vfs: define kernel_read_file_from_path
[cascardo/linux.git] / fs / exec.c
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats. 
23  */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_event.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
55 #include <linux/fs_struct.h>
56 #include <linux/pipe_fs_i.h>
57 #include <linux/oom.h>
58 #include <linux/compat.h>
59 #include <linux/vmalloc.h>
60
61 #include <asm/uaccess.h>
62 #include <asm/mmu_context.h>
63 #include <asm/tlb.h>
64
65 #include <trace/events/task.h>
66 #include "internal.h"
67
68 #include <trace/events/sched.h>
69
70 int suid_dumpable = 0;
71
72 static LIST_HEAD(formats);
73 static DEFINE_RWLOCK(binfmt_lock);
74
75 void __register_binfmt(struct linux_binfmt * fmt, int insert)
76 {
77         BUG_ON(!fmt);
78         if (WARN_ON(!fmt->load_binary))
79                 return;
80         write_lock(&binfmt_lock);
81         insert ? list_add(&fmt->lh, &formats) :
82                  list_add_tail(&fmt->lh, &formats);
83         write_unlock(&binfmt_lock);
84 }
85
86 EXPORT_SYMBOL(__register_binfmt);
87
88 void unregister_binfmt(struct linux_binfmt * fmt)
89 {
90         write_lock(&binfmt_lock);
91         list_del(&fmt->lh);
92         write_unlock(&binfmt_lock);
93 }
94
95 EXPORT_SYMBOL(unregister_binfmt);
96
97 static inline void put_binfmt(struct linux_binfmt * fmt)
98 {
99         module_put(fmt->module);
100 }
101
102 bool path_noexec(const struct path *path)
103 {
104         return (path->mnt->mnt_flags & MNT_NOEXEC) ||
105                (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
106 }
107
108 #ifdef CONFIG_USELIB
109 /*
110  * Note that a shared library must be both readable and executable due to
111  * security reasons.
112  *
113  * Also note that we take the address to load from from the file itself.
114  */
115 SYSCALL_DEFINE1(uselib, const char __user *, library)
116 {
117         struct linux_binfmt *fmt;
118         struct file *file;
119         struct filename *tmp = getname(library);
120         int error = PTR_ERR(tmp);
121         static const struct open_flags uselib_flags = {
122                 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
123                 .acc_mode = MAY_READ | MAY_EXEC,
124                 .intent = LOOKUP_OPEN,
125                 .lookup_flags = LOOKUP_FOLLOW,
126         };
127
128         if (IS_ERR(tmp))
129                 goto out;
130
131         file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
132         putname(tmp);
133         error = PTR_ERR(file);
134         if (IS_ERR(file))
135                 goto out;
136
137         error = -EINVAL;
138         if (!S_ISREG(file_inode(file)->i_mode))
139                 goto exit;
140
141         error = -EACCES;
142         if (path_noexec(&file->f_path))
143                 goto exit;
144
145         fsnotify_open(file);
146
147         error = -ENOEXEC;
148
149         read_lock(&binfmt_lock);
150         list_for_each_entry(fmt, &formats, lh) {
151                 if (!fmt->load_shlib)
152                         continue;
153                 if (!try_module_get(fmt->module))
154                         continue;
155                 read_unlock(&binfmt_lock);
156                 error = fmt->load_shlib(file);
157                 read_lock(&binfmt_lock);
158                 put_binfmt(fmt);
159                 if (error != -ENOEXEC)
160                         break;
161         }
162         read_unlock(&binfmt_lock);
163 exit:
164         fput(file);
165 out:
166         return error;
167 }
168 #endif /* #ifdef CONFIG_USELIB */
169
170 #ifdef CONFIG_MMU
171 /*
172  * The nascent bprm->mm is not visible until exec_mmap() but it can
173  * use a lot of memory, account these pages in current->mm temporary
174  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
175  * change the counter back via acct_arg_size(0).
176  */
177 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
178 {
179         struct mm_struct *mm = current->mm;
180         long diff = (long)(pages - bprm->vma_pages);
181
182         if (!mm || !diff)
183                 return;
184
185         bprm->vma_pages = pages;
186         add_mm_counter(mm, MM_ANONPAGES, diff);
187 }
188
189 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
190                 int write)
191 {
192         struct page *page;
193         int ret;
194
195 #ifdef CONFIG_STACK_GROWSUP
196         if (write) {
197                 ret = expand_downwards(bprm->vma, pos);
198                 if (ret < 0)
199                         return NULL;
200         }
201 #endif
202         ret = get_user_pages(current, bprm->mm, pos,
203                         1, write, 1, &page, NULL);
204         if (ret <= 0)
205                 return NULL;
206
207         if (write) {
208                 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
209                 struct rlimit *rlim;
210
211                 acct_arg_size(bprm, size / PAGE_SIZE);
212
213                 /*
214                  * We've historically supported up to 32 pages (ARG_MAX)
215                  * of argument strings even with small stacks
216                  */
217                 if (size <= ARG_MAX)
218                         return page;
219
220                 /*
221                  * Limit to 1/4-th the stack size for the argv+env strings.
222                  * This ensures that:
223                  *  - the remaining binfmt code will not run out of stack space,
224                  *  - the program will have a reasonable amount of stack left
225                  *    to work from.
226                  */
227                 rlim = current->signal->rlim;
228                 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
229                         put_page(page);
230                         return NULL;
231                 }
232         }
233
234         return page;
235 }
236
237 static void put_arg_page(struct page *page)
238 {
239         put_page(page);
240 }
241
242 static void free_arg_page(struct linux_binprm *bprm, int i)
243 {
244 }
245
246 static void free_arg_pages(struct linux_binprm *bprm)
247 {
248 }
249
250 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
251                 struct page *page)
252 {
253         flush_cache_page(bprm->vma, pos, page_to_pfn(page));
254 }
255
256 static int __bprm_mm_init(struct linux_binprm *bprm)
257 {
258         int err;
259         struct vm_area_struct *vma = NULL;
260         struct mm_struct *mm = bprm->mm;
261
262         bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
263         if (!vma)
264                 return -ENOMEM;
265
266         down_write(&mm->mmap_sem);
267         vma->vm_mm = mm;
268
269         /*
270          * Place the stack at the largest stack address the architecture
271          * supports. Later, we'll move this to an appropriate place. We don't
272          * use STACK_TOP because that can depend on attributes which aren't
273          * configured yet.
274          */
275         BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
276         vma->vm_end = STACK_TOP_MAX;
277         vma->vm_start = vma->vm_end - PAGE_SIZE;
278         vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
279         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
280         INIT_LIST_HEAD(&vma->anon_vma_chain);
281
282         err = insert_vm_struct(mm, vma);
283         if (err)
284                 goto err;
285
286         mm->stack_vm = mm->total_vm = 1;
287         arch_bprm_mm_init(mm, vma);
288         up_write(&mm->mmap_sem);
289         bprm->p = vma->vm_end - sizeof(void *);
290         return 0;
291 err:
292         up_write(&mm->mmap_sem);
293         bprm->vma = NULL;
294         kmem_cache_free(vm_area_cachep, vma);
295         return err;
296 }
297
298 static bool valid_arg_len(struct linux_binprm *bprm, long len)
299 {
300         return len <= MAX_ARG_STRLEN;
301 }
302
303 #else
304
305 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
306 {
307 }
308
309 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
310                 int write)
311 {
312         struct page *page;
313
314         page = bprm->page[pos / PAGE_SIZE];
315         if (!page && write) {
316                 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
317                 if (!page)
318                         return NULL;
319                 bprm->page[pos / PAGE_SIZE] = page;
320         }
321
322         return page;
323 }
324
325 static void put_arg_page(struct page *page)
326 {
327 }
328
329 static void free_arg_page(struct linux_binprm *bprm, int i)
330 {
331         if (bprm->page[i]) {
332                 __free_page(bprm->page[i]);
333                 bprm->page[i] = NULL;
334         }
335 }
336
337 static void free_arg_pages(struct linux_binprm *bprm)
338 {
339         int i;
340
341         for (i = 0; i < MAX_ARG_PAGES; i++)
342                 free_arg_page(bprm, i);
343 }
344
345 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
346                 struct page *page)
347 {
348 }
349
350 static int __bprm_mm_init(struct linux_binprm *bprm)
351 {
352         bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
353         return 0;
354 }
355
356 static bool valid_arg_len(struct linux_binprm *bprm, long len)
357 {
358         return len <= bprm->p;
359 }
360
361 #endif /* CONFIG_MMU */
362
363 /*
364  * Create a new mm_struct and populate it with a temporary stack
365  * vm_area_struct.  We don't have enough context at this point to set the stack
366  * flags, permissions, and offset, so we use temporary values.  We'll update
367  * them later in setup_arg_pages().
368  */
369 static int bprm_mm_init(struct linux_binprm *bprm)
370 {
371         int err;
372         struct mm_struct *mm = NULL;
373
374         bprm->mm = mm = mm_alloc();
375         err = -ENOMEM;
376         if (!mm)
377                 goto err;
378
379         err = __bprm_mm_init(bprm);
380         if (err)
381                 goto err;
382
383         return 0;
384
385 err:
386         if (mm) {
387                 bprm->mm = NULL;
388                 mmdrop(mm);
389         }
390
391         return err;
392 }
393
394 struct user_arg_ptr {
395 #ifdef CONFIG_COMPAT
396         bool is_compat;
397 #endif
398         union {
399                 const char __user *const __user *native;
400 #ifdef CONFIG_COMPAT
401                 const compat_uptr_t __user *compat;
402 #endif
403         } ptr;
404 };
405
406 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
407 {
408         const char __user *native;
409
410 #ifdef CONFIG_COMPAT
411         if (unlikely(argv.is_compat)) {
412                 compat_uptr_t compat;
413
414                 if (get_user(compat, argv.ptr.compat + nr))
415                         return ERR_PTR(-EFAULT);
416
417                 return compat_ptr(compat);
418         }
419 #endif
420
421         if (get_user(native, argv.ptr.native + nr))
422                 return ERR_PTR(-EFAULT);
423
424         return native;
425 }
426
427 /*
428  * count() counts the number of strings in array ARGV.
429  */
430 static int count(struct user_arg_ptr argv, int max)
431 {
432         int i = 0;
433
434         if (argv.ptr.native != NULL) {
435                 for (;;) {
436                         const char __user *p = get_user_arg_ptr(argv, i);
437
438                         if (!p)
439                                 break;
440
441                         if (IS_ERR(p))
442                                 return -EFAULT;
443
444                         if (i >= max)
445                                 return -E2BIG;
446                         ++i;
447
448                         if (fatal_signal_pending(current))
449                                 return -ERESTARTNOHAND;
450                         cond_resched();
451                 }
452         }
453         return i;
454 }
455
456 /*
457  * 'copy_strings()' copies argument/environment strings from the old
458  * processes's memory to the new process's stack.  The call to get_user_pages()
459  * ensures the destination page is created and not swapped out.
460  */
461 static int copy_strings(int argc, struct user_arg_ptr argv,
462                         struct linux_binprm *bprm)
463 {
464         struct page *kmapped_page = NULL;
465         char *kaddr = NULL;
466         unsigned long kpos = 0;
467         int ret;
468
469         while (argc-- > 0) {
470                 const char __user *str;
471                 int len;
472                 unsigned long pos;
473
474                 ret = -EFAULT;
475                 str = get_user_arg_ptr(argv, argc);
476                 if (IS_ERR(str))
477                         goto out;
478
479                 len = strnlen_user(str, MAX_ARG_STRLEN);
480                 if (!len)
481                         goto out;
482
483                 ret = -E2BIG;
484                 if (!valid_arg_len(bprm, len))
485                         goto out;
486
487                 /* We're going to work our way backwords. */
488                 pos = bprm->p;
489                 str += len;
490                 bprm->p -= len;
491
492                 while (len > 0) {
493                         int offset, bytes_to_copy;
494
495                         if (fatal_signal_pending(current)) {
496                                 ret = -ERESTARTNOHAND;
497                                 goto out;
498                         }
499                         cond_resched();
500
501                         offset = pos % PAGE_SIZE;
502                         if (offset == 0)
503                                 offset = PAGE_SIZE;
504
505                         bytes_to_copy = offset;
506                         if (bytes_to_copy > len)
507                                 bytes_to_copy = len;
508
509                         offset -= bytes_to_copy;
510                         pos -= bytes_to_copy;
511                         str -= bytes_to_copy;
512                         len -= bytes_to_copy;
513
514                         if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
515                                 struct page *page;
516
517                                 page = get_arg_page(bprm, pos, 1);
518                                 if (!page) {
519                                         ret = -E2BIG;
520                                         goto out;
521                                 }
522
523                                 if (kmapped_page) {
524                                         flush_kernel_dcache_page(kmapped_page);
525                                         kunmap(kmapped_page);
526                                         put_arg_page(kmapped_page);
527                                 }
528                                 kmapped_page = page;
529                                 kaddr = kmap(kmapped_page);
530                                 kpos = pos & PAGE_MASK;
531                                 flush_arg_page(bprm, kpos, kmapped_page);
532                         }
533                         if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
534                                 ret = -EFAULT;
535                                 goto out;
536                         }
537                 }
538         }
539         ret = 0;
540 out:
541         if (kmapped_page) {
542                 flush_kernel_dcache_page(kmapped_page);
543                 kunmap(kmapped_page);
544                 put_arg_page(kmapped_page);
545         }
546         return ret;
547 }
548
549 /*
550  * Like copy_strings, but get argv and its values from kernel memory.
551  */
552 int copy_strings_kernel(int argc, const char *const *__argv,
553                         struct linux_binprm *bprm)
554 {
555         int r;
556         mm_segment_t oldfs = get_fs();
557         struct user_arg_ptr argv = {
558                 .ptr.native = (const char __user *const  __user *)__argv,
559         };
560
561         set_fs(KERNEL_DS);
562         r = copy_strings(argc, argv, bprm);
563         set_fs(oldfs);
564
565         return r;
566 }
567 EXPORT_SYMBOL(copy_strings_kernel);
568
569 #ifdef CONFIG_MMU
570
571 /*
572  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
573  * the binfmt code determines where the new stack should reside, we shift it to
574  * its final location.  The process proceeds as follows:
575  *
576  * 1) Use shift to calculate the new vma endpoints.
577  * 2) Extend vma to cover both the old and new ranges.  This ensures the
578  *    arguments passed to subsequent functions are consistent.
579  * 3) Move vma's page tables to the new range.
580  * 4) Free up any cleared pgd range.
581  * 5) Shrink the vma to cover only the new range.
582  */
583 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
584 {
585         struct mm_struct *mm = vma->vm_mm;
586         unsigned long old_start = vma->vm_start;
587         unsigned long old_end = vma->vm_end;
588         unsigned long length = old_end - old_start;
589         unsigned long new_start = old_start - shift;
590         unsigned long new_end = old_end - shift;
591         struct mmu_gather tlb;
592
593         BUG_ON(new_start > new_end);
594
595         /*
596          * ensure there are no vmas between where we want to go
597          * and where we are
598          */
599         if (vma != find_vma(mm, new_start))
600                 return -EFAULT;
601
602         /*
603          * cover the whole range: [new_start, old_end)
604          */
605         if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
606                 return -ENOMEM;
607
608         /*
609          * move the page tables downwards, on failure we rely on
610          * process cleanup to remove whatever mess we made.
611          */
612         if (length != move_page_tables(vma, old_start,
613                                        vma, new_start, length, false))
614                 return -ENOMEM;
615
616         lru_add_drain();
617         tlb_gather_mmu(&tlb, mm, old_start, old_end);
618         if (new_end > old_start) {
619                 /*
620                  * when the old and new regions overlap clear from new_end.
621                  */
622                 free_pgd_range(&tlb, new_end, old_end, new_end,
623                         vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
624         } else {
625                 /*
626                  * otherwise, clean from old_start; this is done to not touch
627                  * the address space in [new_end, old_start) some architectures
628                  * have constraints on va-space that make this illegal (IA64) -
629                  * for the others its just a little faster.
630                  */
631                 free_pgd_range(&tlb, old_start, old_end, new_end,
632                         vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
633         }
634         tlb_finish_mmu(&tlb, old_start, old_end);
635
636         /*
637          * Shrink the vma to just the new range.  Always succeeds.
638          */
639         vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
640
641         return 0;
642 }
643
644 /*
645  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
646  * the stack is optionally relocated, and some extra space is added.
647  */
648 int setup_arg_pages(struct linux_binprm *bprm,
649                     unsigned long stack_top,
650                     int executable_stack)
651 {
652         unsigned long ret;
653         unsigned long stack_shift;
654         struct mm_struct *mm = current->mm;
655         struct vm_area_struct *vma = bprm->vma;
656         struct vm_area_struct *prev = NULL;
657         unsigned long vm_flags;
658         unsigned long stack_base;
659         unsigned long stack_size;
660         unsigned long stack_expand;
661         unsigned long rlim_stack;
662
663 #ifdef CONFIG_STACK_GROWSUP
664         /* Limit stack size */
665         stack_base = rlimit_max(RLIMIT_STACK);
666         if (stack_base > STACK_SIZE_MAX)
667                 stack_base = STACK_SIZE_MAX;
668
669         /* Add space for stack randomization. */
670         stack_base += (STACK_RND_MASK << PAGE_SHIFT);
671
672         /* Make sure we didn't let the argument array grow too large. */
673         if (vma->vm_end - vma->vm_start > stack_base)
674                 return -ENOMEM;
675
676         stack_base = PAGE_ALIGN(stack_top - stack_base);
677
678         stack_shift = vma->vm_start - stack_base;
679         mm->arg_start = bprm->p - stack_shift;
680         bprm->p = vma->vm_end - stack_shift;
681 #else
682         stack_top = arch_align_stack(stack_top);
683         stack_top = PAGE_ALIGN(stack_top);
684
685         if (unlikely(stack_top < mmap_min_addr) ||
686             unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
687                 return -ENOMEM;
688
689         stack_shift = vma->vm_end - stack_top;
690
691         bprm->p -= stack_shift;
692         mm->arg_start = bprm->p;
693 #endif
694
695         if (bprm->loader)
696                 bprm->loader -= stack_shift;
697         bprm->exec -= stack_shift;
698
699         down_write(&mm->mmap_sem);
700         vm_flags = VM_STACK_FLAGS;
701
702         /*
703          * Adjust stack execute permissions; explicitly enable for
704          * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
705          * (arch default) otherwise.
706          */
707         if (unlikely(executable_stack == EXSTACK_ENABLE_X))
708                 vm_flags |= VM_EXEC;
709         else if (executable_stack == EXSTACK_DISABLE_X)
710                 vm_flags &= ~VM_EXEC;
711         vm_flags |= mm->def_flags;
712         vm_flags |= VM_STACK_INCOMPLETE_SETUP;
713
714         ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
715                         vm_flags);
716         if (ret)
717                 goto out_unlock;
718         BUG_ON(prev != vma);
719
720         /* Move stack pages down in memory. */
721         if (stack_shift) {
722                 ret = shift_arg_pages(vma, stack_shift);
723                 if (ret)
724                         goto out_unlock;
725         }
726
727         /* mprotect_fixup is overkill to remove the temporary stack flags */
728         vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
729
730         stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
731         stack_size = vma->vm_end - vma->vm_start;
732         /*
733          * Align this down to a page boundary as expand_stack
734          * will align it up.
735          */
736         rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
737 #ifdef CONFIG_STACK_GROWSUP
738         if (stack_size + stack_expand > rlim_stack)
739                 stack_base = vma->vm_start + rlim_stack;
740         else
741                 stack_base = vma->vm_end + stack_expand;
742 #else
743         if (stack_size + stack_expand > rlim_stack)
744                 stack_base = vma->vm_end - rlim_stack;
745         else
746                 stack_base = vma->vm_start - stack_expand;
747 #endif
748         current->mm->start_stack = bprm->p;
749         ret = expand_stack(vma, stack_base);
750         if (ret)
751                 ret = -EFAULT;
752
753 out_unlock:
754         up_write(&mm->mmap_sem);
755         return ret;
756 }
757 EXPORT_SYMBOL(setup_arg_pages);
758
759 #endif /* CONFIG_MMU */
760
761 static struct file *do_open_execat(int fd, struct filename *name, int flags)
762 {
763         struct file *file;
764         int err;
765         struct open_flags open_exec_flags = {
766                 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
767                 .acc_mode = MAY_EXEC,
768                 .intent = LOOKUP_OPEN,
769                 .lookup_flags = LOOKUP_FOLLOW,
770         };
771
772         if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
773                 return ERR_PTR(-EINVAL);
774         if (flags & AT_SYMLINK_NOFOLLOW)
775                 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
776         if (flags & AT_EMPTY_PATH)
777                 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
778
779         file = do_filp_open(fd, name, &open_exec_flags);
780         if (IS_ERR(file))
781                 goto out;
782
783         err = -EACCES;
784         if (!S_ISREG(file_inode(file)->i_mode))
785                 goto exit;
786
787         if (path_noexec(&file->f_path))
788                 goto exit;
789
790         err = deny_write_access(file);
791         if (err)
792                 goto exit;
793
794         if (name->name[0] != '\0')
795                 fsnotify_open(file);
796
797 out:
798         return file;
799
800 exit:
801         fput(file);
802         return ERR_PTR(err);
803 }
804
805 struct file *open_exec(const char *name)
806 {
807         struct filename *filename = getname_kernel(name);
808         struct file *f = ERR_CAST(filename);
809
810         if (!IS_ERR(filename)) {
811                 f = do_open_execat(AT_FDCWD, filename, 0);
812                 putname(filename);
813         }
814         return f;
815 }
816 EXPORT_SYMBOL(open_exec);
817
818 int kernel_read(struct file *file, loff_t offset,
819                 char *addr, unsigned long count)
820 {
821         mm_segment_t old_fs;
822         loff_t pos = offset;
823         int result;
824
825         old_fs = get_fs();
826         set_fs(get_ds());
827         /* The cast to a user pointer is valid due to the set_fs() */
828         result = vfs_read(file, (void __user *)addr, count, &pos);
829         set_fs(old_fs);
830         return result;
831 }
832
833 EXPORT_SYMBOL(kernel_read);
834
835 int kernel_read_file(struct file *file, void **buf, loff_t *size,
836                      loff_t max_size, enum kernel_read_file_id id)
837 {
838         loff_t i_size, pos;
839         ssize_t bytes = 0;
840         int ret;
841
842         if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
843                 return -EINVAL;
844
845         i_size = i_size_read(file_inode(file));
846         if (max_size > 0 && i_size > max_size)
847                 return -EFBIG;
848         if (i_size <= 0)
849                 return -EINVAL;
850
851         *buf = vmalloc(i_size);
852         if (!*buf)
853                 return -ENOMEM;
854
855         pos = 0;
856         while (pos < i_size) {
857                 bytes = kernel_read(file, pos, (char *)(*buf) + pos,
858                                     i_size - pos);
859                 if (bytes < 0) {
860                         ret = bytes;
861                         goto out;
862                 }
863
864                 if (bytes == 0)
865                         break;
866                 pos += bytes;
867         }
868
869         if (pos != i_size) {
870                 ret = -EIO;
871                 goto out;
872         }
873
874         ret = security_kernel_post_read_file(file, *buf, i_size, id);
875         if (!ret)
876                 *size = pos;
877
878 out:
879         if (ret < 0) {
880                 vfree(*buf);
881                 *buf = NULL;
882         }
883         return ret;
884 }
885 EXPORT_SYMBOL_GPL(kernel_read_file);
886
887 int kernel_read_file_from_path(char *path, void **buf, loff_t *size,
888                                loff_t max_size, enum kernel_read_file_id id)
889 {
890         struct file *file;
891         int ret;
892
893         if (!path || !*path)
894                 return -EINVAL;
895
896         file = filp_open(path, O_RDONLY, 0);
897         if (IS_ERR(file))
898                 return PTR_ERR(file);
899
900         ret = kernel_read_file(file, buf, size, max_size, id);
901         fput(file);
902         return ret;
903 }
904 EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
905
906 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
907 {
908         ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
909         if (res > 0)
910                 flush_icache_range(addr, addr + len);
911         return res;
912 }
913 EXPORT_SYMBOL(read_code);
914
915 static int exec_mmap(struct mm_struct *mm)
916 {
917         struct task_struct *tsk;
918         struct mm_struct *old_mm, *active_mm;
919
920         /* Notify parent that we're no longer interested in the old VM */
921         tsk = current;
922         old_mm = current->mm;
923         mm_release(tsk, old_mm);
924
925         if (old_mm) {
926                 sync_mm_rss(old_mm);
927                 /*
928                  * Make sure that if there is a core dump in progress
929                  * for the old mm, we get out and die instead of going
930                  * through with the exec.  We must hold mmap_sem around
931                  * checking core_state and changing tsk->mm.
932                  */
933                 down_read(&old_mm->mmap_sem);
934                 if (unlikely(old_mm->core_state)) {
935                         up_read(&old_mm->mmap_sem);
936                         return -EINTR;
937                 }
938         }
939         task_lock(tsk);
940         active_mm = tsk->active_mm;
941         tsk->mm = mm;
942         tsk->active_mm = mm;
943         activate_mm(active_mm, mm);
944         tsk->mm->vmacache_seqnum = 0;
945         vmacache_flush(tsk);
946         task_unlock(tsk);
947         if (old_mm) {
948                 up_read(&old_mm->mmap_sem);
949                 BUG_ON(active_mm != old_mm);
950                 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
951                 mm_update_next_owner(old_mm);
952                 mmput(old_mm);
953                 return 0;
954         }
955         mmdrop(active_mm);
956         return 0;
957 }
958
959 /*
960  * This function makes sure the current process has its own signal table,
961  * so that flush_signal_handlers can later reset the handlers without
962  * disturbing other processes.  (Other processes might share the signal
963  * table via the CLONE_SIGHAND option to clone().)
964  */
965 static int de_thread(struct task_struct *tsk)
966 {
967         struct signal_struct *sig = tsk->signal;
968         struct sighand_struct *oldsighand = tsk->sighand;
969         spinlock_t *lock = &oldsighand->siglock;
970
971         if (thread_group_empty(tsk))
972                 goto no_thread_group;
973
974         /*
975          * Kill all other threads in the thread group.
976          */
977         spin_lock_irq(lock);
978         if (signal_group_exit(sig)) {
979                 /*
980                  * Another group action in progress, just
981                  * return so that the signal is processed.
982                  */
983                 spin_unlock_irq(lock);
984                 return -EAGAIN;
985         }
986
987         sig->group_exit_task = tsk;
988         sig->notify_count = zap_other_threads(tsk);
989         if (!thread_group_leader(tsk))
990                 sig->notify_count--;
991
992         while (sig->notify_count) {
993                 __set_current_state(TASK_KILLABLE);
994                 spin_unlock_irq(lock);
995                 schedule();
996                 if (unlikely(__fatal_signal_pending(tsk)))
997                         goto killed;
998                 spin_lock_irq(lock);
999         }
1000         spin_unlock_irq(lock);
1001
1002         /*
1003          * At this point all other threads have exited, all we have to
1004          * do is to wait for the thread group leader to become inactive,
1005          * and to assume its PID:
1006          */
1007         if (!thread_group_leader(tsk)) {
1008                 struct task_struct *leader = tsk->group_leader;
1009
1010                 for (;;) {
1011                         threadgroup_change_begin(tsk);
1012                         write_lock_irq(&tasklist_lock);
1013                         /*
1014                          * Do this under tasklist_lock to ensure that
1015                          * exit_notify() can't miss ->group_exit_task
1016                          */
1017                         sig->notify_count = -1;
1018                         if (likely(leader->exit_state))
1019                                 break;
1020                         __set_current_state(TASK_KILLABLE);
1021                         write_unlock_irq(&tasklist_lock);
1022                         threadgroup_change_end(tsk);
1023                         schedule();
1024                         if (unlikely(__fatal_signal_pending(tsk)))
1025                                 goto killed;
1026                 }
1027
1028                 /*
1029                  * The only record we have of the real-time age of a
1030                  * process, regardless of execs it's done, is start_time.
1031                  * All the past CPU time is accumulated in signal_struct
1032                  * from sister threads now dead.  But in this non-leader
1033                  * exec, nothing survives from the original leader thread,
1034                  * whose birth marks the true age of this process now.
1035                  * When we take on its identity by switching to its PID, we
1036                  * also take its birthdate (always earlier than our own).
1037                  */
1038                 tsk->start_time = leader->start_time;
1039                 tsk->real_start_time = leader->real_start_time;
1040
1041                 BUG_ON(!same_thread_group(leader, tsk));
1042                 BUG_ON(has_group_leader_pid(tsk));
1043                 /*
1044                  * An exec() starts a new thread group with the
1045                  * TGID of the previous thread group. Rehash the
1046                  * two threads with a switched PID, and release
1047                  * the former thread group leader:
1048                  */
1049
1050                 /* Become a process group leader with the old leader's pid.
1051                  * The old leader becomes a thread of the this thread group.
1052                  * Note: The old leader also uses this pid until release_task
1053                  *       is called.  Odd but simple and correct.
1054                  */
1055                 tsk->pid = leader->pid;
1056                 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1057                 transfer_pid(leader, tsk, PIDTYPE_PGID);
1058                 transfer_pid(leader, tsk, PIDTYPE_SID);
1059
1060                 list_replace_rcu(&leader->tasks, &tsk->tasks);
1061                 list_replace_init(&leader->sibling, &tsk->sibling);
1062
1063                 tsk->group_leader = tsk;
1064                 leader->group_leader = tsk;
1065
1066                 tsk->exit_signal = SIGCHLD;
1067                 leader->exit_signal = -1;
1068
1069                 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1070                 leader->exit_state = EXIT_DEAD;
1071
1072                 /*
1073                  * We are going to release_task()->ptrace_unlink() silently,
1074                  * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1075                  * the tracer wont't block again waiting for this thread.
1076                  */
1077                 if (unlikely(leader->ptrace))
1078                         __wake_up_parent(leader, leader->parent);
1079                 write_unlock_irq(&tasklist_lock);
1080                 threadgroup_change_end(tsk);
1081
1082                 release_task(leader);
1083         }
1084
1085         sig->group_exit_task = NULL;
1086         sig->notify_count = 0;
1087
1088 no_thread_group:
1089         /* we have changed execution domain */
1090         tsk->exit_signal = SIGCHLD;
1091
1092         exit_itimers(sig);
1093         flush_itimer_signals();
1094
1095         if (atomic_read(&oldsighand->count) != 1) {
1096                 struct sighand_struct *newsighand;
1097                 /*
1098                  * This ->sighand is shared with the CLONE_SIGHAND
1099                  * but not CLONE_THREAD task, switch to the new one.
1100                  */
1101                 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1102                 if (!newsighand)
1103                         return -ENOMEM;
1104
1105                 atomic_set(&newsighand->count, 1);
1106                 memcpy(newsighand->action, oldsighand->action,
1107                        sizeof(newsighand->action));
1108
1109                 write_lock_irq(&tasklist_lock);
1110                 spin_lock(&oldsighand->siglock);
1111                 rcu_assign_pointer(tsk->sighand, newsighand);
1112                 spin_unlock(&oldsighand->siglock);
1113                 write_unlock_irq(&tasklist_lock);
1114
1115                 __cleanup_sighand(oldsighand);
1116         }
1117
1118         BUG_ON(!thread_group_leader(tsk));
1119         return 0;
1120
1121 killed:
1122         /* protects against exit_notify() and __exit_signal() */
1123         read_lock(&tasklist_lock);
1124         sig->group_exit_task = NULL;
1125         sig->notify_count = 0;
1126         read_unlock(&tasklist_lock);
1127         return -EAGAIN;
1128 }
1129
1130 char *get_task_comm(char *buf, struct task_struct *tsk)
1131 {
1132         /* buf must be at least sizeof(tsk->comm) in size */
1133         task_lock(tsk);
1134         strncpy(buf, tsk->comm, sizeof(tsk->comm));
1135         task_unlock(tsk);
1136         return buf;
1137 }
1138 EXPORT_SYMBOL_GPL(get_task_comm);
1139
1140 /*
1141  * These functions flushes out all traces of the currently running executable
1142  * so that a new one can be started
1143  */
1144
1145 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1146 {
1147         task_lock(tsk);
1148         trace_task_rename(tsk, buf);
1149         strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1150         task_unlock(tsk);
1151         perf_event_comm(tsk, exec);
1152 }
1153
1154 int flush_old_exec(struct linux_binprm * bprm)
1155 {
1156         int retval;
1157
1158         /*
1159          * Make sure we have a private signal table and that
1160          * we are unassociated from the previous thread group.
1161          */
1162         retval = de_thread(current);
1163         if (retval)
1164                 goto out;
1165
1166         /*
1167          * Must be called _before_ exec_mmap() as bprm->mm is
1168          * not visibile until then. This also enables the update
1169          * to be lockless.
1170          */
1171         set_mm_exe_file(bprm->mm, bprm->file);
1172
1173         /*
1174          * Release all of the old mmap stuff
1175          */
1176         acct_arg_size(bprm, 0);
1177         retval = exec_mmap(bprm->mm);
1178         if (retval)
1179                 goto out;
1180
1181         bprm->mm = NULL;                /* We're using it now */
1182
1183         set_fs(USER_DS);
1184         current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1185                                         PF_NOFREEZE | PF_NO_SETAFFINITY);
1186         flush_thread();
1187         current->personality &= ~bprm->per_clear;
1188
1189         return 0;
1190
1191 out:
1192         return retval;
1193 }
1194 EXPORT_SYMBOL(flush_old_exec);
1195
1196 void would_dump(struct linux_binprm *bprm, struct file *file)
1197 {
1198         if (inode_permission(file_inode(file), MAY_READ) < 0)
1199                 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1200 }
1201 EXPORT_SYMBOL(would_dump);
1202
1203 void setup_new_exec(struct linux_binprm * bprm)
1204 {
1205         arch_pick_mmap_layout(current->mm);
1206
1207         /* This is the point of no return */
1208         current->sas_ss_sp = current->sas_ss_size = 0;
1209
1210         if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1211                 set_dumpable(current->mm, SUID_DUMP_USER);
1212         else
1213                 set_dumpable(current->mm, suid_dumpable);
1214
1215         perf_event_exec();
1216         __set_task_comm(current, kbasename(bprm->filename), true);
1217
1218         /* Set the new mm task size. We have to do that late because it may
1219          * depend on TIF_32BIT which is only updated in flush_thread() on
1220          * some architectures like powerpc
1221          */
1222         current->mm->task_size = TASK_SIZE;
1223
1224         /* install the new credentials */
1225         if (!uid_eq(bprm->cred->uid, current_euid()) ||
1226             !gid_eq(bprm->cred->gid, current_egid())) {
1227                 current->pdeath_signal = 0;
1228         } else {
1229                 would_dump(bprm, bprm->file);
1230                 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1231                         set_dumpable(current->mm, suid_dumpable);
1232         }
1233
1234         /* An exec changes our domain. We are no longer part of the thread
1235            group */
1236         current->self_exec_id++;
1237         flush_signal_handlers(current, 0);
1238         do_close_on_exec(current->files);
1239 }
1240 EXPORT_SYMBOL(setup_new_exec);
1241
1242 /*
1243  * Prepare credentials and lock ->cred_guard_mutex.
1244  * install_exec_creds() commits the new creds and drops the lock.
1245  * Or, if exec fails before, free_bprm() should release ->cred and
1246  * and unlock.
1247  */
1248 int prepare_bprm_creds(struct linux_binprm *bprm)
1249 {
1250         if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1251                 return -ERESTARTNOINTR;
1252
1253         bprm->cred = prepare_exec_creds();
1254         if (likely(bprm->cred))
1255                 return 0;
1256
1257         mutex_unlock(&current->signal->cred_guard_mutex);
1258         return -ENOMEM;
1259 }
1260
1261 static void free_bprm(struct linux_binprm *bprm)
1262 {
1263         free_arg_pages(bprm);
1264         if (bprm->cred) {
1265                 mutex_unlock(&current->signal->cred_guard_mutex);
1266                 abort_creds(bprm->cred);
1267         }
1268         if (bprm->file) {
1269                 allow_write_access(bprm->file);
1270                 fput(bprm->file);
1271         }
1272         /* If a binfmt changed the interp, free it. */
1273         if (bprm->interp != bprm->filename)
1274                 kfree(bprm->interp);
1275         kfree(bprm);
1276 }
1277
1278 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1279 {
1280         /* If a binfmt changed the interp, free it first. */
1281         if (bprm->interp != bprm->filename)
1282                 kfree(bprm->interp);
1283         bprm->interp = kstrdup(interp, GFP_KERNEL);
1284         if (!bprm->interp)
1285                 return -ENOMEM;
1286         return 0;
1287 }
1288 EXPORT_SYMBOL(bprm_change_interp);
1289
1290 /*
1291  * install the new credentials for this executable
1292  */
1293 void install_exec_creds(struct linux_binprm *bprm)
1294 {
1295         security_bprm_committing_creds(bprm);
1296
1297         commit_creds(bprm->cred);
1298         bprm->cred = NULL;
1299
1300         /*
1301          * Disable monitoring for regular users
1302          * when executing setuid binaries. Must
1303          * wait until new credentials are committed
1304          * by commit_creds() above
1305          */
1306         if (get_dumpable(current->mm) != SUID_DUMP_USER)
1307                 perf_event_exit_task(current);
1308         /*
1309          * cred_guard_mutex must be held at least to this point to prevent
1310          * ptrace_attach() from altering our determination of the task's
1311          * credentials; any time after this it may be unlocked.
1312          */
1313         security_bprm_committed_creds(bprm);
1314         mutex_unlock(&current->signal->cred_guard_mutex);
1315 }
1316 EXPORT_SYMBOL(install_exec_creds);
1317
1318 /*
1319  * determine how safe it is to execute the proposed program
1320  * - the caller must hold ->cred_guard_mutex to protect against
1321  *   PTRACE_ATTACH or seccomp thread-sync
1322  */
1323 static void check_unsafe_exec(struct linux_binprm *bprm)
1324 {
1325         struct task_struct *p = current, *t;
1326         unsigned n_fs;
1327
1328         if (p->ptrace) {
1329                 if (p->ptrace & PT_PTRACE_CAP)
1330                         bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1331                 else
1332                         bprm->unsafe |= LSM_UNSAFE_PTRACE;
1333         }
1334
1335         /*
1336          * This isn't strictly necessary, but it makes it harder for LSMs to
1337          * mess up.
1338          */
1339         if (task_no_new_privs(current))
1340                 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1341
1342         t = p;
1343         n_fs = 1;
1344         spin_lock(&p->fs->lock);
1345         rcu_read_lock();
1346         while_each_thread(p, t) {
1347                 if (t->fs == p->fs)
1348                         n_fs++;
1349         }
1350         rcu_read_unlock();
1351
1352         if (p->fs->users > n_fs)
1353                 bprm->unsafe |= LSM_UNSAFE_SHARE;
1354         else
1355                 p->fs->in_exec = 1;
1356         spin_unlock(&p->fs->lock);
1357 }
1358
1359 static void bprm_fill_uid(struct linux_binprm *bprm)
1360 {
1361         struct inode *inode;
1362         unsigned int mode;
1363         kuid_t uid;
1364         kgid_t gid;
1365
1366         /* clear any previous set[ug]id data from a previous binary */
1367         bprm->cred->euid = current_euid();
1368         bprm->cred->egid = current_egid();
1369
1370         if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
1371                 return;
1372
1373         if (task_no_new_privs(current))
1374                 return;
1375
1376         inode = file_inode(bprm->file);
1377         mode = READ_ONCE(inode->i_mode);
1378         if (!(mode & (S_ISUID|S_ISGID)))
1379                 return;
1380
1381         /* Be careful if suid/sgid is set */
1382         inode_lock(inode);
1383
1384         /* reload atomically mode/uid/gid now that lock held */
1385         mode = inode->i_mode;
1386         uid = inode->i_uid;
1387         gid = inode->i_gid;
1388         inode_unlock(inode);
1389
1390         /* We ignore suid/sgid if there are no mappings for them in the ns */
1391         if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1392                  !kgid_has_mapping(bprm->cred->user_ns, gid))
1393                 return;
1394
1395         if (mode & S_ISUID) {
1396                 bprm->per_clear |= PER_CLEAR_ON_SETID;
1397                 bprm->cred->euid = uid;
1398         }
1399
1400         if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1401                 bprm->per_clear |= PER_CLEAR_ON_SETID;
1402                 bprm->cred->egid = gid;
1403         }
1404 }
1405
1406 /*
1407  * Fill the binprm structure from the inode.
1408  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1409  *
1410  * This may be called multiple times for binary chains (scripts for example).
1411  */
1412 int prepare_binprm(struct linux_binprm *bprm)
1413 {
1414         int retval;
1415
1416         bprm_fill_uid(bprm);
1417
1418         /* fill in binprm security blob */
1419         retval = security_bprm_set_creds(bprm);
1420         if (retval)
1421                 return retval;
1422         bprm->cred_prepared = 1;
1423
1424         memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1425         return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1426 }
1427
1428 EXPORT_SYMBOL(prepare_binprm);
1429
1430 /*
1431  * Arguments are '\0' separated strings found at the location bprm->p
1432  * points to; chop off the first by relocating brpm->p to right after
1433  * the first '\0' encountered.
1434  */
1435 int remove_arg_zero(struct linux_binprm *bprm)
1436 {
1437         int ret = 0;
1438         unsigned long offset;
1439         char *kaddr;
1440         struct page *page;
1441
1442         if (!bprm->argc)
1443                 return 0;
1444
1445         do {
1446                 offset = bprm->p & ~PAGE_MASK;
1447                 page = get_arg_page(bprm, bprm->p, 0);
1448                 if (!page) {
1449                         ret = -EFAULT;
1450                         goto out;
1451                 }
1452                 kaddr = kmap_atomic(page);
1453
1454                 for (; offset < PAGE_SIZE && kaddr[offset];
1455                                 offset++, bprm->p++)
1456                         ;
1457
1458                 kunmap_atomic(kaddr);
1459                 put_arg_page(page);
1460
1461                 if (offset == PAGE_SIZE)
1462                         free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1463         } while (offset == PAGE_SIZE);
1464
1465         bprm->p++;
1466         bprm->argc--;
1467         ret = 0;
1468
1469 out:
1470         return ret;
1471 }
1472 EXPORT_SYMBOL(remove_arg_zero);
1473
1474 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1475 /*
1476  * cycle the list of binary formats handler, until one recognizes the image
1477  */
1478 int search_binary_handler(struct linux_binprm *bprm)
1479 {
1480         bool need_retry = IS_ENABLED(CONFIG_MODULES);
1481         struct linux_binfmt *fmt;
1482         int retval;
1483
1484         /* This allows 4 levels of binfmt rewrites before failing hard. */
1485         if (bprm->recursion_depth > 5)
1486                 return -ELOOP;
1487
1488         retval = security_bprm_check(bprm);
1489         if (retval)
1490                 return retval;
1491
1492         retval = -ENOENT;
1493  retry:
1494         read_lock(&binfmt_lock);
1495         list_for_each_entry(fmt, &formats, lh) {
1496                 if (!try_module_get(fmt->module))
1497                         continue;
1498                 read_unlock(&binfmt_lock);
1499                 bprm->recursion_depth++;
1500                 retval = fmt->load_binary(bprm);
1501                 read_lock(&binfmt_lock);
1502                 put_binfmt(fmt);
1503                 bprm->recursion_depth--;
1504                 if (retval < 0 && !bprm->mm) {
1505                         /* we got to flush_old_exec() and failed after it */
1506                         read_unlock(&binfmt_lock);
1507                         force_sigsegv(SIGSEGV, current);
1508                         return retval;
1509                 }
1510                 if (retval != -ENOEXEC || !bprm->file) {
1511                         read_unlock(&binfmt_lock);
1512                         return retval;
1513                 }
1514         }
1515         read_unlock(&binfmt_lock);
1516
1517         if (need_retry) {
1518                 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1519                     printable(bprm->buf[2]) && printable(bprm->buf[3]))
1520                         return retval;
1521                 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1522                         return retval;
1523                 need_retry = false;
1524                 goto retry;
1525         }
1526
1527         return retval;
1528 }
1529 EXPORT_SYMBOL(search_binary_handler);
1530
1531 static int exec_binprm(struct linux_binprm *bprm)
1532 {
1533         pid_t old_pid, old_vpid;
1534         int ret;
1535
1536         /* Need to fetch pid before load_binary changes it */
1537         old_pid = current->pid;
1538         rcu_read_lock();
1539         old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1540         rcu_read_unlock();
1541
1542         ret = search_binary_handler(bprm);
1543         if (ret >= 0) {
1544                 audit_bprm(bprm);
1545                 trace_sched_process_exec(current, old_pid, bprm);
1546                 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1547                 proc_exec_connector(current);
1548         }
1549
1550         return ret;
1551 }
1552
1553 /*
1554  * sys_execve() executes a new program.
1555  */
1556 static int do_execveat_common(int fd, struct filename *filename,
1557                               struct user_arg_ptr argv,
1558                               struct user_arg_ptr envp,
1559                               int flags)
1560 {
1561         char *pathbuf = NULL;
1562         struct linux_binprm *bprm;
1563         struct file *file;
1564         struct files_struct *displaced;
1565         int retval;
1566
1567         if (IS_ERR(filename))
1568                 return PTR_ERR(filename);
1569
1570         /*
1571          * We move the actual failure in case of RLIMIT_NPROC excess from
1572          * set*uid() to execve() because too many poorly written programs
1573          * don't check setuid() return code.  Here we additionally recheck
1574          * whether NPROC limit is still exceeded.
1575          */
1576         if ((current->flags & PF_NPROC_EXCEEDED) &&
1577             atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1578                 retval = -EAGAIN;
1579                 goto out_ret;
1580         }
1581
1582         /* We're below the limit (still or again), so we don't want to make
1583          * further execve() calls fail. */
1584         current->flags &= ~PF_NPROC_EXCEEDED;
1585
1586         retval = unshare_files(&displaced);
1587         if (retval)
1588                 goto out_ret;
1589
1590         retval = -ENOMEM;
1591         bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1592         if (!bprm)
1593                 goto out_files;
1594
1595         retval = prepare_bprm_creds(bprm);
1596         if (retval)
1597                 goto out_free;
1598
1599         check_unsafe_exec(bprm);
1600         current->in_execve = 1;
1601
1602         file = do_open_execat(fd, filename, flags);
1603         retval = PTR_ERR(file);
1604         if (IS_ERR(file))
1605                 goto out_unmark;
1606
1607         sched_exec();
1608
1609         bprm->file = file;
1610         if (fd == AT_FDCWD || filename->name[0] == '/') {
1611                 bprm->filename = filename->name;
1612         } else {
1613                 if (filename->name[0] == '\0')
1614                         pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d", fd);
1615                 else
1616                         pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d/%s",
1617                                             fd, filename->name);
1618                 if (!pathbuf) {
1619                         retval = -ENOMEM;
1620                         goto out_unmark;
1621                 }
1622                 /*
1623                  * Record that a name derived from an O_CLOEXEC fd will be
1624                  * inaccessible after exec. Relies on having exclusive access to
1625                  * current->files (due to unshare_files above).
1626                  */
1627                 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1628                         bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1629                 bprm->filename = pathbuf;
1630         }
1631         bprm->interp = bprm->filename;
1632
1633         retval = bprm_mm_init(bprm);
1634         if (retval)
1635                 goto out_unmark;
1636
1637         bprm->argc = count(argv, MAX_ARG_STRINGS);
1638         if ((retval = bprm->argc) < 0)
1639                 goto out;
1640
1641         bprm->envc = count(envp, MAX_ARG_STRINGS);
1642         if ((retval = bprm->envc) < 0)
1643                 goto out;
1644
1645         retval = prepare_binprm(bprm);
1646         if (retval < 0)
1647                 goto out;
1648
1649         retval = copy_strings_kernel(1, &bprm->filename, bprm);
1650         if (retval < 0)
1651                 goto out;
1652
1653         bprm->exec = bprm->p;
1654         retval = copy_strings(bprm->envc, envp, bprm);
1655         if (retval < 0)
1656                 goto out;
1657
1658         retval = copy_strings(bprm->argc, argv, bprm);
1659         if (retval < 0)
1660                 goto out;
1661
1662         retval = exec_binprm(bprm);
1663         if (retval < 0)
1664                 goto out;
1665
1666         /* execve succeeded */
1667         current->fs->in_exec = 0;
1668         current->in_execve = 0;
1669         acct_update_integrals(current);
1670         task_numa_free(current);
1671         free_bprm(bprm);
1672         kfree(pathbuf);
1673         putname(filename);
1674         if (displaced)
1675                 put_files_struct(displaced);
1676         return retval;
1677
1678 out:
1679         if (bprm->mm) {
1680                 acct_arg_size(bprm, 0);
1681                 mmput(bprm->mm);
1682         }
1683
1684 out_unmark:
1685         current->fs->in_exec = 0;
1686         current->in_execve = 0;
1687
1688 out_free:
1689         free_bprm(bprm);
1690         kfree(pathbuf);
1691
1692 out_files:
1693         if (displaced)
1694                 reset_files_struct(displaced);
1695 out_ret:
1696         putname(filename);
1697         return retval;
1698 }
1699
1700 int do_execve(struct filename *filename,
1701         const char __user *const __user *__argv,
1702         const char __user *const __user *__envp)
1703 {
1704         struct user_arg_ptr argv = { .ptr.native = __argv };
1705         struct user_arg_ptr envp = { .ptr.native = __envp };
1706         return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1707 }
1708
1709 int do_execveat(int fd, struct filename *filename,
1710                 const char __user *const __user *__argv,
1711                 const char __user *const __user *__envp,
1712                 int flags)
1713 {
1714         struct user_arg_ptr argv = { .ptr.native = __argv };
1715         struct user_arg_ptr envp = { .ptr.native = __envp };
1716
1717         return do_execveat_common(fd, filename, argv, envp, flags);
1718 }
1719
1720 #ifdef CONFIG_COMPAT
1721 static int compat_do_execve(struct filename *filename,
1722         const compat_uptr_t __user *__argv,
1723         const compat_uptr_t __user *__envp)
1724 {
1725         struct user_arg_ptr argv = {
1726                 .is_compat = true,
1727                 .ptr.compat = __argv,
1728         };
1729         struct user_arg_ptr envp = {
1730                 .is_compat = true,
1731                 .ptr.compat = __envp,
1732         };
1733         return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1734 }
1735
1736 static int compat_do_execveat(int fd, struct filename *filename,
1737                               const compat_uptr_t __user *__argv,
1738                               const compat_uptr_t __user *__envp,
1739                               int flags)
1740 {
1741         struct user_arg_ptr argv = {
1742                 .is_compat = true,
1743                 .ptr.compat = __argv,
1744         };
1745         struct user_arg_ptr envp = {
1746                 .is_compat = true,
1747                 .ptr.compat = __envp,
1748         };
1749         return do_execveat_common(fd, filename, argv, envp, flags);
1750 }
1751 #endif
1752
1753 void set_binfmt(struct linux_binfmt *new)
1754 {
1755         struct mm_struct *mm = current->mm;
1756
1757         if (mm->binfmt)
1758                 module_put(mm->binfmt->module);
1759
1760         mm->binfmt = new;
1761         if (new)
1762                 __module_get(new->module);
1763 }
1764 EXPORT_SYMBOL(set_binfmt);
1765
1766 /*
1767  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1768  */
1769 void set_dumpable(struct mm_struct *mm, int value)
1770 {
1771         unsigned long old, new;
1772
1773         if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1774                 return;
1775
1776         do {
1777                 old = ACCESS_ONCE(mm->flags);
1778                 new = (old & ~MMF_DUMPABLE_MASK) | value;
1779         } while (cmpxchg(&mm->flags, old, new) != old);
1780 }
1781
1782 SYSCALL_DEFINE3(execve,
1783                 const char __user *, filename,
1784                 const char __user *const __user *, argv,
1785                 const char __user *const __user *, envp)
1786 {
1787         return do_execve(getname(filename), argv, envp);
1788 }
1789
1790 SYSCALL_DEFINE5(execveat,
1791                 int, fd, const char __user *, filename,
1792                 const char __user *const __user *, argv,
1793                 const char __user *const __user *, envp,
1794                 int, flags)
1795 {
1796         int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1797
1798         return do_execveat(fd,
1799                            getname_flags(filename, lookup_flags, NULL),
1800                            argv, envp, flags);
1801 }
1802
1803 #ifdef CONFIG_COMPAT
1804 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1805         const compat_uptr_t __user *, argv,
1806         const compat_uptr_t __user *, envp)
1807 {
1808         return compat_do_execve(getname(filename), argv, envp);
1809 }
1810
1811 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1812                        const char __user *, filename,
1813                        const compat_uptr_t __user *, argv,
1814                        const compat_uptr_t __user *, envp,
1815                        int,  flags)
1816 {
1817         int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1818
1819         return compat_do_execveat(fd,
1820                                   getname_flags(filename, lookup_flags, NULL),
1821                                   argv, envp, flags);
1822 }
1823 #endif