9cb78e31fc7694d5ea450cc57d51162b312bc118
[cascardo/linux.git] / fs / btrfs / volumes.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/random.h>
24 #include <linux/iocontext.h>
25 #include <linux/capability.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <linux/raid/pq.h>
29 #include <linux/semaphore.h>
30 #include <asm/div64.h>
31 #include "ctree.h"
32 #include "extent_map.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "raid56.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
41 #include "math.h"
42 #include "dev-replace.h"
43 #include "sysfs.h"
44
45 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46         [BTRFS_RAID_RAID10] = {
47                 .sub_stripes    = 2,
48                 .dev_stripes    = 1,
49                 .devs_max       = 0,    /* 0 == as many as possible */
50                 .devs_min       = 4,
51                 .tolerated_failures = 1,
52                 .devs_increment = 2,
53                 .ncopies        = 2,
54         },
55         [BTRFS_RAID_RAID1] = {
56                 .sub_stripes    = 1,
57                 .dev_stripes    = 1,
58                 .devs_max       = 2,
59                 .devs_min       = 2,
60                 .tolerated_failures = 1,
61                 .devs_increment = 2,
62                 .ncopies        = 2,
63         },
64         [BTRFS_RAID_DUP] = {
65                 .sub_stripes    = 1,
66                 .dev_stripes    = 2,
67                 .devs_max       = 1,
68                 .devs_min       = 1,
69                 .tolerated_failures = 0,
70                 .devs_increment = 1,
71                 .ncopies        = 2,
72         },
73         [BTRFS_RAID_RAID0] = {
74                 .sub_stripes    = 1,
75                 .dev_stripes    = 1,
76                 .devs_max       = 0,
77                 .devs_min       = 2,
78                 .tolerated_failures = 0,
79                 .devs_increment = 1,
80                 .ncopies        = 1,
81         },
82         [BTRFS_RAID_SINGLE] = {
83                 .sub_stripes    = 1,
84                 .dev_stripes    = 1,
85                 .devs_max       = 1,
86                 .devs_min       = 1,
87                 .tolerated_failures = 0,
88                 .devs_increment = 1,
89                 .ncopies        = 1,
90         },
91         [BTRFS_RAID_RAID5] = {
92                 .sub_stripes    = 1,
93                 .dev_stripes    = 1,
94                 .devs_max       = 0,
95                 .devs_min       = 2,
96                 .tolerated_failures = 1,
97                 .devs_increment = 1,
98                 .ncopies        = 2,
99         },
100         [BTRFS_RAID_RAID6] = {
101                 .sub_stripes    = 1,
102                 .dev_stripes    = 1,
103                 .devs_max       = 0,
104                 .devs_min       = 3,
105                 .tolerated_failures = 2,
106                 .devs_increment = 1,
107                 .ncopies        = 3,
108         },
109 };
110
111 const u64 const btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
112         [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113         [BTRFS_RAID_RAID1]  = BTRFS_BLOCK_GROUP_RAID1,
114         [BTRFS_RAID_DUP]    = BTRFS_BLOCK_GROUP_DUP,
115         [BTRFS_RAID_RAID0]  = BTRFS_BLOCK_GROUP_RAID0,
116         [BTRFS_RAID_SINGLE] = 0,
117         [BTRFS_RAID_RAID5]  = BTRFS_BLOCK_GROUP_RAID5,
118         [BTRFS_RAID_RAID6]  = BTRFS_BLOCK_GROUP_RAID6,
119 };
120
121 static int init_first_rw_device(struct btrfs_trans_handle *trans,
122                                 struct btrfs_root *root,
123                                 struct btrfs_device *device);
124 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
125 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
126 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
127 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
128
129 DEFINE_MUTEX(uuid_mutex);
130 static LIST_HEAD(fs_uuids);
131 struct list_head *btrfs_get_fs_uuids(void)
132 {
133         return &fs_uuids;
134 }
135
136 static struct btrfs_fs_devices *__alloc_fs_devices(void)
137 {
138         struct btrfs_fs_devices *fs_devs;
139
140         fs_devs = kzalloc(sizeof(*fs_devs), GFP_NOFS);
141         if (!fs_devs)
142                 return ERR_PTR(-ENOMEM);
143
144         mutex_init(&fs_devs->device_list_mutex);
145
146         INIT_LIST_HEAD(&fs_devs->devices);
147         INIT_LIST_HEAD(&fs_devs->resized_devices);
148         INIT_LIST_HEAD(&fs_devs->alloc_list);
149         INIT_LIST_HEAD(&fs_devs->list);
150
151         return fs_devs;
152 }
153
154 /**
155  * alloc_fs_devices - allocate struct btrfs_fs_devices
156  * @fsid:       a pointer to UUID for this FS.  If NULL a new UUID is
157  *              generated.
158  *
159  * Return: a pointer to a new &struct btrfs_fs_devices on success;
160  * ERR_PTR() on error.  Returned struct is not linked onto any lists and
161  * can be destroyed with kfree() right away.
162  */
163 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
164 {
165         struct btrfs_fs_devices *fs_devs;
166
167         fs_devs = __alloc_fs_devices();
168         if (IS_ERR(fs_devs))
169                 return fs_devs;
170
171         if (fsid)
172                 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
173         else
174                 generate_random_uuid(fs_devs->fsid);
175
176         return fs_devs;
177 }
178
179 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
180 {
181         struct btrfs_device *device;
182         WARN_ON(fs_devices->opened);
183         while (!list_empty(&fs_devices->devices)) {
184                 device = list_entry(fs_devices->devices.next,
185                                     struct btrfs_device, dev_list);
186                 list_del(&device->dev_list);
187                 rcu_string_free(device->name);
188                 kfree(device);
189         }
190         kfree(fs_devices);
191 }
192
193 static void btrfs_kobject_uevent(struct block_device *bdev,
194                                  enum kobject_action action)
195 {
196         int ret;
197
198         ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
199         if (ret)
200                 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
201                         action,
202                         kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
203                         &disk_to_dev(bdev->bd_disk)->kobj);
204 }
205
206 void btrfs_cleanup_fs_uuids(void)
207 {
208         struct btrfs_fs_devices *fs_devices;
209
210         while (!list_empty(&fs_uuids)) {
211                 fs_devices = list_entry(fs_uuids.next,
212                                         struct btrfs_fs_devices, list);
213                 list_del(&fs_devices->list);
214                 free_fs_devices(fs_devices);
215         }
216 }
217
218 static struct btrfs_device *__alloc_device(void)
219 {
220         struct btrfs_device *dev;
221
222         dev = kzalloc(sizeof(*dev), GFP_NOFS);
223         if (!dev)
224                 return ERR_PTR(-ENOMEM);
225
226         INIT_LIST_HEAD(&dev->dev_list);
227         INIT_LIST_HEAD(&dev->dev_alloc_list);
228         INIT_LIST_HEAD(&dev->resized_list);
229
230         spin_lock_init(&dev->io_lock);
231
232         spin_lock_init(&dev->reada_lock);
233         atomic_set(&dev->reada_in_flight, 0);
234         atomic_set(&dev->dev_stats_ccnt, 0);
235         INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
236         INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
237
238         return dev;
239 }
240
241 static noinline struct btrfs_device *__find_device(struct list_head *head,
242                                                    u64 devid, u8 *uuid)
243 {
244         struct btrfs_device *dev;
245
246         list_for_each_entry(dev, head, dev_list) {
247                 if (dev->devid == devid &&
248                     (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
249                         return dev;
250                 }
251         }
252         return NULL;
253 }
254
255 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
256 {
257         struct btrfs_fs_devices *fs_devices;
258
259         list_for_each_entry(fs_devices, &fs_uuids, list) {
260                 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
261                         return fs_devices;
262         }
263         return NULL;
264 }
265
266 static int
267 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
268                       int flush, struct block_device **bdev,
269                       struct buffer_head **bh)
270 {
271         int ret;
272
273         *bdev = blkdev_get_by_path(device_path, flags, holder);
274
275         if (IS_ERR(*bdev)) {
276                 ret = PTR_ERR(*bdev);
277                 goto error;
278         }
279
280         if (flush)
281                 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
282         ret = set_blocksize(*bdev, 4096);
283         if (ret) {
284                 blkdev_put(*bdev, flags);
285                 goto error;
286         }
287         invalidate_bdev(*bdev);
288         *bh = btrfs_read_dev_super(*bdev);
289         if (IS_ERR(*bh)) {
290                 ret = PTR_ERR(*bh);
291                 blkdev_put(*bdev, flags);
292                 goto error;
293         }
294
295         return 0;
296
297 error:
298         *bdev = NULL;
299         *bh = NULL;
300         return ret;
301 }
302
303 static void requeue_list(struct btrfs_pending_bios *pending_bios,
304                         struct bio *head, struct bio *tail)
305 {
306
307         struct bio *old_head;
308
309         old_head = pending_bios->head;
310         pending_bios->head = head;
311         if (pending_bios->tail)
312                 tail->bi_next = old_head;
313         else
314                 pending_bios->tail = tail;
315 }
316
317 /*
318  * we try to collect pending bios for a device so we don't get a large
319  * number of procs sending bios down to the same device.  This greatly
320  * improves the schedulers ability to collect and merge the bios.
321  *
322  * But, it also turns into a long list of bios to process and that is sure
323  * to eventually make the worker thread block.  The solution here is to
324  * make some progress and then put this work struct back at the end of
325  * the list if the block device is congested.  This way, multiple devices
326  * can make progress from a single worker thread.
327  */
328 static noinline void run_scheduled_bios(struct btrfs_device *device)
329 {
330         struct bio *pending;
331         struct backing_dev_info *bdi;
332         struct btrfs_fs_info *fs_info;
333         struct btrfs_pending_bios *pending_bios;
334         struct bio *tail;
335         struct bio *cur;
336         int again = 0;
337         unsigned long num_run;
338         unsigned long batch_run = 0;
339         unsigned long limit;
340         unsigned long last_waited = 0;
341         int force_reg = 0;
342         int sync_pending = 0;
343         struct blk_plug plug;
344
345         /*
346          * this function runs all the bios we've collected for
347          * a particular device.  We don't want to wander off to
348          * another device without first sending all of these down.
349          * So, setup a plug here and finish it off before we return
350          */
351         blk_start_plug(&plug);
352
353         bdi = blk_get_backing_dev_info(device->bdev);
354         fs_info = device->dev_root->fs_info;
355         limit = btrfs_async_submit_limit(fs_info);
356         limit = limit * 2 / 3;
357
358 loop:
359         spin_lock(&device->io_lock);
360
361 loop_lock:
362         num_run = 0;
363
364         /* take all the bios off the list at once and process them
365          * later on (without the lock held).  But, remember the
366          * tail and other pointers so the bios can be properly reinserted
367          * into the list if we hit congestion
368          */
369         if (!force_reg && device->pending_sync_bios.head) {
370                 pending_bios = &device->pending_sync_bios;
371                 force_reg = 1;
372         } else {
373                 pending_bios = &device->pending_bios;
374                 force_reg = 0;
375         }
376
377         pending = pending_bios->head;
378         tail = pending_bios->tail;
379         WARN_ON(pending && !tail);
380
381         /*
382          * if pending was null this time around, no bios need processing
383          * at all and we can stop.  Otherwise it'll loop back up again
384          * and do an additional check so no bios are missed.
385          *
386          * device->running_pending is used to synchronize with the
387          * schedule_bio code.
388          */
389         if (device->pending_sync_bios.head == NULL &&
390             device->pending_bios.head == NULL) {
391                 again = 0;
392                 device->running_pending = 0;
393         } else {
394                 again = 1;
395                 device->running_pending = 1;
396         }
397
398         pending_bios->head = NULL;
399         pending_bios->tail = NULL;
400
401         spin_unlock(&device->io_lock);
402
403         while (pending) {
404
405                 rmb();
406                 /* we want to work on both lists, but do more bios on the
407                  * sync list than the regular list
408                  */
409                 if ((num_run > 32 &&
410                     pending_bios != &device->pending_sync_bios &&
411                     device->pending_sync_bios.head) ||
412                    (num_run > 64 && pending_bios == &device->pending_sync_bios &&
413                     device->pending_bios.head)) {
414                         spin_lock(&device->io_lock);
415                         requeue_list(pending_bios, pending, tail);
416                         goto loop_lock;
417                 }
418
419                 cur = pending;
420                 pending = pending->bi_next;
421                 cur->bi_next = NULL;
422
423                 /*
424                  * atomic_dec_return implies a barrier for waitqueue_active
425                  */
426                 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
427                     waitqueue_active(&fs_info->async_submit_wait))
428                         wake_up(&fs_info->async_submit_wait);
429
430                 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
431
432                 /*
433                  * if we're doing the sync list, record that our
434                  * plug has some sync requests on it
435                  *
436                  * If we're doing the regular list and there are
437                  * sync requests sitting around, unplug before
438                  * we add more
439                  */
440                 if (pending_bios == &device->pending_sync_bios) {
441                         sync_pending = 1;
442                 } else if (sync_pending) {
443                         blk_finish_plug(&plug);
444                         blk_start_plug(&plug);
445                         sync_pending = 0;
446                 }
447
448                 btrfsic_submit_bio(cur->bi_rw, cur);
449                 num_run++;
450                 batch_run++;
451
452                 cond_resched();
453
454                 /*
455                  * we made progress, there is more work to do and the bdi
456                  * is now congested.  Back off and let other work structs
457                  * run instead
458                  */
459                 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
460                     fs_info->fs_devices->open_devices > 1) {
461                         struct io_context *ioc;
462
463                         ioc = current->io_context;
464
465                         /*
466                          * the main goal here is that we don't want to
467                          * block if we're going to be able to submit
468                          * more requests without blocking.
469                          *
470                          * This code does two great things, it pokes into
471                          * the elevator code from a filesystem _and_
472                          * it makes assumptions about how batching works.
473                          */
474                         if (ioc && ioc->nr_batch_requests > 0 &&
475                             time_before(jiffies, ioc->last_waited + HZ/50UL) &&
476                             (last_waited == 0 ||
477                              ioc->last_waited == last_waited)) {
478                                 /*
479                                  * we want to go through our batch of
480                                  * requests and stop.  So, we copy out
481                                  * the ioc->last_waited time and test
482                                  * against it before looping
483                                  */
484                                 last_waited = ioc->last_waited;
485                                 cond_resched();
486                                 continue;
487                         }
488                         spin_lock(&device->io_lock);
489                         requeue_list(pending_bios, pending, tail);
490                         device->running_pending = 1;
491
492                         spin_unlock(&device->io_lock);
493                         btrfs_queue_work(fs_info->submit_workers,
494                                          &device->work);
495                         goto done;
496                 }
497                 /* unplug every 64 requests just for good measure */
498                 if (batch_run % 64 == 0) {
499                         blk_finish_plug(&plug);
500                         blk_start_plug(&plug);
501                         sync_pending = 0;
502                 }
503         }
504
505         cond_resched();
506         if (again)
507                 goto loop;
508
509         spin_lock(&device->io_lock);
510         if (device->pending_bios.head || device->pending_sync_bios.head)
511                 goto loop_lock;
512         spin_unlock(&device->io_lock);
513
514 done:
515         blk_finish_plug(&plug);
516 }
517
518 static void pending_bios_fn(struct btrfs_work *work)
519 {
520         struct btrfs_device *device;
521
522         device = container_of(work, struct btrfs_device, work);
523         run_scheduled_bios(device);
524 }
525
526
527 void btrfs_free_stale_device(struct btrfs_device *cur_dev)
528 {
529         struct btrfs_fs_devices *fs_devs;
530         struct btrfs_device *dev;
531
532         if (!cur_dev->name)
533                 return;
534
535         list_for_each_entry(fs_devs, &fs_uuids, list) {
536                 int del = 1;
537
538                 if (fs_devs->opened)
539                         continue;
540                 if (fs_devs->seeding)
541                         continue;
542
543                 list_for_each_entry(dev, &fs_devs->devices, dev_list) {
544
545                         if (dev == cur_dev)
546                                 continue;
547                         if (!dev->name)
548                                 continue;
549
550                         /*
551                          * Todo: This won't be enough. What if the same device
552                          * comes back (with new uuid and) with its mapper path?
553                          * But for now, this does help as mostly an admin will
554                          * either use mapper or non mapper path throughout.
555                          */
556                         rcu_read_lock();
557                         del = strcmp(rcu_str_deref(dev->name),
558                                                 rcu_str_deref(cur_dev->name));
559                         rcu_read_unlock();
560                         if (!del)
561                                 break;
562                 }
563
564                 if (!del) {
565                         /* delete the stale device */
566                         if (fs_devs->num_devices == 1) {
567                                 btrfs_sysfs_remove_fsid(fs_devs);
568                                 list_del(&fs_devs->list);
569                                 free_fs_devices(fs_devs);
570                         } else {
571                                 fs_devs->num_devices--;
572                                 list_del(&dev->dev_list);
573                                 rcu_string_free(dev->name);
574                                 kfree(dev);
575                         }
576                         break;
577                 }
578         }
579 }
580
581 /*
582  * Add new device to list of registered devices
583  *
584  * Returns:
585  * 1   - first time device is seen
586  * 0   - device already known
587  * < 0 - error
588  */
589 static noinline int device_list_add(const char *path,
590                            struct btrfs_super_block *disk_super,
591                            u64 devid, struct btrfs_fs_devices **fs_devices_ret)
592 {
593         struct btrfs_device *device;
594         struct btrfs_fs_devices *fs_devices;
595         struct rcu_string *name;
596         int ret = 0;
597         u64 found_transid = btrfs_super_generation(disk_super);
598
599         fs_devices = find_fsid(disk_super->fsid);
600         if (!fs_devices) {
601                 fs_devices = alloc_fs_devices(disk_super->fsid);
602                 if (IS_ERR(fs_devices))
603                         return PTR_ERR(fs_devices);
604
605                 list_add(&fs_devices->list, &fs_uuids);
606
607                 device = NULL;
608         } else {
609                 device = __find_device(&fs_devices->devices, devid,
610                                        disk_super->dev_item.uuid);
611         }
612
613         if (!device) {
614                 if (fs_devices->opened)
615                         return -EBUSY;
616
617                 device = btrfs_alloc_device(NULL, &devid,
618                                             disk_super->dev_item.uuid);
619                 if (IS_ERR(device)) {
620                         /* we can safely leave the fs_devices entry around */
621                         return PTR_ERR(device);
622                 }
623
624                 name = rcu_string_strdup(path, GFP_NOFS);
625                 if (!name) {
626                         kfree(device);
627                         return -ENOMEM;
628                 }
629                 rcu_assign_pointer(device->name, name);
630
631                 mutex_lock(&fs_devices->device_list_mutex);
632                 list_add_rcu(&device->dev_list, &fs_devices->devices);
633                 fs_devices->num_devices++;
634                 mutex_unlock(&fs_devices->device_list_mutex);
635
636                 ret = 1;
637                 device->fs_devices = fs_devices;
638         } else if (!device->name || strcmp(device->name->str, path)) {
639                 /*
640                  * When FS is already mounted.
641                  * 1. If you are here and if the device->name is NULL that
642                  *    means this device was missing at time of FS mount.
643                  * 2. If you are here and if the device->name is different
644                  *    from 'path' that means either
645                  *      a. The same device disappeared and reappeared with
646                  *         different name. or
647                  *      b. The missing-disk-which-was-replaced, has
648                  *         reappeared now.
649                  *
650                  * We must allow 1 and 2a above. But 2b would be a spurious
651                  * and unintentional.
652                  *
653                  * Further in case of 1 and 2a above, the disk at 'path'
654                  * would have missed some transaction when it was away and
655                  * in case of 2a the stale bdev has to be updated as well.
656                  * 2b must not be allowed at all time.
657                  */
658
659                 /*
660                  * For now, we do allow update to btrfs_fs_device through the
661                  * btrfs dev scan cli after FS has been mounted.  We're still
662                  * tracking a problem where systems fail mount by subvolume id
663                  * when we reject replacement on a mounted FS.
664                  */
665                 if (!fs_devices->opened && found_transid < device->generation) {
666                         /*
667                          * That is if the FS is _not_ mounted and if you
668                          * are here, that means there is more than one
669                          * disk with same uuid and devid.We keep the one
670                          * with larger generation number or the last-in if
671                          * generation are equal.
672                          */
673                         return -EEXIST;
674                 }
675
676                 name = rcu_string_strdup(path, GFP_NOFS);
677                 if (!name)
678                         return -ENOMEM;
679                 rcu_string_free(device->name);
680                 rcu_assign_pointer(device->name, name);
681                 if (device->missing) {
682                         fs_devices->missing_devices--;
683                         device->missing = 0;
684                 }
685         }
686
687         /*
688          * Unmount does not free the btrfs_device struct but would zero
689          * generation along with most of the other members. So just update
690          * it back. We need it to pick the disk with largest generation
691          * (as above).
692          */
693         if (!fs_devices->opened)
694                 device->generation = found_transid;
695
696         /*
697          * if there is new btrfs on an already registered device,
698          * then remove the stale device entry.
699          */
700         btrfs_free_stale_device(device);
701
702         *fs_devices_ret = fs_devices;
703
704         return ret;
705 }
706
707 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
708 {
709         struct btrfs_fs_devices *fs_devices;
710         struct btrfs_device *device;
711         struct btrfs_device *orig_dev;
712
713         fs_devices = alloc_fs_devices(orig->fsid);
714         if (IS_ERR(fs_devices))
715                 return fs_devices;
716
717         mutex_lock(&orig->device_list_mutex);
718         fs_devices->total_devices = orig->total_devices;
719
720         /* We have held the volume lock, it is safe to get the devices. */
721         list_for_each_entry(orig_dev, &orig->devices, dev_list) {
722                 struct rcu_string *name;
723
724                 device = btrfs_alloc_device(NULL, &orig_dev->devid,
725                                             orig_dev->uuid);
726                 if (IS_ERR(device))
727                         goto error;
728
729                 /*
730                  * This is ok to do without rcu read locked because we hold the
731                  * uuid mutex so nothing we touch in here is going to disappear.
732                  */
733                 if (orig_dev->name) {
734                         name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
735                         if (!name) {
736                                 kfree(device);
737                                 goto error;
738                         }
739                         rcu_assign_pointer(device->name, name);
740                 }
741
742                 list_add(&device->dev_list, &fs_devices->devices);
743                 device->fs_devices = fs_devices;
744                 fs_devices->num_devices++;
745         }
746         mutex_unlock(&orig->device_list_mutex);
747         return fs_devices;
748 error:
749         mutex_unlock(&orig->device_list_mutex);
750         free_fs_devices(fs_devices);
751         return ERR_PTR(-ENOMEM);
752 }
753
754 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
755 {
756         struct btrfs_device *device, *next;
757         struct btrfs_device *latest_dev = NULL;
758
759         mutex_lock(&uuid_mutex);
760 again:
761         /* This is the initialized path, it is safe to release the devices. */
762         list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
763                 if (device->in_fs_metadata) {
764                         if (!device->is_tgtdev_for_dev_replace &&
765                             (!latest_dev ||
766                              device->generation > latest_dev->generation)) {
767                                 latest_dev = device;
768                         }
769                         continue;
770                 }
771
772                 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
773                         /*
774                          * In the first step, keep the device which has
775                          * the correct fsid and the devid that is used
776                          * for the dev_replace procedure.
777                          * In the second step, the dev_replace state is
778                          * read from the device tree and it is known
779                          * whether the procedure is really active or
780                          * not, which means whether this device is
781                          * used or whether it should be removed.
782                          */
783                         if (step == 0 || device->is_tgtdev_for_dev_replace) {
784                                 continue;
785                         }
786                 }
787                 if (device->bdev) {
788                         blkdev_put(device->bdev, device->mode);
789                         device->bdev = NULL;
790                         fs_devices->open_devices--;
791                 }
792                 if (device->writeable) {
793                         list_del_init(&device->dev_alloc_list);
794                         device->writeable = 0;
795                         if (!device->is_tgtdev_for_dev_replace)
796                                 fs_devices->rw_devices--;
797                 }
798                 list_del_init(&device->dev_list);
799                 fs_devices->num_devices--;
800                 rcu_string_free(device->name);
801                 kfree(device);
802         }
803
804         if (fs_devices->seed) {
805                 fs_devices = fs_devices->seed;
806                 goto again;
807         }
808
809         fs_devices->latest_bdev = latest_dev->bdev;
810
811         mutex_unlock(&uuid_mutex);
812 }
813
814 static void __free_device(struct work_struct *work)
815 {
816         struct btrfs_device *device;
817
818         device = container_of(work, struct btrfs_device, rcu_work);
819
820         if (device->bdev)
821                 blkdev_put(device->bdev, device->mode);
822
823         rcu_string_free(device->name);
824         kfree(device);
825 }
826
827 static void free_device(struct rcu_head *head)
828 {
829         struct btrfs_device *device;
830
831         device = container_of(head, struct btrfs_device, rcu);
832
833         INIT_WORK(&device->rcu_work, __free_device);
834         schedule_work(&device->rcu_work);
835 }
836
837 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
838 {
839         struct btrfs_device *device, *tmp;
840
841         if (--fs_devices->opened > 0)
842                 return 0;
843
844         mutex_lock(&fs_devices->device_list_mutex);
845         list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
846                 btrfs_close_one_device(device);
847         }
848         mutex_unlock(&fs_devices->device_list_mutex);
849
850         WARN_ON(fs_devices->open_devices);
851         WARN_ON(fs_devices->rw_devices);
852         fs_devices->opened = 0;
853         fs_devices->seeding = 0;
854
855         return 0;
856 }
857
858 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
859 {
860         struct btrfs_fs_devices *seed_devices = NULL;
861         int ret;
862
863         mutex_lock(&uuid_mutex);
864         ret = __btrfs_close_devices(fs_devices);
865         if (!fs_devices->opened) {
866                 seed_devices = fs_devices->seed;
867                 fs_devices->seed = NULL;
868         }
869         mutex_unlock(&uuid_mutex);
870
871         while (seed_devices) {
872                 fs_devices = seed_devices;
873                 seed_devices = fs_devices->seed;
874                 __btrfs_close_devices(fs_devices);
875                 free_fs_devices(fs_devices);
876         }
877         /*
878          * Wait for rcu kworkers under __btrfs_close_devices
879          * to finish all blkdev_puts so device is really
880          * free when umount is done.
881          */
882         rcu_barrier();
883         return ret;
884 }
885
886 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
887                                 fmode_t flags, void *holder)
888 {
889         struct request_queue *q;
890         struct block_device *bdev;
891         struct list_head *head = &fs_devices->devices;
892         struct btrfs_device *device;
893         struct btrfs_device *latest_dev = NULL;
894         struct buffer_head *bh;
895         struct btrfs_super_block *disk_super;
896         u64 devid;
897         int seeding = 1;
898         int ret = 0;
899
900         flags |= FMODE_EXCL;
901
902         list_for_each_entry(device, head, dev_list) {
903                 if (device->bdev)
904                         continue;
905                 if (!device->name)
906                         continue;
907
908                 /* Just open everything we can; ignore failures here */
909                 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
910                                             &bdev, &bh))
911                         continue;
912
913                 disk_super = (struct btrfs_super_block *)bh->b_data;
914                 devid = btrfs_stack_device_id(&disk_super->dev_item);
915                 if (devid != device->devid)
916                         goto error_brelse;
917
918                 if (memcmp(device->uuid, disk_super->dev_item.uuid,
919                            BTRFS_UUID_SIZE))
920                         goto error_brelse;
921
922                 device->generation = btrfs_super_generation(disk_super);
923                 if (!latest_dev ||
924                     device->generation > latest_dev->generation)
925                         latest_dev = device;
926
927                 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
928                         device->writeable = 0;
929                 } else {
930                         device->writeable = !bdev_read_only(bdev);
931                         seeding = 0;
932                 }
933
934                 q = bdev_get_queue(bdev);
935                 if (blk_queue_discard(q))
936                         device->can_discard = 1;
937
938                 device->bdev = bdev;
939                 device->in_fs_metadata = 0;
940                 device->mode = flags;
941
942                 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
943                         fs_devices->rotating = 1;
944
945                 fs_devices->open_devices++;
946                 if (device->writeable &&
947                     device->devid != BTRFS_DEV_REPLACE_DEVID) {
948                         fs_devices->rw_devices++;
949                         list_add(&device->dev_alloc_list,
950                                  &fs_devices->alloc_list);
951                 }
952                 brelse(bh);
953                 continue;
954
955 error_brelse:
956                 brelse(bh);
957                 blkdev_put(bdev, flags);
958                 continue;
959         }
960         if (fs_devices->open_devices == 0) {
961                 ret = -EINVAL;
962                 goto out;
963         }
964         fs_devices->seeding = seeding;
965         fs_devices->opened = 1;
966         fs_devices->latest_bdev = latest_dev->bdev;
967         fs_devices->total_rw_bytes = 0;
968 out:
969         return ret;
970 }
971
972 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
973                        fmode_t flags, void *holder)
974 {
975         int ret;
976
977         mutex_lock(&uuid_mutex);
978         if (fs_devices->opened) {
979                 fs_devices->opened++;
980                 ret = 0;
981         } else {
982                 ret = __btrfs_open_devices(fs_devices, flags, holder);
983         }
984         mutex_unlock(&uuid_mutex);
985         return ret;
986 }
987
988 /*
989  * Look for a btrfs signature on a device. This may be called out of the mount path
990  * and we are not allowed to call set_blocksize during the scan. The superblock
991  * is read via pagecache
992  */
993 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
994                           struct btrfs_fs_devices **fs_devices_ret)
995 {
996         struct btrfs_super_block *disk_super;
997         struct block_device *bdev;
998         struct page *page;
999         void *p;
1000         int ret = -EINVAL;
1001         u64 devid;
1002         u64 transid;
1003         u64 total_devices;
1004         u64 bytenr;
1005         pgoff_t index;
1006
1007         /*
1008          * we would like to check all the supers, but that would make
1009          * a btrfs mount succeed after a mkfs from a different FS.
1010          * So, we need to add a special mount option to scan for
1011          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1012          */
1013         bytenr = btrfs_sb_offset(0);
1014         flags |= FMODE_EXCL;
1015         mutex_lock(&uuid_mutex);
1016
1017         bdev = blkdev_get_by_path(path, flags, holder);
1018
1019         if (IS_ERR(bdev)) {
1020                 ret = PTR_ERR(bdev);
1021                 goto error;
1022         }
1023
1024         /* make sure our super fits in the device */
1025         if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode))
1026                 goto error_bdev_put;
1027
1028         /* make sure our super fits in the page */
1029         if (sizeof(*disk_super) > PAGE_CACHE_SIZE)
1030                 goto error_bdev_put;
1031
1032         /* make sure our super doesn't straddle pages on disk */
1033         index = bytenr >> PAGE_CACHE_SHIFT;
1034         if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index)
1035                 goto error_bdev_put;
1036
1037         /* pull in the page with our super */
1038         page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1039                                    index, GFP_NOFS);
1040
1041         if (IS_ERR_OR_NULL(page))
1042                 goto error_bdev_put;
1043
1044         p = kmap(page);
1045
1046         /* align our pointer to the offset of the super block */
1047         disk_super = p + (bytenr & ~PAGE_CACHE_MASK);
1048
1049         if (btrfs_super_bytenr(disk_super) != bytenr ||
1050             btrfs_super_magic(disk_super) != BTRFS_MAGIC)
1051                 goto error_unmap;
1052
1053         devid = btrfs_stack_device_id(&disk_super->dev_item);
1054         transid = btrfs_super_generation(disk_super);
1055         total_devices = btrfs_super_num_devices(disk_super);
1056
1057         ret = device_list_add(path, disk_super, devid, fs_devices_ret);
1058         if (ret > 0) {
1059                 if (disk_super->label[0]) {
1060                         if (disk_super->label[BTRFS_LABEL_SIZE - 1])
1061                                 disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0';
1062                         printk(KERN_INFO "BTRFS: device label %s ", disk_super->label);
1063                 } else {
1064                         printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid);
1065                 }
1066
1067                 printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
1068                 ret = 0;
1069         }
1070         if (!ret && fs_devices_ret)
1071                 (*fs_devices_ret)->total_devices = total_devices;
1072
1073 error_unmap:
1074         kunmap(page);
1075         page_cache_release(page);
1076
1077 error_bdev_put:
1078         blkdev_put(bdev, flags);
1079 error:
1080         mutex_unlock(&uuid_mutex);
1081         return ret;
1082 }
1083
1084 /* helper to account the used device space in the range */
1085 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1086                                    u64 end, u64 *length)
1087 {
1088         struct btrfs_key key;
1089         struct btrfs_root *root = device->dev_root;
1090         struct btrfs_dev_extent *dev_extent;
1091         struct btrfs_path *path;
1092         u64 extent_end;
1093         int ret;
1094         int slot;
1095         struct extent_buffer *l;
1096
1097         *length = 0;
1098
1099         if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
1100                 return 0;
1101
1102         path = btrfs_alloc_path();
1103         if (!path)
1104                 return -ENOMEM;
1105         path->reada = 2;
1106
1107         key.objectid = device->devid;
1108         key.offset = start;
1109         key.type = BTRFS_DEV_EXTENT_KEY;
1110
1111         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1112         if (ret < 0)
1113                 goto out;
1114         if (ret > 0) {
1115                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1116                 if (ret < 0)
1117                         goto out;
1118         }
1119
1120         while (1) {
1121                 l = path->nodes[0];
1122                 slot = path->slots[0];
1123                 if (slot >= btrfs_header_nritems(l)) {
1124                         ret = btrfs_next_leaf(root, path);
1125                         if (ret == 0)
1126                                 continue;
1127                         if (ret < 0)
1128                                 goto out;
1129
1130                         break;
1131                 }
1132                 btrfs_item_key_to_cpu(l, &key, slot);
1133
1134                 if (key.objectid < device->devid)
1135                         goto next;
1136
1137                 if (key.objectid > device->devid)
1138                         break;
1139
1140                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1141                         goto next;
1142
1143                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1144                 extent_end = key.offset + btrfs_dev_extent_length(l,
1145                                                                   dev_extent);
1146                 if (key.offset <= start && extent_end > end) {
1147                         *length = end - start + 1;
1148                         break;
1149                 } else if (key.offset <= start && extent_end > start)
1150                         *length += extent_end - start;
1151                 else if (key.offset > start && extent_end <= end)
1152                         *length += extent_end - key.offset;
1153                 else if (key.offset > start && key.offset <= end) {
1154                         *length += end - key.offset + 1;
1155                         break;
1156                 } else if (key.offset > end)
1157                         break;
1158
1159 next:
1160                 path->slots[0]++;
1161         }
1162         ret = 0;
1163 out:
1164         btrfs_free_path(path);
1165         return ret;
1166 }
1167
1168 static int contains_pending_extent(struct btrfs_transaction *transaction,
1169                                    struct btrfs_device *device,
1170                                    u64 *start, u64 len)
1171 {
1172         struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
1173         struct extent_map *em;
1174         struct list_head *search_list = &fs_info->pinned_chunks;
1175         int ret = 0;
1176         u64 physical_start = *start;
1177
1178         if (transaction)
1179                 search_list = &transaction->pending_chunks;
1180 again:
1181         list_for_each_entry(em, search_list, list) {
1182                 struct map_lookup *map;
1183                 int i;
1184
1185                 map = em->map_lookup;
1186                 for (i = 0; i < map->num_stripes; i++) {
1187                         u64 end;
1188
1189                         if (map->stripes[i].dev != device)
1190                                 continue;
1191                         if (map->stripes[i].physical >= physical_start + len ||
1192                             map->stripes[i].physical + em->orig_block_len <=
1193                             physical_start)
1194                                 continue;
1195                         /*
1196                          * Make sure that while processing the pinned list we do
1197                          * not override our *start with a lower value, because
1198                          * we can have pinned chunks that fall within this
1199                          * device hole and that have lower physical addresses
1200                          * than the pending chunks we processed before. If we
1201                          * do not take this special care we can end up getting
1202                          * 2 pending chunks that start at the same physical
1203                          * device offsets because the end offset of a pinned
1204                          * chunk can be equal to the start offset of some
1205                          * pending chunk.
1206                          */
1207                         end = map->stripes[i].physical + em->orig_block_len;
1208                         if (end > *start) {
1209                                 *start = end;
1210                                 ret = 1;
1211                         }
1212                 }
1213         }
1214         if (search_list != &fs_info->pinned_chunks) {
1215                 search_list = &fs_info->pinned_chunks;
1216                 goto again;
1217         }
1218
1219         return ret;
1220 }
1221
1222
1223 /*
1224  * find_free_dev_extent_start - find free space in the specified device
1225  * @device:       the device which we search the free space in
1226  * @num_bytes:    the size of the free space that we need
1227  * @search_start: the position from which to begin the search
1228  * @start:        store the start of the free space.
1229  * @len:          the size of the free space. that we find, or the size
1230  *                of the max free space if we don't find suitable free space
1231  *
1232  * this uses a pretty simple search, the expectation is that it is
1233  * called very infrequently and that a given device has a small number
1234  * of extents
1235  *
1236  * @start is used to store the start of the free space if we find. But if we
1237  * don't find suitable free space, it will be used to store the start position
1238  * of the max free space.
1239  *
1240  * @len is used to store the size of the free space that we find.
1241  * But if we don't find suitable free space, it is used to store the size of
1242  * the max free space.
1243  */
1244 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1245                                struct btrfs_device *device, u64 num_bytes,
1246                                u64 search_start, u64 *start, u64 *len)
1247 {
1248         struct btrfs_key key;
1249         struct btrfs_root *root = device->dev_root;
1250         struct btrfs_dev_extent *dev_extent;
1251         struct btrfs_path *path;
1252         u64 hole_size;
1253         u64 max_hole_start;
1254         u64 max_hole_size;
1255         u64 extent_end;
1256         u64 search_end = device->total_bytes;
1257         int ret;
1258         int slot;
1259         struct extent_buffer *l;
1260
1261         path = btrfs_alloc_path();
1262         if (!path)
1263                 return -ENOMEM;
1264
1265         max_hole_start = search_start;
1266         max_hole_size = 0;
1267
1268 again:
1269         if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1270                 ret = -ENOSPC;
1271                 goto out;
1272         }
1273
1274         path->reada = 2;
1275         path->search_commit_root = 1;
1276         path->skip_locking = 1;
1277
1278         key.objectid = device->devid;
1279         key.offset = search_start;
1280         key.type = BTRFS_DEV_EXTENT_KEY;
1281
1282         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1283         if (ret < 0)
1284                 goto out;
1285         if (ret > 0) {
1286                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1287                 if (ret < 0)
1288                         goto out;
1289         }
1290
1291         while (1) {
1292                 l = path->nodes[0];
1293                 slot = path->slots[0];
1294                 if (slot >= btrfs_header_nritems(l)) {
1295                         ret = btrfs_next_leaf(root, path);
1296                         if (ret == 0)
1297                                 continue;
1298                         if (ret < 0)
1299                                 goto out;
1300
1301                         break;
1302                 }
1303                 btrfs_item_key_to_cpu(l, &key, slot);
1304
1305                 if (key.objectid < device->devid)
1306                         goto next;
1307
1308                 if (key.objectid > device->devid)
1309                         break;
1310
1311                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1312                         goto next;
1313
1314                 if (key.offset > search_start) {
1315                         hole_size = key.offset - search_start;
1316
1317                         /*
1318                          * Have to check before we set max_hole_start, otherwise
1319                          * we could end up sending back this offset anyway.
1320                          */
1321                         if (contains_pending_extent(transaction, device,
1322                                                     &search_start,
1323                                                     hole_size)) {
1324                                 if (key.offset >= search_start) {
1325                                         hole_size = key.offset - search_start;
1326                                 } else {
1327                                         WARN_ON_ONCE(1);
1328                                         hole_size = 0;
1329                                 }
1330                         }
1331
1332                         if (hole_size > max_hole_size) {
1333                                 max_hole_start = search_start;
1334                                 max_hole_size = hole_size;
1335                         }
1336
1337                         /*
1338                          * If this free space is greater than which we need,
1339                          * it must be the max free space that we have found
1340                          * until now, so max_hole_start must point to the start
1341                          * of this free space and the length of this free space
1342                          * is stored in max_hole_size. Thus, we return
1343                          * max_hole_start and max_hole_size and go back to the
1344                          * caller.
1345                          */
1346                         if (hole_size >= num_bytes) {
1347                                 ret = 0;
1348                                 goto out;
1349                         }
1350                 }
1351
1352                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1353                 extent_end = key.offset + btrfs_dev_extent_length(l,
1354                                                                   dev_extent);
1355                 if (extent_end > search_start)
1356                         search_start = extent_end;
1357 next:
1358                 path->slots[0]++;
1359                 cond_resched();
1360         }
1361
1362         /*
1363          * At this point, search_start should be the end of
1364          * allocated dev extents, and when shrinking the device,
1365          * search_end may be smaller than search_start.
1366          */
1367         if (search_end > search_start) {
1368                 hole_size = search_end - search_start;
1369
1370                 if (contains_pending_extent(transaction, device, &search_start,
1371                                             hole_size)) {
1372                         btrfs_release_path(path);
1373                         goto again;
1374                 }
1375
1376                 if (hole_size > max_hole_size) {
1377                         max_hole_start = search_start;
1378                         max_hole_size = hole_size;
1379                 }
1380         }
1381
1382         /* See above. */
1383         if (max_hole_size < num_bytes)
1384                 ret = -ENOSPC;
1385         else
1386                 ret = 0;
1387
1388 out:
1389         btrfs_free_path(path);
1390         *start = max_hole_start;
1391         if (len)
1392                 *len = max_hole_size;
1393         return ret;
1394 }
1395
1396 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1397                          struct btrfs_device *device, u64 num_bytes,
1398                          u64 *start, u64 *len)
1399 {
1400         struct btrfs_root *root = device->dev_root;
1401         u64 search_start;
1402
1403         /* FIXME use last free of some kind */
1404
1405         /*
1406          * we don't want to overwrite the superblock on the drive,
1407          * so we make sure to start at an offset of at least 1MB
1408          */
1409         search_start = max_t(u64, root->fs_info->alloc_start, SZ_1M);
1410         return find_free_dev_extent_start(trans->transaction, device,
1411                                           num_bytes, search_start, start, len);
1412 }
1413
1414 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1415                           struct btrfs_device *device,
1416                           u64 start, u64 *dev_extent_len)
1417 {
1418         int ret;
1419         struct btrfs_path *path;
1420         struct btrfs_root *root = device->dev_root;
1421         struct btrfs_key key;
1422         struct btrfs_key found_key;
1423         struct extent_buffer *leaf = NULL;
1424         struct btrfs_dev_extent *extent = NULL;
1425
1426         path = btrfs_alloc_path();
1427         if (!path)
1428                 return -ENOMEM;
1429
1430         key.objectid = device->devid;
1431         key.offset = start;
1432         key.type = BTRFS_DEV_EXTENT_KEY;
1433 again:
1434         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1435         if (ret > 0) {
1436                 ret = btrfs_previous_item(root, path, key.objectid,
1437                                           BTRFS_DEV_EXTENT_KEY);
1438                 if (ret)
1439                         goto out;
1440                 leaf = path->nodes[0];
1441                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1442                 extent = btrfs_item_ptr(leaf, path->slots[0],
1443                                         struct btrfs_dev_extent);
1444                 BUG_ON(found_key.offset > start || found_key.offset +
1445                        btrfs_dev_extent_length(leaf, extent) < start);
1446                 key = found_key;
1447                 btrfs_release_path(path);
1448                 goto again;
1449         } else if (ret == 0) {
1450                 leaf = path->nodes[0];
1451                 extent = btrfs_item_ptr(leaf, path->slots[0],
1452                                         struct btrfs_dev_extent);
1453         } else {
1454                 btrfs_std_error(root->fs_info, ret, "Slot search failed");
1455                 goto out;
1456         }
1457
1458         *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1459
1460         ret = btrfs_del_item(trans, root, path);
1461         if (ret) {
1462                 btrfs_std_error(root->fs_info, ret,
1463                             "Failed to remove dev extent item");
1464         } else {
1465                 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1466         }
1467 out:
1468         btrfs_free_path(path);
1469         return ret;
1470 }
1471
1472 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1473                                   struct btrfs_device *device,
1474                                   u64 chunk_tree, u64 chunk_objectid,
1475                                   u64 chunk_offset, u64 start, u64 num_bytes)
1476 {
1477         int ret;
1478         struct btrfs_path *path;
1479         struct btrfs_root *root = device->dev_root;
1480         struct btrfs_dev_extent *extent;
1481         struct extent_buffer *leaf;
1482         struct btrfs_key key;
1483
1484         WARN_ON(!device->in_fs_metadata);
1485         WARN_ON(device->is_tgtdev_for_dev_replace);
1486         path = btrfs_alloc_path();
1487         if (!path)
1488                 return -ENOMEM;
1489
1490         key.objectid = device->devid;
1491         key.offset = start;
1492         key.type = BTRFS_DEV_EXTENT_KEY;
1493         ret = btrfs_insert_empty_item(trans, root, path, &key,
1494                                       sizeof(*extent));
1495         if (ret)
1496                 goto out;
1497
1498         leaf = path->nodes[0];
1499         extent = btrfs_item_ptr(leaf, path->slots[0],
1500                                 struct btrfs_dev_extent);
1501         btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1502         btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1503         btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1504
1505         write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1506                     btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
1507
1508         btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1509         btrfs_mark_buffer_dirty(leaf);
1510 out:
1511         btrfs_free_path(path);
1512         return ret;
1513 }
1514
1515 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1516 {
1517         struct extent_map_tree *em_tree;
1518         struct extent_map *em;
1519         struct rb_node *n;
1520         u64 ret = 0;
1521
1522         em_tree = &fs_info->mapping_tree.map_tree;
1523         read_lock(&em_tree->lock);
1524         n = rb_last(&em_tree->map);
1525         if (n) {
1526                 em = rb_entry(n, struct extent_map, rb_node);
1527                 ret = em->start + em->len;
1528         }
1529         read_unlock(&em_tree->lock);
1530
1531         return ret;
1532 }
1533
1534 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1535                                     u64 *devid_ret)
1536 {
1537         int ret;
1538         struct btrfs_key key;
1539         struct btrfs_key found_key;
1540         struct btrfs_path *path;
1541
1542         path = btrfs_alloc_path();
1543         if (!path)
1544                 return -ENOMEM;
1545
1546         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1547         key.type = BTRFS_DEV_ITEM_KEY;
1548         key.offset = (u64)-1;
1549
1550         ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1551         if (ret < 0)
1552                 goto error;
1553
1554         BUG_ON(ret == 0); /* Corruption */
1555
1556         ret = btrfs_previous_item(fs_info->chunk_root, path,
1557                                   BTRFS_DEV_ITEMS_OBJECTID,
1558                                   BTRFS_DEV_ITEM_KEY);
1559         if (ret) {
1560                 *devid_ret = 1;
1561         } else {
1562                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1563                                       path->slots[0]);
1564                 *devid_ret = found_key.offset + 1;
1565         }
1566         ret = 0;
1567 error:
1568         btrfs_free_path(path);
1569         return ret;
1570 }
1571
1572 /*
1573  * the device information is stored in the chunk root
1574  * the btrfs_device struct should be fully filled in
1575  */
1576 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1577                             struct btrfs_root *root,
1578                             struct btrfs_device *device)
1579 {
1580         int ret;
1581         struct btrfs_path *path;
1582         struct btrfs_dev_item *dev_item;
1583         struct extent_buffer *leaf;
1584         struct btrfs_key key;
1585         unsigned long ptr;
1586
1587         root = root->fs_info->chunk_root;
1588
1589         path = btrfs_alloc_path();
1590         if (!path)
1591                 return -ENOMEM;
1592
1593         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1594         key.type = BTRFS_DEV_ITEM_KEY;
1595         key.offset = device->devid;
1596
1597         ret = btrfs_insert_empty_item(trans, root, path, &key,
1598                                       sizeof(*dev_item));
1599         if (ret)
1600                 goto out;
1601
1602         leaf = path->nodes[0];
1603         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1604
1605         btrfs_set_device_id(leaf, dev_item, device->devid);
1606         btrfs_set_device_generation(leaf, dev_item, 0);
1607         btrfs_set_device_type(leaf, dev_item, device->type);
1608         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1609         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1610         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1611         btrfs_set_device_total_bytes(leaf, dev_item,
1612                                      btrfs_device_get_disk_total_bytes(device));
1613         btrfs_set_device_bytes_used(leaf, dev_item,
1614                                     btrfs_device_get_bytes_used(device));
1615         btrfs_set_device_group(leaf, dev_item, 0);
1616         btrfs_set_device_seek_speed(leaf, dev_item, 0);
1617         btrfs_set_device_bandwidth(leaf, dev_item, 0);
1618         btrfs_set_device_start_offset(leaf, dev_item, 0);
1619
1620         ptr = btrfs_device_uuid(dev_item);
1621         write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1622         ptr = btrfs_device_fsid(dev_item);
1623         write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1624         btrfs_mark_buffer_dirty(leaf);
1625
1626         ret = 0;
1627 out:
1628         btrfs_free_path(path);
1629         return ret;
1630 }
1631
1632 /*
1633  * Function to update ctime/mtime for a given device path.
1634  * Mainly used for ctime/mtime based probe like libblkid.
1635  */
1636 static void update_dev_time(char *path_name)
1637 {
1638         struct file *filp;
1639
1640         filp = filp_open(path_name, O_RDWR, 0);
1641         if (IS_ERR(filp))
1642                 return;
1643         file_update_time(filp);
1644         filp_close(filp, NULL);
1645 }
1646
1647 static int btrfs_rm_dev_item(struct btrfs_root *root,
1648                              struct btrfs_device *device)
1649 {
1650         int ret;
1651         struct btrfs_path *path;
1652         struct btrfs_key key;
1653         struct btrfs_trans_handle *trans;
1654
1655         root = root->fs_info->chunk_root;
1656
1657         path = btrfs_alloc_path();
1658         if (!path)
1659                 return -ENOMEM;
1660
1661         trans = btrfs_start_transaction(root, 0);
1662         if (IS_ERR(trans)) {
1663                 btrfs_free_path(path);
1664                 return PTR_ERR(trans);
1665         }
1666         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1667         key.type = BTRFS_DEV_ITEM_KEY;
1668         key.offset = device->devid;
1669
1670         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1671         if (ret < 0)
1672                 goto out;
1673
1674         if (ret > 0) {
1675                 ret = -ENOENT;
1676                 goto out;
1677         }
1678
1679         ret = btrfs_del_item(trans, root, path);
1680         if (ret)
1681                 goto out;
1682 out:
1683         btrfs_free_path(path);
1684         btrfs_commit_transaction(trans, root);
1685         return ret;
1686 }
1687
1688 int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1689 {
1690         struct btrfs_device *device;
1691         struct btrfs_device *next_device;
1692         struct block_device *bdev;
1693         struct buffer_head *bh = NULL;
1694         struct btrfs_super_block *disk_super;
1695         struct btrfs_fs_devices *cur_devices;
1696         u64 all_avail;
1697         u64 devid;
1698         u64 num_devices;
1699         u8 *dev_uuid;
1700         unsigned seq;
1701         int ret = 0;
1702         bool clear_super = false;
1703
1704         mutex_lock(&uuid_mutex);
1705
1706         do {
1707                 seq = read_seqbegin(&root->fs_info->profiles_lock);
1708
1709                 all_avail = root->fs_info->avail_data_alloc_bits |
1710                             root->fs_info->avail_system_alloc_bits |
1711                             root->fs_info->avail_metadata_alloc_bits;
1712         } while (read_seqretry(&root->fs_info->profiles_lock, seq));
1713
1714         num_devices = root->fs_info->fs_devices->num_devices;
1715         btrfs_dev_replace_lock(&root->fs_info->dev_replace);
1716         if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1717                 WARN_ON(num_devices < 1);
1718                 num_devices--;
1719         }
1720         btrfs_dev_replace_unlock(&root->fs_info->dev_replace);
1721
1722         if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) {
1723                 ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET;
1724                 goto out;
1725         }
1726
1727         if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) {
1728                 ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET;
1729                 goto out;
1730         }
1731
1732         if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) &&
1733             root->fs_info->fs_devices->rw_devices <= 2) {
1734                 ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET;
1735                 goto out;
1736         }
1737         if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) &&
1738             root->fs_info->fs_devices->rw_devices <= 3) {
1739                 ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET;
1740                 goto out;
1741         }
1742
1743         if (strcmp(device_path, "missing") == 0) {
1744                 struct list_head *devices;
1745                 struct btrfs_device *tmp;
1746
1747                 device = NULL;
1748                 devices = &root->fs_info->fs_devices->devices;
1749                 /*
1750                  * It is safe to read the devices since the volume_mutex
1751                  * is held.
1752                  */
1753                 list_for_each_entry(tmp, devices, dev_list) {
1754                         if (tmp->in_fs_metadata &&
1755                             !tmp->is_tgtdev_for_dev_replace &&
1756                             !tmp->bdev) {
1757                                 device = tmp;
1758                                 break;
1759                         }
1760                 }
1761                 bdev = NULL;
1762                 bh = NULL;
1763                 disk_super = NULL;
1764                 if (!device) {
1765                         ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
1766                         goto out;
1767                 }
1768         } else {
1769                 ret = btrfs_get_bdev_and_sb(device_path,
1770                                             FMODE_WRITE | FMODE_EXCL,
1771                                             root->fs_info->bdev_holder, 0,
1772                                             &bdev, &bh);
1773                 if (ret)
1774                         goto out;
1775                 disk_super = (struct btrfs_super_block *)bh->b_data;
1776                 devid = btrfs_stack_device_id(&disk_super->dev_item);
1777                 dev_uuid = disk_super->dev_item.uuid;
1778                 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1779                                            disk_super->fsid);
1780                 if (!device) {
1781                         ret = -ENOENT;
1782                         goto error_brelse;
1783                 }
1784         }
1785
1786         if (device->is_tgtdev_for_dev_replace) {
1787                 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1788                 goto error_brelse;
1789         }
1790
1791         if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1792                 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1793                 goto error_brelse;
1794         }
1795
1796         if (device->writeable) {
1797                 lock_chunks(root);
1798                 list_del_init(&device->dev_alloc_list);
1799                 device->fs_devices->rw_devices--;
1800                 unlock_chunks(root);
1801                 clear_super = true;
1802         }
1803
1804         mutex_unlock(&uuid_mutex);
1805         ret = btrfs_shrink_device(device, 0);
1806         mutex_lock(&uuid_mutex);
1807         if (ret)
1808                 goto error_undo;
1809
1810         /*
1811          * TODO: the superblock still includes this device in its num_devices
1812          * counter although write_all_supers() is not locked out. This
1813          * could give a filesystem state which requires a degraded mount.
1814          */
1815         ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1816         if (ret)
1817                 goto error_undo;
1818
1819         device->in_fs_metadata = 0;
1820         btrfs_scrub_cancel_dev(root->fs_info, device);
1821
1822         /*
1823          * the device list mutex makes sure that we don't change
1824          * the device list while someone else is writing out all
1825          * the device supers. Whoever is writing all supers, should
1826          * lock the device list mutex before getting the number of
1827          * devices in the super block (super_copy). Conversely,
1828          * whoever updates the number of devices in the super block
1829          * (super_copy) should hold the device list mutex.
1830          */
1831
1832         cur_devices = device->fs_devices;
1833         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1834         list_del_rcu(&device->dev_list);
1835
1836         device->fs_devices->num_devices--;
1837         device->fs_devices->total_devices--;
1838
1839         if (device->missing)
1840                 device->fs_devices->missing_devices--;
1841
1842         next_device = list_entry(root->fs_info->fs_devices->devices.next,
1843                                  struct btrfs_device, dev_list);
1844         if (device->bdev == root->fs_info->sb->s_bdev)
1845                 root->fs_info->sb->s_bdev = next_device->bdev;
1846         if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1847                 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1848
1849         if (device->bdev) {
1850                 device->fs_devices->open_devices--;
1851                 /* remove sysfs entry */
1852                 btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
1853         }
1854
1855         call_rcu(&device->rcu, free_device);
1856
1857         num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1858         btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1859         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1860
1861         if (cur_devices->open_devices == 0) {
1862                 struct btrfs_fs_devices *fs_devices;
1863                 fs_devices = root->fs_info->fs_devices;
1864                 while (fs_devices) {
1865                         if (fs_devices->seed == cur_devices) {
1866                                 fs_devices->seed = cur_devices->seed;
1867                                 break;
1868                         }
1869                         fs_devices = fs_devices->seed;
1870                 }
1871                 cur_devices->seed = NULL;
1872                 __btrfs_close_devices(cur_devices);
1873                 free_fs_devices(cur_devices);
1874         }
1875
1876         root->fs_info->num_tolerated_disk_barrier_failures =
1877                 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1878
1879         /*
1880          * at this point, the device is zero sized.  We want to
1881          * remove it from the devices list and zero out the old super
1882          */
1883         if (clear_super && disk_super) {
1884                 u64 bytenr;
1885                 int i;
1886
1887                 /* make sure this device isn't detected as part of
1888                  * the FS anymore
1889                  */
1890                 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1891                 set_buffer_dirty(bh);
1892                 sync_dirty_buffer(bh);
1893
1894                 /* clear the mirror copies of super block on the disk
1895                  * being removed, 0th copy is been taken care above and
1896                  * the below would take of the rest
1897                  */
1898                 for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1899                         bytenr = btrfs_sb_offset(i);
1900                         if (bytenr + BTRFS_SUPER_INFO_SIZE >=
1901                                         i_size_read(bdev->bd_inode))
1902                                 break;
1903
1904                         brelse(bh);
1905                         bh = __bread(bdev, bytenr / 4096,
1906                                         BTRFS_SUPER_INFO_SIZE);
1907                         if (!bh)
1908                                 continue;
1909
1910                         disk_super = (struct btrfs_super_block *)bh->b_data;
1911
1912                         if (btrfs_super_bytenr(disk_super) != bytenr ||
1913                                 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1914                                 continue;
1915                         }
1916                         memset(&disk_super->magic, 0,
1917                                                 sizeof(disk_super->magic));
1918                         set_buffer_dirty(bh);
1919                         sync_dirty_buffer(bh);
1920                 }
1921         }
1922
1923         ret = 0;
1924
1925         if (bdev) {
1926                 /* Notify udev that device has changed */
1927                 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
1928
1929                 /* Update ctime/mtime for device path for libblkid */
1930                 update_dev_time(device_path);
1931         }
1932
1933 error_brelse:
1934         brelse(bh);
1935         if (bdev)
1936                 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1937 out:
1938         mutex_unlock(&uuid_mutex);
1939         return ret;
1940 error_undo:
1941         if (device->writeable) {
1942                 lock_chunks(root);
1943                 list_add(&device->dev_alloc_list,
1944                          &root->fs_info->fs_devices->alloc_list);
1945                 device->fs_devices->rw_devices++;
1946                 unlock_chunks(root);
1947         }
1948         goto error_brelse;
1949 }
1950
1951 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1952                                         struct btrfs_device *srcdev)
1953 {
1954         struct btrfs_fs_devices *fs_devices;
1955
1956         WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1957
1958         /*
1959          * in case of fs with no seed, srcdev->fs_devices will point
1960          * to fs_devices of fs_info. However when the dev being replaced is
1961          * a seed dev it will point to the seed's local fs_devices. In short
1962          * srcdev will have its correct fs_devices in both the cases.
1963          */
1964         fs_devices = srcdev->fs_devices;
1965
1966         list_del_rcu(&srcdev->dev_list);
1967         list_del_rcu(&srcdev->dev_alloc_list);
1968         fs_devices->num_devices--;
1969         if (srcdev->missing)
1970                 fs_devices->missing_devices--;
1971
1972         if (srcdev->writeable) {
1973                 fs_devices->rw_devices--;
1974                 /* zero out the old super if it is writable */
1975                 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
1976         }
1977
1978         if (srcdev->bdev)
1979                 fs_devices->open_devices--;
1980 }
1981
1982 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
1983                                       struct btrfs_device *srcdev)
1984 {
1985         struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
1986
1987         call_rcu(&srcdev->rcu, free_device);
1988
1989         /*
1990          * unless fs_devices is seed fs, num_devices shouldn't go
1991          * zero
1992          */
1993         BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
1994
1995         /* if this is no devs we rather delete the fs_devices */
1996         if (!fs_devices->num_devices) {
1997                 struct btrfs_fs_devices *tmp_fs_devices;
1998
1999                 tmp_fs_devices = fs_info->fs_devices;
2000                 while (tmp_fs_devices) {
2001                         if (tmp_fs_devices->seed == fs_devices) {
2002                                 tmp_fs_devices->seed = fs_devices->seed;
2003                                 break;
2004                         }
2005                         tmp_fs_devices = tmp_fs_devices->seed;
2006                 }
2007                 fs_devices->seed = NULL;
2008                 __btrfs_close_devices(fs_devices);
2009                 free_fs_devices(fs_devices);
2010         }
2011 }
2012
2013 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2014                                       struct btrfs_device *tgtdev)
2015 {
2016         struct btrfs_device *next_device;
2017
2018         mutex_lock(&uuid_mutex);
2019         WARN_ON(!tgtdev);
2020         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2021
2022         btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
2023
2024         if (tgtdev->bdev) {
2025                 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2026                 fs_info->fs_devices->open_devices--;
2027         }
2028         fs_info->fs_devices->num_devices--;
2029
2030         next_device = list_entry(fs_info->fs_devices->devices.next,
2031                                  struct btrfs_device, dev_list);
2032         if (tgtdev->bdev == fs_info->sb->s_bdev)
2033                 fs_info->sb->s_bdev = next_device->bdev;
2034         if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
2035                 fs_info->fs_devices->latest_bdev = next_device->bdev;
2036         list_del_rcu(&tgtdev->dev_list);
2037
2038         call_rcu(&tgtdev->rcu, free_device);
2039
2040         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2041         mutex_unlock(&uuid_mutex);
2042 }
2043
2044 static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
2045                                      struct btrfs_device **device)
2046 {
2047         int ret = 0;
2048         struct btrfs_super_block *disk_super;
2049         u64 devid;
2050         u8 *dev_uuid;
2051         struct block_device *bdev;
2052         struct buffer_head *bh;
2053
2054         *device = NULL;
2055         ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2056                                     root->fs_info->bdev_holder, 0, &bdev, &bh);
2057         if (ret)
2058                 return ret;
2059         disk_super = (struct btrfs_super_block *)bh->b_data;
2060         devid = btrfs_stack_device_id(&disk_super->dev_item);
2061         dev_uuid = disk_super->dev_item.uuid;
2062         *device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2063                                     disk_super->fsid);
2064         brelse(bh);
2065         if (!*device)
2066                 ret = -ENOENT;
2067         blkdev_put(bdev, FMODE_READ);
2068         return ret;
2069 }
2070
2071 int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
2072                                          char *device_path,
2073                                          struct btrfs_device **device)
2074 {
2075         *device = NULL;
2076         if (strcmp(device_path, "missing") == 0) {
2077                 struct list_head *devices;
2078                 struct btrfs_device *tmp;
2079
2080                 devices = &root->fs_info->fs_devices->devices;
2081                 /*
2082                  * It is safe to read the devices since the volume_mutex
2083                  * is held by the caller.
2084                  */
2085                 list_for_each_entry(tmp, devices, dev_list) {
2086                         if (tmp->in_fs_metadata && !tmp->bdev) {
2087                                 *device = tmp;
2088                                 break;
2089                         }
2090                 }
2091
2092                 if (!*device)
2093                         return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2094
2095                 return 0;
2096         } else {
2097                 return btrfs_find_device_by_path(root, device_path, device);
2098         }
2099 }
2100
2101 /*
2102  * does all the dirty work required for changing file system's UUID.
2103  */
2104 static int btrfs_prepare_sprout(struct btrfs_root *root)
2105 {
2106         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2107         struct btrfs_fs_devices *old_devices;
2108         struct btrfs_fs_devices *seed_devices;
2109         struct btrfs_super_block *disk_super = root->fs_info->super_copy;
2110         struct btrfs_device *device;
2111         u64 super_flags;
2112
2113         BUG_ON(!mutex_is_locked(&uuid_mutex));
2114         if (!fs_devices->seeding)
2115                 return -EINVAL;
2116
2117         seed_devices = __alloc_fs_devices();
2118         if (IS_ERR(seed_devices))
2119                 return PTR_ERR(seed_devices);
2120
2121         old_devices = clone_fs_devices(fs_devices);
2122         if (IS_ERR(old_devices)) {
2123                 kfree(seed_devices);
2124                 return PTR_ERR(old_devices);
2125         }
2126
2127         list_add(&old_devices->list, &fs_uuids);
2128
2129         memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2130         seed_devices->opened = 1;
2131         INIT_LIST_HEAD(&seed_devices->devices);
2132         INIT_LIST_HEAD(&seed_devices->alloc_list);
2133         mutex_init(&seed_devices->device_list_mutex);
2134
2135         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2136         list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2137                               synchronize_rcu);
2138         list_for_each_entry(device, &seed_devices->devices, dev_list)
2139                 device->fs_devices = seed_devices;
2140
2141         lock_chunks(root);
2142         list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2143         unlock_chunks(root);
2144
2145         fs_devices->seeding = 0;
2146         fs_devices->num_devices = 0;
2147         fs_devices->open_devices = 0;
2148         fs_devices->missing_devices = 0;
2149         fs_devices->rotating = 0;
2150         fs_devices->seed = seed_devices;
2151
2152         generate_random_uuid(fs_devices->fsid);
2153         memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2154         memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2155         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2156
2157         super_flags = btrfs_super_flags(disk_super) &
2158                       ~BTRFS_SUPER_FLAG_SEEDING;
2159         btrfs_set_super_flags(disk_super, super_flags);
2160
2161         return 0;
2162 }
2163
2164 /*
2165  * strore the expected generation for seed devices in device items.
2166  */
2167 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2168                                struct btrfs_root *root)
2169 {
2170         struct btrfs_path *path;
2171         struct extent_buffer *leaf;
2172         struct btrfs_dev_item *dev_item;
2173         struct btrfs_device *device;
2174         struct btrfs_key key;
2175         u8 fs_uuid[BTRFS_UUID_SIZE];
2176         u8 dev_uuid[BTRFS_UUID_SIZE];
2177         u64 devid;
2178         int ret;
2179
2180         path = btrfs_alloc_path();
2181         if (!path)
2182                 return -ENOMEM;
2183
2184         root = root->fs_info->chunk_root;
2185         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2186         key.offset = 0;
2187         key.type = BTRFS_DEV_ITEM_KEY;
2188
2189         while (1) {
2190                 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2191                 if (ret < 0)
2192                         goto error;
2193
2194                 leaf = path->nodes[0];
2195 next_slot:
2196                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2197                         ret = btrfs_next_leaf(root, path);
2198                         if (ret > 0)
2199                                 break;
2200                         if (ret < 0)
2201                                 goto error;
2202                         leaf = path->nodes[0];
2203                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2204                         btrfs_release_path(path);
2205                         continue;
2206                 }
2207
2208                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2209                 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2210                     key.type != BTRFS_DEV_ITEM_KEY)
2211                         break;
2212
2213                 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2214                                           struct btrfs_dev_item);
2215                 devid = btrfs_device_id(leaf, dev_item);
2216                 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2217                                    BTRFS_UUID_SIZE);
2218                 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2219                                    BTRFS_UUID_SIZE);
2220                 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2221                                            fs_uuid);
2222                 BUG_ON(!device); /* Logic error */
2223
2224                 if (device->fs_devices->seeding) {
2225                         btrfs_set_device_generation(leaf, dev_item,
2226                                                     device->generation);
2227                         btrfs_mark_buffer_dirty(leaf);
2228                 }
2229
2230                 path->slots[0]++;
2231                 goto next_slot;
2232         }
2233         ret = 0;
2234 error:
2235         btrfs_free_path(path);
2236         return ret;
2237 }
2238
2239 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
2240 {
2241         struct request_queue *q;
2242         struct btrfs_trans_handle *trans;
2243         struct btrfs_device *device;
2244         struct block_device *bdev;
2245         struct list_head *devices;
2246         struct super_block *sb = root->fs_info->sb;
2247         struct rcu_string *name;
2248         u64 tmp;
2249         int seeding_dev = 0;
2250         int ret = 0;
2251
2252         if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
2253                 return -EROFS;
2254
2255         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2256                                   root->fs_info->bdev_holder);
2257         if (IS_ERR(bdev))
2258                 return PTR_ERR(bdev);
2259
2260         if (root->fs_info->fs_devices->seeding) {
2261                 seeding_dev = 1;
2262                 down_write(&sb->s_umount);
2263                 mutex_lock(&uuid_mutex);
2264         }
2265
2266         filemap_write_and_wait(bdev->bd_inode->i_mapping);
2267
2268         devices = &root->fs_info->fs_devices->devices;
2269
2270         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2271         list_for_each_entry(device, devices, dev_list) {
2272                 if (device->bdev == bdev) {
2273                         ret = -EEXIST;
2274                         mutex_unlock(
2275                                 &root->fs_info->fs_devices->device_list_mutex);
2276                         goto error;
2277                 }
2278         }
2279         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2280
2281         device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2282         if (IS_ERR(device)) {
2283                 /* we can safely leave the fs_devices entry around */
2284                 ret = PTR_ERR(device);
2285                 goto error;
2286         }
2287
2288         name = rcu_string_strdup(device_path, GFP_NOFS);
2289         if (!name) {
2290                 kfree(device);
2291                 ret = -ENOMEM;
2292                 goto error;
2293         }
2294         rcu_assign_pointer(device->name, name);
2295
2296         trans = btrfs_start_transaction(root, 0);
2297         if (IS_ERR(trans)) {
2298                 rcu_string_free(device->name);
2299                 kfree(device);
2300                 ret = PTR_ERR(trans);
2301                 goto error;
2302         }
2303
2304         q = bdev_get_queue(bdev);
2305         if (blk_queue_discard(q))
2306                 device->can_discard = 1;
2307         device->writeable = 1;
2308         device->generation = trans->transid;
2309         device->io_width = root->sectorsize;
2310         device->io_align = root->sectorsize;
2311         device->sector_size = root->sectorsize;
2312         device->total_bytes = i_size_read(bdev->bd_inode);
2313         device->disk_total_bytes = device->total_bytes;
2314         device->commit_total_bytes = device->total_bytes;
2315         device->dev_root = root->fs_info->dev_root;
2316         device->bdev = bdev;
2317         device->in_fs_metadata = 1;
2318         device->is_tgtdev_for_dev_replace = 0;
2319         device->mode = FMODE_EXCL;
2320         device->dev_stats_valid = 1;
2321         set_blocksize(device->bdev, 4096);
2322
2323         if (seeding_dev) {
2324                 sb->s_flags &= ~MS_RDONLY;
2325                 ret = btrfs_prepare_sprout(root);
2326                 BUG_ON(ret); /* -ENOMEM */
2327         }
2328
2329         device->fs_devices = root->fs_info->fs_devices;
2330
2331         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2332         lock_chunks(root);
2333         list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2334         list_add(&device->dev_alloc_list,
2335                  &root->fs_info->fs_devices->alloc_list);
2336         root->fs_info->fs_devices->num_devices++;
2337         root->fs_info->fs_devices->open_devices++;
2338         root->fs_info->fs_devices->rw_devices++;
2339         root->fs_info->fs_devices->total_devices++;
2340         root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2341
2342         spin_lock(&root->fs_info->free_chunk_lock);
2343         root->fs_info->free_chunk_space += device->total_bytes;
2344         spin_unlock(&root->fs_info->free_chunk_lock);
2345
2346         if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2347                 root->fs_info->fs_devices->rotating = 1;
2348
2349         tmp = btrfs_super_total_bytes(root->fs_info->super_copy);
2350         btrfs_set_super_total_bytes(root->fs_info->super_copy,
2351                                     tmp + device->total_bytes);
2352
2353         tmp = btrfs_super_num_devices(root->fs_info->super_copy);
2354         btrfs_set_super_num_devices(root->fs_info->super_copy,
2355                                     tmp + 1);
2356
2357         /* add sysfs device entry */
2358         btrfs_sysfs_add_device_link(root->fs_info->fs_devices, device);
2359
2360         /*
2361          * we've got more storage, clear any full flags on the space
2362          * infos
2363          */
2364         btrfs_clear_space_info_full(root->fs_info);
2365
2366         unlock_chunks(root);
2367         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2368
2369         if (seeding_dev) {
2370                 lock_chunks(root);
2371                 ret = init_first_rw_device(trans, root, device);
2372                 unlock_chunks(root);
2373                 if (ret) {
2374                         btrfs_abort_transaction(trans, root, ret);
2375                         goto error_trans;
2376                 }
2377         }
2378
2379         ret = btrfs_add_device(trans, root, device);
2380         if (ret) {
2381                 btrfs_abort_transaction(trans, root, ret);
2382                 goto error_trans;
2383         }
2384
2385         if (seeding_dev) {
2386                 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2387
2388                 ret = btrfs_finish_sprout(trans, root);
2389                 if (ret) {
2390                         btrfs_abort_transaction(trans, root, ret);
2391                         goto error_trans;
2392                 }
2393
2394                 /* Sprouting would change fsid of the mounted root,
2395                  * so rename the fsid on the sysfs
2396                  */
2397                 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2398                                                 root->fs_info->fsid);
2399                 if (kobject_rename(&root->fs_info->fs_devices->fsid_kobj,
2400                                                                 fsid_buf))
2401                         btrfs_warn(root->fs_info,
2402                                 "sysfs: failed to create fsid for sprout");
2403         }
2404
2405         root->fs_info->num_tolerated_disk_barrier_failures =
2406                 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
2407         ret = btrfs_commit_transaction(trans, root);
2408
2409         if (seeding_dev) {
2410                 mutex_unlock(&uuid_mutex);
2411                 up_write(&sb->s_umount);
2412
2413                 if (ret) /* transaction commit */
2414                         return ret;
2415
2416                 ret = btrfs_relocate_sys_chunks(root);
2417                 if (ret < 0)
2418                         btrfs_std_error(root->fs_info, ret,
2419                                     "Failed to relocate sys chunks after "
2420                                     "device initialization. This can be fixed "
2421                                     "using the \"btrfs balance\" command.");
2422                 trans = btrfs_attach_transaction(root);
2423                 if (IS_ERR(trans)) {
2424                         if (PTR_ERR(trans) == -ENOENT)
2425                                 return 0;
2426                         return PTR_ERR(trans);
2427                 }
2428                 ret = btrfs_commit_transaction(trans, root);
2429         }
2430
2431         /* Update ctime/mtime for libblkid */
2432         update_dev_time(device_path);
2433         return ret;
2434
2435 error_trans:
2436         btrfs_end_transaction(trans, root);
2437         rcu_string_free(device->name);
2438         btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
2439         kfree(device);
2440 error:
2441         blkdev_put(bdev, FMODE_EXCL);
2442         if (seeding_dev) {
2443                 mutex_unlock(&uuid_mutex);
2444                 up_write(&sb->s_umount);
2445         }
2446         return ret;
2447 }
2448
2449 int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2450                                   struct btrfs_device *srcdev,
2451                                   struct btrfs_device **device_out)
2452 {
2453         struct request_queue *q;
2454         struct btrfs_device *device;
2455         struct block_device *bdev;
2456         struct btrfs_fs_info *fs_info = root->fs_info;
2457         struct list_head *devices;
2458         struct rcu_string *name;
2459         u64 devid = BTRFS_DEV_REPLACE_DEVID;
2460         int ret = 0;
2461
2462         *device_out = NULL;
2463         if (fs_info->fs_devices->seeding) {
2464                 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2465                 return -EINVAL;
2466         }
2467
2468         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2469                                   fs_info->bdev_holder);
2470         if (IS_ERR(bdev)) {
2471                 btrfs_err(fs_info, "target device %s is invalid!", device_path);
2472                 return PTR_ERR(bdev);
2473         }
2474
2475         filemap_write_and_wait(bdev->bd_inode->i_mapping);
2476
2477         devices = &fs_info->fs_devices->devices;
2478         list_for_each_entry(device, devices, dev_list) {
2479                 if (device->bdev == bdev) {
2480                         btrfs_err(fs_info, "target device is in the filesystem!");
2481                         ret = -EEXIST;
2482                         goto error;
2483                 }
2484         }
2485
2486
2487         if (i_size_read(bdev->bd_inode) <
2488             btrfs_device_get_total_bytes(srcdev)) {
2489                 btrfs_err(fs_info, "target device is smaller than source device!");
2490                 ret = -EINVAL;
2491                 goto error;
2492         }
2493
2494
2495         device = btrfs_alloc_device(NULL, &devid, NULL);
2496         if (IS_ERR(device)) {
2497                 ret = PTR_ERR(device);
2498                 goto error;
2499         }
2500
2501         name = rcu_string_strdup(device_path, GFP_NOFS);
2502         if (!name) {
2503                 kfree(device);
2504                 ret = -ENOMEM;
2505                 goto error;
2506         }
2507         rcu_assign_pointer(device->name, name);
2508
2509         q = bdev_get_queue(bdev);
2510         if (blk_queue_discard(q))
2511                 device->can_discard = 1;
2512         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2513         device->writeable = 1;
2514         device->generation = 0;
2515         device->io_width = root->sectorsize;
2516         device->io_align = root->sectorsize;
2517         device->sector_size = root->sectorsize;
2518         device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2519         device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2520         device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2521         ASSERT(list_empty(&srcdev->resized_list));
2522         device->commit_total_bytes = srcdev->commit_total_bytes;
2523         device->commit_bytes_used = device->bytes_used;
2524         device->dev_root = fs_info->dev_root;
2525         device->bdev = bdev;
2526         device->in_fs_metadata = 1;
2527         device->is_tgtdev_for_dev_replace = 1;
2528         device->mode = FMODE_EXCL;
2529         device->dev_stats_valid = 1;
2530         set_blocksize(device->bdev, 4096);
2531         device->fs_devices = fs_info->fs_devices;
2532         list_add(&device->dev_list, &fs_info->fs_devices->devices);
2533         fs_info->fs_devices->num_devices++;
2534         fs_info->fs_devices->open_devices++;
2535         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2536
2537         *device_out = device;
2538         return ret;
2539
2540 error:
2541         blkdev_put(bdev, FMODE_EXCL);
2542         return ret;
2543 }
2544
2545 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2546                                               struct btrfs_device *tgtdev)
2547 {
2548         WARN_ON(fs_info->fs_devices->rw_devices == 0);
2549         tgtdev->io_width = fs_info->dev_root->sectorsize;
2550         tgtdev->io_align = fs_info->dev_root->sectorsize;
2551         tgtdev->sector_size = fs_info->dev_root->sectorsize;
2552         tgtdev->dev_root = fs_info->dev_root;
2553         tgtdev->in_fs_metadata = 1;
2554 }
2555
2556 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2557                                         struct btrfs_device *device)
2558 {
2559         int ret;
2560         struct btrfs_path *path;
2561         struct btrfs_root *root;
2562         struct btrfs_dev_item *dev_item;
2563         struct extent_buffer *leaf;
2564         struct btrfs_key key;
2565
2566         root = device->dev_root->fs_info->chunk_root;
2567
2568         path = btrfs_alloc_path();
2569         if (!path)
2570                 return -ENOMEM;
2571
2572         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2573         key.type = BTRFS_DEV_ITEM_KEY;
2574         key.offset = device->devid;
2575
2576         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2577         if (ret < 0)
2578                 goto out;
2579
2580         if (ret > 0) {
2581                 ret = -ENOENT;
2582                 goto out;
2583         }
2584
2585         leaf = path->nodes[0];
2586         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2587
2588         btrfs_set_device_id(leaf, dev_item, device->devid);
2589         btrfs_set_device_type(leaf, dev_item, device->type);
2590         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2591         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2592         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2593         btrfs_set_device_total_bytes(leaf, dev_item,
2594                                      btrfs_device_get_disk_total_bytes(device));
2595         btrfs_set_device_bytes_used(leaf, dev_item,
2596                                     btrfs_device_get_bytes_used(device));
2597         btrfs_mark_buffer_dirty(leaf);
2598
2599 out:
2600         btrfs_free_path(path);
2601         return ret;
2602 }
2603
2604 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2605                       struct btrfs_device *device, u64 new_size)
2606 {
2607         struct btrfs_super_block *super_copy =
2608                 device->dev_root->fs_info->super_copy;
2609         struct btrfs_fs_devices *fs_devices;
2610         u64 old_total;
2611         u64 diff;
2612
2613         if (!device->writeable)
2614                 return -EACCES;
2615
2616         lock_chunks(device->dev_root);
2617         old_total = btrfs_super_total_bytes(super_copy);
2618         diff = new_size - device->total_bytes;
2619
2620         if (new_size <= device->total_bytes ||
2621             device->is_tgtdev_for_dev_replace) {
2622                 unlock_chunks(device->dev_root);
2623                 return -EINVAL;
2624         }
2625
2626         fs_devices = device->dev_root->fs_info->fs_devices;
2627
2628         btrfs_set_super_total_bytes(super_copy, old_total + diff);
2629         device->fs_devices->total_rw_bytes += diff;
2630
2631         btrfs_device_set_total_bytes(device, new_size);
2632         btrfs_device_set_disk_total_bytes(device, new_size);
2633         btrfs_clear_space_info_full(device->dev_root->fs_info);
2634         if (list_empty(&device->resized_list))
2635                 list_add_tail(&device->resized_list,
2636                               &fs_devices->resized_devices);
2637         unlock_chunks(device->dev_root);
2638
2639         return btrfs_update_device(trans, device);
2640 }
2641
2642 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2643                             struct btrfs_root *root, u64 chunk_objectid,
2644                             u64 chunk_offset)
2645 {
2646         int ret;
2647         struct btrfs_path *path;
2648         struct btrfs_key key;
2649
2650         root = root->fs_info->chunk_root;
2651         path = btrfs_alloc_path();
2652         if (!path)
2653                 return -ENOMEM;
2654
2655         key.objectid = chunk_objectid;
2656         key.offset = chunk_offset;
2657         key.type = BTRFS_CHUNK_ITEM_KEY;
2658
2659         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2660         if (ret < 0)
2661                 goto out;
2662         else if (ret > 0) { /* Logic error or corruption */
2663                 btrfs_std_error(root->fs_info, -ENOENT,
2664                             "Failed lookup while freeing chunk.");
2665                 ret = -ENOENT;
2666                 goto out;
2667         }
2668
2669         ret = btrfs_del_item(trans, root, path);
2670         if (ret < 0)
2671                 btrfs_std_error(root->fs_info, ret,
2672                             "Failed to delete chunk item.");
2673 out:
2674         btrfs_free_path(path);
2675         return ret;
2676 }
2677
2678 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
2679                         chunk_offset)
2680 {
2681         struct btrfs_super_block *super_copy = root->fs_info->super_copy;
2682         struct btrfs_disk_key *disk_key;
2683         struct btrfs_chunk *chunk;
2684         u8 *ptr;
2685         int ret = 0;
2686         u32 num_stripes;
2687         u32 array_size;
2688         u32 len = 0;
2689         u32 cur;
2690         struct btrfs_key key;
2691
2692         lock_chunks(root);
2693         array_size = btrfs_super_sys_array_size(super_copy);
2694
2695         ptr = super_copy->sys_chunk_array;
2696         cur = 0;
2697
2698         while (cur < array_size) {
2699                 disk_key = (struct btrfs_disk_key *)ptr;
2700                 btrfs_disk_key_to_cpu(&key, disk_key);
2701
2702                 len = sizeof(*disk_key);
2703
2704                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2705                         chunk = (struct btrfs_chunk *)(ptr + len);
2706                         num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2707                         len += btrfs_chunk_item_size(num_stripes);
2708                 } else {
2709                         ret = -EIO;
2710                         break;
2711                 }
2712                 if (key.objectid == chunk_objectid &&
2713                     key.offset == chunk_offset) {
2714                         memmove(ptr, ptr + len, array_size - (cur + len));
2715                         array_size -= len;
2716                         btrfs_set_super_sys_array_size(super_copy, array_size);
2717                 } else {
2718                         ptr += len;
2719                         cur += len;
2720                 }
2721         }
2722         unlock_chunks(root);
2723         return ret;
2724 }
2725
2726 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2727                        struct btrfs_root *root, u64 chunk_offset)
2728 {
2729         struct extent_map_tree *em_tree;
2730         struct extent_map *em;
2731         struct btrfs_root *extent_root = root->fs_info->extent_root;
2732         struct map_lookup *map;
2733         u64 dev_extent_len = 0;
2734         u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2735         int i, ret = 0;
2736
2737         /* Just in case */
2738         root = root->fs_info->chunk_root;
2739         em_tree = &root->fs_info->mapping_tree.map_tree;
2740
2741         read_lock(&em_tree->lock);
2742         em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2743         read_unlock(&em_tree->lock);
2744
2745         if (!em || em->start > chunk_offset ||
2746             em->start + em->len < chunk_offset) {
2747                 /*
2748                  * This is a logic error, but we don't want to just rely on the
2749                  * user having built with ASSERT enabled, so if ASSERT doens't
2750                  * do anything we still error out.
2751                  */
2752                 ASSERT(0);
2753                 if (em)
2754                         free_extent_map(em);
2755                 return -EINVAL;
2756         }
2757         map = em->map_lookup;
2758         lock_chunks(root->fs_info->chunk_root);
2759         check_system_chunk(trans, extent_root, map->type);
2760         unlock_chunks(root->fs_info->chunk_root);
2761
2762         for (i = 0; i < map->num_stripes; i++) {
2763                 struct btrfs_device *device = map->stripes[i].dev;
2764                 ret = btrfs_free_dev_extent(trans, device,
2765                                             map->stripes[i].physical,
2766                                             &dev_extent_len);
2767                 if (ret) {
2768                         btrfs_abort_transaction(trans, root, ret);
2769                         goto out;
2770                 }
2771
2772                 if (device->bytes_used > 0) {
2773                         lock_chunks(root);
2774                         btrfs_device_set_bytes_used(device,
2775                                         device->bytes_used - dev_extent_len);
2776                         spin_lock(&root->fs_info->free_chunk_lock);
2777                         root->fs_info->free_chunk_space += dev_extent_len;
2778                         spin_unlock(&root->fs_info->free_chunk_lock);
2779                         btrfs_clear_space_info_full(root->fs_info);
2780                         unlock_chunks(root);
2781                 }
2782
2783                 if (map->stripes[i].dev) {
2784                         ret = btrfs_update_device(trans, map->stripes[i].dev);
2785                         if (ret) {
2786                                 btrfs_abort_transaction(trans, root, ret);
2787                                 goto out;
2788                         }
2789                 }
2790         }
2791         ret = btrfs_free_chunk(trans, root, chunk_objectid, chunk_offset);
2792         if (ret) {
2793                 btrfs_abort_transaction(trans, root, ret);
2794                 goto out;
2795         }
2796
2797         trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2798
2799         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2800                 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2801                 if (ret) {
2802                         btrfs_abort_transaction(trans, root, ret);
2803                         goto out;
2804                 }
2805         }
2806
2807         ret = btrfs_remove_block_group(trans, extent_root, chunk_offset, em);
2808         if (ret) {
2809                 btrfs_abort_transaction(trans, extent_root, ret);
2810                 goto out;
2811         }
2812
2813 out:
2814         /* once for us */
2815         free_extent_map(em);
2816         return ret;
2817 }
2818
2819 static int btrfs_relocate_chunk(struct btrfs_root *root, u64 chunk_offset)
2820 {
2821         struct btrfs_root *extent_root;
2822         struct btrfs_trans_handle *trans;
2823         int ret;
2824
2825         root = root->fs_info->chunk_root;
2826         extent_root = root->fs_info->extent_root;
2827
2828         /*
2829          * Prevent races with automatic removal of unused block groups.
2830          * After we relocate and before we remove the chunk with offset
2831          * chunk_offset, automatic removal of the block group can kick in,
2832          * resulting in a failure when calling btrfs_remove_chunk() below.
2833          *
2834          * Make sure to acquire this mutex before doing a tree search (dev
2835          * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2836          * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2837          * we release the path used to search the chunk/dev tree and before
2838          * the current task acquires this mutex and calls us.
2839          */
2840         ASSERT(mutex_is_locked(&root->fs_info->delete_unused_bgs_mutex));
2841
2842         ret = btrfs_can_relocate(extent_root, chunk_offset);
2843         if (ret)
2844                 return -ENOSPC;
2845
2846         /* step one, relocate all the extents inside this chunk */
2847         btrfs_scrub_pause(root);
2848         ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2849         btrfs_scrub_continue(root);
2850         if (ret)
2851                 return ret;
2852
2853         trans = btrfs_start_trans_remove_block_group(root->fs_info,
2854                                                      chunk_offset);
2855         if (IS_ERR(trans)) {
2856                 ret = PTR_ERR(trans);
2857                 btrfs_std_error(root->fs_info, ret, NULL);
2858                 return ret;
2859         }
2860
2861         /*
2862          * step two, delete the device extents and the
2863          * chunk tree entries
2864          */
2865         ret = btrfs_remove_chunk(trans, root, chunk_offset);
2866         btrfs_end_transaction(trans, root);
2867         return ret;
2868 }
2869
2870 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2871 {
2872         struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2873         struct btrfs_path *path;
2874         struct extent_buffer *leaf;
2875         struct btrfs_chunk *chunk;
2876         struct btrfs_key key;
2877         struct btrfs_key found_key;
2878         u64 chunk_type;
2879         bool retried = false;
2880         int failed = 0;
2881         int ret;
2882
2883         path = btrfs_alloc_path();
2884         if (!path)
2885                 return -ENOMEM;
2886
2887 again:
2888         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2889         key.offset = (u64)-1;
2890         key.type = BTRFS_CHUNK_ITEM_KEY;
2891
2892         while (1) {
2893                 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
2894                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2895                 if (ret < 0) {
2896                         mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2897                         goto error;
2898                 }
2899                 BUG_ON(ret == 0); /* Corruption */
2900
2901                 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2902                                           key.type);
2903                 if (ret)
2904                         mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2905                 if (ret < 0)
2906                         goto error;
2907                 if (ret > 0)
2908                         break;
2909
2910                 leaf = path->nodes[0];
2911                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2912
2913                 chunk = btrfs_item_ptr(leaf, path->slots[0],
2914                                        struct btrfs_chunk);
2915                 chunk_type = btrfs_chunk_type(leaf, chunk);
2916                 btrfs_release_path(path);
2917
2918                 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2919                         ret = btrfs_relocate_chunk(chunk_root,
2920                                                    found_key.offset);
2921                         if (ret == -ENOSPC)
2922                                 failed++;
2923                         else
2924                                 BUG_ON(ret);
2925                 }
2926                 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2927
2928                 if (found_key.offset == 0)
2929                         break;
2930                 key.offset = found_key.offset - 1;
2931         }
2932         ret = 0;
2933         if (failed && !retried) {
2934                 failed = 0;
2935                 retried = true;
2936                 goto again;
2937         } else if (WARN_ON(failed && retried)) {
2938                 ret = -ENOSPC;
2939         }
2940 error:
2941         btrfs_free_path(path);
2942         return ret;
2943 }
2944
2945 static int insert_balance_item(struct btrfs_root *root,
2946                                struct btrfs_balance_control *bctl)
2947 {
2948         struct btrfs_trans_handle *trans;
2949         struct btrfs_balance_item *item;
2950         struct btrfs_disk_balance_args disk_bargs;
2951         struct btrfs_path *path;
2952         struct extent_buffer *leaf;
2953         struct btrfs_key key;
2954         int ret, err;
2955
2956         path = btrfs_alloc_path();
2957         if (!path)
2958                 return -ENOMEM;
2959
2960         trans = btrfs_start_transaction(root, 0);
2961         if (IS_ERR(trans)) {
2962                 btrfs_free_path(path);
2963                 return PTR_ERR(trans);
2964         }
2965
2966         key.objectid = BTRFS_BALANCE_OBJECTID;
2967         key.type = BTRFS_BALANCE_ITEM_KEY;
2968         key.offset = 0;
2969
2970         ret = btrfs_insert_empty_item(trans, root, path, &key,
2971                                       sizeof(*item));
2972         if (ret)
2973                 goto out;
2974
2975         leaf = path->nodes[0];
2976         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2977
2978         memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2979
2980         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2981         btrfs_set_balance_data(leaf, item, &disk_bargs);
2982         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2983         btrfs_set_balance_meta(leaf, item, &disk_bargs);
2984         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2985         btrfs_set_balance_sys(leaf, item, &disk_bargs);
2986
2987         btrfs_set_balance_flags(leaf, item, bctl->flags);
2988
2989         btrfs_mark_buffer_dirty(leaf);
2990 out:
2991         btrfs_free_path(path);
2992         err = btrfs_commit_transaction(trans, root);
2993         if (err && !ret)
2994                 ret = err;
2995         return ret;
2996 }
2997
2998 static int del_balance_item(struct btrfs_root *root)
2999 {
3000         struct btrfs_trans_handle *trans;
3001         struct btrfs_path *path;
3002         struct btrfs_key key;
3003         int ret, err;
3004
3005         path = btrfs_alloc_path();
3006         if (!path)
3007                 return -ENOMEM;
3008
3009         trans = btrfs_start_transaction(root, 0);
3010         if (IS_ERR(trans)) {
3011                 btrfs_free_path(path);
3012                 return PTR_ERR(trans);
3013         }
3014
3015         key.objectid = BTRFS_BALANCE_OBJECTID;
3016         key.type = BTRFS_BALANCE_ITEM_KEY;
3017         key.offset = 0;
3018
3019         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3020         if (ret < 0)
3021                 goto out;
3022         if (ret > 0) {
3023                 ret = -ENOENT;
3024                 goto out;
3025         }
3026
3027         ret = btrfs_del_item(trans, root, path);
3028 out:
3029         btrfs_free_path(path);
3030         err = btrfs_commit_transaction(trans, root);
3031         if (err && !ret)
3032                 ret = err;
3033         return ret;
3034 }
3035
3036 /*
3037  * This is a heuristic used to reduce the number of chunks balanced on
3038  * resume after balance was interrupted.
3039  */
3040 static void update_balance_args(struct btrfs_balance_control *bctl)
3041 {
3042         /*
3043          * Turn on soft mode for chunk types that were being converted.
3044          */
3045         if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3046                 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3047         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3048                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3049         if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3050                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3051
3052         /*
3053          * Turn on usage filter if is not already used.  The idea is
3054          * that chunks that we have already balanced should be
3055          * reasonably full.  Don't do it for chunks that are being
3056          * converted - that will keep us from relocating unconverted
3057          * (albeit full) chunks.
3058          */
3059         if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3060             !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3061             !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3062                 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3063                 bctl->data.usage = 90;
3064         }
3065         if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3066             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3067             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3068                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3069                 bctl->sys.usage = 90;
3070         }
3071         if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3072             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3073             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3074                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3075                 bctl->meta.usage = 90;
3076         }
3077 }
3078
3079 /*
3080  * Should be called with both balance and volume mutexes held to
3081  * serialize other volume operations (add_dev/rm_dev/resize) with
3082  * restriper.  Same goes for unset_balance_control.
3083  */
3084 static void set_balance_control(struct btrfs_balance_control *bctl)
3085 {
3086         struct btrfs_fs_info *fs_info = bctl->fs_info;
3087
3088         BUG_ON(fs_info->balance_ctl);
3089
3090         spin_lock(&fs_info->balance_lock);
3091         fs_info->balance_ctl = bctl;
3092         spin_unlock(&fs_info->balance_lock);
3093 }
3094
3095 static void unset_balance_control(struct btrfs_fs_info *fs_info)
3096 {
3097         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3098
3099         BUG_ON(!fs_info->balance_ctl);
3100
3101         spin_lock(&fs_info->balance_lock);
3102         fs_info->balance_ctl = NULL;
3103         spin_unlock(&fs_info->balance_lock);
3104
3105         kfree(bctl);
3106 }
3107
3108 /*
3109  * Balance filters.  Return 1 if chunk should be filtered out
3110  * (should not be balanced).
3111  */
3112 static int chunk_profiles_filter(u64 chunk_type,
3113                                  struct btrfs_balance_args *bargs)
3114 {
3115         chunk_type = chunk_to_extended(chunk_type) &
3116                                 BTRFS_EXTENDED_PROFILE_MASK;
3117
3118         if (bargs->profiles & chunk_type)
3119                 return 0;
3120
3121         return 1;
3122 }
3123
3124 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3125                               struct btrfs_balance_args *bargs)
3126 {
3127         struct btrfs_block_group_cache *cache;
3128         u64 chunk_used;
3129         u64 user_thresh_min;
3130         u64 user_thresh_max;
3131         int ret = 1;
3132
3133         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3134         chunk_used = btrfs_block_group_used(&cache->item);
3135
3136         if (bargs->usage_min == 0)
3137                 user_thresh_min = 0;
3138         else
3139                 user_thresh_min = div_factor_fine(cache->key.offset,
3140                                         bargs->usage_min);
3141
3142         if (bargs->usage_max == 0)
3143                 user_thresh_max = 1;
3144         else if (bargs->usage_max > 100)
3145                 user_thresh_max = cache->key.offset;
3146         else
3147                 user_thresh_max = div_factor_fine(cache->key.offset,
3148                                         bargs->usage_max);
3149
3150         if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3151                 ret = 0;
3152
3153         btrfs_put_block_group(cache);
3154         return ret;
3155 }
3156
3157 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3158                 u64 chunk_offset, struct btrfs_balance_args *bargs)
3159 {
3160         struct btrfs_block_group_cache *cache;
3161         u64 chunk_used, user_thresh;
3162         int ret = 1;
3163
3164         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3165         chunk_used = btrfs_block_group_used(&cache->item);
3166
3167         if (bargs->usage_min == 0)
3168                 user_thresh = 1;
3169         else if (bargs->usage > 100)
3170                 user_thresh = cache->key.offset;
3171         else
3172                 user_thresh = div_factor_fine(cache->key.offset,
3173                                               bargs->usage);
3174
3175         if (chunk_used < user_thresh)
3176                 ret = 0;
3177
3178         btrfs_put_block_group(cache);
3179         return ret;
3180 }
3181
3182 static int chunk_devid_filter(struct extent_buffer *leaf,
3183                               struct btrfs_chunk *chunk,
3184                               struct btrfs_balance_args *bargs)
3185 {
3186         struct btrfs_stripe *stripe;
3187         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3188         int i;
3189
3190         for (i = 0; i < num_stripes; i++) {
3191                 stripe = btrfs_stripe_nr(chunk, i);
3192                 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3193                         return 0;
3194         }
3195
3196         return 1;
3197 }
3198
3199 /* [pstart, pend) */
3200 static int chunk_drange_filter(struct extent_buffer *leaf,
3201                                struct btrfs_chunk *chunk,
3202                                u64 chunk_offset,
3203                                struct btrfs_balance_args *bargs)
3204 {
3205         struct btrfs_stripe *stripe;
3206         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3207         u64 stripe_offset;
3208         u64 stripe_length;
3209         int factor;
3210         int i;
3211
3212         if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3213                 return 0;
3214
3215         if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3216              BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3217                 factor = num_stripes / 2;
3218         } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3219                 factor = num_stripes - 1;
3220         } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3221                 factor = num_stripes - 2;
3222         } else {
3223                 factor = num_stripes;
3224         }
3225
3226         for (i = 0; i < num_stripes; i++) {
3227                 stripe = btrfs_stripe_nr(chunk, i);
3228                 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3229                         continue;
3230
3231                 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3232                 stripe_length = btrfs_chunk_length(leaf, chunk);
3233                 stripe_length = div_u64(stripe_length, factor);
3234
3235                 if (stripe_offset < bargs->pend &&
3236                     stripe_offset + stripe_length > bargs->pstart)
3237                         return 0;
3238         }
3239
3240         return 1;
3241 }
3242
3243 /* [vstart, vend) */
3244 static int chunk_vrange_filter(struct extent_buffer *leaf,
3245                                struct btrfs_chunk *chunk,
3246                                u64 chunk_offset,
3247                                struct btrfs_balance_args *bargs)
3248 {
3249         if (chunk_offset < bargs->vend &&
3250             chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3251                 /* at least part of the chunk is inside this vrange */
3252                 return 0;
3253
3254         return 1;
3255 }
3256
3257 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3258                                struct btrfs_chunk *chunk,
3259                                struct btrfs_balance_args *bargs)
3260 {
3261         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3262
3263         if (bargs->stripes_min <= num_stripes
3264                         && num_stripes <= bargs->stripes_max)
3265                 return 0;
3266
3267         return 1;
3268 }
3269
3270 static int chunk_soft_convert_filter(u64 chunk_type,
3271                                      struct btrfs_balance_args *bargs)
3272 {
3273         if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3274                 return 0;
3275
3276         chunk_type = chunk_to_extended(chunk_type) &
3277                                 BTRFS_EXTENDED_PROFILE_MASK;
3278
3279         if (bargs->target == chunk_type)
3280                 return 1;
3281
3282         return 0;
3283 }
3284
3285 static int should_balance_chunk(struct btrfs_root *root,
3286                                 struct extent_buffer *leaf,
3287                                 struct btrfs_chunk *chunk, u64 chunk_offset)
3288 {
3289         struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
3290         struct btrfs_balance_args *bargs = NULL;
3291         u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3292
3293         /* type filter */
3294         if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3295               (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3296                 return 0;
3297         }
3298
3299         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3300                 bargs = &bctl->data;
3301         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3302                 bargs = &bctl->sys;
3303         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3304                 bargs = &bctl->meta;
3305
3306         /* profiles filter */
3307         if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3308             chunk_profiles_filter(chunk_type, bargs)) {
3309                 return 0;
3310         }
3311
3312         /* usage filter */
3313         if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3314             chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
3315                 return 0;
3316         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3317             chunk_usage_range_filter(bctl->fs_info, chunk_offset, bargs)) {
3318                 return 0;
3319         }
3320
3321         /* devid filter */
3322         if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3323             chunk_devid_filter(leaf, chunk, bargs)) {
3324                 return 0;
3325         }
3326
3327         /* drange filter, makes sense only with devid filter */
3328         if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3329             chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3330                 return 0;
3331         }
3332
3333         /* vrange filter */
3334         if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3335             chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3336                 return 0;
3337         }
3338
3339         /* stripes filter */
3340         if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3341             chunk_stripes_range_filter(leaf, chunk, bargs)) {
3342                 return 0;
3343         }
3344
3345         /* soft profile changing mode */
3346         if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3347             chunk_soft_convert_filter(chunk_type, bargs)) {
3348                 return 0;
3349         }
3350
3351         /*
3352          * limited by count, must be the last filter
3353          */
3354         if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3355                 if (bargs->limit == 0)
3356                         return 0;
3357                 else
3358                         bargs->limit--;
3359         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3360                 /*
3361                  * Same logic as the 'limit' filter; the minimum cannot be
3362                  * determined here because we do not have the global informatoin
3363                  * about the count of all chunks that satisfy the filters.
3364                  */
3365                 if (bargs->limit_max == 0)
3366                         return 0;
3367                 else
3368                         bargs->limit_max--;
3369         }
3370
3371         return 1;
3372 }
3373
3374 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3375 {
3376         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3377         struct btrfs_root *chunk_root = fs_info->chunk_root;
3378         struct btrfs_root *dev_root = fs_info->dev_root;
3379         struct list_head *devices;
3380         struct btrfs_device *device;
3381         u64 old_size;
3382         u64 size_to_free;
3383         u64 chunk_type;
3384         struct btrfs_chunk *chunk;
3385         struct btrfs_path *path;
3386         struct btrfs_key key;
3387         struct btrfs_key found_key;
3388         struct btrfs_trans_handle *trans;
3389         struct extent_buffer *leaf;
3390         int slot;
3391         int ret;
3392         int enospc_errors = 0;
3393         bool counting = true;
3394         /* The single value limit and min/max limits use the same bytes in the */
3395         u64 limit_data = bctl->data.limit;
3396         u64 limit_meta = bctl->meta.limit;
3397         u64 limit_sys = bctl->sys.limit;
3398         u32 count_data = 0;
3399         u32 count_meta = 0;
3400         u32 count_sys = 0;
3401         int chunk_reserved = 0;
3402
3403         /* step one make some room on all the devices */
3404         devices = &fs_info->fs_devices->devices;
3405         list_for_each_entry(device, devices, dev_list) {
3406                 old_size = btrfs_device_get_total_bytes(device);
3407                 size_to_free = div_factor(old_size, 1);
3408                 size_to_free = min_t(u64, size_to_free, SZ_1M);
3409                 if (!device->writeable ||
3410                     btrfs_device_get_total_bytes(device) -
3411                     btrfs_device_get_bytes_used(device) > size_to_free ||
3412                     device->is_tgtdev_for_dev_replace)
3413                         continue;
3414
3415                 ret = btrfs_shrink_device(device, old_size - size_to_free);
3416                 if (ret == -ENOSPC)
3417                         break;
3418                 BUG_ON(ret);
3419
3420                 trans = btrfs_start_transaction(dev_root, 0);
3421                 BUG_ON(IS_ERR(trans));
3422
3423                 ret = btrfs_grow_device(trans, device, old_size);
3424                 BUG_ON(ret);
3425
3426                 btrfs_end_transaction(trans, dev_root);
3427         }
3428
3429         /* step two, relocate all the chunks */
3430         path = btrfs_alloc_path();
3431         if (!path) {
3432                 ret = -ENOMEM;
3433                 goto error;
3434         }
3435
3436         /* zero out stat counters */
3437         spin_lock(&fs_info->balance_lock);
3438         memset(&bctl->stat, 0, sizeof(bctl->stat));
3439         spin_unlock(&fs_info->balance_lock);
3440 again:
3441         if (!counting) {
3442                 /*
3443                  * The single value limit and min/max limits use the same bytes
3444                  * in the
3445                  */
3446                 bctl->data.limit = limit_data;
3447                 bctl->meta.limit = limit_meta;
3448                 bctl->sys.limit = limit_sys;
3449         }
3450         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3451         key.offset = (u64)-1;
3452         key.type = BTRFS_CHUNK_ITEM_KEY;
3453
3454         while (1) {
3455                 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3456                     atomic_read(&fs_info->balance_cancel_req)) {
3457                         ret = -ECANCELED;
3458                         goto error;
3459                 }
3460
3461                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3462                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3463                 if (ret < 0) {
3464                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3465                         goto error;
3466                 }
3467
3468                 /*
3469                  * this shouldn't happen, it means the last relocate
3470                  * failed
3471                  */
3472                 if (ret == 0)
3473                         BUG(); /* FIXME break ? */
3474
3475                 ret = btrfs_previous_item(chunk_root, path, 0,
3476                                           BTRFS_CHUNK_ITEM_KEY);
3477                 if (ret) {
3478                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3479                         ret = 0;
3480                         break;
3481                 }
3482
3483                 leaf = path->nodes[0];
3484                 slot = path->slots[0];
3485                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3486
3487                 if (found_key.objectid != key.objectid) {
3488                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3489                         break;
3490                 }
3491
3492                 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3493                 chunk_type = btrfs_chunk_type(leaf, chunk);
3494
3495                 if (!counting) {
3496                         spin_lock(&fs_info->balance_lock);
3497                         bctl->stat.considered++;
3498                         spin_unlock(&fs_info->balance_lock);
3499                 }
3500
3501                 ret = should_balance_chunk(chunk_root, leaf, chunk,
3502                                            found_key.offset);
3503
3504                 btrfs_release_path(path);
3505                 if (!ret) {
3506                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3507                         goto loop;
3508                 }
3509
3510                 if (counting) {
3511                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3512                         spin_lock(&fs_info->balance_lock);
3513                         bctl->stat.expected++;
3514                         spin_unlock(&fs_info->balance_lock);
3515
3516                         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3517                                 count_data++;
3518                         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3519                                 count_sys++;
3520                         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3521                                 count_meta++;
3522
3523                         goto loop;
3524                 }
3525
3526                 /*
3527                  * Apply limit_min filter, no need to check if the LIMITS
3528                  * filter is used, limit_min is 0 by default
3529                  */
3530                 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3531                                         count_data < bctl->data.limit_min)
3532                                 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3533                                         count_meta < bctl->meta.limit_min)
3534                                 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3535                                         count_sys < bctl->sys.limit_min)) {
3536                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3537                         goto loop;
3538                 }
3539
3540                 if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) && !chunk_reserved) {
3541                         trans = btrfs_start_transaction(chunk_root, 0);
3542                         if (IS_ERR(trans)) {
3543                                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3544                                 ret = PTR_ERR(trans);
3545                                 goto error;
3546                         }
3547
3548                         ret = btrfs_force_chunk_alloc(trans, chunk_root,
3549                                                       BTRFS_BLOCK_GROUP_DATA);
3550                         btrfs_end_transaction(trans, chunk_root);
3551                         if (ret < 0) {
3552                                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3553                                 goto error;
3554                         }
3555                         chunk_reserved = 1;
3556                 }
3557
3558                 ret = btrfs_relocate_chunk(chunk_root,
3559                                            found_key.offset);
3560                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3561                 if (ret && ret != -ENOSPC)
3562                         goto error;
3563                 if (ret == -ENOSPC) {
3564                         enospc_errors++;
3565                 } else {
3566                         spin_lock(&fs_info->balance_lock);
3567                         bctl->stat.completed++;
3568                         spin_unlock(&fs_info->balance_lock);
3569                 }
3570 loop:
3571                 if (found_key.offset == 0)
3572                         break;
3573                 key.offset = found_key.offset - 1;
3574         }
3575
3576         if (counting) {
3577                 btrfs_release_path(path);
3578                 counting = false;
3579                 goto again;
3580         }
3581 error:
3582         btrfs_free_path(path);
3583         if (enospc_errors) {
3584                 btrfs_info(fs_info, "%d enospc errors during balance",
3585                        enospc_errors);
3586                 if (!ret)
3587                         ret = -ENOSPC;
3588         }
3589
3590         return ret;
3591 }
3592
3593 /**
3594  * alloc_profile_is_valid - see if a given profile is valid and reduced
3595  * @flags: profile to validate
3596  * @extended: if true @flags is treated as an extended profile
3597  */
3598 static int alloc_profile_is_valid(u64 flags, int extended)
3599 {
3600         u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3601                                BTRFS_BLOCK_GROUP_PROFILE_MASK);
3602
3603         flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3604
3605         /* 1) check that all other bits are zeroed */
3606         if (flags & ~mask)
3607                 return 0;
3608
3609         /* 2) see if profile is reduced */
3610         if (flags == 0)
3611                 return !extended; /* "0" is valid for usual profiles */
3612
3613         /* true if exactly one bit set */
3614         return (flags & (flags - 1)) == 0;
3615 }
3616
3617 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3618 {
3619         /* cancel requested || normal exit path */
3620         return atomic_read(&fs_info->balance_cancel_req) ||
3621                 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3622                  atomic_read(&fs_info->balance_cancel_req) == 0);
3623 }
3624
3625 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3626 {
3627         int ret;
3628
3629         unset_balance_control(fs_info);
3630         ret = del_balance_item(fs_info->tree_root);
3631         if (ret)
3632                 btrfs_std_error(fs_info, ret, NULL);
3633
3634         atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3635 }
3636
3637 /* Non-zero return value signifies invalidity */
3638 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3639                 u64 allowed)
3640 {
3641         return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3642                 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3643                  (bctl_arg->target & ~allowed)));
3644 }
3645
3646 /*
3647  * Should be called with both balance and volume mutexes held
3648  */
3649 int btrfs_balance(struct btrfs_balance_control *bctl,
3650                   struct btrfs_ioctl_balance_args *bargs)
3651 {
3652         struct btrfs_fs_info *fs_info = bctl->fs_info;
3653         u64 allowed;
3654         int mixed = 0;
3655         int ret;
3656         u64 num_devices;
3657         unsigned seq;
3658
3659         if (btrfs_fs_closing(fs_info) ||
3660             atomic_read(&fs_info->balance_pause_req) ||
3661             atomic_read(&fs_info->balance_cancel_req)) {
3662                 ret = -EINVAL;
3663                 goto out;
3664         }
3665
3666         allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3667         if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3668                 mixed = 1;
3669
3670         /*
3671          * In case of mixed groups both data and meta should be picked,
3672          * and identical options should be given for both of them.
3673          */
3674         allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3675         if (mixed && (bctl->flags & allowed)) {
3676                 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3677                     !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3678                     memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3679                         btrfs_err(fs_info, "with mixed groups data and "
3680                                    "metadata balance options must be the same");
3681                         ret = -EINVAL;
3682                         goto out;
3683                 }
3684         }
3685
3686         num_devices = fs_info->fs_devices->num_devices;
3687         btrfs_dev_replace_lock(&fs_info->dev_replace);
3688         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3689                 BUG_ON(num_devices < 1);
3690                 num_devices--;
3691         }
3692         btrfs_dev_replace_unlock(&fs_info->dev_replace);
3693         allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
3694         if (num_devices == 1)
3695                 allowed |= BTRFS_BLOCK_GROUP_DUP;
3696         else if (num_devices > 1)
3697                 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3698         if (num_devices > 2)
3699                 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3700         if (num_devices > 3)
3701                 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3702                             BTRFS_BLOCK_GROUP_RAID6);
3703         if (validate_convert_profile(&bctl->data, allowed)) {
3704                 btrfs_err(fs_info, "unable to start balance with target "
3705                            "data profile %llu",
3706                        bctl->data.target);
3707                 ret = -EINVAL;
3708                 goto out;
3709         }
3710         if (validate_convert_profile(&bctl->meta, allowed)) {
3711                 btrfs_err(fs_info,
3712                            "unable to start balance with target metadata profile %llu",
3713                        bctl->meta.target);
3714                 ret = -EINVAL;
3715                 goto out;
3716         }
3717         if (validate_convert_profile(&bctl->sys, allowed)) {
3718                 btrfs_err(fs_info,
3719                            "unable to start balance with target system profile %llu",
3720                        bctl->sys.target);
3721                 ret = -EINVAL;
3722                 goto out;
3723         }
3724
3725         /* allow dup'ed data chunks only in mixed mode */
3726         if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3727             (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
3728                 btrfs_err(fs_info, "dup for data is not allowed");
3729                 ret = -EINVAL;
3730                 goto out;
3731         }
3732
3733         /* allow to reduce meta or sys integrity only if force set */
3734         allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3735                         BTRFS_BLOCK_GROUP_RAID10 |
3736                         BTRFS_BLOCK_GROUP_RAID5 |
3737                         BTRFS_BLOCK_GROUP_RAID6;
3738         do {
3739                 seq = read_seqbegin(&fs_info->profiles_lock);
3740
3741                 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3742                      (fs_info->avail_system_alloc_bits & allowed) &&
3743                      !(bctl->sys.target & allowed)) ||
3744                     ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3745                      (fs_info->avail_metadata_alloc_bits & allowed) &&
3746                      !(bctl->meta.target & allowed))) {
3747                         if (bctl->flags & BTRFS_BALANCE_FORCE) {
3748                                 btrfs_info(fs_info, "force reducing metadata integrity");
3749                         } else {
3750                                 btrfs_err(fs_info, "balance will reduce metadata "
3751                                            "integrity, use force if you want this");
3752                                 ret = -EINVAL;
3753                                 goto out;
3754                         }
3755                 }
3756         } while (read_seqretry(&fs_info->profiles_lock, seq));
3757
3758         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3759                 fs_info->num_tolerated_disk_barrier_failures = min(
3760                         btrfs_calc_num_tolerated_disk_barrier_failures(fs_info),
3761                         btrfs_get_num_tolerated_disk_barrier_failures(
3762                                 bctl->sys.target));
3763         }
3764
3765         ret = insert_balance_item(fs_info->tree_root, bctl);
3766         if (ret && ret != -EEXIST)
3767                 goto out;
3768
3769         if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3770                 BUG_ON(ret == -EEXIST);
3771                 set_balance_control(bctl);
3772         } else {
3773                 BUG_ON(ret != -EEXIST);
3774                 spin_lock(&fs_info->balance_lock);
3775                 update_balance_args(bctl);
3776                 spin_unlock(&fs_info->balance_lock);
3777         }
3778
3779         atomic_inc(&fs_info->balance_running);
3780         mutex_unlock(&fs_info->balance_mutex);
3781
3782         ret = __btrfs_balance(fs_info);
3783
3784         mutex_lock(&fs_info->balance_mutex);
3785         atomic_dec(&fs_info->balance_running);
3786
3787         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3788                 fs_info->num_tolerated_disk_barrier_failures =
3789                         btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3790         }
3791
3792         if (bargs) {
3793                 memset(bargs, 0, sizeof(*bargs));
3794                 update_ioctl_balance_args(fs_info, 0, bargs);
3795         }
3796
3797         if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3798             balance_need_close(fs_info)) {
3799                 __cancel_balance(fs_info);
3800         }
3801
3802         wake_up(&fs_info->balance_wait_q);
3803
3804         return ret;
3805 out:
3806         if (bctl->flags & BTRFS_BALANCE_RESUME)
3807                 __cancel_balance(fs_info);
3808         else {
3809                 kfree(bctl);
3810                 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3811         }
3812         return ret;
3813 }
3814
3815 static int balance_kthread(void *data)
3816 {
3817         struct btrfs_fs_info *fs_info = data;
3818         int ret = 0;
3819
3820         mutex_lock(&fs_info->volume_mutex);
3821         mutex_lock(&fs_info->balance_mutex);
3822
3823         if (fs_info->balance_ctl) {
3824                 btrfs_info(fs_info, "continuing balance");
3825                 ret = btrfs_balance(fs_info->balance_ctl, NULL);
3826         }
3827
3828         mutex_unlock(&fs_info->balance_mutex);
3829         mutex_unlock(&fs_info->volume_mutex);
3830
3831         return ret;
3832 }
3833
3834 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3835 {
3836         struct task_struct *tsk;
3837
3838         spin_lock(&fs_info->balance_lock);
3839         if (!fs_info->balance_ctl) {
3840                 spin_unlock(&fs_info->balance_lock);
3841                 return 0;
3842         }
3843         spin_unlock(&fs_info->balance_lock);
3844
3845         if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
3846                 btrfs_info(fs_info, "force skipping balance");
3847                 return 0;
3848         }
3849
3850         tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3851         return PTR_ERR_OR_ZERO(tsk);
3852 }
3853
3854 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3855 {
3856         struct btrfs_balance_control *bctl;
3857         struct btrfs_balance_item *item;
3858         struct btrfs_disk_balance_args disk_bargs;
3859         struct btrfs_path *path;
3860         struct extent_buffer *leaf;
3861         struct btrfs_key key;
3862         int ret;
3863
3864         path = btrfs_alloc_path();
3865         if (!path)
3866                 return -ENOMEM;
3867
3868         key.objectid = BTRFS_BALANCE_OBJECTID;
3869         key.type = BTRFS_BALANCE_ITEM_KEY;
3870         key.offset = 0;
3871
3872         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3873         if (ret < 0)
3874                 goto out;
3875         if (ret > 0) { /* ret = -ENOENT; */
3876                 ret = 0;
3877                 goto out;
3878         }
3879
3880         bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3881         if (!bctl) {
3882                 ret = -ENOMEM;
3883                 goto out;
3884         }
3885
3886         leaf = path->nodes[0];
3887         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3888
3889         bctl->fs_info = fs_info;
3890         bctl->flags = btrfs_balance_flags(leaf, item);
3891         bctl->flags |= BTRFS_BALANCE_RESUME;
3892
3893         btrfs_balance_data(leaf, item, &disk_bargs);
3894         btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3895         btrfs_balance_meta(leaf, item, &disk_bargs);
3896         btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3897         btrfs_balance_sys(leaf, item, &disk_bargs);
3898         btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3899
3900         WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3901
3902         mutex_lock(&fs_info->volume_mutex);
3903         mutex_lock(&fs_info->balance_mutex);
3904
3905         set_balance_control(bctl);
3906
3907         mutex_unlock(&fs_info->balance_mutex);
3908         mutex_unlock(&fs_info->volume_mutex);
3909 out:
3910         btrfs_free_path(path);
3911         return ret;
3912 }
3913
3914 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3915 {
3916         int ret = 0;
3917
3918         mutex_lock(&fs_info->balance_mutex);
3919         if (!fs_info->balance_ctl) {
3920                 mutex_unlock(&fs_info->balance_mutex);
3921                 return -ENOTCONN;
3922         }
3923
3924         if (atomic_read(&fs_info->balance_running)) {
3925                 atomic_inc(&fs_info->balance_pause_req);
3926                 mutex_unlock(&fs_info->balance_mutex);
3927
3928                 wait_event(fs_info->balance_wait_q,
3929                            atomic_read(&fs_info->balance_running) == 0);
3930
3931                 mutex_lock(&fs_info->balance_mutex);
3932                 /* we are good with balance_ctl ripped off from under us */
3933                 BUG_ON(atomic_read(&fs_info->balance_running));
3934                 atomic_dec(&fs_info->balance_pause_req);
3935         } else {
3936                 ret = -ENOTCONN;
3937         }
3938
3939         mutex_unlock(&fs_info->balance_mutex);
3940         return ret;
3941 }
3942
3943 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3944 {
3945         if (fs_info->sb->s_flags & MS_RDONLY)
3946                 return -EROFS;
3947
3948         mutex_lock(&fs_info->balance_mutex);
3949         if (!fs_info->balance_ctl) {
3950                 mutex_unlock(&fs_info->balance_mutex);
3951                 return -ENOTCONN;
3952         }
3953
3954         atomic_inc(&fs_info->balance_cancel_req);
3955         /*
3956          * if we are running just wait and return, balance item is
3957          * deleted in btrfs_balance in this case
3958          */
3959         if (atomic_read(&fs_info->balance_running)) {
3960                 mutex_unlock(&fs_info->balance_mutex);
3961                 wait_event(fs_info->balance_wait_q,
3962                            atomic_read(&fs_info->balance_running) == 0);
3963                 mutex_lock(&fs_info->balance_mutex);
3964         } else {
3965                 /* __cancel_balance needs volume_mutex */
3966                 mutex_unlock(&fs_info->balance_mutex);
3967                 mutex_lock(&fs_info->volume_mutex);
3968                 mutex_lock(&fs_info->balance_mutex);
3969
3970                 if (fs_info->balance_ctl)
3971                         __cancel_balance(fs_info);
3972
3973                 mutex_unlock(&fs_info->volume_mutex);
3974         }
3975
3976         BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3977         atomic_dec(&fs_info->balance_cancel_req);
3978         mutex_unlock(&fs_info->balance_mutex);
3979         return 0;
3980 }
3981
3982 static int btrfs_uuid_scan_kthread(void *data)
3983 {
3984         struct btrfs_fs_info *fs_info = data;
3985         struct btrfs_root *root = fs_info->tree_root;
3986         struct btrfs_key key;
3987         struct btrfs_key max_key;
3988         struct btrfs_path *path = NULL;
3989         int ret = 0;
3990         struct extent_buffer *eb;
3991         int slot;
3992         struct btrfs_root_item root_item;
3993         u32 item_size;
3994         struct btrfs_trans_handle *trans = NULL;
3995
3996         path = btrfs_alloc_path();
3997         if (!path) {
3998                 ret = -ENOMEM;
3999                 goto out;
4000         }
4001
4002         key.objectid = 0;
4003         key.type = BTRFS_ROOT_ITEM_KEY;
4004         key.offset = 0;
4005
4006         max_key.objectid = (u64)-1;
4007         max_key.type = BTRFS_ROOT_ITEM_KEY;
4008         max_key.offset = (u64)-1;
4009
4010         while (1) {
4011                 ret = btrfs_search_forward(root, &key, path, 0);
4012                 if (ret) {
4013                         if (ret > 0)
4014                                 ret = 0;
4015                         break;
4016                 }
4017
4018                 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4019                     (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4020                      key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4021                     key.objectid > BTRFS_LAST_FREE_OBJECTID)
4022                         goto skip;
4023
4024                 eb = path->nodes[0];
4025                 slot = path->slots[0];
4026                 item_size = btrfs_item_size_nr(eb, slot);
4027                 if (item_size < sizeof(root_item))
4028                         goto skip;
4029
4030                 read_extent_buffer(eb, &root_item,
4031                                    btrfs_item_ptr_offset(eb, slot),
4032                                    (int)sizeof(root_item));
4033                 if (btrfs_root_refs(&root_item) == 0)
4034                         goto skip;
4035
4036                 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4037                     !btrfs_is_empty_uuid(root_item.received_uuid)) {
4038                         if (trans)
4039                                 goto update_tree;
4040
4041                         btrfs_release_path(path);
4042                         /*
4043                          * 1 - subvol uuid item
4044                          * 1 - received_subvol uuid item
4045                          */
4046                         trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4047                         if (IS_ERR(trans)) {
4048                                 ret = PTR_ERR(trans);
4049                                 break;
4050                         }
4051                         continue;
4052                 } else {
4053                         goto skip;
4054                 }
4055 update_tree:
4056                 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4057                         ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
4058                                                   root_item.uuid,
4059                                                   BTRFS_UUID_KEY_SUBVOL,
4060                                                   key.objectid);
4061                         if (ret < 0) {
4062                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4063                                         ret);
4064                                 break;
4065                         }
4066                 }
4067
4068                 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4069                         ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
4070                                                   root_item.received_uuid,
4071                                                  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4072                                                   key.objectid);
4073                         if (ret < 0) {
4074                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4075                                         ret);
4076                                 break;
4077                         }
4078                 }
4079
4080 skip:
4081                 if (trans) {
4082                         ret = btrfs_end_transaction(trans, fs_info->uuid_root);
4083                         trans = NULL;
4084                         if (ret)
4085                                 break;
4086                 }
4087
4088                 btrfs_release_path(path);
4089                 if (key.offset < (u64)-1) {
4090                         key.offset++;
4091                 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4092                         key.offset = 0;
4093                         key.type = BTRFS_ROOT_ITEM_KEY;
4094                 } else if (key.objectid < (u64)-1) {
4095                         key.offset = 0;
4096                         key.type = BTRFS_ROOT_ITEM_KEY;
4097                         key.objectid++;
4098                 } else {
4099                         break;
4100                 }
4101                 cond_resched();
4102         }
4103
4104 out:
4105         btrfs_free_path(path);
4106         if (trans && !IS_ERR(trans))
4107                 btrfs_end_transaction(trans, fs_info->uuid_root);
4108         if (ret)
4109                 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4110         else
4111                 fs_info->update_uuid_tree_gen = 1;
4112         up(&fs_info->uuid_tree_rescan_sem);
4113         return 0;
4114 }
4115
4116 /*
4117  * Callback for btrfs_uuid_tree_iterate().
4118  * returns:
4119  * 0    check succeeded, the entry is not outdated.
4120  * < 0  if an error occured.
4121  * > 0  if the check failed, which means the caller shall remove the entry.
4122  */
4123 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4124                                        u8 *uuid, u8 type, u64 subid)
4125 {
4126         struct btrfs_key key;
4127         int ret = 0;
4128         struct btrfs_root *subvol_root;
4129
4130         if (type != BTRFS_UUID_KEY_SUBVOL &&
4131             type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4132                 goto out;
4133
4134         key.objectid = subid;
4135         key.type = BTRFS_ROOT_ITEM_KEY;
4136         key.offset = (u64)-1;
4137         subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4138         if (IS_ERR(subvol_root)) {
4139                 ret = PTR_ERR(subvol_root);
4140                 if (ret == -ENOENT)
4141                         ret = 1;
4142                 goto out;
4143         }
4144
4145         switch (type) {
4146         case BTRFS_UUID_KEY_SUBVOL:
4147                 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4148                         ret = 1;
4149                 break;
4150         case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4151                 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4152                            BTRFS_UUID_SIZE))
4153                         ret = 1;
4154                 break;
4155         }
4156
4157 out:
4158         return ret;
4159 }
4160
4161 static int btrfs_uuid_rescan_kthread(void *data)
4162 {
4163         struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4164         int ret;
4165
4166         /*
4167          * 1st step is to iterate through the existing UUID tree and
4168          * to delete all entries that contain outdated data.
4169          * 2nd step is to add all missing entries to the UUID tree.
4170          */
4171         ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4172         if (ret < 0) {
4173                 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4174                 up(&fs_info->uuid_tree_rescan_sem);
4175                 return ret;
4176         }
4177         return btrfs_uuid_scan_kthread(data);
4178 }
4179
4180 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4181 {
4182         struct btrfs_trans_handle *trans;
4183         struct btrfs_root *tree_root = fs_info->tree_root;
4184         struct btrfs_root *uuid_root;
4185         struct task_struct *task;
4186         int ret;
4187
4188         /*
4189          * 1 - root node
4190          * 1 - root item
4191          */
4192         trans = btrfs_start_transaction(tree_root, 2);
4193         if (IS_ERR(trans))
4194                 return PTR_ERR(trans);
4195
4196         uuid_root = btrfs_create_tree(trans, fs_info,
4197                                       BTRFS_UUID_TREE_OBJECTID);
4198         if (IS_ERR(uuid_root)) {
4199                 ret = PTR_ERR(uuid_root);
4200                 btrfs_abort_transaction(trans, tree_root, ret);
4201                 return ret;
4202         }
4203
4204         fs_info->uuid_root = uuid_root;
4205
4206         ret = btrfs_commit_transaction(trans, tree_root);
4207         if (ret)
4208                 return ret;
4209
4210         down(&fs_info->uuid_tree_rescan_sem);
4211         task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4212         if (IS_ERR(task)) {
4213                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4214                 btrfs_warn(fs_info, "failed to start uuid_scan task");
4215                 up(&fs_info->uuid_tree_rescan_sem);
4216                 return PTR_ERR(task);
4217         }
4218
4219         return 0;
4220 }
4221
4222 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4223 {
4224         struct task_struct *task;
4225
4226         down(&fs_info->uuid_tree_rescan_sem);
4227         task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4228         if (IS_ERR(task)) {
4229                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4230                 btrfs_warn(fs_info, "failed to start uuid_rescan task");
4231                 up(&fs_info->uuid_tree_rescan_sem);
4232                 return PTR_ERR(task);
4233         }
4234
4235         return 0;
4236 }
4237
4238 /*
4239  * shrinking a device means finding all of the device extents past
4240  * the new size, and then following the back refs to the chunks.
4241  * The chunk relocation code actually frees the device extent
4242  */
4243 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4244 {
4245         struct btrfs_trans_handle *trans;
4246         struct btrfs_root *root = device->dev_root;
4247         struct btrfs_dev_extent *dev_extent = NULL;
4248         struct btrfs_path *path;
4249         u64 length;
4250         u64 chunk_offset;
4251         int ret;
4252         int slot;
4253         int failed = 0;
4254         bool retried = false;
4255         bool checked_pending_chunks = false;
4256         struct extent_buffer *l;
4257         struct btrfs_key key;
4258         struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4259         u64 old_total = btrfs_super_total_bytes(super_copy);
4260         u64 old_size = btrfs_device_get_total_bytes(device);
4261         u64 diff = old_size - new_size;
4262
4263         if (device->is_tgtdev_for_dev_replace)
4264                 return -EINVAL;
4265
4266         path = btrfs_alloc_path();
4267         if (!path)
4268                 return -ENOMEM;
4269
4270         path->reada = 2;
4271
4272         lock_chunks(root);
4273
4274         btrfs_device_set_total_bytes(device, new_size);
4275         if (device->writeable) {
4276                 device->fs_devices->total_rw_bytes -= diff;
4277                 spin_lock(&root->fs_info->free_chunk_lock);
4278                 root->fs_info->free_chunk_space -= diff;
4279                 spin_unlock(&root->fs_info->free_chunk_lock);
4280         }
4281         unlock_chunks(root);
4282
4283 again:
4284         key.objectid = device->devid;
4285         key.offset = (u64)-1;
4286         key.type = BTRFS_DEV_EXTENT_KEY;
4287
4288         do {
4289                 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
4290                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4291                 if (ret < 0) {
4292                         mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4293                         goto done;
4294                 }
4295
4296                 ret = btrfs_previous_item(root, path, 0, key.type);
4297                 if (ret)
4298                         mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4299                 if (ret < 0)
4300                         goto done;
4301                 if (ret) {
4302                         ret = 0;
4303                         btrfs_release_path(path);
4304                         break;
4305                 }
4306
4307                 l = path->nodes[0];
4308                 slot = path->slots[0];
4309                 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4310
4311                 if (key.objectid != device->devid) {
4312                         mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4313                         btrfs_release_path(path);
4314                         break;
4315                 }
4316
4317                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4318                 length = btrfs_dev_extent_length(l, dev_extent);
4319
4320                 if (key.offset + length <= new_size) {
4321                         mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4322                         btrfs_release_path(path);
4323                         break;
4324                 }
4325
4326                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4327                 btrfs_release_path(path);
4328
4329                 ret = btrfs_relocate_chunk(root, chunk_offset);
4330                 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4331                 if (ret && ret != -ENOSPC)
4332                         goto done;
4333                 if (ret == -ENOSPC)
4334                         failed++;
4335         } while (key.offset-- > 0);
4336
4337         if (failed && !retried) {
4338                 failed = 0;
4339                 retried = true;
4340                 goto again;
4341         } else if (failed && retried) {
4342                 ret = -ENOSPC;
4343                 goto done;
4344         }
4345
4346         /* Shrinking succeeded, else we would be at "done". */
4347         trans = btrfs_start_transaction(root, 0);
4348         if (IS_ERR(trans)) {
4349                 ret = PTR_ERR(trans);
4350                 goto done;
4351         }
4352
4353         lock_chunks(root);
4354
4355         /*
4356          * We checked in the above loop all device extents that were already in
4357          * the device tree. However before we have updated the device's
4358          * total_bytes to the new size, we might have had chunk allocations that
4359          * have not complete yet (new block groups attached to transaction
4360          * handles), and therefore their device extents were not yet in the
4361          * device tree and we missed them in the loop above. So if we have any
4362          * pending chunk using a device extent that overlaps the device range
4363          * that we can not use anymore, commit the current transaction and
4364          * repeat the search on the device tree - this way we guarantee we will
4365          * not have chunks using device extents that end beyond 'new_size'.
4366          */
4367         if (!checked_pending_chunks) {
4368                 u64 start = new_size;
4369                 u64 len = old_size - new_size;
4370
4371                 if (contains_pending_extent(trans->transaction, device,
4372                                             &start, len)) {
4373                         unlock_chunks(root);
4374                         checked_pending_chunks = true;
4375                         failed = 0;
4376                         retried = false;
4377                         ret = btrfs_commit_transaction(trans, root);
4378                         if (ret)
4379                                 goto done;
4380                         goto again;
4381                 }
4382         }
4383
4384         btrfs_device_set_disk_total_bytes(device, new_size);
4385         if (list_empty(&device->resized_list))
4386                 list_add_tail(&device->resized_list,
4387                               &root->fs_info->fs_devices->resized_devices);
4388
4389         WARN_ON(diff > old_total);
4390         btrfs_set_super_total_bytes(super_copy, old_total - diff);
4391         unlock_chunks(root);
4392
4393         /* Now btrfs_update_device() will change the on-disk size. */
4394         ret = btrfs_update_device(trans, device);
4395         btrfs_end_transaction(trans, root);
4396 done:
4397         btrfs_free_path(path);
4398         if (ret) {
4399                 lock_chunks(root);
4400                 btrfs_device_set_total_bytes(device, old_size);
4401                 if (device->writeable)
4402                         device->fs_devices->total_rw_bytes += diff;
4403                 spin_lock(&root->fs_info->free_chunk_lock);
4404                 root->fs_info->free_chunk_space += diff;
4405                 spin_unlock(&root->fs_info->free_chunk_lock);
4406                 unlock_chunks(root);
4407         }
4408         return ret;
4409 }
4410
4411 static int btrfs_add_system_chunk(struct btrfs_root *root,
4412                            struct btrfs_key *key,
4413                            struct btrfs_chunk *chunk, int item_size)
4414 {
4415         struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4416         struct btrfs_disk_key disk_key;
4417         u32 array_size;
4418         u8 *ptr;
4419
4420         lock_chunks(root);
4421         array_size = btrfs_super_sys_array_size(super_copy);
4422         if (array_size + item_size + sizeof(disk_key)
4423                         > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4424                 unlock_chunks(root);
4425                 return -EFBIG;
4426         }
4427
4428         ptr = super_copy->sys_chunk_array + array_size;
4429         btrfs_cpu_key_to_disk(&disk_key, key);
4430         memcpy(ptr, &disk_key, sizeof(disk_key));
4431         ptr += sizeof(disk_key);
4432         memcpy(ptr, chunk, item_size);
4433         item_size += sizeof(disk_key);
4434         btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4435         unlock_chunks(root);
4436
4437         return 0;
4438 }
4439
4440 /*
4441  * sort the devices in descending order by max_avail, total_avail
4442  */
4443 static int btrfs_cmp_device_info(const void *a, const void *b)
4444 {
4445         const struct btrfs_device_info *di_a = a;
4446         const struct btrfs_device_info *di_b = b;
4447
4448         if (di_a->max_avail > di_b->max_avail)
4449                 return -1;
4450         if (di_a->max_avail < di_b->max_avail)
4451                 return 1;
4452         if (di_a->total_avail > di_b->total_avail)
4453                 return -1;
4454         if (di_a->total_avail < di_b->total_avail)
4455                 return 1;
4456         return 0;
4457 }
4458
4459 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4460 {
4461         /* TODO allow them to set a preferred stripe size */
4462         return SZ_64K;
4463 }
4464
4465 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4466 {
4467         if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4468                 return;
4469
4470         btrfs_set_fs_incompat(info, RAID56);
4471 }
4472
4473 #define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r)             \
4474                         - sizeof(struct btrfs_item)             \
4475                         - sizeof(struct btrfs_chunk))           \
4476                         / sizeof(struct btrfs_stripe) + 1)
4477
4478 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE        \
4479                                 - 2 * sizeof(struct btrfs_disk_key)     \
4480                                 - 2 * sizeof(struct btrfs_chunk))       \
4481                                 / sizeof(struct btrfs_stripe) + 1)
4482
4483 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4484                                struct btrfs_root *extent_root, u64 start,
4485                                u64 type)
4486 {
4487         struct btrfs_fs_info *info = extent_root->fs_info;
4488         struct btrfs_fs_devices *fs_devices = info->fs_devices;
4489         struct list_head *cur;
4490         struct map_lookup *map = NULL;
4491         struct extent_map_tree *em_tree;
4492         struct extent_map *em;
4493         struct btrfs_device_info *devices_info = NULL;
4494         u64 total_avail;
4495         int num_stripes;        /* total number of stripes to allocate */
4496         int data_stripes;       /* number of stripes that count for
4497                                    block group size */
4498         int sub_stripes;        /* sub_stripes info for map */
4499         int dev_stripes;        /* stripes per dev */
4500         int devs_max;           /* max devs to use */
4501         int devs_min;           /* min devs needed */
4502         int devs_increment;     /* ndevs has to be a multiple of this */
4503         int ncopies;            /* how many copies to data has */
4504         int ret;
4505         u64 max_stripe_size;
4506         u64 max_chunk_size;
4507         u64 stripe_size;
4508         u64 num_bytes;
4509         u64 raid_stripe_len = BTRFS_STRIPE_LEN;
4510         int ndevs;
4511         int i;
4512         int j;
4513         int index;
4514
4515         BUG_ON(!alloc_profile_is_valid(type, 0));
4516
4517         if (list_empty(&fs_devices->alloc_list))
4518                 return -ENOSPC;
4519
4520         index = __get_raid_index(type);
4521
4522         sub_stripes = btrfs_raid_array[index].sub_stripes;
4523         dev_stripes = btrfs_raid_array[index].dev_stripes;
4524         devs_max = btrfs_raid_array[index].devs_max;
4525         devs_min = btrfs_raid_array[index].devs_min;
4526         devs_increment = btrfs_raid_array[index].devs_increment;
4527         ncopies = btrfs_raid_array[index].ncopies;
4528
4529         if (type & BTRFS_BLOCK_GROUP_DATA) {
4530                 max_stripe_size = SZ_1G;
4531                 max_chunk_size = 10 * max_stripe_size;
4532                 if (!devs_max)
4533                         devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4534         } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4535                 /* for larger filesystems, use larger metadata chunks */
4536                 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4537                         max_stripe_size = SZ_1G;
4538                 else
4539                         max_stripe_size = SZ_256M;
4540                 max_chunk_size = max_stripe_size;
4541                 if (!devs_max)
4542                         devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4543         } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4544                 max_stripe_size = SZ_32M;
4545                 max_chunk_size = 2 * max_stripe_size;
4546                 if (!devs_max)
4547                         devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4548         } else {
4549                 btrfs_err(info, "invalid chunk type 0x%llx requested",
4550                        type);
4551                 BUG_ON(1);
4552         }
4553
4554         /* we don't want a chunk larger than 10% of writeable space */
4555         max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4556                              max_chunk_size);
4557
4558         devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4559                                GFP_NOFS);
4560         if (!devices_info)
4561                 return -ENOMEM;
4562
4563         cur = fs_devices->alloc_list.next;
4564
4565         /*
4566          * in the first pass through the devices list, we gather information
4567          * about the available holes on each device.
4568          */
4569         ndevs = 0;
4570         while (cur != &fs_devices->alloc_list) {
4571                 struct btrfs_device *device;
4572                 u64 max_avail;
4573                 u64 dev_offset;
4574
4575                 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
4576
4577                 cur = cur->next;
4578
4579                 if (!device->writeable) {
4580                         WARN(1, KERN_ERR
4581                                "BTRFS: read-only device in alloc_list\n");
4582                         continue;
4583                 }
4584
4585                 if (!device->in_fs_metadata ||
4586                     device->is_tgtdev_for_dev_replace)
4587                         continue;
4588
4589                 if (device->total_bytes > device->bytes_used)
4590                         total_avail = device->total_bytes - device->bytes_used;
4591                 else
4592                         total_avail = 0;
4593
4594                 /* If there is no space on this device, skip it. */
4595                 if (total_avail == 0)
4596                         continue;
4597
4598                 ret = find_free_dev_extent(trans, device,
4599                                            max_stripe_size * dev_stripes,
4600                                            &dev_offset, &max_avail);
4601                 if (ret && ret != -ENOSPC)
4602                         goto error;
4603
4604                 if (ret == 0)
4605                         max_avail = max_stripe_size * dev_stripes;
4606
4607                 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4608                         continue;
4609
4610                 if (ndevs == fs_devices->rw_devices) {
4611                         WARN(1, "%s: found more than %llu devices\n",
4612                              __func__, fs_devices->rw_devices);
4613                         break;
4614                 }
4615                 devices_info[ndevs].dev_offset = dev_offset;
4616                 devices_info[ndevs].max_avail = max_avail;
4617                 devices_info[ndevs].total_avail = total_avail;
4618                 devices_info[ndevs].dev = device;
4619                 ++ndevs;
4620         }
4621
4622         /*
4623          * now sort the devices by hole size / available space
4624          */
4625         sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4626              btrfs_cmp_device_info, NULL);
4627
4628         /* round down to number of usable stripes */
4629         ndevs -= ndevs % devs_increment;
4630
4631         if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4632                 ret = -ENOSPC;
4633                 goto error;
4634         }
4635
4636         if (devs_max && ndevs > devs_max)
4637                 ndevs = devs_max;
4638         /*
4639          * the primary goal is to maximize the number of stripes, so use as many
4640          * devices as possible, even if the stripes are not maximum sized.
4641          */
4642         stripe_size = devices_info[ndevs-1].max_avail;
4643         num_stripes = ndevs * dev_stripes;
4644
4645         /*
4646          * this will have to be fixed for RAID1 and RAID10 over
4647          * more drives
4648          */
4649         data_stripes = num_stripes / ncopies;
4650
4651         if (type & BTRFS_BLOCK_GROUP_RAID5) {
4652                 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4653                                  btrfs_super_stripesize(info->super_copy));
4654                 data_stripes = num_stripes - 1;
4655         }
4656         if (type & BTRFS_BLOCK_GROUP_RAID6) {
4657                 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4658                                  btrfs_super_stripesize(info->super_copy));
4659                 data_stripes = num_stripes - 2;
4660         }
4661
4662         /*
4663          * Use the number of data stripes to figure out how big this chunk
4664          * is really going to be in terms of logical address space,
4665          * and compare that answer with the max chunk size
4666          */
4667         if (stripe_size * data_stripes > max_chunk_size) {
4668                 u64 mask = (1ULL << 24) - 1;
4669
4670                 stripe_size = div_u64(max_chunk_size, data_stripes);
4671
4672                 /* bump the answer up to a 16MB boundary */
4673                 stripe_size = (stripe_size + mask) & ~mask;
4674
4675                 /* but don't go higher than the limits we found
4676                  * while searching for free extents
4677                  */
4678                 if (stripe_size > devices_info[ndevs-1].max_avail)
4679                         stripe_size = devices_info[ndevs-1].max_avail;
4680         }
4681
4682         stripe_size = div_u64(stripe_size, dev_stripes);
4683
4684         /* align to BTRFS_STRIPE_LEN */
4685         stripe_size = div_u64(stripe_size, raid_stripe_len);
4686         stripe_size *= raid_stripe_len;
4687
4688         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4689         if (!map) {
4690                 ret = -ENOMEM;
4691                 goto error;
4692         }
4693         map->num_stripes = num_stripes;
4694
4695         for (i = 0; i < ndevs; ++i) {
4696                 for (j = 0; j < dev_stripes; ++j) {
4697                         int s = i * dev_stripes + j;
4698                         map->stripes[s].dev = devices_info[i].dev;
4699                         map->stripes[s].physical = devices_info[i].dev_offset +
4700                                                    j * stripe_size;
4701                 }
4702         }
4703         map->sector_size = extent_root->sectorsize;
4704         map->stripe_len = raid_stripe_len;
4705         map->io_align = raid_stripe_len;
4706         map->io_width = raid_stripe_len;
4707         map->type = type;
4708         map->sub_stripes = sub_stripes;
4709
4710         num_bytes = stripe_size * data_stripes;
4711
4712         trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
4713
4714         em = alloc_extent_map();
4715         if (!em) {
4716                 kfree(map);
4717                 ret = -ENOMEM;
4718                 goto error;
4719         }
4720         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4721         em->map_lookup = map;
4722         em->start = start;
4723         em->len = num_bytes;
4724         em->block_start = 0;
4725         em->block_len = em->len;
4726         em->orig_block_len = stripe_size;
4727
4728         em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4729         write_lock(&em_tree->lock);
4730         ret = add_extent_mapping(em_tree, em, 0);
4731         if (!ret) {
4732                 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4733                 atomic_inc(&em->refs);
4734         }
4735         write_unlock(&em_tree->lock);
4736         if (ret) {
4737                 free_extent_map(em);
4738                 goto error;
4739         }
4740
4741         ret = btrfs_make_block_group(trans, extent_root, 0, type,
4742                                      BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4743                                      start, num_bytes);
4744         if (ret)
4745                 goto error_del_extent;
4746
4747         for (i = 0; i < map->num_stripes; i++) {
4748                 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4749                 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4750         }
4751
4752         spin_lock(&extent_root->fs_info->free_chunk_lock);
4753         extent_root->fs_info->free_chunk_space -= (stripe_size *
4754                                                    map->num_stripes);
4755         spin_unlock(&extent_root->fs_info->free_chunk_lock);
4756
4757         free_extent_map(em);
4758         check_raid56_incompat_flag(extent_root->fs_info, type);
4759
4760         kfree(devices_info);
4761         return 0;
4762
4763 error_del_extent:
4764         write_lock(&em_tree->lock);
4765         remove_extent_mapping(em_tree, em);
4766         write_unlock(&em_tree->lock);
4767
4768         /* One for our allocation */
4769         free_extent_map(em);
4770         /* One for the tree reference */
4771         free_extent_map(em);
4772         /* One for the pending_chunks list reference */
4773         free_extent_map(em);
4774 error:
4775         kfree(devices_info);
4776         return ret;
4777 }
4778
4779 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4780                                 struct btrfs_root *extent_root,
4781                                 u64 chunk_offset, u64 chunk_size)
4782 {
4783         struct btrfs_key key;
4784         struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4785         struct btrfs_device *device;
4786         struct btrfs_chunk *chunk;
4787         struct btrfs_stripe *stripe;
4788         struct extent_map_tree *em_tree;
4789         struct extent_map *em;
4790         struct map_lookup *map;
4791         size_t item_size;
4792         u64 dev_offset;
4793         u64 stripe_size;
4794         int i = 0;
4795         int ret;
4796
4797         em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4798         read_lock(&em_tree->lock);
4799         em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4800         read_unlock(&em_tree->lock);
4801
4802         if (!em) {
4803                 btrfs_crit(extent_root->fs_info, "unable to find logical "
4804                            "%Lu len %Lu", chunk_offset, chunk_size);
4805                 return -EINVAL;
4806         }
4807
4808         if (em->start != chunk_offset || em->len != chunk_size) {
4809                 btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
4810                           " %Lu-%Lu, found %Lu-%Lu", chunk_offset,
4811                           chunk_size, em->start, em->len);
4812                 free_extent_map(em);
4813                 return -EINVAL;
4814         }
4815
4816         map = em->map_lookup;
4817         item_size = btrfs_chunk_item_size(map->num_stripes);
4818         stripe_size = em->orig_block_len;
4819
4820         chunk = kzalloc(item_size, GFP_NOFS);
4821         if (!chunk) {
4822                 ret = -ENOMEM;
4823                 goto out;
4824         }
4825
4826         for (i = 0; i < map->num_stripes; i++) {
4827                 device = map->stripes[i].dev;
4828                 dev_offset = map->stripes[i].physical;
4829
4830                 ret = btrfs_update_device(trans, device);
4831                 if (ret)
4832                         goto out;
4833                 ret = btrfs_alloc_dev_extent(trans, device,
4834                                              chunk_root->root_key.objectid,
4835                                              BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4836                                              chunk_offset, dev_offset,
4837                                              stripe_size);
4838                 if (ret)
4839                         goto out;
4840         }
4841
4842         stripe = &chunk->stripe;
4843         for (i = 0; i < map->num_stripes; i++) {
4844                 device = map->stripes[i].dev;
4845                 dev_offset = map->stripes[i].physical;
4846
4847                 btrfs_set_stack_stripe_devid(stripe, device->devid);
4848                 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4849                 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4850                 stripe++;
4851         }
4852
4853         btrfs_set_stack_chunk_length(chunk, chunk_size);
4854         btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4855         btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4856         btrfs_set_stack_chunk_type(chunk, map->type);
4857         btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4858         btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4859         btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4860         btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
4861         btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4862
4863         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4864         key.type = BTRFS_CHUNK_ITEM_KEY;
4865         key.offset = chunk_offset;
4866
4867         ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4868         if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4869                 /*
4870                  * TODO: Cleanup of inserted chunk root in case of
4871                  * failure.
4872                  */
4873                 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
4874                                              item_size);
4875         }
4876
4877 out:
4878         kfree(chunk);
4879         free_extent_map(em);
4880         return ret;
4881 }
4882
4883 /*
4884  * Chunk allocation falls into two parts. The first part does works
4885  * that make the new allocated chunk useable, but not do any operation
4886  * that modifies the chunk tree. The second part does the works that
4887  * require modifying the chunk tree. This division is important for the
4888  * bootstrap process of adding storage to a seed btrfs.
4889  */
4890 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4891                       struct btrfs_root *extent_root, u64 type)
4892 {
4893         u64 chunk_offset;
4894
4895         ASSERT(mutex_is_locked(&extent_root->fs_info->chunk_mutex));
4896         chunk_offset = find_next_chunk(extent_root->fs_info);
4897         return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
4898 }
4899
4900 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
4901                                          struct btrfs_root *root,
4902                                          struct btrfs_device *device)
4903 {
4904         u64 chunk_offset;
4905         u64 sys_chunk_offset;
4906         u64 alloc_profile;
4907         struct btrfs_fs_info *fs_info = root->fs_info;
4908         struct btrfs_root *extent_root = fs_info->extent_root;
4909         int ret;
4910
4911         chunk_offset = find_next_chunk(fs_info);
4912         alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
4913         ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
4914                                   alloc_profile);
4915         if (ret)
4916                 return ret;
4917
4918         sys_chunk_offset = find_next_chunk(root->fs_info);
4919         alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
4920         ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
4921                                   alloc_profile);
4922         return ret;
4923 }
4924
4925 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
4926 {
4927         int max_errors;
4928
4929         if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
4930                          BTRFS_BLOCK_GROUP_RAID10 |
4931                          BTRFS_BLOCK_GROUP_RAID5 |
4932                          BTRFS_BLOCK_GROUP_DUP)) {
4933                 max_errors = 1;
4934         } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
4935                 max_errors = 2;
4936         } else {
4937                 max_errors = 0;
4938         }
4939
4940         return max_errors;
4941 }
4942
4943 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
4944 {
4945         struct extent_map *em;
4946         struct map_lookup *map;
4947         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4948         int readonly = 0;
4949         int miss_ndevs = 0;
4950         int i;
4951
4952         read_lock(&map_tree->map_tree.lock);
4953         em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
4954         read_unlock(&map_tree->map_tree.lock);
4955         if (!em)
4956                 return 1;
4957
4958         map = em->map_lookup;
4959         for (i = 0; i < map->num_stripes; i++) {
4960                 if (map->stripes[i].dev->missing) {
4961                         miss_ndevs++;
4962                         continue;
4963                 }
4964
4965                 if (!map->stripes[i].dev->writeable) {
4966                         readonly = 1;
4967                         goto end;
4968                 }
4969         }
4970
4971         /*
4972          * If the number of missing devices is larger than max errors,
4973          * we can not write the data into that chunk successfully, so
4974          * set it readonly.
4975          */
4976         if (miss_ndevs > btrfs_chunk_max_errors(map))
4977                 readonly = 1;
4978 end:
4979         free_extent_map(em);
4980         return readonly;
4981 }
4982
4983 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
4984 {
4985         extent_map_tree_init(&tree->map_tree);
4986 }
4987
4988 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
4989 {
4990         struct extent_map *em;
4991
4992         while (1) {
4993                 write_lock(&tree->map_tree.lock);
4994                 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
4995                 if (em)
4996                         remove_extent_mapping(&tree->map_tree, em);
4997                 write_unlock(&tree->map_tree.lock);
4998                 if (!em)
4999                         break;
5000                 /* once for us */
5001                 free_extent_map(em);
5002                 /* once for the tree */
5003                 free_extent_map(em);
5004         }
5005 }
5006
5007 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5008 {
5009         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5010         struct extent_map *em;
5011         struct map_lookup *map;
5012         struct extent_map_tree *em_tree = &map_tree->map_tree;
5013         int ret;
5014
5015         read_lock(&em_tree->lock);
5016         em = lookup_extent_mapping(em_tree, logical, len);
5017         read_unlock(&em_tree->lock);
5018
5019         /*
5020          * We could return errors for these cases, but that could get ugly and
5021          * we'd probably do the same thing which is just not do anything else
5022          * and exit, so return 1 so the callers don't try to use other copies.
5023          */
5024         if (!em) {
5025                 btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
5026                             logical+len);
5027                 return 1;
5028         }
5029
5030         if (em->start > logical || em->start + em->len < logical) {
5031                 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
5032                             "%Lu-%Lu", logical, logical+len, em->start,
5033                             em->start + em->len);
5034                 free_extent_map(em);
5035                 return 1;
5036         }
5037
5038         map = em->map_lookup;
5039         if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5040                 ret = map->num_stripes;
5041         else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5042                 ret = map->sub_stripes;
5043         else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5044                 ret = 2;
5045         else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5046                 ret = 3;
5047         else
5048                 ret = 1;
5049         free_extent_map(em);
5050
5051         btrfs_dev_replace_lock(&fs_info->dev_replace);
5052         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
5053                 ret++;
5054         btrfs_dev_replace_unlock(&fs_info->dev_replace);
5055
5056         return ret;
5057 }
5058
5059 unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
5060                                     struct btrfs_mapping_tree *map_tree,
5061                                     u64 logical)
5062 {
5063         struct extent_map *em;
5064         struct map_lookup *map;
5065         struct extent_map_tree *em_tree = &map_tree->map_tree;
5066         unsigned long len = root->sectorsize;
5067
5068         read_lock(&em_tree->lock);
5069         em = lookup_extent_mapping(em_tree, logical, len);
5070         read_unlock(&em_tree->lock);
5071         BUG_ON(!em);
5072
5073         BUG_ON(em->start > logical || em->start + em->len < logical);
5074         map = em->map_lookup;
5075         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5076                 len = map->stripe_len * nr_data_stripes(map);
5077         free_extent_map(em);
5078         return len;
5079 }
5080
5081 int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
5082                            u64 logical, u64 len, int mirror_num)
5083 {
5084         struct extent_map *em;
5085         struct map_lookup *map;
5086         struct extent_map_tree *em_tree = &map_tree->map_tree;
5087         int ret = 0;
5088
5089         read_lock(&em_tree->lock);
5090         em = lookup_extent_mapping(em_tree, logical, len);
5091         read_unlock(&em_tree->lock);
5092         BUG_ON(!em);
5093
5094         BUG_ON(em->start > logical || em->start + em->len < logical);
5095         map = em->map_lookup;
5096         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5097                 ret = 1;
5098         free_extent_map(em);
5099         return ret;
5100 }
5101
5102 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5103                             struct map_lookup *map, int first, int num,
5104                             int optimal, int dev_replace_is_ongoing)
5105 {
5106         int i;
5107         int tolerance;
5108         struct btrfs_device *srcdev;
5109
5110         if (dev_replace_is_ongoing &&
5111             fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5112              BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5113                 srcdev = fs_info->dev_replace.srcdev;
5114         else
5115                 srcdev = NULL;
5116
5117         /*
5118          * try to avoid the drive that is the source drive for a
5119          * dev-replace procedure, only choose it if no other non-missing
5120          * mirror is available
5121          */
5122         for (tolerance = 0; tolerance < 2; tolerance++) {
5123                 if (map->stripes[optimal].dev->bdev &&
5124                     (tolerance || map->stripes[optimal].dev != srcdev))
5125                         return optimal;
5126                 for (i = first; i < first + num; i++) {
5127                         if (map->stripes[i].dev->bdev &&
5128                             (tolerance || map->stripes[i].dev != srcdev))
5129                                 return i;
5130                 }
5131         }
5132
5133         /* we couldn't find one that doesn't fail.  Just return something
5134          * and the io error handling code will clean up eventually
5135          */
5136         return optimal;
5137 }
5138
5139 static inline int parity_smaller(u64 a, u64 b)
5140 {
5141         return a > b;
5142 }
5143
5144 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5145 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5146 {
5147         struct btrfs_bio_stripe s;
5148         int i;
5149         u64 l;
5150         int again = 1;
5151
5152         while (again) {
5153                 again = 0;
5154                 for (i = 0; i < num_stripes - 1; i++) {
5155                         if (parity_smaller(bbio->raid_map[i],
5156                                            bbio->raid_map[i+1])) {
5157                                 s = bbio->stripes[i];
5158                                 l = bbio->raid_map[i];
5159                                 bbio->stripes[i] = bbio->stripes[i+1];
5160                                 bbio->raid_map[i] = bbio->raid_map[i+1];
5161                                 bbio->stripes[i+1] = s;
5162                                 bbio->raid_map[i+1] = l;
5163
5164                                 again = 1;
5165                         }
5166                 }
5167         }
5168 }
5169
5170 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5171 {
5172         struct btrfs_bio *bbio = kzalloc(
5173                  /* the size of the btrfs_bio */
5174                 sizeof(struct btrfs_bio) +
5175                 /* plus the variable array for the stripes */
5176                 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5177                 /* plus the variable array for the tgt dev */
5178                 sizeof(int) * (real_stripes) +
5179                 /*
5180                  * plus the raid_map, which includes both the tgt dev
5181                  * and the stripes
5182                  */
5183                 sizeof(u64) * (total_stripes),
5184                 GFP_NOFS|__GFP_NOFAIL);
5185
5186         atomic_set(&bbio->error, 0);
5187         atomic_set(&bbio->refs, 1);
5188
5189         return bbio;
5190 }
5191
5192 void btrfs_get_bbio(struct btrfs_bio *bbio)
5193 {
5194         WARN_ON(!atomic_read(&bbio->refs));
5195         atomic_inc(&bbio->refs);
5196 }
5197
5198 void btrfs_put_bbio(struct btrfs_bio *bbio)
5199 {
5200         if (!bbio)
5201                 return;
5202         if (atomic_dec_and_test(&bbio->refs))
5203                 kfree(bbio);
5204 }
5205
5206 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
5207                              u64 logical, u64 *length,
5208                              struct btrfs_bio **bbio_ret,
5209                              int mirror_num, int need_raid_map)
5210 {
5211         struct extent_map *em;
5212         struct map_lookup *map;
5213         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5214         struct extent_map_tree *em_tree = &map_tree->map_tree;
5215         u64 offset;
5216         u64 stripe_offset;
5217         u64 stripe_end_offset;
5218         u64 stripe_nr;
5219         u64 stripe_nr_orig;
5220         u64 stripe_nr_end;
5221         u64 stripe_len;
5222         u32 stripe_index;
5223         int i;
5224         int ret = 0;
5225         int num_stripes;
5226         int max_errors = 0;
5227         int tgtdev_indexes = 0;
5228         struct btrfs_bio *bbio = NULL;
5229         struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5230         int dev_replace_is_ongoing = 0;
5231         int num_alloc_stripes;
5232         int patch_the_first_stripe_for_dev_replace = 0;
5233         u64 physical_to_patch_in_first_stripe = 0;
5234         u64 raid56_full_stripe_start = (u64)-1;
5235
5236         read_lock(&em_tree->lock);
5237         em = lookup_extent_mapping(em_tree, logical, *length);
5238         read_unlock(&em_tree->lock);
5239
5240         if (!em) {
5241                 btrfs_crit(fs_info, "unable to find logical %llu len %llu",
5242                         logical, *length);
5243                 return -EINVAL;
5244         }
5245
5246         if (em->start > logical || em->start + em->len < logical) {
5247                 btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
5248                            "found %Lu-%Lu", logical, em->start,
5249                            em->start + em->len);
5250                 free_extent_map(em);
5251                 return -EINVAL;
5252         }
5253
5254         map = em->map_lookup;
5255         offset = logical - em->start;
5256
5257         stripe_len = map->stripe_len;
5258         stripe_nr = offset;
5259         /*
5260          * stripe_nr counts the total number of stripes we have to stride
5261          * to get to this block
5262          */
5263         stripe_nr = div64_u64(stripe_nr, stripe_len);
5264
5265         stripe_offset = stripe_nr * stripe_len;
5266         BUG_ON(offset < stripe_offset);
5267
5268         /* stripe_offset is the offset of this block in its stripe*/
5269         stripe_offset = offset - stripe_offset;
5270
5271         /* if we're here for raid56, we need to know the stripe aligned start */
5272         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5273                 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5274                 raid56_full_stripe_start = offset;
5275
5276                 /* allow a write of a full stripe, but make sure we don't
5277                  * allow straddling of stripes
5278                  */
5279                 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5280                                 full_stripe_len);
5281                 raid56_full_stripe_start *= full_stripe_len;
5282         }
5283
5284         if (rw & REQ_DISCARD) {
5285                 /* we don't discard raid56 yet */
5286                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5287                         ret = -EOPNOTSUPP;
5288                         goto out;
5289                 }
5290                 *length = min_t(u64, em->len - offset, *length);
5291         } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5292                 u64 max_len;
5293                 /* For writes to RAID[56], allow a full stripeset across all disks.
5294                    For other RAID types and for RAID[56] reads, just allow a single
5295                    stripe (on a single disk). */
5296                 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5297                     (rw & REQ_WRITE)) {
5298                         max_len = stripe_len * nr_data_stripes(map) -
5299                                 (offset - raid56_full_stripe_start);
5300                 } else {
5301                         /* we limit the length of each bio to what fits in a stripe */
5302                         max_len = stripe_len - stripe_offset;
5303                 }
5304                 *length = min_t(u64, em->len - offset, max_len);
5305         } else {
5306                 *length = em->len - offset;
5307         }
5308
5309         /* This is for when we're called from btrfs_merge_bio_hook() and all
5310            it cares about is the length */
5311         if (!bbio_ret)
5312                 goto out;
5313
5314         btrfs_dev_replace_lock(dev_replace);
5315         dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5316         if (!dev_replace_is_ongoing)
5317                 btrfs_dev_replace_unlock(dev_replace);
5318
5319         if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5320             !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
5321             dev_replace->tgtdev != NULL) {
5322                 /*
5323                  * in dev-replace case, for repair case (that's the only
5324                  * case where the mirror is selected explicitly when
5325                  * calling btrfs_map_block), blocks left of the left cursor
5326                  * can also be read from the target drive.
5327                  * For REQ_GET_READ_MIRRORS, the target drive is added as
5328                  * the last one to the array of stripes. For READ, it also
5329                  * needs to be supported using the same mirror number.
5330                  * If the requested block is not left of the left cursor,
5331                  * EIO is returned. This can happen because btrfs_num_copies()
5332                  * returns one more in the dev-replace case.
5333                  */
5334                 u64 tmp_length = *length;
5335                 struct btrfs_bio *tmp_bbio = NULL;
5336                 int tmp_num_stripes;
5337                 u64 srcdev_devid = dev_replace->srcdev->devid;
5338                 int index_srcdev = 0;
5339                 int found = 0;
5340                 u64 physical_of_found = 0;
5341
5342                 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
5343                              logical, &tmp_length, &tmp_bbio, 0, 0);
5344                 if (ret) {
5345                         WARN_ON(tmp_bbio != NULL);
5346                         goto out;
5347                 }
5348
5349                 tmp_num_stripes = tmp_bbio->num_stripes;
5350                 if (mirror_num > tmp_num_stripes) {
5351                         /*
5352                          * REQ_GET_READ_MIRRORS does not contain this
5353                          * mirror, that means that the requested area
5354                          * is not left of the left cursor
5355                          */
5356                         ret = -EIO;
5357                         btrfs_put_bbio(tmp_bbio);
5358                         goto out;
5359                 }
5360
5361                 /*
5362                  * process the rest of the function using the mirror_num
5363                  * of the source drive. Therefore look it up first.
5364                  * At the end, patch the device pointer to the one of the
5365                  * target drive.
5366                  */
5367                 for (i = 0; i < tmp_num_stripes; i++) {
5368                         if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) {
5369                                 /*
5370                                  * In case of DUP, in order to keep it
5371                                  * simple, only add the mirror with the
5372                                  * lowest physical address
5373                                  */
5374                                 if (found &&
5375                                     physical_of_found <=
5376                                      tmp_bbio->stripes[i].physical)
5377                                         continue;
5378                                 index_srcdev = i;
5379                                 found = 1;
5380                                 physical_of_found =
5381                                         tmp_bbio->stripes[i].physical;
5382                         }
5383                 }
5384
5385                 if (found) {
5386                         mirror_num = index_srcdev + 1;
5387                         patch_the_first_stripe_for_dev_replace = 1;
5388                         physical_to_patch_in_first_stripe = physical_of_found;
5389                 } else {
5390                         WARN_ON(1);
5391                         ret = -EIO;
5392                         btrfs_put_bbio(tmp_bbio);
5393                         goto out;
5394                 }
5395
5396                 btrfs_put_bbio(tmp_bbio);
5397         } else if (mirror_num > map->num_stripes) {
5398                 mirror_num = 0;
5399         }
5400
5401         num_stripes = 1;
5402         stripe_index = 0;
5403         stripe_nr_orig = stripe_nr;
5404         stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
5405         stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len);
5406         stripe_end_offset = stripe_nr_end * map->stripe_len -
5407                             (offset + *length);
5408
5409         if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5410                 if (rw & REQ_DISCARD)
5411                         num_stripes = min_t(u64, map->num_stripes,
5412                                             stripe_nr_end - stripe_nr_orig);
5413                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5414                                 &stripe_index);
5415                 if (!(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)))
5416                         mirror_num = 1;
5417         } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5418                 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
5419                         num_stripes = map->num_stripes;
5420                 else if (mirror_num)
5421                         stripe_index = mirror_num - 1;
5422                 else {
5423                         stripe_index = find_live_mirror(fs_info, map, 0,
5424                                             map->num_stripes,
5425                                             current->pid % map->num_stripes,
5426                                             dev_replace_is_ongoing);
5427                         mirror_num = stripe_index + 1;
5428                 }
5429
5430         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5431                 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
5432                         num_stripes = map->num_stripes;
5433                 } else if (mirror_num) {
5434                         stripe_index = mirror_num - 1;
5435                 } else {
5436                         mirror_num = 1;
5437                 }
5438
5439         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5440                 u32 factor = map->num_stripes / map->sub_stripes;
5441
5442                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5443                 stripe_index *= map->sub_stripes;
5444
5445                 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5446                         num_stripes = map->sub_stripes;
5447                 else if (rw & REQ_DISCARD)
5448                         num_stripes = min_t(u64, map->sub_stripes *
5449                                             (stripe_nr_end - stripe_nr_orig),
5450                                             map->num_stripes);
5451                 else if (mirror_num)
5452                         stripe_index += mirror_num - 1;
5453                 else {
5454                         int old_stripe_index = stripe_index;
5455                         stripe_index = find_live_mirror(fs_info, map,
5456                                               stripe_index,
5457                                               map->sub_stripes, stripe_index +
5458                                               current->pid % map->sub_stripes,
5459                                               dev_replace_is_ongoing);
5460                         mirror_num = stripe_index - old_stripe_index + 1;
5461                 }
5462
5463         } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5464                 if (need_raid_map &&
5465                     ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5466                      mirror_num > 1)) {
5467                         /* push stripe_nr back to the start of the full stripe */
5468                         stripe_nr = div_u64(raid56_full_stripe_start,
5469                                         stripe_len * nr_data_stripes(map));
5470
5471                         /* RAID[56] write or recovery. Return all stripes */
5472                         num_stripes = map->num_stripes;
5473                         max_errors = nr_parity_stripes(map);
5474
5475                         *length = map->stripe_len;
5476                         stripe_index = 0;
5477                         stripe_offset = 0;
5478                 } else {
5479                         /*
5480                          * Mirror #0 or #1 means the original data block.
5481                          * Mirror #2 is RAID5 parity block.
5482                          * Mirror #3 is RAID6 Q block.
5483                          */
5484                         stripe_nr = div_u64_rem(stripe_nr,
5485                                         nr_data_stripes(map), &stripe_index);
5486                         if (mirror_num > 1)
5487                                 stripe_index = nr_data_stripes(map) +
5488                                                 mirror_num - 2;
5489
5490                         /* We distribute the parity blocks across stripes */
5491                         div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5492                                         &stripe_index);
5493                         if (!(rw & (REQ_WRITE | REQ_DISCARD |
5494                                     REQ_GET_READ_MIRRORS)) && mirror_num <= 1)
5495                                 mirror_num = 1;
5496                 }
5497         } else {
5498                 /*
5499                  * after this, stripe_nr is the number of stripes on this
5500                  * device we have to walk to find the data, and stripe_index is
5501                  * the number of our device in the stripe array
5502                  */
5503                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5504                                 &stripe_index);
5505                 mirror_num = stripe_index + 1;
5506         }
5507         BUG_ON(stripe_index >= map->num_stripes);
5508
5509         num_alloc_stripes = num_stripes;
5510         if (dev_replace_is_ongoing) {
5511                 if (rw & (REQ_WRITE | REQ_DISCARD))
5512                         num_alloc_stripes <<= 1;
5513                 if (rw & REQ_GET_READ_MIRRORS)
5514                         num_alloc_stripes++;
5515                 tgtdev_indexes = num_stripes;
5516         }
5517
5518         bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5519         if (!bbio) {
5520                 ret = -ENOMEM;
5521                 goto out;
5522         }
5523         if (dev_replace_is_ongoing)
5524                 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5525
5526         /* build raid_map */
5527         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
5528             need_raid_map && ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5529             mirror_num > 1)) {
5530                 u64 tmp;
5531                 unsigned rot;
5532
5533                 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5534                                  sizeof(struct btrfs_bio_stripe) *
5535                                  num_alloc_stripes +
5536                                  sizeof(int) * tgtdev_indexes);
5537
5538                 /* Work out the disk rotation on this stripe-set */
5539                 div_u64_rem(stripe_nr, num_stripes, &rot);
5540
5541                 /* Fill in the logical address of each stripe */
5542                 tmp = stripe_nr * nr_data_stripes(map);
5543                 for (i = 0; i < nr_data_stripes(map); i++)
5544                         bbio->raid_map[(i+rot) % num_stripes] =
5545                                 em->start + (tmp + i) * map->stripe_len;
5546
5547                 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5548                 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5549                         bbio->raid_map[(i+rot+1) % num_stripes] =
5550                                 RAID6_Q_STRIPE;
5551         }
5552
5553         if (rw & REQ_DISCARD) {
5554                 u32 factor = 0;
5555                 u32 sub_stripes = 0;
5556                 u64 stripes_per_dev = 0;
5557                 u32 remaining_stripes = 0;
5558                 u32 last_stripe = 0;
5559
5560                 if (map->type &
5561                     (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5562                         if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5563                                 sub_stripes = 1;
5564                         else
5565                                 sub_stripes = map->sub_stripes;
5566
5567                         factor = map->num_stripes / sub_stripes;
5568                         stripes_per_dev = div_u64_rem(stripe_nr_end -
5569                                                       stripe_nr_orig,
5570                                                       factor,
5571                                                       &remaining_stripes);
5572                         div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5573                         last_stripe *= sub_stripes;
5574                 }
5575
5576                 for (i = 0; i < num_stripes; i++) {
5577                         bbio->stripes[i].physical =
5578                                 map->stripes[stripe_index].physical +
5579                                 stripe_offset + stripe_nr * map->stripe_len;
5580                         bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5581
5582                         if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5583                                          BTRFS_BLOCK_GROUP_RAID10)) {
5584                                 bbio->stripes[i].length = stripes_per_dev *
5585                                                           map->stripe_len;
5586
5587                                 if (i / sub_stripes < remaining_stripes)
5588                                         bbio->stripes[i].length +=
5589                                                 map->stripe_len;
5590
5591                                 /*
5592                                  * Special for the first stripe and
5593                                  * the last stripe:
5594                                  *
5595                                  * |-------|...|-------|
5596                                  *     |----------|
5597                                  *    off     end_off
5598                                  */
5599                                 if (i < sub_stripes)
5600                                         bbio->stripes[i].length -=
5601                                                 stripe_offset;
5602
5603                                 if (stripe_index >= last_stripe &&
5604                                     stripe_index <= (last_stripe +
5605                                                      sub_stripes - 1))
5606                                         bbio->stripes[i].length -=
5607                                                 stripe_end_offset;
5608
5609                                 if (i == sub_stripes - 1)
5610                                         stripe_offset = 0;
5611                         } else
5612                                 bbio->stripes[i].length = *length;
5613
5614                         stripe_index++;
5615                         if (stripe_index == map->num_stripes) {
5616                                 /* This could only happen for RAID0/10 */
5617                                 stripe_index = 0;
5618                                 stripe_nr++;
5619                         }
5620                 }
5621         } else {
5622                 for (i = 0; i < num_stripes; i++) {
5623                         bbio->stripes[i].physical =
5624                                 map->stripes[stripe_index].physical +
5625                                 stripe_offset +
5626                                 stripe_nr * map->stripe_len;
5627                         bbio->stripes[i].dev =
5628                                 map->stripes[stripe_index].dev;
5629                         stripe_index++;
5630                 }
5631         }
5632
5633         if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5634                 max_errors = btrfs_chunk_max_errors(map);
5635
5636         if (bbio->raid_map)
5637                 sort_parity_stripes(bbio, num_stripes);
5638
5639         tgtdev_indexes = 0;
5640         if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
5641             dev_replace->tgtdev != NULL) {
5642                 int index_where_to_add;
5643                 u64 srcdev_devid = dev_replace->srcdev->devid;
5644
5645                 /*
5646                  * duplicate the write operations while the dev replace
5647                  * procedure is running. Since the copying of the old disk
5648                  * to the new disk takes place at run time while the
5649                  * filesystem is mounted writable, the regular write
5650                  * operations to the old disk have to be duplicated to go
5651                  * to the new disk as well.
5652                  * Note that device->missing is handled by the caller, and
5653                  * that the write to the old disk is already set up in the
5654                  * stripes array.
5655                  */
5656                 index_where_to_add = num_stripes;
5657                 for (i = 0; i < num_stripes; i++) {
5658                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5659                                 /* write to new disk, too */
5660                                 struct btrfs_bio_stripe *new =
5661                                         bbio->stripes + index_where_to_add;
5662                                 struct btrfs_bio_stripe *old =
5663                                         bbio->stripes + i;
5664
5665                                 new->physical = old->physical;
5666                                 new->length = old->length;
5667                                 new->dev = dev_replace->tgtdev;
5668                                 bbio->tgtdev_map[i] = index_where_to_add;
5669                                 index_where_to_add++;
5670                                 max_errors++;
5671                                 tgtdev_indexes++;
5672                         }
5673                 }
5674                 num_stripes = index_where_to_add;
5675         } else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
5676                    dev_replace->tgtdev != NULL) {
5677                 u64 srcdev_devid = dev_replace->srcdev->devid;
5678                 int index_srcdev = 0;
5679                 int found = 0;
5680                 u64 physical_of_found = 0;
5681
5682                 /*
5683                  * During the dev-replace procedure, the target drive can
5684                  * also be used to read data in case it is needed to repair
5685                  * a corrupt block elsewhere. This is possible if the
5686                  * requested area is left of the left cursor. In this area,
5687                  * the target drive is a full copy of the source drive.
5688                  */
5689                 for (i = 0; i < num_stripes; i++) {
5690                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5691                                 /*
5692                                  * In case of DUP, in order to keep it
5693                                  * simple, only add the mirror with the
5694                                  * lowest physical address
5695                                  */
5696                                 if (found &&
5697                                     physical_of_found <=
5698                                      bbio->stripes[i].physical)
5699                                         continue;
5700                                 index_srcdev = i;
5701                                 found = 1;
5702                                 physical_of_found = bbio->stripes[i].physical;
5703                         }
5704                 }
5705                 if (found) {
5706                         if (physical_of_found + map->stripe_len <=
5707                             dev_replace->cursor_left) {
5708                                 struct btrfs_bio_stripe *tgtdev_stripe =
5709                                         bbio->stripes + num_stripes;
5710
5711                                 tgtdev_stripe->physical = physical_of_found;
5712                                 tgtdev_stripe->length =
5713                                         bbio->stripes[index_srcdev].length;
5714                                 tgtdev_stripe->dev = dev_replace->tgtdev;
5715                                 bbio->tgtdev_map[index_srcdev] = num_stripes;
5716
5717                                 tgtdev_indexes++;
5718                                 num_stripes++;
5719                         }
5720                 }
5721         }
5722
5723         *bbio_ret = bbio;
5724         bbio->map_type = map->type;
5725         bbio->num_stripes = num_stripes;
5726         bbio->max_errors = max_errors;
5727         bbio->mirror_num = mirror_num;
5728         bbio->num_tgtdevs = tgtdev_indexes;
5729
5730         /*
5731          * this is the case that REQ_READ && dev_replace_is_ongoing &&
5732          * mirror_num == num_stripes + 1 && dev_replace target drive is
5733          * available as a mirror
5734          */
5735         if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5736                 WARN_ON(num_stripes > 1);
5737                 bbio->stripes[0].dev = dev_replace->tgtdev;
5738                 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5739                 bbio->mirror_num = map->num_stripes + 1;
5740         }
5741 out:
5742         if (dev_replace_is_ongoing)
5743                 btrfs_dev_replace_unlock(dev_replace);
5744         free_extent_map(em);
5745         return ret;
5746 }
5747
5748 int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
5749                       u64 logical, u64 *length,
5750                       struct btrfs_bio **bbio_ret, int mirror_num)
5751 {
5752         return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5753                                  mirror_num, 0);
5754 }
5755
5756 /* For Scrub/replace */
5757 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, int rw,
5758                      u64 logical, u64 *length,
5759                      struct btrfs_bio **bbio_ret, int mirror_num,
5760                      int need_raid_map)
5761 {
5762         return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5763                                  mirror_num, need_raid_map);
5764 }
5765
5766 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5767                      u64 chunk_start, u64 physical, u64 devid,
5768                      u64 **logical, int *naddrs, int *stripe_len)
5769 {
5770         struct extent_map_tree *em_tree = &map_tree->map_tree;
5771         struct extent_map *em;
5772         struct map_lookup *map;
5773         u64 *buf;
5774         u64 bytenr;
5775         u64 length;
5776         u64 stripe_nr;
5777         u64 rmap_len;
5778         int i, j, nr = 0;
5779
5780         read_lock(&em_tree->lock);
5781         em = lookup_extent_mapping(em_tree, chunk_start, 1);
5782         read_unlock(&em_tree->lock);
5783
5784         if (!em) {
5785                 printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n",
5786                        chunk_start);
5787                 return -EIO;
5788         }
5789
5790         if (em->start != chunk_start) {
5791                 printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
5792                        em->start, chunk_start);
5793                 free_extent_map(em);
5794                 return -EIO;
5795         }
5796         map = em->map_lookup;
5797
5798         length = em->len;
5799         rmap_len = map->stripe_len;
5800
5801         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5802                 length = div_u64(length, map->num_stripes / map->sub_stripes);
5803         else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5804                 length = div_u64(length, map->num_stripes);
5805         else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5806                 length = div_u64(length, nr_data_stripes(map));
5807                 rmap_len = map->stripe_len * nr_data_stripes(map);
5808         }
5809
5810         buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5811         BUG_ON(!buf); /* -ENOMEM */
5812
5813         for (i = 0; i < map->num_stripes; i++) {
5814                 if (devid && map->stripes[i].dev->devid != devid)
5815                         continue;
5816                 if (map->stripes[i].physical > physical ||
5817                     map->stripes[i].physical + length <= physical)
5818                         continue;
5819
5820                 stripe_nr = physical - map->stripes[i].physical;
5821                 stripe_nr = div_u64(stripe_nr, map->stripe_len);
5822
5823                 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5824                         stripe_nr = stripe_nr * map->num_stripes + i;
5825                         stripe_nr = div_u64(stripe_nr, map->sub_stripes);
5826                 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5827                         stripe_nr = stripe_nr * map->num_stripes + i;
5828                 } /* else if RAID[56], multiply by nr_data_stripes().
5829                    * Alternatively, just use rmap_len below instead of
5830                    * map->stripe_len */
5831
5832                 bytenr = chunk_start + stripe_nr * rmap_len;
5833                 WARN_ON(nr >= map->num_stripes);
5834                 for (j = 0; j < nr; j++) {
5835                         if (buf[j] == bytenr)
5836                                 break;
5837                 }
5838                 if (j == nr) {
5839                         WARN_ON(nr >= map->num_stripes);
5840                         buf[nr++] = bytenr;
5841                 }
5842         }
5843
5844         *logical = buf;
5845         *naddrs = nr;
5846         *stripe_len = rmap_len;
5847
5848         free_extent_map(em);
5849         return 0;
5850 }
5851
5852 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
5853 {
5854         bio->bi_private = bbio->private;
5855         bio->bi_end_io = bbio->end_io;
5856         bio_endio(bio);
5857
5858         btrfs_put_bbio(bbio);
5859 }
5860
5861 static void btrfs_end_bio(struct bio *bio)
5862 {
5863         struct btrfs_bio *bbio = bio->bi_private;
5864         int is_orig_bio = 0;
5865
5866         if (bio->bi_error) {
5867                 atomic_inc(&bbio->error);
5868                 if (bio->bi_error == -EIO || bio->bi_error == -EREMOTEIO) {
5869                         unsigned int stripe_index =
5870                                 btrfs_io_bio(bio)->stripe_index;
5871                         struct btrfs_device *dev;
5872
5873                         BUG_ON(stripe_index >= bbio->num_stripes);
5874                         dev = bbio->stripes[stripe_index].dev;
5875                         if (dev->bdev) {
5876                                 if (bio->bi_rw & WRITE)
5877                                         btrfs_dev_stat_inc(dev,
5878                                                 BTRFS_DEV_STAT_WRITE_ERRS);
5879                                 else
5880                                         btrfs_dev_stat_inc(dev,
5881                                                 BTRFS_DEV_STAT_READ_ERRS);
5882                                 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
5883                                         btrfs_dev_stat_inc(dev,
5884                                                 BTRFS_DEV_STAT_FLUSH_ERRS);
5885                                 btrfs_dev_stat_print_on_error(dev);
5886                         }
5887                 }
5888         }
5889
5890         if (bio == bbio->orig_bio)
5891                 is_orig_bio = 1;
5892
5893         btrfs_bio_counter_dec(bbio->fs_info);
5894
5895         if (atomic_dec_and_test(&bbio->stripes_pending)) {
5896                 if (!is_orig_bio) {
5897                         bio_put(bio);
5898                         bio = bbio->orig_bio;
5899                 }
5900
5901                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5902                 /* only send an error to the higher layers if it is
5903                  * beyond the tolerance of the btrfs bio
5904                  */
5905                 if (atomic_read(&bbio->error) > bbio->max_errors) {
5906                         bio->bi_error = -EIO;
5907                 } else {
5908                         /*
5909                          * this bio is actually up to date, we didn't
5910                          * go over the max number of errors
5911                          */
5912                         bio->bi_error = 0;
5913                 }
5914
5915                 btrfs_end_bbio(bbio, bio);
5916         } else if (!is_orig_bio) {
5917                 bio_put(bio);
5918         }
5919 }
5920
5921 /*
5922  * see run_scheduled_bios for a description of why bios are collected for
5923  * async submit.
5924  *
5925  * This will add one bio to the pending list for a device and make sure
5926  * the work struct is scheduled.
5927  */
5928 static noinline void btrfs_schedule_bio(struct btrfs_root *root,
5929                                         struct btrfs_device *device,
5930                                         int rw, struct bio *bio)
5931 {
5932         int should_queue = 1;
5933         struct btrfs_pending_bios *pending_bios;
5934
5935         if (device->missing || !device->bdev) {
5936                 bio_io_error(bio);
5937                 return;
5938         }
5939
5940         /* don't bother with additional async steps for reads, right now */
5941         if (!(rw & REQ_WRITE)) {
5942                 bio_get(bio);
5943                 btrfsic_submit_bio(rw, bio);
5944                 bio_put(bio);
5945                 return;
5946         }
5947
5948         /*
5949          * nr_async_bios allows us to reliably return congestion to the
5950          * higher layers.  Otherwise, the async bio makes it appear we have
5951          * made progress against dirty pages when we've really just put it
5952          * on a queue for later
5953          */
5954         atomic_inc(&root->fs_info->nr_async_bios);
5955         WARN_ON(bio->bi_next);
5956         bio->bi_next = NULL;
5957         bio->bi_rw |= rw;
5958
5959         spin_lock(&device->io_lock);
5960         if (bio->bi_rw & REQ_SYNC)
5961                 pending_bios = &device->pending_sync_bios;
5962         else
5963                 pending_bios = &device->pending_bios;
5964
5965         if (pending_bios->tail)
5966                 pending_bios->tail->bi_next = bio;
5967
5968         pending_bios->tail = bio;
5969         if (!pending_bios->head)
5970                 pending_bios->head = bio;
5971         if (device->running_pending)
5972                 should_queue = 0;
5973
5974         spin_unlock(&device->io_lock);
5975
5976         if (should_queue)
5977                 btrfs_queue_work(root->fs_info->submit_workers,
5978                                  &device->work);
5979 }
5980
5981 static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5982                               struct bio *bio, u64 physical, int dev_nr,
5983                               int rw, int async)
5984 {
5985         struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
5986
5987         bio->bi_private = bbio;
5988         btrfs_io_bio(bio)->stripe_index = dev_nr;
5989         bio->bi_end_io = btrfs_end_bio;
5990         bio->bi_iter.bi_sector = physical >> 9;
5991 #ifdef DEBUG
5992         {
5993                 struct rcu_string *name;
5994
5995                 rcu_read_lock();
5996                 name = rcu_dereference(dev->name);
5997                 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
5998                          "(%s id %llu), size=%u\n", rw,
5999                          (u64)bio->bi_iter.bi_sector, (u_long)dev->bdev->bd_dev,
6000                          name->str, dev->devid, bio->bi_iter.bi_size);
6001                 rcu_read_unlock();
6002         }
6003 #endif
6004         bio->bi_bdev = dev->bdev;
6005
6006         btrfs_bio_counter_inc_noblocked(root->fs_info);
6007
6008         if (async)
6009                 btrfs_schedule_bio(root, dev, rw, bio);
6010         else
6011                 btrfsic_submit_bio(rw, bio);
6012 }
6013
6014 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6015 {
6016         atomic_inc(&bbio->error);
6017         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6018                 /* Shoud be the original bio. */
6019                 WARN_ON(bio != bbio->orig_bio);
6020
6021                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6022                 bio->bi_iter.bi_sector = logical >> 9;
6023                 bio->bi_error = -EIO;
6024                 btrfs_end_bbio(bbio, bio);
6025         }
6026 }
6027
6028 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
6029                   int mirror_num, int async_submit)
6030 {
6031         struct btrfs_device *dev;
6032         struct bio *first_bio = bio;
6033         u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6034         u64 length = 0;
6035         u64 map_length;
6036         int ret;
6037         int dev_nr;
6038         int total_devs;
6039         struct btrfs_bio *bbio = NULL;
6040
6041         length = bio->bi_iter.bi_size;
6042         map_length = length;
6043
6044         btrfs_bio_counter_inc_blocked(root->fs_info);
6045         ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
6046                               mirror_num, 1);
6047         if (ret) {
6048                 btrfs_bio_counter_dec(root->fs_info);
6049                 return ret;
6050         }
6051
6052         total_devs = bbio->num_stripes;
6053         bbio->orig_bio = first_bio;
6054         bbio->private = first_bio->bi_private;
6055         bbio->end_io = first_bio->bi_end_io;
6056         bbio->fs_info = root->fs_info;
6057         atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6058
6059         if (bbio->raid_map) {
6060                 /* In this case, map_length has been set to the length of
6061                    a single stripe; not the whole write */
6062                 if (rw & WRITE) {
6063                         ret = raid56_parity_write(root, bio, bbio, map_length);
6064                 } else {
6065                         ret = raid56_parity_recover(root, bio, bbio, map_length,
6066                                                     mirror_num, 1);
6067                 }
6068
6069                 btrfs_bio_counter_dec(root->fs_info);
6070                 return ret;
6071         }
6072
6073         if (map_length < length) {
6074                 btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
6075                         logical, length, map_length);
6076                 BUG();
6077         }
6078
6079         for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6080                 dev = bbio->stripes[dev_nr].dev;
6081                 if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
6082                         bbio_error(bbio, first_bio, logical);
6083                         continue;
6084                 }
6085
6086                 if (dev_nr < total_devs - 1) {
6087                         bio = btrfs_bio_clone(first_bio, GFP_NOFS);
6088                         BUG_ON(!bio); /* -ENOMEM */
6089                 } else
6090                         bio = first_bio;
6091
6092                 submit_stripe_bio(root, bbio, bio,
6093                                   bbio->stripes[dev_nr].physical, dev_nr, rw,
6094                                   async_submit);
6095         }
6096         btrfs_bio_counter_dec(root->fs_info);
6097         return 0;
6098 }
6099
6100 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6101                                        u8 *uuid, u8 *fsid)
6102 {
6103         struct btrfs_device *device;
6104         struct btrfs_fs_devices *cur_devices;
6105
6106         cur_devices = fs_info->fs_devices;
6107         while (cur_devices) {
6108                 if (!fsid ||
6109                     !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
6110                         device = __find_device(&cur_devices->devices,
6111                                                devid, uuid);
6112                         if (device)
6113                                 return device;
6114                 }
6115                 cur_devices = cur_devices->seed;
6116         }
6117         return NULL;
6118 }
6119
6120 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
6121                                             struct btrfs_fs_devices *fs_devices,
6122                                             u64 devid, u8 *dev_uuid)
6123 {
6124         struct btrfs_device *device;
6125
6126         device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6127         if (IS_ERR(device))
6128                 return NULL;
6129
6130         list_add(&device->dev_list, &fs_devices->devices);
6131         device->fs_devices = fs_devices;
6132         fs_devices->num_devices++;
6133
6134         device->missing = 1;
6135         fs_devices->missing_devices++;
6136
6137         return device;
6138 }
6139
6140 /**
6141  * btrfs_alloc_device - allocate struct btrfs_device
6142  * @fs_info:    used only for generating a new devid, can be NULL if
6143  *              devid is provided (i.e. @devid != NULL).
6144  * @devid:      a pointer to devid for this device.  If NULL a new devid
6145  *              is generated.
6146  * @uuid:       a pointer to UUID for this device.  If NULL a new UUID
6147  *              is generated.
6148  *
6149  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6150  * on error.  Returned struct is not linked onto any lists and can be
6151  * destroyed with kfree() right away.
6152  */
6153 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6154                                         const u64 *devid,
6155                                         const u8 *uuid)
6156 {
6157         struct btrfs_device *dev;
6158         u64 tmp;
6159
6160         if (WARN_ON(!devid && !fs_info))
6161                 return ERR_PTR(-EINVAL);
6162
6163         dev = __alloc_device();
6164         if (IS_ERR(dev))
6165                 return dev;
6166
6167         if (devid)
6168                 tmp = *devid;
6169         else {
6170                 int ret;
6171
6172                 ret = find_next_devid(fs_info, &tmp);
6173                 if (ret) {
6174                         kfree(dev);
6175                         return ERR_PTR(ret);
6176                 }
6177         }
6178         dev->devid = tmp;
6179
6180         if (uuid)
6181                 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6182         else
6183                 generate_random_uuid(dev->uuid);
6184
6185         btrfs_init_work(&dev->work, btrfs_submit_helper,
6186                         pending_bios_fn, NULL, NULL);
6187
6188         return dev;
6189 }
6190
6191 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
6192                           struct extent_buffer *leaf,
6193                           struct btrfs_chunk *chunk)
6194 {
6195         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6196         struct map_lookup *map;
6197         struct extent_map *em;
6198         u64 logical;
6199         u64 length;
6200         u64 devid;
6201         u8 uuid[BTRFS_UUID_SIZE];
6202         int num_stripes;
6203         int ret;
6204         int i;
6205
6206         logical = key->offset;
6207         length = btrfs_chunk_length(leaf, chunk);
6208
6209         read_lock(&map_tree->map_tree.lock);
6210         em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6211         read_unlock(&map_tree->map_tree.lock);
6212
6213         /* already mapped? */
6214         if (em && em->start <= logical && em->start + em->len > logical) {
6215                 free_extent_map(em);
6216                 return 0;
6217         } else if (em) {
6218                 free_extent_map(em);
6219         }
6220
6221         em = alloc_extent_map();
6222         if (!em)
6223                 return -ENOMEM;
6224         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6225         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6226         if (!map) {
6227                 free_extent_map(em);
6228                 return -ENOMEM;
6229         }
6230
6231         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6232         em->map_lookup = map;
6233         em->start = logical;
6234         em->len = length;
6235         em->orig_start = 0;
6236         em->block_start = 0;
6237         em->block_len = em->len;
6238
6239         map->num_stripes = num_stripes;
6240         map->io_width = btrfs_chunk_io_width(leaf, chunk);
6241         map->io_align = btrfs_chunk_io_align(leaf, chunk);
6242         map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6243         map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6244         map->type = btrfs_chunk_type(leaf, chunk);
6245         map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6246         for (i = 0; i < num_stripes; i++) {
6247                 map->stripes[i].physical =
6248                         btrfs_stripe_offset_nr(leaf, chunk, i);
6249                 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6250                 read_extent_buffer(leaf, uuid, (unsigned long)
6251                                    btrfs_stripe_dev_uuid_nr(chunk, i),
6252                                    BTRFS_UUID_SIZE);
6253                 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
6254                                                         uuid, NULL);
6255                 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
6256                         free_extent_map(em);
6257                         return -EIO;
6258                 }
6259                 if (!map->stripes[i].dev) {
6260                         map->stripes[i].dev =
6261                                 add_missing_dev(root, root->fs_info->fs_devices,
6262                                                 devid, uuid);
6263                         if (!map->stripes[i].dev) {
6264                                 free_extent_map(em);
6265                                 return -EIO;
6266                         }
6267                         btrfs_warn(root->fs_info, "devid %llu uuid %pU is missing",
6268                                                 devid, uuid);
6269                 }
6270                 map->stripes[i].dev->in_fs_metadata = 1;
6271         }
6272
6273         write_lock(&map_tree->map_tree.lock);
6274         ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6275         write_unlock(&map_tree->map_tree.lock);
6276         BUG_ON(ret); /* Tree corruption */
6277         free_extent_map(em);
6278
6279         return 0;
6280 }
6281
6282 static void fill_device_from_item(struct extent_buffer *leaf,
6283                                  struct btrfs_dev_item *dev_item,
6284                                  struct btrfs_device *device)
6285 {
6286         unsigned long ptr;
6287
6288         device->devid = btrfs_device_id(leaf, dev_item);
6289         device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6290         device->total_bytes = device->disk_total_bytes;
6291         device->commit_total_bytes = device->disk_total_bytes;
6292         device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6293         device->commit_bytes_used = device->bytes_used;
6294         device->type = btrfs_device_type(leaf, dev_item);
6295         device->io_align = btrfs_device_io_align(leaf, dev_item);
6296         device->io_width = btrfs_device_io_width(leaf, dev_item);
6297         device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6298         WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6299         device->is_tgtdev_for_dev_replace = 0;
6300
6301         ptr = btrfs_device_uuid(dev_item);
6302         read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6303 }
6304
6305 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_root *root,
6306                                                   u8 *fsid)
6307 {
6308         struct btrfs_fs_devices *fs_devices;
6309         int ret;
6310
6311         BUG_ON(!mutex_is_locked(&uuid_mutex));
6312
6313         fs_devices = root->fs_info->fs_devices->seed;
6314         while (fs_devices) {
6315                 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6316                         return fs_devices;
6317
6318                 fs_devices = fs_devices->seed;
6319         }
6320
6321         fs_devices = find_fsid(fsid);
6322         if (!fs_devices) {
6323                 if (!btrfs_test_opt(root, DEGRADED))
6324                         return ERR_PTR(-ENOENT);
6325
6326                 fs_devices = alloc_fs_devices(fsid);
6327                 if (IS_ERR(fs_devices))
6328                         return fs_devices;
6329
6330                 fs_devices->seeding = 1;
6331                 fs_devices->opened = 1;
6332                 return fs_devices;
6333         }
6334
6335         fs_devices = clone_fs_devices(fs_devices);
6336         if (IS_ERR(fs_devices))
6337                 return fs_devices;
6338
6339         ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6340                                    root->fs_info->bdev_holder);
6341         if (ret) {
6342                 free_fs_devices(fs_devices);
6343                 fs_devices = ERR_PTR(ret);
6344                 goto out;
6345         }
6346
6347         if (!fs_devices->seeding) {
6348                 __btrfs_close_devices(fs_devices);
6349                 free_fs_devices(fs_devices);
6350                 fs_devices = ERR_PTR(-EINVAL);
6351                 goto out;
6352         }
6353
6354         fs_devices->seed = root->fs_info->fs_devices->seed;
6355         root->fs_info->fs_devices->seed = fs_devices;
6356 out:
6357         return fs_devices;
6358 }
6359
6360 static int read_one_dev(struct btrfs_root *root,
6361                         struct extent_buffer *leaf,
6362                         struct btrfs_dev_item *dev_item)
6363 {
6364         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6365         struct btrfs_device *device;
6366         u64 devid;
6367         int ret;
6368         u8 fs_uuid[BTRFS_UUID_SIZE];
6369         u8 dev_uuid[BTRFS_UUID_SIZE];
6370
6371         devid = btrfs_device_id(leaf, dev_item);
6372         read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6373                            BTRFS_UUID_SIZE);
6374         read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6375                            BTRFS_UUID_SIZE);
6376
6377         if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
6378                 fs_devices = open_seed_devices(root, fs_uuid);
6379                 if (IS_ERR(fs_devices))
6380                         return PTR_ERR(fs_devices);
6381         }
6382
6383         device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
6384         if (!device) {
6385                 if (!btrfs_test_opt(root, DEGRADED))
6386                         return -EIO;
6387
6388                 device = add_missing_dev(root, fs_devices, devid, dev_uuid);
6389                 if (!device)
6390                         return -ENOMEM;
6391                 btrfs_warn(root->fs_info, "devid %llu uuid %pU missing",
6392                                 devid, dev_uuid);
6393         } else {
6394                 if (!device->bdev && !btrfs_test_opt(root, DEGRADED))
6395                         return -EIO;
6396
6397                 if(!device->bdev && !device->missing) {
6398                         /*
6399                          * this happens when a device that was properly setup
6400                          * in the device info lists suddenly goes bad.
6401                          * device->bdev is NULL, and so we have to set
6402                          * device->missing to one here
6403                          */
6404                         device->fs_devices->missing_devices++;
6405                         device->missing = 1;
6406                 }
6407
6408                 /* Move the device to its own fs_devices */
6409                 if (device->fs_devices != fs_devices) {
6410                         ASSERT(device->missing);
6411
6412                         list_move(&device->dev_list, &fs_devices->devices);
6413                         device->fs_devices->num_devices--;
6414                         fs_devices->num_devices++;
6415
6416                         device->fs_devices->missing_devices--;
6417                         fs_devices->missing_devices++;
6418
6419                         device->fs_devices = fs_devices;
6420                 }
6421         }
6422
6423         if (device->fs_devices != root->fs_info->fs_devices) {
6424                 BUG_ON(device->writeable);
6425                 if (device->generation !=
6426                     btrfs_device_generation(leaf, dev_item))
6427                         return -EINVAL;
6428         }
6429
6430         fill_device_from_item(leaf, dev_item, device);
6431         device->in_fs_metadata = 1;
6432         if (device->writeable && !device->is_tgtdev_for_dev_replace) {
6433                 device->fs_devices->total_rw_bytes += device->total_bytes;
6434                 spin_lock(&root->fs_info->free_chunk_lock);
6435                 root->fs_info->free_chunk_space += device->total_bytes -
6436                         device->bytes_used;
6437                 spin_unlock(&root->fs_info->free_chunk_lock);
6438         }
6439         ret = 0;
6440         return ret;
6441 }
6442
6443 int btrfs_read_sys_array(struct btrfs_root *root)
6444 {
6445         struct btrfs_super_block *super_copy = root->fs_info->super_copy;
6446         struct extent_buffer *sb;
6447         struct btrfs_disk_key *disk_key;
6448         struct btrfs_chunk *chunk;
6449         u8 *array_ptr;
6450         unsigned long sb_array_offset;
6451         int ret = 0;
6452         u32 num_stripes;
6453         u32 array_size;
6454         u32 len = 0;
6455         u32 cur_offset;
6456         struct btrfs_key key;
6457
6458         ASSERT(BTRFS_SUPER_INFO_SIZE <= root->nodesize);
6459         /*
6460          * This will create extent buffer of nodesize, superblock size is
6461          * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6462          * overallocate but we can keep it as-is, only the first page is used.
6463          */
6464         sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET);
6465         if (!sb)
6466                 return -ENOMEM;
6467         btrfs_set_buffer_uptodate(sb);
6468         btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6469         /*
6470          * The sb extent buffer is artifical and just used to read the system array.
6471          * btrfs_set_buffer_uptodate() call does not properly mark all it's
6472          * pages up-to-date when the page is larger: extent does not cover the
6473          * whole page and consequently check_page_uptodate does not find all
6474          * the page's extents up-to-date (the hole beyond sb),
6475          * write_extent_buffer then triggers a WARN_ON.
6476          *
6477          * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6478          * but sb spans only this function. Add an explicit SetPageUptodate call
6479          * to silence the warning eg. on PowerPC 64.
6480          */
6481         if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
6482                 SetPageUptodate(sb->pages[0]);
6483
6484         write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6485         array_size = btrfs_super_sys_array_size(super_copy);
6486
6487         array_ptr = super_copy->sys_chunk_array;
6488         sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6489         cur_offset = 0;
6490
6491         while (cur_offset < array_size) {
6492                 disk_key = (struct btrfs_disk_key *)array_ptr;
6493                 len = sizeof(*disk_key);
6494                 if (cur_offset + len > array_size)
6495                         goto out_short_read;
6496
6497                 btrfs_disk_key_to_cpu(&key, disk_key);
6498
6499                 array_ptr += len;
6500                 sb_array_offset += len;
6501                 cur_offset += len;
6502
6503                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6504                         chunk = (struct btrfs_chunk *)sb_array_offset;
6505                         /*
6506                          * At least one btrfs_chunk with one stripe must be
6507                          * present, exact stripe count check comes afterwards
6508                          */
6509                         len = btrfs_chunk_item_size(1);
6510                         if (cur_offset + len > array_size)
6511                                 goto out_short_read;
6512
6513                         num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6514                         len = btrfs_chunk_item_size(num_stripes);
6515                         if (cur_offset + len > array_size)
6516                                 goto out_short_read;
6517
6518                         ret = read_one_chunk(root, &key, sb, chunk);
6519                         if (ret)
6520                                 break;
6521                 } else {
6522                         ret = -EIO;
6523                         break;
6524                 }
6525                 array_ptr += len;
6526                 sb_array_offset += len;
6527                 cur_offset += len;
6528         }
6529         free_extent_buffer(sb);
6530         return ret;
6531
6532 out_short_read:
6533         printk(KERN_ERR "BTRFS: sys_array too short to read %u bytes at offset %u\n",
6534                         len, cur_offset);
6535         free_extent_buffer(sb);
6536         return -EIO;
6537 }
6538
6539 int btrfs_read_chunk_tree(struct btrfs_root *root)
6540 {
6541         struct btrfs_path *path;
6542         struct extent_buffer *leaf;
6543         struct btrfs_key key;
6544         struct btrfs_key found_key;
6545         int ret;
6546         int slot;
6547
6548         root = root->fs_info->chunk_root;
6549
6550         path = btrfs_alloc_path();
6551         if (!path)
6552                 return -ENOMEM;
6553
6554         mutex_lock(&uuid_mutex);
6555         lock_chunks(root);
6556
6557         /*
6558          * Read all device items, and then all the chunk items. All
6559          * device items are found before any chunk item (their object id
6560          * is smaller than the lowest possible object id for a chunk
6561          * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6562          */
6563         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6564         key.offset = 0;
6565         key.type = 0;
6566         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6567         if (ret < 0)
6568                 goto error;
6569         while (1) {
6570                 leaf = path->nodes[0];
6571                 slot = path->slots[0];
6572                 if (slot >= btrfs_header_nritems(leaf)) {
6573                         ret = btrfs_next_leaf(root, path);
6574                         if (ret == 0)
6575                                 continue;
6576                         if (ret < 0)
6577                                 goto error;
6578                         break;
6579                 }
6580                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6581                 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6582                         struct btrfs_dev_item *dev_item;
6583                         dev_item = btrfs_item_ptr(leaf, slot,
6584                                                   struct btrfs_dev_item);
6585                         ret = read_one_dev(root, leaf, dev_item);
6586                         if (ret)
6587                                 goto error;
6588                 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6589                         struct btrfs_chunk *chunk;
6590                         chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6591                         ret = read_one_chunk(root, &found_key, leaf, chunk);
6592                         if (ret)
6593                                 goto error;
6594                 }
6595                 path->slots[0]++;
6596         }
6597         ret = 0;
6598 error:
6599         unlock_chunks(root);
6600         mutex_unlock(&uuid_mutex);
6601
6602         btrfs_free_path(path);
6603         return ret;
6604 }
6605
6606 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6607 {
6608         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6609         struct btrfs_device *device;
6610
6611         while (fs_devices) {
6612                 mutex_lock(&fs_devices->device_list_mutex);
6613                 list_for_each_entry(device, &fs_devices->devices, dev_list)
6614                         device->dev_root = fs_info->dev_root;
6615                 mutex_unlock(&fs_devices->device_list_mutex);
6616
6617                 fs_devices = fs_devices->seed;
6618         }
6619 }
6620
6621 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6622 {
6623         int i;
6624
6625         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6626                 btrfs_dev_stat_reset(dev, i);
6627 }
6628
6629 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6630 {
6631         struct btrfs_key key;
6632         struct btrfs_key found_key;
6633         struct btrfs_root *dev_root = fs_info->dev_root;
6634         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6635         struct extent_buffer *eb;
6636         int slot;
6637         int ret = 0;
6638         struct btrfs_device *device;
6639         struct btrfs_path *path = NULL;
6640         int i;
6641
6642         path = btrfs_alloc_path();
6643         if (!path) {
6644                 ret = -ENOMEM;
6645                 goto out;
6646         }
6647
6648         mutex_lock(&fs_devices->device_list_mutex);
6649         list_for_each_entry(device, &fs_devices->devices, dev_list) {
6650                 int item_size;
6651                 struct btrfs_dev_stats_item *ptr;
6652
6653                 key.objectid = 0;
6654                 key.type = BTRFS_DEV_STATS_KEY;
6655                 key.offset = device->devid;
6656                 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6657                 if (ret) {
6658                         __btrfs_reset_dev_stats(device);
6659                         device->dev_stats_valid = 1;
6660                         btrfs_release_path(path);
6661                         continue;
6662                 }
6663                 slot = path->slots[0];
6664                 eb = path->nodes[0];
6665                 btrfs_item_key_to_cpu(eb, &found_key, slot);
6666                 item_size = btrfs_item_size_nr(eb, slot);
6667
6668                 ptr = btrfs_item_ptr(eb, slot,
6669                                      struct btrfs_dev_stats_item);
6670
6671                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6672                         if (item_size >= (1 + i) * sizeof(__le64))
6673                                 btrfs_dev_stat_set(device, i,
6674                                         btrfs_dev_stats_value(eb, ptr, i));
6675                         else
6676                                 btrfs_dev_stat_reset(device, i);
6677                 }
6678
6679                 device->dev_stats_valid = 1;
6680                 btrfs_dev_stat_print_on_load(device);
6681                 btrfs_release_path(path);
6682         }
6683         mutex_unlock(&fs_devices->device_list_mutex);
6684
6685 out:
6686         btrfs_free_path(path);
6687         return ret < 0 ? ret : 0;
6688 }
6689
6690 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6691                                 struct btrfs_root *dev_root,
6692                                 struct btrfs_device *device)
6693 {
6694         struct btrfs_path *path;
6695         struct btrfs_key key;
6696         struct extent_buffer *eb;
6697         struct btrfs_dev_stats_item *ptr;
6698         int ret;
6699         int i;
6700
6701         key.objectid = 0;
6702         key.type = BTRFS_DEV_STATS_KEY;
6703         key.offset = device->devid;
6704
6705         path = btrfs_alloc_path();
6706         BUG_ON(!path);
6707         ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6708         if (ret < 0) {
6709                 btrfs_warn_in_rcu(dev_root->fs_info,
6710                         "error %d while searching for dev_stats item for device %s",
6711                               ret, rcu_str_deref(device->name));
6712                 goto out;
6713         }
6714
6715         if (ret == 0 &&
6716             btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6717                 /* need to delete old one and insert a new one */
6718                 ret = btrfs_del_item(trans, dev_root, path);
6719                 if (ret != 0) {
6720                         btrfs_warn_in_rcu(dev_root->fs_info,
6721                                 "delete too small dev_stats item for device %s failed %d",
6722                                       rcu_str_deref(device->name), ret);
6723                         goto out;
6724                 }
6725                 ret = 1;
6726         }
6727
6728         if (ret == 1) {
6729                 /* need to insert a new item */
6730                 btrfs_release_path(path);
6731                 ret = btrfs_insert_empty_item(trans, dev_root, path,
6732                                               &key, sizeof(*ptr));
6733                 if (ret < 0) {
6734                         btrfs_warn_in_rcu(dev_root->fs_info,
6735                                 "insert dev_stats item for device %s failed %d",
6736                                 rcu_str_deref(device->name), ret);
6737                         goto out;
6738                 }
6739         }
6740
6741         eb = path->nodes[0];
6742         ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6743         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6744                 btrfs_set_dev_stats_value(eb, ptr, i,
6745                                           btrfs_dev_stat_read(device, i));
6746         btrfs_mark_buffer_dirty(eb);
6747
6748 out:
6749         btrfs_free_path(path);
6750         return ret;
6751 }
6752
6753 /*
6754  * called from commit_transaction. Writes all changed device stats to disk.
6755  */
6756 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
6757                         struct btrfs_fs_info *fs_info)
6758 {
6759         struct btrfs_root *dev_root = fs_info->dev_root;
6760         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6761         struct btrfs_device *device;
6762         int stats_cnt;
6763         int ret = 0;
6764
6765         mutex_lock(&fs_devices->device_list_mutex);
6766         list_for_each_entry(device, &fs_devices->devices, dev_list) {
6767                 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
6768                         continue;
6769
6770                 stats_cnt = atomic_read(&device->dev_stats_ccnt);
6771                 ret = update_dev_stat_item(trans, dev_root, device);
6772                 if (!ret)
6773                         atomic_sub(stats_cnt, &device->dev_stats_ccnt);
6774         }
6775         mutex_unlock(&fs_devices->device_list_mutex);
6776
6777         return ret;
6778 }
6779
6780 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
6781 {
6782         btrfs_dev_stat_inc(dev, index);
6783         btrfs_dev_stat_print_on_error(dev);
6784 }
6785
6786 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
6787 {
6788         if (!dev->dev_stats_valid)
6789                 return;
6790         btrfs_err_rl_in_rcu(dev->dev_root->fs_info,
6791                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
6792                            rcu_str_deref(dev->name),
6793                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6794                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6795                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6796                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6797                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6798 }
6799
6800 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
6801 {
6802         int i;
6803
6804         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6805                 if (btrfs_dev_stat_read(dev, i) != 0)
6806                         break;
6807         if (i == BTRFS_DEV_STAT_VALUES_MAX)
6808                 return; /* all values == 0, suppress message */
6809
6810         btrfs_info_in_rcu(dev->dev_root->fs_info,
6811                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
6812                rcu_str_deref(dev->name),
6813                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6814                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6815                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6816                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6817                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6818 }
6819
6820 int btrfs_get_dev_stats(struct btrfs_root *root,
6821                         struct btrfs_ioctl_get_dev_stats *stats)
6822 {
6823         struct btrfs_device *dev;
6824         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6825         int i;
6826
6827         mutex_lock(&fs_devices->device_list_mutex);
6828         dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
6829         mutex_unlock(&fs_devices->device_list_mutex);
6830
6831         if (!dev) {
6832                 btrfs_warn(root->fs_info, "get dev_stats failed, device not found");
6833                 return -ENODEV;
6834         } else if (!dev->dev_stats_valid) {
6835                 btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid");
6836                 return -ENODEV;
6837         } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
6838                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6839                         if (stats->nr_items > i)
6840                                 stats->values[i] =
6841                                         btrfs_dev_stat_read_and_reset(dev, i);
6842                         else
6843                                 btrfs_dev_stat_reset(dev, i);
6844                 }
6845         } else {
6846                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6847                         if (stats->nr_items > i)
6848                                 stats->values[i] = btrfs_dev_stat_read(dev, i);
6849         }
6850         if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
6851                 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
6852         return 0;
6853 }
6854
6855 void btrfs_scratch_superblocks(struct block_device *bdev, char *device_path)
6856 {
6857         struct buffer_head *bh;
6858         struct btrfs_super_block *disk_super;
6859         int copy_num;
6860
6861         if (!bdev)
6862                 return;
6863
6864         for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
6865                 copy_num++) {
6866
6867                 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
6868                         continue;
6869
6870                 disk_super = (struct btrfs_super_block *)bh->b_data;
6871
6872                 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
6873                 set_buffer_dirty(bh);
6874                 sync_dirty_buffer(bh);
6875                 brelse(bh);
6876         }
6877
6878         /* Notify udev that device has changed */
6879         btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
6880
6881         /* Update ctime/mtime for device path for libblkid */
6882         update_dev_time(device_path);
6883 }
6884
6885 /*
6886  * Update the size of all devices, which is used for writing out the
6887  * super blocks.
6888  */
6889 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
6890 {
6891         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6892         struct btrfs_device *curr, *next;
6893
6894         if (list_empty(&fs_devices->resized_devices))
6895                 return;
6896
6897         mutex_lock(&fs_devices->device_list_mutex);
6898         lock_chunks(fs_info->dev_root);
6899         list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
6900                                  resized_list) {
6901                 list_del_init(&curr->resized_list);
6902                 curr->commit_total_bytes = curr->disk_total_bytes;
6903         }
6904         unlock_chunks(fs_info->dev_root);
6905         mutex_unlock(&fs_devices->device_list_mutex);
6906 }
6907
6908 /* Must be invoked during the transaction commit */
6909 void btrfs_update_commit_device_bytes_used(struct btrfs_root *root,
6910                                         struct btrfs_transaction *transaction)
6911 {
6912         struct extent_map *em;
6913         struct map_lookup *map;
6914         struct btrfs_device *dev;
6915         int i;
6916
6917         if (list_empty(&transaction->pending_chunks))
6918                 return;
6919
6920         /* In order to kick the device replace finish process */
6921         lock_chunks(root);
6922         list_for_each_entry(em, &transaction->pending_chunks, list) {
6923                 map = em->map_lookup;
6924
6925                 for (i = 0; i < map->num_stripes; i++) {
6926                         dev = map->stripes[i].dev;
6927                         dev->commit_bytes_used = dev->bytes_used;
6928                 }
6929         }
6930         unlock_chunks(root);
6931 }
6932
6933 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
6934 {
6935         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6936         while (fs_devices) {
6937                 fs_devices->fs_info = fs_info;
6938                 fs_devices = fs_devices->seed;
6939         }
6940 }
6941
6942 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
6943 {
6944         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6945         while (fs_devices) {
6946                 fs_devices->fs_info = NULL;
6947                 fs_devices = fs_devices->seed;
6948         }
6949 }
6950
6951 void btrfs_close_one_device(struct btrfs_device *device)
6952 {
6953         struct btrfs_fs_devices *fs_devices = device->fs_devices;
6954         struct btrfs_device *new_device;
6955         struct rcu_string *name;
6956
6957         if (device->bdev)
6958                 fs_devices->open_devices--;
6959
6960         if (device->writeable &&
6961             device->devid != BTRFS_DEV_REPLACE_DEVID) {
6962                 list_del_init(&device->dev_alloc_list);
6963                 fs_devices->rw_devices--;
6964         }
6965
6966         if (device->missing)
6967                 fs_devices->missing_devices--;
6968
6969         new_device = btrfs_alloc_device(NULL, &device->devid,
6970                                         device->uuid);
6971         BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
6972
6973         /* Safe because we are under uuid_mutex */
6974         if (device->name) {
6975                 name = rcu_string_strdup(device->name->str, GFP_NOFS);
6976                 BUG_ON(!name); /* -ENOMEM */
6977                 rcu_assign_pointer(new_device->name, name);
6978         }
6979
6980         list_replace_rcu(&device->dev_list, &new_device->dev_list);
6981         new_device->fs_devices = device->fs_devices;
6982
6983         call_rcu(&device->rcu, free_device);
6984 }