bna: remove global bnad_list_mutex
[cascardo/linux.git] / fs / exec.c
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats. 
23  */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_event.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
55 #include <linux/fs_struct.h>
56 #include <linux/pipe_fs_i.h>
57 #include <linux/oom.h>
58 #include <linux/compat.h>
59 #include <linux/vmalloc.h>
60
61 #include <asm/uaccess.h>
62 #include <asm/mmu_context.h>
63 #include <asm/tlb.h>
64
65 #include <trace/events/task.h>
66 #include "internal.h"
67
68 #include <trace/events/sched.h>
69
70 int suid_dumpable = 0;
71
72 static LIST_HEAD(formats);
73 static DEFINE_RWLOCK(binfmt_lock);
74
75 void __register_binfmt(struct linux_binfmt * fmt, int insert)
76 {
77         BUG_ON(!fmt);
78         if (WARN_ON(!fmt->load_binary))
79                 return;
80         write_lock(&binfmt_lock);
81         insert ? list_add(&fmt->lh, &formats) :
82                  list_add_tail(&fmt->lh, &formats);
83         write_unlock(&binfmt_lock);
84 }
85
86 EXPORT_SYMBOL(__register_binfmt);
87
88 void unregister_binfmt(struct linux_binfmt * fmt)
89 {
90         write_lock(&binfmt_lock);
91         list_del(&fmt->lh);
92         write_unlock(&binfmt_lock);
93 }
94
95 EXPORT_SYMBOL(unregister_binfmt);
96
97 static inline void put_binfmt(struct linux_binfmt * fmt)
98 {
99         module_put(fmt->module);
100 }
101
102 bool path_noexec(const struct path *path)
103 {
104         return (path->mnt->mnt_flags & MNT_NOEXEC) ||
105                (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
106 }
107
108 #ifdef CONFIG_USELIB
109 /*
110  * Note that a shared library must be both readable and executable due to
111  * security reasons.
112  *
113  * Also note that we take the address to load from from the file itself.
114  */
115 SYSCALL_DEFINE1(uselib, const char __user *, library)
116 {
117         struct linux_binfmt *fmt;
118         struct file *file;
119         struct filename *tmp = getname(library);
120         int error = PTR_ERR(tmp);
121         static const struct open_flags uselib_flags = {
122                 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
123                 .acc_mode = MAY_READ | MAY_EXEC,
124                 .intent = LOOKUP_OPEN,
125                 .lookup_flags = LOOKUP_FOLLOW,
126         };
127
128         if (IS_ERR(tmp))
129                 goto out;
130
131         file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
132         putname(tmp);
133         error = PTR_ERR(file);
134         if (IS_ERR(file))
135                 goto out;
136
137         error = -EINVAL;
138         if (!S_ISREG(file_inode(file)->i_mode))
139                 goto exit;
140
141         error = -EACCES;
142         if (path_noexec(&file->f_path))
143                 goto exit;
144
145         fsnotify_open(file);
146
147         error = -ENOEXEC;
148
149         read_lock(&binfmt_lock);
150         list_for_each_entry(fmt, &formats, lh) {
151                 if (!fmt->load_shlib)
152                         continue;
153                 if (!try_module_get(fmt->module))
154                         continue;
155                 read_unlock(&binfmt_lock);
156                 error = fmt->load_shlib(file);
157                 read_lock(&binfmt_lock);
158                 put_binfmt(fmt);
159                 if (error != -ENOEXEC)
160                         break;
161         }
162         read_unlock(&binfmt_lock);
163 exit:
164         fput(file);
165 out:
166         return error;
167 }
168 #endif /* #ifdef CONFIG_USELIB */
169
170 #ifdef CONFIG_MMU
171 /*
172  * The nascent bprm->mm is not visible until exec_mmap() but it can
173  * use a lot of memory, account these pages in current->mm temporary
174  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
175  * change the counter back via acct_arg_size(0).
176  */
177 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
178 {
179         struct mm_struct *mm = current->mm;
180         long diff = (long)(pages - bprm->vma_pages);
181
182         if (!mm || !diff)
183                 return;
184
185         bprm->vma_pages = pages;
186         add_mm_counter(mm, MM_ANONPAGES, diff);
187 }
188
189 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
190                 int write)
191 {
192         struct page *page;
193         int ret;
194
195 #ifdef CONFIG_STACK_GROWSUP
196         if (write) {
197                 ret = expand_downwards(bprm->vma, pos);
198                 if (ret < 0)
199                         return NULL;
200         }
201 #endif
202         /*
203          * We are doing an exec().  'current' is the process
204          * doing the exec and bprm->mm is the new process's mm.
205          */
206         ret = get_user_pages_remote(current, bprm->mm, pos, 1, write,
207                         1, &page, NULL);
208         if (ret <= 0)
209                 return NULL;
210
211         if (write) {
212                 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
213                 struct rlimit *rlim;
214
215                 acct_arg_size(bprm, size / PAGE_SIZE);
216
217                 /*
218                  * We've historically supported up to 32 pages (ARG_MAX)
219                  * of argument strings even with small stacks
220                  */
221                 if (size <= ARG_MAX)
222                         return page;
223
224                 /*
225                  * Limit to 1/4-th the stack size for the argv+env strings.
226                  * This ensures that:
227                  *  - the remaining binfmt code will not run out of stack space,
228                  *  - the program will have a reasonable amount of stack left
229                  *    to work from.
230                  */
231                 rlim = current->signal->rlim;
232                 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
233                         put_page(page);
234                         return NULL;
235                 }
236         }
237
238         return page;
239 }
240
241 static void put_arg_page(struct page *page)
242 {
243         put_page(page);
244 }
245
246 static void free_arg_pages(struct linux_binprm *bprm)
247 {
248 }
249
250 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
251                 struct page *page)
252 {
253         flush_cache_page(bprm->vma, pos, page_to_pfn(page));
254 }
255
256 static int __bprm_mm_init(struct linux_binprm *bprm)
257 {
258         int err;
259         struct vm_area_struct *vma = NULL;
260         struct mm_struct *mm = bprm->mm;
261
262         bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
263         if (!vma)
264                 return -ENOMEM;
265
266         if (down_write_killable(&mm->mmap_sem)) {
267                 err = -EINTR;
268                 goto err_free;
269         }
270         vma->vm_mm = mm;
271
272         /*
273          * Place the stack at the largest stack address the architecture
274          * supports. Later, we'll move this to an appropriate place. We don't
275          * use STACK_TOP because that can depend on attributes which aren't
276          * configured yet.
277          */
278         BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
279         vma->vm_end = STACK_TOP_MAX;
280         vma->vm_start = vma->vm_end - PAGE_SIZE;
281         vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
282         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
283         INIT_LIST_HEAD(&vma->anon_vma_chain);
284
285         err = insert_vm_struct(mm, vma);
286         if (err)
287                 goto err;
288
289         mm->stack_vm = mm->total_vm = 1;
290         arch_bprm_mm_init(mm, vma);
291         up_write(&mm->mmap_sem);
292         bprm->p = vma->vm_end - sizeof(void *);
293         return 0;
294 err:
295         up_write(&mm->mmap_sem);
296 err_free:
297         bprm->vma = NULL;
298         kmem_cache_free(vm_area_cachep, vma);
299         return err;
300 }
301
302 static bool valid_arg_len(struct linux_binprm *bprm, long len)
303 {
304         return len <= MAX_ARG_STRLEN;
305 }
306
307 #else
308
309 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
310 {
311 }
312
313 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
314                 int write)
315 {
316         struct page *page;
317
318         page = bprm->page[pos / PAGE_SIZE];
319         if (!page && write) {
320                 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
321                 if (!page)
322                         return NULL;
323                 bprm->page[pos / PAGE_SIZE] = page;
324         }
325
326         return page;
327 }
328
329 static void put_arg_page(struct page *page)
330 {
331 }
332
333 static void free_arg_page(struct linux_binprm *bprm, int i)
334 {
335         if (bprm->page[i]) {
336                 __free_page(bprm->page[i]);
337                 bprm->page[i] = NULL;
338         }
339 }
340
341 static void free_arg_pages(struct linux_binprm *bprm)
342 {
343         int i;
344
345         for (i = 0; i < MAX_ARG_PAGES; i++)
346                 free_arg_page(bprm, i);
347 }
348
349 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
350                 struct page *page)
351 {
352 }
353
354 static int __bprm_mm_init(struct linux_binprm *bprm)
355 {
356         bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
357         return 0;
358 }
359
360 static bool valid_arg_len(struct linux_binprm *bprm, long len)
361 {
362         return len <= bprm->p;
363 }
364
365 #endif /* CONFIG_MMU */
366
367 /*
368  * Create a new mm_struct and populate it with a temporary stack
369  * vm_area_struct.  We don't have enough context at this point to set the stack
370  * flags, permissions, and offset, so we use temporary values.  We'll update
371  * them later in setup_arg_pages().
372  */
373 static int bprm_mm_init(struct linux_binprm *bprm)
374 {
375         int err;
376         struct mm_struct *mm = NULL;
377
378         bprm->mm = mm = mm_alloc();
379         err = -ENOMEM;
380         if (!mm)
381                 goto err;
382
383         err = __bprm_mm_init(bprm);
384         if (err)
385                 goto err;
386
387         return 0;
388
389 err:
390         if (mm) {
391                 bprm->mm = NULL;
392                 mmdrop(mm);
393         }
394
395         return err;
396 }
397
398 struct user_arg_ptr {
399 #ifdef CONFIG_COMPAT
400         bool is_compat;
401 #endif
402         union {
403                 const char __user *const __user *native;
404 #ifdef CONFIG_COMPAT
405                 const compat_uptr_t __user *compat;
406 #endif
407         } ptr;
408 };
409
410 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
411 {
412         const char __user *native;
413
414 #ifdef CONFIG_COMPAT
415         if (unlikely(argv.is_compat)) {
416                 compat_uptr_t compat;
417
418                 if (get_user(compat, argv.ptr.compat + nr))
419                         return ERR_PTR(-EFAULT);
420
421                 return compat_ptr(compat);
422         }
423 #endif
424
425         if (get_user(native, argv.ptr.native + nr))
426                 return ERR_PTR(-EFAULT);
427
428         return native;
429 }
430
431 /*
432  * count() counts the number of strings in array ARGV.
433  */
434 static int count(struct user_arg_ptr argv, int max)
435 {
436         int i = 0;
437
438         if (argv.ptr.native != NULL) {
439                 for (;;) {
440                         const char __user *p = get_user_arg_ptr(argv, i);
441
442                         if (!p)
443                                 break;
444
445                         if (IS_ERR(p))
446                                 return -EFAULT;
447
448                         if (i >= max)
449                                 return -E2BIG;
450                         ++i;
451
452                         if (fatal_signal_pending(current))
453                                 return -ERESTARTNOHAND;
454                         cond_resched();
455                 }
456         }
457         return i;
458 }
459
460 /*
461  * 'copy_strings()' copies argument/environment strings from the old
462  * processes's memory to the new process's stack.  The call to get_user_pages()
463  * ensures the destination page is created and not swapped out.
464  */
465 static int copy_strings(int argc, struct user_arg_ptr argv,
466                         struct linux_binprm *bprm)
467 {
468         struct page *kmapped_page = NULL;
469         char *kaddr = NULL;
470         unsigned long kpos = 0;
471         int ret;
472
473         while (argc-- > 0) {
474                 const char __user *str;
475                 int len;
476                 unsigned long pos;
477
478                 ret = -EFAULT;
479                 str = get_user_arg_ptr(argv, argc);
480                 if (IS_ERR(str))
481                         goto out;
482
483                 len = strnlen_user(str, MAX_ARG_STRLEN);
484                 if (!len)
485                         goto out;
486
487                 ret = -E2BIG;
488                 if (!valid_arg_len(bprm, len))
489                         goto out;
490
491                 /* We're going to work our way backwords. */
492                 pos = bprm->p;
493                 str += len;
494                 bprm->p -= len;
495
496                 while (len > 0) {
497                         int offset, bytes_to_copy;
498
499                         if (fatal_signal_pending(current)) {
500                                 ret = -ERESTARTNOHAND;
501                                 goto out;
502                         }
503                         cond_resched();
504
505                         offset = pos % PAGE_SIZE;
506                         if (offset == 0)
507                                 offset = PAGE_SIZE;
508
509                         bytes_to_copy = offset;
510                         if (bytes_to_copy > len)
511                                 bytes_to_copy = len;
512
513                         offset -= bytes_to_copy;
514                         pos -= bytes_to_copy;
515                         str -= bytes_to_copy;
516                         len -= bytes_to_copy;
517
518                         if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
519                                 struct page *page;
520
521                                 page = get_arg_page(bprm, pos, 1);
522                                 if (!page) {
523                                         ret = -E2BIG;
524                                         goto out;
525                                 }
526
527                                 if (kmapped_page) {
528                                         flush_kernel_dcache_page(kmapped_page);
529                                         kunmap(kmapped_page);
530                                         put_arg_page(kmapped_page);
531                                 }
532                                 kmapped_page = page;
533                                 kaddr = kmap(kmapped_page);
534                                 kpos = pos & PAGE_MASK;
535                                 flush_arg_page(bprm, kpos, kmapped_page);
536                         }
537                         if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
538                                 ret = -EFAULT;
539                                 goto out;
540                         }
541                 }
542         }
543         ret = 0;
544 out:
545         if (kmapped_page) {
546                 flush_kernel_dcache_page(kmapped_page);
547                 kunmap(kmapped_page);
548                 put_arg_page(kmapped_page);
549         }
550         return ret;
551 }
552
553 /*
554  * Like copy_strings, but get argv and its values from kernel memory.
555  */
556 int copy_strings_kernel(int argc, const char *const *__argv,
557                         struct linux_binprm *bprm)
558 {
559         int r;
560         mm_segment_t oldfs = get_fs();
561         struct user_arg_ptr argv = {
562                 .ptr.native = (const char __user *const  __user *)__argv,
563         };
564
565         set_fs(KERNEL_DS);
566         r = copy_strings(argc, argv, bprm);
567         set_fs(oldfs);
568
569         return r;
570 }
571 EXPORT_SYMBOL(copy_strings_kernel);
572
573 #ifdef CONFIG_MMU
574
575 /*
576  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
577  * the binfmt code determines where the new stack should reside, we shift it to
578  * its final location.  The process proceeds as follows:
579  *
580  * 1) Use shift to calculate the new vma endpoints.
581  * 2) Extend vma to cover both the old and new ranges.  This ensures the
582  *    arguments passed to subsequent functions are consistent.
583  * 3) Move vma's page tables to the new range.
584  * 4) Free up any cleared pgd range.
585  * 5) Shrink the vma to cover only the new range.
586  */
587 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
588 {
589         struct mm_struct *mm = vma->vm_mm;
590         unsigned long old_start = vma->vm_start;
591         unsigned long old_end = vma->vm_end;
592         unsigned long length = old_end - old_start;
593         unsigned long new_start = old_start - shift;
594         unsigned long new_end = old_end - shift;
595         struct mmu_gather tlb;
596
597         BUG_ON(new_start > new_end);
598
599         /*
600          * ensure there are no vmas between where we want to go
601          * and where we are
602          */
603         if (vma != find_vma(mm, new_start))
604                 return -EFAULT;
605
606         /*
607          * cover the whole range: [new_start, old_end)
608          */
609         if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
610                 return -ENOMEM;
611
612         /*
613          * move the page tables downwards, on failure we rely on
614          * process cleanup to remove whatever mess we made.
615          */
616         if (length != move_page_tables(vma, old_start,
617                                        vma, new_start, length, false))
618                 return -ENOMEM;
619
620         lru_add_drain();
621         tlb_gather_mmu(&tlb, mm, old_start, old_end);
622         if (new_end > old_start) {
623                 /*
624                  * when the old and new regions overlap clear from new_end.
625                  */
626                 free_pgd_range(&tlb, new_end, old_end, new_end,
627                         vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
628         } else {
629                 /*
630                  * otherwise, clean from old_start; this is done to not touch
631                  * the address space in [new_end, old_start) some architectures
632                  * have constraints on va-space that make this illegal (IA64) -
633                  * for the others its just a little faster.
634                  */
635                 free_pgd_range(&tlb, old_start, old_end, new_end,
636                         vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
637         }
638         tlb_finish_mmu(&tlb, old_start, old_end);
639
640         /*
641          * Shrink the vma to just the new range.  Always succeeds.
642          */
643         vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
644
645         return 0;
646 }
647
648 /*
649  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
650  * the stack is optionally relocated, and some extra space is added.
651  */
652 int setup_arg_pages(struct linux_binprm *bprm,
653                     unsigned long stack_top,
654                     int executable_stack)
655 {
656         unsigned long ret;
657         unsigned long stack_shift;
658         struct mm_struct *mm = current->mm;
659         struct vm_area_struct *vma = bprm->vma;
660         struct vm_area_struct *prev = NULL;
661         unsigned long vm_flags;
662         unsigned long stack_base;
663         unsigned long stack_size;
664         unsigned long stack_expand;
665         unsigned long rlim_stack;
666
667 #ifdef CONFIG_STACK_GROWSUP
668         /* Limit stack size */
669         stack_base = rlimit_max(RLIMIT_STACK);
670         if (stack_base > STACK_SIZE_MAX)
671                 stack_base = STACK_SIZE_MAX;
672
673         /* Add space for stack randomization. */
674         stack_base += (STACK_RND_MASK << PAGE_SHIFT);
675
676         /* Make sure we didn't let the argument array grow too large. */
677         if (vma->vm_end - vma->vm_start > stack_base)
678                 return -ENOMEM;
679
680         stack_base = PAGE_ALIGN(stack_top - stack_base);
681
682         stack_shift = vma->vm_start - stack_base;
683         mm->arg_start = bprm->p - stack_shift;
684         bprm->p = vma->vm_end - stack_shift;
685 #else
686         stack_top = arch_align_stack(stack_top);
687         stack_top = PAGE_ALIGN(stack_top);
688
689         if (unlikely(stack_top < mmap_min_addr) ||
690             unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
691                 return -ENOMEM;
692
693         stack_shift = vma->vm_end - stack_top;
694
695         bprm->p -= stack_shift;
696         mm->arg_start = bprm->p;
697 #endif
698
699         if (bprm->loader)
700                 bprm->loader -= stack_shift;
701         bprm->exec -= stack_shift;
702
703         if (down_write_killable(&mm->mmap_sem))
704                 return -EINTR;
705
706         vm_flags = VM_STACK_FLAGS;
707
708         /*
709          * Adjust stack execute permissions; explicitly enable for
710          * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
711          * (arch default) otherwise.
712          */
713         if (unlikely(executable_stack == EXSTACK_ENABLE_X))
714                 vm_flags |= VM_EXEC;
715         else if (executable_stack == EXSTACK_DISABLE_X)
716                 vm_flags &= ~VM_EXEC;
717         vm_flags |= mm->def_flags;
718         vm_flags |= VM_STACK_INCOMPLETE_SETUP;
719
720         ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
721                         vm_flags);
722         if (ret)
723                 goto out_unlock;
724         BUG_ON(prev != vma);
725
726         /* Move stack pages down in memory. */
727         if (stack_shift) {
728                 ret = shift_arg_pages(vma, stack_shift);
729                 if (ret)
730                         goto out_unlock;
731         }
732
733         /* mprotect_fixup is overkill to remove the temporary stack flags */
734         vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
735
736         stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
737         stack_size = vma->vm_end - vma->vm_start;
738         /*
739          * Align this down to a page boundary as expand_stack
740          * will align it up.
741          */
742         rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
743 #ifdef CONFIG_STACK_GROWSUP
744         if (stack_size + stack_expand > rlim_stack)
745                 stack_base = vma->vm_start + rlim_stack;
746         else
747                 stack_base = vma->vm_end + stack_expand;
748 #else
749         if (stack_size + stack_expand > rlim_stack)
750                 stack_base = vma->vm_end - rlim_stack;
751         else
752                 stack_base = vma->vm_start - stack_expand;
753 #endif
754         current->mm->start_stack = bprm->p;
755         ret = expand_stack(vma, stack_base);
756         if (ret)
757                 ret = -EFAULT;
758
759 out_unlock:
760         up_write(&mm->mmap_sem);
761         return ret;
762 }
763 EXPORT_SYMBOL(setup_arg_pages);
764
765 #endif /* CONFIG_MMU */
766
767 static struct file *do_open_execat(int fd, struct filename *name, int flags)
768 {
769         struct file *file;
770         int err;
771         struct open_flags open_exec_flags = {
772                 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
773                 .acc_mode = MAY_EXEC,
774                 .intent = LOOKUP_OPEN,
775                 .lookup_flags = LOOKUP_FOLLOW,
776         };
777
778         if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
779                 return ERR_PTR(-EINVAL);
780         if (flags & AT_SYMLINK_NOFOLLOW)
781                 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
782         if (flags & AT_EMPTY_PATH)
783                 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
784
785         file = do_filp_open(fd, name, &open_exec_flags);
786         if (IS_ERR(file))
787                 goto out;
788
789         err = -EACCES;
790         if (!S_ISREG(file_inode(file)->i_mode))
791                 goto exit;
792
793         if (path_noexec(&file->f_path))
794                 goto exit;
795
796         err = deny_write_access(file);
797         if (err)
798                 goto exit;
799
800         if (name->name[0] != '\0')
801                 fsnotify_open(file);
802
803 out:
804         return file;
805
806 exit:
807         fput(file);
808         return ERR_PTR(err);
809 }
810
811 struct file *open_exec(const char *name)
812 {
813         struct filename *filename = getname_kernel(name);
814         struct file *f = ERR_CAST(filename);
815
816         if (!IS_ERR(filename)) {
817                 f = do_open_execat(AT_FDCWD, filename, 0);
818                 putname(filename);
819         }
820         return f;
821 }
822 EXPORT_SYMBOL(open_exec);
823
824 int kernel_read(struct file *file, loff_t offset,
825                 char *addr, unsigned long count)
826 {
827         mm_segment_t old_fs;
828         loff_t pos = offset;
829         int result;
830
831         old_fs = get_fs();
832         set_fs(get_ds());
833         /* The cast to a user pointer is valid due to the set_fs() */
834         result = vfs_read(file, (void __user *)addr, count, &pos);
835         set_fs(old_fs);
836         return result;
837 }
838
839 EXPORT_SYMBOL(kernel_read);
840
841 int kernel_read_file(struct file *file, void **buf, loff_t *size,
842                      loff_t max_size, enum kernel_read_file_id id)
843 {
844         loff_t i_size, pos;
845         ssize_t bytes = 0;
846         int ret;
847
848         if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
849                 return -EINVAL;
850
851         ret = security_kernel_read_file(file, id);
852         if (ret)
853                 return ret;
854
855         ret = deny_write_access(file);
856         if (ret)
857                 return ret;
858
859         i_size = i_size_read(file_inode(file));
860         if (max_size > 0 && i_size > max_size) {
861                 ret = -EFBIG;
862                 goto out;
863         }
864         if (i_size <= 0) {
865                 ret = -EINVAL;
866                 goto out;
867         }
868
869         if (id != READING_FIRMWARE_PREALLOC_BUFFER)
870                 *buf = vmalloc(i_size);
871         if (!*buf) {
872                 ret = -ENOMEM;
873                 goto out;
874         }
875
876         pos = 0;
877         while (pos < i_size) {
878                 bytes = kernel_read(file, pos, (char *)(*buf) + pos,
879                                     i_size - pos);
880                 if (bytes < 0) {
881                         ret = bytes;
882                         goto out;
883                 }
884
885                 if (bytes == 0)
886                         break;
887                 pos += bytes;
888         }
889
890         if (pos != i_size) {
891                 ret = -EIO;
892                 goto out_free;
893         }
894
895         ret = security_kernel_post_read_file(file, *buf, i_size, id);
896         if (!ret)
897                 *size = pos;
898
899 out_free:
900         if (ret < 0) {
901                 if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
902                         vfree(*buf);
903                         *buf = NULL;
904                 }
905         }
906
907 out:
908         allow_write_access(file);
909         return ret;
910 }
911 EXPORT_SYMBOL_GPL(kernel_read_file);
912
913 int kernel_read_file_from_path(char *path, void **buf, loff_t *size,
914                                loff_t max_size, enum kernel_read_file_id id)
915 {
916         struct file *file;
917         int ret;
918
919         if (!path || !*path)
920                 return -EINVAL;
921
922         file = filp_open(path, O_RDONLY, 0);
923         if (IS_ERR(file))
924                 return PTR_ERR(file);
925
926         ret = kernel_read_file(file, buf, size, max_size, id);
927         fput(file);
928         return ret;
929 }
930 EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
931
932 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
933                              enum kernel_read_file_id id)
934 {
935         struct fd f = fdget(fd);
936         int ret = -EBADF;
937
938         if (!f.file)
939                 goto out;
940
941         ret = kernel_read_file(f.file, buf, size, max_size, id);
942 out:
943         fdput(f);
944         return ret;
945 }
946 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
947
948 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
949 {
950         ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
951         if (res > 0)
952                 flush_icache_range(addr, addr + len);
953         return res;
954 }
955 EXPORT_SYMBOL(read_code);
956
957 static int exec_mmap(struct mm_struct *mm)
958 {
959         struct task_struct *tsk;
960         struct mm_struct *old_mm, *active_mm;
961
962         /* Notify parent that we're no longer interested in the old VM */
963         tsk = current;
964         old_mm = current->mm;
965         mm_release(tsk, old_mm);
966
967         if (old_mm) {
968                 sync_mm_rss(old_mm);
969                 /*
970                  * Make sure that if there is a core dump in progress
971                  * for the old mm, we get out and die instead of going
972                  * through with the exec.  We must hold mmap_sem around
973                  * checking core_state and changing tsk->mm.
974                  */
975                 down_read(&old_mm->mmap_sem);
976                 if (unlikely(old_mm->core_state)) {
977                         up_read(&old_mm->mmap_sem);
978                         return -EINTR;
979                 }
980         }
981         task_lock(tsk);
982         active_mm = tsk->active_mm;
983         tsk->mm = mm;
984         tsk->active_mm = mm;
985         activate_mm(active_mm, mm);
986         tsk->mm->vmacache_seqnum = 0;
987         vmacache_flush(tsk);
988         task_unlock(tsk);
989         if (old_mm) {
990                 up_read(&old_mm->mmap_sem);
991                 BUG_ON(active_mm != old_mm);
992                 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
993                 mm_update_next_owner(old_mm);
994                 mmput(old_mm);
995                 return 0;
996         }
997         mmdrop(active_mm);
998         return 0;
999 }
1000
1001 /*
1002  * This function makes sure the current process has its own signal table,
1003  * so that flush_signal_handlers can later reset the handlers without
1004  * disturbing other processes.  (Other processes might share the signal
1005  * table via the CLONE_SIGHAND option to clone().)
1006  */
1007 static int de_thread(struct task_struct *tsk)
1008 {
1009         struct signal_struct *sig = tsk->signal;
1010         struct sighand_struct *oldsighand = tsk->sighand;
1011         spinlock_t *lock = &oldsighand->siglock;
1012
1013         if (thread_group_empty(tsk))
1014                 goto no_thread_group;
1015
1016         /*
1017          * Kill all other threads in the thread group.
1018          */
1019         spin_lock_irq(lock);
1020         if (signal_group_exit(sig)) {
1021                 /*
1022                  * Another group action in progress, just
1023                  * return so that the signal is processed.
1024                  */
1025                 spin_unlock_irq(lock);
1026                 return -EAGAIN;
1027         }
1028
1029         sig->group_exit_task = tsk;
1030         sig->notify_count = zap_other_threads(tsk);
1031         if (!thread_group_leader(tsk))
1032                 sig->notify_count--;
1033
1034         while (sig->notify_count) {
1035                 __set_current_state(TASK_KILLABLE);
1036                 spin_unlock_irq(lock);
1037                 schedule();
1038                 if (unlikely(__fatal_signal_pending(tsk)))
1039                         goto killed;
1040                 spin_lock_irq(lock);
1041         }
1042         spin_unlock_irq(lock);
1043
1044         /*
1045          * At this point all other threads have exited, all we have to
1046          * do is to wait for the thread group leader to become inactive,
1047          * and to assume its PID:
1048          */
1049         if (!thread_group_leader(tsk)) {
1050                 struct task_struct *leader = tsk->group_leader;
1051
1052                 for (;;) {
1053                         threadgroup_change_begin(tsk);
1054                         write_lock_irq(&tasklist_lock);
1055                         /*
1056                          * Do this under tasklist_lock to ensure that
1057                          * exit_notify() can't miss ->group_exit_task
1058                          */
1059                         sig->notify_count = -1;
1060                         if (likely(leader->exit_state))
1061                                 break;
1062                         __set_current_state(TASK_KILLABLE);
1063                         write_unlock_irq(&tasklist_lock);
1064                         threadgroup_change_end(tsk);
1065                         schedule();
1066                         if (unlikely(__fatal_signal_pending(tsk)))
1067                                 goto killed;
1068                 }
1069
1070                 /*
1071                  * The only record we have of the real-time age of a
1072                  * process, regardless of execs it's done, is start_time.
1073                  * All the past CPU time is accumulated in signal_struct
1074                  * from sister threads now dead.  But in this non-leader
1075                  * exec, nothing survives from the original leader thread,
1076                  * whose birth marks the true age of this process now.
1077                  * When we take on its identity by switching to its PID, we
1078                  * also take its birthdate (always earlier than our own).
1079                  */
1080                 tsk->start_time = leader->start_time;
1081                 tsk->real_start_time = leader->real_start_time;
1082
1083                 BUG_ON(!same_thread_group(leader, tsk));
1084                 BUG_ON(has_group_leader_pid(tsk));
1085                 /*
1086                  * An exec() starts a new thread group with the
1087                  * TGID of the previous thread group. Rehash the
1088                  * two threads with a switched PID, and release
1089                  * the former thread group leader:
1090                  */
1091
1092                 /* Become a process group leader with the old leader's pid.
1093                  * The old leader becomes a thread of the this thread group.
1094                  * Note: The old leader also uses this pid until release_task
1095                  *       is called.  Odd but simple and correct.
1096                  */
1097                 tsk->pid = leader->pid;
1098                 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1099                 transfer_pid(leader, tsk, PIDTYPE_PGID);
1100                 transfer_pid(leader, tsk, PIDTYPE_SID);
1101
1102                 list_replace_rcu(&leader->tasks, &tsk->tasks);
1103                 list_replace_init(&leader->sibling, &tsk->sibling);
1104
1105                 tsk->group_leader = tsk;
1106                 leader->group_leader = tsk;
1107
1108                 tsk->exit_signal = SIGCHLD;
1109                 leader->exit_signal = -1;
1110
1111                 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1112                 leader->exit_state = EXIT_DEAD;
1113
1114                 /*
1115                  * We are going to release_task()->ptrace_unlink() silently,
1116                  * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1117                  * the tracer wont't block again waiting for this thread.
1118                  */
1119                 if (unlikely(leader->ptrace))
1120                         __wake_up_parent(leader, leader->parent);
1121                 write_unlock_irq(&tasklist_lock);
1122                 threadgroup_change_end(tsk);
1123
1124                 release_task(leader);
1125         }
1126
1127         sig->group_exit_task = NULL;
1128         sig->notify_count = 0;
1129
1130 no_thread_group:
1131         /* we have changed execution domain */
1132         tsk->exit_signal = SIGCHLD;
1133
1134         exit_itimers(sig);
1135         flush_itimer_signals();
1136
1137         if (atomic_read(&oldsighand->count) != 1) {
1138                 struct sighand_struct *newsighand;
1139                 /*
1140                  * This ->sighand is shared with the CLONE_SIGHAND
1141                  * but not CLONE_THREAD task, switch to the new one.
1142                  */
1143                 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1144                 if (!newsighand)
1145                         return -ENOMEM;
1146
1147                 atomic_set(&newsighand->count, 1);
1148                 memcpy(newsighand->action, oldsighand->action,
1149                        sizeof(newsighand->action));
1150
1151                 write_lock_irq(&tasklist_lock);
1152                 spin_lock(&oldsighand->siglock);
1153                 rcu_assign_pointer(tsk->sighand, newsighand);
1154                 spin_unlock(&oldsighand->siglock);
1155                 write_unlock_irq(&tasklist_lock);
1156
1157                 __cleanup_sighand(oldsighand);
1158         }
1159
1160         BUG_ON(!thread_group_leader(tsk));
1161         return 0;
1162
1163 killed:
1164         /* protects against exit_notify() and __exit_signal() */
1165         read_lock(&tasklist_lock);
1166         sig->group_exit_task = NULL;
1167         sig->notify_count = 0;
1168         read_unlock(&tasklist_lock);
1169         return -EAGAIN;
1170 }
1171
1172 char *get_task_comm(char *buf, struct task_struct *tsk)
1173 {
1174         /* buf must be at least sizeof(tsk->comm) in size */
1175         task_lock(tsk);
1176         strncpy(buf, tsk->comm, sizeof(tsk->comm));
1177         task_unlock(tsk);
1178         return buf;
1179 }
1180 EXPORT_SYMBOL_GPL(get_task_comm);
1181
1182 /*
1183  * These functions flushes out all traces of the currently running executable
1184  * so that a new one can be started
1185  */
1186
1187 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1188 {
1189         task_lock(tsk);
1190         trace_task_rename(tsk, buf);
1191         strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1192         task_unlock(tsk);
1193         perf_event_comm(tsk, exec);
1194 }
1195
1196 int flush_old_exec(struct linux_binprm * bprm)
1197 {
1198         int retval;
1199
1200         /*
1201          * Make sure we have a private signal table and that
1202          * we are unassociated from the previous thread group.
1203          */
1204         retval = de_thread(current);
1205         if (retval)
1206                 goto out;
1207
1208         /*
1209          * Must be called _before_ exec_mmap() as bprm->mm is
1210          * not visibile until then. This also enables the update
1211          * to be lockless.
1212          */
1213         set_mm_exe_file(bprm->mm, bprm->file);
1214
1215         /*
1216          * Release all of the old mmap stuff
1217          */
1218         acct_arg_size(bprm, 0);
1219         retval = exec_mmap(bprm->mm);
1220         if (retval)
1221                 goto out;
1222
1223         bprm->mm = NULL;                /* We're using it now */
1224
1225         set_fs(USER_DS);
1226         current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1227                                         PF_NOFREEZE | PF_NO_SETAFFINITY);
1228         flush_thread();
1229         current->personality &= ~bprm->per_clear;
1230
1231         return 0;
1232
1233 out:
1234         return retval;
1235 }
1236 EXPORT_SYMBOL(flush_old_exec);
1237
1238 void would_dump(struct linux_binprm *bprm, struct file *file)
1239 {
1240         if (inode_permission(file_inode(file), MAY_READ) < 0)
1241                 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1242 }
1243 EXPORT_SYMBOL(would_dump);
1244
1245 void setup_new_exec(struct linux_binprm * bprm)
1246 {
1247         arch_pick_mmap_layout(current->mm);
1248
1249         /* This is the point of no return */
1250         current->sas_ss_sp = current->sas_ss_size = 0;
1251
1252         if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1253                 set_dumpable(current->mm, SUID_DUMP_USER);
1254         else
1255                 set_dumpable(current->mm, suid_dumpable);
1256
1257         perf_event_exec();
1258         __set_task_comm(current, kbasename(bprm->filename), true);
1259
1260         /* Set the new mm task size. We have to do that late because it may
1261          * depend on TIF_32BIT which is only updated in flush_thread() on
1262          * some architectures like powerpc
1263          */
1264         current->mm->task_size = TASK_SIZE;
1265
1266         /* install the new credentials */
1267         if (!uid_eq(bprm->cred->uid, current_euid()) ||
1268             !gid_eq(bprm->cred->gid, current_egid())) {
1269                 current->pdeath_signal = 0;
1270         } else {
1271                 would_dump(bprm, bprm->file);
1272                 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1273                         set_dumpable(current->mm, suid_dumpable);
1274         }
1275
1276         /* An exec changes our domain. We are no longer part of the thread
1277            group */
1278         current->self_exec_id++;
1279         flush_signal_handlers(current, 0);
1280         do_close_on_exec(current->files);
1281 }
1282 EXPORT_SYMBOL(setup_new_exec);
1283
1284 /*
1285  * Prepare credentials and lock ->cred_guard_mutex.
1286  * install_exec_creds() commits the new creds and drops the lock.
1287  * Or, if exec fails before, free_bprm() should release ->cred and
1288  * and unlock.
1289  */
1290 int prepare_bprm_creds(struct linux_binprm *bprm)
1291 {
1292         if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1293                 return -ERESTARTNOINTR;
1294
1295         bprm->cred = prepare_exec_creds();
1296         if (likely(bprm->cred))
1297                 return 0;
1298
1299         mutex_unlock(&current->signal->cred_guard_mutex);
1300         return -ENOMEM;
1301 }
1302
1303 static void free_bprm(struct linux_binprm *bprm)
1304 {
1305         free_arg_pages(bprm);
1306         if (bprm->cred) {
1307                 mutex_unlock(&current->signal->cred_guard_mutex);
1308                 abort_creds(bprm->cred);
1309         }
1310         if (bprm->file) {
1311                 allow_write_access(bprm->file);
1312                 fput(bprm->file);
1313         }
1314         /* If a binfmt changed the interp, free it. */
1315         if (bprm->interp != bprm->filename)
1316                 kfree(bprm->interp);
1317         kfree(bprm);
1318 }
1319
1320 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1321 {
1322         /* If a binfmt changed the interp, free it first. */
1323         if (bprm->interp != bprm->filename)
1324                 kfree(bprm->interp);
1325         bprm->interp = kstrdup(interp, GFP_KERNEL);
1326         if (!bprm->interp)
1327                 return -ENOMEM;
1328         return 0;
1329 }
1330 EXPORT_SYMBOL(bprm_change_interp);
1331
1332 /*
1333  * install the new credentials for this executable
1334  */
1335 void install_exec_creds(struct linux_binprm *bprm)
1336 {
1337         security_bprm_committing_creds(bprm);
1338
1339         commit_creds(bprm->cred);
1340         bprm->cred = NULL;
1341
1342         /*
1343          * Disable monitoring for regular users
1344          * when executing setuid binaries. Must
1345          * wait until new credentials are committed
1346          * by commit_creds() above
1347          */
1348         if (get_dumpable(current->mm) != SUID_DUMP_USER)
1349                 perf_event_exit_task(current);
1350         /*
1351          * cred_guard_mutex must be held at least to this point to prevent
1352          * ptrace_attach() from altering our determination of the task's
1353          * credentials; any time after this it may be unlocked.
1354          */
1355         security_bprm_committed_creds(bprm);
1356         mutex_unlock(&current->signal->cred_guard_mutex);
1357 }
1358 EXPORT_SYMBOL(install_exec_creds);
1359
1360 /*
1361  * determine how safe it is to execute the proposed program
1362  * - the caller must hold ->cred_guard_mutex to protect against
1363  *   PTRACE_ATTACH or seccomp thread-sync
1364  */
1365 static void check_unsafe_exec(struct linux_binprm *bprm)
1366 {
1367         struct task_struct *p = current, *t;
1368         unsigned n_fs;
1369
1370         if (p->ptrace) {
1371                 if (p->ptrace & PT_PTRACE_CAP)
1372                         bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1373                 else
1374                         bprm->unsafe |= LSM_UNSAFE_PTRACE;
1375         }
1376
1377         /*
1378          * This isn't strictly necessary, but it makes it harder for LSMs to
1379          * mess up.
1380          */
1381         if (task_no_new_privs(current))
1382                 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1383
1384         t = p;
1385         n_fs = 1;
1386         spin_lock(&p->fs->lock);
1387         rcu_read_lock();
1388         while_each_thread(p, t) {
1389                 if (t->fs == p->fs)
1390                         n_fs++;
1391         }
1392         rcu_read_unlock();
1393
1394         if (p->fs->users > n_fs)
1395                 bprm->unsafe |= LSM_UNSAFE_SHARE;
1396         else
1397                 p->fs->in_exec = 1;
1398         spin_unlock(&p->fs->lock);
1399 }
1400
1401 static void bprm_fill_uid(struct linux_binprm *bprm)
1402 {
1403         struct inode *inode;
1404         unsigned int mode;
1405         kuid_t uid;
1406         kgid_t gid;
1407
1408         /*
1409          * Since this can be called multiple times (via prepare_binprm),
1410          * we must clear any previous work done when setting set[ug]id
1411          * bits from any earlier bprm->file uses (for example when run
1412          * first for a setuid script then again for its interpreter).
1413          */
1414         bprm->cred->euid = current_euid();
1415         bprm->cred->egid = current_egid();
1416
1417         if (!mnt_may_suid(bprm->file->f_path.mnt))
1418                 return;
1419
1420         if (task_no_new_privs(current))
1421                 return;
1422
1423         inode = file_inode(bprm->file);
1424         mode = READ_ONCE(inode->i_mode);
1425         if (!(mode & (S_ISUID|S_ISGID)))
1426                 return;
1427
1428         /* Be careful if suid/sgid is set */
1429         inode_lock(inode);
1430
1431         /* reload atomically mode/uid/gid now that lock held */
1432         mode = inode->i_mode;
1433         uid = inode->i_uid;
1434         gid = inode->i_gid;
1435         inode_unlock(inode);
1436
1437         /* We ignore suid/sgid if there are no mappings for them in the ns */
1438         if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1439                  !kgid_has_mapping(bprm->cred->user_ns, gid))
1440                 return;
1441
1442         if (mode & S_ISUID) {
1443                 bprm->per_clear |= PER_CLEAR_ON_SETID;
1444                 bprm->cred->euid = uid;
1445         }
1446
1447         if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1448                 bprm->per_clear |= PER_CLEAR_ON_SETID;
1449                 bprm->cred->egid = gid;
1450         }
1451 }
1452
1453 /*
1454  * Fill the binprm structure from the inode.
1455  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1456  *
1457  * This may be called multiple times for binary chains (scripts for example).
1458  */
1459 int prepare_binprm(struct linux_binprm *bprm)
1460 {
1461         int retval;
1462
1463         bprm_fill_uid(bprm);
1464
1465         /* fill in binprm security blob */
1466         retval = security_bprm_set_creds(bprm);
1467         if (retval)
1468                 return retval;
1469         bprm->cred_prepared = 1;
1470
1471         memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1472         return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1473 }
1474
1475 EXPORT_SYMBOL(prepare_binprm);
1476
1477 /*
1478  * Arguments are '\0' separated strings found at the location bprm->p
1479  * points to; chop off the first by relocating brpm->p to right after
1480  * the first '\0' encountered.
1481  */
1482 int remove_arg_zero(struct linux_binprm *bprm)
1483 {
1484         int ret = 0;
1485         unsigned long offset;
1486         char *kaddr;
1487         struct page *page;
1488
1489         if (!bprm->argc)
1490                 return 0;
1491
1492         do {
1493                 offset = bprm->p & ~PAGE_MASK;
1494                 page = get_arg_page(bprm, bprm->p, 0);
1495                 if (!page) {
1496                         ret = -EFAULT;
1497                         goto out;
1498                 }
1499                 kaddr = kmap_atomic(page);
1500
1501                 for (; offset < PAGE_SIZE && kaddr[offset];
1502                                 offset++, bprm->p++)
1503                         ;
1504
1505                 kunmap_atomic(kaddr);
1506                 put_arg_page(page);
1507         } while (offset == PAGE_SIZE);
1508
1509         bprm->p++;
1510         bprm->argc--;
1511         ret = 0;
1512
1513 out:
1514         return ret;
1515 }
1516 EXPORT_SYMBOL(remove_arg_zero);
1517
1518 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1519 /*
1520  * cycle the list of binary formats handler, until one recognizes the image
1521  */
1522 int search_binary_handler(struct linux_binprm *bprm)
1523 {
1524         bool need_retry = IS_ENABLED(CONFIG_MODULES);
1525         struct linux_binfmt *fmt;
1526         int retval;
1527
1528         /* This allows 4 levels of binfmt rewrites before failing hard. */
1529         if (bprm->recursion_depth > 5)
1530                 return -ELOOP;
1531
1532         retval = security_bprm_check(bprm);
1533         if (retval)
1534                 return retval;
1535
1536         retval = -ENOENT;
1537  retry:
1538         read_lock(&binfmt_lock);
1539         list_for_each_entry(fmt, &formats, lh) {
1540                 if (!try_module_get(fmt->module))
1541                         continue;
1542                 read_unlock(&binfmt_lock);
1543                 bprm->recursion_depth++;
1544                 retval = fmt->load_binary(bprm);
1545                 read_lock(&binfmt_lock);
1546                 put_binfmt(fmt);
1547                 bprm->recursion_depth--;
1548                 if (retval < 0 && !bprm->mm) {
1549                         /* we got to flush_old_exec() and failed after it */
1550                         read_unlock(&binfmt_lock);
1551                         force_sigsegv(SIGSEGV, current);
1552                         return retval;
1553                 }
1554                 if (retval != -ENOEXEC || !bprm->file) {
1555                         read_unlock(&binfmt_lock);
1556                         return retval;
1557                 }
1558         }
1559         read_unlock(&binfmt_lock);
1560
1561         if (need_retry) {
1562                 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1563                     printable(bprm->buf[2]) && printable(bprm->buf[3]))
1564                         return retval;
1565                 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1566                         return retval;
1567                 need_retry = false;
1568                 goto retry;
1569         }
1570
1571         return retval;
1572 }
1573 EXPORT_SYMBOL(search_binary_handler);
1574
1575 static int exec_binprm(struct linux_binprm *bprm)
1576 {
1577         pid_t old_pid, old_vpid;
1578         int ret;
1579
1580         /* Need to fetch pid before load_binary changes it */
1581         old_pid = current->pid;
1582         rcu_read_lock();
1583         old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1584         rcu_read_unlock();
1585
1586         ret = search_binary_handler(bprm);
1587         if (ret >= 0) {
1588                 audit_bprm(bprm);
1589                 trace_sched_process_exec(current, old_pid, bprm);
1590                 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1591                 proc_exec_connector(current);
1592         }
1593
1594         return ret;
1595 }
1596
1597 /*
1598  * sys_execve() executes a new program.
1599  */
1600 static int do_execveat_common(int fd, struct filename *filename,
1601                               struct user_arg_ptr argv,
1602                               struct user_arg_ptr envp,
1603                               int flags)
1604 {
1605         char *pathbuf = NULL;
1606         struct linux_binprm *bprm;
1607         struct file *file;
1608         struct files_struct *displaced;
1609         int retval;
1610
1611         if (IS_ERR(filename))
1612                 return PTR_ERR(filename);
1613
1614         /*
1615          * We move the actual failure in case of RLIMIT_NPROC excess from
1616          * set*uid() to execve() because too many poorly written programs
1617          * don't check setuid() return code.  Here we additionally recheck
1618          * whether NPROC limit is still exceeded.
1619          */
1620         if ((current->flags & PF_NPROC_EXCEEDED) &&
1621             atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1622                 retval = -EAGAIN;
1623                 goto out_ret;
1624         }
1625
1626         /* We're below the limit (still or again), so we don't want to make
1627          * further execve() calls fail. */
1628         current->flags &= ~PF_NPROC_EXCEEDED;
1629
1630         retval = unshare_files(&displaced);
1631         if (retval)
1632                 goto out_ret;
1633
1634         retval = -ENOMEM;
1635         bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1636         if (!bprm)
1637                 goto out_files;
1638
1639         retval = prepare_bprm_creds(bprm);
1640         if (retval)
1641                 goto out_free;
1642
1643         check_unsafe_exec(bprm);
1644         current->in_execve = 1;
1645
1646         file = do_open_execat(fd, filename, flags);
1647         retval = PTR_ERR(file);
1648         if (IS_ERR(file))
1649                 goto out_unmark;
1650
1651         sched_exec();
1652
1653         bprm->file = file;
1654         if (fd == AT_FDCWD || filename->name[0] == '/') {
1655                 bprm->filename = filename->name;
1656         } else {
1657                 if (filename->name[0] == '\0')
1658                         pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d", fd);
1659                 else
1660                         pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d/%s",
1661                                             fd, filename->name);
1662                 if (!pathbuf) {
1663                         retval = -ENOMEM;
1664                         goto out_unmark;
1665                 }
1666                 /*
1667                  * Record that a name derived from an O_CLOEXEC fd will be
1668                  * inaccessible after exec. Relies on having exclusive access to
1669                  * current->files (due to unshare_files above).
1670                  */
1671                 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1672                         bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1673                 bprm->filename = pathbuf;
1674         }
1675         bprm->interp = bprm->filename;
1676
1677         retval = bprm_mm_init(bprm);
1678         if (retval)
1679                 goto out_unmark;
1680
1681         bprm->argc = count(argv, MAX_ARG_STRINGS);
1682         if ((retval = bprm->argc) < 0)
1683                 goto out;
1684
1685         bprm->envc = count(envp, MAX_ARG_STRINGS);
1686         if ((retval = bprm->envc) < 0)
1687                 goto out;
1688
1689         retval = prepare_binprm(bprm);
1690         if (retval < 0)
1691                 goto out;
1692
1693         retval = copy_strings_kernel(1, &bprm->filename, bprm);
1694         if (retval < 0)
1695                 goto out;
1696
1697         bprm->exec = bprm->p;
1698         retval = copy_strings(bprm->envc, envp, bprm);
1699         if (retval < 0)
1700                 goto out;
1701
1702         retval = copy_strings(bprm->argc, argv, bprm);
1703         if (retval < 0)
1704                 goto out;
1705
1706         retval = exec_binprm(bprm);
1707         if (retval < 0)
1708                 goto out;
1709
1710         /* execve succeeded */
1711         current->fs->in_exec = 0;
1712         current->in_execve = 0;
1713         acct_update_integrals(current);
1714         task_numa_free(current);
1715         free_bprm(bprm);
1716         kfree(pathbuf);
1717         putname(filename);
1718         if (displaced)
1719                 put_files_struct(displaced);
1720         return retval;
1721
1722 out:
1723         if (bprm->mm) {
1724                 acct_arg_size(bprm, 0);
1725                 mmput(bprm->mm);
1726         }
1727
1728 out_unmark:
1729         current->fs->in_exec = 0;
1730         current->in_execve = 0;
1731
1732 out_free:
1733         free_bprm(bprm);
1734         kfree(pathbuf);
1735
1736 out_files:
1737         if (displaced)
1738                 reset_files_struct(displaced);
1739 out_ret:
1740         putname(filename);
1741         return retval;
1742 }
1743
1744 int do_execve(struct filename *filename,
1745         const char __user *const __user *__argv,
1746         const char __user *const __user *__envp)
1747 {
1748         struct user_arg_ptr argv = { .ptr.native = __argv };
1749         struct user_arg_ptr envp = { .ptr.native = __envp };
1750         return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1751 }
1752
1753 int do_execveat(int fd, struct filename *filename,
1754                 const char __user *const __user *__argv,
1755                 const char __user *const __user *__envp,
1756                 int flags)
1757 {
1758         struct user_arg_ptr argv = { .ptr.native = __argv };
1759         struct user_arg_ptr envp = { .ptr.native = __envp };
1760
1761         return do_execveat_common(fd, filename, argv, envp, flags);
1762 }
1763
1764 #ifdef CONFIG_COMPAT
1765 static int compat_do_execve(struct filename *filename,
1766         const compat_uptr_t __user *__argv,
1767         const compat_uptr_t __user *__envp)
1768 {
1769         struct user_arg_ptr argv = {
1770                 .is_compat = true,
1771                 .ptr.compat = __argv,
1772         };
1773         struct user_arg_ptr envp = {
1774                 .is_compat = true,
1775                 .ptr.compat = __envp,
1776         };
1777         return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1778 }
1779
1780 static int compat_do_execveat(int fd, struct filename *filename,
1781                               const compat_uptr_t __user *__argv,
1782                               const compat_uptr_t __user *__envp,
1783                               int flags)
1784 {
1785         struct user_arg_ptr argv = {
1786                 .is_compat = true,
1787                 .ptr.compat = __argv,
1788         };
1789         struct user_arg_ptr envp = {
1790                 .is_compat = true,
1791                 .ptr.compat = __envp,
1792         };
1793         return do_execveat_common(fd, filename, argv, envp, flags);
1794 }
1795 #endif
1796
1797 void set_binfmt(struct linux_binfmt *new)
1798 {
1799         struct mm_struct *mm = current->mm;
1800
1801         if (mm->binfmt)
1802                 module_put(mm->binfmt->module);
1803
1804         mm->binfmt = new;
1805         if (new)
1806                 __module_get(new->module);
1807 }
1808 EXPORT_SYMBOL(set_binfmt);
1809
1810 /*
1811  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1812  */
1813 void set_dumpable(struct mm_struct *mm, int value)
1814 {
1815         unsigned long old, new;
1816
1817         if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1818                 return;
1819
1820         do {
1821                 old = ACCESS_ONCE(mm->flags);
1822                 new = (old & ~MMF_DUMPABLE_MASK) | value;
1823         } while (cmpxchg(&mm->flags, old, new) != old);
1824 }
1825
1826 SYSCALL_DEFINE3(execve,
1827                 const char __user *, filename,
1828                 const char __user *const __user *, argv,
1829                 const char __user *const __user *, envp)
1830 {
1831         return do_execve(getname(filename), argv, envp);
1832 }
1833
1834 SYSCALL_DEFINE5(execveat,
1835                 int, fd, const char __user *, filename,
1836                 const char __user *const __user *, argv,
1837                 const char __user *const __user *, envp,
1838                 int, flags)
1839 {
1840         int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1841
1842         return do_execveat(fd,
1843                            getname_flags(filename, lookup_flags, NULL),
1844                            argv, envp, flags);
1845 }
1846
1847 #ifdef CONFIG_COMPAT
1848 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1849         const compat_uptr_t __user *, argv,
1850         const compat_uptr_t __user *, envp)
1851 {
1852         return compat_do_execve(getname(filename), argv, envp);
1853 }
1854
1855 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1856                        const char __user *, filename,
1857                        const compat_uptr_t __user *, argv,
1858                        const compat_uptr_t __user *, envp,
1859                        int,  flags)
1860 {
1861         int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1862
1863         return compat_do_execveat(fd,
1864                                   getname_flags(filename, lookup_flags, NULL),
1865                                   argv, envp, flags);
1866 }
1867 #endif