Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/sage/ceph...
[cascardo/linux.git] / fs / ceph / mds_client.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/fs.h>
4 #include <linux/wait.h>
5 #include <linux/slab.h>
6 #include <linux/sched.h>
7 #include <linux/debugfs.h>
8 #include <linux/seq_file.h>
9
10 #include "super.h"
11 #include "mds_client.h"
12
13 #include <linux/ceph/ceph_features.h>
14 #include <linux/ceph/messenger.h>
15 #include <linux/ceph/decode.h>
16 #include <linux/ceph/pagelist.h>
17 #include <linux/ceph/auth.h>
18 #include <linux/ceph/debugfs.h>
19
20 /*
21  * A cluster of MDS (metadata server) daemons is responsible for
22  * managing the file system namespace (the directory hierarchy and
23  * inodes) and for coordinating shared access to storage.  Metadata is
24  * partitioning hierarchically across a number of servers, and that
25  * partition varies over time as the cluster adjusts the distribution
26  * in order to balance load.
27  *
28  * The MDS client is primarily responsible to managing synchronous
29  * metadata requests for operations like open, unlink, and so forth.
30  * If there is a MDS failure, we find out about it when we (possibly
31  * request and) receive a new MDS map, and can resubmit affected
32  * requests.
33  *
34  * For the most part, though, we take advantage of a lossless
35  * communications channel to the MDS, and do not need to worry about
36  * timing out or resubmitting requests.
37  *
38  * We maintain a stateful "session" with each MDS we interact with.
39  * Within each session, we sent periodic heartbeat messages to ensure
40  * any capabilities or leases we have been issues remain valid.  If
41  * the session times out and goes stale, our leases and capabilities
42  * are no longer valid.
43  */
44
45 struct ceph_reconnect_state {
46         struct ceph_pagelist *pagelist;
47         bool flock;
48 };
49
50 static void __wake_requests(struct ceph_mds_client *mdsc,
51                             struct list_head *head);
52
53 static const struct ceph_connection_operations mds_con_ops;
54
55
56 /*
57  * mds reply parsing
58  */
59
60 /*
61  * parse individual inode info
62  */
63 static int parse_reply_info_in(void **p, void *end,
64                                struct ceph_mds_reply_info_in *info,
65                                int features)
66 {
67         int err = -EIO;
68
69         info->in = *p;
70         *p += sizeof(struct ceph_mds_reply_inode) +
71                 sizeof(*info->in->fragtree.splits) *
72                 le32_to_cpu(info->in->fragtree.nsplits);
73
74         ceph_decode_32_safe(p, end, info->symlink_len, bad);
75         ceph_decode_need(p, end, info->symlink_len, bad);
76         info->symlink = *p;
77         *p += info->symlink_len;
78
79         if (features & CEPH_FEATURE_DIRLAYOUTHASH)
80                 ceph_decode_copy_safe(p, end, &info->dir_layout,
81                                       sizeof(info->dir_layout), bad);
82         else
83                 memset(&info->dir_layout, 0, sizeof(info->dir_layout));
84
85         ceph_decode_32_safe(p, end, info->xattr_len, bad);
86         ceph_decode_need(p, end, info->xattr_len, bad);
87         info->xattr_data = *p;
88         *p += info->xattr_len;
89         return 0;
90 bad:
91         return err;
92 }
93
94 /*
95  * parse a normal reply, which may contain a (dir+)dentry and/or a
96  * target inode.
97  */
98 static int parse_reply_info_trace(void **p, void *end,
99                                   struct ceph_mds_reply_info_parsed *info,
100                                   int features)
101 {
102         int err;
103
104         if (info->head->is_dentry) {
105                 err = parse_reply_info_in(p, end, &info->diri, features);
106                 if (err < 0)
107                         goto out_bad;
108
109                 if (unlikely(*p + sizeof(*info->dirfrag) > end))
110                         goto bad;
111                 info->dirfrag = *p;
112                 *p += sizeof(*info->dirfrag) +
113                         sizeof(u32)*le32_to_cpu(info->dirfrag->ndist);
114                 if (unlikely(*p > end))
115                         goto bad;
116
117                 ceph_decode_32_safe(p, end, info->dname_len, bad);
118                 ceph_decode_need(p, end, info->dname_len, bad);
119                 info->dname = *p;
120                 *p += info->dname_len;
121                 info->dlease = *p;
122                 *p += sizeof(*info->dlease);
123         }
124
125         if (info->head->is_target) {
126                 err = parse_reply_info_in(p, end, &info->targeti, features);
127                 if (err < 0)
128                         goto out_bad;
129         }
130
131         if (unlikely(*p != end))
132                 goto bad;
133         return 0;
134
135 bad:
136         err = -EIO;
137 out_bad:
138         pr_err("problem parsing mds trace %d\n", err);
139         return err;
140 }
141
142 /*
143  * parse readdir results
144  */
145 static int parse_reply_info_dir(void **p, void *end,
146                                 struct ceph_mds_reply_info_parsed *info,
147                                 int features)
148 {
149         u32 num, i = 0;
150         int err;
151
152         info->dir_dir = *p;
153         if (*p + sizeof(*info->dir_dir) > end)
154                 goto bad;
155         *p += sizeof(*info->dir_dir) +
156                 sizeof(u32)*le32_to_cpu(info->dir_dir->ndist);
157         if (*p > end)
158                 goto bad;
159
160         ceph_decode_need(p, end, sizeof(num) + 2, bad);
161         num = ceph_decode_32(p);
162         info->dir_end = ceph_decode_8(p);
163         info->dir_complete = ceph_decode_8(p);
164         if (num == 0)
165                 goto done;
166
167         /* alloc large array */
168         info->dir_nr = num;
169         info->dir_in = kcalloc(num, sizeof(*info->dir_in) +
170                                sizeof(*info->dir_dname) +
171                                sizeof(*info->dir_dname_len) +
172                                sizeof(*info->dir_dlease),
173                                GFP_NOFS);
174         if (info->dir_in == NULL) {
175                 err = -ENOMEM;
176                 goto out_bad;
177         }
178         info->dir_dname = (void *)(info->dir_in + num);
179         info->dir_dname_len = (void *)(info->dir_dname + num);
180         info->dir_dlease = (void *)(info->dir_dname_len + num);
181
182         while (num) {
183                 /* dentry */
184                 ceph_decode_need(p, end, sizeof(u32)*2, bad);
185                 info->dir_dname_len[i] = ceph_decode_32(p);
186                 ceph_decode_need(p, end, info->dir_dname_len[i], bad);
187                 info->dir_dname[i] = *p;
188                 *p += info->dir_dname_len[i];
189                 dout("parsed dir dname '%.*s'\n", info->dir_dname_len[i],
190                      info->dir_dname[i]);
191                 info->dir_dlease[i] = *p;
192                 *p += sizeof(struct ceph_mds_reply_lease);
193
194                 /* inode */
195                 err = parse_reply_info_in(p, end, &info->dir_in[i], features);
196                 if (err < 0)
197                         goto out_bad;
198                 i++;
199                 num--;
200         }
201
202 done:
203         if (*p != end)
204                 goto bad;
205         return 0;
206
207 bad:
208         err = -EIO;
209 out_bad:
210         pr_err("problem parsing dir contents %d\n", err);
211         return err;
212 }
213
214 /*
215  * parse fcntl F_GETLK results
216  */
217 static int parse_reply_info_filelock(void **p, void *end,
218                                      struct ceph_mds_reply_info_parsed *info,
219                                      int features)
220 {
221         if (*p + sizeof(*info->filelock_reply) > end)
222                 goto bad;
223
224         info->filelock_reply = *p;
225         *p += sizeof(*info->filelock_reply);
226
227         if (unlikely(*p != end))
228                 goto bad;
229         return 0;
230
231 bad:
232         return -EIO;
233 }
234
235 /*
236  * parse create results
237  */
238 static int parse_reply_info_create(void **p, void *end,
239                                   struct ceph_mds_reply_info_parsed *info,
240                                   int features)
241 {
242         if (features & CEPH_FEATURE_REPLY_CREATE_INODE) {
243                 if (*p == end) {
244                         info->has_create_ino = false;
245                 } else {
246                         info->has_create_ino = true;
247                         info->ino = ceph_decode_64(p);
248                 }
249         }
250
251         if (unlikely(*p != end))
252                 goto bad;
253         return 0;
254
255 bad:
256         return -EIO;
257 }
258
259 /*
260  * parse extra results
261  */
262 static int parse_reply_info_extra(void **p, void *end,
263                                   struct ceph_mds_reply_info_parsed *info,
264                                   int features)
265 {
266         if (info->head->op == CEPH_MDS_OP_GETFILELOCK)
267                 return parse_reply_info_filelock(p, end, info, features);
268         else if (info->head->op == CEPH_MDS_OP_READDIR ||
269                  info->head->op == CEPH_MDS_OP_LSSNAP)
270                 return parse_reply_info_dir(p, end, info, features);
271         else if (info->head->op == CEPH_MDS_OP_CREATE)
272                 return parse_reply_info_create(p, end, info, features);
273         else
274                 return -EIO;
275 }
276
277 /*
278  * parse entire mds reply
279  */
280 static int parse_reply_info(struct ceph_msg *msg,
281                             struct ceph_mds_reply_info_parsed *info,
282                             int features)
283 {
284         void *p, *end;
285         u32 len;
286         int err;
287
288         info->head = msg->front.iov_base;
289         p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head);
290         end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head);
291
292         /* trace */
293         ceph_decode_32_safe(&p, end, len, bad);
294         if (len > 0) {
295                 ceph_decode_need(&p, end, len, bad);
296                 err = parse_reply_info_trace(&p, p+len, info, features);
297                 if (err < 0)
298                         goto out_bad;
299         }
300
301         /* extra */
302         ceph_decode_32_safe(&p, end, len, bad);
303         if (len > 0) {
304                 ceph_decode_need(&p, end, len, bad);
305                 err = parse_reply_info_extra(&p, p+len, info, features);
306                 if (err < 0)
307                         goto out_bad;
308         }
309
310         /* snap blob */
311         ceph_decode_32_safe(&p, end, len, bad);
312         info->snapblob_len = len;
313         info->snapblob = p;
314         p += len;
315
316         if (p != end)
317                 goto bad;
318         return 0;
319
320 bad:
321         err = -EIO;
322 out_bad:
323         pr_err("mds parse_reply err %d\n", err);
324         return err;
325 }
326
327 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info)
328 {
329         kfree(info->dir_in);
330 }
331
332
333 /*
334  * sessions
335  */
336 static const char *session_state_name(int s)
337 {
338         switch (s) {
339         case CEPH_MDS_SESSION_NEW: return "new";
340         case CEPH_MDS_SESSION_OPENING: return "opening";
341         case CEPH_MDS_SESSION_OPEN: return "open";
342         case CEPH_MDS_SESSION_HUNG: return "hung";
343         case CEPH_MDS_SESSION_CLOSING: return "closing";
344         case CEPH_MDS_SESSION_RESTARTING: return "restarting";
345         case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting";
346         default: return "???";
347         }
348 }
349
350 static struct ceph_mds_session *get_session(struct ceph_mds_session *s)
351 {
352         if (atomic_inc_not_zero(&s->s_ref)) {
353                 dout("mdsc get_session %p %d -> %d\n", s,
354                      atomic_read(&s->s_ref)-1, atomic_read(&s->s_ref));
355                 return s;
356         } else {
357                 dout("mdsc get_session %p 0 -- FAIL", s);
358                 return NULL;
359         }
360 }
361
362 void ceph_put_mds_session(struct ceph_mds_session *s)
363 {
364         dout("mdsc put_session %p %d -> %d\n", s,
365              atomic_read(&s->s_ref), atomic_read(&s->s_ref)-1);
366         if (atomic_dec_and_test(&s->s_ref)) {
367                 if (s->s_auth.authorizer)
368                         ceph_auth_destroy_authorizer(
369                                 s->s_mdsc->fsc->client->monc.auth,
370                                 s->s_auth.authorizer);
371                 kfree(s);
372         }
373 }
374
375 /*
376  * called under mdsc->mutex
377  */
378 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc,
379                                                    int mds)
380 {
381         struct ceph_mds_session *session;
382
383         if (mds >= mdsc->max_sessions || mdsc->sessions[mds] == NULL)
384                 return NULL;
385         session = mdsc->sessions[mds];
386         dout("lookup_mds_session %p %d\n", session,
387              atomic_read(&session->s_ref));
388         get_session(session);
389         return session;
390 }
391
392 static bool __have_session(struct ceph_mds_client *mdsc, int mds)
393 {
394         if (mds >= mdsc->max_sessions)
395                 return false;
396         return mdsc->sessions[mds];
397 }
398
399 static int __verify_registered_session(struct ceph_mds_client *mdsc,
400                                        struct ceph_mds_session *s)
401 {
402         if (s->s_mds >= mdsc->max_sessions ||
403             mdsc->sessions[s->s_mds] != s)
404                 return -ENOENT;
405         return 0;
406 }
407
408 /*
409  * create+register a new session for given mds.
410  * called under mdsc->mutex.
411  */
412 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc,
413                                                  int mds)
414 {
415         struct ceph_mds_session *s;
416
417         s = kzalloc(sizeof(*s), GFP_NOFS);
418         if (!s)
419                 return ERR_PTR(-ENOMEM);
420         s->s_mdsc = mdsc;
421         s->s_mds = mds;
422         s->s_state = CEPH_MDS_SESSION_NEW;
423         s->s_ttl = 0;
424         s->s_seq = 0;
425         mutex_init(&s->s_mutex);
426
427         ceph_con_init(&s->s_con, s, &mds_con_ops, &mdsc->fsc->client->msgr);
428
429         spin_lock_init(&s->s_gen_ttl_lock);
430         s->s_cap_gen = 0;
431         s->s_cap_ttl = jiffies - 1;
432
433         spin_lock_init(&s->s_cap_lock);
434         s->s_renew_requested = 0;
435         s->s_renew_seq = 0;
436         INIT_LIST_HEAD(&s->s_caps);
437         s->s_nr_caps = 0;
438         s->s_trim_caps = 0;
439         atomic_set(&s->s_ref, 1);
440         INIT_LIST_HEAD(&s->s_waiting);
441         INIT_LIST_HEAD(&s->s_unsafe);
442         s->s_num_cap_releases = 0;
443         s->s_cap_iterator = NULL;
444         INIT_LIST_HEAD(&s->s_cap_releases);
445         INIT_LIST_HEAD(&s->s_cap_releases_done);
446         INIT_LIST_HEAD(&s->s_cap_flushing);
447         INIT_LIST_HEAD(&s->s_cap_snaps_flushing);
448
449         dout("register_session mds%d\n", mds);
450         if (mds >= mdsc->max_sessions) {
451                 int newmax = 1 << get_count_order(mds+1);
452                 struct ceph_mds_session **sa;
453
454                 dout("register_session realloc to %d\n", newmax);
455                 sa = kcalloc(newmax, sizeof(void *), GFP_NOFS);
456                 if (sa == NULL)
457                         goto fail_realloc;
458                 if (mdsc->sessions) {
459                         memcpy(sa, mdsc->sessions,
460                                mdsc->max_sessions * sizeof(void *));
461                         kfree(mdsc->sessions);
462                 }
463                 mdsc->sessions = sa;
464                 mdsc->max_sessions = newmax;
465         }
466         mdsc->sessions[mds] = s;
467         atomic_inc(&s->s_ref);  /* one ref to sessions[], one to caller */
468
469         ceph_con_open(&s->s_con, CEPH_ENTITY_TYPE_MDS, mds,
470                       ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
471
472         return s;
473
474 fail_realloc:
475         kfree(s);
476         return ERR_PTR(-ENOMEM);
477 }
478
479 /*
480  * called under mdsc->mutex
481  */
482 static void __unregister_session(struct ceph_mds_client *mdsc,
483                                struct ceph_mds_session *s)
484 {
485         dout("__unregister_session mds%d %p\n", s->s_mds, s);
486         BUG_ON(mdsc->sessions[s->s_mds] != s);
487         mdsc->sessions[s->s_mds] = NULL;
488         ceph_con_close(&s->s_con);
489         ceph_put_mds_session(s);
490 }
491
492 /*
493  * drop session refs in request.
494  *
495  * should be last request ref, or hold mdsc->mutex
496  */
497 static void put_request_session(struct ceph_mds_request *req)
498 {
499         if (req->r_session) {
500                 ceph_put_mds_session(req->r_session);
501                 req->r_session = NULL;
502         }
503 }
504
505 void ceph_mdsc_release_request(struct kref *kref)
506 {
507         struct ceph_mds_request *req = container_of(kref,
508                                                     struct ceph_mds_request,
509                                                     r_kref);
510         if (req->r_request)
511                 ceph_msg_put(req->r_request);
512         if (req->r_reply) {
513                 ceph_msg_put(req->r_reply);
514                 destroy_reply_info(&req->r_reply_info);
515         }
516         if (req->r_inode) {
517                 ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
518                 iput(req->r_inode);
519         }
520         if (req->r_locked_dir)
521                 ceph_put_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
522         if (req->r_target_inode)
523                 iput(req->r_target_inode);
524         if (req->r_dentry)
525                 dput(req->r_dentry);
526         if (req->r_old_dentry) {
527                 /*
528                  * track (and drop pins for) r_old_dentry_dir
529                  * separately, since r_old_dentry's d_parent may have
530                  * changed between the dir mutex being dropped and
531                  * this request being freed.
532                  */
533                 ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir),
534                                   CEPH_CAP_PIN);
535                 dput(req->r_old_dentry);
536                 iput(req->r_old_dentry_dir);
537         }
538         kfree(req->r_path1);
539         kfree(req->r_path2);
540         put_request_session(req);
541         ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation);
542         kfree(req);
543 }
544
545 /*
546  * lookup session, bump ref if found.
547  *
548  * called under mdsc->mutex.
549  */
550 static struct ceph_mds_request *__lookup_request(struct ceph_mds_client *mdsc,
551                                              u64 tid)
552 {
553         struct ceph_mds_request *req;
554         struct rb_node *n = mdsc->request_tree.rb_node;
555
556         while (n) {
557                 req = rb_entry(n, struct ceph_mds_request, r_node);
558                 if (tid < req->r_tid)
559                         n = n->rb_left;
560                 else if (tid > req->r_tid)
561                         n = n->rb_right;
562                 else {
563                         ceph_mdsc_get_request(req);
564                         return req;
565                 }
566         }
567         return NULL;
568 }
569
570 static void __insert_request(struct ceph_mds_client *mdsc,
571                              struct ceph_mds_request *new)
572 {
573         struct rb_node **p = &mdsc->request_tree.rb_node;
574         struct rb_node *parent = NULL;
575         struct ceph_mds_request *req = NULL;
576
577         while (*p) {
578                 parent = *p;
579                 req = rb_entry(parent, struct ceph_mds_request, r_node);
580                 if (new->r_tid < req->r_tid)
581                         p = &(*p)->rb_left;
582                 else if (new->r_tid > req->r_tid)
583                         p = &(*p)->rb_right;
584                 else
585                         BUG();
586         }
587
588         rb_link_node(&new->r_node, parent, p);
589         rb_insert_color(&new->r_node, &mdsc->request_tree);
590 }
591
592 /*
593  * Register an in-flight request, and assign a tid.  Link to directory
594  * are modifying (if any).
595  *
596  * Called under mdsc->mutex.
597  */
598 static void __register_request(struct ceph_mds_client *mdsc,
599                                struct ceph_mds_request *req,
600                                struct inode *dir)
601 {
602         req->r_tid = ++mdsc->last_tid;
603         if (req->r_num_caps)
604                 ceph_reserve_caps(mdsc, &req->r_caps_reservation,
605                                   req->r_num_caps);
606         dout("__register_request %p tid %lld\n", req, req->r_tid);
607         ceph_mdsc_get_request(req);
608         __insert_request(mdsc, req);
609
610         req->r_uid = current_fsuid();
611         req->r_gid = current_fsgid();
612
613         if (dir) {
614                 struct ceph_inode_info *ci = ceph_inode(dir);
615
616                 ihold(dir);
617                 spin_lock(&ci->i_unsafe_lock);
618                 req->r_unsafe_dir = dir;
619                 list_add_tail(&req->r_unsafe_dir_item, &ci->i_unsafe_dirops);
620                 spin_unlock(&ci->i_unsafe_lock);
621         }
622 }
623
624 static void __unregister_request(struct ceph_mds_client *mdsc,
625                                  struct ceph_mds_request *req)
626 {
627         dout("__unregister_request %p tid %lld\n", req, req->r_tid);
628         rb_erase(&req->r_node, &mdsc->request_tree);
629         RB_CLEAR_NODE(&req->r_node);
630
631         if (req->r_unsafe_dir) {
632                 struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir);
633
634                 spin_lock(&ci->i_unsafe_lock);
635                 list_del_init(&req->r_unsafe_dir_item);
636                 spin_unlock(&ci->i_unsafe_lock);
637
638                 iput(req->r_unsafe_dir);
639                 req->r_unsafe_dir = NULL;
640         }
641
642         ceph_mdsc_put_request(req);
643 }
644
645 /*
646  * Choose mds to send request to next.  If there is a hint set in the
647  * request (e.g., due to a prior forward hint from the mds), use that.
648  * Otherwise, consult frag tree and/or caps to identify the
649  * appropriate mds.  If all else fails, choose randomly.
650  *
651  * Called under mdsc->mutex.
652  */
653 static struct dentry *get_nonsnap_parent(struct dentry *dentry)
654 {
655         /*
656          * we don't need to worry about protecting the d_parent access
657          * here because we never renaming inside the snapped namespace
658          * except to resplice to another snapdir, and either the old or new
659          * result is a valid result.
660          */
661         while (!IS_ROOT(dentry) && ceph_snap(dentry->d_inode) != CEPH_NOSNAP)
662                 dentry = dentry->d_parent;
663         return dentry;
664 }
665
666 static int __choose_mds(struct ceph_mds_client *mdsc,
667                         struct ceph_mds_request *req)
668 {
669         struct inode *inode;
670         struct ceph_inode_info *ci;
671         struct ceph_cap *cap;
672         int mode = req->r_direct_mode;
673         int mds = -1;
674         u32 hash = req->r_direct_hash;
675         bool is_hash = req->r_direct_is_hash;
676
677         /*
678          * is there a specific mds we should try?  ignore hint if we have
679          * no session and the mds is not up (active or recovering).
680          */
681         if (req->r_resend_mds >= 0 &&
682             (__have_session(mdsc, req->r_resend_mds) ||
683              ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) {
684                 dout("choose_mds using resend_mds mds%d\n",
685                      req->r_resend_mds);
686                 return req->r_resend_mds;
687         }
688
689         if (mode == USE_RANDOM_MDS)
690                 goto random;
691
692         inode = NULL;
693         if (req->r_inode) {
694                 inode = req->r_inode;
695         } else if (req->r_dentry) {
696                 /* ignore race with rename; old or new d_parent is okay */
697                 struct dentry *parent = req->r_dentry->d_parent;
698                 struct inode *dir = parent->d_inode;
699
700                 if (dir->i_sb != mdsc->fsc->sb) {
701                         /* not this fs! */
702                         inode = req->r_dentry->d_inode;
703                 } else if (ceph_snap(dir) != CEPH_NOSNAP) {
704                         /* direct snapped/virtual snapdir requests
705                          * based on parent dir inode */
706                         struct dentry *dn = get_nonsnap_parent(parent);
707                         inode = dn->d_inode;
708                         dout("__choose_mds using nonsnap parent %p\n", inode);
709                 } else if (req->r_dentry->d_inode) {
710                         /* dentry target */
711                         inode = req->r_dentry->d_inode;
712                 } else {
713                         /* dir + name */
714                         inode = dir;
715                         hash = ceph_dentry_hash(dir, req->r_dentry);
716                         is_hash = true;
717                 }
718         }
719
720         dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash,
721              (int)hash, mode);
722         if (!inode)
723                 goto random;
724         ci = ceph_inode(inode);
725
726         if (is_hash && S_ISDIR(inode->i_mode)) {
727                 struct ceph_inode_frag frag;
728                 int found;
729
730                 ceph_choose_frag(ci, hash, &frag, &found);
731                 if (found) {
732                         if (mode == USE_ANY_MDS && frag.ndist > 0) {
733                                 u8 r;
734
735                                 /* choose a random replica */
736                                 get_random_bytes(&r, 1);
737                                 r %= frag.ndist;
738                                 mds = frag.dist[r];
739                                 dout("choose_mds %p %llx.%llx "
740                                      "frag %u mds%d (%d/%d)\n",
741                                      inode, ceph_vinop(inode),
742                                      frag.frag, mds,
743                                      (int)r, frag.ndist);
744                                 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
745                                     CEPH_MDS_STATE_ACTIVE)
746                                         return mds;
747                         }
748
749                         /* since this file/dir wasn't known to be
750                          * replicated, then we want to look for the
751                          * authoritative mds. */
752                         mode = USE_AUTH_MDS;
753                         if (frag.mds >= 0) {
754                                 /* choose auth mds */
755                                 mds = frag.mds;
756                                 dout("choose_mds %p %llx.%llx "
757                                      "frag %u mds%d (auth)\n",
758                                      inode, ceph_vinop(inode), frag.frag, mds);
759                                 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
760                                     CEPH_MDS_STATE_ACTIVE)
761                                         return mds;
762                         }
763                 }
764         }
765
766         spin_lock(&ci->i_ceph_lock);
767         cap = NULL;
768         if (mode == USE_AUTH_MDS)
769                 cap = ci->i_auth_cap;
770         if (!cap && !RB_EMPTY_ROOT(&ci->i_caps))
771                 cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node);
772         if (!cap) {
773                 spin_unlock(&ci->i_ceph_lock);
774                 goto random;
775         }
776         mds = cap->session->s_mds;
777         dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n",
778              inode, ceph_vinop(inode), mds,
779              cap == ci->i_auth_cap ? "auth " : "", cap);
780         spin_unlock(&ci->i_ceph_lock);
781         return mds;
782
783 random:
784         mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap);
785         dout("choose_mds chose random mds%d\n", mds);
786         return mds;
787 }
788
789
790 /*
791  * session messages
792  */
793 static struct ceph_msg *create_session_msg(u32 op, u64 seq)
794 {
795         struct ceph_msg *msg;
796         struct ceph_mds_session_head *h;
797
798         msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS,
799                            false);
800         if (!msg) {
801                 pr_err("create_session_msg ENOMEM creating msg\n");
802                 return NULL;
803         }
804         h = msg->front.iov_base;
805         h->op = cpu_to_le32(op);
806         h->seq = cpu_to_le64(seq);
807         return msg;
808 }
809
810 /*
811  * send session open request.
812  *
813  * called under mdsc->mutex
814  */
815 static int __open_session(struct ceph_mds_client *mdsc,
816                           struct ceph_mds_session *session)
817 {
818         struct ceph_msg *msg;
819         int mstate;
820         int mds = session->s_mds;
821
822         /* wait for mds to go active? */
823         mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds);
824         dout("open_session to mds%d (%s)\n", mds,
825              ceph_mds_state_name(mstate));
826         session->s_state = CEPH_MDS_SESSION_OPENING;
827         session->s_renew_requested = jiffies;
828
829         /* send connect message */
830         msg = create_session_msg(CEPH_SESSION_REQUEST_OPEN, session->s_seq);
831         if (!msg)
832                 return -ENOMEM;
833         ceph_con_send(&session->s_con, msg);
834         return 0;
835 }
836
837 /*
838  * open sessions for any export targets for the given mds
839  *
840  * called under mdsc->mutex
841  */
842 static void __open_export_target_sessions(struct ceph_mds_client *mdsc,
843                                           struct ceph_mds_session *session)
844 {
845         struct ceph_mds_info *mi;
846         struct ceph_mds_session *ts;
847         int i, mds = session->s_mds;
848         int target;
849
850         if (mds >= mdsc->mdsmap->m_max_mds)
851                 return;
852         mi = &mdsc->mdsmap->m_info[mds];
853         dout("open_export_target_sessions for mds%d (%d targets)\n",
854              session->s_mds, mi->num_export_targets);
855
856         for (i = 0; i < mi->num_export_targets; i++) {
857                 target = mi->export_targets[i];
858                 ts = __ceph_lookup_mds_session(mdsc, target);
859                 if (!ts) {
860                         ts = register_session(mdsc, target);
861                         if (IS_ERR(ts))
862                                 return;
863                 }
864                 if (session->s_state == CEPH_MDS_SESSION_NEW ||
865                     session->s_state == CEPH_MDS_SESSION_CLOSING)
866                         __open_session(mdsc, session);
867                 else
868                         dout(" mds%d target mds%d %p is %s\n", session->s_mds,
869                              i, ts, session_state_name(ts->s_state));
870                 ceph_put_mds_session(ts);
871         }
872 }
873
874 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc,
875                                            struct ceph_mds_session *session)
876 {
877         mutex_lock(&mdsc->mutex);
878         __open_export_target_sessions(mdsc, session);
879         mutex_unlock(&mdsc->mutex);
880 }
881
882 /*
883  * session caps
884  */
885
886 /*
887  * Free preallocated cap messages assigned to this session
888  */
889 static void cleanup_cap_releases(struct ceph_mds_session *session)
890 {
891         struct ceph_msg *msg;
892
893         spin_lock(&session->s_cap_lock);
894         while (!list_empty(&session->s_cap_releases)) {
895                 msg = list_first_entry(&session->s_cap_releases,
896                                        struct ceph_msg, list_head);
897                 list_del_init(&msg->list_head);
898                 ceph_msg_put(msg);
899         }
900         while (!list_empty(&session->s_cap_releases_done)) {
901                 msg = list_first_entry(&session->s_cap_releases_done,
902                                        struct ceph_msg, list_head);
903                 list_del_init(&msg->list_head);
904                 ceph_msg_put(msg);
905         }
906         spin_unlock(&session->s_cap_lock);
907 }
908
909 /*
910  * Helper to safely iterate over all caps associated with a session, with
911  * special care taken to handle a racing __ceph_remove_cap().
912  *
913  * Caller must hold session s_mutex.
914  */
915 static int iterate_session_caps(struct ceph_mds_session *session,
916                                  int (*cb)(struct inode *, struct ceph_cap *,
917                                             void *), void *arg)
918 {
919         struct list_head *p;
920         struct ceph_cap *cap;
921         struct inode *inode, *last_inode = NULL;
922         struct ceph_cap *old_cap = NULL;
923         int ret;
924
925         dout("iterate_session_caps %p mds%d\n", session, session->s_mds);
926         spin_lock(&session->s_cap_lock);
927         p = session->s_caps.next;
928         while (p != &session->s_caps) {
929                 cap = list_entry(p, struct ceph_cap, session_caps);
930                 inode = igrab(&cap->ci->vfs_inode);
931                 if (!inode) {
932                         p = p->next;
933                         continue;
934                 }
935                 session->s_cap_iterator = cap;
936                 spin_unlock(&session->s_cap_lock);
937
938                 if (last_inode) {
939                         iput(last_inode);
940                         last_inode = NULL;
941                 }
942                 if (old_cap) {
943                         ceph_put_cap(session->s_mdsc, old_cap);
944                         old_cap = NULL;
945                 }
946
947                 ret = cb(inode, cap, arg);
948                 last_inode = inode;
949
950                 spin_lock(&session->s_cap_lock);
951                 p = p->next;
952                 if (cap->ci == NULL) {
953                         dout("iterate_session_caps  finishing cap %p removal\n",
954                              cap);
955                         BUG_ON(cap->session != session);
956                         list_del_init(&cap->session_caps);
957                         session->s_nr_caps--;
958                         cap->session = NULL;
959                         old_cap = cap;  /* put_cap it w/o locks held */
960                 }
961                 if (ret < 0)
962                         goto out;
963         }
964         ret = 0;
965 out:
966         session->s_cap_iterator = NULL;
967         spin_unlock(&session->s_cap_lock);
968
969         if (last_inode)
970                 iput(last_inode);
971         if (old_cap)
972                 ceph_put_cap(session->s_mdsc, old_cap);
973
974         return ret;
975 }
976
977 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap,
978                                   void *arg)
979 {
980         struct ceph_inode_info *ci = ceph_inode(inode);
981         int drop = 0;
982
983         dout("removing cap %p, ci is %p, inode is %p\n",
984              cap, ci, &ci->vfs_inode);
985         spin_lock(&ci->i_ceph_lock);
986         __ceph_remove_cap(cap);
987         if (!__ceph_is_any_real_caps(ci)) {
988                 struct ceph_mds_client *mdsc =
989                         ceph_sb_to_client(inode->i_sb)->mdsc;
990
991                 spin_lock(&mdsc->cap_dirty_lock);
992                 if (!list_empty(&ci->i_dirty_item)) {
993                         pr_info(" dropping dirty %s state for %p %lld\n",
994                                 ceph_cap_string(ci->i_dirty_caps),
995                                 inode, ceph_ino(inode));
996                         ci->i_dirty_caps = 0;
997                         list_del_init(&ci->i_dirty_item);
998                         drop = 1;
999                 }
1000                 if (!list_empty(&ci->i_flushing_item)) {
1001                         pr_info(" dropping dirty+flushing %s state for %p %lld\n",
1002                                 ceph_cap_string(ci->i_flushing_caps),
1003                                 inode, ceph_ino(inode));
1004                         ci->i_flushing_caps = 0;
1005                         list_del_init(&ci->i_flushing_item);
1006                         mdsc->num_cap_flushing--;
1007                         drop = 1;
1008                 }
1009                 if (drop && ci->i_wrbuffer_ref) {
1010                         pr_info(" dropping dirty data for %p %lld\n",
1011                                 inode, ceph_ino(inode));
1012                         ci->i_wrbuffer_ref = 0;
1013                         ci->i_wrbuffer_ref_head = 0;
1014                         drop++;
1015                 }
1016                 spin_unlock(&mdsc->cap_dirty_lock);
1017         }
1018         spin_unlock(&ci->i_ceph_lock);
1019         while (drop--)
1020                 iput(inode);
1021         return 0;
1022 }
1023
1024 /*
1025  * caller must hold session s_mutex
1026  */
1027 static void remove_session_caps(struct ceph_mds_session *session)
1028 {
1029         dout("remove_session_caps on %p\n", session);
1030         iterate_session_caps(session, remove_session_caps_cb, NULL);
1031         BUG_ON(session->s_nr_caps > 0);
1032         BUG_ON(!list_empty(&session->s_cap_flushing));
1033         cleanup_cap_releases(session);
1034 }
1035
1036 /*
1037  * wake up any threads waiting on this session's caps.  if the cap is
1038  * old (didn't get renewed on the client reconnect), remove it now.
1039  *
1040  * caller must hold s_mutex.
1041  */
1042 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap,
1043                               void *arg)
1044 {
1045         struct ceph_inode_info *ci = ceph_inode(inode);
1046
1047         wake_up_all(&ci->i_cap_wq);
1048         if (arg) {
1049                 spin_lock(&ci->i_ceph_lock);
1050                 ci->i_wanted_max_size = 0;
1051                 ci->i_requested_max_size = 0;
1052                 spin_unlock(&ci->i_ceph_lock);
1053         }
1054         return 0;
1055 }
1056
1057 static void wake_up_session_caps(struct ceph_mds_session *session,
1058                                  int reconnect)
1059 {
1060         dout("wake_up_session_caps %p mds%d\n", session, session->s_mds);
1061         iterate_session_caps(session, wake_up_session_cb,
1062                              (void *)(unsigned long)reconnect);
1063 }
1064
1065 /*
1066  * Send periodic message to MDS renewing all currently held caps.  The
1067  * ack will reset the expiration for all caps from this session.
1068  *
1069  * caller holds s_mutex
1070  */
1071 static int send_renew_caps(struct ceph_mds_client *mdsc,
1072                            struct ceph_mds_session *session)
1073 {
1074         struct ceph_msg *msg;
1075         int state;
1076
1077         if (time_after_eq(jiffies, session->s_cap_ttl) &&
1078             time_after_eq(session->s_cap_ttl, session->s_renew_requested))
1079                 pr_info("mds%d caps stale\n", session->s_mds);
1080         session->s_renew_requested = jiffies;
1081
1082         /* do not try to renew caps until a recovering mds has reconnected
1083          * with its clients. */
1084         state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds);
1085         if (state < CEPH_MDS_STATE_RECONNECT) {
1086                 dout("send_renew_caps ignoring mds%d (%s)\n",
1087                      session->s_mds, ceph_mds_state_name(state));
1088                 return 0;
1089         }
1090
1091         dout("send_renew_caps to mds%d (%s)\n", session->s_mds,
1092                 ceph_mds_state_name(state));
1093         msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS,
1094                                  ++session->s_renew_seq);
1095         if (!msg)
1096                 return -ENOMEM;
1097         ceph_con_send(&session->s_con, msg);
1098         return 0;
1099 }
1100
1101 /*
1102  * Note new cap ttl, and any transition from stale -> not stale (fresh?).
1103  *
1104  * Called under session->s_mutex
1105  */
1106 static void renewed_caps(struct ceph_mds_client *mdsc,
1107                          struct ceph_mds_session *session, int is_renew)
1108 {
1109         int was_stale;
1110         int wake = 0;
1111
1112         spin_lock(&session->s_cap_lock);
1113         was_stale = is_renew && time_after_eq(jiffies, session->s_cap_ttl);
1114
1115         session->s_cap_ttl = session->s_renew_requested +
1116                 mdsc->mdsmap->m_session_timeout*HZ;
1117
1118         if (was_stale) {
1119                 if (time_before(jiffies, session->s_cap_ttl)) {
1120                         pr_info("mds%d caps renewed\n", session->s_mds);
1121                         wake = 1;
1122                 } else {
1123                         pr_info("mds%d caps still stale\n", session->s_mds);
1124                 }
1125         }
1126         dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n",
1127              session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh",
1128              time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh");
1129         spin_unlock(&session->s_cap_lock);
1130
1131         if (wake)
1132                 wake_up_session_caps(session, 0);
1133 }
1134
1135 /*
1136  * send a session close request
1137  */
1138 static int request_close_session(struct ceph_mds_client *mdsc,
1139                                  struct ceph_mds_session *session)
1140 {
1141         struct ceph_msg *msg;
1142
1143         dout("request_close_session mds%d state %s seq %lld\n",
1144              session->s_mds, session_state_name(session->s_state),
1145              session->s_seq);
1146         msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq);
1147         if (!msg)
1148                 return -ENOMEM;
1149         ceph_con_send(&session->s_con, msg);
1150         return 0;
1151 }
1152
1153 /*
1154  * Called with s_mutex held.
1155  */
1156 static int __close_session(struct ceph_mds_client *mdsc,
1157                          struct ceph_mds_session *session)
1158 {
1159         if (session->s_state >= CEPH_MDS_SESSION_CLOSING)
1160                 return 0;
1161         session->s_state = CEPH_MDS_SESSION_CLOSING;
1162         return request_close_session(mdsc, session);
1163 }
1164
1165 /*
1166  * Trim old(er) caps.
1167  *
1168  * Because we can't cache an inode without one or more caps, we do
1169  * this indirectly: if a cap is unused, we prune its aliases, at which
1170  * point the inode will hopefully get dropped to.
1171  *
1172  * Yes, this is a bit sloppy.  Our only real goal here is to respond to
1173  * memory pressure from the MDS, though, so it needn't be perfect.
1174  */
1175 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg)
1176 {
1177         struct ceph_mds_session *session = arg;
1178         struct ceph_inode_info *ci = ceph_inode(inode);
1179         int used, oissued, mine;
1180
1181         if (session->s_trim_caps <= 0)
1182                 return -1;
1183
1184         spin_lock(&ci->i_ceph_lock);
1185         mine = cap->issued | cap->implemented;
1186         used = __ceph_caps_used(ci);
1187         oissued = __ceph_caps_issued_other(ci, cap);
1188
1189         dout("trim_caps_cb %p cap %p mine %s oissued %s used %s\n",
1190              inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued),
1191              ceph_cap_string(used));
1192         if (ci->i_dirty_caps)
1193                 goto out;   /* dirty caps */
1194         if ((used & ~oissued) & mine)
1195                 goto out;   /* we need these caps */
1196
1197         session->s_trim_caps--;
1198         if (oissued) {
1199                 /* we aren't the only cap.. just remove us */
1200                 __queue_cap_release(session, ceph_ino(inode), cap->cap_id,
1201                                     cap->mseq, cap->issue_seq);
1202                 __ceph_remove_cap(cap);
1203         } else {
1204                 /* try to drop referring dentries */
1205                 spin_unlock(&ci->i_ceph_lock);
1206                 d_prune_aliases(inode);
1207                 dout("trim_caps_cb %p cap %p  pruned, count now %d\n",
1208                      inode, cap, atomic_read(&inode->i_count));
1209                 return 0;
1210         }
1211
1212 out:
1213         spin_unlock(&ci->i_ceph_lock);
1214         return 0;
1215 }
1216
1217 /*
1218  * Trim session cap count down to some max number.
1219  */
1220 static int trim_caps(struct ceph_mds_client *mdsc,
1221                      struct ceph_mds_session *session,
1222                      int max_caps)
1223 {
1224         int trim_caps = session->s_nr_caps - max_caps;
1225
1226         dout("trim_caps mds%d start: %d / %d, trim %d\n",
1227              session->s_mds, session->s_nr_caps, max_caps, trim_caps);
1228         if (trim_caps > 0) {
1229                 session->s_trim_caps = trim_caps;
1230                 iterate_session_caps(session, trim_caps_cb, session);
1231                 dout("trim_caps mds%d done: %d / %d, trimmed %d\n",
1232                      session->s_mds, session->s_nr_caps, max_caps,
1233                         trim_caps - session->s_trim_caps);
1234                 session->s_trim_caps = 0;
1235         }
1236         return 0;
1237 }
1238
1239 /*
1240  * Allocate cap_release messages.  If there is a partially full message
1241  * in the queue, try to allocate enough to cover it's remainder, so that
1242  * we can send it immediately.
1243  *
1244  * Called under s_mutex.
1245  */
1246 int ceph_add_cap_releases(struct ceph_mds_client *mdsc,
1247                           struct ceph_mds_session *session)
1248 {
1249         struct ceph_msg *msg, *partial = NULL;
1250         struct ceph_mds_cap_release *head;
1251         int err = -ENOMEM;
1252         int extra = mdsc->fsc->mount_options->cap_release_safety;
1253         int num;
1254
1255         dout("add_cap_releases %p mds%d extra %d\n", session, session->s_mds,
1256              extra);
1257
1258         spin_lock(&session->s_cap_lock);
1259
1260         if (!list_empty(&session->s_cap_releases)) {
1261                 msg = list_first_entry(&session->s_cap_releases,
1262                                        struct ceph_msg,
1263                                  list_head);
1264                 head = msg->front.iov_base;
1265                 num = le32_to_cpu(head->num);
1266                 if (num) {
1267                         dout(" partial %p with (%d/%d)\n", msg, num,
1268                              (int)CEPH_CAPS_PER_RELEASE);
1269                         extra += CEPH_CAPS_PER_RELEASE - num;
1270                         partial = msg;
1271                 }
1272         }
1273         while (session->s_num_cap_releases < session->s_nr_caps + extra) {
1274                 spin_unlock(&session->s_cap_lock);
1275                 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE, PAGE_CACHE_SIZE,
1276                                    GFP_NOFS, false);
1277                 if (!msg)
1278                         goto out_unlocked;
1279                 dout("add_cap_releases %p msg %p now %d\n", session, msg,
1280                      (int)msg->front.iov_len);
1281                 head = msg->front.iov_base;
1282                 head->num = cpu_to_le32(0);
1283                 msg->front.iov_len = sizeof(*head);
1284                 spin_lock(&session->s_cap_lock);
1285                 list_add(&msg->list_head, &session->s_cap_releases);
1286                 session->s_num_cap_releases += CEPH_CAPS_PER_RELEASE;
1287         }
1288
1289         if (partial) {
1290                 head = partial->front.iov_base;
1291                 num = le32_to_cpu(head->num);
1292                 dout(" queueing partial %p with %d/%d\n", partial, num,
1293                      (int)CEPH_CAPS_PER_RELEASE);
1294                 list_move_tail(&partial->list_head,
1295                                &session->s_cap_releases_done);
1296                 session->s_num_cap_releases -= CEPH_CAPS_PER_RELEASE - num;
1297         }
1298         err = 0;
1299         spin_unlock(&session->s_cap_lock);
1300 out_unlocked:
1301         return err;
1302 }
1303
1304 /*
1305  * flush all dirty inode data to disk.
1306  *
1307  * returns true if we've flushed through want_flush_seq
1308  */
1309 static int check_cap_flush(struct ceph_mds_client *mdsc, u64 want_flush_seq)
1310 {
1311         int mds, ret = 1;
1312
1313         dout("check_cap_flush want %lld\n", want_flush_seq);
1314         mutex_lock(&mdsc->mutex);
1315         for (mds = 0; ret && mds < mdsc->max_sessions; mds++) {
1316                 struct ceph_mds_session *session = mdsc->sessions[mds];
1317
1318                 if (!session)
1319                         continue;
1320                 get_session(session);
1321                 mutex_unlock(&mdsc->mutex);
1322
1323                 mutex_lock(&session->s_mutex);
1324                 if (!list_empty(&session->s_cap_flushing)) {
1325                         struct ceph_inode_info *ci =
1326                                 list_entry(session->s_cap_flushing.next,
1327                                            struct ceph_inode_info,
1328                                            i_flushing_item);
1329                         struct inode *inode = &ci->vfs_inode;
1330
1331                         spin_lock(&ci->i_ceph_lock);
1332                         if (ci->i_cap_flush_seq <= want_flush_seq) {
1333                                 dout("check_cap_flush still flushing %p "
1334                                      "seq %lld <= %lld to mds%d\n", inode,
1335                                      ci->i_cap_flush_seq, want_flush_seq,
1336                                      session->s_mds);
1337                                 ret = 0;
1338                         }
1339                         spin_unlock(&ci->i_ceph_lock);
1340                 }
1341                 mutex_unlock(&session->s_mutex);
1342                 ceph_put_mds_session(session);
1343
1344                 if (!ret)
1345                         return ret;
1346                 mutex_lock(&mdsc->mutex);
1347         }
1348
1349         mutex_unlock(&mdsc->mutex);
1350         dout("check_cap_flush ok, flushed thru %lld\n", want_flush_seq);
1351         return ret;
1352 }
1353
1354 /*
1355  * called under s_mutex
1356  */
1357 void ceph_send_cap_releases(struct ceph_mds_client *mdsc,
1358                             struct ceph_mds_session *session)
1359 {
1360         struct ceph_msg *msg;
1361
1362         dout("send_cap_releases mds%d\n", session->s_mds);
1363         spin_lock(&session->s_cap_lock);
1364         while (!list_empty(&session->s_cap_releases_done)) {
1365                 msg = list_first_entry(&session->s_cap_releases_done,
1366                                  struct ceph_msg, list_head);
1367                 list_del_init(&msg->list_head);
1368                 spin_unlock(&session->s_cap_lock);
1369                 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1370                 dout("send_cap_releases mds%d %p\n", session->s_mds, msg);
1371                 ceph_con_send(&session->s_con, msg);
1372                 spin_lock(&session->s_cap_lock);
1373         }
1374         spin_unlock(&session->s_cap_lock);
1375 }
1376
1377 static void discard_cap_releases(struct ceph_mds_client *mdsc,
1378                                  struct ceph_mds_session *session)
1379 {
1380         struct ceph_msg *msg;
1381         struct ceph_mds_cap_release *head;
1382         unsigned num;
1383
1384         dout("discard_cap_releases mds%d\n", session->s_mds);
1385         spin_lock(&session->s_cap_lock);
1386
1387         /* zero out the in-progress message */
1388         msg = list_first_entry(&session->s_cap_releases,
1389                                struct ceph_msg, list_head);
1390         head = msg->front.iov_base;
1391         num = le32_to_cpu(head->num);
1392         dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg, num);
1393         head->num = cpu_to_le32(0);
1394         msg->front.iov_len = sizeof(*head);
1395         session->s_num_cap_releases += num;
1396
1397         /* requeue completed messages */
1398         while (!list_empty(&session->s_cap_releases_done)) {
1399                 msg = list_first_entry(&session->s_cap_releases_done,
1400                                  struct ceph_msg, list_head);
1401                 list_del_init(&msg->list_head);
1402
1403                 head = msg->front.iov_base;
1404                 num = le32_to_cpu(head->num);
1405                 dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg,
1406                      num);
1407                 session->s_num_cap_releases += num;
1408                 head->num = cpu_to_le32(0);
1409                 msg->front.iov_len = sizeof(*head);
1410                 list_add(&msg->list_head, &session->s_cap_releases);
1411         }
1412
1413         spin_unlock(&session->s_cap_lock);
1414 }
1415
1416 /*
1417  * requests
1418  */
1419
1420 /*
1421  * Create an mds request.
1422  */
1423 struct ceph_mds_request *
1424 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode)
1425 {
1426         struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS);
1427
1428         if (!req)
1429                 return ERR_PTR(-ENOMEM);
1430
1431         mutex_init(&req->r_fill_mutex);
1432         req->r_mdsc = mdsc;
1433         req->r_started = jiffies;
1434         req->r_resend_mds = -1;
1435         INIT_LIST_HEAD(&req->r_unsafe_dir_item);
1436         req->r_fmode = -1;
1437         kref_init(&req->r_kref);
1438         INIT_LIST_HEAD(&req->r_wait);
1439         init_completion(&req->r_completion);
1440         init_completion(&req->r_safe_completion);
1441         INIT_LIST_HEAD(&req->r_unsafe_item);
1442
1443         req->r_op = op;
1444         req->r_direct_mode = mode;
1445         return req;
1446 }
1447
1448 /*
1449  * return oldest (lowest) request, tid in request tree, 0 if none.
1450  *
1451  * called under mdsc->mutex.
1452  */
1453 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc)
1454 {
1455         if (RB_EMPTY_ROOT(&mdsc->request_tree))
1456                 return NULL;
1457         return rb_entry(rb_first(&mdsc->request_tree),
1458                         struct ceph_mds_request, r_node);
1459 }
1460
1461 static u64 __get_oldest_tid(struct ceph_mds_client *mdsc)
1462 {
1463         struct ceph_mds_request *req = __get_oldest_req(mdsc);
1464
1465         if (req)
1466                 return req->r_tid;
1467         return 0;
1468 }
1469
1470 /*
1471  * Build a dentry's path.  Allocate on heap; caller must kfree.  Based
1472  * on build_path_from_dentry in fs/cifs/dir.c.
1473  *
1474  * If @stop_on_nosnap, generate path relative to the first non-snapped
1475  * inode.
1476  *
1477  * Encode hidden .snap dirs as a double /, i.e.
1478  *   foo/.snap/bar -> foo//bar
1479  */
1480 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base,
1481                            int stop_on_nosnap)
1482 {
1483         struct dentry *temp;
1484         char *path;
1485         int len, pos;
1486         unsigned seq;
1487
1488         if (dentry == NULL)
1489                 return ERR_PTR(-EINVAL);
1490
1491 retry:
1492         len = 0;
1493         seq = read_seqbegin(&rename_lock);
1494         rcu_read_lock();
1495         for (temp = dentry; !IS_ROOT(temp);) {
1496                 struct inode *inode = temp->d_inode;
1497                 if (inode && ceph_snap(inode) == CEPH_SNAPDIR)
1498                         len++;  /* slash only */
1499                 else if (stop_on_nosnap && inode &&
1500                          ceph_snap(inode) == CEPH_NOSNAP)
1501                         break;
1502                 else
1503                         len += 1 + temp->d_name.len;
1504                 temp = temp->d_parent;
1505         }
1506         rcu_read_unlock();
1507         if (len)
1508                 len--;  /* no leading '/' */
1509
1510         path = kmalloc(len+1, GFP_NOFS);
1511         if (path == NULL)
1512                 return ERR_PTR(-ENOMEM);
1513         pos = len;
1514         path[pos] = 0;  /* trailing null */
1515         rcu_read_lock();
1516         for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) {
1517                 struct inode *inode;
1518
1519                 spin_lock(&temp->d_lock);
1520                 inode = temp->d_inode;
1521                 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) {
1522                         dout("build_path path+%d: %p SNAPDIR\n",
1523                              pos, temp);
1524                 } else if (stop_on_nosnap && inode &&
1525                            ceph_snap(inode) == CEPH_NOSNAP) {
1526                         spin_unlock(&temp->d_lock);
1527                         break;
1528                 } else {
1529                         pos -= temp->d_name.len;
1530                         if (pos < 0) {
1531                                 spin_unlock(&temp->d_lock);
1532                                 break;
1533                         }
1534                         strncpy(path + pos, temp->d_name.name,
1535                                 temp->d_name.len);
1536                 }
1537                 spin_unlock(&temp->d_lock);
1538                 if (pos)
1539                         path[--pos] = '/';
1540                 temp = temp->d_parent;
1541         }
1542         rcu_read_unlock();
1543         if (pos != 0 || read_seqretry(&rename_lock, seq)) {
1544                 pr_err("build_path did not end path lookup where "
1545                        "expected, namelen is %d, pos is %d\n", len, pos);
1546                 /* presumably this is only possible if racing with a
1547                    rename of one of the parent directories (we can not
1548                    lock the dentries above us to prevent this, but
1549                    retrying should be harmless) */
1550                 kfree(path);
1551                 goto retry;
1552         }
1553
1554         *base = ceph_ino(temp->d_inode);
1555         *plen = len;
1556         dout("build_path on %p %d built %llx '%.*s'\n",
1557              dentry, d_count(dentry), *base, len, path);
1558         return path;
1559 }
1560
1561 static int build_dentry_path(struct dentry *dentry,
1562                              const char **ppath, int *ppathlen, u64 *pino,
1563                              int *pfreepath)
1564 {
1565         char *path;
1566
1567         if (ceph_snap(dentry->d_parent->d_inode) == CEPH_NOSNAP) {
1568                 *pino = ceph_ino(dentry->d_parent->d_inode);
1569                 *ppath = dentry->d_name.name;
1570                 *ppathlen = dentry->d_name.len;
1571                 return 0;
1572         }
1573         path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1574         if (IS_ERR(path))
1575                 return PTR_ERR(path);
1576         *ppath = path;
1577         *pfreepath = 1;
1578         return 0;
1579 }
1580
1581 static int build_inode_path(struct inode *inode,
1582                             const char **ppath, int *ppathlen, u64 *pino,
1583                             int *pfreepath)
1584 {
1585         struct dentry *dentry;
1586         char *path;
1587
1588         if (ceph_snap(inode) == CEPH_NOSNAP) {
1589                 *pino = ceph_ino(inode);
1590                 *ppathlen = 0;
1591                 return 0;
1592         }
1593         dentry = d_find_alias(inode);
1594         path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1595         dput(dentry);
1596         if (IS_ERR(path))
1597                 return PTR_ERR(path);
1598         *ppath = path;
1599         *pfreepath = 1;
1600         return 0;
1601 }
1602
1603 /*
1604  * request arguments may be specified via an inode *, a dentry *, or
1605  * an explicit ino+path.
1606  */
1607 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry,
1608                                   const char *rpath, u64 rino,
1609                                   const char **ppath, int *pathlen,
1610                                   u64 *ino, int *freepath)
1611 {
1612         int r = 0;
1613
1614         if (rinode) {
1615                 r = build_inode_path(rinode, ppath, pathlen, ino, freepath);
1616                 dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode),
1617                      ceph_snap(rinode));
1618         } else if (rdentry) {
1619                 r = build_dentry_path(rdentry, ppath, pathlen, ino, freepath);
1620                 dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen,
1621                      *ppath);
1622         } else if (rpath || rino) {
1623                 *ino = rino;
1624                 *ppath = rpath;
1625                 *pathlen = rpath ? strlen(rpath) : 0;
1626                 dout(" path %.*s\n", *pathlen, rpath);
1627         }
1628
1629         return r;
1630 }
1631
1632 /*
1633  * called under mdsc->mutex
1634  */
1635 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc,
1636                                                struct ceph_mds_request *req,
1637                                                int mds)
1638 {
1639         struct ceph_msg *msg;
1640         struct ceph_mds_request_head *head;
1641         const char *path1 = NULL;
1642         const char *path2 = NULL;
1643         u64 ino1 = 0, ino2 = 0;
1644         int pathlen1 = 0, pathlen2 = 0;
1645         int freepath1 = 0, freepath2 = 0;
1646         int len;
1647         u16 releases;
1648         void *p, *end;
1649         int ret;
1650
1651         ret = set_request_path_attr(req->r_inode, req->r_dentry,
1652                               req->r_path1, req->r_ino1.ino,
1653                               &path1, &pathlen1, &ino1, &freepath1);
1654         if (ret < 0) {
1655                 msg = ERR_PTR(ret);
1656                 goto out;
1657         }
1658
1659         ret = set_request_path_attr(NULL, req->r_old_dentry,
1660                               req->r_path2, req->r_ino2.ino,
1661                               &path2, &pathlen2, &ino2, &freepath2);
1662         if (ret < 0) {
1663                 msg = ERR_PTR(ret);
1664                 goto out_free1;
1665         }
1666
1667         len = sizeof(*head) +
1668                 pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64));
1669
1670         /* calculate (max) length for cap releases */
1671         len += sizeof(struct ceph_mds_request_release) *
1672                 (!!req->r_inode_drop + !!req->r_dentry_drop +
1673                  !!req->r_old_inode_drop + !!req->r_old_dentry_drop);
1674         if (req->r_dentry_drop)
1675                 len += req->r_dentry->d_name.len;
1676         if (req->r_old_dentry_drop)
1677                 len += req->r_old_dentry->d_name.len;
1678
1679         msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len, GFP_NOFS, false);
1680         if (!msg) {
1681                 msg = ERR_PTR(-ENOMEM);
1682                 goto out_free2;
1683         }
1684
1685         msg->hdr.tid = cpu_to_le64(req->r_tid);
1686
1687         head = msg->front.iov_base;
1688         p = msg->front.iov_base + sizeof(*head);
1689         end = msg->front.iov_base + msg->front.iov_len;
1690
1691         head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch);
1692         head->op = cpu_to_le32(req->r_op);
1693         head->caller_uid = cpu_to_le32(from_kuid(&init_user_ns, req->r_uid));
1694         head->caller_gid = cpu_to_le32(from_kgid(&init_user_ns, req->r_gid));
1695         head->args = req->r_args;
1696
1697         ceph_encode_filepath(&p, end, ino1, path1);
1698         ceph_encode_filepath(&p, end, ino2, path2);
1699
1700         /* make note of release offset, in case we need to replay */
1701         req->r_request_release_offset = p - msg->front.iov_base;
1702
1703         /* cap releases */
1704         releases = 0;
1705         if (req->r_inode_drop)
1706                 releases += ceph_encode_inode_release(&p,
1707                       req->r_inode ? req->r_inode : req->r_dentry->d_inode,
1708                       mds, req->r_inode_drop, req->r_inode_unless, 0);
1709         if (req->r_dentry_drop)
1710                 releases += ceph_encode_dentry_release(&p, req->r_dentry,
1711                        mds, req->r_dentry_drop, req->r_dentry_unless);
1712         if (req->r_old_dentry_drop)
1713                 releases += ceph_encode_dentry_release(&p, req->r_old_dentry,
1714                        mds, req->r_old_dentry_drop, req->r_old_dentry_unless);
1715         if (req->r_old_inode_drop)
1716                 releases += ceph_encode_inode_release(&p,
1717                       req->r_old_dentry->d_inode,
1718                       mds, req->r_old_inode_drop, req->r_old_inode_unless, 0);
1719         head->num_releases = cpu_to_le16(releases);
1720
1721         BUG_ON(p > end);
1722         msg->front.iov_len = p - msg->front.iov_base;
1723         msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1724
1725         if (req->r_data_len) {
1726                 /* outbound data set only by ceph_sync_setxattr() */
1727                 BUG_ON(!req->r_pages);
1728                 ceph_msg_data_add_pages(msg, req->r_pages, req->r_data_len, 0);
1729         }
1730
1731         msg->hdr.data_len = cpu_to_le32(req->r_data_len);
1732         msg->hdr.data_off = cpu_to_le16(0);
1733
1734 out_free2:
1735         if (freepath2)
1736                 kfree((char *)path2);
1737 out_free1:
1738         if (freepath1)
1739                 kfree((char *)path1);
1740 out:
1741         return msg;
1742 }
1743
1744 /*
1745  * called under mdsc->mutex if error, under no mutex if
1746  * success.
1747  */
1748 static void complete_request(struct ceph_mds_client *mdsc,
1749                              struct ceph_mds_request *req)
1750 {
1751         if (req->r_callback)
1752                 req->r_callback(mdsc, req);
1753         else
1754                 complete_all(&req->r_completion);
1755 }
1756
1757 /*
1758  * called under mdsc->mutex
1759  */
1760 static int __prepare_send_request(struct ceph_mds_client *mdsc,
1761                                   struct ceph_mds_request *req,
1762                                   int mds)
1763 {
1764         struct ceph_mds_request_head *rhead;
1765         struct ceph_msg *msg;
1766         int flags = 0;
1767
1768         req->r_attempts++;
1769         if (req->r_inode) {
1770                 struct ceph_cap *cap =
1771                         ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds);
1772
1773                 if (cap)
1774                         req->r_sent_on_mseq = cap->mseq;
1775                 else
1776                         req->r_sent_on_mseq = -1;
1777         }
1778         dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req,
1779              req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts);
1780
1781         if (req->r_got_unsafe) {
1782                 /*
1783                  * Replay.  Do not regenerate message (and rebuild
1784                  * paths, etc.); just use the original message.
1785                  * Rebuilding paths will break for renames because
1786                  * d_move mangles the src name.
1787                  */
1788                 msg = req->r_request;
1789                 rhead = msg->front.iov_base;
1790
1791                 flags = le32_to_cpu(rhead->flags);
1792                 flags |= CEPH_MDS_FLAG_REPLAY;
1793                 rhead->flags = cpu_to_le32(flags);
1794
1795                 if (req->r_target_inode)
1796                         rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode));
1797
1798                 rhead->num_retry = req->r_attempts - 1;
1799
1800                 /* remove cap/dentry releases from message */
1801                 rhead->num_releases = 0;
1802                 msg->hdr.front_len = cpu_to_le32(req->r_request_release_offset);
1803                 msg->front.iov_len = req->r_request_release_offset;
1804                 return 0;
1805         }
1806
1807         if (req->r_request) {
1808                 ceph_msg_put(req->r_request);
1809                 req->r_request = NULL;
1810         }
1811         msg = create_request_message(mdsc, req, mds);
1812         if (IS_ERR(msg)) {
1813                 req->r_err = PTR_ERR(msg);
1814                 complete_request(mdsc, req);
1815                 return PTR_ERR(msg);
1816         }
1817         req->r_request = msg;
1818
1819         rhead = msg->front.iov_base;
1820         rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc));
1821         if (req->r_got_unsafe)
1822                 flags |= CEPH_MDS_FLAG_REPLAY;
1823         if (req->r_locked_dir)
1824                 flags |= CEPH_MDS_FLAG_WANT_DENTRY;
1825         rhead->flags = cpu_to_le32(flags);
1826         rhead->num_fwd = req->r_num_fwd;
1827         rhead->num_retry = req->r_attempts - 1;
1828         rhead->ino = 0;
1829
1830         dout(" r_locked_dir = %p\n", req->r_locked_dir);
1831         return 0;
1832 }
1833
1834 /*
1835  * send request, or put it on the appropriate wait list.
1836  */
1837 static int __do_request(struct ceph_mds_client *mdsc,
1838                         struct ceph_mds_request *req)
1839 {
1840         struct ceph_mds_session *session = NULL;
1841         int mds = -1;
1842         int err = -EAGAIN;
1843
1844         if (req->r_err || req->r_got_result)
1845                 goto out;
1846
1847         if (req->r_timeout &&
1848             time_after_eq(jiffies, req->r_started + req->r_timeout)) {
1849                 dout("do_request timed out\n");
1850                 err = -EIO;
1851                 goto finish;
1852         }
1853
1854         put_request_session(req);
1855
1856         mds = __choose_mds(mdsc, req);
1857         if (mds < 0 ||
1858             ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) {
1859                 dout("do_request no mds or not active, waiting for map\n");
1860                 list_add(&req->r_wait, &mdsc->waiting_for_map);
1861                 goto out;
1862         }
1863
1864         /* get, open session */
1865         session = __ceph_lookup_mds_session(mdsc, mds);
1866         if (!session) {
1867                 session = register_session(mdsc, mds);
1868                 if (IS_ERR(session)) {
1869                         err = PTR_ERR(session);
1870                         goto finish;
1871                 }
1872         }
1873         req->r_session = get_session(session);
1874
1875         dout("do_request mds%d session %p state %s\n", mds, session,
1876              session_state_name(session->s_state));
1877         if (session->s_state != CEPH_MDS_SESSION_OPEN &&
1878             session->s_state != CEPH_MDS_SESSION_HUNG) {
1879                 if (session->s_state == CEPH_MDS_SESSION_NEW ||
1880                     session->s_state == CEPH_MDS_SESSION_CLOSING)
1881                         __open_session(mdsc, session);
1882                 list_add(&req->r_wait, &session->s_waiting);
1883                 goto out_session;
1884         }
1885
1886         /* send request */
1887         req->r_resend_mds = -1;   /* forget any previous mds hint */
1888
1889         if (req->r_request_started == 0)   /* note request start time */
1890                 req->r_request_started = jiffies;
1891
1892         err = __prepare_send_request(mdsc, req, mds);
1893         if (!err) {
1894                 ceph_msg_get(req->r_request);
1895                 ceph_con_send(&session->s_con, req->r_request);
1896         }
1897
1898 out_session:
1899         ceph_put_mds_session(session);
1900 out:
1901         return err;
1902
1903 finish:
1904         req->r_err = err;
1905         complete_request(mdsc, req);
1906         goto out;
1907 }
1908
1909 /*
1910  * called under mdsc->mutex
1911  */
1912 static void __wake_requests(struct ceph_mds_client *mdsc,
1913                             struct list_head *head)
1914 {
1915         struct ceph_mds_request *req;
1916         LIST_HEAD(tmp_list);
1917
1918         list_splice_init(head, &tmp_list);
1919
1920         while (!list_empty(&tmp_list)) {
1921                 req = list_entry(tmp_list.next,
1922                                  struct ceph_mds_request, r_wait);
1923                 list_del_init(&req->r_wait);
1924                 dout(" wake request %p tid %llu\n", req, req->r_tid);
1925                 __do_request(mdsc, req);
1926         }
1927 }
1928
1929 /*
1930  * Wake up threads with requests pending for @mds, so that they can
1931  * resubmit their requests to a possibly different mds.
1932  */
1933 static void kick_requests(struct ceph_mds_client *mdsc, int mds)
1934 {
1935         struct ceph_mds_request *req;
1936         struct rb_node *p;
1937
1938         dout("kick_requests mds%d\n", mds);
1939         for (p = rb_first(&mdsc->request_tree); p; p = rb_next(p)) {
1940                 req = rb_entry(p, struct ceph_mds_request, r_node);
1941                 if (req->r_got_unsafe)
1942                         continue;
1943                 if (req->r_session &&
1944                     req->r_session->s_mds == mds) {
1945                         dout(" kicking tid %llu\n", req->r_tid);
1946                         __do_request(mdsc, req);
1947                 }
1948         }
1949 }
1950
1951 void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc,
1952                               struct ceph_mds_request *req)
1953 {
1954         dout("submit_request on %p\n", req);
1955         mutex_lock(&mdsc->mutex);
1956         __register_request(mdsc, req, NULL);
1957         __do_request(mdsc, req);
1958         mutex_unlock(&mdsc->mutex);
1959 }
1960
1961 /*
1962  * Synchrously perform an mds request.  Take care of all of the
1963  * session setup, forwarding, retry details.
1964  */
1965 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc,
1966                          struct inode *dir,
1967                          struct ceph_mds_request *req)
1968 {
1969         int err;
1970
1971         dout("do_request on %p\n", req);
1972
1973         /* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */
1974         if (req->r_inode)
1975                 ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
1976         if (req->r_locked_dir)
1977                 ceph_get_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
1978         if (req->r_old_dentry)
1979                 ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir),
1980                                   CEPH_CAP_PIN);
1981
1982         /* issue */
1983         mutex_lock(&mdsc->mutex);
1984         __register_request(mdsc, req, dir);
1985         __do_request(mdsc, req);
1986
1987         if (req->r_err) {
1988                 err = req->r_err;
1989                 __unregister_request(mdsc, req);
1990                 dout("do_request early error %d\n", err);
1991                 goto out;
1992         }
1993
1994         /* wait */
1995         mutex_unlock(&mdsc->mutex);
1996         dout("do_request waiting\n");
1997         if (req->r_timeout) {
1998                 err = (long)wait_for_completion_killable_timeout(
1999                         &req->r_completion, req->r_timeout);
2000                 if (err == 0)
2001                         err = -EIO;
2002         } else {
2003                 err = wait_for_completion_killable(&req->r_completion);
2004         }
2005         dout("do_request waited, got %d\n", err);
2006         mutex_lock(&mdsc->mutex);
2007
2008         /* only abort if we didn't race with a real reply */
2009         if (req->r_got_result) {
2010                 err = le32_to_cpu(req->r_reply_info.head->result);
2011         } else if (err < 0) {
2012                 dout("aborted request %lld with %d\n", req->r_tid, err);
2013
2014                 /*
2015                  * ensure we aren't running concurrently with
2016                  * ceph_fill_trace or ceph_readdir_prepopulate, which
2017                  * rely on locks (dir mutex) held by our caller.
2018                  */
2019                 mutex_lock(&req->r_fill_mutex);
2020                 req->r_err = err;
2021                 req->r_aborted = true;
2022                 mutex_unlock(&req->r_fill_mutex);
2023
2024                 if (req->r_locked_dir &&
2025                     (req->r_op & CEPH_MDS_OP_WRITE))
2026                         ceph_invalidate_dir_request(req);
2027         } else {
2028                 err = req->r_err;
2029         }
2030
2031 out:
2032         mutex_unlock(&mdsc->mutex);
2033         dout("do_request %p done, result %d\n", req, err);
2034         return err;
2035 }
2036
2037 /*
2038  * Invalidate dir's completeness, dentry lease state on an aborted MDS
2039  * namespace request.
2040  */
2041 void ceph_invalidate_dir_request(struct ceph_mds_request *req)
2042 {
2043         struct inode *inode = req->r_locked_dir;
2044
2045         dout("invalidate_dir_request %p (complete, lease(s))\n", inode);
2046
2047         ceph_dir_clear_complete(inode);
2048         if (req->r_dentry)
2049                 ceph_invalidate_dentry_lease(req->r_dentry);
2050         if (req->r_old_dentry)
2051                 ceph_invalidate_dentry_lease(req->r_old_dentry);
2052 }
2053
2054 /*
2055  * Handle mds reply.
2056  *
2057  * We take the session mutex and parse and process the reply immediately.
2058  * This preserves the logical ordering of replies, capabilities, etc., sent
2059  * by the MDS as they are applied to our local cache.
2060  */
2061 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg)
2062 {
2063         struct ceph_mds_client *mdsc = session->s_mdsc;
2064         struct ceph_mds_request *req;
2065         struct ceph_mds_reply_head *head = msg->front.iov_base;
2066         struct ceph_mds_reply_info_parsed *rinfo;  /* parsed reply info */
2067         u64 tid;
2068         int err, result;
2069         int mds = session->s_mds;
2070
2071         if (msg->front.iov_len < sizeof(*head)) {
2072                 pr_err("mdsc_handle_reply got corrupt (short) reply\n");
2073                 ceph_msg_dump(msg);
2074                 return;
2075         }
2076
2077         /* get request, session */
2078         tid = le64_to_cpu(msg->hdr.tid);
2079         mutex_lock(&mdsc->mutex);
2080         req = __lookup_request(mdsc, tid);
2081         if (!req) {
2082                 dout("handle_reply on unknown tid %llu\n", tid);
2083                 mutex_unlock(&mdsc->mutex);
2084                 return;
2085         }
2086         dout("handle_reply %p\n", req);
2087
2088         /* correct session? */
2089         if (req->r_session != session) {
2090                 pr_err("mdsc_handle_reply got %llu on session mds%d"
2091                        " not mds%d\n", tid, session->s_mds,
2092                        req->r_session ? req->r_session->s_mds : -1);
2093                 mutex_unlock(&mdsc->mutex);
2094                 goto out;
2095         }
2096
2097         /* dup? */
2098         if ((req->r_got_unsafe && !head->safe) ||
2099             (req->r_got_safe && head->safe)) {
2100                 pr_warning("got a dup %s reply on %llu from mds%d\n",
2101                            head->safe ? "safe" : "unsafe", tid, mds);
2102                 mutex_unlock(&mdsc->mutex);
2103                 goto out;
2104         }
2105         if (req->r_got_safe && !head->safe) {
2106                 pr_warning("got unsafe after safe on %llu from mds%d\n",
2107                            tid, mds);
2108                 mutex_unlock(&mdsc->mutex);
2109                 goto out;
2110         }
2111
2112         result = le32_to_cpu(head->result);
2113
2114         /*
2115          * Handle an ESTALE
2116          * if we're not talking to the authority, send to them
2117          * if the authority has changed while we weren't looking,
2118          * send to new authority
2119          * Otherwise we just have to return an ESTALE
2120          */
2121         if (result == -ESTALE) {
2122                 dout("got ESTALE on request %llu", req->r_tid);
2123                 if (!req->r_inode) {
2124                         /* do nothing; not an authority problem */
2125                 } else if (req->r_direct_mode != USE_AUTH_MDS) {
2126                         dout("not using auth, setting for that now");
2127                         req->r_direct_mode = USE_AUTH_MDS;
2128                         __do_request(mdsc, req);
2129                         mutex_unlock(&mdsc->mutex);
2130                         goto out;
2131                 } else  {
2132                         struct ceph_inode_info *ci = ceph_inode(req->r_inode);
2133                         struct ceph_cap *cap = NULL;
2134
2135                         if (req->r_session)
2136                                 cap = ceph_get_cap_for_mds(ci,
2137                                                    req->r_session->s_mds);
2138
2139                         dout("already using auth");
2140                         if ((!cap || cap != ci->i_auth_cap) ||
2141                             (cap->mseq != req->r_sent_on_mseq)) {
2142                                 dout("but cap changed, so resending");
2143                                 __do_request(mdsc, req);
2144                                 mutex_unlock(&mdsc->mutex);
2145                                 goto out;
2146                         }
2147                 }
2148                 dout("have to return ESTALE on request %llu", req->r_tid);
2149         }
2150
2151
2152         if (head->safe) {
2153                 req->r_got_safe = true;
2154                 __unregister_request(mdsc, req);
2155                 complete_all(&req->r_safe_completion);
2156
2157                 if (req->r_got_unsafe) {
2158                         /*
2159                          * We already handled the unsafe response, now do the
2160                          * cleanup.  No need to examine the response; the MDS
2161                          * doesn't include any result info in the safe
2162                          * response.  And even if it did, there is nothing
2163                          * useful we could do with a revised return value.
2164                          */
2165                         dout("got safe reply %llu, mds%d\n", tid, mds);
2166                         list_del_init(&req->r_unsafe_item);
2167
2168                         /* last unsafe request during umount? */
2169                         if (mdsc->stopping && !__get_oldest_req(mdsc))
2170                                 complete_all(&mdsc->safe_umount_waiters);
2171                         mutex_unlock(&mdsc->mutex);
2172                         goto out;
2173                 }
2174         } else {
2175                 req->r_got_unsafe = true;
2176                 list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe);
2177         }
2178
2179         dout("handle_reply tid %lld result %d\n", tid, result);
2180         rinfo = &req->r_reply_info;
2181         err = parse_reply_info(msg, rinfo, session->s_con.peer_features);
2182         mutex_unlock(&mdsc->mutex);
2183
2184         mutex_lock(&session->s_mutex);
2185         if (err < 0) {
2186                 pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds, tid);
2187                 ceph_msg_dump(msg);
2188                 goto out_err;
2189         }
2190
2191         /* snap trace */
2192         if (rinfo->snapblob_len) {
2193                 down_write(&mdsc->snap_rwsem);
2194                 ceph_update_snap_trace(mdsc, rinfo->snapblob,
2195                                rinfo->snapblob + rinfo->snapblob_len,
2196                                le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP);
2197                 downgrade_write(&mdsc->snap_rwsem);
2198         } else {
2199                 down_read(&mdsc->snap_rwsem);
2200         }
2201
2202         /* insert trace into our cache */
2203         mutex_lock(&req->r_fill_mutex);
2204         err = ceph_fill_trace(mdsc->fsc->sb, req, req->r_session);
2205         if (err == 0) {
2206                 if (result == 0 && (req->r_op == CEPH_MDS_OP_READDIR ||
2207                                     req->r_op == CEPH_MDS_OP_LSSNAP) &&
2208                     rinfo->dir_nr)
2209                         ceph_readdir_prepopulate(req, req->r_session);
2210                 ceph_unreserve_caps(mdsc, &req->r_caps_reservation);
2211         }
2212         mutex_unlock(&req->r_fill_mutex);
2213
2214         up_read(&mdsc->snap_rwsem);
2215 out_err:
2216         mutex_lock(&mdsc->mutex);
2217         if (!req->r_aborted) {
2218                 if (err) {
2219                         req->r_err = err;
2220                 } else {
2221                         req->r_reply = msg;
2222                         ceph_msg_get(msg);
2223                         req->r_got_result = true;
2224                 }
2225         } else {
2226                 dout("reply arrived after request %lld was aborted\n", tid);
2227         }
2228         mutex_unlock(&mdsc->mutex);
2229
2230         ceph_add_cap_releases(mdsc, req->r_session);
2231         mutex_unlock(&session->s_mutex);
2232
2233         /* kick calling process */
2234         complete_request(mdsc, req);
2235 out:
2236         ceph_mdsc_put_request(req);
2237         return;
2238 }
2239
2240
2241
2242 /*
2243  * handle mds notification that our request has been forwarded.
2244  */
2245 static void handle_forward(struct ceph_mds_client *mdsc,
2246                            struct ceph_mds_session *session,
2247                            struct ceph_msg *msg)
2248 {
2249         struct ceph_mds_request *req;
2250         u64 tid = le64_to_cpu(msg->hdr.tid);
2251         u32 next_mds;
2252         u32 fwd_seq;
2253         int err = -EINVAL;
2254         void *p = msg->front.iov_base;
2255         void *end = p + msg->front.iov_len;
2256
2257         ceph_decode_need(&p, end, 2*sizeof(u32), bad);
2258         next_mds = ceph_decode_32(&p);
2259         fwd_seq = ceph_decode_32(&p);
2260
2261         mutex_lock(&mdsc->mutex);
2262         req = __lookup_request(mdsc, tid);
2263         if (!req) {
2264                 dout("forward tid %llu to mds%d - req dne\n", tid, next_mds);
2265                 goto out;  /* dup reply? */
2266         }
2267
2268         if (req->r_aborted) {
2269                 dout("forward tid %llu aborted, unregistering\n", tid);
2270                 __unregister_request(mdsc, req);
2271         } else if (fwd_seq <= req->r_num_fwd) {
2272                 dout("forward tid %llu to mds%d - old seq %d <= %d\n",
2273                      tid, next_mds, req->r_num_fwd, fwd_seq);
2274         } else {
2275                 /* resend. forward race not possible; mds would drop */
2276                 dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds);
2277                 BUG_ON(req->r_err);
2278                 BUG_ON(req->r_got_result);
2279                 req->r_num_fwd = fwd_seq;
2280                 req->r_resend_mds = next_mds;
2281                 put_request_session(req);
2282                 __do_request(mdsc, req);
2283         }
2284         ceph_mdsc_put_request(req);
2285 out:
2286         mutex_unlock(&mdsc->mutex);
2287         return;
2288
2289 bad:
2290         pr_err("mdsc_handle_forward decode error err=%d\n", err);
2291 }
2292
2293 /*
2294  * handle a mds session control message
2295  */
2296 static void handle_session(struct ceph_mds_session *session,
2297                            struct ceph_msg *msg)
2298 {
2299         struct ceph_mds_client *mdsc = session->s_mdsc;
2300         u32 op;
2301         u64 seq;
2302         int mds = session->s_mds;
2303         struct ceph_mds_session_head *h = msg->front.iov_base;
2304         int wake = 0;
2305
2306         /* decode */
2307         if (msg->front.iov_len != sizeof(*h))
2308                 goto bad;
2309         op = le32_to_cpu(h->op);
2310         seq = le64_to_cpu(h->seq);
2311
2312         mutex_lock(&mdsc->mutex);
2313         if (op == CEPH_SESSION_CLOSE)
2314                 __unregister_session(mdsc, session);
2315         /* FIXME: this ttl calculation is generous */
2316         session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose;
2317         mutex_unlock(&mdsc->mutex);
2318
2319         mutex_lock(&session->s_mutex);
2320
2321         dout("handle_session mds%d %s %p state %s seq %llu\n",
2322              mds, ceph_session_op_name(op), session,
2323              session_state_name(session->s_state), seq);
2324
2325         if (session->s_state == CEPH_MDS_SESSION_HUNG) {
2326                 session->s_state = CEPH_MDS_SESSION_OPEN;
2327                 pr_info("mds%d came back\n", session->s_mds);
2328         }
2329
2330         switch (op) {
2331         case CEPH_SESSION_OPEN:
2332                 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2333                         pr_info("mds%d reconnect success\n", session->s_mds);
2334                 session->s_state = CEPH_MDS_SESSION_OPEN;
2335                 renewed_caps(mdsc, session, 0);
2336                 wake = 1;
2337                 if (mdsc->stopping)
2338                         __close_session(mdsc, session);
2339                 break;
2340
2341         case CEPH_SESSION_RENEWCAPS:
2342                 if (session->s_renew_seq == seq)
2343                         renewed_caps(mdsc, session, 1);
2344                 break;
2345
2346         case CEPH_SESSION_CLOSE:
2347                 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2348                         pr_info("mds%d reconnect denied\n", session->s_mds);
2349                 remove_session_caps(session);
2350                 wake = 1; /* for good measure */
2351                 wake_up_all(&mdsc->session_close_wq);
2352                 kick_requests(mdsc, mds);
2353                 break;
2354
2355         case CEPH_SESSION_STALE:
2356                 pr_info("mds%d caps went stale, renewing\n",
2357                         session->s_mds);
2358                 spin_lock(&session->s_gen_ttl_lock);
2359                 session->s_cap_gen++;
2360                 session->s_cap_ttl = jiffies - 1;
2361                 spin_unlock(&session->s_gen_ttl_lock);
2362                 send_renew_caps(mdsc, session);
2363                 break;
2364
2365         case CEPH_SESSION_RECALL_STATE:
2366                 trim_caps(mdsc, session, le32_to_cpu(h->max_caps));
2367                 break;
2368
2369         default:
2370                 pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds);
2371                 WARN_ON(1);
2372         }
2373
2374         mutex_unlock(&session->s_mutex);
2375         if (wake) {
2376                 mutex_lock(&mdsc->mutex);
2377                 __wake_requests(mdsc, &session->s_waiting);
2378                 mutex_unlock(&mdsc->mutex);
2379         }
2380         return;
2381
2382 bad:
2383         pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds,
2384                (int)msg->front.iov_len);
2385         ceph_msg_dump(msg);
2386         return;
2387 }
2388
2389
2390 /*
2391  * called under session->mutex.
2392  */
2393 static void replay_unsafe_requests(struct ceph_mds_client *mdsc,
2394                                    struct ceph_mds_session *session)
2395 {
2396         struct ceph_mds_request *req, *nreq;
2397         int err;
2398
2399         dout("replay_unsafe_requests mds%d\n", session->s_mds);
2400
2401         mutex_lock(&mdsc->mutex);
2402         list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) {
2403                 err = __prepare_send_request(mdsc, req, session->s_mds);
2404                 if (!err) {
2405                         ceph_msg_get(req->r_request);
2406                         ceph_con_send(&session->s_con, req->r_request);
2407                 }
2408         }
2409         mutex_unlock(&mdsc->mutex);
2410 }
2411
2412 /*
2413  * Encode information about a cap for a reconnect with the MDS.
2414  */
2415 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap,
2416                           void *arg)
2417 {
2418         union {
2419                 struct ceph_mds_cap_reconnect v2;
2420                 struct ceph_mds_cap_reconnect_v1 v1;
2421         } rec;
2422         size_t reclen;
2423         struct ceph_inode_info *ci;
2424         struct ceph_reconnect_state *recon_state = arg;
2425         struct ceph_pagelist *pagelist = recon_state->pagelist;
2426         char *path;
2427         int pathlen, err;
2428         u64 pathbase;
2429         struct dentry *dentry;
2430
2431         ci = cap->ci;
2432
2433         dout(" adding %p ino %llx.%llx cap %p %lld %s\n",
2434              inode, ceph_vinop(inode), cap, cap->cap_id,
2435              ceph_cap_string(cap->issued));
2436         err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode));
2437         if (err)
2438                 return err;
2439
2440         dentry = d_find_alias(inode);
2441         if (dentry) {
2442                 path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0);
2443                 if (IS_ERR(path)) {
2444                         err = PTR_ERR(path);
2445                         goto out_dput;
2446                 }
2447         } else {
2448                 path = NULL;
2449                 pathlen = 0;
2450         }
2451         err = ceph_pagelist_encode_string(pagelist, path, pathlen);
2452         if (err)
2453                 goto out_free;
2454
2455         spin_lock(&ci->i_ceph_lock);
2456         cap->seq = 0;        /* reset cap seq */
2457         cap->issue_seq = 0;  /* and issue_seq */
2458         cap->mseq = 0;       /* and migrate_seq */
2459
2460         if (recon_state->flock) {
2461                 rec.v2.cap_id = cpu_to_le64(cap->cap_id);
2462                 rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2463                 rec.v2.issued = cpu_to_le32(cap->issued);
2464                 rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2465                 rec.v2.pathbase = cpu_to_le64(pathbase);
2466                 rec.v2.flock_len = 0;
2467                 reclen = sizeof(rec.v2);
2468         } else {
2469                 rec.v1.cap_id = cpu_to_le64(cap->cap_id);
2470                 rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2471                 rec.v1.issued = cpu_to_le32(cap->issued);
2472                 rec.v1.size = cpu_to_le64(inode->i_size);
2473                 ceph_encode_timespec(&rec.v1.mtime, &inode->i_mtime);
2474                 ceph_encode_timespec(&rec.v1.atime, &inode->i_atime);
2475                 rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2476                 rec.v1.pathbase = cpu_to_le64(pathbase);
2477                 reclen = sizeof(rec.v1);
2478         }
2479         spin_unlock(&ci->i_ceph_lock);
2480
2481         if (recon_state->flock) {
2482                 int num_fcntl_locks, num_flock_locks;
2483                 struct ceph_filelock *flocks;
2484
2485 encode_again:
2486                 spin_lock(&inode->i_lock);
2487                 ceph_count_locks(inode, &num_fcntl_locks, &num_flock_locks);
2488                 spin_unlock(&inode->i_lock);
2489                 flocks = kmalloc((num_fcntl_locks+num_flock_locks) *
2490                                  sizeof(struct ceph_filelock), GFP_NOFS);
2491                 if (!flocks) {
2492                         err = -ENOMEM;
2493                         goto out_free;
2494                 }
2495                 spin_lock(&inode->i_lock);
2496                 err = ceph_encode_locks_to_buffer(inode, flocks,
2497                                                   num_fcntl_locks,
2498                                                   num_flock_locks);
2499                 spin_unlock(&inode->i_lock);
2500                 if (err) {
2501                         kfree(flocks);
2502                         if (err == -ENOSPC)
2503                                 goto encode_again;
2504                         goto out_free;
2505                 }
2506                 /*
2507                  * number of encoded locks is stable, so copy to pagelist
2508                  */
2509                 rec.v2.flock_len = cpu_to_le32(2*sizeof(u32) +
2510                                     (num_fcntl_locks+num_flock_locks) *
2511                                     sizeof(struct ceph_filelock));
2512                 err = ceph_pagelist_append(pagelist, &rec, reclen);
2513                 if (!err)
2514                         err = ceph_locks_to_pagelist(flocks, pagelist,
2515                                                      num_fcntl_locks,
2516                                                      num_flock_locks);
2517                 kfree(flocks);
2518         } else {
2519                 err = ceph_pagelist_append(pagelist, &rec, reclen);
2520         }
2521 out_free:
2522         kfree(path);
2523 out_dput:
2524         dput(dentry);
2525         return err;
2526 }
2527
2528
2529 /*
2530  * If an MDS fails and recovers, clients need to reconnect in order to
2531  * reestablish shared state.  This includes all caps issued through
2532  * this session _and_ the snap_realm hierarchy.  Because it's not
2533  * clear which snap realms the mds cares about, we send everything we
2534  * know about.. that ensures we'll then get any new info the
2535  * recovering MDS might have.
2536  *
2537  * This is a relatively heavyweight operation, but it's rare.
2538  *
2539  * called with mdsc->mutex held.
2540  */
2541 static void send_mds_reconnect(struct ceph_mds_client *mdsc,
2542                                struct ceph_mds_session *session)
2543 {
2544         struct ceph_msg *reply;
2545         struct rb_node *p;
2546         int mds = session->s_mds;
2547         int err = -ENOMEM;
2548         struct ceph_pagelist *pagelist;
2549         struct ceph_reconnect_state recon_state;
2550
2551         pr_info("mds%d reconnect start\n", mds);
2552
2553         pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS);
2554         if (!pagelist)
2555                 goto fail_nopagelist;
2556         ceph_pagelist_init(pagelist);
2557
2558         reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0, GFP_NOFS, false);
2559         if (!reply)
2560                 goto fail_nomsg;
2561
2562         mutex_lock(&session->s_mutex);
2563         session->s_state = CEPH_MDS_SESSION_RECONNECTING;
2564         session->s_seq = 0;
2565
2566         ceph_con_close(&session->s_con);
2567         ceph_con_open(&session->s_con,
2568                       CEPH_ENTITY_TYPE_MDS, mds,
2569                       ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
2570
2571         /* replay unsafe requests */
2572         replay_unsafe_requests(mdsc, session);
2573
2574         down_read(&mdsc->snap_rwsem);
2575
2576         dout("session %p state %s\n", session,
2577              session_state_name(session->s_state));
2578
2579         /* drop old cap expires; we're about to reestablish that state */
2580         discard_cap_releases(mdsc, session);
2581
2582         /* traverse this session's caps */
2583         err = ceph_pagelist_encode_32(pagelist, session->s_nr_caps);
2584         if (err)
2585                 goto fail;
2586
2587         recon_state.pagelist = pagelist;
2588         recon_state.flock = session->s_con.peer_features & CEPH_FEATURE_FLOCK;
2589         err = iterate_session_caps(session, encode_caps_cb, &recon_state);
2590         if (err < 0)
2591                 goto fail;
2592
2593         /*
2594          * snaprealms.  we provide mds with the ino, seq (version), and
2595          * parent for all of our realms.  If the mds has any newer info,
2596          * it will tell us.
2597          */
2598         for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) {
2599                 struct ceph_snap_realm *realm =
2600                         rb_entry(p, struct ceph_snap_realm, node);
2601                 struct ceph_mds_snaprealm_reconnect sr_rec;
2602
2603                 dout(" adding snap realm %llx seq %lld parent %llx\n",
2604                      realm->ino, realm->seq, realm->parent_ino);
2605                 sr_rec.ino = cpu_to_le64(realm->ino);
2606                 sr_rec.seq = cpu_to_le64(realm->seq);
2607                 sr_rec.parent = cpu_to_le64(realm->parent_ino);
2608                 err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec));
2609                 if (err)
2610                         goto fail;
2611         }
2612
2613         if (recon_state.flock)
2614                 reply->hdr.version = cpu_to_le16(2);
2615         if (pagelist->length) {
2616                 /* set up outbound data if we have any */
2617                 reply->hdr.data_len = cpu_to_le32(pagelist->length);
2618                 ceph_msg_data_add_pagelist(reply, pagelist);
2619         }
2620         ceph_con_send(&session->s_con, reply);
2621
2622         mutex_unlock(&session->s_mutex);
2623
2624         mutex_lock(&mdsc->mutex);
2625         __wake_requests(mdsc, &session->s_waiting);
2626         mutex_unlock(&mdsc->mutex);
2627
2628         up_read(&mdsc->snap_rwsem);
2629         return;
2630
2631 fail:
2632         ceph_msg_put(reply);
2633         up_read(&mdsc->snap_rwsem);
2634         mutex_unlock(&session->s_mutex);
2635 fail_nomsg:
2636         ceph_pagelist_release(pagelist);
2637         kfree(pagelist);
2638 fail_nopagelist:
2639         pr_err("error %d preparing reconnect for mds%d\n", err, mds);
2640         return;
2641 }
2642
2643
2644 /*
2645  * compare old and new mdsmaps, kicking requests
2646  * and closing out old connections as necessary
2647  *
2648  * called under mdsc->mutex.
2649  */
2650 static void check_new_map(struct ceph_mds_client *mdsc,
2651                           struct ceph_mdsmap *newmap,
2652                           struct ceph_mdsmap *oldmap)
2653 {
2654         int i;
2655         int oldstate, newstate;
2656         struct ceph_mds_session *s;
2657
2658         dout("check_new_map new %u old %u\n",
2659              newmap->m_epoch, oldmap->m_epoch);
2660
2661         for (i = 0; i < oldmap->m_max_mds && i < mdsc->max_sessions; i++) {
2662                 if (mdsc->sessions[i] == NULL)
2663                         continue;
2664                 s = mdsc->sessions[i];
2665                 oldstate = ceph_mdsmap_get_state(oldmap, i);
2666                 newstate = ceph_mdsmap_get_state(newmap, i);
2667
2668                 dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n",
2669                      i, ceph_mds_state_name(oldstate),
2670                      ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "",
2671                      ceph_mds_state_name(newstate),
2672                      ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "",
2673                      session_state_name(s->s_state));
2674
2675                 if (i >= newmap->m_max_mds ||
2676                     memcmp(ceph_mdsmap_get_addr(oldmap, i),
2677                            ceph_mdsmap_get_addr(newmap, i),
2678                            sizeof(struct ceph_entity_addr))) {
2679                         if (s->s_state == CEPH_MDS_SESSION_OPENING) {
2680                                 /* the session never opened, just close it
2681                                  * out now */
2682                                 __wake_requests(mdsc, &s->s_waiting);
2683                                 __unregister_session(mdsc, s);
2684                         } else {
2685                                 /* just close it */
2686                                 mutex_unlock(&mdsc->mutex);
2687                                 mutex_lock(&s->s_mutex);
2688                                 mutex_lock(&mdsc->mutex);
2689                                 ceph_con_close(&s->s_con);
2690                                 mutex_unlock(&s->s_mutex);
2691                                 s->s_state = CEPH_MDS_SESSION_RESTARTING;
2692                         }
2693
2694                         /* kick any requests waiting on the recovering mds */
2695                         kick_requests(mdsc, i);
2696                 } else if (oldstate == newstate) {
2697                         continue;  /* nothing new with this mds */
2698                 }
2699
2700                 /*
2701                  * send reconnect?
2702                  */
2703                 if (s->s_state == CEPH_MDS_SESSION_RESTARTING &&
2704                     newstate >= CEPH_MDS_STATE_RECONNECT) {
2705                         mutex_unlock(&mdsc->mutex);
2706                         send_mds_reconnect(mdsc, s);
2707                         mutex_lock(&mdsc->mutex);
2708                 }
2709
2710                 /*
2711                  * kick request on any mds that has gone active.
2712                  */
2713                 if (oldstate < CEPH_MDS_STATE_ACTIVE &&
2714                     newstate >= CEPH_MDS_STATE_ACTIVE) {
2715                         if (oldstate != CEPH_MDS_STATE_CREATING &&
2716                             oldstate != CEPH_MDS_STATE_STARTING)
2717                                 pr_info("mds%d recovery completed\n", s->s_mds);
2718                         kick_requests(mdsc, i);
2719                         ceph_kick_flushing_caps(mdsc, s);
2720                         wake_up_session_caps(s, 1);
2721                 }
2722         }
2723
2724         for (i = 0; i < newmap->m_max_mds && i < mdsc->max_sessions; i++) {
2725                 s = mdsc->sessions[i];
2726                 if (!s)
2727                         continue;
2728                 if (!ceph_mdsmap_is_laggy(newmap, i))
2729                         continue;
2730                 if (s->s_state == CEPH_MDS_SESSION_OPEN ||
2731                     s->s_state == CEPH_MDS_SESSION_HUNG ||
2732                     s->s_state == CEPH_MDS_SESSION_CLOSING) {
2733                         dout(" connecting to export targets of laggy mds%d\n",
2734                              i);
2735                         __open_export_target_sessions(mdsc, s);
2736                 }
2737         }
2738 }
2739
2740
2741
2742 /*
2743  * leases
2744  */
2745
2746 /*
2747  * caller must hold session s_mutex, dentry->d_lock
2748  */
2749 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry)
2750 {
2751         struct ceph_dentry_info *di = ceph_dentry(dentry);
2752
2753         ceph_put_mds_session(di->lease_session);
2754         di->lease_session = NULL;
2755 }
2756
2757 static void handle_lease(struct ceph_mds_client *mdsc,
2758                          struct ceph_mds_session *session,
2759                          struct ceph_msg *msg)
2760 {
2761         struct super_block *sb = mdsc->fsc->sb;
2762         struct inode *inode;
2763         struct dentry *parent, *dentry;
2764         struct ceph_dentry_info *di;
2765         int mds = session->s_mds;
2766         struct ceph_mds_lease *h = msg->front.iov_base;
2767         u32 seq;
2768         struct ceph_vino vino;
2769         struct qstr dname;
2770         int release = 0;
2771
2772         dout("handle_lease from mds%d\n", mds);
2773
2774         /* decode */
2775         if (msg->front.iov_len < sizeof(*h) + sizeof(u32))
2776                 goto bad;
2777         vino.ino = le64_to_cpu(h->ino);
2778         vino.snap = CEPH_NOSNAP;
2779         seq = le32_to_cpu(h->seq);
2780         dname.name = (void *)h + sizeof(*h) + sizeof(u32);
2781         dname.len = msg->front.iov_len - sizeof(*h) - sizeof(u32);
2782         if (dname.len != get_unaligned_le32(h+1))
2783                 goto bad;
2784
2785         mutex_lock(&session->s_mutex);
2786         session->s_seq++;
2787
2788         /* lookup inode */
2789         inode = ceph_find_inode(sb, vino);
2790         dout("handle_lease %s, ino %llx %p %.*s\n",
2791              ceph_lease_op_name(h->action), vino.ino, inode,
2792              dname.len, dname.name);
2793         if (inode == NULL) {
2794                 dout("handle_lease no inode %llx\n", vino.ino);
2795                 goto release;
2796         }
2797
2798         /* dentry */
2799         parent = d_find_alias(inode);
2800         if (!parent) {
2801                 dout("no parent dentry on inode %p\n", inode);
2802                 WARN_ON(1);
2803                 goto release;  /* hrm... */
2804         }
2805         dname.hash = full_name_hash(dname.name, dname.len);
2806         dentry = d_lookup(parent, &dname);
2807         dput(parent);
2808         if (!dentry)
2809                 goto release;
2810
2811         spin_lock(&dentry->d_lock);
2812         di = ceph_dentry(dentry);
2813         switch (h->action) {
2814         case CEPH_MDS_LEASE_REVOKE:
2815                 if (di->lease_session == session) {
2816                         if (ceph_seq_cmp(di->lease_seq, seq) > 0)
2817                                 h->seq = cpu_to_le32(di->lease_seq);
2818                         __ceph_mdsc_drop_dentry_lease(dentry);
2819                 }
2820                 release = 1;
2821                 break;
2822
2823         case CEPH_MDS_LEASE_RENEW:
2824                 if (di->lease_session == session &&
2825                     di->lease_gen == session->s_cap_gen &&
2826                     di->lease_renew_from &&
2827                     di->lease_renew_after == 0) {
2828                         unsigned long duration =
2829                                 le32_to_cpu(h->duration_ms) * HZ / 1000;
2830
2831                         di->lease_seq = seq;
2832                         dentry->d_time = di->lease_renew_from + duration;
2833                         di->lease_renew_after = di->lease_renew_from +
2834                                 (duration >> 1);
2835                         di->lease_renew_from = 0;
2836                 }
2837                 break;
2838         }
2839         spin_unlock(&dentry->d_lock);
2840         dput(dentry);
2841
2842         if (!release)
2843                 goto out;
2844
2845 release:
2846         /* let's just reuse the same message */
2847         h->action = CEPH_MDS_LEASE_REVOKE_ACK;
2848         ceph_msg_get(msg);
2849         ceph_con_send(&session->s_con, msg);
2850
2851 out:
2852         iput(inode);
2853         mutex_unlock(&session->s_mutex);
2854         return;
2855
2856 bad:
2857         pr_err("corrupt lease message\n");
2858         ceph_msg_dump(msg);
2859 }
2860
2861 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session,
2862                               struct inode *inode,
2863                               struct dentry *dentry, char action,
2864                               u32 seq)
2865 {
2866         struct ceph_msg *msg;
2867         struct ceph_mds_lease *lease;
2868         int len = sizeof(*lease) + sizeof(u32);
2869         int dnamelen = 0;
2870
2871         dout("lease_send_msg inode %p dentry %p %s to mds%d\n",
2872              inode, dentry, ceph_lease_op_name(action), session->s_mds);
2873         dnamelen = dentry->d_name.len;
2874         len += dnamelen;
2875
2876         msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS, false);
2877         if (!msg)
2878                 return;
2879         lease = msg->front.iov_base;
2880         lease->action = action;
2881         lease->ino = cpu_to_le64(ceph_vino(inode).ino);
2882         lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap);
2883         lease->seq = cpu_to_le32(seq);
2884         put_unaligned_le32(dnamelen, lease + 1);
2885         memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen);
2886
2887         /*
2888          * if this is a preemptive lease RELEASE, no need to
2889          * flush request stream, since the actual request will
2890          * soon follow.
2891          */
2892         msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE);
2893
2894         ceph_con_send(&session->s_con, msg);
2895 }
2896
2897 /*
2898  * Preemptively release a lease we expect to invalidate anyway.
2899  * Pass @inode always, @dentry is optional.
2900  */
2901 void ceph_mdsc_lease_release(struct ceph_mds_client *mdsc, struct inode *inode,
2902                              struct dentry *dentry)
2903 {
2904         struct ceph_dentry_info *di;
2905         struct ceph_mds_session *session;
2906         u32 seq;
2907
2908         BUG_ON(inode == NULL);
2909         BUG_ON(dentry == NULL);
2910
2911         /* is dentry lease valid? */
2912         spin_lock(&dentry->d_lock);
2913         di = ceph_dentry(dentry);
2914         if (!di || !di->lease_session ||
2915             di->lease_session->s_mds < 0 ||
2916             di->lease_gen != di->lease_session->s_cap_gen ||
2917             !time_before(jiffies, dentry->d_time)) {
2918                 dout("lease_release inode %p dentry %p -- "
2919                      "no lease\n",
2920                      inode, dentry);
2921                 spin_unlock(&dentry->d_lock);
2922                 return;
2923         }
2924
2925         /* we do have a lease on this dentry; note mds and seq */
2926         session = ceph_get_mds_session(di->lease_session);
2927         seq = di->lease_seq;
2928         __ceph_mdsc_drop_dentry_lease(dentry);
2929         spin_unlock(&dentry->d_lock);
2930
2931         dout("lease_release inode %p dentry %p to mds%d\n",
2932              inode, dentry, session->s_mds);
2933         ceph_mdsc_lease_send_msg(session, inode, dentry,
2934                                  CEPH_MDS_LEASE_RELEASE, seq);
2935         ceph_put_mds_session(session);
2936 }
2937
2938 /*
2939  * drop all leases (and dentry refs) in preparation for umount
2940  */
2941 static void drop_leases(struct ceph_mds_client *mdsc)
2942 {
2943         int i;
2944
2945         dout("drop_leases\n");
2946         mutex_lock(&mdsc->mutex);
2947         for (i = 0; i < mdsc->max_sessions; i++) {
2948                 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
2949                 if (!s)
2950                         continue;
2951                 mutex_unlock(&mdsc->mutex);
2952                 mutex_lock(&s->s_mutex);
2953                 mutex_unlock(&s->s_mutex);
2954                 ceph_put_mds_session(s);
2955                 mutex_lock(&mdsc->mutex);
2956         }
2957         mutex_unlock(&mdsc->mutex);
2958 }
2959
2960
2961
2962 /*
2963  * delayed work -- periodically trim expired leases, renew caps with mds
2964  */
2965 static void schedule_delayed(struct ceph_mds_client *mdsc)
2966 {
2967         int delay = 5;
2968         unsigned hz = round_jiffies_relative(HZ * delay);
2969         schedule_delayed_work(&mdsc->delayed_work, hz);
2970 }
2971
2972 static void delayed_work(struct work_struct *work)
2973 {
2974         int i;
2975         struct ceph_mds_client *mdsc =
2976                 container_of(work, struct ceph_mds_client, delayed_work.work);
2977         int renew_interval;
2978         int renew_caps;
2979
2980         dout("mdsc delayed_work\n");
2981         ceph_check_delayed_caps(mdsc);
2982
2983         mutex_lock(&mdsc->mutex);
2984         renew_interval = mdsc->mdsmap->m_session_timeout >> 2;
2985         renew_caps = time_after_eq(jiffies, HZ*renew_interval +
2986                                    mdsc->last_renew_caps);
2987         if (renew_caps)
2988                 mdsc->last_renew_caps = jiffies;
2989
2990         for (i = 0; i < mdsc->max_sessions; i++) {
2991                 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
2992                 if (s == NULL)
2993                         continue;
2994                 if (s->s_state == CEPH_MDS_SESSION_CLOSING) {
2995                         dout("resending session close request for mds%d\n",
2996                              s->s_mds);
2997                         request_close_session(mdsc, s);
2998                         ceph_put_mds_session(s);
2999                         continue;
3000                 }
3001                 if (s->s_ttl && time_after(jiffies, s->s_ttl)) {
3002                         if (s->s_state == CEPH_MDS_SESSION_OPEN) {
3003                                 s->s_state = CEPH_MDS_SESSION_HUNG;
3004                                 pr_info("mds%d hung\n", s->s_mds);
3005                         }
3006                 }
3007                 if (s->s_state < CEPH_MDS_SESSION_OPEN) {
3008                         /* this mds is failed or recovering, just wait */
3009                         ceph_put_mds_session(s);
3010                         continue;
3011                 }
3012                 mutex_unlock(&mdsc->mutex);
3013
3014                 mutex_lock(&s->s_mutex);
3015                 if (renew_caps)
3016                         send_renew_caps(mdsc, s);
3017                 else
3018                         ceph_con_keepalive(&s->s_con);
3019                 ceph_add_cap_releases(mdsc, s);
3020                 if (s->s_state == CEPH_MDS_SESSION_OPEN ||
3021                     s->s_state == CEPH_MDS_SESSION_HUNG)
3022                         ceph_send_cap_releases(mdsc, s);
3023                 mutex_unlock(&s->s_mutex);
3024                 ceph_put_mds_session(s);
3025
3026                 mutex_lock(&mdsc->mutex);
3027         }
3028         mutex_unlock(&mdsc->mutex);
3029
3030         schedule_delayed(mdsc);
3031 }
3032
3033 int ceph_mdsc_init(struct ceph_fs_client *fsc)
3034
3035 {
3036         struct ceph_mds_client *mdsc;
3037
3038         mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS);
3039         if (!mdsc)
3040                 return -ENOMEM;
3041         mdsc->fsc = fsc;
3042         fsc->mdsc = mdsc;
3043         mutex_init(&mdsc->mutex);
3044         mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS);
3045         if (mdsc->mdsmap == NULL) {
3046                 kfree(mdsc);
3047                 return -ENOMEM;
3048         }
3049
3050         init_completion(&mdsc->safe_umount_waiters);
3051         init_waitqueue_head(&mdsc->session_close_wq);
3052         INIT_LIST_HEAD(&mdsc->waiting_for_map);
3053         mdsc->sessions = NULL;
3054         mdsc->max_sessions = 0;
3055         mdsc->stopping = 0;
3056         init_rwsem(&mdsc->snap_rwsem);
3057         mdsc->snap_realms = RB_ROOT;
3058         INIT_LIST_HEAD(&mdsc->snap_empty);
3059         spin_lock_init(&mdsc->snap_empty_lock);
3060         mdsc->last_tid = 0;
3061         mdsc->request_tree = RB_ROOT;
3062         INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work);
3063         mdsc->last_renew_caps = jiffies;
3064         INIT_LIST_HEAD(&mdsc->cap_delay_list);
3065         spin_lock_init(&mdsc->cap_delay_lock);
3066         INIT_LIST_HEAD(&mdsc->snap_flush_list);
3067         spin_lock_init(&mdsc->snap_flush_lock);
3068         mdsc->cap_flush_seq = 0;
3069         INIT_LIST_HEAD(&mdsc->cap_dirty);
3070         INIT_LIST_HEAD(&mdsc->cap_dirty_migrating);
3071         mdsc->num_cap_flushing = 0;
3072         spin_lock_init(&mdsc->cap_dirty_lock);
3073         init_waitqueue_head(&mdsc->cap_flushing_wq);
3074         spin_lock_init(&mdsc->dentry_lru_lock);
3075         INIT_LIST_HEAD(&mdsc->dentry_lru);
3076
3077         ceph_caps_init(mdsc);
3078         ceph_adjust_min_caps(mdsc, fsc->min_caps);
3079
3080         return 0;
3081 }
3082
3083 /*
3084  * Wait for safe replies on open mds requests.  If we time out, drop
3085  * all requests from the tree to avoid dangling dentry refs.
3086  */
3087 static void wait_requests(struct ceph_mds_client *mdsc)
3088 {
3089         struct ceph_mds_request *req;
3090         struct ceph_fs_client *fsc = mdsc->fsc;
3091
3092         mutex_lock(&mdsc->mutex);
3093         if (__get_oldest_req(mdsc)) {
3094                 mutex_unlock(&mdsc->mutex);
3095
3096                 dout("wait_requests waiting for requests\n");
3097                 wait_for_completion_timeout(&mdsc->safe_umount_waiters,
3098                                     fsc->client->options->mount_timeout * HZ);
3099
3100                 /* tear down remaining requests */
3101                 mutex_lock(&mdsc->mutex);
3102                 while ((req = __get_oldest_req(mdsc))) {
3103                         dout("wait_requests timed out on tid %llu\n",
3104                              req->r_tid);
3105                         __unregister_request(mdsc, req);
3106                 }
3107         }
3108         mutex_unlock(&mdsc->mutex);
3109         dout("wait_requests done\n");
3110 }
3111
3112 /*
3113  * called before mount is ro, and before dentries are torn down.
3114  * (hmm, does this still race with new lookups?)
3115  */
3116 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc)
3117 {
3118         dout("pre_umount\n");
3119         mdsc->stopping = 1;
3120
3121         drop_leases(mdsc);
3122         ceph_flush_dirty_caps(mdsc);
3123         wait_requests(mdsc);
3124
3125         /*
3126          * wait for reply handlers to drop their request refs and
3127          * their inode/dcache refs
3128          */
3129         ceph_msgr_flush();
3130 }
3131
3132 /*
3133  * wait for all write mds requests to flush.
3134  */
3135 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid)
3136 {
3137         struct ceph_mds_request *req = NULL, *nextreq;
3138         struct rb_node *n;
3139
3140         mutex_lock(&mdsc->mutex);
3141         dout("wait_unsafe_requests want %lld\n", want_tid);
3142 restart:
3143         req = __get_oldest_req(mdsc);
3144         while (req && req->r_tid <= want_tid) {
3145                 /* find next request */
3146                 n = rb_next(&req->r_node);
3147                 if (n)
3148                         nextreq = rb_entry(n, struct ceph_mds_request, r_node);
3149                 else
3150                         nextreq = NULL;
3151                 if ((req->r_op & CEPH_MDS_OP_WRITE)) {
3152                         /* write op */
3153                         ceph_mdsc_get_request(req);
3154                         if (nextreq)
3155                                 ceph_mdsc_get_request(nextreq);
3156                         mutex_unlock(&mdsc->mutex);
3157                         dout("wait_unsafe_requests  wait on %llu (want %llu)\n",
3158                              req->r_tid, want_tid);
3159                         wait_for_completion(&req->r_safe_completion);
3160                         mutex_lock(&mdsc->mutex);
3161                         ceph_mdsc_put_request(req);
3162                         if (!nextreq)
3163                                 break;  /* next dne before, so we're done! */
3164                         if (RB_EMPTY_NODE(&nextreq->r_node)) {
3165                                 /* next request was removed from tree */
3166                                 ceph_mdsc_put_request(nextreq);
3167                                 goto restart;
3168                         }
3169                         ceph_mdsc_put_request(nextreq);  /* won't go away */
3170                 }
3171                 req = nextreq;
3172         }
3173         mutex_unlock(&mdsc->mutex);
3174         dout("wait_unsafe_requests done\n");
3175 }
3176
3177 void ceph_mdsc_sync(struct ceph_mds_client *mdsc)
3178 {
3179         u64 want_tid, want_flush;
3180
3181         if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN)
3182                 return;
3183
3184         dout("sync\n");
3185         mutex_lock(&mdsc->mutex);
3186         want_tid = mdsc->last_tid;
3187         want_flush = mdsc->cap_flush_seq;
3188         mutex_unlock(&mdsc->mutex);
3189         dout("sync want tid %lld flush_seq %lld\n", want_tid, want_flush);
3190
3191         ceph_flush_dirty_caps(mdsc);
3192
3193         wait_unsafe_requests(mdsc, want_tid);
3194         wait_event(mdsc->cap_flushing_wq, check_cap_flush(mdsc, want_flush));
3195 }
3196
3197 /*
3198  * true if all sessions are closed, or we force unmount
3199  */
3200 static bool done_closing_sessions(struct ceph_mds_client *mdsc)
3201 {
3202         int i, n = 0;
3203
3204         if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN)
3205                 return true;
3206
3207         mutex_lock(&mdsc->mutex);
3208         for (i = 0; i < mdsc->max_sessions; i++)
3209                 if (mdsc->sessions[i])
3210                         n++;
3211         mutex_unlock(&mdsc->mutex);
3212         return n == 0;
3213 }
3214
3215 /*
3216  * called after sb is ro.
3217  */
3218 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc)
3219 {
3220         struct ceph_mds_session *session;
3221         int i;
3222         struct ceph_fs_client *fsc = mdsc->fsc;
3223         unsigned long timeout = fsc->client->options->mount_timeout * HZ;
3224
3225         dout("close_sessions\n");
3226
3227         /* close sessions */
3228         mutex_lock(&mdsc->mutex);
3229         for (i = 0; i < mdsc->max_sessions; i++) {
3230                 session = __ceph_lookup_mds_session(mdsc, i);
3231                 if (!session)
3232                         continue;
3233                 mutex_unlock(&mdsc->mutex);
3234                 mutex_lock(&session->s_mutex);
3235                 __close_session(mdsc, session);
3236                 mutex_unlock(&session->s_mutex);
3237                 ceph_put_mds_session(session);
3238                 mutex_lock(&mdsc->mutex);
3239         }
3240         mutex_unlock(&mdsc->mutex);
3241
3242         dout("waiting for sessions to close\n");
3243         wait_event_timeout(mdsc->session_close_wq, done_closing_sessions(mdsc),
3244                            timeout);
3245
3246         /* tear down remaining sessions */
3247         mutex_lock(&mdsc->mutex);
3248         for (i = 0; i < mdsc->max_sessions; i++) {
3249                 if (mdsc->sessions[i]) {
3250                         session = get_session(mdsc->sessions[i]);
3251                         __unregister_session(mdsc, session);
3252                         mutex_unlock(&mdsc->mutex);
3253                         mutex_lock(&session->s_mutex);
3254                         remove_session_caps(session);
3255                         mutex_unlock(&session->s_mutex);
3256                         ceph_put_mds_session(session);
3257                         mutex_lock(&mdsc->mutex);
3258                 }
3259         }
3260         WARN_ON(!list_empty(&mdsc->cap_delay_list));
3261         mutex_unlock(&mdsc->mutex);
3262
3263         ceph_cleanup_empty_realms(mdsc);
3264
3265         cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3266
3267         dout("stopped\n");
3268 }
3269
3270 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc)
3271 {
3272         dout("stop\n");
3273         cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3274         if (mdsc->mdsmap)
3275                 ceph_mdsmap_destroy(mdsc->mdsmap);
3276         kfree(mdsc->sessions);
3277         ceph_caps_finalize(mdsc);
3278 }
3279
3280 void ceph_mdsc_destroy(struct ceph_fs_client *fsc)
3281 {
3282         struct ceph_mds_client *mdsc = fsc->mdsc;
3283
3284         dout("mdsc_destroy %p\n", mdsc);
3285         ceph_mdsc_stop(mdsc);
3286
3287         /* flush out any connection work with references to us */
3288         ceph_msgr_flush();
3289
3290         fsc->mdsc = NULL;
3291         kfree(mdsc);
3292         dout("mdsc_destroy %p done\n", mdsc);
3293 }
3294
3295
3296 /*
3297  * handle mds map update.
3298  */
3299 void ceph_mdsc_handle_map(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
3300 {
3301         u32 epoch;
3302         u32 maplen;
3303         void *p = msg->front.iov_base;
3304         void *end = p + msg->front.iov_len;
3305         struct ceph_mdsmap *newmap, *oldmap;
3306         struct ceph_fsid fsid;
3307         int err = -EINVAL;
3308
3309         ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad);
3310         ceph_decode_copy(&p, &fsid, sizeof(fsid));
3311         if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0)
3312                 return;
3313         epoch = ceph_decode_32(&p);
3314         maplen = ceph_decode_32(&p);
3315         dout("handle_map epoch %u len %d\n", epoch, (int)maplen);
3316
3317         /* do we need it? */
3318         ceph_monc_got_mdsmap(&mdsc->fsc->client->monc, epoch);
3319         mutex_lock(&mdsc->mutex);
3320         if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) {
3321                 dout("handle_map epoch %u <= our %u\n",
3322                      epoch, mdsc->mdsmap->m_epoch);
3323                 mutex_unlock(&mdsc->mutex);
3324                 return;
3325         }
3326
3327         newmap = ceph_mdsmap_decode(&p, end);
3328         if (IS_ERR(newmap)) {
3329                 err = PTR_ERR(newmap);
3330                 goto bad_unlock;
3331         }
3332
3333         /* swap into place */
3334         if (mdsc->mdsmap) {
3335                 oldmap = mdsc->mdsmap;
3336                 mdsc->mdsmap = newmap;
3337                 check_new_map(mdsc, newmap, oldmap);
3338                 ceph_mdsmap_destroy(oldmap);
3339         } else {
3340                 mdsc->mdsmap = newmap;  /* first mds map */
3341         }
3342         mdsc->fsc->sb->s_maxbytes = mdsc->mdsmap->m_max_file_size;
3343
3344         __wake_requests(mdsc, &mdsc->waiting_for_map);
3345
3346         mutex_unlock(&mdsc->mutex);
3347         schedule_delayed(mdsc);
3348         return;
3349
3350 bad_unlock:
3351         mutex_unlock(&mdsc->mutex);
3352 bad:
3353         pr_err("error decoding mdsmap %d\n", err);
3354         return;
3355 }
3356
3357 static struct ceph_connection *con_get(struct ceph_connection *con)
3358 {
3359         struct ceph_mds_session *s = con->private;
3360
3361         if (get_session(s)) {
3362                 dout("mdsc con_get %p ok (%d)\n", s, atomic_read(&s->s_ref));
3363                 return con;
3364         }
3365         dout("mdsc con_get %p FAIL\n", s);
3366         return NULL;
3367 }
3368
3369 static void con_put(struct ceph_connection *con)
3370 {
3371         struct ceph_mds_session *s = con->private;
3372
3373         dout("mdsc con_put %p (%d)\n", s, atomic_read(&s->s_ref) - 1);
3374         ceph_put_mds_session(s);
3375 }
3376
3377 /*
3378  * if the client is unresponsive for long enough, the mds will kill
3379  * the session entirely.
3380  */
3381 static void peer_reset(struct ceph_connection *con)
3382 {
3383         struct ceph_mds_session *s = con->private;
3384         struct ceph_mds_client *mdsc = s->s_mdsc;
3385
3386         pr_warning("mds%d closed our session\n", s->s_mds);
3387         send_mds_reconnect(mdsc, s);
3388 }
3389
3390 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg)
3391 {
3392         struct ceph_mds_session *s = con->private;
3393         struct ceph_mds_client *mdsc = s->s_mdsc;
3394         int type = le16_to_cpu(msg->hdr.type);
3395
3396         mutex_lock(&mdsc->mutex);
3397         if (__verify_registered_session(mdsc, s) < 0) {
3398                 mutex_unlock(&mdsc->mutex);
3399                 goto out;
3400         }
3401         mutex_unlock(&mdsc->mutex);
3402
3403         switch (type) {
3404         case CEPH_MSG_MDS_MAP:
3405                 ceph_mdsc_handle_map(mdsc, msg);
3406                 break;
3407         case CEPH_MSG_CLIENT_SESSION:
3408                 handle_session(s, msg);
3409                 break;
3410         case CEPH_MSG_CLIENT_REPLY:
3411                 handle_reply(s, msg);
3412                 break;
3413         case CEPH_MSG_CLIENT_REQUEST_FORWARD:
3414                 handle_forward(mdsc, s, msg);
3415                 break;
3416         case CEPH_MSG_CLIENT_CAPS:
3417                 ceph_handle_caps(s, msg);
3418                 break;
3419         case CEPH_MSG_CLIENT_SNAP:
3420                 ceph_handle_snap(mdsc, s, msg);
3421                 break;
3422         case CEPH_MSG_CLIENT_LEASE:
3423                 handle_lease(mdsc, s, msg);
3424                 break;
3425
3426         default:
3427                 pr_err("received unknown message type %d %s\n", type,
3428                        ceph_msg_type_name(type));
3429         }
3430 out:
3431         ceph_msg_put(msg);
3432 }
3433
3434 /*
3435  * authentication
3436  */
3437
3438 /*
3439  * Note: returned pointer is the address of a structure that's
3440  * managed separately.  Caller must *not* attempt to free it.
3441  */
3442 static struct ceph_auth_handshake *get_authorizer(struct ceph_connection *con,
3443                                         int *proto, int force_new)
3444 {
3445         struct ceph_mds_session *s = con->private;
3446         struct ceph_mds_client *mdsc = s->s_mdsc;
3447         struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3448         struct ceph_auth_handshake *auth = &s->s_auth;
3449
3450         if (force_new && auth->authorizer) {
3451                 ceph_auth_destroy_authorizer(ac, auth->authorizer);
3452                 auth->authorizer = NULL;
3453         }
3454         if (!auth->authorizer) {
3455                 int ret = ceph_auth_create_authorizer(ac, CEPH_ENTITY_TYPE_MDS,
3456                                                       auth);
3457                 if (ret)
3458                         return ERR_PTR(ret);
3459         } else {
3460                 int ret = ceph_auth_update_authorizer(ac, CEPH_ENTITY_TYPE_MDS,
3461                                                       auth);
3462                 if (ret)
3463                         return ERR_PTR(ret);
3464         }
3465         *proto = ac->protocol;
3466
3467         return auth;
3468 }
3469
3470
3471 static int verify_authorizer_reply(struct ceph_connection *con, int len)
3472 {
3473         struct ceph_mds_session *s = con->private;
3474         struct ceph_mds_client *mdsc = s->s_mdsc;
3475         struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3476
3477         return ceph_auth_verify_authorizer_reply(ac, s->s_auth.authorizer, len);
3478 }
3479
3480 static int invalidate_authorizer(struct ceph_connection *con)
3481 {
3482         struct ceph_mds_session *s = con->private;
3483         struct ceph_mds_client *mdsc = s->s_mdsc;
3484         struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3485
3486         ceph_auth_invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS);
3487
3488         return ceph_monc_validate_auth(&mdsc->fsc->client->monc);
3489 }
3490
3491 static struct ceph_msg *mds_alloc_msg(struct ceph_connection *con,
3492                                 struct ceph_msg_header *hdr, int *skip)
3493 {
3494         struct ceph_msg *msg;
3495         int type = (int) le16_to_cpu(hdr->type);
3496         int front_len = (int) le32_to_cpu(hdr->front_len);
3497
3498         if (con->in_msg)
3499                 return con->in_msg;
3500
3501         *skip = 0;
3502         msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
3503         if (!msg) {
3504                 pr_err("unable to allocate msg type %d len %d\n",
3505                        type, front_len);
3506                 return NULL;
3507         }
3508
3509         return msg;
3510 }
3511
3512 static const struct ceph_connection_operations mds_con_ops = {
3513         .get = con_get,
3514         .put = con_put,
3515         .dispatch = dispatch,
3516         .get_authorizer = get_authorizer,
3517         .verify_authorizer_reply = verify_authorizer_reply,
3518         .invalidate_authorizer = invalidate_authorizer,
3519         .peer_reset = peer_reset,
3520         .alloc_msg = mds_alloc_msg,
3521 };
3522
3523 /* eof */