bi_error = 0;
5802                 }
5803
5804                 btrfs_end_bbio(bbio, bio);
5805         } else if (!is_orig_bio) {
5806                 bio_put(bio);
5807         }
5808 }
5809
5810 /*
5811  * see run_scheduled_bios for a description of why bios are collected for
5812  * async submit.
5813  *
5814  * This will add one bio to the pending list for a device and make sure
5815  * the work struct is scheduled.
5816  */
5817 static noinline void btrfs_schedule_bio(struct btrfs_root *root,
5818                                         struct btrfs_device *device,
5819                                         int rw, struct bio *bio)
5820 {
5821         int should_queue = 1;
5822         struct btrfs_pending_bios *pending_bios;
5823
5824         if (device->missing || !device->bdev) {
5825                 bio_io_error(bio);
5826                 return;
5827         }
5828
5829         /* don't bother with additional async steps for reads, right now */
5830         if (!(rw & REQ_WRITE)) {
5831                 bio_get(bio);
5832                 btrfsic_submit_bio(rw, bio);
5833                 bio_put(bio);
5834                 return;
5835         }
5836
5837         /*
5838          * nr_async_bios allows us to reliably return congestion to the
5839          * higher layers.  Otherwise, the async bio makes it appear we have
5840          * made progress against dirty pages when we've really just put it
5841          * on a queue for later
5842          */
5843         atomic_inc(&root->fs_info->nr_async_bios);
5844         WARN_ON(bio->bi_next);
5845         bio->bi_next = NULL;
5846         bio->bi_rw |= rw;
5847
5848         spin_lock(&device->io_lock);
5849         if (bio->bi_rw & REQ_SYNC)
5850                 pending_bios = &device->pending_sync_bios;
5851         else
5852                 pending_bios = &device->pending_bios;
5853
5854         if (pending_bios->tail)
5855                 pending_bios->tail->bi_next = bio;
5856
5857         pending_bios->tail = bio;
5858         if (!pending_bios->head)
5859                 pending_bios->head = bio;
5860         if (device->running_pending)
5861                 should_queue = 0;
5862
5863         spin_unlock(&device->io_lock);
5864
5865         if (should_queue)
5866                 btrfs_queue_work(root->fs_info->submit_workers,
5867                                  &device->work);
5868 }
5869
5870 static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5871                               struct bio *bio, u64 physical, int dev_nr,
5872                               int rw, int async)
5873 {
5874         struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
5875
5876         bio->bi_private = bbio;
5877         btrfs_io_bio(bio)->stripe_index = dev_nr;
5878         bio->bi_end_io = btrfs_end_bio;
5879         bio->bi_iter.bi_sector = physical >> 9;
5880 #ifdef DEBUG
5881         {
5882                 struct rcu_string *name;
5883
5884                 rcu_read_lock();
5885                 name = rcu_dereference(dev->name);
5886                 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
5887                          "(%s id %llu), size=%u\n", rw,
5888                          (u64)bio->bi_iter.bi_sector, (u_long)dev->bdev->bd_dev,
5889                          name->str, dev->devid, bio->bi_iter.bi_size);
5890                 rcu_read_unlock();
5891         }
5892 #endif
5893         bio->bi_bdev = dev->bdev;
5894
5895         btrfs_bio_counter_inc_noblocked(root->fs_info);
5896
5897         if (async)
5898                 btrfs_schedule_bio(root, dev, rw, bio);
5899         else
5900                 btrfsic_submit_bio(rw, bio);
5901 }
5902
5903 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
5904 {
5905         atomic_inc(&bbio->error);
5906         if (atomic_dec_and_test(&bbio->stripes_pending)) {
5907                 /* Shoud be the original bio. */
5908                 WARN_ON(bio != bbio->orig_bio);
5909
5910                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5911                 bio->bi_iter.bi_sector = logical >> 9;
5912                 bio->bi_error = -EIO;
5913                 btrfs_end_bbio(bbio, bio);
5914         }
5915 }
5916
5917 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
5918                   int mirror_num, int async_submit)
5919 {
5920         struct btrfs_device *dev;
5921         struct bio *first_bio = bio;
5922         u64 logical = (u64)bio->bi_iter.bi_sector << 9;
5923         u64 length = 0;
5924         u64 map_length;
5925         int ret;
5926         int dev_nr;
5927         int total_devs;
5928         struct btrfs_bio *bbio = NULL;
5929
5930         length = bio->bi_iter.bi_size;
5931         map_length = length;
5932
5933         btrfs_bio_counter_inc_blocked(root->fs_info);
5934         ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
5935                               mirror_num, 1);
5936         if (ret) {
5937                 btrfs_bio_counter_dec(root->fs_info);
5938                 return ret;
5939         }
5940
5941         total_devs = bbio->num_stripes;
5942         bbio->orig_bio = first_bio;
5943         bbio->private = first_bio->bi_private;
5944         bbio->end_io = first_bio->bi_end_io;
5945         bbio->fs_info = root->fs_info;
5946         atomic_set(&bbio->stripes_pending, bbio->num_stripes);
5947
5948         if (bbio->raid_map) {
5949                 /* In this case, map_length has been set to the length of
5950                    a single stripe; not the whole write */
5951                 if (rw & WRITE) {
5952                         ret = raid56_parity_write(root, bio, bbio, map_length);
5953                 } else {
5954                         ret = raid56_parity_recover(root, bio, bbio, map_length,
5955                                                     mirror_num, 1);
5956                 }
5957
5958                 btrfs_bio_counter_dec(root->fs_info);
5959                 return ret;
5960         }
5961
5962         if (map_length < length) {
5963                 btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
5964                         logical, length, map_length);
5965                 BUG();
5966         }
5967
5968         for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
5969                 dev = bbio->stripes[dev_nr].dev;
5970                 if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
5971                         bbio_error(bbio, first_bio, logical);
5972                         continue;
5973                 }
5974
5975                 if (dev_nr < total_devs - 1) {
5976                         bio = btrfs_bio_clone(first_bio, GFP_NOFS);
5977                         BUG_ON(!bio); /* -ENOMEM */
5978                 } else
5979                         bio = first_bio;
5980
5981                 submit_stripe_bio(root, bbio, bio,
5982                                   bbio->stripes[dev_nr].physical, dev_nr, rw,
5983                                   async_submit);
5984         }
5985         btrfs_bio_counter_dec(root->fs_info);
5986         return 0;
5987 }
5988
5989 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
5990                                        u8 *uuid, u8 *fsid)
5991 {
5992         struct btrfs_device *device;
5993         struct btrfs_fs_devices *cur_devices;
5994
5995         cur_devices = fs_info->fs_devices;
5996         while (cur_devices) {
5997                 if (!fsid ||
5998                     !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5999                         device = __find_device(&cur_devices->devices,
6000                                                devid, uuid);
6001                         if (device)
6002                                 return device;
6003                 }
6004                 cur_devices = cur_devices->seed;
6005         }
6006         return NULL;
6007 }
6008
6009 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
6010                                             struct btrfs_fs_devices *fs_devices,
6011                                             u64 devid, u8 *dev_uuid)
6012 {
6013         struct btrfs_device *device;
6014
6015         device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6016         if (IS_ERR(device))
6017                 return NULL;
6018
6019         list_add(&device->dev_list, &fs_devices->devices);
6020         device->fs_devices = fs_devices;
6021         fs_devices->num_devices++;
6022
6023         device->missing = 1;
6024         fs_devices->missing_devices++;
6025
6026         return device;
6027 }
6028
6029 /**
6030  * btrfs_alloc_device - allocate struct btrfs_device
6031  * @fs_info:    used only for generating a new devid, can be NULL if
6032  *              devid is provided (i.e. @devid != NULL).
6033  * @devid:      a pointer to devid for this device.  If NULL a new devid
6034  *              is generated.
6035  * @uuid:       a pointer to UUID for this device.  If NULL a new UUID
6036  *              is generated.
6037  *
6038  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6039  * on error.  Returned struct is not linked onto any lists and can be
6040  * destroyed with kfree() right away.
6041  */
6042 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6043                                         const u64 *devid,
6044                                         const u8 *uuid)
6045 {
6046         struct btrfs_device *dev;
6047         u64 tmp;
6048
6049         if (WARN_ON(!devid && !fs_info))
6050                 return ERR_PTR(-EINVAL);
6051
6052         dev = __alloc_device();
6053         if (IS_ERR(dev))
6054                 return dev;
6055
6056         if (devid)
6057                 tmp = *devid;
6058         else {
6059                 int ret;
6060
6061                 ret = find_next_devid(fs_info, &tmp);
6062                 if (ret) {
6063                         kfree(dev);
6064                         return ERR_PTR(ret);
6065                 }
6066         }
6067         dev->devid = tmp;
6068
6069         if (uuid)
6070                 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6071         else
6072                 generate_random_uuid(dev->uuid);
6073
6074         btrfs_init_work(&dev->work, btrfs_submit_helper,
6075                         pending_bios_fn, NULL, NULL);
6076
6077         return dev;
6078 }
6079
6080 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
6081                           struct extent_buffer *leaf,
6082                           struct btrfs_chunk *chunk)
6083 {
6084         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6085         struct map_lookup *map;
6086         struct extent_map *em;
6087         u64 logical;
6088         u64 length;
6089         u64 devid;
6090         u8 uuid[BTRFS_UUID_SIZE];
6091         int num_stripes;
6092         int ret;
6093         int i;
6094
6095         logical = key->offset;
6096         length = btrfs_chunk_length(leaf, chunk);
6097
6098         read_lock(&map_tree->map_tree.lock);
6099         em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6100         read_unlock(&map_tree->map_tree.lock);
6101
6102         /* already mapped? */
6103         if (em && em->start <= logical && em->start + em->len > logical) {
6104                 free_extent_map(em);
6105                 return 0;
6106         } else if (em) {
6107                 free_extent_map(em);
6108         }
6109
6110         em = alloc_extent_map();
6111         if (!em)
6112                 return -ENOMEM;
6113         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6114         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6115         if (!map) {
6116                 free_extent_map(em);
6117                 return -ENOMEM;
6118         }
6119
6120         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6121         em->bdev = (struct block_device *)map;
6122         em->start = logical;
6123         em->len = length;
6124         em->orig_start = 0;
6125         em->block_start = 0;
6126         em->block_len = em->len;
6127
6128         map->num_stripes = num_stripes;
6129         map->io_width = btrfs_chunk_io_width(leaf, chunk);
6130         map->io_align = btrfs_chunk_io_align(leaf, chunk);
6131         map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6132         map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6133         map->type = btrfs_chunk_type(leaf, chunk);
6134         map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6135         for (i = 0; i < num_stripes; i++) {
6136                 map->stripes[i].physical =
6137                         btrfs_stripe_offset_nr(leaf, chunk, i);
6138                 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6139                 read_extent_buffer(leaf, uuid, (unsigned long)
6140                                    btrfs_stripe_dev_uuid_nr(chunk, i),
6141                                    BTRFS_UUID_SIZE);
6142                 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
6143                                                         uuid, NULL);
6144                 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
6145                         free_extent_map(em);
6146                         return -EIO;
6147                 }
6148                 if (!map->stripes[i].dev) {
6149                         map->stripes[i].dev =
6150                                 add_missing_dev(root, root->fs_info->fs_devices,
6151                                                 devid, uuid);
6152                         if (!map->stripes[i].dev) {
6153                                 free_extent_map(em);
6154                                 return -EIO;
6155                         }
6156                         btrfs_warn(root->fs_info, "devid %llu uuid %pU is missing",
6157                                                 devid, uuid);
6158                 }
6159                 map->stripes[i].dev->in_fs_metadata = 1;
6160         }
6161
6162         write_lock(&map_tree->map_tree.lock);
6163         ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6164         write_unlock(&map_tree->map_tree.lock);
6165         BUG_ON(ret); /* Tree corruption */
6166         free_extent_map(em);
6167
6168         return 0;
6169 }
6170
6171 static void fill_device_from_item(struct extent_buffer *leaf,
6172                                  struct btrfs_dev_item *dev_item,
6173                                  struct btrfs_device *device)
6174 {
6175         unsigned long ptr;
6176
6177         device->devid = btrfs_device_id(leaf, dev_item);
6178         device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6179         device->total_bytes = device->disk_total_bytes;
6180         device->commit_total_bytes = device->disk_total_bytes;
6181         device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6182         device->commit_bytes_used = device->bytes_used;
6183         device->type = btrfs_device_type(leaf, dev_item);
6184         device->io_align = btrfs_device_io_align(leaf, dev_item);
6185         device->io_width = btrfs_device_io_width(leaf, dev_item);
6186         device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6187         WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6188         device->is_tgtdev_for_dev_replace = 0;
6189
6190         ptr = btrfs_device_uuid(dev_item);
6191         read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6192 }
6193
6194 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_root *root,
6195                                                   u8 *fsid)
6196 {
6197         struct btrfs_fs_devices *fs_devices;
6198         int ret;
6199
6200         BUG_ON(!mutex_is_locked(&uuid_mutex));
6201
6202         fs_devices = root->fs_info->fs_devices->seed;
6203         while (fs_devices) {
6204                 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6205                         return fs_devices;
6206
6207                 fs_devices = fs_devices->seed;
6208         }
6209
6210         fs_devices = find_fsid(fsid);
6211         if (!fs_devices) {
6212                 if (!btrfs_test_opt(root, DEGRADED))
6213                         return ERR_PTR(-ENOENT);
6214
6215                 fs_devices = alloc_fs_devices(fsid);
6216                 if (IS_ERR(fs_devices))
6217                         return fs_devices;
6218
6219                 fs_devices->seeding = 1;
6220                 fs_devices->opened = 1;
6221                 return fs_devices;
6222         }
6223
6224         fs_devices = clone_fs_devices(fs_devices);
6225         if (IS_ERR(fs_devices))
6226                 return fs_devices;
6227
6228         ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6229                                    root->fs_info->bdev_holder);
6230         if (ret) {
6231                 free_fs_devices(fs_devices);
6232                 fs_devices = ERR_PTR(ret);
6233                 goto out;
6234         }
6235
6236         if (!fs_devices->seeding) {
6237                 __btrfs_close_devices(fs_devices);
6238                 free_fs_devices(fs_devices);
6239                 fs_devices = ERR_PTR(-EINVAL);
6240                 goto out;
6241         }
6242
6243         fs_devices->seed = root->fs_info->fs_devices->seed;
6244         root->fs_info->fs_devices->seed = fs_devices;
6245 out:
6246         return fs_devices;
6247 }
6248
6249 static int read_one_dev(struct btrfs_root *root,
6250                         struct extent_buffer *leaf,
6251                         struct btrfs_dev_item *dev_item)
6252 {
6253         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6254         struct btrfs_device *device;
6255         u64 devid;
6256         int ret;
6257         u8 fs_uuid[BTRFS_UUID_SIZE];
6258         u8 dev_uuid[BTRFS_UUID_SIZE];
6259
6260         devid = btrfs_device_id(leaf, dev_item);
6261         read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6262                            BTRFS_UUID_SIZE);
6263         read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6264                            BTRFS_UUID_SIZE);
6265
6266         if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
6267                 fs_devices = open_seed_devices(root, fs_uuid);
6268                 if (IS_ERR(fs_devices))
6269                         return PTR_ERR(fs_devices);
6270         }
6271
6272         device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
6273         if (!device) {
6274                 if (!btrfs_test_opt(root, DEGRADED))
6275                         return -EIO;
6276
6277                 device = add_missing_dev(root, fs_devices, devid, dev_uuid);
6278                 if (!device)
6279                         return -ENOMEM;
6280                 btrfs_warn(root->fs_info, "devid %llu uuid %pU missing",
6281                                 devid, dev_uuid);
6282         } else {
6283                 if (!device->bdev && !btrfs_test_opt(root, DEGRADED))
6284                         return -EIO;
6285
6286                 if(!device->bdev && !device->missing) {
6287                         /*
6288                          * this happens when a device that was properly setup
6289                          * in the device info lists suddenly goes bad.
6290                          * device->bdev is NULL, and so we have to set
6291                          * device->missing to one here
6292                          */
6293                         device->fs_devices->missing_devices++;
6294                         device->missing = 1;
6295                 }
6296
6297                 /* Move the device to its own fs_devices */
6298                 if (device->fs_devices != fs_devices) {
6299                         ASSERT(device->missing);
6300
6301                         list_move(&device->dev_list, &fs_devices->devices);
6302                         device->fs_devices->num_devices--;
6303                         fs_devices->num_devices++;
6304
6305                         device->fs_devices->missing_devices--;
6306                         fs_devices->missing_devices++;
6307
6308                         device->fs_devices = fs_devices;
6309                 }
6310         }
6311
6312         if (device->fs_devices != root->fs_info->fs_devices) {
6313                 BUG_ON(device->writeable);
6314                 if (device->generation !=
6315                     btrfs_device_generation(leaf, dev_item))
6316                         return -EINVAL;
6317         }
6318
6319         fill_device_from_item(leaf, dev_item, device);
6320         device->in_fs_metadata = 1;
6321         if (device->writeable && !device->is_tgtdev_for_dev_replace) {
6322                 device->fs_devices->total_rw_bytes += device->total_bytes;
6323                 spin_lock(&root->fs_info->free_chunk_lock);
6324                 root->fs_info->free_chunk_space += device->total_bytes -
6325                         device->bytes_used;
6326                 spin_unlock(&root->fs_info->free_chunk_lock);
6327         }
6328         ret = 0;
6329         return ret;
6330 }
6331
6332 int btrfs_read_sys_array(struct btrfs_root *root)
6333 {
6334         struct btrfs_super_block *super_copy = root->fs_info->super_copy;
6335         struct extent_buffer *sb;
6336         struct btrfs_disk_key *disk_key;
6337         struct btrfs_chunk *chunk;
6338         u8 *array_ptr;
6339         unsigned long sb_array_offset;
6340         int ret = 0;
6341         u32 num_stripes;
6342         u32 array_size;
6343         u32 len = 0;
6344         u32 cur_offset;
6345         struct btrfs_key key;
6346
6347         ASSERT(BTRFS_SUPER_INFO_SIZE <= root->nodesize);
6348         /*
6349          * This will create extent buffer of nodesize, superblock size is
6350          * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6351          * overallocate but we can keep it as-is, only the first page is used.
6352          */
6353         sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET);
6354         if (!sb)
6355                 return -ENOMEM;
6356         btrfs_set_buffer_uptodate(sb);
6357         btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6358         /*
6359          * The sb extent buffer is artifical and just used to read the system array.
6360          * btrfs_set_buffer_uptodate() call does not properly mark all it's
6361          * pages up-to-date when the page is larger: extent does not cover the
6362          * whole page and consequently check_page_uptodate does not find all
6363          * the page's extents up-to-date (the hole beyond sb),
6364          * write_extent_buffer then triggers a WARN_ON.
6365          *
6366          * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6367          * but sb spans only this function. Add an explicit SetPageUptodate call
6368          * to silence the warning eg. on PowerPC 64.
6369          */
6370         if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
6371                 SetPageUptodate(sb->pages[0]);
6372
6373         write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6374         array_size = btrfs_super_sys_array_size(super_copy);
6375
6376         array_ptr = super_copy->sys_chunk_array;
6377         sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6378         cur_offset = 0;
6379
6380         while (cur_offset < array_size) {
6381                 disk_key = (struct btrfs_disk_key *)array_ptr;
6382                 len = sizeof(*disk_key);
6383                 if (cur_offset + len > array_size)
6384                         goto out_short_read;
6385
6386                 btrfs_disk_key_to_cpu(&key, disk_key);
6387
6388                 array_ptr += len;
6389                 sb_array_offset += len;
6390                 cur_offset += len;
6391
6392                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6393                         chunk = (struct btrfs_chunk *)sb_array_offset;
6394                         /*
6395                          * At least one btrfs_chunk with one stripe must be
6396                          * present, exact stripe count check comes afterwards
6397                          */
6398                         len = btrfs_chunk_item_size(1);
6399                         if (cur_offset + len > array_size)
6400                                 goto out_short_read;
6401
6402                         num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6403                         len = btrfs_chunk_item_size(num_stripes);
6404                         if (cur_offset + len > array_size)
6405                                 goto out_short_read;
6406
6407                         ret = read_one_chunk(root, &key, sb, chunk);
6408                         if (ret)
6409                                 break;
6410                 } else {
6411                         ret = -EIO;
6412                         break;
6413                 }
6414                 array_ptr += len;
6415                 sb_array_offset += len;
6416                 cur_offset += len;
6417         }
6418         free_extent_buffer(sb);
6419         return ret;
6420
6421 out_short_read:
6422         printk(KERN_ERR "BTRFS: sys_array too short to read %u bytes at offset %u\n",
6423                         len, cur_offset);
6424         free_extent_buffer(sb);
6425         return -EIO;
6426 }
6427
6428 int btrfs_read_chunk_tree(struct btrfs_root *root)
6429 {
6430         struct btrfs_path *path;
6431         struct extent_buffer *leaf;
6432         struct btrfs_key key;
6433         struct btrfs_key found_key;
6434         int ret;
6435         int slot;
6436
6437         root = root->fs_info->chunk_root;
6438
6439         path = btrfs_alloc_path();
6440         if (!path)
6441                 return -ENOMEM;
6442
6443         mutex_lock(&uuid_mutex);
6444         lock_chunks(root);
6445
6446         /*
6447          * Read all device items, and then all the chunk items. All
6448          * device items are found before any chunk item (their object id
6449          * is smaller than the lowest possible object id for a chunk
6450          * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6451          */
6452         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6453         key.offset = 0;
6454         key.type = 0;
6455         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6456         if (ret < 0)
6457                 goto error;
6458         while (1) {
6459                 leaf = path->nodes[0];
6460                 slot = path->slots[0];
6461                 if (slot >= btrfs_header_nritems(leaf)) {
6462                         ret = btrfs_next_leaf(root, path);
6463                         if (ret == 0)
6464                                 continue;
6465                         if (ret < 0)
6466                                 goto error;
6467                         break;
6468                 }
6469                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6470                 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6471                         struct btrfs_dev_item *dev_item;
6472                         dev_item = btrfs_item_ptr(leaf, slot,
6473                                                   struct btrfs_dev_item);
6474                         ret = read_one_dev(root, leaf, dev_item);
6475                         if (ret)
6476                                 goto error;
6477                 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6478                         struct btrfs_chunk *chunk;
6479                         chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6480                         ret = read_one_chunk(root, &found_key, leaf, chunk);
6481                         if (ret)
6482                                 goto error;
6483                 }
6484                 path->slots[0]++;
6485         }
6486         ret = 0;
6487 error:
6488         unlock_chunks(root);
6489         mutex_unlock(&uuid_mutex);
6490
6491         btrfs_free_path(path);
6492         return ret;
6493 }
6494
6495 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6496 {
6497         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6498         struct btrfs_device *device;
6499
6500         while (fs_devices) {
6501                 mutex_lock(&fs_devices->device_list_mutex);
6502                 list_for_each_entry(device, &fs_devices->devices, dev_list)
6503                         device->dev_root = fs_info->dev_root;
6504                 mutex_unlock(&fs_devices->device_list_mutex);
6505
6506                 fs_devices = fs_devices->seed;
6507         }
6508 }
6509
6510 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6511 {
6512         int i;
6513
6514         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6515                 btrfs_dev_stat_reset(dev, i);
6516 }
6517
6518 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6519 {
6520         struct btrfs_key key;
6521         struct btrfs_key found_key;
6522         struct btrfs_root *dev_root = fs_info->dev_root;
6523         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6524         struct extent_buffer *eb;
6525         int slot;
6526         int ret = 0;
6527         struct btrfs_device *device;
6528         struct btrfs_path *path = NULL;
6529         int i;
6530
6531         path = btrfs_alloc_path();
6532         if (!path) {
6533                 ret = -ENOMEM;
6534                 goto out;
6535         }
6536
6537         mutex_lock(&fs_devices->device_list_mutex);
6538         list_for_each_entry(device, &fs_devices->devices, dev_list) {
6539                 int item_size;
6540                 struct btrfs_dev_stats_item *ptr;
6541
6542                 key.objectid = 0;
6543                 key.type = BTRFS_DEV_STATS_KEY;
6544                 key.offset = device->devid;
6545                 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6546                 if (ret) {
6547                         __btrfs_reset_dev_stats(device);
6548                         device->dev_stats_valid = 1;
6549                         btrfs_release_path(path);
6550                         continue;
6551                 }
6552                 slot = path->slots[0];
6553                 eb = path->nodes[0];
6554                 btrfs_item_key_to_cpu(eb, &found_key, slot);
6555                 item_size = btrfs_item_size_nr(eb, slot);
6556
6557                 ptr = btrfs_item_ptr(eb, slot,
6558                                      struct btrfs_dev_stats_item);
6559
6560                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6561                         if (item_size >= (1 + i) * sizeof(__le64))
6562                                 btrfs_dev_stat_set(device, i,
6563                                         btrfs_dev_stats_value(eb, ptr, i));
6564                         else
6565                                 btrfs_dev_stat_reset(device, i);
6566                 }
6567
6568                 device->dev_stats_valid = 1;
6569                 btrfs_dev_stat_print_on_load(device);
6570                 btrfs_release_path(path);
6571         }
6572         mutex_unlock(&fs_devices->device_list_mutex);
6573
6574 out:
6575         btrfs_free_path(path);
6576         return ret < 0 ? ret : 0;
6577 }
6578
6579 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6580                                 struct btrfs_root *dev_root,
6581                                 struct btrfs_device *device)
6582 {
6583         struct btrfs_path *path;
6584         struct btrfs_key key;
6585         struct extent_buffer *eb;
6586         struct btrfs_dev_stats_item *ptr;
6587         int ret;
6588         int i;
6589
6590         key.objectid = 0;
6591         key.type = BTRFS_DEV_STATS_KEY;
6592         key.offset = device->devid;
6593
6594         path = btrfs_alloc_path();
6595         BUG_ON(!path);
6596         ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6597         if (ret < 0) {
6598                 btrfs_warn_in_rcu(dev_root->fs_info,
6599                         "error %d while searching for dev_stats item for device %s",
6600                               ret, rcu_str_deref(device->name));
6601                 goto out;
6602         }
6603
6604         if (ret == 0 &&
6605             btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6606                 /* need to delete old one and insert a new one */
6607                 ret = btrfs_del_item(trans, dev_root, path);
6608                 if (ret != 0) {
6609                         btrfs_warn_in_rcu(dev_root->fs_info,
6610                                 "delete too small dev_stats item for device %s failed %d",
6611                                       rcu_str_deref(device->name), ret);
6612                         goto out;
6613                 }
6614                 ret = 1;
6615         }
6616
6617         if (ret == 1) {
6618                 /* need to insert a new item */
6619                 btrfs_release_path(path);
6620                 ret = btrfs_insert_empty_item(trans, dev_root, path,
6621                                               &key, sizeof(*ptr));
6622                 if (ret < 0) {
6623                         btrfs_warn_in_rcu(dev_root->fs_info,
6624                                 "insert dev_stats item for device %s failed %d",
6625                                 rcu_str_deref(device->name), ret);
6626                         goto out;
6627                 }
6628         }
6629
6630         eb = path->nodes[0];
6631         ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6632         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6633                 btrfs_set_dev_stats_value(eb, ptr, i,
6634                                           btrfs_dev_stat_read(device, i));
6635         btrfs_mark_buffer_dirty(eb);
6636
6637 out:
6638         btrfs_free_path(path);
6639         return ret;
6640 }
6641
6642 /*
6643  * called from commit_transaction. Writes all changed device stats to disk.
6644  */
6645 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
6646                         struct btrfs_fs_info *fs_info)
6647 {
6648         struct btrfs_root *dev_root = fs_info->dev_root;
6649         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6650         struct btrfs_device *device;
6651         int stats_cnt;
6652         int ret = 0;
6653
6654         mutex_lock(&fs_devices->device_list_mutex);
6655         list_for_each_entry(device, &fs_devices->devices, dev_list) {
6656                 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
6657                         continue;
6658
6659                 stats_cnt = atomic_read(&device->dev_stats_ccnt);
6660                 ret = update_dev_stat_item(trans, dev_root, device);
6661                 if (!ret)
6662                         atomic_sub(stats_cnt, &device->dev_stats_ccnt);
6663         }
6664         mutex_unlock(&fs_devices->device_list_mutex);
6665
6666         return ret;
6667 }
6668
6669 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
6670 {
6671         btrfs_dev_stat_inc(dev, index);
6672         btrfs_dev_stat_print_on_error(dev);
6673 }
6674
6675 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
6676 {
6677         if (!dev->dev_stats_valid)
6678                 return;
6679         btrfs_err_rl_in_rcu(dev->dev_root->fs_info,
6680                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
6681                            rcu_str_deref(dev->name),
6682                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6683                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6684                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6685                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6686                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6687 }
6688
6689 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
6690 {
6691         int i;
6692
6693         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6694                 if (btrfs_dev_stat_read(dev, i) != 0)
6695                         break;
6696         if (i == BTRFS_DEV_STAT_VALUES_MAX)
6697                 return; /* all values == 0, suppress message */
6698
6699         btrfs_info_in_rcu(dev->dev_root->fs_info,
6700                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
6701                rcu_str_deref(dev->name),
6702                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6703                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6704                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6705                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6706                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6707 }
6708
6709 int btrfs_get_dev_stats(struct btrfs_root *root,
6710                         struct btrfs_ioctl_get_dev_stats *stats)
6711 {
6712         struct btrfs_device *dev;
6713         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6714         int i;
6715
6716         mutex_lock(&fs_devices->device_list_mutex);
6717         dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
6718         mutex_unlock(&fs_devices->device_list_mutex);
6719
6720         if (!dev) {
6721                 btrfs_warn(root->fs_info, "get dev_stats failed, device not found");
6722                 return -ENODEV;
6723         } else if (!dev->dev_stats_valid) {
6724                 btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid");
6725                 return -ENODEV;
6726         } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
6727                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6728                         if (stats->nr_items > i)
6729                                 stats->values[i] =
6730                                         btrfs_dev_stat_read_and_reset(dev, i);
6731                         else
6732                                 btrfs_dev_stat_reset(dev, i);
6733                 }
6734         } else {
6735                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6736                         if (stats->nr_items > i)
6737                                 stats->values[i] = btrfs_dev_stat_read(dev, i);
6738         }
6739         if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
6740                 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
6741         return 0;
6742 }
6743
6744 int btrfs_scratch_superblock(struct btrfs_device *device)
6745 {
6746         struct buffer_head *bh;
6747         struct btrfs_super_block *disk_super;
6748
6749         bh = btrfs_read_dev_super(device->bdev);
6750         if (!bh)
6751                 return -EINVAL;
6752         disk_super = (struct btrfs_super_block *)bh->b_data;
6753
6754         memset(&disk_super->magic, 0, sizeof(disk_super->magic));
6755         set_buffer_dirty(bh);
6756         sync_dirty_buffer(bh);
6757         brelse(bh);
6758
6759         return 0;
6760 }
6761
6762 /*
6763  * Update the size of all devices, which is used for writing out the
6764  * super blocks.
6765  */
6766 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
6767 {
6768         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6769         struct btrfs_device *curr, *next;
6770
6771         if (list_empty(&fs_devices->resized_devices))
6772                 return;
6773
6774         mutex_lock(&fs_devices->device_list_mutex);
6775         lock_chunks(fs_info->dev_root);
6776         list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
6777                                  resized_list) {
6778                 list_del_init(&curr->resized_list);
6779                 curr->commit_total_bytes = curr->disk_total_bytes;
6780         }
6781         unlock_chunks(fs_info->dev_root);
6782         mutex_unlock(&fs_devices->device_list_mutex);
6783 }
6784
6785 /* Must be invoked during the transaction commit */
6786 void btrfs_update_commit_device_bytes_used(struct btrfs_root *root,
6787                                         struct btrfs_transaction *transaction)
6788 {
6789         struct extent_map *em;
6790         struct map_lookup *map;
6791         struct btrfs_device *dev;
6792         int i;
6793
6794         if (list_empty(&transaction->pending_chunks))
6795                 return;
6796
6797         /* In order to kick the device replace finish process */
6798         lock_chunks(root);
6799         list_for_each_entry(em, &transaction->pending_chunks, list) {
6800                 map = (struct map_lookup *)em->bdev;
6801
6802                 for (i = 0; i < map->num_stripes; i++) {
6803                         dev = map->stripes[i].dev;
6804                         dev->commit_bytes_used = dev->bytes_used;
6805                 }
6806         }
6807         unlock_chunks(root);
6808 }
6809
6810 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
6811 {
6812         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6813         while (fs_devices) {
6814                 fs_devices->fs_info = fs_info;
6815                 fs_devices = fs_devices->seed;
6816         }
6817 }
6818
6819 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
6820 {
6821         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6822         while (fs_devices) {
6823                 fs_devices->fs_info = NULL;
6824                 fs_devices = fs_devices->seed;
6825         }
6826 }