Btrfs: consolidate btrfs_error() to btrfs_std_error()
[cascardo/linux.git] / fs / btrfs / volumes.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/random.h>
24 #include <linux/iocontext.h>
25 #include <linux/capability.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <linux/raid/pq.h>
29 #include <linux/semaphore.h>
30 #include <asm/div64.h>
31 #include "ctree.h"
32 #include "extent_map.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "raid56.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
41 #include "math.h"
42 #include "dev-replace.h"
43 #include "sysfs.h"
44
45 static int init_first_rw_device(struct btrfs_trans_handle *trans,
46                                 struct btrfs_root *root,
47                                 struct btrfs_device *device);
48 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
49 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
50 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
51 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
52
53 DEFINE_MUTEX(uuid_mutex);
54 static LIST_HEAD(fs_uuids);
55 struct list_head *btrfs_get_fs_uuids(void)
56 {
57         return &fs_uuids;
58 }
59
60 static struct btrfs_fs_devices *__alloc_fs_devices(void)
61 {
62         struct btrfs_fs_devices *fs_devs;
63
64         fs_devs = kzalloc(sizeof(*fs_devs), GFP_NOFS);
65         if (!fs_devs)
66                 return ERR_PTR(-ENOMEM);
67
68         mutex_init(&fs_devs->device_list_mutex);
69
70         INIT_LIST_HEAD(&fs_devs->devices);
71         INIT_LIST_HEAD(&fs_devs->resized_devices);
72         INIT_LIST_HEAD(&fs_devs->alloc_list);
73         INIT_LIST_HEAD(&fs_devs->list);
74
75         return fs_devs;
76 }
77
78 /**
79  * alloc_fs_devices - allocate struct btrfs_fs_devices
80  * @fsid:       a pointer to UUID for this FS.  If NULL a new UUID is
81  *              generated.
82  *
83  * Return: a pointer to a new &struct btrfs_fs_devices on success;
84  * ERR_PTR() on error.  Returned struct is not linked onto any lists and
85  * can be destroyed with kfree() right away.
86  */
87 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
88 {
89         struct btrfs_fs_devices *fs_devs;
90
91         fs_devs = __alloc_fs_devices();
92         if (IS_ERR(fs_devs))
93                 return fs_devs;
94
95         if (fsid)
96                 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
97         else
98                 generate_random_uuid(fs_devs->fsid);
99
100         return fs_devs;
101 }
102
103 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
104 {
105         struct btrfs_device *device;
106         WARN_ON(fs_devices->opened);
107         while (!list_empty(&fs_devices->devices)) {
108                 device = list_entry(fs_devices->devices.next,
109                                     struct btrfs_device, dev_list);
110                 list_del(&device->dev_list);
111                 rcu_string_free(device->name);
112                 kfree(device);
113         }
114         kfree(fs_devices);
115 }
116
117 static void btrfs_kobject_uevent(struct block_device *bdev,
118                                  enum kobject_action action)
119 {
120         int ret;
121
122         ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
123         if (ret)
124                 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
125                         action,
126                         kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
127                         &disk_to_dev(bdev->bd_disk)->kobj);
128 }
129
130 void btrfs_cleanup_fs_uuids(void)
131 {
132         struct btrfs_fs_devices *fs_devices;
133
134         while (!list_empty(&fs_uuids)) {
135                 fs_devices = list_entry(fs_uuids.next,
136                                         struct btrfs_fs_devices, list);
137                 list_del(&fs_devices->list);
138                 free_fs_devices(fs_devices);
139         }
140 }
141
142 static struct btrfs_device *__alloc_device(void)
143 {
144         struct btrfs_device *dev;
145
146         dev = kzalloc(sizeof(*dev), GFP_NOFS);
147         if (!dev)
148                 return ERR_PTR(-ENOMEM);
149
150         INIT_LIST_HEAD(&dev->dev_list);
151         INIT_LIST_HEAD(&dev->dev_alloc_list);
152         INIT_LIST_HEAD(&dev->resized_list);
153
154         spin_lock_init(&dev->io_lock);
155
156         spin_lock_init(&dev->reada_lock);
157         atomic_set(&dev->reada_in_flight, 0);
158         atomic_set(&dev->dev_stats_ccnt, 0);
159         INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_WAIT);
160         INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_WAIT);
161
162         return dev;
163 }
164
165 static noinline struct btrfs_device *__find_device(struct list_head *head,
166                                                    u64 devid, u8 *uuid)
167 {
168         struct btrfs_device *dev;
169
170         list_for_each_entry(dev, head, dev_list) {
171                 if (dev->devid == devid &&
172                     (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
173                         return dev;
174                 }
175         }
176         return NULL;
177 }
178
179 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
180 {
181         struct btrfs_fs_devices *fs_devices;
182
183         list_for_each_entry(fs_devices, &fs_uuids, list) {
184                 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
185                         return fs_devices;
186         }
187         return NULL;
188 }
189
190 static int
191 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
192                       int flush, struct block_device **bdev,
193                       struct buffer_head **bh)
194 {
195         int ret;
196
197         *bdev = blkdev_get_by_path(device_path, flags, holder);
198
199         if (IS_ERR(*bdev)) {
200                 ret = PTR_ERR(*bdev);
201                 printk(KERN_INFO "BTRFS: open %s failed\n", device_path);
202                 goto error;
203         }
204
205         if (flush)
206                 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
207         ret = set_blocksize(*bdev, 4096);
208         if (ret) {
209                 blkdev_put(*bdev, flags);
210                 goto error;
211         }
212         invalidate_bdev(*bdev);
213         *bh = btrfs_read_dev_super(*bdev);
214         if (IS_ERR(*bh)) {
215                 ret = PTR_ERR(*bh);
216                 blkdev_put(*bdev, flags);
217                 goto error;
218         }
219
220         return 0;
221
222 error:
223         *bdev = NULL;
224         *bh = NULL;
225         return ret;
226 }
227
228 static void requeue_list(struct btrfs_pending_bios *pending_bios,
229                         struct bio *head, struct bio *tail)
230 {
231
232         struct bio *old_head;
233
234         old_head = pending_bios->head;
235         pending_bios->head = head;
236         if (pending_bios->tail)
237                 tail->bi_next = old_head;
238         else
239                 pending_bios->tail = tail;
240 }
241
242 /*
243  * we try to collect pending bios for a device so we don't get a large
244  * number of procs sending bios down to the same device.  This greatly
245  * improves the schedulers ability to collect and merge the bios.
246  *
247  * But, it also turns into a long list of bios to process and that is sure
248  * to eventually make the worker thread block.  The solution here is to
249  * make some progress and then put this work struct back at the end of
250  * the list if the block device is congested.  This way, multiple devices
251  * can make progress from a single worker thread.
252  */
253 static noinline void run_scheduled_bios(struct btrfs_device *device)
254 {
255         struct bio *pending;
256         struct backing_dev_info *bdi;
257         struct btrfs_fs_info *fs_info;
258         struct btrfs_pending_bios *pending_bios;
259         struct bio *tail;
260         struct bio *cur;
261         int again = 0;
262         unsigned long num_run;
263         unsigned long batch_run = 0;
264         unsigned long limit;
265         unsigned long last_waited = 0;
266         int force_reg = 0;
267         int sync_pending = 0;
268         struct blk_plug plug;
269
270         /*
271          * this function runs all the bios we've collected for
272          * a particular device.  We don't want to wander off to
273          * another device without first sending all of these down.
274          * So, setup a plug here and finish it off before we return
275          */
276         blk_start_plug(&plug);
277
278         bdi = blk_get_backing_dev_info(device->bdev);
279         fs_info = device->dev_root->fs_info;
280         limit = btrfs_async_submit_limit(fs_info);
281         limit = limit * 2 / 3;
282
283 loop:
284         spin_lock(&device->io_lock);
285
286 loop_lock:
287         num_run = 0;
288
289         /* take all the bios off the list at once and process them
290          * later on (without the lock held).  But, remember the
291          * tail and other pointers so the bios can be properly reinserted
292          * into the list if we hit congestion
293          */
294         if (!force_reg && device->pending_sync_bios.head) {
295                 pending_bios = &device->pending_sync_bios;
296                 force_reg = 1;
297         } else {
298                 pending_bios = &device->pending_bios;
299                 force_reg = 0;
300         }
301
302         pending = pending_bios->head;
303         tail = pending_bios->tail;
304         WARN_ON(pending && !tail);
305
306         /*
307          * if pending was null this time around, no bios need processing
308          * at all and we can stop.  Otherwise it'll loop back up again
309          * and do an additional check so no bios are missed.
310          *
311          * device->running_pending is used to synchronize with the
312          * schedule_bio code.
313          */
314         if (device->pending_sync_bios.head == NULL &&
315             device->pending_bios.head == NULL) {
316                 again = 0;
317                 device->running_pending = 0;
318         } else {
319                 again = 1;
320                 device->running_pending = 1;
321         }
322
323         pending_bios->head = NULL;
324         pending_bios->tail = NULL;
325
326         spin_unlock(&device->io_lock);
327
328         while (pending) {
329
330                 rmb();
331                 /* we want to work on both lists, but do more bios on the
332                  * sync list than the regular list
333                  */
334                 if ((num_run > 32 &&
335                     pending_bios != &device->pending_sync_bios &&
336                     device->pending_sync_bios.head) ||
337                    (num_run > 64 && pending_bios == &device->pending_sync_bios &&
338                     device->pending_bios.head)) {
339                         spin_lock(&device->io_lock);
340                         requeue_list(pending_bios, pending, tail);
341                         goto loop_lock;
342                 }
343
344                 cur = pending;
345                 pending = pending->bi_next;
346                 cur->bi_next = NULL;
347
348                 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
349                     waitqueue_active(&fs_info->async_submit_wait))
350                         wake_up(&fs_info->async_submit_wait);
351
352                 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
353
354                 /*
355                  * if we're doing the sync list, record that our
356                  * plug has some sync requests on it
357                  *
358                  * If we're doing the regular list and there are
359                  * sync requests sitting around, unplug before
360                  * we add more
361                  */
362                 if (pending_bios == &device->pending_sync_bios) {
363                         sync_pending = 1;
364                 } else if (sync_pending) {
365                         blk_finish_plug(&plug);
366                         blk_start_plug(&plug);
367                         sync_pending = 0;
368                 }
369
370                 btrfsic_submit_bio(cur->bi_rw, cur);
371                 num_run++;
372                 batch_run++;
373
374                 cond_resched();
375
376                 /*
377                  * we made progress, there is more work to do and the bdi
378                  * is now congested.  Back off and let other work structs
379                  * run instead
380                  */
381                 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
382                     fs_info->fs_devices->open_devices > 1) {
383                         struct io_context *ioc;
384
385                         ioc = current->io_context;
386
387                         /*
388                          * the main goal here is that we don't want to
389                          * block if we're going to be able to submit
390                          * more requests without blocking.
391                          *
392                          * This code does two great things, it pokes into
393                          * the elevator code from a filesystem _and_
394                          * it makes assumptions about how batching works.
395                          */
396                         if (ioc && ioc->nr_batch_requests > 0 &&
397                             time_before(jiffies, ioc->last_waited + HZ/50UL) &&
398                             (last_waited == 0 ||
399                              ioc->last_waited == last_waited)) {
400                                 /*
401                                  * we want to go through our batch of
402                                  * requests and stop.  So, we copy out
403                                  * the ioc->last_waited time and test
404                                  * against it before looping
405                                  */
406                                 last_waited = ioc->last_waited;
407                                 cond_resched();
408                                 continue;
409                         }
410                         spin_lock(&device->io_lock);
411                         requeue_list(pending_bios, pending, tail);
412                         device->running_pending = 1;
413
414                         spin_unlock(&device->io_lock);
415                         btrfs_queue_work(fs_info->submit_workers,
416                                          &device->work);
417                         goto done;
418                 }
419                 /* unplug every 64 requests just for good measure */
420                 if (batch_run % 64 == 0) {
421                         blk_finish_plug(&plug);
422                         blk_start_plug(&plug);
423                         sync_pending = 0;
424                 }
425         }
426
427         cond_resched();
428         if (again)
429                 goto loop;
430
431         spin_lock(&device->io_lock);
432         if (device->pending_bios.head || device->pending_sync_bios.head)
433                 goto loop_lock;
434         spin_unlock(&device->io_lock);
435
436 done:
437         blk_finish_plug(&plug);
438 }
439
440 static void pending_bios_fn(struct btrfs_work *work)
441 {
442         struct btrfs_device *device;
443
444         device = container_of(work, struct btrfs_device, work);
445         run_scheduled_bios(device);
446 }
447
448
449 void btrfs_free_stale_device(struct btrfs_device *cur_dev)
450 {
451         struct btrfs_fs_devices *fs_devs;
452         struct btrfs_device *dev;
453
454         if (!cur_dev->name)
455                 return;
456
457         list_for_each_entry(fs_devs, &fs_uuids, list) {
458                 int del = 1;
459
460                 if (fs_devs->opened)
461                         continue;
462                 if (fs_devs->seeding)
463                         continue;
464
465                 list_for_each_entry(dev, &fs_devs->devices, dev_list) {
466
467                         if (dev == cur_dev)
468                                 continue;
469                         if (!dev->name)
470                                 continue;
471
472                         /*
473                          * Todo: This won't be enough. What if the same device
474                          * comes back (with new uuid and) with its mapper path?
475                          * But for now, this does help as mostly an admin will
476                          * either use mapper or non mapper path throughout.
477                          */
478                         rcu_read_lock();
479                         del = strcmp(rcu_str_deref(dev->name),
480                                                 rcu_str_deref(cur_dev->name));
481                         rcu_read_unlock();
482                         if (!del)
483                                 break;
484                 }
485
486                 if (!del) {
487                         /* delete the stale device */
488                         if (fs_devs->num_devices == 1) {
489                                 btrfs_sysfs_remove_fsid(fs_devs);
490                                 list_del(&fs_devs->list);
491                                 free_fs_devices(fs_devs);
492                         } else {
493                                 fs_devs->num_devices--;
494                                 list_del(&dev->dev_list);
495                                 rcu_string_free(dev->name);
496                                 kfree(dev);
497                         }
498                         break;
499                 }
500         }
501 }
502
503 /*
504  * Add new device to list of registered devices
505  *
506  * Returns:
507  * 1   - first time device is seen
508  * 0   - device already known
509  * < 0 - error
510  */
511 static noinline int device_list_add(const char *path,
512                            struct btrfs_super_block *disk_super,
513                            u64 devid, struct btrfs_fs_devices **fs_devices_ret)
514 {
515         struct btrfs_device *device;
516         struct btrfs_fs_devices *fs_devices;
517         struct rcu_string *name;
518         int ret = 0;
519         u64 found_transid = btrfs_super_generation(disk_super);
520
521         fs_devices = find_fsid(disk_super->fsid);
522         if (!fs_devices) {
523                 fs_devices = alloc_fs_devices(disk_super->fsid);
524                 if (IS_ERR(fs_devices))
525                         return PTR_ERR(fs_devices);
526
527                 list_add(&fs_devices->list, &fs_uuids);
528
529                 device = NULL;
530         } else {
531                 device = __find_device(&fs_devices->devices, devid,
532                                        disk_super->dev_item.uuid);
533         }
534
535         if (!device) {
536                 if (fs_devices->opened)
537                         return -EBUSY;
538
539                 device = btrfs_alloc_device(NULL, &devid,
540                                             disk_super->dev_item.uuid);
541                 if (IS_ERR(device)) {
542                         /* we can safely leave the fs_devices entry around */
543                         return PTR_ERR(device);
544                 }
545
546                 name = rcu_string_strdup(path, GFP_NOFS);
547                 if (!name) {
548                         kfree(device);
549                         return -ENOMEM;
550                 }
551                 rcu_assign_pointer(device->name, name);
552
553                 mutex_lock(&fs_devices->device_list_mutex);
554                 list_add_rcu(&device->dev_list, &fs_devices->devices);
555                 fs_devices->num_devices++;
556                 mutex_unlock(&fs_devices->device_list_mutex);
557
558                 ret = 1;
559                 device->fs_devices = fs_devices;
560         } else if (!device->name || strcmp(device->name->str, path)) {
561                 /*
562                  * When FS is already mounted.
563                  * 1. If you are here and if the device->name is NULL that
564                  *    means this device was missing at time of FS mount.
565                  * 2. If you are here and if the device->name is different
566                  *    from 'path' that means either
567                  *      a. The same device disappeared and reappeared with
568                  *         different name. or
569                  *      b. The missing-disk-which-was-replaced, has
570                  *         reappeared now.
571                  *
572                  * We must allow 1 and 2a above. But 2b would be a spurious
573                  * and unintentional.
574                  *
575                  * Further in case of 1 and 2a above, the disk at 'path'
576                  * would have missed some transaction when it was away and
577                  * in case of 2a the stale bdev has to be updated as well.
578                  * 2b must not be allowed at all time.
579                  */
580
581                 /*
582                  * For now, we do allow update to btrfs_fs_device through the
583                  * btrfs dev scan cli after FS has been mounted.  We're still
584                  * tracking a problem where systems fail mount by subvolume id
585                  * when we reject replacement on a mounted FS.
586                  */
587                 if (!fs_devices->opened && found_transid < device->generation) {
588                         /*
589                          * That is if the FS is _not_ mounted and if you
590                          * are here, that means there is more than one
591                          * disk with same uuid and devid.We keep the one
592                          * with larger generation number or the last-in if
593                          * generation are equal.
594                          */
595                         return -EEXIST;
596                 }
597
598                 name = rcu_string_strdup(path, GFP_NOFS);
599                 if (!name)
600                         return -ENOMEM;
601                 rcu_string_free(device->name);
602                 rcu_assign_pointer(device->name, name);
603                 if (device->missing) {
604                         fs_devices->missing_devices--;
605                         device->missing = 0;
606                 }
607         }
608
609         /*
610          * Unmount does not free the btrfs_device struct but would zero
611          * generation along with most of the other members. So just update
612          * it back. We need it to pick the disk with largest generation
613          * (as above).
614          */
615         if (!fs_devices->opened)
616                 device->generation = found_transid;
617
618         /*
619          * if there is new btrfs on an already registered device,
620          * then remove the stale device entry.
621          */
622         btrfs_free_stale_device(device);
623
624         *fs_devices_ret = fs_devices;
625
626         return ret;
627 }
628
629 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
630 {
631         struct btrfs_fs_devices *fs_devices;
632         struct btrfs_device *device;
633         struct btrfs_device *orig_dev;
634
635         fs_devices = alloc_fs_devices(orig->fsid);
636         if (IS_ERR(fs_devices))
637                 return fs_devices;
638
639         mutex_lock(&orig->device_list_mutex);
640         fs_devices->total_devices = orig->total_devices;
641
642         /* We have held the volume lock, it is safe to get the devices. */
643         list_for_each_entry(orig_dev, &orig->devices, dev_list) {
644                 struct rcu_string *name;
645
646                 device = btrfs_alloc_device(NULL, &orig_dev->devid,
647                                             orig_dev->uuid);
648                 if (IS_ERR(device))
649                         goto error;
650
651                 /*
652                  * This is ok to do without rcu read locked because we hold the
653                  * uuid mutex so nothing we touch in here is going to disappear.
654                  */
655                 if (orig_dev->name) {
656                         name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
657                         if (!name) {
658                                 kfree(device);
659                                 goto error;
660                         }
661                         rcu_assign_pointer(device->name, name);
662                 }
663
664                 list_add(&device->dev_list, &fs_devices->devices);
665                 device->fs_devices = fs_devices;
666                 fs_devices->num_devices++;
667         }
668         mutex_unlock(&orig->device_list_mutex);
669         return fs_devices;
670 error:
671         mutex_unlock(&orig->device_list_mutex);
672         free_fs_devices(fs_devices);
673         return ERR_PTR(-ENOMEM);
674 }
675
676 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
677 {
678         struct btrfs_device *device, *next;
679         struct btrfs_device *latest_dev = NULL;
680
681         mutex_lock(&uuid_mutex);
682 again:
683         /* This is the initialized path, it is safe to release the devices. */
684         list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
685                 if (device->in_fs_metadata) {
686                         if (!device->is_tgtdev_for_dev_replace &&
687                             (!latest_dev ||
688                              device->generation > latest_dev->generation)) {
689                                 latest_dev = device;
690                         }
691                         continue;
692                 }
693
694                 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
695                         /*
696                          * In the first step, keep the device which has
697                          * the correct fsid and the devid that is used
698                          * for the dev_replace procedure.
699                          * In the second step, the dev_replace state is
700                          * read from the device tree and it is known
701                          * whether the procedure is really active or
702                          * not, which means whether this device is
703                          * used or whether it should be removed.
704                          */
705                         if (step == 0 || device->is_tgtdev_for_dev_replace) {
706                                 continue;
707                         }
708                 }
709                 if (device->bdev) {
710                         blkdev_put(device->bdev, device->mode);
711                         device->bdev = NULL;
712                         fs_devices->open_devices--;
713                 }
714                 if (device->writeable) {
715                         list_del_init(&device->dev_alloc_list);
716                         device->writeable = 0;
717                         if (!device->is_tgtdev_for_dev_replace)
718                                 fs_devices->rw_devices--;
719                 }
720                 list_del_init(&device->dev_list);
721                 fs_devices->num_devices--;
722                 rcu_string_free(device->name);
723                 kfree(device);
724         }
725
726         if (fs_devices->seed) {
727                 fs_devices = fs_devices->seed;
728                 goto again;
729         }
730
731         fs_devices->latest_bdev = latest_dev->bdev;
732
733         mutex_unlock(&uuid_mutex);
734 }
735
736 static void __free_device(struct work_struct *work)
737 {
738         struct btrfs_device *device;
739
740         device = container_of(work, struct btrfs_device, rcu_work);
741
742         if (device->bdev)
743                 blkdev_put(device->bdev, device->mode);
744
745         rcu_string_free(device->name);
746         kfree(device);
747 }
748
749 static void free_device(struct rcu_head *head)
750 {
751         struct btrfs_device *device;
752
753         device = container_of(head, struct btrfs_device, rcu);
754
755         INIT_WORK(&device->rcu_work, __free_device);
756         schedule_work(&device->rcu_work);
757 }
758
759 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
760 {
761         struct btrfs_device *device, *tmp;
762
763         if (--fs_devices->opened > 0)
764                 return 0;
765
766         mutex_lock(&fs_devices->device_list_mutex);
767         list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
768                 struct btrfs_device *new_device;
769                 struct rcu_string *name;
770
771                 if (device->bdev)
772                         fs_devices->open_devices--;
773
774                 if (device->writeable &&
775                     device->devid != BTRFS_DEV_REPLACE_DEVID) {
776                         list_del_init(&device->dev_alloc_list);
777                         fs_devices->rw_devices--;
778                 }
779
780                 if (device->missing)
781                         fs_devices->missing_devices--;
782
783                 new_device = btrfs_alloc_device(NULL, &device->devid,
784                                                 device->uuid);
785                 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
786
787                 /* Safe because we are under uuid_mutex */
788                 if (device->name) {
789                         name = rcu_string_strdup(device->name->str, GFP_NOFS);
790                         BUG_ON(!name); /* -ENOMEM */
791                         rcu_assign_pointer(new_device->name, name);
792                 }
793
794                 list_replace_rcu(&device->dev_list, &new_device->dev_list);
795                 new_device->fs_devices = device->fs_devices;
796
797                 call_rcu(&device->rcu, free_device);
798         }
799         mutex_unlock(&fs_devices->device_list_mutex);
800
801         WARN_ON(fs_devices->open_devices);
802         WARN_ON(fs_devices->rw_devices);
803         fs_devices->opened = 0;
804         fs_devices->seeding = 0;
805
806         return 0;
807 }
808
809 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
810 {
811         struct btrfs_fs_devices *seed_devices = NULL;
812         int ret;
813
814         mutex_lock(&uuid_mutex);
815         ret = __btrfs_close_devices(fs_devices);
816         if (!fs_devices->opened) {
817                 seed_devices = fs_devices->seed;
818                 fs_devices->seed = NULL;
819         }
820         mutex_unlock(&uuid_mutex);
821
822         while (seed_devices) {
823                 fs_devices = seed_devices;
824                 seed_devices = fs_devices->seed;
825                 __btrfs_close_devices(fs_devices);
826                 free_fs_devices(fs_devices);
827         }
828         /*
829          * Wait for rcu kworkers under __btrfs_close_devices
830          * to finish all blkdev_puts so device is really
831          * free when umount is done.
832          */
833         rcu_barrier();
834         return ret;
835 }
836
837 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
838                                 fmode_t flags, void *holder)
839 {
840         struct request_queue *q;
841         struct block_device *bdev;
842         struct list_head *head = &fs_devices->devices;
843         struct btrfs_device *device;
844         struct btrfs_device *latest_dev = NULL;
845         struct buffer_head *bh;
846         struct btrfs_super_block *disk_super;
847         u64 devid;
848         int seeding = 1;
849         int ret = 0;
850
851         flags |= FMODE_EXCL;
852
853         list_for_each_entry(device, head, dev_list) {
854                 if (device->bdev)
855                         continue;
856                 if (!device->name)
857                         continue;
858
859                 /* Just open everything we can; ignore failures here */
860                 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
861                                             &bdev, &bh))
862                         continue;
863
864                 disk_super = (struct btrfs_super_block *)bh->b_data;
865                 devid = btrfs_stack_device_id(&disk_super->dev_item);
866                 if (devid != device->devid)
867                         goto error_brelse;
868
869                 if (memcmp(device->uuid, disk_super->dev_item.uuid,
870                            BTRFS_UUID_SIZE))
871                         goto error_brelse;
872
873                 device->generation = btrfs_super_generation(disk_super);
874                 if (!latest_dev ||
875                     device->generation > latest_dev->generation)
876                         latest_dev = device;
877
878                 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
879                         device->writeable = 0;
880                 } else {
881                         device->writeable = !bdev_read_only(bdev);
882                         seeding = 0;
883                 }
884
885                 q = bdev_get_queue(bdev);
886                 if (blk_queue_discard(q))
887                         device->can_discard = 1;
888
889                 device->bdev = bdev;
890                 device->in_fs_metadata = 0;
891                 device->mode = flags;
892
893                 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
894                         fs_devices->rotating = 1;
895
896                 fs_devices->open_devices++;
897                 if (device->writeable &&
898                     device->devid != BTRFS_DEV_REPLACE_DEVID) {
899                         fs_devices->rw_devices++;
900                         list_add(&device->dev_alloc_list,
901                                  &fs_devices->alloc_list);
902                 }
903                 brelse(bh);
904                 continue;
905
906 error_brelse:
907                 brelse(bh);
908                 blkdev_put(bdev, flags);
909                 continue;
910         }
911         if (fs_devices->open_devices == 0) {
912                 ret = -EINVAL;
913                 goto out;
914         }
915         fs_devices->seeding = seeding;
916         fs_devices->opened = 1;
917         fs_devices->latest_bdev = latest_dev->bdev;
918         fs_devices->total_rw_bytes = 0;
919 out:
920         return ret;
921 }
922
923 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
924                        fmode_t flags, void *holder)
925 {
926         int ret;
927
928         mutex_lock(&uuid_mutex);
929         if (fs_devices->opened) {
930                 fs_devices->opened++;
931                 ret = 0;
932         } else {
933                 ret = __btrfs_open_devices(fs_devices, flags, holder);
934         }
935         mutex_unlock(&uuid_mutex);
936         return ret;
937 }
938
939 /*
940  * Look for a btrfs signature on a device. This may be called out of the mount path
941  * and we are not allowed to call set_blocksize during the scan. The superblock
942  * is read via pagecache
943  */
944 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
945                           struct btrfs_fs_devices **fs_devices_ret)
946 {
947         struct btrfs_super_block *disk_super;
948         struct block_device *bdev;
949         struct page *page;
950         void *p;
951         int ret = -EINVAL;
952         u64 devid;
953         u64 transid;
954         u64 total_devices;
955         u64 bytenr;
956         pgoff_t index;
957
958         /*
959          * we would like to check all the supers, but that would make
960          * a btrfs mount succeed after a mkfs from a different FS.
961          * So, we need to add a special mount option to scan for
962          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
963          */
964         bytenr = btrfs_sb_offset(0);
965         flags |= FMODE_EXCL;
966         mutex_lock(&uuid_mutex);
967
968         bdev = blkdev_get_by_path(path, flags, holder);
969
970         if (IS_ERR(bdev)) {
971                 ret = PTR_ERR(bdev);
972                 goto error;
973         }
974
975         /* make sure our super fits in the device */
976         if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode))
977                 goto error_bdev_put;
978
979         /* make sure our super fits in the page */
980         if (sizeof(*disk_super) > PAGE_CACHE_SIZE)
981                 goto error_bdev_put;
982
983         /* make sure our super doesn't straddle pages on disk */
984         index = bytenr >> PAGE_CACHE_SHIFT;
985         if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index)
986                 goto error_bdev_put;
987
988         /* pull in the page with our super */
989         page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
990                                    index, GFP_NOFS);
991
992         if (IS_ERR_OR_NULL(page))
993                 goto error_bdev_put;
994
995         p = kmap(page);
996
997         /* align our pointer to the offset of the super block */
998         disk_super = p + (bytenr & ~PAGE_CACHE_MASK);
999
1000         if (btrfs_super_bytenr(disk_super) != bytenr ||
1001             btrfs_super_magic(disk_super) != BTRFS_MAGIC)
1002                 goto error_unmap;
1003
1004         devid = btrfs_stack_device_id(&disk_super->dev_item);
1005         transid = btrfs_super_generation(disk_super);
1006         total_devices = btrfs_super_num_devices(disk_super);
1007
1008         ret = device_list_add(path, disk_super, devid, fs_devices_ret);
1009         if (ret > 0) {
1010                 if (disk_super->label[0]) {
1011                         if (disk_super->label[BTRFS_LABEL_SIZE - 1])
1012                                 disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0';
1013                         printk(KERN_INFO "BTRFS: device label %s ", disk_super->label);
1014                 } else {
1015                         printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid);
1016                 }
1017
1018                 printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
1019                 ret = 0;
1020         }
1021         if (!ret && fs_devices_ret)
1022                 (*fs_devices_ret)->total_devices = total_devices;
1023
1024 error_unmap:
1025         kunmap(page);
1026         page_cache_release(page);
1027
1028 error_bdev_put:
1029         blkdev_put(bdev, flags);
1030 error:
1031         mutex_unlock(&uuid_mutex);
1032         return ret;
1033 }
1034
1035 /* helper to account the used device space in the range */
1036 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1037                                    u64 end, u64 *length)
1038 {
1039         struct btrfs_key key;
1040         struct btrfs_root *root = device->dev_root;
1041         struct btrfs_dev_extent *dev_extent;
1042         struct btrfs_path *path;
1043         u64 extent_end;
1044         int ret;
1045         int slot;
1046         struct extent_buffer *l;
1047
1048         *length = 0;
1049
1050         if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
1051                 return 0;
1052
1053         path = btrfs_alloc_path();
1054         if (!path)
1055                 return -ENOMEM;
1056         path->reada = 2;
1057
1058         key.objectid = device->devid;
1059         key.offset = start;
1060         key.type = BTRFS_DEV_EXTENT_KEY;
1061
1062         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1063         if (ret < 0)
1064                 goto out;
1065         if (ret > 0) {
1066                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1067                 if (ret < 0)
1068                         goto out;
1069         }
1070
1071         while (1) {
1072                 l = path->nodes[0];
1073                 slot = path->slots[0];
1074                 if (slot >= btrfs_header_nritems(l)) {
1075                         ret = btrfs_next_leaf(root, path);
1076                         if (ret == 0)
1077                                 continue;
1078                         if (ret < 0)
1079                                 goto out;
1080
1081                         break;
1082                 }
1083                 btrfs_item_key_to_cpu(l, &key, slot);
1084
1085                 if (key.objectid < device->devid)
1086                         goto next;
1087
1088                 if (key.objectid > device->devid)
1089                         break;
1090
1091                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1092                         goto next;
1093
1094                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1095                 extent_end = key.offset + btrfs_dev_extent_length(l,
1096                                                                   dev_extent);
1097                 if (key.offset <= start && extent_end > end) {
1098                         *length = end - start + 1;
1099                         break;
1100                 } else if (key.offset <= start && extent_end > start)
1101                         *length += extent_end - start;
1102                 else if (key.offset > start && extent_end <= end)
1103                         *length += extent_end - key.offset;
1104                 else if (key.offset > start && key.offset <= end) {
1105                         *length += end - key.offset + 1;
1106                         break;
1107                 } else if (key.offset > end)
1108                         break;
1109
1110 next:
1111                 path->slots[0]++;
1112         }
1113         ret = 0;
1114 out:
1115         btrfs_free_path(path);
1116         return ret;
1117 }
1118
1119 static int contains_pending_extent(struct btrfs_transaction *transaction,
1120                                    struct btrfs_device *device,
1121                                    u64 *start, u64 len)
1122 {
1123         struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
1124         struct extent_map *em;
1125         struct list_head *search_list = &fs_info->pinned_chunks;
1126         int ret = 0;
1127         u64 physical_start = *start;
1128
1129         if (transaction)
1130                 search_list = &transaction->pending_chunks;
1131 again:
1132         list_for_each_entry(em, search_list, list) {
1133                 struct map_lookup *map;
1134                 int i;
1135
1136                 map = (struct map_lookup *)em->bdev;
1137                 for (i = 0; i < map->num_stripes; i++) {
1138                         u64 end;
1139
1140                         if (map->stripes[i].dev != device)
1141                                 continue;
1142                         if (map->stripes[i].physical >= physical_start + len ||
1143                             map->stripes[i].physical + em->orig_block_len <=
1144                             physical_start)
1145                                 continue;
1146                         /*
1147                          * Make sure that while processing the pinned list we do
1148                          * not override our *start with a lower value, because
1149                          * we can have pinned chunks that fall within this
1150                          * device hole and that have lower physical addresses
1151                          * than the pending chunks we processed before. If we
1152                          * do not take this special care we can end up getting
1153                          * 2 pending chunks that start at the same physical
1154                          * device offsets because the end offset of a pinned
1155                          * chunk can be equal to the start offset of some
1156                          * pending chunk.
1157                          */
1158                         end = map->stripes[i].physical + em->orig_block_len;
1159                         if (end > *start) {
1160                                 *start = end;
1161                                 ret = 1;
1162                         }
1163                 }
1164         }
1165         if (search_list != &fs_info->pinned_chunks) {
1166                 search_list = &fs_info->pinned_chunks;
1167                 goto again;
1168         }
1169
1170         return ret;
1171 }
1172
1173
1174 /*
1175  * find_free_dev_extent_start - find free space in the specified device
1176  * @device:       the device which we search the free space in
1177  * @num_bytes:    the size of the free space that we need
1178  * @search_start: the position from which to begin the search
1179  * @start:        store the start of the free space.
1180  * @len:          the size of the free space. that we find, or the size
1181  *                of the max free space if we don't find suitable free space
1182  *
1183  * this uses a pretty simple search, the expectation is that it is
1184  * called very infrequently and that a given device has a small number
1185  * of extents
1186  *
1187  * @start is used to store the start of the free space if we find. But if we
1188  * don't find suitable free space, it will be used to store the start position
1189  * of the max free space.
1190  *
1191  * @len is used to store the size of the free space that we find.
1192  * But if we don't find suitable free space, it is used to store the size of
1193  * the max free space.
1194  */
1195 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1196                                struct btrfs_device *device, u64 num_bytes,
1197                                u64 search_start, u64 *start, u64 *len)
1198 {
1199         struct btrfs_key key;
1200         struct btrfs_root *root = device->dev_root;
1201         struct btrfs_dev_extent *dev_extent;
1202         struct btrfs_path *path;
1203         u64 hole_size;
1204         u64 max_hole_start;
1205         u64 max_hole_size;
1206         u64 extent_end;
1207         u64 search_end = device->total_bytes;
1208         int ret;
1209         int slot;
1210         struct extent_buffer *l;
1211
1212         path = btrfs_alloc_path();
1213         if (!path)
1214                 return -ENOMEM;
1215
1216         max_hole_start = search_start;
1217         max_hole_size = 0;
1218
1219 again:
1220         if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1221                 ret = -ENOSPC;
1222                 goto out;
1223         }
1224
1225         path->reada = 2;
1226         path->search_commit_root = 1;
1227         path->skip_locking = 1;
1228
1229         key.objectid = device->devid;
1230         key.offset = search_start;
1231         key.type = BTRFS_DEV_EXTENT_KEY;
1232
1233         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1234         if (ret < 0)
1235                 goto out;
1236         if (ret > 0) {
1237                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1238                 if (ret < 0)
1239                         goto out;
1240         }
1241
1242         while (1) {
1243                 l = path->nodes[0];
1244                 slot = path->slots[0];
1245                 if (slot >= btrfs_header_nritems(l)) {
1246                         ret = btrfs_next_leaf(root, path);
1247                         if (ret == 0)
1248                                 continue;
1249                         if (ret < 0)
1250                                 goto out;
1251
1252                         break;
1253                 }
1254                 btrfs_item_key_to_cpu(l, &key, slot);
1255
1256                 if (key.objectid < device->devid)
1257                         goto next;
1258
1259                 if (key.objectid > device->devid)
1260                         break;
1261
1262                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1263                         goto next;
1264
1265                 if (key.offset > search_start) {
1266                         hole_size = key.offset - search_start;
1267
1268                         /*
1269                          * Have to check before we set max_hole_start, otherwise
1270                          * we could end up sending back this offset anyway.
1271                          */
1272                         if (contains_pending_extent(transaction, device,
1273                                                     &search_start,
1274                                                     hole_size)) {
1275                                 if (key.offset >= search_start) {
1276                                         hole_size = key.offset - search_start;
1277                                 } else {
1278                                         WARN_ON_ONCE(1);
1279                                         hole_size = 0;
1280                                 }
1281                         }
1282
1283                         if (hole_size > max_hole_size) {
1284                                 max_hole_start = search_start;
1285                                 max_hole_size = hole_size;
1286                         }
1287
1288                         /*
1289                          * If this free space is greater than which we need,
1290                          * it must be the max free space that we have found
1291                          * until now, so max_hole_start must point to the start
1292                          * of this free space and the length of this free space
1293                          * is stored in max_hole_size. Thus, we return
1294                          * max_hole_start and max_hole_size and go back to the
1295                          * caller.
1296                          */
1297                         if (hole_size >= num_bytes) {
1298                                 ret = 0;
1299                                 goto out;
1300                         }
1301                 }
1302
1303                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1304                 extent_end = key.offset + btrfs_dev_extent_length(l,
1305                                                                   dev_extent);
1306                 if (extent_end > search_start)
1307                         search_start = extent_end;
1308 next:
1309                 path->slots[0]++;
1310                 cond_resched();
1311         }
1312
1313         /*
1314          * At this point, search_start should be the end of
1315          * allocated dev extents, and when shrinking the device,
1316          * search_end may be smaller than search_start.
1317          */
1318         if (search_end > search_start) {
1319                 hole_size = search_end - search_start;
1320
1321                 if (contains_pending_extent(transaction, device, &search_start,
1322                                             hole_size)) {
1323                         btrfs_release_path(path);
1324                         goto again;
1325                 }
1326
1327                 if (hole_size > max_hole_size) {
1328                         max_hole_start = search_start;
1329                         max_hole_size = hole_size;
1330                 }
1331         }
1332
1333         /* See above. */
1334         if (max_hole_size < num_bytes)
1335                 ret = -ENOSPC;
1336         else
1337                 ret = 0;
1338
1339 out:
1340         btrfs_free_path(path);
1341         *start = max_hole_start;
1342         if (len)
1343                 *len = max_hole_size;
1344         return ret;
1345 }
1346
1347 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1348                          struct btrfs_device *device, u64 num_bytes,
1349                          u64 *start, u64 *len)
1350 {
1351         struct btrfs_root *root = device->dev_root;
1352         u64 search_start;
1353
1354         /* FIXME use last free of some kind */
1355
1356         /*
1357          * we don't want to overwrite the superblock on the drive,
1358          * so we make sure to start at an offset of at least 1MB
1359          */
1360         search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
1361         return find_free_dev_extent_start(trans->transaction, device,
1362                                           num_bytes, search_start, start, len);
1363 }
1364
1365 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1366                           struct btrfs_device *device,
1367                           u64 start, u64 *dev_extent_len)
1368 {
1369         int ret;
1370         struct btrfs_path *path;
1371         struct btrfs_root *root = device->dev_root;
1372         struct btrfs_key key;
1373         struct btrfs_key found_key;
1374         struct extent_buffer *leaf = NULL;
1375         struct btrfs_dev_extent *extent = NULL;
1376
1377         path = btrfs_alloc_path();
1378         if (!path)
1379                 return -ENOMEM;
1380
1381         key.objectid = device->devid;
1382         key.offset = start;
1383         key.type = BTRFS_DEV_EXTENT_KEY;
1384 again:
1385         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1386         if (ret > 0) {
1387                 ret = btrfs_previous_item(root, path, key.objectid,
1388                                           BTRFS_DEV_EXTENT_KEY);
1389                 if (ret)
1390                         goto out;
1391                 leaf = path->nodes[0];
1392                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1393                 extent = btrfs_item_ptr(leaf, path->slots[0],
1394                                         struct btrfs_dev_extent);
1395                 BUG_ON(found_key.offset > start || found_key.offset +
1396                        btrfs_dev_extent_length(leaf, extent) < start);
1397                 key = found_key;
1398                 btrfs_release_path(path);
1399                 goto again;
1400         } else if (ret == 0) {
1401                 leaf = path->nodes[0];
1402                 extent = btrfs_item_ptr(leaf, path->slots[0],
1403                                         struct btrfs_dev_extent);
1404         } else {
1405                 btrfs_std_error(root->fs_info, ret, "Slot search failed");
1406                 goto out;
1407         }
1408
1409         *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1410
1411         ret = btrfs_del_item(trans, root, path);
1412         if (ret) {
1413                 btrfs_std_error(root->fs_info, ret,
1414                             "Failed to remove dev extent item");
1415         } else {
1416                 trans->transaction->have_free_bgs = 1;
1417         }
1418 out:
1419         btrfs_free_path(path);
1420         return ret;
1421 }
1422
1423 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1424                                   struct btrfs_device *device,
1425                                   u64 chunk_tree, u64 chunk_objectid,
1426                                   u64 chunk_offset, u64 start, u64 num_bytes)
1427 {
1428         int ret;
1429         struct btrfs_path *path;
1430         struct btrfs_root *root = device->dev_root;
1431         struct btrfs_dev_extent *extent;
1432         struct extent_buffer *leaf;
1433         struct btrfs_key key;
1434
1435         WARN_ON(!device->in_fs_metadata);
1436         WARN_ON(device->is_tgtdev_for_dev_replace);
1437         path = btrfs_alloc_path();
1438         if (!path)
1439                 return -ENOMEM;
1440
1441         key.objectid = device->devid;
1442         key.offset = start;
1443         key.type = BTRFS_DEV_EXTENT_KEY;
1444         ret = btrfs_insert_empty_item(trans, root, path, &key,
1445                                       sizeof(*extent));
1446         if (ret)
1447                 goto out;
1448
1449         leaf = path->nodes[0];
1450         extent = btrfs_item_ptr(leaf, path->slots[0],
1451                                 struct btrfs_dev_extent);
1452         btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1453         btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1454         btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1455
1456         write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1457                     btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
1458
1459         btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1460         btrfs_mark_buffer_dirty(leaf);
1461 out:
1462         btrfs_free_path(path);
1463         return ret;
1464 }
1465
1466 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1467 {
1468         struct extent_map_tree *em_tree;
1469         struct extent_map *em;
1470         struct rb_node *n;
1471         u64 ret = 0;
1472
1473         em_tree = &fs_info->mapping_tree.map_tree;
1474         read_lock(&em_tree->lock);
1475         n = rb_last(&em_tree->map);
1476         if (n) {
1477                 em = rb_entry(n, struct extent_map, rb_node);
1478                 ret = em->start + em->len;
1479         }
1480         read_unlock(&em_tree->lock);
1481
1482         return ret;
1483 }
1484
1485 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1486                                     u64 *devid_ret)
1487 {
1488         int ret;
1489         struct btrfs_key key;
1490         struct btrfs_key found_key;
1491         struct btrfs_path *path;
1492
1493         path = btrfs_alloc_path();
1494         if (!path)
1495                 return -ENOMEM;
1496
1497         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1498         key.type = BTRFS_DEV_ITEM_KEY;
1499         key.offset = (u64)-1;
1500
1501         ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1502         if (ret < 0)
1503                 goto error;
1504
1505         BUG_ON(ret == 0); /* Corruption */
1506
1507         ret = btrfs_previous_item(fs_info->chunk_root, path,
1508                                   BTRFS_DEV_ITEMS_OBJECTID,
1509                                   BTRFS_DEV_ITEM_KEY);
1510         if (ret) {
1511                 *devid_ret = 1;
1512         } else {
1513                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1514                                       path->slots[0]);
1515                 *devid_ret = found_key.offset + 1;
1516         }
1517         ret = 0;
1518 error:
1519         btrfs_free_path(path);
1520         return ret;
1521 }
1522
1523 /*
1524  * the device information is stored in the chunk root
1525  * the btrfs_device struct should be fully filled in
1526  */
1527 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1528                             struct btrfs_root *root,
1529                             struct btrfs_device *device)
1530 {
1531         int ret;
1532         struct btrfs_path *path;
1533         struct btrfs_dev_item *dev_item;
1534         struct extent_buffer *leaf;
1535         struct btrfs_key key;
1536         unsigned long ptr;
1537
1538         root = root->fs_info->chunk_root;
1539
1540         path = btrfs_alloc_path();
1541         if (!path)
1542                 return -ENOMEM;
1543
1544         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1545         key.type = BTRFS_DEV_ITEM_KEY;
1546         key.offset = device->devid;
1547
1548         ret = btrfs_insert_empty_item(trans, root, path, &key,
1549                                       sizeof(*dev_item));
1550         if (ret)
1551                 goto out;
1552
1553         leaf = path->nodes[0];
1554         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1555
1556         btrfs_set_device_id(leaf, dev_item, device->devid);
1557         btrfs_set_device_generation(leaf, dev_item, 0);
1558         btrfs_set_device_type(leaf, dev_item, device->type);
1559         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1560         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1561         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1562         btrfs_set_device_total_bytes(leaf, dev_item,
1563                                      btrfs_device_get_disk_total_bytes(device));
1564         btrfs_set_device_bytes_used(leaf, dev_item,
1565                                     btrfs_device_get_bytes_used(device));
1566         btrfs_set_device_group(leaf, dev_item, 0);
1567         btrfs_set_device_seek_speed(leaf, dev_item, 0);
1568         btrfs_set_device_bandwidth(leaf, dev_item, 0);
1569         btrfs_set_device_start_offset(leaf, dev_item, 0);
1570
1571         ptr = btrfs_device_uuid(dev_item);
1572         write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1573         ptr = btrfs_device_fsid(dev_item);
1574         write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1575         btrfs_mark_buffer_dirty(leaf);
1576
1577         ret = 0;
1578 out:
1579         btrfs_free_path(path);
1580         return ret;
1581 }
1582
1583 /*
1584  * Function to update ctime/mtime for a given device path.
1585  * Mainly used for ctime/mtime based probe like libblkid.
1586  */
1587 static void update_dev_time(char *path_name)
1588 {
1589         struct file *filp;
1590
1591         filp = filp_open(path_name, O_RDWR, 0);
1592         if (IS_ERR(filp))
1593                 return;
1594         file_update_time(filp);
1595         filp_close(filp, NULL);
1596         return;
1597 }
1598
1599 static int btrfs_rm_dev_item(struct btrfs_root *root,
1600                              struct btrfs_device *device)
1601 {
1602         int ret;
1603         struct btrfs_path *path;
1604         struct btrfs_key key;
1605         struct btrfs_trans_handle *trans;
1606
1607         root = root->fs_info->chunk_root;
1608
1609         path = btrfs_alloc_path();
1610         if (!path)
1611                 return -ENOMEM;
1612
1613         trans = btrfs_start_transaction(root, 0);
1614         if (IS_ERR(trans)) {
1615                 btrfs_free_path(path);
1616                 return PTR_ERR(trans);
1617         }
1618         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1619         key.type = BTRFS_DEV_ITEM_KEY;
1620         key.offset = device->devid;
1621
1622         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1623         if (ret < 0)
1624                 goto out;
1625
1626         if (ret > 0) {
1627                 ret = -ENOENT;
1628                 goto out;
1629         }
1630
1631         ret = btrfs_del_item(trans, root, path);
1632         if (ret)
1633                 goto out;
1634 out:
1635         btrfs_free_path(path);
1636         btrfs_commit_transaction(trans, root);
1637         return ret;
1638 }
1639
1640 int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1641 {
1642         struct btrfs_device *device;
1643         struct btrfs_device *next_device;
1644         struct block_device *bdev;
1645         struct buffer_head *bh = NULL;
1646         struct btrfs_super_block *disk_super;
1647         struct btrfs_fs_devices *cur_devices;
1648         u64 all_avail;
1649         u64 devid;
1650         u64 num_devices;
1651         u8 *dev_uuid;
1652         unsigned seq;
1653         int ret = 0;
1654         bool clear_super = false;
1655
1656         mutex_lock(&uuid_mutex);
1657
1658         do {
1659                 seq = read_seqbegin(&root->fs_info->profiles_lock);
1660
1661                 all_avail = root->fs_info->avail_data_alloc_bits |
1662                             root->fs_info->avail_system_alloc_bits |
1663                             root->fs_info->avail_metadata_alloc_bits;
1664         } while (read_seqretry(&root->fs_info->profiles_lock, seq));
1665
1666         num_devices = root->fs_info->fs_devices->num_devices;
1667         btrfs_dev_replace_lock(&root->fs_info->dev_replace);
1668         if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1669                 WARN_ON(num_devices < 1);
1670                 num_devices--;
1671         }
1672         btrfs_dev_replace_unlock(&root->fs_info->dev_replace);
1673
1674         if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) {
1675                 ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET;
1676                 goto out;
1677         }
1678
1679         if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) {
1680                 ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET;
1681                 goto out;
1682         }
1683
1684         if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) &&
1685             root->fs_info->fs_devices->rw_devices <= 2) {
1686                 ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET;
1687                 goto out;
1688         }
1689         if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) &&
1690             root->fs_info->fs_devices->rw_devices <= 3) {
1691                 ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET;
1692                 goto out;
1693         }
1694
1695         if (strcmp(device_path, "missing") == 0) {
1696                 struct list_head *devices;
1697                 struct btrfs_device *tmp;
1698
1699                 device = NULL;
1700                 devices = &root->fs_info->fs_devices->devices;
1701                 /*
1702                  * It is safe to read the devices since the volume_mutex
1703                  * is held.
1704                  */
1705                 list_for_each_entry(tmp, devices, dev_list) {
1706                         if (tmp->in_fs_metadata &&
1707                             !tmp->is_tgtdev_for_dev_replace &&
1708                             !tmp->bdev) {
1709                                 device = tmp;
1710                                 break;
1711                         }
1712                 }
1713                 bdev = NULL;
1714                 bh = NULL;
1715                 disk_super = NULL;
1716                 if (!device) {
1717                         ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
1718                         goto out;
1719                 }
1720         } else {
1721                 ret = btrfs_get_bdev_and_sb(device_path,
1722                                             FMODE_WRITE | FMODE_EXCL,
1723                                             root->fs_info->bdev_holder, 0,
1724                                             &bdev, &bh);
1725                 if (ret)
1726                         goto out;
1727                 disk_super = (struct btrfs_super_block *)bh->b_data;
1728                 devid = btrfs_stack_device_id(&disk_super->dev_item);
1729                 dev_uuid = disk_super->dev_item.uuid;
1730                 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1731                                            disk_super->fsid);
1732                 if (!device) {
1733                         ret = -ENOENT;
1734                         goto error_brelse;
1735                 }
1736         }
1737
1738         if (device->is_tgtdev_for_dev_replace) {
1739                 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1740                 goto error_brelse;
1741         }
1742
1743         if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1744                 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1745                 goto error_brelse;
1746         }
1747
1748         if (device->writeable) {
1749                 lock_chunks(root);
1750                 list_del_init(&device->dev_alloc_list);
1751                 device->fs_devices->rw_devices--;
1752                 unlock_chunks(root);
1753                 clear_super = true;
1754         }
1755
1756         mutex_unlock(&uuid_mutex);
1757         ret = btrfs_shrink_device(device, 0);
1758         mutex_lock(&uuid_mutex);
1759         if (ret)
1760                 goto error_undo;
1761
1762         /*
1763          * TODO: the superblock still includes this device in its num_devices
1764          * counter although write_all_supers() is not locked out. This
1765          * could give a filesystem state which requires a degraded mount.
1766          */
1767         ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1768         if (ret)
1769                 goto error_undo;
1770
1771         device->in_fs_metadata = 0;
1772         btrfs_scrub_cancel_dev(root->fs_info, device);
1773
1774         /*
1775          * the device list mutex makes sure that we don't change
1776          * the device list while someone else is writing out all
1777          * the device supers. Whoever is writing all supers, should
1778          * lock the device list mutex before getting the number of
1779          * devices in the super block (super_copy). Conversely,
1780          * whoever updates the number of devices in the super block
1781          * (super_copy) should hold the device list mutex.
1782          */
1783
1784         cur_devices = device->fs_devices;
1785         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1786         list_del_rcu(&device->dev_list);
1787
1788         device->fs_devices->num_devices--;
1789         device->fs_devices->total_devices--;
1790
1791         if (device->missing)
1792                 device->fs_devices->missing_devices--;
1793
1794         next_device = list_entry(root->fs_info->fs_devices->devices.next,
1795                                  struct btrfs_device, dev_list);
1796         if (device->bdev == root->fs_info->sb->s_bdev)
1797                 root->fs_info->sb->s_bdev = next_device->bdev;
1798         if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1799                 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1800
1801         if (device->bdev) {
1802                 device->fs_devices->open_devices--;
1803                 /* remove sysfs entry */
1804                 btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
1805         }
1806
1807         call_rcu(&device->rcu, free_device);
1808
1809         num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1810         btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1811         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1812
1813         if (cur_devices->open_devices == 0) {
1814                 struct btrfs_fs_devices *fs_devices;
1815                 fs_devices = root->fs_info->fs_devices;
1816                 while (fs_devices) {
1817                         if (fs_devices->seed == cur_devices) {
1818                                 fs_devices->seed = cur_devices->seed;
1819                                 break;
1820                         }
1821                         fs_devices = fs_devices->seed;
1822                 }
1823                 cur_devices->seed = NULL;
1824                 __btrfs_close_devices(cur_devices);
1825                 free_fs_devices(cur_devices);
1826         }
1827
1828         root->fs_info->num_tolerated_disk_barrier_failures =
1829                 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1830
1831         /*
1832          * at this point, the device is zero sized.  We want to
1833          * remove it from the devices list and zero out the old super
1834          */
1835         if (clear_super && disk_super) {
1836                 u64 bytenr;
1837                 int i;
1838
1839                 /* make sure this device isn't detected as part of
1840                  * the FS anymore
1841                  */
1842                 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1843                 set_buffer_dirty(bh);
1844                 sync_dirty_buffer(bh);
1845
1846                 /* clear the mirror copies of super block on the disk
1847                  * being removed, 0th copy is been taken care above and
1848                  * the below would take of the rest
1849                  */
1850                 for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1851                         bytenr = btrfs_sb_offset(i);
1852                         if (bytenr + BTRFS_SUPER_INFO_SIZE >=
1853                                         i_size_read(bdev->bd_inode))
1854                                 break;
1855
1856                         brelse(bh);
1857                         bh = __bread(bdev, bytenr / 4096,
1858                                         BTRFS_SUPER_INFO_SIZE);
1859                         if (!bh)
1860                                 continue;
1861
1862                         disk_super = (struct btrfs_super_block *)bh->b_data;
1863
1864                         if (btrfs_super_bytenr(disk_super) != bytenr ||
1865                                 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1866                                 continue;
1867                         }
1868                         memset(&disk_super->magic, 0,
1869                                                 sizeof(disk_super->magic));
1870                         set_buffer_dirty(bh);
1871                         sync_dirty_buffer(bh);
1872                 }
1873         }
1874
1875         ret = 0;
1876
1877         if (bdev) {
1878                 /* Notify udev that device has changed */
1879                 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
1880
1881                 /* Update ctime/mtime for device path for libblkid */
1882                 update_dev_time(device_path);
1883         }
1884
1885 error_brelse:
1886         brelse(bh);
1887         if (bdev)
1888                 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1889 out:
1890         mutex_unlock(&uuid_mutex);
1891         return ret;
1892 error_undo:
1893         if (device->writeable) {
1894                 lock_chunks(root);
1895                 list_add(&device->dev_alloc_list,
1896                          &root->fs_info->fs_devices->alloc_list);
1897                 device->fs_devices->rw_devices++;
1898                 unlock_chunks(root);
1899         }
1900         goto error_brelse;
1901 }
1902
1903 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1904                                         struct btrfs_device *srcdev)
1905 {
1906         struct btrfs_fs_devices *fs_devices;
1907
1908         WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1909
1910         /*
1911          * in case of fs with no seed, srcdev->fs_devices will point
1912          * to fs_devices of fs_info. However when the dev being replaced is
1913          * a seed dev it will point to the seed's local fs_devices. In short
1914          * srcdev will have its correct fs_devices in both the cases.
1915          */
1916         fs_devices = srcdev->fs_devices;
1917
1918         list_del_rcu(&srcdev->dev_list);
1919         list_del_rcu(&srcdev->dev_alloc_list);
1920         fs_devices->num_devices--;
1921         if (srcdev->missing)
1922                 fs_devices->missing_devices--;
1923
1924         if (srcdev->writeable) {
1925                 fs_devices->rw_devices--;
1926                 /* zero out the old super if it is writable */
1927                 btrfs_scratch_superblock(srcdev);
1928         }
1929
1930         if (srcdev->bdev)
1931                 fs_devices->open_devices--;
1932 }
1933
1934 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
1935                                       struct btrfs_device *srcdev)
1936 {
1937         struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
1938
1939         call_rcu(&srcdev->rcu, free_device);
1940
1941         /*
1942          * unless fs_devices is seed fs, num_devices shouldn't go
1943          * zero
1944          */
1945         BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
1946
1947         /* if this is no devs we rather delete the fs_devices */
1948         if (!fs_devices->num_devices) {
1949                 struct btrfs_fs_devices *tmp_fs_devices;
1950
1951                 tmp_fs_devices = fs_info->fs_devices;
1952                 while (tmp_fs_devices) {
1953                         if (tmp_fs_devices->seed == fs_devices) {
1954                                 tmp_fs_devices->seed = fs_devices->seed;
1955                                 break;
1956                         }
1957                         tmp_fs_devices = tmp_fs_devices->seed;
1958                 }
1959                 fs_devices->seed = NULL;
1960                 __btrfs_close_devices(fs_devices);
1961                 free_fs_devices(fs_devices);
1962         }
1963 }
1964
1965 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
1966                                       struct btrfs_device *tgtdev)
1967 {
1968         struct btrfs_device *next_device;
1969
1970         mutex_lock(&uuid_mutex);
1971         WARN_ON(!tgtdev);
1972         mutex_lock(&fs_info->fs_devices->device_list_mutex);
1973
1974         btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
1975
1976         if (tgtdev->bdev) {
1977                 btrfs_scratch_superblock(tgtdev);
1978                 fs_info->fs_devices->open_devices--;
1979         }
1980         fs_info->fs_devices->num_devices--;
1981
1982         next_device = list_entry(fs_info->fs_devices->devices.next,
1983                                  struct btrfs_device, dev_list);
1984         if (tgtdev->bdev == fs_info->sb->s_bdev)
1985                 fs_info->sb->s_bdev = next_device->bdev;
1986         if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
1987                 fs_info->fs_devices->latest_bdev = next_device->bdev;
1988         list_del_rcu(&tgtdev->dev_list);
1989
1990         call_rcu(&tgtdev->rcu, free_device);
1991
1992         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1993         mutex_unlock(&uuid_mutex);
1994 }
1995
1996 static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
1997                                      struct btrfs_device **device)
1998 {
1999         int ret = 0;
2000         struct btrfs_super_block *disk_super;
2001         u64 devid;
2002         u8 *dev_uuid;
2003         struct block_device *bdev;
2004         struct buffer_head *bh;
2005
2006         *device = NULL;
2007         ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2008                                     root->fs_info->bdev_holder, 0, &bdev, &bh);
2009         if (ret)
2010                 return ret;
2011         disk_super = (struct btrfs_super_block *)bh->b_data;
2012         devid = btrfs_stack_device_id(&disk_super->dev_item);
2013         dev_uuid = disk_super->dev_item.uuid;
2014         *device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2015                                     disk_super->fsid);
2016         brelse(bh);
2017         if (!*device)
2018                 ret = -ENOENT;
2019         blkdev_put(bdev, FMODE_READ);
2020         return ret;
2021 }
2022
2023 int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
2024                                          char *device_path,
2025                                          struct btrfs_device **device)
2026 {
2027         *device = NULL;
2028         if (strcmp(device_path, "missing") == 0) {
2029                 struct list_head *devices;
2030                 struct btrfs_device *tmp;
2031
2032                 devices = &root->fs_info->fs_devices->devices;
2033                 /*
2034                  * It is safe to read the devices since the volume_mutex
2035                  * is held by the caller.
2036                  */
2037                 list_for_each_entry(tmp, devices, dev_list) {
2038                         if (tmp->in_fs_metadata && !tmp->bdev) {
2039                                 *device = tmp;
2040                                 break;
2041                         }
2042                 }
2043
2044                 if (!*device) {
2045                         btrfs_err(root->fs_info, "no missing device found");
2046                         return -ENOENT;
2047                 }
2048
2049                 return 0;
2050         } else {
2051                 return btrfs_find_device_by_path(root, device_path, device);
2052         }
2053 }
2054
2055 /*
2056  * does all the dirty work required for changing file system's UUID.
2057  */
2058 static int btrfs_prepare_sprout(struct btrfs_root *root)
2059 {
2060         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2061         struct btrfs_fs_devices *old_devices;
2062         struct btrfs_fs_devices *seed_devices;
2063         struct btrfs_super_block *disk_super = root->fs_info->super_copy;
2064         struct btrfs_device *device;
2065         u64 super_flags;
2066
2067         BUG_ON(!mutex_is_locked(&uuid_mutex));
2068         if (!fs_devices->seeding)
2069                 return -EINVAL;
2070
2071         seed_devices = __alloc_fs_devices();
2072         if (IS_ERR(seed_devices))
2073                 return PTR_ERR(seed_devices);
2074
2075         old_devices = clone_fs_devices(fs_devices);
2076         if (IS_ERR(old_devices)) {
2077                 kfree(seed_devices);
2078                 return PTR_ERR(old_devices);
2079         }
2080
2081         list_add(&old_devices->list, &fs_uuids);
2082
2083         memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2084         seed_devices->opened = 1;
2085         INIT_LIST_HEAD(&seed_devices->devices);
2086         INIT_LIST_HEAD(&seed_devices->alloc_list);
2087         mutex_init(&seed_devices->device_list_mutex);
2088
2089         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2090         list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2091                               synchronize_rcu);
2092         list_for_each_entry(device, &seed_devices->devices, dev_list)
2093                 device->fs_devices = seed_devices;
2094
2095         lock_chunks(root);
2096         list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2097         unlock_chunks(root);
2098
2099         fs_devices->seeding = 0;
2100         fs_devices->num_devices = 0;
2101         fs_devices->open_devices = 0;
2102         fs_devices->missing_devices = 0;
2103         fs_devices->rotating = 0;
2104         fs_devices->seed = seed_devices;
2105
2106         generate_random_uuid(fs_devices->fsid);
2107         memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2108         memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2109         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2110
2111         super_flags = btrfs_super_flags(disk_super) &
2112                       ~BTRFS_SUPER_FLAG_SEEDING;
2113         btrfs_set_super_flags(disk_super, super_flags);
2114
2115         return 0;
2116 }
2117
2118 /*
2119  * strore the expected generation for seed devices in device items.
2120  */
2121 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2122                                struct btrfs_root *root)
2123 {
2124         struct btrfs_path *path;
2125         struct extent_buffer *leaf;
2126         struct btrfs_dev_item *dev_item;
2127         struct btrfs_device *device;
2128         struct btrfs_key key;
2129         u8 fs_uuid[BTRFS_UUID_SIZE];
2130         u8 dev_uuid[BTRFS_UUID_SIZE];
2131         u64 devid;
2132         int ret;
2133
2134         path = btrfs_alloc_path();
2135         if (!path)
2136                 return -ENOMEM;
2137
2138         root = root->fs_info->chunk_root;
2139         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2140         key.offset = 0;
2141         key.type = BTRFS_DEV_ITEM_KEY;
2142
2143         while (1) {
2144                 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2145                 if (ret < 0)
2146                         goto error;
2147
2148                 leaf = path->nodes[0];
2149 next_slot:
2150                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2151                         ret = btrfs_next_leaf(root, path);
2152                         if (ret > 0)
2153                                 break;
2154                         if (ret < 0)
2155                                 goto error;
2156                         leaf = path->nodes[0];
2157                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2158                         btrfs_release_path(path);
2159                         continue;
2160                 }
2161
2162                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2163                 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2164                     key.type != BTRFS_DEV_ITEM_KEY)
2165                         break;
2166
2167                 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2168                                           struct btrfs_dev_item);
2169                 devid = btrfs_device_id(leaf, dev_item);
2170                 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2171                                    BTRFS_UUID_SIZE);
2172                 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2173                                    BTRFS_UUID_SIZE);
2174                 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2175                                            fs_uuid);
2176                 BUG_ON(!device); /* Logic error */
2177
2178                 if (device->fs_devices->seeding) {
2179                         btrfs_set_device_generation(leaf, dev_item,
2180                                                     device->generation);
2181                         btrfs_mark_buffer_dirty(leaf);
2182                 }
2183
2184                 path->slots[0]++;
2185                 goto next_slot;
2186         }
2187         ret = 0;
2188 error:
2189         btrfs_free_path(path);
2190         return ret;
2191 }
2192
2193 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
2194 {
2195         struct request_queue *q;
2196         struct btrfs_trans_handle *trans;
2197         struct btrfs_device *device;
2198         struct block_device *bdev;
2199         struct list_head *devices;
2200         struct super_block *sb = root->fs_info->sb;
2201         struct rcu_string *name;
2202         u64 tmp;
2203         int seeding_dev = 0;
2204         int ret = 0;
2205
2206         if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
2207                 return -EROFS;
2208
2209         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2210                                   root->fs_info->bdev_holder);
2211         if (IS_ERR(bdev))
2212                 return PTR_ERR(bdev);
2213
2214         if (root->fs_info->fs_devices->seeding) {
2215                 seeding_dev = 1;
2216                 down_write(&sb->s_umount);
2217                 mutex_lock(&uuid_mutex);
2218         }
2219
2220         filemap_write_and_wait(bdev->bd_inode->i_mapping);
2221
2222         devices = &root->fs_info->fs_devices->devices;
2223
2224         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2225         list_for_each_entry(device, devices, dev_list) {
2226                 if (device->bdev == bdev) {
2227                         ret = -EEXIST;
2228                         mutex_unlock(
2229                                 &root->fs_info->fs_devices->device_list_mutex);
2230                         goto error;
2231                 }
2232         }
2233         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2234
2235         device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2236         if (IS_ERR(device)) {
2237                 /* we can safely leave the fs_devices entry around */
2238                 ret = PTR_ERR(device);
2239                 goto error;
2240         }
2241
2242         name = rcu_string_strdup(device_path, GFP_NOFS);
2243         if (!name) {
2244                 kfree(device);
2245                 ret = -ENOMEM;
2246                 goto error;
2247         }
2248         rcu_assign_pointer(device->name, name);
2249
2250         trans = btrfs_start_transaction(root, 0);
2251         if (IS_ERR(trans)) {
2252                 rcu_string_free(device->name);
2253                 kfree(device);
2254                 ret = PTR_ERR(trans);
2255                 goto error;
2256         }
2257
2258         q = bdev_get_queue(bdev);
2259         if (blk_queue_discard(q))
2260                 device->can_discard = 1;
2261         device->writeable = 1;
2262         device->generation = trans->transid;
2263         device->io_width = root->sectorsize;
2264         device->io_align = root->sectorsize;
2265         device->sector_size = root->sectorsize;
2266         device->total_bytes = i_size_read(bdev->bd_inode);
2267         device->disk_total_bytes = device->total_bytes;
2268         device->commit_total_bytes = device->total_bytes;
2269         device->dev_root = root->fs_info->dev_root;
2270         device->bdev = bdev;
2271         device->in_fs_metadata = 1;
2272         device->is_tgtdev_for_dev_replace = 0;
2273         device->mode = FMODE_EXCL;
2274         device->dev_stats_valid = 1;
2275         set_blocksize(device->bdev, 4096);
2276
2277         if (seeding_dev) {
2278                 sb->s_flags &= ~MS_RDONLY;
2279                 ret = btrfs_prepare_sprout(root);
2280                 BUG_ON(ret); /* -ENOMEM */
2281         }
2282
2283         device->fs_devices = root->fs_info->fs_devices;
2284
2285         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2286         lock_chunks(root);
2287         list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2288         list_add(&device->dev_alloc_list,
2289                  &root->fs_info->fs_devices->alloc_list);
2290         root->fs_info->fs_devices->num_devices++;
2291         root->fs_info->fs_devices->open_devices++;
2292         root->fs_info->fs_devices->rw_devices++;
2293         root->fs_info->fs_devices->total_devices++;
2294         root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2295
2296         spin_lock(&root->fs_info->free_chunk_lock);
2297         root->fs_info->free_chunk_space += device->total_bytes;
2298         spin_unlock(&root->fs_info->free_chunk_lock);
2299
2300         if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2301                 root->fs_info->fs_devices->rotating = 1;
2302
2303         tmp = btrfs_super_total_bytes(root->fs_info->super_copy);
2304         btrfs_set_super_total_bytes(root->fs_info->super_copy,
2305                                     tmp + device->total_bytes);
2306
2307         tmp = btrfs_super_num_devices(root->fs_info->super_copy);
2308         btrfs_set_super_num_devices(root->fs_info->super_copy,
2309                                     tmp + 1);
2310
2311         /* add sysfs device entry */
2312         btrfs_sysfs_add_device_link(root->fs_info->fs_devices, device);
2313
2314         /*
2315          * we've got more storage, clear any full flags on the space
2316          * infos
2317          */
2318         btrfs_clear_space_info_full(root->fs_info);
2319
2320         unlock_chunks(root);
2321         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2322
2323         if (seeding_dev) {
2324                 lock_chunks(root);
2325                 ret = init_first_rw_device(trans, root, device);
2326                 unlock_chunks(root);
2327                 if (ret) {
2328                         btrfs_abort_transaction(trans, root, ret);
2329                         goto error_trans;
2330                 }
2331         }
2332
2333         ret = btrfs_add_device(trans, root, device);
2334         if (ret) {
2335                 btrfs_abort_transaction(trans, root, ret);
2336                 goto error_trans;
2337         }
2338
2339         if (seeding_dev) {
2340                 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2341
2342                 ret = btrfs_finish_sprout(trans, root);
2343                 if (ret) {
2344                         btrfs_abort_transaction(trans, root, ret);
2345                         goto error_trans;
2346                 }
2347
2348                 /* Sprouting would change fsid of the mounted root,
2349                  * so rename the fsid on the sysfs
2350                  */
2351                 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2352                                                 root->fs_info->fsid);
2353                 if (kobject_rename(&root->fs_info->fs_devices->fsid_kobj,
2354                                                                 fsid_buf))
2355                         pr_warn("BTRFS: sysfs: failed to create fsid for sprout\n");
2356         }
2357
2358         root->fs_info->num_tolerated_disk_barrier_failures =
2359                 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
2360         ret = btrfs_commit_transaction(trans, root);
2361
2362         if (seeding_dev) {
2363                 mutex_unlock(&uuid_mutex);
2364                 up_write(&sb->s_umount);
2365
2366                 if (ret) /* transaction commit */
2367                         return ret;
2368
2369                 ret = btrfs_relocate_sys_chunks(root);
2370                 if (ret < 0)
2371                         btrfs_std_error(root->fs_info, ret,
2372                                     "Failed to relocate sys chunks after "
2373                                     "device initialization. This can be fixed "
2374                                     "using the \"btrfs balance\" command.");
2375                 trans = btrfs_attach_transaction(root);
2376                 if (IS_ERR(trans)) {
2377                         if (PTR_ERR(trans) == -ENOENT)
2378                                 return 0;
2379                         return PTR_ERR(trans);
2380                 }
2381                 ret = btrfs_commit_transaction(trans, root);
2382         }
2383
2384         /* Update ctime/mtime for libblkid */
2385         update_dev_time(device_path);
2386         return ret;
2387
2388 error_trans:
2389         btrfs_end_transaction(trans, root);
2390         rcu_string_free(device->name);
2391         btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
2392         kfree(device);
2393 error:
2394         blkdev_put(bdev, FMODE_EXCL);
2395         if (seeding_dev) {
2396                 mutex_unlock(&uuid_mutex);
2397                 up_write(&sb->s_umount);
2398         }
2399         return ret;
2400 }
2401
2402 int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2403                                   struct btrfs_device *srcdev,
2404                                   struct btrfs_device **device_out)
2405 {
2406         struct request_queue *q;
2407         struct btrfs_device *device;
2408         struct block_device *bdev;
2409         struct btrfs_fs_info *fs_info = root->fs_info;
2410         struct list_head *devices;
2411         struct rcu_string *name;
2412         u64 devid = BTRFS_DEV_REPLACE_DEVID;
2413         int ret = 0;
2414
2415         *device_out = NULL;
2416         if (fs_info->fs_devices->seeding) {
2417                 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2418                 return -EINVAL;
2419         }
2420
2421         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2422                                   fs_info->bdev_holder);
2423         if (IS_ERR(bdev)) {
2424                 btrfs_err(fs_info, "target device %s is invalid!", device_path);
2425                 return PTR_ERR(bdev);
2426         }
2427
2428         filemap_write_and_wait(bdev->bd_inode->i_mapping);
2429
2430         devices = &fs_info->fs_devices->devices;
2431         list_for_each_entry(device, devices, dev_list) {
2432                 if (device->bdev == bdev) {
2433                         btrfs_err(fs_info, "target device is in the filesystem!");
2434                         ret = -EEXIST;
2435                         goto error;
2436                 }
2437         }
2438
2439
2440         if (i_size_read(bdev->bd_inode) <
2441             btrfs_device_get_total_bytes(srcdev)) {
2442                 btrfs_err(fs_info, "target device is smaller than source device!");
2443                 ret = -EINVAL;
2444                 goto error;
2445         }
2446
2447
2448         device = btrfs_alloc_device(NULL, &devid, NULL);
2449         if (IS_ERR(device)) {
2450                 ret = PTR_ERR(device);
2451                 goto error;
2452         }
2453
2454         name = rcu_string_strdup(device_path, GFP_NOFS);
2455         if (!name) {
2456                 kfree(device);
2457                 ret = -ENOMEM;
2458                 goto error;
2459         }
2460         rcu_assign_pointer(device->name, name);
2461
2462         q = bdev_get_queue(bdev);
2463         if (blk_queue_discard(q))
2464                 device->can_discard = 1;
2465         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2466         device->writeable = 1;
2467         device->generation = 0;
2468         device->io_width = root->sectorsize;
2469         device->io_align = root->sectorsize;
2470         device->sector_size = root->sectorsize;
2471         device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2472         device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2473         device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2474         ASSERT(list_empty(&srcdev->resized_list));
2475         device->commit_total_bytes = srcdev->commit_total_bytes;
2476         device->commit_bytes_used = device->bytes_used;
2477         device->dev_root = fs_info->dev_root;
2478         device->bdev = bdev;
2479         device->in_fs_metadata = 1;
2480         device->is_tgtdev_for_dev_replace = 1;
2481         device->mode = FMODE_EXCL;
2482         device->dev_stats_valid = 1;
2483         set_blocksize(device->bdev, 4096);
2484         device->fs_devices = fs_info->fs_devices;
2485         list_add(&device->dev_list, &fs_info->fs_devices->devices);
2486         fs_info->fs_devices->num_devices++;
2487         fs_info->fs_devices->open_devices++;
2488         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2489
2490         *device_out = device;
2491         return ret;
2492
2493 error:
2494         blkdev_put(bdev, FMODE_EXCL);
2495         return ret;
2496 }
2497
2498 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2499                                               struct btrfs_device *tgtdev)
2500 {
2501         WARN_ON(fs_info->fs_devices->rw_devices == 0);
2502         tgtdev->io_width = fs_info->dev_root->sectorsize;
2503         tgtdev->io_align = fs_info->dev_root->sectorsize;
2504         tgtdev->sector_size = fs_info->dev_root->sectorsize;
2505         tgtdev->dev_root = fs_info->dev_root;
2506         tgtdev->in_fs_metadata = 1;
2507 }
2508
2509 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2510                                         struct btrfs_device *device)
2511 {
2512         int ret;
2513         struct btrfs_path *path;
2514         struct btrfs_root *root;
2515         struct btrfs_dev_item *dev_item;
2516         struct extent_buffer *leaf;
2517         struct btrfs_key key;
2518
2519         root = device->dev_root->fs_info->chunk_root;
2520
2521         path = btrfs_alloc_path();
2522         if (!path)
2523                 return -ENOMEM;
2524
2525         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2526         key.type = BTRFS_DEV_ITEM_KEY;
2527         key.offset = device->devid;
2528
2529         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2530         if (ret < 0)
2531                 goto out;
2532
2533         if (ret > 0) {
2534                 ret = -ENOENT;
2535                 goto out;
2536         }
2537
2538         leaf = path->nodes[0];
2539         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2540
2541         btrfs_set_device_id(leaf, dev_item, device->devid);
2542         btrfs_set_device_type(leaf, dev_item, device->type);
2543         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2544         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2545         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2546         btrfs_set_device_total_bytes(leaf, dev_item,
2547                                      btrfs_device_get_disk_total_bytes(device));
2548         btrfs_set_device_bytes_used(leaf, dev_item,
2549                                     btrfs_device_get_bytes_used(device));
2550         btrfs_mark_buffer_dirty(leaf);
2551
2552 out:
2553         btrfs_free_path(path);
2554         return ret;
2555 }
2556
2557 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2558                       struct btrfs_device *device, u64 new_size)
2559 {
2560         struct btrfs_super_block *super_copy =
2561                 device->dev_root->fs_info->super_copy;
2562         struct btrfs_fs_devices *fs_devices;
2563         u64 old_total;
2564         u64 diff;
2565
2566         if (!device->writeable)
2567                 return -EACCES;
2568
2569         lock_chunks(device->dev_root);
2570         old_total = btrfs_super_total_bytes(super_copy);
2571         diff = new_size - device->total_bytes;
2572
2573         if (new_size <= device->total_bytes ||
2574             device->is_tgtdev_for_dev_replace) {
2575                 unlock_chunks(device->dev_root);
2576                 return -EINVAL;
2577         }
2578
2579         fs_devices = device->dev_root->fs_info->fs_devices;
2580
2581         btrfs_set_super_total_bytes(super_copy, old_total + diff);
2582         device->fs_devices->total_rw_bytes += diff;
2583
2584         btrfs_device_set_total_bytes(device, new_size);
2585         btrfs_device_set_disk_total_bytes(device, new_size);
2586         btrfs_clear_space_info_full(device->dev_root->fs_info);
2587         if (list_empty(&device->resized_list))
2588                 list_add_tail(&device->resized_list,
2589                               &fs_devices->resized_devices);
2590         unlock_chunks(device->dev_root);
2591
2592         return btrfs_update_device(trans, device);
2593 }
2594
2595 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2596                             struct btrfs_root *root, u64 chunk_objectid,
2597                             u64 chunk_offset)
2598 {
2599         int ret;
2600         struct btrfs_path *path;
2601         struct btrfs_key key;
2602
2603         root = root->fs_info->chunk_root;
2604         path = btrfs_alloc_path();
2605         if (!path)
2606                 return -ENOMEM;
2607
2608         key.objectid = chunk_objectid;
2609         key.offset = chunk_offset;
2610         key.type = BTRFS_CHUNK_ITEM_KEY;
2611
2612         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2613         if (ret < 0)
2614                 goto out;
2615         else if (ret > 0) { /* Logic error or corruption */
2616                 btrfs_std_error(root->fs_info, -ENOENT,
2617                             "Failed lookup while freeing chunk.");
2618                 ret = -ENOENT;
2619                 goto out;
2620         }
2621
2622         ret = btrfs_del_item(trans, root, path);
2623         if (ret < 0)
2624                 btrfs_std_error(root->fs_info, ret,
2625                             "Failed to delete chunk item.");
2626 out:
2627         btrfs_free_path(path);
2628         return ret;
2629 }
2630
2631 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
2632                         chunk_offset)
2633 {
2634         struct btrfs_super_block *super_copy = root->fs_info->super_copy;
2635         struct btrfs_disk_key *disk_key;
2636         struct btrfs_chunk *chunk;
2637         u8 *ptr;
2638         int ret = 0;
2639         u32 num_stripes;
2640         u32 array_size;
2641         u32 len = 0;
2642         u32 cur;
2643         struct btrfs_key key;
2644
2645         lock_chunks(root);
2646         array_size = btrfs_super_sys_array_size(super_copy);
2647
2648         ptr = super_copy->sys_chunk_array;
2649         cur = 0;
2650
2651         while (cur < array_size) {
2652                 disk_key = (struct btrfs_disk_key *)ptr;
2653                 btrfs_disk_key_to_cpu(&key, disk_key);
2654
2655                 len = sizeof(*disk_key);
2656
2657                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2658                         chunk = (struct btrfs_chunk *)(ptr + len);
2659                         num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2660                         len += btrfs_chunk_item_size(num_stripes);
2661                 } else {
2662                         ret = -EIO;
2663                         break;
2664                 }
2665                 if (key.objectid == chunk_objectid &&
2666                     key.offset == chunk_offset) {
2667                         memmove(ptr, ptr + len, array_size - (cur + len));
2668                         array_size -= len;
2669                         btrfs_set_super_sys_array_size(super_copy, array_size);
2670                 } else {
2671                         ptr += len;
2672                         cur += len;
2673                 }
2674         }
2675         unlock_chunks(root);
2676         return ret;
2677 }
2678
2679 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2680                        struct btrfs_root *root, u64 chunk_offset)
2681 {
2682         struct extent_map_tree *em_tree;
2683         struct extent_map *em;
2684         struct btrfs_root *extent_root = root->fs_info->extent_root;
2685         struct map_lookup *map;
2686         u64 dev_extent_len = 0;
2687         u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2688         int i, ret = 0;
2689
2690         /* Just in case */
2691         root = root->fs_info->chunk_root;
2692         em_tree = &root->fs_info->mapping_tree.map_tree;
2693
2694         read_lock(&em_tree->lock);
2695         em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2696         read_unlock(&em_tree->lock);
2697
2698         if (!em || em->start > chunk_offset ||
2699             em->start + em->len < chunk_offset) {
2700                 /*
2701                  * This is a logic error, but we don't want to just rely on the
2702                  * user having built with ASSERT enabled, so if ASSERT doens't
2703                  * do anything we still error out.
2704                  */
2705                 ASSERT(0);
2706                 if (em)
2707                         free_extent_map(em);
2708                 return -EINVAL;
2709         }
2710         map = (struct map_lookup *)em->bdev;
2711         lock_chunks(root->fs_info->chunk_root);
2712         check_system_chunk(trans, extent_root, map->type);
2713         unlock_chunks(root->fs_info->chunk_root);
2714
2715         for (i = 0; i < map->num_stripes; i++) {
2716                 struct btrfs_device *device = map->stripes[i].dev;
2717                 ret = btrfs_free_dev_extent(trans, device,
2718                                             map->stripes[i].physical,
2719                                             &dev_extent_len);
2720                 if (ret) {
2721                         btrfs_abort_transaction(trans, root, ret);
2722                         goto out;
2723                 }
2724
2725                 if (device->bytes_used > 0) {
2726                         lock_chunks(root);
2727                         btrfs_device_set_bytes_used(device,
2728                                         device->bytes_used - dev_extent_len);
2729                         spin_lock(&root->fs_info->free_chunk_lock);
2730                         root->fs_info->free_chunk_space += dev_extent_len;
2731                         spin_unlock(&root->fs_info->free_chunk_lock);
2732                         btrfs_clear_space_info_full(root->fs_info);
2733                         unlock_chunks(root);
2734                 }
2735
2736                 if (map->stripes[i].dev) {
2737                         ret = btrfs_update_device(trans, map->stripes[i].dev);
2738                         if (ret) {
2739                                 btrfs_abort_transaction(trans, root, ret);
2740                                 goto out;
2741                         }
2742                 }
2743         }
2744         ret = btrfs_free_chunk(trans, root, chunk_objectid, chunk_offset);
2745         if (ret) {
2746                 btrfs_abort_transaction(trans, root, ret);
2747                 goto out;
2748         }
2749
2750         trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2751
2752         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2753                 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2754                 if (ret) {
2755                         btrfs_abort_transaction(trans, root, ret);
2756                         goto out;
2757                 }
2758         }
2759
2760         ret = btrfs_remove_block_group(trans, extent_root, chunk_offset, em);
2761         if (ret) {
2762                 btrfs_abort_transaction(trans, extent_root, ret);
2763                 goto out;
2764         }
2765
2766 out:
2767         /* once for us */
2768         free_extent_map(em);
2769         return ret;
2770 }
2771
2772 static int btrfs_relocate_chunk(struct btrfs_root *root, u64 chunk_offset)
2773 {
2774         struct btrfs_root *extent_root;
2775         struct btrfs_trans_handle *trans;
2776         int ret;
2777
2778         root = root->fs_info->chunk_root;
2779         extent_root = root->fs_info->extent_root;
2780
2781         /*
2782          * Prevent races with automatic removal of unused block groups.
2783          * After we relocate and before we remove the chunk with offset
2784          * chunk_offset, automatic removal of the block group can kick in,
2785          * resulting in a failure when calling btrfs_remove_chunk() below.
2786          *
2787          * Make sure to acquire this mutex before doing a tree search (dev
2788          * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2789          * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2790          * we release the path used to search the chunk/dev tree and before
2791          * the current task acquires this mutex and calls us.
2792          */
2793         ASSERT(mutex_is_locked(&root->fs_info->delete_unused_bgs_mutex));
2794
2795         ret = btrfs_can_relocate(extent_root, chunk_offset);
2796         if (ret)
2797                 return -ENOSPC;
2798
2799         /* step one, relocate all the extents inside this chunk */
2800         btrfs_scrub_pause(root);
2801         ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2802         btrfs_scrub_continue(root);
2803         if (ret)
2804                 return ret;
2805
2806         trans = btrfs_start_transaction(root, 0);
2807         if (IS_ERR(trans)) {
2808                 ret = PTR_ERR(trans);
2809                 btrfs_std_error(root->fs_info, ret, NULL);
2810                 return ret;
2811         }
2812
2813         /*
2814          * step two, delete the device extents and the
2815          * chunk tree entries
2816          */
2817         ret = btrfs_remove_chunk(trans, root, chunk_offset);
2818         btrfs_end_transaction(trans, root);
2819         return ret;
2820 }
2821
2822 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2823 {
2824         struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2825         struct btrfs_path *path;
2826         struct extent_buffer *leaf;
2827         struct btrfs_chunk *chunk;
2828         struct btrfs_key key;
2829         struct btrfs_key found_key;
2830         u64 chunk_type;
2831         bool retried = false;
2832         int failed = 0;
2833         int ret;
2834
2835         path = btrfs_alloc_path();
2836         if (!path)
2837                 return -ENOMEM;
2838
2839 again:
2840         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2841         key.offset = (u64)-1;
2842         key.type = BTRFS_CHUNK_ITEM_KEY;
2843
2844         while (1) {
2845                 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
2846                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2847                 if (ret < 0) {
2848                         mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2849                         goto error;
2850                 }
2851                 BUG_ON(ret == 0); /* Corruption */
2852
2853                 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2854                                           key.type);
2855                 if (ret)
2856                         mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2857                 if (ret < 0)
2858                         goto error;
2859                 if (ret > 0)
2860                         break;
2861
2862                 leaf = path->nodes[0];
2863                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2864
2865                 chunk = btrfs_item_ptr(leaf, path->slots[0],
2866                                        struct btrfs_chunk);
2867                 chunk_type = btrfs_chunk_type(leaf, chunk);
2868                 btrfs_release_path(path);
2869
2870                 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2871                         ret = btrfs_relocate_chunk(chunk_root,
2872                                                    found_key.offset);
2873                         if (ret == -ENOSPC)
2874                                 failed++;
2875                         else
2876                                 BUG_ON(ret);
2877                 }
2878                 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2879
2880                 if (found_key.offset == 0)
2881                         break;
2882                 key.offset = found_key.offset - 1;
2883         }
2884         ret = 0;
2885         if (failed && !retried) {
2886                 failed = 0;
2887                 retried = true;
2888                 goto again;
2889         } else if (WARN_ON(failed && retried)) {
2890                 ret = -ENOSPC;
2891         }
2892 error:
2893         btrfs_free_path(path);
2894         return ret;
2895 }
2896
2897 static int insert_balance_item(struct btrfs_root *root,
2898                                struct btrfs_balance_control *bctl)
2899 {
2900         struct btrfs_trans_handle *trans;
2901         struct btrfs_balance_item *item;
2902         struct btrfs_disk_balance_args disk_bargs;
2903         struct btrfs_path *path;
2904         struct extent_buffer *leaf;
2905         struct btrfs_key key;
2906         int ret, err;
2907
2908         path = btrfs_alloc_path();
2909         if (!path)
2910                 return -ENOMEM;
2911
2912         trans = btrfs_start_transaction(root, 0);
2913         if (IS_ERR(trans)) {
2914                 btrfs_free_path(path);
2915                 return PTR_ERR(trans);
2916         }
2917
2918         key.objectid = BTRFS_BALANCE_OBJECTID;
2919         key.type = BTRFS_BALANCE_ITEM_KEY;
2920         key.offset = 0;
2921
2922         ret = btrfs_insert_empty_item(trans, root, path, &key,
2923                                       sizeof(*item));
2924         if (ret)
2925                 goto out;
2926
2927         leaf = path->nodes[0];
2928         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2929
2930         memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2931
2932         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2933         btrfs_set_balance_data(leaf, item, &disk_bargs);
2934         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2935         btrfs_set_balance_meta(leaf, item, &disk_bargs);
2936         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2937         btrfs_set_balance_sys(leaf, item, &disk_bargs);
2938
2939         btrfs_set_balance_flags(leaf, item, bctl->flags);
2940
2941         btrfs_mark_buffer_dirty(leaf);
2942 out:
2943         btrfs_free_path(path);
2944         err = btrfs_commit_transaction(trans, root);
2945         if (err && !ret)
2946                 ret = err;
2947         return ret;
2948 }
2949
2950 static int del_balance_item(struct btrfs_root *root)
2951 {
2952         struct btrfs_trans_handle *trans;
2953         struct btrfs_path *path;
2954         struct btrfs_key key;
2955         int ret, err;
2956
2957         path = btrfs_alloc_path();
2958         if (!path)
2959                 return -ENOMEM;
2960
2961         trans = btrfs_start_transaction(root, 0);
2962         if (IS_ERR(trans)) {
2963                 btrfs_free_path(path);
2964                 return PTR_ERR(trans);
2965         }
2966
2967         key.objectid = BTRFS_BALANCE_OBJECTID;
2968         key.type = BTRFS_BALANCE_ITEM_KEY;
2969         key.offset = 0;
2970
2971         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2972         if (ret < 0)
2973                 goto out;
2974         if (ret > 0) {
2975                 ret = -ENOENT;
2976                 goto out;
2977         }
2978
2979         ret = btrfs_del_item(trans, root, path);
2980 out:
2981         btrfs_free_path(path);
2982         err = btrfs_commit_transaction(trans, root);
2983         if (err && !ret)
2984                 ret = err;
2985         return ret;
2986 }
2987
2988 /*
2989  * This is a heuristic used to reduce the number of chunks balanced on
2990  * resume after balance was interrupted.
2991  */
2992 static void update_balance_args(struct btrfs_balance_control *bctl)
2993 {
2994         /*
2995          * Turn on soft mode for chunk types that were being converted.
2996          */
2997         if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
2998                 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
2999         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3000                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3001         if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3002                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3003
3004         /*
3005          * Turn on usage filter if is not already used.  The idea is
3006          * that chunks that we have already balanced should be
3007          * reasonably full.  Don't do it for chunks that are being
3008          * converted - that will keep us from relocating unconverted
3009          * (albeit full) chunks.
3010          */
3011         if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3012             !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3013                 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3014                 bctl->data.usage = 90;
3015         }
3016         if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3017             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3018                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3019                 bctl->sys.usage = 90;
3020         }
3021         if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3022             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3023                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3024                 bctl->meta.usage = 90;
3025         }
3026 }
3027
3028 /*
3029  * Should be called with both balance and volume mutexes held to
3030  * serialize other volume operations (add_dev/rm_dev/resize) with
3031  * restriper.  Same goes for unset_balance_control.
3032  */
3033 static void set_balance_control(struct btrfs_balance_control *bctl)
3034 {
3035         struct btrfs_fs_info *fs_info = bctl->fs_info;
3036
3037         BUG_ON(fs_info->balance_ctl);
3038
3039         spin_lock(&fs_info->balance_lock);
3040         fs_info->balance_ctl = bctl;
3041         spin_unlock(&fs_info->balance_lock);
3042 }
3043
3044 static void unset_balance_control(struct btrfs_fs_info *fs_info)
3045 {
3046         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3047
3048         BUG_ON(!fs_info->balance_ctl);
3049
3050         spin_lock(&fs_info->balance_lock);
3051         fs_info->balance_ctl = NULL;
3052         spin_unlock(&fs_info->balance_lock);
3053
3054         kfree(bctl);
3055 }
3056
3057 /*
3058  * Balance filters.  Return 1 if chunk should be filtered out
3059  * (should not be balanced).
3060  */
3061 static int chunk_profiles_filter(u64 chunk_type,
3062                                  struct btrfs_balance_args *bargs)
3063 {
3064         chunk_type = chunk_to_extended(chunk_type) &
3065                                 BTRFS_EXTENDED_PROFILE_MASK;
3066
3067         if (bargs->profiles & chunk_type)
3068                 return 0;
3069
3070         return 1;
3071 }
3072
3073 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3074                               struct btrfs_balance_args *bargs)
3075 {
3076         struct btrfs_block_group_cache *cache;
3077         u64 chunk_used, user_thresh;
3078         int ret = 1;
3079
3080         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3081         chunk_used = btrfs_block_group_used(&cache->item);
3082
3083         if (bargs->usage == 0)
3084                 user_thresh = 1;
3085         else if (bargs->usage > 100)
3086                 user_thresh = cache->key.offset;
3087         else
3088                 user_thresh = div_factor_fine(cache->key.offset,
3089                                               bargs->usage);
3090
3091         if (chunk_used < user_thresh)
3092                 ret = 0;
3093
3094         btrfs_put_block_group(cache);
3095         return ret;
3096 }
3097
3098 static int chunk_devid_filter(struct extent_buffer *leaf,
3099                               struct btrfs_chunk *chunk,
3100                               struct btrfs_balance_args *bargs)
3101 {
3102         struct btrfs_stripe *stripe;
3103         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3104         int i;
3105
3106         for (i = 0; i < num_stripes; i++) {
3107                 stripe = btrfs_stripe_nr(chunk, i);
3108                 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3109                         return 0;
3110         }
3111
3112         return 1;
3113 }
3114
3115 /* [pstart, pend) */
3116 static int chunk_drange_filter(struct extent_buffer *leaf,
3117                                struct btrfs_chunk *chunk,
3118                                u64 chunk_offset,
3119                                struct btrfs_balance_args *bargs)
3120 {
3121         struct btrfs_stripe *stripe;
3122         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3123         u64 stripe_offset;
3124         u64 stripe_length;
3125         int factor;
3126         int i;
3127
3128         if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3129                 return 0;
3130
3131         if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3132              BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3133                 factor = num_stripes / 2;
3134         } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3135                 factor = num_stripes - 1;
3136         } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3137                 factor = num_stripes - 2;
3138         } else {
3139                 factor = num_stripes;
3140         }
3141
3142         for (i = 0; i < num_stripes; i++) {
3143                 stripe = btrfs_stripe_nr(chunk, i);
3144                 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3145                         continue;
3146
3147                 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3148                 stripe_length = btrfs_chunk_length(leaf, chunk);
3149                 stripe_length = div_u64(stripe_length, factor);
3150
3151                 if (stripe_offset < bargs->pend &&
3152                     stripe_offset + stripe_length > bargs->pstart)
3153                         return 0;
3154         }
3155
3156         return 1;
3157 }
3158
3159 /* [vstart, vend) */
3160 static int chunk_vrange_filter(struct extent_buffer *leaf,
3161                                struct btrfs_chunk *chunk,
3162                                u64 chunk_offset,
3163                                struct btrfs_balance_args *bargs)
3164 {
3165         if (chunk_offset < bargs->vend &&
3166             chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3167                 /* at least part of the chunk is inside this vrange */
3168                 return 0;
3169
3170         return 1;
3171 }
3172
3173 static int chunk_soft_convert_filter(u64 chunk_type,
3174                                      struct btrfs_balance_args *bargs)
3175 {
3176         if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3177                 return 0;
3178
3179         chunk_type = chunk_to_extended(chunk_type) &
3180                                 BTRFS_EXTENDED_PROFILE_MASK;
3181
3182         if (bargs->target == chunk_type)
3183                 return 1;
3184
3185         return 0;
3186 }
3187
3188 static int should_balance_chunk(struct btrfs_root *root,
3189                                 struct extent_buffer *leaf,
3190                                 struct btrfs_chunk *chunk, u64 chunk_offset)
3191 {
3192         struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
3193         struct btrfs_balance_args *bargs = NULL;
3194         u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3195
3196         /* type filter */
3197         if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3198               (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3199                 return 0;
3200         }
3201
3202         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3203                 bargs = &bctl->data;
3204         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3205                 bargs = &bctl->sys;
3206         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3207                 bargs = &bctl->meta;
3208
3209         /* profiles filter */
3210         if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3211             chunk_profiles_filter(chunk_type, bargs)) {
3212                 return 0;
3213         }
3214
3215         /* usage filter */
3216         if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3217             chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
3218                 return 0;
3219         }
3220
3221         /* devid filter */
3222         if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3223             chunk_devid_filter(leaf, chunk, bargs)) {
3224                 return 0;
3225         }
3226
3227         /* drange filter, makes sense only with devid filter */
3228         if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3229             chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3230                 return 0;
3231         }
3232
3233         /* vrange filter */
3234         if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3235             chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3236                 return 0;
3237         }
3238
3239         /* soft profile changing mode */
3240         if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3241             chunk_soft_convert_filter(chunk_type, bargs)) {
3242                 return 0;
3243         }
3244
3245         /*
3246          * limited by count, must be the last filter
3247          */
3248         if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3249                 if (bargs->limit == 0)
3250                         return 0;
3251                 else
3252                         bargs->limit--;
3253         }
3254
3255         return 1;
3256 }
3257
3258 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3259 {
3260         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3261         struct btrfs_root *chunk_root = fs_info->chunk_root;
3262         struct btrfs_root *dev_root = fs_info->dev_root;
3263         struct list_head *devices;
3264         struct btrfs_device *device;
3265         u64 old_size;
3266         u64 size_to_free;
3267         struct btrfs_chunk *chunk;
3268         struct btrfs_path *path;
3269         struct btrfs_key key;
3270         struct btrfs_key found_key;
3271         struct btrfs_trans_handle *trans;
3272         struct extent_buffer *leaf;
3273         int slot;
3274         int ret;
3275         int enospc_errors = 0;
3276         bool counting = true;
3277         u64 limit_data = bctl->data.limit;
3278         u64 limit_meta = bctl->meta.limit;
3279         u64 limit_sys = bctl->sys.limit;
3280
3281         /* step one make some room on all the devices */
3282         devices = &fs_info->fs_devices->devices;
3283         list_for_each_entry(device, devices, dev_list) {
3284                 old_size = btrfs_device_get_total_bytes(device);
3285                 size_to_free = div_factor(old_size, 1);
3286                 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
3287                 if (!device->writeable ||
3288                     btrfs_device_get_total_bytes(device) -
3289                     btrfs_device_get_bytes_used(device) > size_to_free ||
3290                     device->is_tgtdev_for_dev_replace)
3291                         continue;
3292
3293                 ret = btrfs_shrink_device(device, old_size - size_to_free);
3294                 if (ret == -ENOSPC)
3295                         break;
3296                 BUG_ON(ret);
3297
3298                 trans = btrfs_start_transaction(dev_root, 0);
3299                 BUG_ON(IS_ERR(trans));
3300
3301                 ret = btrfs_grow_device(trans, device, old_size);
3302                 BUG_ON(ret);
3303
3304                 btrfs_end_transaction(trans, dev_root);
3305         }
3306
3307         /* step two, relocate all the chunks */
3308         path = btrfs_alloc_path();
3309         if (!path) {
3310                 ret = -ENOMEM;
3311                 goto error;
3312         }
3313
3314         /* zero out stat counters */
3315         spin_lock(&fs_info->balance_lock);
3316         memset(&bctl->stat, 0, sizeof(bctl->stat));
3317         spin_unlock(&fs_info->balance_lock);
3318 again:
3319         if (!counting) {
3320                 bctl->data.limit = limit_data;
3321                 bctl->meta.limit = limit_meta;
3322                 bctl->sys.limit = limit_sys;
3323         }
3324         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3325         key.offset = (u64)-1;
3326         key.type = BTRFS_CHUNK_ITEM_KEY;
3327
3328         while (1) {
3329                 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3330                     atomic_read(&fs_info->balance_cancel_req)) {
3331                         ret = -ECANCELED;
3332                         goto error;
3333                 }
3334
3335                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3336                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3337                 if (ret < 0) {
3338                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3339                         goto error;
3340                 }
3341
3342                 /*
3343                  * this shouldn't happen, it means the last relocate
3344                  * failed
3345                  */
3346                 if (ret == 0)
3347                         BUG(); /* FIXME break ? */
3348
3349                 ret = btrfs_previous_item(chunk_root, path, 0,
3350                                           BTRFS_CHUNK_ITEM_KEY);
3351                 if (ret) {
3352                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3353                         ret = 0;
3354                         break;
3355                 }
3356
3357                 leaf = path->nodes[0];
3358                 slot = path->slots[0];
3359                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3360
3361                 if (found_key.objectid != key.objectid) {
3362                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3363                         break;
3364                 }
3365
3366                 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3367
3368                 if (!counting) {
3369                         spin_lock(&fs_info->balance_lock);
3370                         bctl->stat.considered++;
3371                         spin_unlock(&fs_info->balance_lock);
3372                 }
3373
3374                 ret = should_balance_chunk(chunk_root, leaf, chunk,
3375                                            found_key.offset);
3376                 btrfs_release_path(path);
3377                 if (!ret) {
3378                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3379                         goto loop;
3380                 }
3381
3382                 if (counting) {
3383                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3384                         spin_lock(&fs_info->balance_lock);
3385                         bctl->stat.expected++;
3386                         spin_unlock(&fs_info->balance_lock);
3387                         goto loop;
3388                 }
3389
3390                 ret = btrfs_relocate_chunk(chunk_root,
3391                                            found_key.offset);
3392                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3393                 if (ret && ret != -ENOSPC)
3394                         goto error;
3395                 if (ret == -ENOSPC) {
3396                         enospc_errors++;
3397                 } else {
3398                         spin_lock(&fs_info->balance_lock);
3399                         bctl->stat.completed++;
3400                         spin_unlock(&fs_info->balance_lock);
3401                 }
3402 loop:
3403                 if (found_key.offset == 0)
3404                         break;
3405                 key.offset = found_key.offset - 1;
3406         }
3407
3408         if (counting) {
3409                 btrfs_release_path(path);
3410                 counting = false;
3411                 goto again;
3412         }
3413 error:
3414         btrfs_free_path(path);
3415         if (enospc_errors) {
3416                 btrfs_info(fs_info, "%d enospc errors during balance",
3417                        enospc_errors);
3418                 if (!ret)
3419                         ret = -ENOSPC;
3420         }
3421
3422         return ret;
3423 }
3424
3425 /**
3426  * alloc_profile_is_valid - see if a given profile is valid and reduced
3427  * @flags: profile to validate
3428  * @extended: if true @flags is treated as an extended profile
3429  */
3430 static int alloc_profile_is_valid(u64 flags, int extended)
3431 {
3432         u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3433                                BTRFS_BLOCK_GROUP_PROFILE_MASK);
3434
3435         flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3436
3437         /* 1) check that all other bits are zeroed */
3438         if (flags & ~mask)
3439                 return 0;
3440
3441         /* 2) see if profile is reduced */
3442         if (flags == 0)
3443                 return !extended; /* "0" is valid for usual profiles */
3444
3445         /* true if exactly one bit set */
3446         return (flags & (flags - 1)) == 0;
3447 }
3448
3449 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3450 {
3451         /* cancel requested || normal exit path */
3452         return atomic_read(&fs_info->balance_cancel_req) ||
3453                 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3454                  atomic_read(&fs_info->balance_cancel_req) == 0);
3455 }
3456
3457 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3458 {
3459         int ret;
3460
3461         unset_balance_control(fs_info);
3462         ret = del_balance_item(fs_info->tree_root);
3463         if (ret)
3464                 btrfs_std_error(fs_info, ret, NULL);
3465
3466         atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3467 }
3468
3469 /*
3470  * Should be called with both balance and volume mutexes held
3471  */
3472 int btrfs_balance(struct btrfs_balance_control *bctl,
3473                   struct btrfs_ioctl_balance_args *bargs)
3474 {
3475         struct btrfs_fs_info *fs_info = bctl->fs_info;
3476         u64 allowed;
3477         int mixed = 0;
3478         int ret;
3479         u64 num_devices;
3480         unsigned seq;
3481
3482         if (btrfs_fs_closing(fs_info) ||
3483             atomic_read(&fs_info->balance_pause_req) ||
3484             atomic_read(&fs_info->balance_cancel_req)) {
3485                 ret = -EINVAL;
3486                 goto out;
3487         }
3488
3489         allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3490         if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3491                 mixed = 1;
3492
3493         /*
3494          * In case of mixed groups both data and meta should be picked,
3495          * and identical options should be given for both of them.
3496          */
3497         allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3498         if (mixed && (bctl->flags & allowed)) {
3499                 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3500                     !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3501                     memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3502                         btrfs_err(fs_info, "with mixed groups data and "
3503                                    "metadata balance options must be the same");
3504                         ret = -EINVAL;
3505                         goto out;
3506                 }
3507         }
3508
3509         num_devices = fs_info->fs_devices->num_devices;
3510         btrfs_dev_replace_lock(&fs_info->dev_replace);
3511         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3512                 BUG_ON(num_devices < 1);
3513                 num_devices--;
3514         }
3515         btrfs_dev_replace_unlock(&fs_info->dev_replace);
3516         allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
3517         if (num_devices == 1)
3518                 allowed |= BTRFS_BLOCK_GROUP_DUP;
3519         else if (num_devices > 1)
3520                 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3521         if (num_devices > 2)
3522                 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3523         if (num_devices > 3)
3524                 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3525                             BTRFS_BLOCK_GROUP_RAID6);
3526         if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3527             (!alloc_profile_is_valid(bctl->data.target, 1) ||
3528              (bctl->data.target & ~allowed))) {
3529                 btrfs_err(fs_info, "unable to start balance with target "
3530                            "data profile %llu",
3531                        bctl->data.target);
3532                 ret = -EINVAL;
3533                 goto out;
3534         }
3535         if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3536             (!alloc_profile_is_valid(bctl->meta.target, 1) ||
3537              (bctl->meta.target & ~allowed))) {
3538                 btrfs_err(fs_info,
3539                            "unable to start balance with target metadata profile %llu",
3540                        bctl->meta.target);
3541                 ret = -EINVAL;
3542                 goto out;
3543         }
3544         if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3545             (!alloc_profile_is_valid(bctl->sys.target, 1) ||
3546              (bctl->sys.target & ~allowed))) {
3547                 btrfs_err(fs_info,
3548                            "unable to start balance with target system profile %llu",
3549                        bctl->sys.target);
3550                 ret = -EINVAL;
3551                 goto out;
3552         }
3553
3554         /* allow dup'ed data chunks only in mixed mode */
3555         if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3556             (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
3557                 btrfs_err(fs_info, "dup for data is not allowed");
3558                 ret = -EINVAL;
3559                 goto out;
3560         }
3561
3562         /* allow to reduce meta or sys integrity only if force set */
3563         allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3564                         BTRFS_BLOCK_GROUP_RAID10 |
3565                         BTRFS_BLOCK_GROUP_RAID5 |
3566                         BTRFS_BLOCK_GROUP_RAID6;
3567         do {
3568                 seq = read_seqbegin(&fs_info->profiles_lock);
3569
3570                 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3571                      (fs_info->avail_system_alloc_bits & allowed) &&
3572                      !(bctl->sys.target & allowed)) ||
3573                     ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3574                      (fs_info->avail_metadata_alloc_bits & allowed) &&
3575                      !(bctl->meta.target & allowed))) {
3576                         if (bctl->flags & BTRFS_BALANCE_FORCE) {
3577                                 btrfs_info(fs_info, "force reducing metadata integrity");
3578                         } else {
3579                                 btrfs_err(fs_info, "balance will reduce metadata "
3580                                            "integrity, use force if you want this");
3581                                 ret = -EINVAL;
3582                                 goto out;
3583                         }
3584                 }
3585         } while (read_seqretry(&fs_info->profiles_lock, seq));
3586
3587         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3588                 fs_info->num_tolerated_disk_barrier_failures = min(
3589                         btrfs_calc_num_tolerated_disk_barrier_failures(fs_info),
3590                         btrfs_get_num_tolerated_disk_barrier_failures(
3591                                 bctl->sys.target));
3592         }
3593
3594         ret = insert_balance_item(fs_info->tree_root, bctl);
3595         if (ret && ret != -EEXIST)
3596                 goto out;
3597
3598         if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3599                 BUG_ON(ret == -EEXIST);
3600                 set_balance_control(bctl);
3601         } else {
3602                 BUG_ON(ret != -EEXIST);
3603                 spin_lock(&fs_info->balance_lock);
3604                 update_balance_args(bctl);
3605                 spin_unlock(&fs_info->balance_lock);
3606         }
3607
3608         atomic_inc(&fs_info->balance_running);
3609         mutex_unlock(&fs_info->balance_mutex);
3610
3611         ret = __btrfs_balance(fs_info);
3612
3613         mutex_lock(&fs_info->balance_mutex);
3614         atomic_dec(&fs_info->balance_running);
3615
3616         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3617                 fs_info->num_tolerated_disk_barrier_failures =
3618                         btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3619         }
3620
3621         if (bargs) {
3622                 memset(bargs, 0, sizeof(*bargs));
3623                 update_ioctl_balance_args(fs_info, 0, bargs);
3624         }
3625
3626         if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3627             balance_need_close(fs_info)) {
3628                 __cancel_balance(fs_info);
3629         }
3630
3631         wake_up(&fs_info->balance_wait_q);
3632
3633         return ret;
3634 out:
3635         if (bctl->flags & BTRFS_BALANCE_RESUME)
3636                 __cancel_balance(fs_info);
3637         else {
3638                 kfree(bctl);
3639                 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3640         }
3641         return ret;
3642 }
3643
3644 static int balance_kthread(void *data)
3645 {
3646         struct btrfs_fs_info *fs_info = data;
3647         int ret = 0;
3648
3649         mutex_lock(&fs_info->volume_mutex);
3650         mutex_lock(&fs_info->balance_mutex);
3651
3652         if (fs_info->balance_ctl) {
3653                 btrfs_info(fs_info, "continuing balance");
3654                 ret = btrfs_balance(fs_info->balance_ctl, NULL);
3655         }
3656
3657         mutex_unlock(&fs_info->balance_mutex);
3658         mutex_unlock(&fs_info->volume_mutex);
3659
3660         return ret;
3661 }
3662
3663 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3664 {
3665         struct task_struct *tsk;
3666
3667         spin_lock(&fs_info->balance_lock);
3668         if (!fs_info->balance_ctl) {
3669                 spin_unlock(&fs_info->balance_lock);
3670                 return 0;
3671         }
3672         spin_unlock(&fs_info->balance_lock);
3673
3674         if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
3675                 btrfs_info(fs_info, "force skipping balance");
3676                 return 0;
3677         }
3678
3679         tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3680         return PTR_ERR_OR_ZERO(tsk);
3681 }
3682
3683 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3684 {
3685         struct btrfs_balance_control *bctl;
3686         struct btrfs_balance_item *item;
3687         struct btrfs_disk_balance_args disk_bargs;
3688         struct btrfs_path *path;
3689         struct extent_buffer *leaf;
3690         struct btrfs_key key;
3691         int ret;
3692
3693         path = btrfs_alloc_path();
3694         if (!path)
3695                 return -ENOMEM;
3696
3697         key.objectid = BTRFS_BALANCE_OBJECTID;
3698         key.type = BTRFS_BALANCE_ITEM_KEY;
3699         key.offset = 0;
3700
3701         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3702         if (ret < 0)
3703                 goto out;
3704         if (ret > 0) { /* ret = -ENOENT; */
3705                 ret = 0;
3706                 goto out;
3707         }
3708
3709         bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3710         if (!bctl) {
3711                 ret = -ENOMEM;
3712                 goto out;
3713         }
3714
3715         leaf = path->nodes[0];
3716         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3717
3718         bctl->fs_info = fs_info;
3719         bctl->flags = btrfs_balance_flags(leaf, item);
3720         bctl->flags |= BTRFS_BALANCE_RESUME;
3721
3722         btrfs_balance_data(leaf, item, &disk_bargs);
3723         btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3724         btrfs_balance_meta(leaf, item, &disk_bargs);
3725         btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3726         btrfs_balance_sys(leaf, item, &disk_bargs);
3727         btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3728
3729         WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3730
3731         mutex_lock(&fs_info->volume_mutex);
3732         mutex_lock(&fs_info->balance_mutex);
3733
3734         set_balance_control(bctl);
3735
3736         mutex_unlock(&fs_info->balance_mutex);
3737         mutex_unlock(&fs_info->volume_mutex);
3738 out:
3739         btrfs_free_path(path);
3740         return ret;
3741 }
3742
3743 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3744 {
3745         int ret = 0;
3746
3747         mutex_lock(&fs_info->balance_mutex);
3748         if (!fs_info->balance_ctl) {
3749                 mutex_unlock(&fs_info->balance_mutex);
3750                 return -ENOTCONN;
3751         }
3752
3753         if (atomic_read(&fs_info->balance_running)) {
3754                 atomic_inc(&fs_info->balance_pause_req);
3755                 mutex_unlock(&fs_info->balance_mutex);
3756
3757                 wait_event(fs_info->balance_wait_q,
3758                            atomic_read(&fs_info->balance_running) == 0);
3759
3760                 mutex_lock(&fs_info->balance_mutex);
3761                 /* we are good with balance_ctl ripped off from under us */
3762                 BUG_ON(atomic_read(&fs_info->balance_running));
3763                 atomic_dec(&fs_info->balance_pause_req);
3764         } else {
3765                 ret = -ENOTCONN;
3766         }
3767
3768         mutex_unlock(&fs_info->balance_mutex);
3769         return ret;
3770 }
3771
3772 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3773 {
3774         if (fs_info->sb->s_flags & MS_RDONLY)
3775                 return -EROFS;
3776
3777         mutex_lock(&fs_info->balance_mutex);
3778         if (!fs_info->balance_ctl) {
3779                 mutex_unlock(&fs_info->balance_mutex);
3780                 return -ENOTCONN;
3781         }
3782
3783         atomic_inc(&fs_info->balance_cancel_req);
3784         /*
3785          * if we are running just wait and return, balance item is
3786          * deleted in btrfs_balance in this case
3787          */
3788         if (atomic_read(&fs_info->balance_running)) {
3789                 mutex_unlock(&fs_info->balance_mutex);
3790                 wait_event(fs_info->balance_wait_q,
3791                            atomic_read(&fs_info->balance_running) == 0);
3792                 mutex_lock(&fs_info->balance_mutex);
3793         } else {
3794                 /* __cancel_balance needs volume_mutex */
3795                 mutex_unlock(&fs_info->balance_mutex);
3796                 mutex_lock(&fs_info->volume_mutex);
3797                 mutex_lock(&fs_info->balance_mutex);
3798
3799                 if (fs_info->balance_ctl)
3800                         __cancel_balance(fs_info);
3801
3802                 mutex_unlock(&fs_info->volume_mutex);
3803         }
3804
3805         BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3806         atomic_dec(&fs_info->balance_cancel_req);
3807         mutex_unlock(&fs_info->balance_mutex);
3808         return 0;
3809 }
3810
3811 static int btrfs_uuid_scan_kthread(void *data)
3812 {
3813         struct btrfs_fs_info *fs_info = data;
3814         struct btrfs_root *root = fs_info->tree_root;
3815         struct btrfs_key key;
3816         struct btrfs_key max_key;
3817         struct btrfs_path *path = NULL;
3818         int ret = 0;
3819         struct extent_buffer *eb;
3820         int slot;
3821         struct btrfs_root_item root_item;
3822         u32 item_size;
3823         struct btrfs_trans_handle *trans = NULL;
3824
3825         path = btrfs_alloc_path();
3826         if (!path) {
3827                 ret = -ENOMEM;
3828                 goto out;
3829         }
3830
3831         key.objectid = 0;
3832         key.type = BTRFS_ROOT_ITEM_KEY;
3833         key.offset = 0;
3834
3835         max_key.objectid = (u64)-1;
3836         max_key.type = BTRFS_ROOT_ITEM_KEY;
3837         max_key.offset = (u64)-1;
3838
3839         while (1) {
3840                 ret = btrfs_search_forward(root, &key, path, 0);
3841                 if (ret) {
3842                         if (ret > 0)
3843                                 ret = 0;
3844                         break;
3845                 }
3846
3847                 if (key.type != BTRFS_ROOT_ITEM_KEY ||
3848                     (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
3849                      key.objectid != BTRFS_FS_TREE_OBJECTID) ||
3850                     key.objectid > BTRFS_LAST_FREE_OBJECTID)
3851                         goto skip;
3852
3853                 eb = path->nodes[0];
3854                 slot = path->slots[0];
3855                 item_size = btrfs_item_size_nr(eb, slot);
3856                 if (item_size < sizeof(root_item))
3857                         goto skip;
3858
3859                 read_extent_buffer(eb, &root_item,
3860                                    btrfs_item_ptr_offset(eb, slot),
3861                                    (int)sizeof(root_item));
3862                 if (btrfs_root_refs(&root_item) == 0)
3863                         goto skip;
3864
3865                 if (!btrfs_is_empty_uuid(root_item.uuid) ||
3866                     !btrfs_is_empty_uuid(root_item.received_uuid)) {
3867                         if (trans)
3868                                 goto update_tree;
3869
3870                         btrfs_release_path(path);
3871                         /*
3872                          * 1 - subvol uuid item
3873                          * 1 - received_subvol uuid item
3874                          */
3875                         trans = btrfs_start_transaction(fs_info->uuid_root, 2);
3876                         if (IS_ERR(trans)) {
3877                                 ret = PTR_ERR(trans);
3878                                 break;
3879                         }
3880                         continue;
3881                 } else {
3882                         goto skip;
3883                 }
3884 update_tree:
3885                 if (!btrfs_is_empty_uuid(root_item.uuid)) {
3886                         ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3887                                                   root_item.uuid,
3888                                                   BTRFS_UUID_KEY_SUBVOL,
3889                                                   key.objectid);
3890                         if (ret < 0) {
3891                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
3892                                         ret);
3893                                 break;
3894                         }
3895                 }
3896
3897                 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
3898                         ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3899                                                   root_item.received_uuid,
3900                                                  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
3901                                                   key.objectid);
3902                         if (ret < 0) {
3903                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
3904                                         ret);
3905                                 break;
3906                         }
3907                 }
3908
3909 skip:
3910                 if (trans) {
3911                         ret = btrfs_end_transaction(trans, fs_info->uuid_root);
3912                         trans = NULL;
3913                         if (ret)
3914                                 break;
3915                 }
3916
3917                 btrfs_release_path(path);
3918                 if (key.offset < (u64)-1) {
3919                         key.offset++;
3920                 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
3921                         key.offset = 0;
3922                         key.type = BTRFS_ROOT_ITEM_KEY;
3923                 } else if (key.objectid < (u64)-1) {
3924                         key.offset = 0;
3925                         key.type = BTRFS_ROOT_ITEM_KEY;
3926                         key.objectid++;
3927                 } else {
3928                         break;
3929                 }
3930                 cond_resched();
3931         }
3932
3933 out:
3934         btrfs_free_path(path);
3935         if (trans && !IS_ERR(trans))
3936                 btrfs_end_transaction(trans, fs_info->uuid_root);
3937         if (ret)
3938                 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
3939         else
3940                 fs_info->update_uuid_tree_gen = 1;
3941         up(&fs_info->uuid_tree_rescan_sem);
3942         return 0;
3943 }
3944
3945 /*
3946  * Callback for btrfs_uuid_tree_iterate().
3947  * returns:
3948  * 0    check succeeded, the entry is not outdated.
3949  * < 0  if an error occured.
3950  * > 0  if the check failed, which means the caller shall remove the entry.
3951  */
3952 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
3953                                        u8 *uuid, u8 type, u64 subid)
3954 {
3955         struct btrfs_key key;
3956         int ret = 0;
3957         struct btrfs_root *subvol_root;
3958
3959         if (type != BTRFS_UUID_KEY_SUBVOL &&
3960             type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
3961                 goto out;
3962
3963         key.objectid = subid;
3964         key.type = BTRFS_ROOT_ITEM_KEY;
3965         key.offset = (u64)-1;
3966         subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
3967         if (IS_ERR(subvol_root)) {
3968                 ret = PTR_ERR(subvol_root);
3969                 if (ret == -ENOENT)
3970                         ret = 1;
3971                 goto out;
3972         }
3973
3974         switch (type) {
3975         case BTRFS_UUID_KEY_SUBVOL:
3976                 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
3977                         ret = 1;
3978                 break;
3979         case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
3980                 if (memcmp(uuid, subvol_root->root_item.received_uuid,
3981                            BTRFS_UUID_SIZE))
3982                         ret = 1;
3983                 break;
3984         }
3985
3986 out:
3987         return ret;
3988 }
3989
3990 static int btrfs_uuid_rescan_kthread(void *data)
3991 {
3992         struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
3993         int ret;
3994
3995         /*
3996          * 1st step is to iterate through the existing UUID tree and
3997          * to delete all entries that contain outdated data.
3998          * 2nd step is to add all missing entries to the UUID tree.
3999          */
4000         ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4001         if (ret < 0) {
4002                 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4003                 up(&fs_info->uuid_tree_rescan_sem);
4004                 return ret;
4005         }
4006         return btrfs_uuid_scan_kthread(data);
4007 }
4008
4009 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4010 {
4011         struct btrfs_trans_handle *trans;
4012         struct btrfs_root *tree_root = fs_info->tree_root;
4013         struct btrfs_root *uuid_root;
4014         struct task_struct *task;
4015         int ret;
4016
4017         /*
4018          * 1 - root node
4019          * 1 - root item
4020          */
4021         trans = btrfs_start_transaction(tree_root, 2);
4022         if (IS_ERR(trans))
4023                 return PTR_ERR(trans);
4024
4025         uuid_root = btrfs_create_tree(trans, fs_info,
4026                                       BTRFS_UUID_TREE_OBJECTID);
4027         if (IS_ERR(uuid_root)) {
4028                 ret = PTR_ERR(uuid_root);
4029                 btrfs_abort_transaction(trans, tree_root, ret);
4030                 return ret;
4031         }
4032
4033         fs_info->uuid_root = uuid_root;
4034
4035         ret = btrfs_commit_transaction(trans, tree_root);
4036         if (ret)
4037                 return ret;
4038
4039         down(&fs_info->uuid_tree_rescan_sem);
4040         task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4041         if (IS_ERR(task)) {
4042                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4043                 btrfs_warn(fs_info, "failed to start uuid_scan task");
4044                 up(&fs_info->uuid_tree_rescan_sem);
4045                 return PTR_ERR(task);
4046         }
4047
4048         return 0;
4049 }
4050
4051 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4052 {
4053         struct task_struct *task;
4054
4055         down(&fs_info->uuid_tree_rescan_sem);
4056         task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4057         if (IS_ERR(task)) {
4058                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4059                 btrfs_warn(fs_info, "failed to start uuid_rescan task");
4060                 up(&fs_info->uuid_tree_rescan_sem);
4061                 return PTR_ERR(task);
4062         }
4063
4064         return 0;
4065 }
4066
4067 /*
4068  * shrinking a device means finding all of the device extents past
4069  * the new size, and then following the back refs to the chunks.
4070  * The chunk relocation code actually frees the device extent
4071  */
4072 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4073 {
4074         struct btrfs_trans_handle *trans;
4075         struct btrfs_root *root = device->dev_root;
4076         struct btrfs_dev_extent *dev_extent = NULL;
4077         struct btrfs_path *path;
4078         u64 length;
4079         u64 chunk_offset;
4080         int ret;
4081         int slot;
4082         int failed = 0;
4083         bool retried = false;
4084         bool checked_pending_chunks = false;
4085         struct extent_buffer *l;
4086         struct btrfs_key key;
4087         struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4088         u64 old_total = btrfs_super_total_bytes(super_copy);
4089         u64 old_size = btrfs_device_get_total_bytes(device);
4090         u64 diff = old_size - new_size;
4091
4092         if (device->is_tgtdev_for_dev_replace)
4093                 return -EINVAL;
4094
4095         path = btrfs_alloc_path();
4096         if (!path)
4097                 return -ENOMEM;
4098
4099         path->reada = 2;
4100
4101         lock_chunks(root);
4102
4103         btrfs_device_set_total_bytes(device, new_size);
4104         if (device->writeable) {
4105                 device->fs_devices->total_rw_bytes -= diff;
4106                 spin_lock(&root->fs_info->free_chunk_lock);
4107                 root->fs_info->free_chunk_space -= diff;
4108                 spin_unlock(&root->fs_info->free_chunk_lock);
4109         }
4110         unlock_chunks(root);
4111
4112 again:
4113         key.objectid = device->devid;
4114         key.offset = (u64)-1;
4115         key.type = BTRFS_DEV_EXTENT_KEY;
4116
4117         do {
4118                 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
4119                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4120                 if (ret < 0) {
4121                         mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4122                         goto done;
4123                 }
4124
4125                 ret = btrfs_previous_item(root, path, 0, key.type);
4126                 if (ret)
4127                         mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4128                 if (ret < 0)
4129                         goto done;
4130                 if (ret) {
4131                         ret = 0;
4132                         btrfs_release_path(path);
4133                         break;
4134                 }
4135
4136                 l = path->nodes[0];
4137                 slot = path->slots[0];
4138                 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4139
4140                 if (key.objectid != device->devid) {
4141                         mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4142                         btrfs_release_path(path);
4143                         break;
4144                 }
4145
4146                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4147                 length = btrfs_dev_extent_length(l, dev_extent);
4148
4149                 if (key.offset + length <= new_size) {
4150                         mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4151                         btrfs_release_path(path);
4152                         break;
4153                 }
4154
4155                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4156                 btrfs_release_path(path);
4157
4158                 ret = btrfs_relocate_chunk(root, chunk_offset);
4159                 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4160                 if (ret && ret != -ENOSPC)
4161                         goto done;
4162                 if (ret == -ENOSPC)
4163                         failed++;
4164         } while (key.offset-- > 0);
4165
4166         if (failed && !retried) {
4167                 failed = 0;
4168                 retried = true;
4169                 goto again;
4170         } else if (failed && retried) {
4171                 ret = -ENOSPC;
4172                 goto done;
4173         }
4174
4175         /* Shrinking succeeded, else we would be at "done". */
4176         trans = btrfs_start_transaction(root, 0);
4177         if (IS_ERR(trans)) {
4178                 ret = PTR_ERR(trans);
4179                 goto done;
4180         }
4181
4182         lock_chunks(root);
4183
4184         /*
4185          * We checked in the above loop all device extents that were already in
4186          * the device tree. However before we have updated the device's
4187          * total_bytes to the new size, we might have had chunk allocations that
4188          * have not complete yet (new block groups attached to transaction
4189          * handles), and therefore their device extents were not yet in the
4190          * device tree and we missed them in the loop above. So if we have any
4191          * pending chunk using a device extent that overlaps the device range
4192          * that we can not use anymore, commit the current transaction and
4193          * repeat the search on the device tree - this way we guarantee we will
4194          * not have chunks using device extents that end beyond 'new_size'.
4195          */
4196         if (!checked_pending_chunks) {
4197                 u64 start = new_size;
4198                 u64 len = old_size - new_size;
4199
4200                 if (contains_pending_extent(trans->transaction, device,
4201                                             &start, len)) {
4202                         unlock_chunks(root);
4203                         checked_pending_chunks = true;
4204                         failed = 0;
4205                         retried = false;
4206                         ret = btrfs_commit_transaction(trans, root);
4207                         if (ret)
4208                                 goto done;
4209                         goto again;
4210                 }
4211         }
4212
4213         btrfs_device_set_disk_total_bytes(device, new_size);
4214         if (list_empty(&device->resized_list))
4215                 list_add_tail(&device->resized_list,
4216                               &root->fs_info->fs_devices->resized_devices);
4217
4218         WARN_ON(diff > old_total);
4219         btrfs_set_super_total_bytes(super_copy, old_total - diff);
4220         unlock_chunks(root);
4221
4222         /* Now btrfs_update_device() will change the on-disk size. */
4223         ret = btrfs_update_device(trans, device);
4224         btrfs_end_transaction(trans, root);
4225 done:
4226         btrfs_free_path(path);
4227         if (ret) {
4228                 lock_chunks(root);
4229                 btrfs_device_set_total_bytes(device, old_size);
4230                 if (device->writeable)
4231                         device->fs_devices->total_rw_bytes += diff;
4232                 spin_lock(&root->fs_info->free_chunk_lock);
4233                 root->fs_info->free_chunk_space += diff;
4234                 spin_unlock(&root->fs_info->free_chunk_lock);
4235                 unlock_chunks(root);
4236         }
4237         return ret;
4238 }
4239
4240 static int btrfs_add_system_chunk(struct btrfs_root *root,
4241                            struct btrfs_key *key,
4242                            struct btrfs_chunk *chunk, int item_size)
4243 {
4244         struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4245         struct btrfs_disk_key disk_key;
4246         u32 array_size;
4247         u8 *ptr;
4248
4249         lock_chunks(root);
4250         array_size = btrfs_super_sys_array_size(super_copy);
4251         if (array_size + item_size + sizeof(disk_key)
4252                         > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4253                 unlock_chunks(root);
4254                 return -EFBIG;
4255         }
4256
4257         ptr = super_copy->sys_chunk_array + array_size;
4258         btrfs_cpu_key_to_disk(&disk_key, key);
4259         memcpy(ptr, &disk_key, sizeof(disk_key));
4260         ptr += sizeof(disk_key);
4261         memcpy(ptr, chunk, item_size);
4262         item_size += sizeof(disk_key);
4263         btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4264         unlock_chunks(root);
4265
4266         return 0;
4267 }
4268
4269 /*
4270  * sort the devices in descending order by max_avail, total_avail
4271  */
4272 static int btrfs_cmp_device_info(const void *a, const void *b)
4273 {
4274         const struct btrfs_device_info *di_a = a;
4275         const struct btrfs_device_info *di_b = b;
4276
4277         if (di_a->max_avail > di_b->max_avail)
4278                 return -1;
4279         if (di_a->max_avail < di_b->max_avail)
4280                 return 1;
4281         if (di_a->total_avail > di_b->total_avail)
4282                 return -1;
4283         if (di_a->total_avail < di_b->total_avail)
4284                 return 1;
4285         return 0;
4286 }
4287
4288 static const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
4289         [BTRFS_RAID_RAID10] = {
4290                 .sub_stripes    = 2,
4291                 .dev_stripes    = 1,
4292                 .devs_max       = 0,    /* 0 == as many as possible */
4293                 .devs_min       = 4,
4294                 .devs_increment = 2,
4295                 .ncopies        = 2,
4296         },
4297         [BTRFS_RAID_RAID1] = {
4298                 .sub_stripes    = 1,
4299                 .dev_stripes    = 1,
4300                 .devs_max       = 2,
4301                 .devs_min       = 2,
4302                 .devs_increment = 2,
4303                 .ncopies        = 2,
4304         },
4305         [BTRFS_RAID_DUP] = {
4306                 .sub_stripes    = 1,
4307                 .dev_stripes    = 2,
4308                 .devs_max       = 1,
4309                 .devs_min       = 1,
4310                 .devs_increment = 1,
4311                 .ncopies        = 2,
4312         },
4313         [BTRFS_RAID_RAID0] = {
4314                 .sub_stripes    = 1,
4315                 .dev_stripes    = 1,
4316                 .devs_max       = 0,
4317                 .devs_min       = 2,
4318                 .devs_increment = 1,
4319                 .ncopies        = 1,
4320         },
4321         [BTRFS_RAID_SINGLE] = {
4322                 .sub_stripes    = 1,
4323                 .dev_stripes    = 1,
4324                 .devs_max       = 1,
4325                 .devs_min       = 1,
4326                 .devs_increment = 1,
4327                 .ncopies        = 1,
4328         },
4329         [BTRFS_RAID_RAID5] = {
4330                 .sub_stripes    = 1,
4331                 .dev_stripes    = 1,
4332                 .devs_max       = 0,
4333                 .devs_min       = 2,
4334                 .devs_increment = 1,
4335                 .ncopies        = 2,
4336         },
4337         [BTRFS_RAID_RAID6] = {
4338                 .sub_stripes    = 1,
4339                 .dev_stripes    = 1,
4340                 .devs_max       = 0,
4341                 .devs_min       = 3,
4342                 .devs_increment = 1,
4343                 .ncopies        = 3,
4344         },
4345 };
4346
4347 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4348 {
4349         /* TODO allow them to set a preferred stripe size */
4350         return 64 * 1024;
4351 }
4352
4353 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4354 {
4355         if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4356                 return;
4357
4358         btrfs_set_fs_incompat(info, RAID56);
4359 }
4360
4361 #define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r)             \
4362                         - sizeof(struct btrfs_item)             \
4363                         - sizeof(struct btrfs_chunk))           \
4364                         / sizeof(struct btrfs_stripe) + 1)
4365
4366 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE        \
4367                                 - 2 * sizeof(struct btrfs_disk_key)     \
4368                                 - 2 * sizeof(struct btrfs_chunk))       \
4369                                 / sizeof(struct btrfs_stripe) + 1)
4370
4371 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4372                                struct btrfs_root *extent_root, u64 start,
4373                                u64 type)
4374 {
4375         struct btrfs_fs_info *info = extent_root->fs_info;
4376         struct btrfs_fs_devices *fs_devices = info->fs_devices;
4377         struct list_head *cur;
4378         struct map_lookup *map = NULL;
4379         struct extent_map_tree *em_tree;
4380         struct extent_map *em;
4381         struct btrfs_device_info *devices_info = NULL;
4382         u64 total_avail;
4383         int num_stripes;        /* total number of stripes to allocate */
4384         int data_stripes;       /* number of stripes that count for
4385                                    block group size */
4386         int sub_stripes;        /* sub_stripes info for map */
4387         int dev_stripes;        /* stripes per dev */
4388         int devs_max;           /* max devs to use */
4389         int devs_min;           /* min devs needed */
4390         int devs_increment;     /* ndevs has to be a multiple of this */
4391         int ncopies;            /* how many copies to data has */
4392         int ret;
4393         u64 max_stripe_size;
4394         u64 max_chunk_size;
4395         u64 stripe_size;
4396         u64 num_bytes;
4397         u64 raid_stripe_len = BTRFS_STRIPE_LEN;
4398         int ndevs;
4399         int i;
4400         int j;
4401         int index;
4402
4403         BUG_ON(!alloc_profile_is_valid(type, 0));
4404
4405         if (list_empty(&fs_devices->alloc_list))
4406                 return -ENOSPC;
4407
4408         index = __get_raid_index(type);
4409
4410         sub_stripes = btrfs_raid_array[index].sub_stripes;
4411         dev_stripes = btrfs_raid_array[index].dev_stripes;
4412         devs_max = btrfs_raid_array[index].devs_max;
4413         devs_min = btrfs_raid_array[index].devs_min;
4414         devs_increment = btrfs_raid_array[index].devs_increment;
4415         ncopies = btrfs_raid_array[index].ncopies;
4416
4417         if (type & BTRFS_BLOCK_GROUP_DATA) {
4418                 max_stripe_size = 1024 * 1024 * 1024;
4419                 max_chunk_size = 10 * max_stripe_size;
4420                 if (!devs_max)
4421                         devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4422         } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4423                 /* for larger filesystems, use larger metadata chunks */
4424                 if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
4425                         max_stripe_size = 1024 * 1024 * 1024;
4426                 else
4427                         max_stripe_size = 256 * 1024 * 1024;
4428                 max_chunk_size = max_stripe_size;
4429                 if (!devs_max)
4430                         devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4431         } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4432                 max_stripe_size = 32 * 1024 * 1024;
4433                 max_chunk_size = 2 * max_stripe_size;
4434                 if (!devs_max)
4435                         devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4436         } else {
4437                 btrfs_err(info, "invalid chunk type 0x%llx requested",
4438                        type);
4439                 BUG_ON(1);
4440         }
4441
4442         /* we don't want a chunk larger than 10% of writeable space */
4443         max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4444                              max_chunk_size);
4445
4446         devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4447                                GFP_NOFS);
4448         if (!devices_info)
4449                 return -ENOMEM;
4450
4451         cur = fs_devices->alloc_list.next;
4452
4453         /*
4454          * in the first pass through the devices list, we gather information
4455          * about the available holes on each device.
4456          */
4457         ndevs = 0;
4458         while (cur != &fs_devices->alloc_list) {
4459                 struct btrfs_device *device;
4460                 u64 max_avail;
4461                 u64 dev_offset;
4462
4463                 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
4464
4465                 cur = cur->next;
4466
4467                 if (!device->writeable) {
4468                         WARN(1, KERN_ERR
4469                                "BTRFS: read-only device in alloc_list\n");
4470                         continue;
4471                 }
4472
4473                 if (!device->in_fs_metadata ||
4474                     device->is_tgtdev_for_dev_replace)
4475                         continue;
4476
4477                 if (device->total_bytes > device->bytes_used)
4478                         total_avail = device->total_bytes - device->bytes_used;
4479                 else
4480                         total_avail = 0;
4481
4482                 /* If there is no space on this device, skip it. */
4483                 if (total_avail == 0)
4484                         continue;
4485
4486                 ret = find_free_dev_extent(trans, device,
4487                                            max_stripe_size * dev_stripes,
4488                                            &dev_offset, &max_avail);
4489                 if (ret && ret != -ENOSPC)
4490                         goto error;
4491
4492                 if (ret == 0)
4493                         max_avail = max_stripe_size * dev_stripes;
4494
4495                 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4496                         continue;
4497
4498                 if (ndevs == fs_devices->rw_devices) {
4499                         WARN(1, "%s: found more than %llu devices\n",
4500                              __func__, fs_devices->rw_devices);
4501                         break;
4502                 }
4503                 devices_info[ndevs].dev_offset = dev_offset;
4504                 devices_info[ndevs].max_avail = max_avail;
4505                 devices_info[ndevs].total_avail = total_avail;
4506                 devices_info[ndevs].dev = device;
4507                 ++ndevs;
4508         }
4509
4510         /*
4511          * now sort the devices by hole size / available space
4512          */
4513         sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4514              btrfs_cmp_device_info, NULL);
4515
4516         /* round down to number of usable stripes */
4517         ndevs -= ndevs % devs_increment;
4518
4519         if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4520                 ret = -ENOSPC;
4521                 goto error;
4522         }
4523
4524         if (devs_max && ndevs > devs_max)
4525                 ndevs = devs_max;
4526         /*
4527          * the primary goal is to maximize the number of stripes, so use as many
4528          * devices as possible, even if the stripes are not maximum sized.
4529          */
4530         stripe_size = devices_info[ndevs-1].max_avail;
4531         num_stripes = ndevs * dev_stripes;
4532
4533         /*
4534          * this will have to be fixed for RAID1 and RAID10 over
4535          * more drives
4536          */
4537         data_stripes = num_stripes / ncopies;
4538
4539         if (type & BTRFS_BLOCK_GROUP_RAID5) {
4540                 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4541                                  btrfs_super_stripesize(info->super_copy));
4542                 data_stripes = num_stripes - 1;
4543         }
4544         if (type & BTRFS_BLOCK_GROUP_RAID6) {
4545                 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4546                                  btrfs_super_stripesize(info->super_copy));
4547                 data_stripes = num_stripes - 2;
4548         }
4549
4550         /*
4551          * Use the number of data stripes to figure out how big this chunk
4552          * is really going to be in terms of logical address space,
4553          * and compare that answer with the max chunk size
4554          */
4555         if (stripe_size * data_stripes > max_chunk_size) {
4556                 u64 mask = (1ULL << 24) - 1;
4557
4558                 stripe_size = div_u64(max_chunk_size, data_stripes);
4559
4560                 /* bump the answer up to a 16MB boundary */
4561                 stripe_size = (stripe_size + mask) & ~mask;
4562
4563                 /* but don't go higher than the limits we found
4564                  * while searching for free extents
4565                  */
4566                 if (stripe_size > devices_info[ndevs-1].max_avail)
4567                         stripe_size = devices_info[ndevs-1].max_avail;
4568         }
4569
4570         stripe_size = div_u64(stripe_size, dev_stripes);
4571
4572         /* align to BTRFS_STRIPE_LEN */
4573         stripe_size = div_u64(stripe_size, raid_stripe_len);
4574         stripe_size *= raid_stripe_len;
4575
4576         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4577         if (!map) {
4578                 ret = -ENOMEM;
4579                 goto error;
4580         }
4581         map->num_stripes = num_stripes;
4582
4583         for (i = 0; i < ndevs; ++i) {
4584                 for (j = 0; j < dev_stripes; ++j) {
4585                         int s = i * dev_stripes + j;
4586                         map->stripes[s].dev = devices_info[i].dev;
4587                         map->stripes[s].physical = devices_info[i].dev_offset +
4588                                                    j * stripe_size;
4589                 }
4590         }
4591         map->sector_size = extent_root->sectorsize;
4592         map->stripe_len = raid_stripe_len;
4593         map->io_align = raid_stripe_len;
4594         map->io_width = raid_stripe_len;
4595         map->type = type;
4596         map->sub_stripes = sub_stripes;
4597
4598         num_bytes = stripe_size * data_stripes;
4599
4600         trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
4601
4602         em = alloc_extent_map();
4603         if (!em) {
4604                 kfree(map);
4605                 ret = -ENOMEM;
4606                 goto error;
4607         }
4608         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4609         em->bdev = (struct block_device *)map;
4610         em->start = start;
4611         em->len = num_bytes;
4612         em->block_start = 0;
4613         em->block_len = em->len;
4614         em->orig_block_len = stripe_size;
4615
4616         em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4617         write_lock(&em_tree->lock);
4618         ret = add_extent_mapping(em_tree, em, 0);
4619         if (!ret) {
4620                 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4621                 atomic_inc(&em->refs);
4622         }
4623         write_unlock(&em_tree->lock);
4624         if (ret) {
4625                 free_extent_map(em);
4626                 goto error;
4627         }
4628
4629         ret = btrfs_make_block_group(trans, extent_root, 0, type,
4630                                      BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4631                                      start, num_bytes);
4632         if (ret)
4633                 goto error_del_extent;
4634
4635         for (i = 0; i < map->num_stripes; i++) {
4636                 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4637                 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4638         }
4639
4640         spin_lock(&extent_root->fs_info->free_chunk_lock);
4641         extent_root->fs_info->free_chunk_space -= (stripe_size *
4642                                                    map->num_stripes);
4643         spin_unlock(&extent_root->fs_info->free_chunk_lock);
4644
4645         free_extent_map(em);
4646         check_raid56_incompat_flag(extent_root->fs_info, type);
4647
4648         kfree(devices_info);
4649         return 0;
4650
4651 error_del_extent:
4652         write_lock(&em_tree->lock);
4653         remove_extent_mapping(em_tree, em);
4654         write_unlock(&em_tree->lock);
4655
4656         /* One for our allocation */
4657         free_extent_map(em);
4658         /* One for the tree reference */
4659         free_extent_map(em);
4660         /* One for the pending_chunks list reference */
4661         free_extent_map(em);
4662 error:
4663         kfree(devices_info);
4664         return ret;
4665 }
4666
4667 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4668                                 struct btrfs_root *extent_root,
4669                                 u64 chunk_offset, u64 chunk_size)
4670 {
4671         struct btrfs_key key;
4672         struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4673         struct btrfs_device *device;
4674         struct btrfs_chunk *chunk;
4675         struct btrfs_stripe *stripe;
4676         struct extent_map_tree *em_tree;
4677         struct extent_map *em;
4678         struct map_lookup *map;
4679         size_t item_size;
4680         u64 dev_offset;
4681         u64 stripe_size;
4682         int i = 0;
4683         int ret;
4684
4685         em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4686         read_lock(&em_tree->lock);
4687         em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4688         read_unlock(&em_tree->lock);
4689
4690         if (!em) {
4691                 btrfs_crit(extent_root->fs_info, "unable to find logical "
4692                            "%Lu len %Lu", chunk_offset, chunk_size);
4693                 return -EINVAL;
4694         }
4695
4696         if (em->start != chunk_offset || em->len != chunk_size) {
4697                 btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
4698                           " %Lu-%Lu, found %Lu-%Lu", chunk_offset,
4699                           chunk_size, em->start, em->len);
4700                 free_extent_map(em);
4701                 return -EINVAL;
4702         }
4703
4704         map = (struct map_lookup *)em->bdev;
4705         item_size = btrfs_chunk_item_size(map->num_stripes);
4706         stripe_size = em->orig_block_len;
4707
4708         chunk = kzalloc(item_size, GFP_NOFS);
4709         if (!chunk) {
4710                 ret = -ENOMEM;
4711                 goto out;
4712         }
4713
4714         for (i = 0; i < map->num_stripes; i++) {
4715                 device = map->stripes[i].dev;
4716                 dev_offset = map->stripes[i].physical;
4717
4718                 ret = btrfs_update_device(trans, device);
4719                 if (ret)
4720                         goto out;
4721                 ret = btrfs_alloc_dev_extent(trans, device,
4722                                              chunk_root->root_key.objectid,
4723                                              BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4724                                              chunk_offset, dev_offset,
4725                                              stripe_size);
4726                 if (ret)
4727                         goto out;
4728         }
4729
4730         stripe = &chunk->stripe;
4731         for (i = 0; i < map->num_stripes; i++) {
4732                 device = map->stripes[i].dev;
4733                 dev_offset = map->stripes[i].physical;
4734
4735                 btrfs_set_stack_stripe_devid(stripe, device->devid);
4736                 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4737                 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4738                 stripe++;
4739         }
4740
4741         btrfs_set_stack_chunk_length(chunk, chunk_size);
4742         btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4743         btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4744         btrfs_set_stack_chunk_type(chunk, map->type);
4745         btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4746         btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4747         btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4748         btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
4749         btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4750
4751         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4752         key.type = BTRFS_CHUNK_ITEM_KEY;
4753         key.offset = chunk_offset;
4754
4755         ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4756         if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4757                 /*
4758                  * TODO: Cleanup of inserted chunk root in case of
4759                  * failure.
4760                  */
4761                 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
4762                                              item_size);
4763         }
4764
4765 out:
4766         kfree(chunk);
4767         free_extent_map(em);
4768         return ret;
4769 }
4770
4771 /*
4772  * Chunk allocation falls into two parts. The first part does works
4773  * that make the new allocated chunk useable, but not do any operation
4774  * that modifies the chunk tree. The second part does the works that
4775  * require modifying the chunk tree. This division is important for the
4776  * bootstrap process of adding storage to a seed btrfs.
4777  */
4778 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4779                       struct btrfs_root *extent_root, u64 type)
4780 {
4781         u64 chunk_offset;
4782
4783         ASSERT(mutex_is_locked(&extent_root->fs_info->chunk_mutex));
4784         chunk_offset = find_next_chunk(extent_root->fs_info);
4785         return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
4786 }
4787
4788 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
4789                                          struct btrfs_root *root,
4790                                          struct btrfs_device *device)
4791 {
4792         u64 chunk_offset;
4793         u64 sys_chunk_offset;
4794         u64 alloc_profile;
4795         struct btrfs_fs_info *fs_info = root->fs_info;
4796         struct btrfs_root *extent_root = fs_info->extent_root;
4797         int ret;
4798
4799         chunk_offset = find_next_chunk(fs_info);
4800         alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
4801         ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
4802                                   alloc_profile);
4803         if (ret)
4804                 return ret;
4805
4806         sys_chunk_offset = find_next_chunk(root->fs_info);
4807         alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
4808         ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
4809                                   alloc_profile);
4810         return ret;
4811 }
4812
4813 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
4814 {
4815         int max_errors;
4816
4817         if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
4818                          BTRFS_BLOCK_GROUP_RAID10 |
4819                          BTRFS_BLOCK_GROUP_RAID5 |
4820                          BTRFS_BLOCK_GROUP_DUP)) {
4821                 max_errors = 1;
4822         } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
4823                 max_errors = 2;
4824         } else {
4825                 max_errors = 0;
4826         }
4827
4828         return max_errors;
4829 }
4830
4831 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
4832 {
4833         struct extent_map *em;
4834         struct map_lookup *map;
4835         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4836         int readonly = 0;
4837         int miss_ndevs = 0;
4838         int i;
4839
4840         read_lock(&map_tree->map_tree.lock);
4841         em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
4842         read_unlock(&map_tree->map_tree.lock);
4843         if (!em)
4844                 return 1;
4845
4846         map = (struct map_lookup *)em->bdev;
4847         for (i = 0; i < map->num_stripes; i++) {
4848                 if (map->stripes[i].dev->missing) {
4849                         miss_ndevs++;
4850                         continue;
4851                 }
4852
4853                 if (!map->stripes[i].dev->writeable) {
4854                         readonly = 1;
4855                         goto end;
4856                 }
4857         }
4858
4859         /*
4860          * If the number of missing devices is larger than max errors,
4861          * we can not write the data into that chunk successfully, so
4862          * set it readonly.
4863          */
4864         if (miss_ndevs > btrfs_chunk_max_errors(map))
4865                 readonly = 1;
4866 end:
4867         free_extent_map(em);
4868         return readonly;
4869 }
4870
4871 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
4872 {
4873         extent_map_tree_init(&tree->map_tree);
4874 }
4875
4876 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
4877 {
4878         struct extent_map *em;
4879
4880         while (1) {
4881                 write_lock(&tree->map_tree.lock);
4882                 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
4883                 if (em)
4884                         remove_extent_mapping(&tree->map_tree, em);
4885                 write_unlock(&tree->map_tree.lock);
4886                 if (!em)
4887                         break;
4888                 /* once for us */
4889                 free_extent_map(em);
4890                 /* once for the tree */
4891                 free_extent_map(em);
4892         }
4893 }
4894
4895 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
4896 {
4897         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4898         struct extent_map *em;
4899         struct map_lookup *map;
4900         struct extent_map_tree *em_tree = &map_tree->map_tree;
4901         int ret;
4902
4903         read_lock(&em_tree->lock);
4904         em = lookup_extent_mapping(em_tree, logical, len);
4905         read_unlock(&em_tree->lock);
4906
4907         /*
4908          * We could return errors for these cases, but that could get ugly and
4909          * we'd probably do the same thing which is just not do anything else
4910          * and exit, so return 1 so the callers don't try to use other copies.
4911          */
4912         if (!em) {
4913                 btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
4914                             logical+len);
4915                 return 1;
4916         }
4917
4918         if (em->start > logical || em->start + em->len < logical) {
4919                 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
4920                             "%Lu-%Lu", logical, logical+len, em->start,
4921                             em->start + em->len);
4922                 free_extent_map(em);
4923                 return 1;
4924         }
4925
4926         map = (struct map_lookup *)em->bdev;
4927         if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
4928                 ret = map->num_stripes;
4929         else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
4930                 ret = map->sub_stripes;
4931         else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
4932                 ret = 2;
4933         else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4934                 ret = 3;
4935         else
4936                 ret = 1;
4937         free_extent_map(em);
4938
4939         btrfs_dev_replace_lock(&fs_info->dev_replace);
4940         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
4941                 ret++;
4942         btrfs_dev_replace_unlock(&fs_info->dev_replace);
4943
4944         return ret;
4945 }
4946
4947 unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
4948                                     struct btrfs_mapping_tree *map_tree,
4949                                     u64 logical)
4950 {
4951         struct extent_map *em;
4952         struct map_lookup *map;
4953         struct extent_map_tree *em_tree = &map_tree->map_tree;
4954         unsigned long len = root->sectorsize;
4955
4956         read_lock(&em_tree->lock);
4957         em = lookup_extent_mapping(em_tree, logical, len);
4958         read_unlock(&em_tree->lock);
4959         BUG_ON(!em);
4960
4961         BUG_ON(em->start > logical || em->start + em->len < logical);
4962         map = (struct map_lookup *)em->bdev;
4963         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
4964                 len = map->stripe_len * nr_data_stripes(map);
4965         free_extent_map(em);
4966         return len;
4967 }
4968
4969 int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
4970                            u64 logical, u64 len, int mirror_num)
4971 {
4972         struct extent_map *em;
4973         struct map_lookup *map;
4974         struct extent_map_tree *em_tree = &map_tree->map_tree;
4975         int ret = 0;
4976
4977         read_lock(&em_tree->lock);
4978         em = lookup_extent_mapping(em_tree, logical, len);
4979         read_unlock(&em_tree->lock);
4980         BUG_ON(!em);
4981
4982         BUG_ON(em->start > logical || em->start + em->len < logical);
4983         map = (struct map_lookup *)em->bdev;
4984         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
4985                 ret = 1;
4986         free_extent_map(em);
4987         return ret;
4988 }
4989
4990 static int find_live_mirror(struct btrfs_fs_info *fs_info,
4991                             struct map_lookup *map, int first, int num,
4992                             int optimal, int dev_replace_is_ongoing)
4993 {
4994         int i;
4995         int tolerance;
4996         struct btrfs_device *srcdev;
4997
4998         if (dev_replace_is_ongoing &&
4999             fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5000              BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5001                 srcdev = fs_info->dev_replace.srcdev;
5002         else
5003                 srcdev = NULL;
5004
5005         /*
5006          * try to avoid the drive that is the source drive for a
5007          * dev-replace procedure, only choose it if no other non-missing
5008          * mirror is available
5009          */
5010         for (tolerance = 0; tolerance < 2; tolerance++) {
5011                 if (map->stripes[optimal].dev->bdev &&
5012                     (tolerance || map->stripes[optimal].dev != srcdev))
5013                         return optimal;
5014                 for (i = first; i < first + num; i++) {
5015                         if (map->stripes[i].dev->bdev &&
5016                             (tolerance || map->stripes[i].dev != srcdev))
5017                                 return i;
5018                 }
5019         }
5020
5021         /* we couldn't find one that doesn't fail.  Just return something
5022          * and the io error handling code will clean up eventually
5023          */
5024         return optimal;
5025 }
5026
5027 static inline int parity_smaller(u64 a, u64 b)
5028 {
5029         return a > b;
5030 }
5031
5032 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5033 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5034 {
5035         struct btrfs_bio_stripe s;
5036         int i;
5037         u64 l;
5038         int again = 1;
5039
5040         while (again) {
5041                 again = 0;
5042                 for (i = 0; i < num_stripes - 1; i++) {
5043                         if (parity_smaller(bbio->raid_map[i],
5044                                            bbio->raid_map[i+1])) {
5045                                 s = bbio->stripes[i];
5046                                 l = bbio->raid_map[i];
5047                                 bbio->stripes[i] = bbio->stripes[i+1];
5048                                 bbio->raid_map[i] = bbio->raid_map[i+1];
5049                                 bbio->stripes[i+1] = s;
5050                                 bbio->raid_map[i+1] = l;
5051
5052                                 again = 1;
5053                         }
5054                 }
5055         }
5056 }
5057
5058 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5059 {
5060         struct btrfs_bio *bbio = kzalloc(
5061                  /* the size of the btrfs_bio */
5062                 sizeof(struct btrfs_bio) +
5063                 /* plus the variable array for the stripes */
5064                 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5065                 /* plus the variable array for the tgt dev */
5066                 sizeof(int) * (real_stripes) +
5067                 /*
5068                  * plus the raid_map, which includes both the tgt dev
5069                  * and the stripes
5070                  */
5071                 sizeof(u64) * (total_stripes),
5072                 GFP_NOFS|__GFP_NOFAIL);
5073
5074         atomic_set(&bbio->error, 0);
5075         atomic_set(&bbio->refs, 1);
5076
5077         return bbio;
5078 }
5079
5080 void btrfs_get_bbio(struct btrfs_bio *bbio)
5081 {
5082         WARN_ON(!atomic_read(&bbio->refs));
5083         atomic_inc(&bbio->refs);
5084 }
5085
5086 void btrfs_put_bbio(struct btrfs_bio *bbio)
5087 {
5088         if (!bbio)
5089                 return;
5090         if (atomic_dec_and_test(&bbio->refs))
5091                 kfree(bbio);
5092 }
5093
5094 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
5095                              u64 logical, u64 *length,
5096                              struct btrfs_bio **bbio_ret,
5097                              int mirror_num, int need_raid_map)
5098 {
5099         struct extent_map *em;
5100         struct map_lookup *map;
5101         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5102         struct extent_map_tree *em_tree = &map_tree->map_tree;
5103         u64 offset;
5104         u64 stripe_offset;
5105         u64 stripe_end_offset;
5106         u64 stripe_nr;
5107         u64 stripe_nr_orig;
5108         u64 stripe_nr_end;
5109         u64 stripe_len;
5110         u32 stripe_index;
5111         int i;
5112         int ret = 0;
5113         int num_stripes;
5114         int max_errors = 0;
5115         int tgtdev_indexes = 0;
5116         struct btrfs_bio *bbio = NULL;
5117         struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5118         int dev_replace_is_ongoing = 0;
5119         int num_alloc_stripes;
5120         int patch_the_first_stripe_for_dev_replace = 0;
5121         u64 physical_to_patch_in_first_stripe = 0;
5122         u64 raid56_full_stripe_start = (u64)-1;
5123
5124         read_lock(&em_tree->lock);
5125         em = lookup_extent_mapping(em_tree, logical, *length);
5126         read_unlock(&em_tree->lock);
5127
5128         if (!em) {
5129                 btrfs_crit(fs_info, "unable to find logical %llu len %llu",
5130                         logical, *length);
5131                 return -EINVAL;
5132         }
5133
5134         if (em->start > logical || em->start + em->len < logical) {
5135                 btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
5136                            "found %Lu-%Lu", logical, em->start,
5137                            em->start + em->len);
5138                 free_extent_map(em);
5139                 return -EINVAL;
5140         }
5141
5142         map = (struct map_lookup *)em->bdev;
5143         offset = logical - em->start;
5144
5145         stripe_len = map->stripe_len;
5146         stripe_nr = offset;
5147         /*
5148          * stripe_nr counts the total number of stripes we have to stride
5149          * to get to this block
5150          */
5151         stripe_nr = div64_u64(stripe_nr, stripe_len);
5152
5153         stripe_offset = stripe_nr * stripe_len;
5154         BUG_ON(offset < stripe_offset);
5155
5156         /* stripe_offset is the offset of this block in its stripe*/
5157         stripe_offset = offset - stripe_offset;
5158
5159         /* if we're here for raid56, we need to know the stripe aligned start */
5160         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5161                 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5162                 raid56_full_stripe_start = offset;
5163
5164                 /* allow a write of a full stripe, but make sure we don't
5165                  * allow straddling of stripes
5166                  */
5167                 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5168                                 full_stripe_len);
5169                 raid56_full_stripe_start *= full_stripe_len;
5170         }
5171
5172         if (rw & REQ_DISCARD) {
5173                 /* we don't discard raid56 yet */
5174                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5175                         ret = -EOPNOTSUPP;
5176                         goto out;
5177                 }
5178                 *length = min_t(u64, em->len - offset, *length);
5179         } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5180                 u64 max_len;
5181                 /* For writes to RAID[56], allow a full stripeset across all disks.
5182                    For other RAID types and for RAID[56] reads, just allow a single
5183                    stripe (on a single disk). */
5184                 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5185                     (rw & REQ_WRITE)) {
5186                         max_len = stripe_len * nr_data_stripes(map) -
5187                                 (offset - raid56_full_stripe_start);
5188                 } else {
5189                         /* we limit the length of each bio to what fits in a stripe */
5190                         max_len = stripe_len - stripe_offset;
5191                 }
5192                 *length = min_t(u64, em->len - offset, max_len);
5193         } else {
5194                 *length = em->len - offset;
5195         }
5196
5197         /* This is for when we're called from btrfs_merge_bio_hook() and all
5198            it cares about is the length */
5199         if (!bbio_ret)
5200                 goto out;
5201
5202         btrfs_dev_replace_lock(dev_replace);
5203         dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5204         if (!dev_replace_is_ongoing)
5205                 btrfs_dev_replace_unlock(dev_replace);
5206
5207         if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5208             !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
5209             dev_replace->tgtdev != NULL) {
5210                 /*
5211                  * in dev-replace case, for repair case (that's the only
5212                  * case where the mirror is selected explicitly when
5213                  * calling btrfs_map_block), blocks left of the left cursor
5214                  * can also be read from the target drive.
5215                  * For REQ_GET_READ_MIRRORS, the target drive is added as
5216                  * the last one to the array of stripes. For READ, it also
5217                  * needs to be supported using the same mirror number.
5218                  * If the requested block is not left of the left cursor,
5219                  * EIO is returned. This can happen because btrfs_num_copies()
5220                  * returns one more in the dev-replace case.
5221                  */
5222                 u64 tmp_length = *length;
5223                 struct btrfs_bio *tmp_bbio = NULL;
5224                 int tmp_num_stripes;
5225                 u64 srcdev_devid = dev_replace->srcdev->devid;
5226                 int index_srcdev = 0;
5227                 int found = 0;
5228                 u64 physical_of_found = 0;
5229
5230                 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
5231                              logical, &tmp_length, &tmp_bbio, 0, 0);
5232                 if (ret) {
5233                         WARN_ON(tmp_bbio != NULL);
5234                         goto out;
5235                 }
5236
5237                 tmp_num_stripes = tmp_bbio->num_stripes;
5238                 if (mirror_num > tmp_num_stripes) {
5239                         /*
5240                          * REQ_GET_READ_MIRRORS does not contain this
5241                          * mirror, that means that the requested area
5242                          * is not left of the left cursor
5243                          */
5244                         ret = -EIO;
5245                         btrfs_put_bbio(tmp_bbio);
5246                         goto out;
5247                 }
5248
5249                 /*
5250                  * process the rest of the function using the mirror_num
5251                  * of the source drive. Therefore look it up first.
5252                  * At the end, patch the device pointer to the one of the
5253                  * target drive.
5254                  */
5255                 for (i = 0; i < tmp_num_stripes; i++) {
5256                         if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) {
5257                                 /*
5258                                  * In case of DUP, in order to keep it
5259                                  * simple, only add the mirror with the
5260                                  * lowest physical address
5261                                  */
5262                                 if (found &&
5263                                     physical_of_found <=
5264                                      tmp_bbio->stripes[i].physical)
5265                                         continue;
5266                                 index_srcdev = i;
5267                                 found = 1;
5268                                 physical_of_found =
5269                                         tmp_bbio->stripes[i].physical;
5270                         }
5271                 }
5272
5273                 if (found) {
5274                         mirror_num = index_srcdev + 1;
5275                         patch_the_first_stripe_for_dev_replace = 1;
5276                         physical_to_patch_in_first_stripe = physical_of_found;
5277                 } else {
5278                         WARN_ON(1);
5279                         ret = -EIO;
5280                         btrfs_put_bbio(tmp_bbio);
5281                         goto out;
5282                 }
5283
5284                 btrfs_put_bbio(tmp_bbio);
5285         } else if (mirror_num > map->num_stripes) {
5286                 mirror_num = 0;
5287         }
5288
5289         num_stripes = 1;
5290         stripe_index = 0;
5291         stripe_nr_orig = stripe_nr;
5292         stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
5293         stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len);
5294         stripe_end_offset = stripe_nr_end * map->stripe_len -
5295                             (offset + *length);
5296
5297         if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5298                 if (rw & REQ_DISCARD)
5299                         num_stripes = min_t(u64, map->num_stripes,
5300                                             stripe_nr_end - stripe_nr_orig);
5301                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5302                                 &stripe_index);
5303                 if (!(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)))
5304                         mirror_num = 1;
5305         } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5306                 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
5307                         num_stripes = map->num_stripes;
5308                 else if (mirror_num)
5309                         stripe_index = mirror_num - 1;
5310                 else {
5311                         stripe_index = find_live_mirror(fs_info, map, 0,
5312                                             map->num_stripes,
5313                                             current->pid % map->num_stripes,
5314                                             dev_replace_is_ongoing);
5315                         mirror_num = stripe_index + 1;
5316                 }
5317
5318         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5319                 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
5320                         num_stripes = map->num_stripes;
5321                 } else if (mirror_num) {
5322                         stripe_index = mirror_num - 1;
5323                 } else {
5324                         mirror_num = 1;
5325                 }
5326
5327         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5328                 u32 factor = map->num_stripes / map->sub_stripes;
5329
5330                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5331                 stripe_index *= map->sub_stripes;
5332
5333                 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5334                         num_stripes = map->sub_stripes;
5335                 else if (rw & REQ_DISCARD)
5336                         num_stripes = min_t(u64, map->sub_stripes *
5337                                             (stripe_nr_end - stripe_nr_orig),
5338                                             map->num_stripes);
5339                 else if (mirror_num)
5340                         stripe_index += mirror_num - 1;
5341                 else {
5342                         int old_stripe_index = stripe_index;
5343                         stripe_index = find_live_mirror(fs_info, map,
5344                                               stripe_index,
5345                                               map->sub_stripes, stripe_index +
5346                                               current->pid % map->sub_stripes,
5347                                               dev_replace_is_ongoing);
5348                         mirror_num = stripe_index - old_stripe_index + 1;
5349                 }
5350
5351         } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5352                 if (need_raid_map &&
5353                     ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5354                      mirror_num > 1)) {
5355                         /* push stripe_nr back to the start of the full stripe */
5356                         stripe_nr = div_u64(raid56_full_stripe_start,
5357                                         stripe_len * nr_data_stripes(map));
5358
5359                         /* RAID[56] write or recovery. Return all stripes */
5360                         num_stripes = map->num_stripes;
5361                         max_errors = nr_parity_stripes(map);
5362
5363                         *length = map->stripe_len;
5364                         stripe_index = 0;
5365                         stripe_offset = 0;
5366                 } else {
5367                         /*
5368                          * Mirror #0 or #1 means the original data block.
5369                          * Mirror #2 is RAID5 parity block.
5370                          * Mirror #3 is RAID6 Q block.
5371                          */
5372                         stripe_nr = div_u64_rem(stripe_nr,
5373                                         nr_data_stripes(map), &stripe_index);
5374                         if (mirror_num > 1)
5375                                 stripe_index = nr_data_stripes(map) +
5376                                                 mirror_num - 2;
5377
5378                         /* We distribute the parity blocks across stripes */
5379                         div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5380                                         &stripe_index);
5381                         if (!(rw & (REQ_WRITE | REQ_DISCARD |
5382                                     REQ_GET_READ_MIRRORS)) && mirror_num <= 1)
5383                                 mirror_num = 1;
5384                 }
5385         } else {
5386                 /*
5387                  * after this, stripe_nr is the number of stripes on this
5388                  * device we have to walk to find the data, and stripe_index is
5389                  * the number of our device in the stripe array
5390                  */
5391                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5392                                 &stripe_index);
5393                 mirror_num = stripe_index + 1;
5394         }
5395         BUG_ON(stripe_index >= map->num_stripes);
5396
5397         num_alloc_stripes = num_stripes;
5398         if (dev_replace_is_ongoing) {
5399                 if (rw & (REQ_WRITE | REQ_DISCARD))
5400                         num_alloc_stripes <<= 1;
5401                 if (rw & REQ_GET_READ_MIRRORS)
5402                         num_alloc_stripes++;
5403                 tgtdev_indexes = num_stripes;
5404         }
5405
5406         bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5407         if (!bbio) {
5408                 ret = -ENOMEM;
5409                 goto out;
5410         }
5411         if (dev_replace_is_ongoing)
5412                 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5413
5414         /* build raid_map */
5415         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
5416             need_raid_map && ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5417             mirror_num > 1)) {
5418                 u64 tmp;
5419                 unsigned rot;
5420
5421                 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5422                                  sizeof(struct btrfs_bio_stripe) *
5423                                  num_alloc_stripes +
5424                                  sizeof(int) * tgtdev_indexes);
5425
5426                 /* Work out the disk rotation on this stripe-set */
5427                 div_u64_rem(stripe_nr, num_stripes, &rot);
5428
5429                 /* Fill in the logical address of each stripe */
5430                 tmp = stripe_nr * nr_data_stripes(map);
5431                 for (i = 0; i < nr_data_stripes(map); i++)
5432                         bbio->raid_map[(i+rot) % num_stripes] =
5433                                 em->start + (tmp + i) * map->stripe_len;
5434
5435                 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5436                 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5437                         bbio->raid_map[(i+rot+1) % num_stripes] =
5438                                 RAID6_Q_STRIPE;
5439         }
5440
5441         if (rw & REQ_DISCARD) {
5442                 u32 factor = 0;
5443                 u32 sub_stripes = 0;
5444                 u64 stripes_per_dev = 0;
5445                 u32 remaining_stripes = 0;
5446                 u32 last_stripe = 0;
5447
5448                 if (map->type &
5449                     (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5450                         if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5451                                 sub_stripes = 1;
5452                         else
5453                                 sub_stripes = map->sub_stripes;
5454
5455                         factor = map->num_stripes / sub_stripes;
5456                         stripes_per_dev = div_u64_rem(stripe_nr_end -
5457                                                       stripe_nr_orig,
5458                                                       factor,
5459                                                       &remaining_stripes);
5460                         div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5461                         last_stripe *= sub_stripes;
5462                 }
5463
5464                 for (i = 0; i < num_stripes; i++) {
5465                         bbio->stripes[i].physical =
5466                                 map->stripes[stripe_index].physical +
5467                                 stripe_offset + stripe_nr * map->stripe_len;
5468                         bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5469
5470                         if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5471                                          BTRFS_BLOCK_GROUP_RAID10)) {
5472                                 bbio->stripes[i].length = stripes_per_dev *
5473                                                           map->stripe_len;
5474
5475                                 if (i / sub_stripes < remaining_stripes)
5476                                         bbio->stripes[i].length +=
5477                                                 map->stripe_len;
5478
5479                                 /*
5480                                  * Special for the first stripe and
5481                                  * the last stripe:
5482                                  *
5483                                  * |-------|...|-------|
5484                                  *     |----------|
5485                                  *    off     end_off
5486                                  */
5487                                 if (i < sub_stripes)
5488                                         bbio->stripes[i].length -=
5489                                                 stripe_offset;
5490
5491                                 if (stripe_index >= last_stripe &&
5492                                     stripe_index <= (last_stripe +
5493                                                      sub_stripes - 1))
5494                                         bbio->stripes[i].length -=
5495                                                 stripe_end_offset;
5496
5497                                 if (i == sub_stripes - 1)
5498                                         stripe_offset = 0;
5499                         } else
5500                                 bbio->stripes[i].length = *length;
5501
5502                         stripe_index++;
5503                         if (stripe_index == map->num_stripes) {
5504                                 /* This could only happen for RAID0/10 */
5505                                 stripe_index = 0;
5506                                 stripe_nr++;
5507                         }
5508                 }
5509         } else {
5510                 for (i = 0; i < num_stripes; i++) {
5511                         bbio->stripes[i].physical =
5512                                 map->stripes[stripe_index].physical +
5513                                 stripe_offset +
5514                                 stripe_nr * map->stripe_len;
5515                         bbio->stripes[i].dev =
5516                                 map->stripes[stripe_index].dev;
5517                         stripe_index++;
5518                 }
5519         }
5520
5521         if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5522                 max_errors = btrfs_chunk_max_errors(map);
5523
5524         if (bbio->raid_map)
5525                 sort_parity_stripes(bbio, num_stripes);
5526
5527         tgtdev_indexes = 0;
5528         if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
5529             dev_replace->tgtdev != NULL) {
5530                 int index_where_to_add;
5531                 u64 srcdev_devid = dev_replace->srcdev->devid;
5532
5533                 /*
5534                  * duplicate the write operations while the dev replace
5535                  * procedure is running. Since the copying of the old disk
5536                  * to the new disk takes place at run time while the
5537                  * filesystem is mounted writable, the regular write
5538                  * operations to the old disk have to be duplicated to go
5539                  * to the new disk as well.
5540                  * Note that device->missing is handled by the caller, and
5541                  * that the write to the old disk is already set up in the
5542                  * stripes array.
5543                  */
5544                 index_where_to_add = num_stripes;
5545                 for (i = 0; i < num_stripes; i++) {
5546                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5547                                 /* write to new disk, too */
5548                                 struct btrfs_bio_stripe *new =
5549                                         bbio->stripes + index_where_to_add;
5550                                 struct btrfs_bio_stripe *old =
5551                                         bbio->stripes + i;
5552
5553                                 new->physical = old->physical;
5554                                 new->length = old->length;
5555                                 new->dev = dev_replace->tgtdev;
5556                                 bbio->tgtdev_map[i] = index_where_to_add;
5557                                 index_where_to_add++;
5558                                 max_errors++;
5559                                 tgtdev_indexes++;
5560                         }
5561                 }
5562                 num_stripes = index_where_to_add;
5563         } else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
5564                    dev_replace->tgtdev != NULL) {
5565                 u64 srcdev_devid = dev_replace->srcdev->devid;
5566                 int index_srcdev = 0;
5567                 int found = 0;
5568                 u64 physical_of_found = 0;
5569
5570                 /*
5571                  * During the dev-replace procedure, the target drive can
5572                  * also be used to read data in case it is needed to repair
5573                  * a corrupt block elsewhere. This is possible if the
5574                  * requested area is left of the left cursor. In this area,
5575                  * the target drive is a full copy of the source drive.
5576                  */
5577                 for (i = 0; i < num_stripes; i++) {
5578                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5579                                 /*
5580                                  * In case of DUP, in order to keep it
5581                                  * simple, only add the mirror with the
5582                                  * lowest physical address
5583                                  */
5584                                 if (found &&
5585                                     physical_of_found <=
5586                                      bbio->stripes[i].physical)
5587                                         continue;
5588                                 index_srcdev = i;
5589                                 found = 1;
5590                                 physical_of_found = bbio->stripes[i].physical;
5591                         }
5592                 }
5593                 if (found) {
5594                         if (physical_of_found + map->stripe_len <=
5595                             dev_replace->cursor_left) {
5596                                 struct btrfs_bio_stripe *tgtdev_stripe =
5597                                         bbio->stripes + num_stripes;
5598
5599                                 tgtdev_stripe->physical = physical_of_found;
5600                                 tgtdev_stripe->length =
5601                                         bbio->stripes[index_srcdev].length;
5602                                 tgtdev_stripe->dev = dev_replace->tgtdev;
5603                                 bbio->tgtdev_map[index_srcdev] = num_stripes;
5604
5605                                 tgtdev_indexes++;
5606                                 num_stripes++;
5607                         }
5608                 }
5609         }
5610
5611         *bbio_ret = bbio;
5612         bbio->map_type = map->type;
5613         bbio->num_stripes = num_stripes;
5614         bbio->max_errors = max_errors;
5615         bbio->mirror_num = mirror_num;
5616         bbio->num_tgtdevs = tgtdev_indexes;
5617
5618         /*
5619          * this is the case that REQ_READ && dev_replace_is_ongoing &&
5620          * mirror_num == num_stripes + 1 && dev_replace target drive is
5621          * available as a mirror
5622          */
5623         if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5624                 WARN_ON(num_stripes > 1);
5625                 bbio->stripes[0].dev = dev_replace->tgtdev;
5626                 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5627                 bbio->mirror_num = map->num_stripes + 1;
5628         }
5629 out:
5630         if (dev_replace_is_ongoing)
5631                 btrfs_dev_replace_unlock(dev_replace);
5632         free_extent_map(em);
5633         return ret;
5634 }
5635
5636 int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
5637                       u64 logical, u64 *length,
5638                       struct btrfs_bio **bbio_ret, int mirror_num)
5639 {
5640         return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5641                                  mirror_num, 0);
5642 }
5643
5644 /* For Scrub/replace */
5645 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, int rw,
5646                      u64 logical, u64 *length,
5647                      struct btrfs_bio **bbio_ret, int mirror_num,
5648                      int need_raid_map)
5649 {
5650         return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5651                                  mirror_num, need_raid_map);
5652 }
5653
5654 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5655                      u64 chunk_start, u64 physical, u64 devid,
5656                      u64 **logical, int *naddrs, int *stripe_len)
5657 {
5658         struct extent_map_tree *em_tree = &map_tree->map_tree;
5659         struct extent_map *em;
5660         struct map_lookup *map;
5661         u64 *buf;
5662         u64 bytenr;
5663         u64 length;
5664         u64 stripe_nr;
5665         u64 rmap_len;
5666         int i, j, nr = 0;
5667
5668         read_lock(&em_tree->lock);
5669         em = lookup_extent_mapping(em_tree, chunk_start, 1);
5670         read_unlock(&em_tree->lock);
5671
5672         if (!em) {
5673                 printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n",
5674                        chunk_start);
5675                 return -EIO;
5676         }
5677
5678         if (em->start != chunk_start) {
5679                 printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
5680                        em->start, chunk_start);
5681                 free_extent_map(em);
5682                 return -EIO;
5683         }
5684         map = (struct map_lookup *)em->bdev;
5685
5686         length = em->len;
5687         rmap_len = map->stripe_len;
5688
5689         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5690                 length = div_u64(length, map->num_stripes / map->sub_stripes);
5691         else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5692                 length = div_u64(length, map->num_stripes);
5693         else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5694                 length = div_u64(length, nr_data_stripes(map));
5695                 rmap_len = map->stripe_len * nr_data_stripes(map);
5696         }
5697
5698         buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5699         BUG_ON(!buf); /* -ENOMEM */
5700
5701         for (i = 0; i < map->num_stripes; i++) {
5702                 if (devid && map->stripes[i].dev->devid != devid)
5703                         continue;
5704                 if (map->stripes[i].physical > physical ||
5705                     map->stripes[i].physical + length <= physical)
5706                         continue;
5707
5708                 stripe_nr = physical - map->stripes[i].physical;
5709                 stripe_nr = div_u64(stripe_nr, map->stripe_len);
5710
5711                 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5712                         stripe_nr = stripe_nr * map->num_stripes + i;
5713                         stripe_nr = div_u64(stripe_nr, map->sub_stripes);
5714                 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5715                         stripe_nr = stripe_nr * map->num_stripes + i;
5716                 } /* else if RAID[56], multiply by nr_data_stripes().
5717                    * Alternatively, just use rmap_len below instead of
5718                    * map->stripe_len */
5719
5720                 bytenr = chunk_start + stripe_nr * rmap_len;
5721                 WARN_ON(nr >= map->num_stripes);
5722                 for (j = 0; j < nr; j++) {
5723                         if (buf[j] == bytenr)
5724                                 break;
5725                 }
5726                 if (j == nr) {
5727                         WARN_ON(nr >= map->num_stripes);
5728                         buf[nr++] = bytenr;
5729                 }
5730         }
5731
5732         *logical = buf;
5733         *naddrs = nr;
5734         *stripe_len = rmap_len;
5735
5736         free_extent_map(em);
5737         return 0;
5738 }
5739
5740 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
5741 {
5742         bio->bi_private = bbio->private;
5743         bio->bi_end_io = bbio->end_io;
5744         bio_endio(bio);
5745
5746         btrfs_put_bbio(bbio);
5747 }
5748
5749 static void btrfs_end_bio(struct bio *bio)
5750 {
5751         struct btrfs_bio *bbio = bio->bi_private;
5752         int is_orig_bio = 0;
5753
5754         if (bio->bi_error) {
5755                 atomic_inc(&bbio->error);
5756                 if (bio->bi_error == -EIO || bio->bi_error == -EREMOTEIO) {
5757                         unsigned int stripe_index =
5758                                 btrfs_io_bio(bio)->stripe_index;
5759                         struct btrfs_device *dev;
5760
5761                         BUG_ON(stripe_index >= bbio->num_stripes);
5762                         dev = bbio->stripes[stripe_index].dev;
5763                         if (dev->bdev) {
5764                                 if (bio->bi_rw & WRITE)
5765                                         btrfs_dev_stat_inc(dev,
5766                                                 BTRFS_DEV_STAT_WRITE_ERRS);
5767                                 else
5768                                         btrfs_dev_stat_inc(dev,
5769                                                 BTRFS_DEV_STAT_READ_ERRS);
5770                                 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
5771                                         btrfs_dev_stat_inc(dev,
5772                                                 BTRFS_DEV_STAT_FLUSH_ERRS);
5773                                 btrfs_dev_stat_print_on_error(dev);
5774                         }
5775                 }
5776         }
5777
5778         if (bio == bbio->orig_bio)
5779                 is_orig_bio = 1;
5780
5781         btrfs_bio_counter_dec(bbio->fs_info);
5782
5783         if (atomic_dec_and_test(&bbio->stripes_pending)) {
5784                 if (!is_orig_bio) {
5785                         bio_put(bio);
5786                         bio = bbio->orig_bio;
5787                 }
5788
5789                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5790                 /* only send an error to the higher layers if it is
5791                  * beyond the tolerance of the btrfs bio
5792                  */
5793                 if (atomic_read(&bbio->error) > bbio->max_errors) {
5794                         bio->bi_error = -EIO;
5795                 } else {
5796                         /*
5797                          * this bio is actually up to date, we didn't
5798                          * go over the max number of errors
5799                          */
5800                         bio->bi_error = 0;
5801                 }
5802
5803                 btrfs_end_bbio(bbio, bio);
5804         } else if (!is_orig_bio) {
5805                 bio_put(bio);
5806         }
5807 }
5808
5809 /*
5810  * see run_scheduled_bios for a description of why bios are collected for
5811  * async submit.
5812  *
5813  * This will add one bio to the pending list for a device and make sure
5814  * the work struct is scheduled.
5815  */
5816 static noinline void btrfs_schedule_bio(struct btrfs_root *root,
5817                                         struct btrfs_device *device,
5818                                         int rw, struct bio *bio)
5819 {
5820         int should_queue = 1;
5821         struct btrfs_pending_bios *pending_bios;
5822
5823         if (device->missing || !device->bdev) {
5824                 bio_io_error(bio);
5825                 return;
5826         }
5827
5828         /* don't bother with additional async steps for reads, right now */
5829         if (!(rw & REQ_WRITE)) {
5830                 bio_get(bio);
5831                 btrfsic_submit_bio(rw, bio);
5832                 bio_put(bio);
5833                 return;
5834         }
5835
5836         /*
5837          * nr_async_bios allows us to reliably return congestion to the
5838          * higher layers.  Otherwise, the async bio makes it appear we have
5839          * made progress against dirty pages when we've really just put it
5840          * on a queue for later
5841          */
5842         atomic_inc(&root->fs_info->nr_async_bios);
5843         WARN_ON(bio->bi_next);
5844         bio->bi_next = NULL;
5845         bio->bi_rw |= rw;
5846
5847         spin_lock(&device->io_lock);
5848         if (bio->bi_rw & REQ_SYNC)
5849                 pending_bios = &device->pending_sync_bios;
5850         else
5851                 pending_bios = &device->pending_bios;
5852
5853         if (pending_bios->tail)
5854                 pending_bios->tail->bi_next = bio;
5855
5856         pending_bios->tail = bio;
5857         if (!pending_bios->head)
5858                 pending_bios->head = bio;
5859         if (device->running_pending)
5860                 should_queue = 0;
5861
5862         spin_unlock(&device->io_lock);
5863
5864         if (should_queue)
5865                 btrfs_queue_work(root->fs_info->submit_workers,
5866                                  &device->work);
5867 }
5868
5869 static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5870                               struct bio *bio, u64 physical, int dev_nr,
5871                               int rw, int async)
5872 {
5873         struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
5874
5875         bio->bi_private = bbio;
5876         btrfs_io_bio(bio)->stripe_index = dev_nr;
5877         bio->bi_end_io = btrfs_end_bio;
5878         bio->bi_iter.bi_sector = physical >> 9;
5879 #ifdef DEBUG
5880         {
5881                 struct rcu_string *name;
5882
5883                 rcu_read_lock();
5884                 name = rcu_dereference(dev->name);
5885                 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
5886                          "(%s id %llu), size=%u\n", rw,
5887                          (u64)bio->bi_iter.bi_sector, (u_long)dev->bdev->bd_dev,
5888                          name->str, dev->devid, bio->bi_iter.bi_size);
5889                 rcu_read_unlock();
5890         }
5891 #endif
5892         bio->bi_bdev = dev->bdev;
5893
5894         btrfs_bio_counter_inc_noblocked(root->fs_info);
5895
5896         if (async)
5897                 btrfs_schedule_bio(root, dev, rw, bio);
5898         else
5899                 btrfsic_submit_bio(rw, bio);
5900 }
5901
5902 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
5903 {
5904         atomic_inc(&bbio->error);
5905         if (atomic_dec_and_test(&bbio->stripes_pending)) {
5906                 /* Shoud be the original bio. */
5907                 WARN_ON(bio != bbio->orig_bio);
5908
5909                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5910                 bio->bi_iter.bi_sector = logical >> 9;
5911                 bio->bi_error = -EIO;
5912                 btrfs_end_bbio(bbio, bio);
5913         }
5914 }
5915
5916 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
5917                   int mirror_num, int async_submit)
5918 {
5919         struct btrfs_device *dev;
5920         struct bio *first_bio = bio;
5921         u64 logical = (u64)bio->bi_iter.bi_sector << 9;
5922         u64 length = 0;
5923         u64 map_length;
5924         int ret;
5925         int dev_nr;
5926         int total_devs;
5927         struct btrfs_bio *bbio = NULL;
5928
5929         length = bio->bi_iter.bi_size;
5930         map_length = length;
5931
5932         btrfs_bio_counter_inc_blocked(root->fs_info);
5933         ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
5934                               mirror_num, 1);
5935         if (ret) {
5936                 btrfs_bio_counter_dec(root->fs_info);
5937                 return ret;
5938         }
5939
5940         total_devs = bbio->num_stripes;
5941         bbio->orig_bio = first_bio;
5942         bbio->private = first_bio->bi_private;
5943         bbio->end_io = first_bio->bi_end_io;
5944         bbio->fs_info = root->fs_info;
5945         atomic_set(&bbio->stripes_pending, bbio->num_stripes);
5946
5947         if (bbio->raid_map) {
5948                 /* In this case, map_length has been set to the length of
5949                    a single stripe; not the whole write */
5950                 if (rw & WRITE) {
5951                         ret = raid56_parity_write(root, bio, bbio, map_length);
5952                 } else {
5953                         ret = raid56_parity_recover(root, bio, bbio, map_length,
5954                                                     mirror_num, 1);
5955                 }
5956
5957                 btrfs_bio_counter_dec(root->fs_info);
5958                 return ret;
5959         }
5960
5961         if (map_length < length) {
5962                 btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
5963                         logical, length, map_length);
5964                 BUG();
5965         }
5966
5967         for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
5968                 dev = bbio->stripes[dev_nr].dev;
5969                 if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
5970                         bbio_error(bbio, first_bio, logical);
5971                         continue;
5972                 }
5973
5974                 if (dev_nr < total_devs - 1) {
5975                         bio = btrfs_bio_clone(first_bio, GFP_NOFS);
5976                         BUG_ON(!bio); /* -ENOMEM */
5977                 } else
5978                         bio = first_bio;
5979
5980                 submit_stripe_bio(root, bbio, bio,
5981                                   bbio->stripes[dev_nr].physical, dev_nr, rw,
5982                                   async_submit);
5983         }
5984         btrfs_bio_counter_dec(root->fs_info);
5985         return 0;
5986 }
5987
5988 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
5989                                        u8 *uuid, u8 *fsid)
5990 {
5991         struct btrfs_device *device;
5992         struct btrfs_fs_devices *cur_devices;
5993
5994         cur_devices = fs_info->fs_devices;
5995         while (cur_devices) {
5996                 if (!fsid ||
5997                     !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5998                         device = __find_device(&cur_devices->devices,
5999                                                devid, uuid);
6000                         if (device)
6001                                 return device;
6002                 }
6003                 cur_devices = cur_devices->seed;
6004         }
6005         return NULL;
6006 }
6007
6008 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
6009                                             struct btrfs_fs_devices *fs_devices,
6010                                             u64 devid, u8 *dev_uuid)
6011 {
6012         struct btrfs_device *device;
6013
6014         device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6015         if (IS_ERR(device))
6016                 return NULL;
6017
6018         list_add(&device->dev_list, &fs_devices->devices);
6019         device->fs_devices = fs_devices;
6020         fs_devices->num_devices++;
6021
6022         device->missing = 1;
6023         fs_devices->missing_devices++;
6024
6025         return device;
6026 }
6027
6028 /**
6029  * btrfs_alloc_device - allocate struct btrfs_device
6030  * @fs_info:    used only for generating a new devid, can be NULL if
6031  *              devid is provided (i.e. @devid != NULL).
6032  * @devid:      a pointer to devid for this device.  If NULL a new devid
6033  *              is generated.
6034  * @uuid:       a pointer to UUID for this device.  If NULL a new UUID
6035  *              is generated.
6036  *
6037  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6038  * on error.  Returned struct is not linked onto any lists and can be
6039  * destroyed with kfree() right away.
6040  */
6041 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6042                                         const u64 *devid,
6043                                         const u8 *uuid)
6044 {
6045         struct btrfs_device *dev;
6046         u64 tmp;
6047
6048         if (WARN_ON(!devid && !fs_info))
6049                 return ERR_PTR(-EINVAL);
6050
6051         dev = __alloc_device();
6052         if (IS_ERR(dev))
6053                 return dev;
6054
6055         if (devid)
6056                 tmp = *devid;
6057         else {
6058                 int ret;
6059
6060                 ret = find_next_devid(fs_info, &tmp);
6061                 if (ret) {
6062                         kfree(dev);
6063                         return ERR_PTR(ret);
6064                 }
6065         }
6066         dev->devid = tmp;
6067
6068         if (uuid)
6069                 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6070         else
6071                 generate_random_uuid(dev->uuid);
6072
6073         btrfs_init_work(&dev->work, btrfs_submit_helper,
6074                         pending_bios_fn, NULL, NULL);
6075
6076         return dev;
6077 }
6078
6079 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
6080                           struct extent_buffer *leaf,
6081                           struct btrfs_chunk *chunk)
6082 {
6083         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6084         struct map_lookup *map;
6085         struct extent_map *em;
6086         u64 logical;
6087         u64 length;
6088         u64 devid;
6089         u8 uuid[BTRFS_UUID_SIZE];
6090         int num_stripes;
6091         int ret;
6092         int i;
6093
6094         logical = key->offset;
6095         length = btrfs_chunk_length(leaf, chunk);
6096
6097         read_lock(&map_tree->map_tree.lock);
6098         em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6099         read_unlock(&map_tree->map_tree.lock);
6100
6101         /* already mapped? */
6102         if (em && em->start <= logical && em->start + em->len > logical) {
6103                 free_extent_map(em);
6104                 return 0;
6105         } else if (em) {
6106                 free_extent_map(em);
6107         }
6108
6109         em = alloc_extent_map();
6110         if (!em)
6111                 return -ENOMEM;
6112         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6113         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6114         if (!map) {
6115                 free_extent_map(em);
6116                 return -ENOMEM;
6117         }
6118
6119         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6120         em->bdev = (struct block_device *)map;
6121         em->start = logical;
6122         em->len = length;
6123         em->orig_start = 0;
6124         em->block_start = 0;
6125         em->block_len = em->len;
6126
6127         map->num_stripes = num_stripes;
6128         map->io_width = btrfs_chunk_io_width(leaf, chunk);
6129         map->io_align = btrfs_chunk_io_align(leaf, chunk);
6130         map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6131         map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6132         map->type = btrfs_chunk_type(leaf, chunk);
6133         map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6134         for (i = 0; i < num_stripes; i++) {
6135                 map->stripes[i].physical =
6136                         btrfs_stripe_offset_nr(leaf, chunk, i);
6137                 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6138                 read_extent_buffer(leaf, uuid, (unsigned long)
6139                                    btrfs_stripe_dev_uuid_nr(chunk, i),
6140                                    BTRFS_UUID_SIZE);
6141                 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
6142                                                         uuid, NULL);
6143                 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
6144                         free_extent_map(em);
6145                         return -EIO;
6146                 }
6147                 if (!map->stripes[i].dev) {
6148                         map->stripes[i].dev =
6149                                 add_missing_dev(root, root->fs_info->fs_devices,
6150                                                 devid, uuid);
6151                         if (!map->stripes[i].dev) {
6152                                 free_extent_map(em);
6153                                 return -EIO;
6154                         }
6155                         btrfs_warn(root->fs_info, "devid %llu uuid %pU is missing",
6156                                                 devid, uuid);
6157                 }
6158                 map->stripes[i].dev->in_fs_metadata = 1;
6159         }
6160
6161         write_lock(&map_tree->map_tree.lock);
6162         ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6163         write_unlock(&map_tree->map_tree.lock);
6164         BUG_ON(ret); /* Tree corruption */
6165         free_extent_map(em);
6166
6167         return 0;
6168 }
6169
6170 static void fill_device_from_item(struct extent_buffer *leaf,
6171                                  struct btrfs_dev_item *dev_item,
6172                                  struct btrfs_device *device)
6173 {
6174         unsigned long ptr;
6175
6176         device->devid = btrfs_device_id(leaf, dev_item);
6177         device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6178         device->total_bytes = device->disk_total_bytes;
6179         device->commit_total_bytes = device->disk_total_bytes;
6180         device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6181         device->commit_bytes_used = device->bytes_used;
6182         device->type = btrfs_device_type(leaf, dev_item);
6183         device->io_align = btrfs_device_io_align(leaf, dev_item);
6184         device->io_width = btrfs_device_io_width(leaf, dev_item);
6185         device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6186         WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6187         device->is_tgtdev_for_dev_replace = 0;
6188
6189         ptr = btrfs_device_uuid(dev_item);
6190         read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6191 }
6192
6193 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_root *root,
6194                                                   u8 *fsid)
6195 {
6196         struct btrfs_fs_devices *fs_devices;
6197         int ret;
6198
6199         BUG_ON(!mutex_is_locked(&uuid_mutex));
6200
6201         fs_devices = root->fs_info->fs_devices->seed;
6202         while (fs_devices) {
6203                 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6204                         return fs_devices;
6205
6206                 fs_devices = fs_devices->seed;
6207         }
6208
6209         fs_devices = find_fsid(fsid);
6210         if (!fs_devices) {
6211                 if (!btrfs_test_opt(root, DEGRADED))
6212                         return ERR_PTR(-ENOENT);
6213
6214                 fs_devices = alloc_fs_devices(fsid);
6215                 if (IS_ERR(fs_devices))
6216                         return fs_devices;
6217
6218                 fs_devices->seeding = 1;
6219                 fs_devices->opened = 1;
6220                 return fs_devices;
6221         }
6222
6223         fs_devices = clone_fs_devices(fs_devices);
6224         if (IS_ERR(fs_devices))
6225                 return fs_devices;
6226
6227         ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6228                                    root->fs_info->bdev_holder);
6229         if (ret) {
6230                 free_fs_devices(fs_devices);
6231                 fs_devices = ERR_PTR(ret);
6232                 goto out;
6233         }
6234
6235         if (!fs_devices->seeding) {
6236                 __btrfs_close_devices(fs_devices);
6237                 free_fs_devices(fs_devices);
6238                 fs_devices = ERR_PTR(-EINVAL);
6239                 goto out;
6240         }
6241
6242         fs_devices->seed = root->fs_info->fs_devices->seed;
6243         root->fs_info->fs_devices->seed = fs_devices;
6244 out:
6245         return fs_devices;
6246 }
6247
6248 static int read_one_dev(struct btrfs_root *root,
6249                         struct extent_buffer *leaf,
6250                         struct btrfs_dev_item *dev_item)
6251 {
6252         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6253         struct btrfs_device *device;
6254         u64 devid;
6255         int ret;
6256         u8 fs_uuid[BTRFS_UUID_SIZE];
6257         u8 dev_uuid[BTRFS_UUID_SIZE];
6258
6259         devid = btrfs_device_id(leaf, dev_item);
6260         read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6261                            BTRFS_UUID_SIZE);
6262         read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6263                            BTRFS_UUID_SIZE);
6264
6265         if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
6266                 fs_devices = open_seed_devices(root, fs_uuid);
6267                 if (IS_ERR(fs_devices))
6268                         return PTR_ERR(fs_devices);
6269         }
6270
6271         device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
6272         if (!device) {
6273                 if (!btrfs_test_opt(root, DEGRADED))
6274                         return -EIO;
6275
6276                 device = add_missing_dev(root, fs_devices, devid, dev_uuid);
6277                 if (!device)
6278                         return -ENOMEM;
6279                 btrfs_warn(root->fs_info, "devid %llu uuid %pU missing",
6280                                 devid, dev_uuid);
6281         } else {
6282                 if (!device->bdev && !btrfs_test_opt(root, DEGRADED))
6283                         return -EIO;
6284
6285                 if(!device->bdev && !device->missing) {
6286                         /*
6287                          * this happens when a device that was properly setup
6288                          * in the device info lists suddenly goes bad.
6289                          * device->bdev is NULL, and so we have to set
6290                          * device->missing to one here
6291                          */
6292                         device->fs_devices->missing_devices++;
6293                         device->missing = 1;
6294                 }
6295
6296                 /* Move the device to its own fs_devices */
6297                 if (device->fs_devices != fs_devices) {
6298                         ASSERT(device->missing);
6299
6300                         list_move(&device->dev_list, &fs_devices->devices);
6301                         device->fs_devices->num_devices--;
6302                         fs_devices->num_devices++;
6303
6304                         device->fs_devices->missing_devices--;
6305                         fs_devices->missing_devices++;
6306
6307                         device->fs_devices = fs_devices;
6308                 }
6309         }
6310
6311         if (device->fs_devices != root->fs_info->fs_devices) {
6312                 BUG_ON(device->writeable);
6313                 if (device->generation !=
6314                     btrfs_device_generation(leaf, dev_item))
6315                         return -EINVAL;
6316         }
6317
6318         fill_device_from_item(leaf, dev_item, device);
6319         device->in_fs_metadata = 1;
6320         if (device->writeable && !device->is_tgtdev_for_dev_replace) {
6321                 device->fs_devices->total_rw_bytes += device->total_bytes;
6322                 spin_lock(&root->fs_info->free_chunk_lock);
6323                 root->fs_info->free_chunk_space += device->total_bytes -
6324                         device->bytes_used;
6325                 spin_unlock(&root->fs_info->free_chunk_lock);
6326         }
6327         ret = 0;
6328         return ret;
6329 }
6330
6331 int btrfs_read_sys_array(struct btrfs_root *root)
6332 {
6333         struct btrfs_super_block *super_copy = root->fs_info->super_copy;
6334         struct extent_buffer *sb;
6335         struct btrfs_disk_key *disk_key;
6336         struct btrfs_chunk *chunk;
6337         u8 *array_ptr;
6338         unsigned long sb_array_offset;
6339         int ret = 0;
6340         u32 num_stripes;
6341         u32 array_size;
6342         u32 len = 0;
6343         u32 cur_offset;
6344         struct btrfs_key key;
6345
6346         ASSERT(BTRFS_SUPER_INFO_SIZE <= root->nodesize);
6347         /*
6348          * This will create extent buffer of nodesize, superblock size is
6349          * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6350          * overallocate but we can keep it as-is, only the first page is used.
6351          */
6352         sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET);
6353         if (!sb)
6354                 return -ENOMEM;
6355         btrfs_set_buffer_uptodate(sb);
6356         btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6357         /*
6358          * The sb extent buffer is artifical and just used to read the system array.
6359          * btrfs_set_buffer_uptodate() call does not properly mark all it's
6360          * pages up-to-date when the page is larger: extent does not cover the
6361          * whole page and consequently check_page_uptodate does not find all
6362          * the page's extents up-to-date (the hole beyond sb),
6363          * write_extent_buffer then triggers a WARN_ON.
6364          *
6365          * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6366          * but sb spans only this function. Add an explicit SetPageUptodate call
6367          * to silence the warning eg. on PowerPC 64.
6368          */
6369         if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
6370                 SetPageUptodate(sb->pages[0]);
6371
6372         write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6373         array_size = btrfs_super_sys_array_size(super_copy);
6374
6375         array_ptr = super_copy->sys_chunk_array;
6376         sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6377         cur_offset = 0;
6378
6379         while (cur_offset < array_size) {
6380                 disk_key = (struct btrfs_disk_key *)array_ptr;
6381                 len = sizeof(*disk_key);
6382                 if (cur_offset + len > array_size)
6383                         goto out_short_read;
6384
6385                 btrfs_disk_key_to_cpu(&key, disk_key);
6386
6387                 array_ptr += len;
6388                 sb_array_offset += len;
6389                 cur_offset += len;
6390
6391                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6392                         chunk = (struct btrfs_chunk *)sb_array_offset;
6393                         /*
6394                          * At least one btrfs_chunk with one stripe must be
6395                          * present, exact stripe count check comes afterwards
6396                          */
6397                         len = btrfs_chunk_item_size(1);
6398                         if (cur_offset + len > array_size)
6399                                 goto out_short_read;
6400
6401                         num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6402                         len = btrfs_chunk_item_size(num_stripes);
6403                         if (cur_offset + len > array_size)
6404                                 goto out_short_read;
6405
6406                         ret = read_one_chunk(root, &key, sb, chunk);
6407                         if (ret)
6408                                 break;
6409                 } else {
6410                         ret = -EIO;
6411                         break;
6412                 }
6413                 array_ptr += len;
6414                 sb_array_offset += len;
6415                 cur_offset += len;
6416         }
6417         free_extent_buffer(sb);
6418         return ret;
6419
6420 out_short_read:
6421         printk(KERN_ERR "BTRFS: sys_array too short to read %u bytes at offset %u\n",
6422                         len, cur_offset);
6423         free_extent_buffer(sb);
6424         return -EIO;
6425 }
6426
6427 int btrfs_read_chunk_tree(struct btrfs_root *root)
6428 {
6429         struct btrfs_path *path;
6430         struct extent_buffer *leaf;
6431         struct btrfs_key key;
6432         struct btrfs_key found_key;
6433         int ret;
6434         int slot;
6435
6436         root = root->fs_info->chunk_root;
6437
6438         path = btrfs_alloc_path();
6439         if (!path)
6440                 return -ENOMEM;
6441
6442         mutex_lock(&uuid_mutex);
6443         lock_chunks(root);
6444
6445         /*
6446          * Read all device items, and then all the chunk items. All
6447          * device items are found before any chunk item (their object id
6448          * is smaller than the lowest possible object id for a chunk
6449          * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6450          */
6451         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6452         key.offset = 0;
6453         key.type = 0;
6454         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6455         if (ret < 0)
6456                 goto error;
6457         while (1) {
6458                 leaf = path->nodes[0];
6459                 slot = path->slots[0];
6460                 if (slot >= btrfs_header_nritems(leaf)) {
6461                         ret = btrfs_next_leaf(root, path);
6462                         if (ret == 0)
6463                                 continue;
6464                         if (ret < 0)
6465                                 goto error;
6466                         break;
6467                 }
6468                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6469                 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6470                         struct btrfs_dev_item *dev_item;
6471                         dev_item = btrfs_item_ptr(leaf, slot,
6472                                                   struct btrfs_dev_item);
6473                         ret = read_one_dev(root, leaf, dev_item);
6474                         if (ret)
6475                                 goto error;
6476                 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6477                         struct btrfs_chunk *chunk;
6478                         chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6479                         ret = read_one_chunk(root, &found_key, leaf, chunk);
6480                         if (ret)
6481                                 goto error;
6482                 }
6483                 path->slots[0]++;
6484         }
6485         ret = 0;
6486 error:
6487         unlock_chunks(root);
6488         mutex_unlock(&uuid_mutex);
6489
6490         btrfs_free_path(path);
6491         return ret;
6492 }
6493
6494 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6495 {
6496         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6497         struct btrfs_device *device;
6498
6499         while (fs_devices) {
6500                 mutex_lock(&fs_devices->device_list_mutex);
6501                 list_for_each_entry(device, &fs_devices->devices, dev_list)
6502                         device->dev_root = fs_info->dev_root;
6503                 mutex_unlock(&fs_devices->device_list_mutex);
6504
6505                 fs_devices = fs_devices->seed;
6506         }
6507 }
6508
6509 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6510 {
6511         int i;
6512
6513         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6514                 btrfs_dev_stat_reset(dev, i);
6515 }
6516
6517 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6518 {
6519         struct btrfs_key key;
6520         struct btrfs_key found_key;
6521         struct btrfs_root *dev_root = fs_info->dev_root;
6522         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6523         struct extent_buffer *eb;
6524         int slot;
6525         int ret = 0;
6526         struct btrfs_device *device;
6527         struct btrfs_path *path = NULL;
6528         int i;
6529
6530         path = btrfs_alloc_path();
6531         if (!path) {
6532                 ret = -ENOMEM;
6533                 goto out;
6534         }
6535
6536         mutex_lock(&fs_devices->device_list_mutex);
6537         list_for_each_entry(device, &fs_devices->devices, dev_list) {
6538                 int item_size;
6539                 struct btrfs_dev_stats_item *ptr;
6540
6541                 key.objectid = 0;
6542                 key.type = BTRFS_DEV_STATS_KEY;
6543                 key.offset = device->devid;
6544                 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6545                 if (ret) {
6546                         __btrfs_reset_dev_stats(device);
6547                         device->dev_stats_valid = 1;
6548                         btrfs_release_path(path);
6549                         continue;
6550                 }
6551                 slot = path->slots[0];
6552                 eb = path->nodes[0];
6553                 btrfs_item_key_to_cpu(eb, &found_key, slot);
6554                 item_size = btrfs_item_size_nr(eb, slot);
6555
6556                 ptr = btrfs_item_ptr(eb, slot,
6557                                      struct btrfs_dev_stats_item);
6558
6559                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6560                         if (item_size >= (1 + i) * sizeof(__le64))
6561                                 btrfs_dev_stat_set(device, i,
6562                                         btrfs_dev_stats_value(eb, ptr, i));
6563                         else
6564                                 btrfs_dev_stat_reset(device, i);
6565                 }
6566
6567                 device->dev_stats_valid = 1;
6568                 btrfs_dev_stat_print_on_load(device);
6569                 btrfs_release_path(path);
6570         }
6571         mutex_unlock(&fs_devices->device_list_mutex);
6572
6573 out:
6574         btrfs_free_path(path);
6575         return ret < 0 ? ret : 0;
6576 }
6577
6578 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6579                                 struct btrfs_root *dev_root,
6580                                 struct btrfs_device *device)
6581 {
6582         struct btrfs_path *path;
6583         struct btrfs_key key;
6584         struct extent_buffer *eb;
6585         struct btrfs_dev_stats_item *ptr;
6586         int ret;
6587         int i;
6588
6589         key.objectid = 0;
6590         key.type = BTRFS_DEV_STATS_KEY;
6591         key.offset = device->devid;
6592
6593         path = btrfs_alloc_path();
6594         BUG_ON(!path);
6595         ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6596         if (ret < 0) {
6597                 printk_in_rcu(KERN_WARNING "BTRFS: "
6598                         "error %d while searching for dev_stats item for device %s!\n",
6599                               ret, rcu_str_deref(device->name));
6600                 goto out;
6601         }
6602
6603         if (ret == 0 &&
6604             btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6605                 /* need to delete old one and insert a new one */
6606                 ret = btrfs_del_item(trans, dev_root, path);
6607                 if (ret != 0) {
6608                         printk_in_rcu(KERN_WARNING "BTRFS: "
6609                                 "delete too small dev_stats item for device %s failed %d!\n",
6610                                       rcu_str_deref(device->name), ret);
6611                         goto out;
6612                 }
6613                 ret = 1;
6614         }
6615
6616         if (ret == 1) {
6617                 /* need to insert a new item */
6618                 btrfs_release_path(path);
6619                 ret = btrfs_insert_empty_item(trans, dev_root, path,
6620                                               &key, sizeof(*ptr));
6621                 if (ret < 0) {
6622                         printk_in_rcu(KERN_WARNING "BTRFS: "
6623                                           "insert dev_stats item for device %s failed %d!\n",
6624                                       rcu_str_deref(device->name), ret);
6625                         goto out;
6626                 }
6627         }
6628
6629         eb = path->nodes[0];
6630         ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6631         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6632                 btrfs_set_dev_stats_value(eb, ptr, i,
6633                                           btrfs_dev_stat_read(device, i));
6634         btrfs_mark_buffer_dirty(eb);
6635
6636 out:
6637         btrfs_free_path(path);
6638         return ret;
6639 }
6640
6641 /*
6642  * called from commit_transaction. Writes all changed device stats to disk.
6643  */
6644 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
6645                         struct btrfs_fs_info *fs_info)
6646 {
6647         struct btrfs_root *dev_root = fs_info->dev_root;
6648         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6649         struct btrfs_device *device;
6650         int stats_cnt;
6651         int ret = 0;
6652
6653         mutex_lock(&fs_devices->device_list_mutex);
6654         list_for_each_entry(device, &fs_devices->devices, dev_list) {
6655                 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
6656                         continue;
6657
6658                 stats_cnt = atomic_read(&device->dev_stats_ccnt);
6659                 ret = update_dev_stat_item(trans, dev_root, device);
6660                 if (!ret)
6661                         atomic_sub(stats_cnt, &device->dev_stats_ccnt);
6662         }
6663         mutex_unlock(&fs_devices->device_list_mutex);
6664
6665         return ret;
6666 }
6667
6668 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
6669 {
6670         btrfs_dev_stat_inc(dev, index);
6671         btrfs_dev_stat_print_on_error(dev);
6672 }
6673
6674 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
6675 {
6676         if (!dev->dev_stats_valid)
6677                 return;
6678         printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
6679                            "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6680                            rcu_str_deref(dev->name),
6681                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6682                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6683                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6684                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6685                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6686 }
6687
6688 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
6689 {
6690         int i;
6691
6692         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6693                 if (btrfs_dev_stat_read(dev, i) != 0)
6694                         break;
6695         if (i == BTRFS_DEV_STAT_VALUES_MAX)
6696                 return; /* all values == 0, suppress message */
6697
6698         printk_in_rcu(KERN_INFO "BTRFS: "
6699                    "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6700                rcu_str_deref(dev->name),
6701                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6702                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6703                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6704                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6705                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6706 }
6707
6708 int btrfs_get_dev_stats(struct btrfs_root *root,
6709                         struct btrfs_ioctl_get_dev_stats *stats)
6710 {
6711         struct btrfs_device *dev;
6712         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6713         int i;
6714
6715         mutex_lock(&fs_devices->device_list_mutex);
6716         dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
6717         mutex_unlock(&fs_devices->device_list_mutex);
6718
6719         if (!dev) {
6720                 btrfs_warn(root->fs_info, "get dev_stats failed, device not found");
6721                 return -ENODEV;
6722         } else if (!dev->dev_stats_valid) {
6723                 btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid");
6724                 return -ENODEV;
6725         } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
6726                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6727                         if (stats->nr_items > i)
6728                                 stats->values[i] =
6729                                         btrfs_dev_stat_read_and_reset(dev, i);
6730                         else
6731                                 btrfs_dev_stat_reset(dev, i);
6732                 }
6733         } else {
6734                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6735                         if (stats->nr_items > i)
6736                                 stats->values[i] = btrfs_dev_stat_read(dev, i);
6737         }
6738         if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
6739                 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
6740         return 0;
6741 }
6742
6743 int btrfs_scratch_superblock(struct btrfs_device *device)
6744 {
6745         struct buffer_head *bh;
6746         struct btrfs_super_block *disk_super;
6747
6748         bh = btrfs_read_dev_super(device->bdev);
6749         if (IS_ERR(bh))
6750                 return PTR_ERR(bh);
6751         disk_super = (struct btrfs_super_block *)bh->b_data;
6752
6753         memset(&disk_super->magic, 0, sizeof(disk_super->magic));
6754         set_buffer_dirty(bh);
6755         sync_dirty_buffer(bh);
6756         brelse(bh);
6757
6758         return 0;
6759 }
6760
6761 /*
6762  * Update the size of all devices, which is used for writing out the
6763  * super blocks.
6764  */
6765 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
6766 {
6767         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6768         struct btrfs_device *curr, *next;
6769
6770         if (list_empty(&fs_devices->resized_devices))
6771                 return;
6772
6773         mutex_lock(&fs_devices->device_list_mutex);
6774         lock_chunks(fs_info->dev_root);
6775         list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
6776                                  resized_list) {
6777                 list_del_init(&curr->resized_list);
6778                 curr->commit_total_bytes = curr->disk_total_bytes;
6779         }
6780         unlock_chunks(fs_info->dev_root);
6781         mutex_unlock(&fs_devices->device_list_mutex);
6782 }
6783
6784 /* Must be invoked during the transaction commit */
6785 void btrfs_update_commit_device_bytes_used(struct btrfs_root *root,
6786                                         struct btrfs_transaction *transaction)
6787 {
6788         struct extent_map *em;
6789         struct map_lookup *map;
6790         struct btrfs_device *dev;
6791         int i;
6792
6793         if (list_empty(&transaction->pending_chunks))
6794                 return;
6795
6796         /* In order to kick the device replace finish process */
6797         lock_chunks(root);
6798         list_for_each_entry(em, &transaction->pending_chunks, list) {
6799                 map = (struct map_lookup *)em->bdev;
6800
6801                 for (i = 0; i < map->num_stripes; i++) {
6802                         dev = map->stripes[i].dev;
6803                         dev->commit_bytes_used = dev->bytes_used;
6804                 }
6805         }
6806         unlock_chunks(root);
6807 }
6808
6809 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
6810 {
6811         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6812         while (fs_devices) {
6813                 fs_devices->fs_info = fs_info;
6814                 fs_devices = fs_devices->seed;
6815         }
6816 }
6817
6818 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
6819 {
6820         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6821         while (fs_devices) {
6822                 fs_devices->fs_info = NULL;
6823                 fs_devices = fs_devices->seed;
6824         }
6825 }