Merge branch 'drm-next' of git://people.freedesktop.org/~airlied/linux
[cascardo/linux.git] / fs / ext3 / inode.c
1 /*
2  *  linux/fs/ext3/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/highuid.h>
26 #include <linux/quotaops.h>
27 #include <linux/writeback.h>
28 #include <linux/mpage.h>
29 #include <linux/namei.h>
30 #include "ext3.h"
31 #include "xattr.h"
32 #include "acl.h"
33
34 static int ext3_writepage_trans_blocks(struct inode *inode);
35 static int ext3_block_truncate_page(struct inode *inode, loff_t from);
36
37 /*
38  * Test whether an inode is a fast symlink.
39  */
40 static int ext3_inode_is_fast_symlink(struct inode *inode)
41 {
42         int ea_blocks = EXT3_I(inode)->i_file_acl ?
43                 (inode->i_sb->s_blocksize >> 9) : 0;
44
45         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
46 }
47
48 /*
49  * The ext3 forget function must perform a revoke if we are freeing data
50  * which has been journaled.  Metadata (eg. indirect blocks) must be
51  * revoked in all cases.
52  *
53  * "bh" may be NULL: a metadata block may have been freed from memory
54  * but there may still be a record of it in the journal, and that record
55  * still needs to be revoked.
56  */
57 int ext3_forget(handle_t *handle, int is_metadata, struct inode *inode,
58                         struct buffer_head *bh, ext3_fsblk_t blocknr)
59 {
60         int err;
61
62         might_sleep();
63
64         trace_ext3_forget(inode, is_metadata, blocknr);
65         BUFFER_TRACE(bh, "enter");
66
67         jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
68                   "data mode %lx\n",
69                   bh, is_metadata, inode->i_mode,
70                   test_opt(inode->i_sb, DATA_FLAGS));
71
72         /* Never use the revoke function if we are doing full data
73          * journaling: there is no need to, and a V1 superblock won't
74          * support it.  Otherwise, only skip the revoke on un-journaled
75          * data blocks. */
76
77         if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ||
78             (!is_metadata && !ext3_should_journal_data(inode))) {
79                 if (bh) {
80                         BUFFER_TRACE(bh, "call journal_forget");
81                         return ext3_journal_forget(handle, bh);
82                 }
83                 return 0;
84         }
85
86         /*
87          * data!=journal && (is_metadata || should_journal_data(inode))
88          */
89         BUFFER_TRACE(bh, "call ext3_journal_revoke");
90         err = ext3_journal_revoke(handle, blocknr, bh);
91         if (err)
92                 ext3_abort(inode->i_sb, __func__,
93                            "error %d when attempting revoke", err);
94         BUFFER_TRACE(bh, "exit");
95         return err;
96 }
97
98 /*
99  * Work out how many blocks we need to proceed with the next chunk of a
100  * truncate transaction.
101  */
102 static unsigned long blocks_for_truncate(struct inode *inode)
103 {
104         unsigned long needed;
105
106         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
107
108         /* Give ourselves just enough room to cope with inodes in which
109          * i_blocks is corrupt: we've seen disk corruptions in the past
110          * which resulted in random data in an inode which looked enough
111          * like a regular file for ext3 to try to delete it.  Things
112          * will go a bit crazy if that happens, but at least we should
113          * try not to panic the whole kernel. */
114         if (needed < 2)
115                 needed = 2;
116
117         /* But we need to bound the transaction so we don't overflow the
118          * journal. */
119         if (needed > EXT3_MAX_TRANS_DATA)
120                 needed = EXT3_MAX_TRANS_DATA;
121
122         return EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
123 }
124
125 /*
126  * Truncate transactions can be complex and absolutely huge.  So we need to
127  * be able to restart the transaction at a conventient checkpoint to make
128  * sure we don't overflow the journal.
129  *
130  * start_transaction gets us a new handle for a truncate transaction,
131  * and extend_transaction tries to extend the existing one a bit.  If
132  * extend fails, we need to propagate the failure up and restart the
133  * transaction in the top-level truncate loop. --sct
134  */
135 static handle_t *start_transaction(struct inode *inode)
136 {
137         handle_t *result;
138
139         result = ext3_journal_start(inode, blocks_for_truncate(inode));
140         if (!IS_ERR(result))
141                 return result;
142
143         ext3_std_error(inode->i_sb, PTR_ERR(result));
144         return result;
145 }
146
147 /*
148  * Try to extend this transaction for the purposes of truncation.
149  *
150  * Returns 0 if we managed to create more room.  If we can't create more
151  * room, and the transaction must be restarted we return 1.
152  */
153 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
154 {
155         if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS)
156                 return 0;
157         if (!ext3_journal_extend(handle, blocks_for_truncate(inode)))
158                 return 0;
159         return 1;
160 }
161
162 /*
163  * Restart the transaction associated with *handle.  This does a commit,
164  * so before we call here everything must be consistently dirtied against
165  * this transaction.
166  */
167 static int truncate_restart_transaction(handle_t *handle, struct inode *inode)
168 {
169         int ret;
170
171         jbd_debug(2, "restarting handle %p\n", handle);
172         /*
173          * Drop truncate_mutex to avoid deadlock with ext3_get_blocks_handle
174          * At this moment, get_block can be called only for blocks inside
175          * i_size since page cache has been already dropped and writes are
176          * blocked by i_mutex. So we can safely drop the truncate_mutex.
177          */
178         mutex_unlock(&EXT3_I(inode)->truncate_mutex);
179         ret = ext3_journal_restart(handle, blocks_for_truncate(inode));
180         mutex_lock(&EXT3_I(inode)->truncate_mutex);
181         return ret;
182 }
183
184 /*
185  * Called at inode eviction from icache
186  */
187 void ext3_evict_inode (struct inode *inode)
188 {
189         struct ext3_inode_info *ei = EXT3_I(inode);
190         struct ext3_block_alloc_info *rsv;
191         handle_t *handle;
192         int want_delete = 0;
193
194         trace_ext3_evict_inode(inode);
195         if (!inode->i_nlink && !is_bad_inode(inode)) {
196                 dquot_initialize(inode);
197                 want_delete = 1;
198         }
199
200         /*
201          * When journalling data dirty buffers are tracked only in the journal.
202          * So although mm thinks everything is clean and ready for reaping the
203          * inode might still have some pages to write in the running
204          * transaction or waiting to be checkpointed. Thus calling
205          * journal_invalidatepage() (via truncate_inode_pages()) to discard
206          * these buffers can cause data loss. Also even if we did not discard
207          * these buffers, we would have no way to find them after the inode
208          * is reaped and thus user could see stale data if he tries to read
209          * them before the transaction is checkpointed. So be careful and
210          * force everything to disk here... We use ei->i_datasync_tid to
211          * store the newest transaction containing inode's data.
212          *
213          * Note that directories do not have this problem because they don't
214          * use page cache.
215          *
216          * The s_journal check handles the case when ext3_get_journal() fails
217          * and puts the journal inode.
218          */
219         if (inode->i_nlink && ext3_should_journal_data(inode) &&
220             EXT3_SB(inode->i_sb)->s_journal &&
221             (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
222                 tid_t commit_tid = atomic_read(&ei->i_datasync_tid);
223                 journal_t *journal = EXT3_SB(inode->i_sb)->s_journal;
224
225                 log_start_commit(journal, commit_tid);
226                 log_wait_commit(journal, commit_tid);
227                 filemap_write_and_wait(&inode->i_data);
228         }
229         truncate_inode_pages(&inode->i_data, 0);
230
231         ext3_discard_reservation(inode);
232         rsv = ei->i_block_alloc_info;
233         ei->i_block_alloc_info = NULL;
234         if (unlikely(rsv))
235                 kfree(rsv);
236
237         if (!want_delete)
238                 goto no_delete;
239
240         handle = start_transaction(inode);
241         if (IS_ERR(handle)) {
242                 /*
243                  * If we're going to skip the normal cleanup, we still need to
244                  * make sure that the in-core orphan linked list is properly
245                  * cleaned up.
246                  */
247                 ext3_orphan_del(NULL, inode);
248                 goto no_delete;
249         }
250
251         if (IS_SYNC(inode))
252                 handle->h_sync = 1;
253         inode->i_size = 0;
254         if (inode->i_blocks)
255                 ext3_truncate(inode);
256         /*
257          * Kill off the orphan record created when the inode lost the last
258          * link.  Note that ext3_orphan_del() has to be able to cope with the
259          * deletion of a non-existent orphan - ext3_truncate() could
260          * have removed the record.
261          */
262         ext3_orphan_del(handle, inode);
263         ei->i_dtime = get_seconds();
264
265         /*
266          * One subtle ordering requirement: if anything has gone wrong
267          * (transaction abort, IO errors, whatever), then we can still
268          * do these next steps (the fs will already have been marked as
269          * having errors), but we can't free the inode if the mark_dirty
270          * fails.
271          */
272         if (ext3_mark_inode_dirty(handle, inode)) {
273                 /* If that failed, just dquot_drop() and be done with that */
274                 dquot_drop(inode);
275                 clear_inode(inode);
276         } else {
277                 ext3_xattr_delete_inode(handle, inode);
278                 dquot_free_inode(inode);
279                 dquot_drop(inode);
280                 clear_inode(inode);
281                 ext3_free_inode(handle, inode);
282         }
283         ext3_journal_stop(handle);
284         return;
285 no_delete:
286         clear_inode(inode);
287         dquot_drop(inode);
288 }
289
290 typedef struct {
291         __le32  *p;
292         __le32  key;
293         struct buffer_head *bh;
294 } Indirect;
295
296 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
297 {
298         p->key = *(p->p = v);
299         p->bh = bh;
300 }
301
302 static int verify_chain(Indirect *from, Indirect *to)
303 {
304         while (from <= to && from->key == *from->p)
305                 from++;
306         return (from > to);
307 }
308
309 /**
310  *      ext3_block_to_path - parse the block number into array of offsets
311  *      @inode: inode in question (we are only interested in its superblock)
312  *      @i_block: block number to be parsed
313  *      @offsets: array to store the offsets in
314  *      @boundary: set this non-zero if the referred-to block is likely to be
315  *             followed (on disk) by an indirect block.
316  *
317  *      To store the locations of file's data ext3 uses a data structure common
318  *      for UNIX filesystems - tree of pointers anchored in the inode, with
319  *      data blocks at leaves and indirect blocks in intermediate nodes.
320  *      This function translates the block number into path in that tree -
321  *      return value is the path length and @offsets[n] is the offset of
322  *      pointer to (n+1)th node in the nth one. If @block is out of range
323  *      (negative or too large) warning is printed and zero returned.
324  *
325  *      Note: function doesn't find node addresses, so no IO is needed. All
326  *      we need to know is the capacity of indirect blocks (taken from the
327  *      inode->i_sb).
328  */
329
330 /*
331  * Portability note: the last comparison (check that we fit into triple
332  * indirect block) is spelled differently, because otherwise on an
333  * architecture with 32-bit longs and 8Kb pages we might get into trouble
334  * if our filesystem had 8Kb blocks. We might use long long, but that would
335  * kill us on x86. Oh, well, at least the sign propagation does not matter -
336  * i_block would have to be negative in the very beginning, so we would not
337  * get there at all.
338  */
339
340 static int ext3_block_to_path(struct inode *inode,
341                         long i_block, int offsets[4], int *boundary)
342 {
343         int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb);
344         int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb);
345         const long direct_blocks = EXT3_NDIR_BLOCKS,
346                 indirect_blocks = ptrs,
347                 double_blocks = (1 << (ptrs_bits * 2));
348         int n = 0;
349         int final = 0;
350
351         if (i_block < 0) {
352                 ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0");
353         } else if (i_block < direct_blocks) {
354                 offsets[n++] = i_block;
355                 final = direct_blocks;
356         } else if ( (i_block -= direct_blocks) < indirect_blocks) {
357                 offsets[n++] = EXT3_IND_BLOCK;
358                 offsets[n++] = i_block;
359                 final = ptrs;
360         } else if ((i_block -= indirect_blocks) < double_blocks) {
361                 offsets[n++] = EXT3_DIND_BLOCK;
362                 offsets[n++] = i_block >> ptrs_bits;
363                 offsets[n++] = i_block & (ptrs - 1);
364                 final = ptrs;
365         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
366                 offsets[n++] = EXT3_TIND_BLOCK;
367                 offsets[n++] = i_block >> (ptrs_bits * 2);
368                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
369                 offsets[n++] = i_block & (ptrs - 1);
370                 final = ptrs;
371         } else {
372                 ext3_warning(inode->i_sb, "ext3_block_to_path", "block > big");
373         }
374         if (boundary)
375                 *boundary = final - 1 - (i_block & (ptrs - 1));
376         return n;
377 }
378
379 /**
380  *      ext3_get_branch - read the chain of indirect blocks leading to data
381  *      @inode: inode in question
382  *      @depth: depth of the chain (1 - direct pointer, etc.)
383  *      @offsets: offsets of pointers in inode/indirect blocks
384  *      @chain: place to store the result
385  *      @err: here we store the error value
386  *
387  *      Function fills the array of triples <key, p, bh> and returns %NULL
388  *      if everything went OK or the pointer to the last filled triple
389  *      (incomplete one) otherwise. Upon the return chain[i].key contains
390  *      the number of (i+1)-th block in the chain (as it is stored in memory,
391  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
392  *      number (it points into struct inode for i==0 and into the bh->b_data
393  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
394  *      block for i>0 and NULL for i==0. In other words, it holds the block
395  *      numbers of the chain, addresses they were taken from (and where we can
396  *      verify that chain did not change) and buffer_heads hosting these
397  *      numbers.
398  *
399  *      Function stops when it stumbles upon zero pointer (absent block)
400  *              (pointer to last triple returned, *@err == 0)
401  *      or when it gets an IO error reading an indirect block
402  *              (ditto, *@err == -EIO)
403  *      or when it notices that chain had been changed while it was reading
404  *              (ditto, *@err == -EAGAIN)
405  *      or when it reads all @depth-1 indirect blocks successfully and finds
406  *      the whole chain, all way to the data (returns %NULL, *err == 0).
407  */
408 static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets,
409                                  Indirect chain[4], int *err)
410 {
411         struct super_block *sb = inode->i_sb;
412         Indirect *p = chain;
413         struct buffer_head *bh;
414
415         *err = 0;
416         /* i_data is not going away, no lock needed */
417         add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets);
418         if (!p->key)
419                 goto no_block;
420         while (--depth) {
421                 bh = sb_bread(sb, le32_to_cpu(p->key));
422                 if (!bh)
423                         goto failure;
424                 /* Reader: pointers */
425                 if (!verify_chain(chain, p))
426                         goto changed;
427                 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
428                 /* Reader: end */
429                 if (!p->key)
430                         goto no_block;
431         }
432         return NULL;
433
434 changed:
435         brelse(bh);
436         *err = -EAGAIN;
437         goto no_block;
438 failure:
439         *err = -EIO;
440 no_block:
441         return p;
442 }
443
444 /**
445  *      ext3_find_near - find a place for allocation with sufficient locality
446  *      @inode: owner
447  *      @ind: descriptor of indirect block.
448  *
449  *      This function returns the preferred place for block allocation.
450  *      It is used when heuristic for sequential allocation fails.
451  *      Rules are:
452  *        + if there is a block to the left of our position - allocate near it.
453  *        + if pointer will live in indirect block - allocate near that block.
454  *        + if pointer will live in inode - allocate in the same
455  *          cylinder group.
456  *
457  * In the latter case we colour the starting block by the callers PID to
458  * prevent it from clashing with concurrent allocations for a different inode
459  * in the same block group.   The PID is used here so that functionally related
460  * files will be close-by on-disk.
461  *
462  *      Caller must make sure that @ind is valid and will stay that way.
463  */
464 static ext3_fsblk_t ext3_find_near(struct inode *inode, Indirect *ind)
465 {
466         struct ext3_inode_info *ei = EXT3_I(inode);
467         __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
468         __le32 *p;
469         ext3_fsblk_t bg_start;
470         ext3_grpblk_t colour;
471
472         /* Try to find previous block */
473         for (p = ind->p - 1; p >= start; p--) {
474                 if (*p)
475                         return le32_to_cpu(*p);
476         }
477
478         /* No such thing, so let's try location of indirect block */
479         if (ind->bh)
480                 return ind->bh->b_blocknr;
481
482         /*
483          * It is going to be referred to from the inode itself? OK, just put it
484          * into the same cylinder group then.
485          */
486         bg_start = ext3_group_first_block_no(inode->i_sb, ei->i_block_group);
487         colour = (current->pid % 16) *
488                         (EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16);
489         return bg_start + colour;
490 }
491
492 /**
493  *      ext3_find_goal - find a preferred place for allocation.
494  *      @inode: owner
495  *      @block:  block we want
496  *      @partial: pointer to the last triple within a chain
497  *
498  *      Normally this function find the preferred place for block allocation,
499  *      returns it.
500  */
501
502 static ext3_fsblk_t ext3_find_goal(struct inode *inode, long block,
503                                    Indirect *partial)
504 {
505         struct ext3_block_alloc_info *block_i;
506
507         block_i =  EXT3_I(inode)->i_block_alloc_info;
508
509         /*
510          * try the heuristic for sequential allocation,
511          * failing that at least try to get decent locality.
512          */
513         if (block_i && (block == block_i->last_alloc_logical_block + 1)
514                 && (block_i->last_alloc_physical_block != 0)) {
515                 return block_i->last_alloc_physical_block + 1;
516         }
517
518         return ext3_find_near(inode, partial);
519 }
520
521 /**
522  *      ext3_blks_to_allocate - Look up the block map and count the number
523  *      of direct blocks need to be allocated for the given branch.
524  *
525  *      @branch: chain of indirect blocks
526  *      @k: number of blocks need for indirect blocks
527  *      @blks: number of data blocks to be mapped.
528  *      @blocks_to_boundary:  the offset in the indirect block
529  *
530  *      return the total number of blocks to be allocate, including the
531  *      direct and indirect blocks.
532  */
533 static int ext3_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
534                 int blocks_to_boundary)
535 {
536         unsigned long count = 0;
537
538         /*
539          * Simple case, [t,d]Indirect block(s) has not allocated yet
540          * then it's clear blocks on that path have not allocated
541          */
542         if (k > 0) {
543                 /* right now we don't handle cross boundary allocation */
544                 if (blks < blocks_to_boundary + 1)
545                         count += blks;
546                 else
547                         count += blocks_to_boundary + 1;
548                 return count;
549         }
550
551         count++;
552         while (count < blks && count <= blocks_to_boundary &&
553                 le32_to_cpu(*(branch[0].p + count)) == 0) {
554                 count++;
555         }
556         return count;
557 }
558
559 /**
560  *      ext3_alloc_blocks - multiple allocate blocks needed for a branch
561  *      @handle: handle for this transaction
562  *      @inode: owner
563  *      @goal: preferred place for allocation
564  *      @indirect_blks: the number of blocks need to allocate for indirect
565  *                      blocks
566  *      @blks:  number of blocks need to allocated for direct blocks
567  *      @new_blocks: on return it will store the new block numbers for
568  *      the indirect blocks(if needed) and the first direct block,
569  *      @err: here we store the error value
570  *
571  *      return the number of direct blocks allocated
572  */
573 static int ext3_alloc_blocks(handle_t *handle, struct inode *inode,
574                         ext3_fsblk_t goal, int indirect_blks, int blks,
575                         ext3_fsblk_t new_blocks[4], int *err)
576 {
577         int target, i;
578         unsigned long count = 0;
579         int index = 0;
580         ext3_fsblk_t current_block = 0;
581         int ret = 0;
582
583         /*
584          * Here we try to allocate the requested multiple blocks at once,
585          * on a best-effort basis.
586          * To build a branch, we should allocate blocks for
587          * the indirect blocks(if not allocated yet), and at least
588          * the first direct block of this branch.  That's the
589          * minimum number of blocks need to allocate(required)
590          */
591         target = blks + indirect_blks;
592
593         while (1) {
594                 count = target;
595                 /* allocating blocks for indirect blocks and direct blocks */
596                 current_block = ext3_new_blocks(handle,inode,goal,&count,err);
597                 if (*err)
598                         goto failed_out;
599
600                 target -= count;
601                 /* allocate blocks for indirect blocks */
602                 while (index < indirect_blks && count) {
603                         new_blocks[index++] = current_block++;
604                         count--;
605                 }
606
607                 if (count > 0)
608                         break;
609         }
610
611         /* save the new block number for the first direct block */
612         new_blocks[index] = current_block;
613
614         /* total number of blocks allocated for direct blocks */
615         ret = count;
616         *err = 0;
617         return ret;
618 failed_out:
619         for (i = 0; i <index; i++)
620                 ext3_free_blocks(handle, inode, new_blocks[i], 1);
621         return ret;
622 }
623
624 /**
625  *      ext3_alloc_branch - allocate and set up a chain of blocks.
626  *      @handle: handle for this transaction
627  *      @inode: owner
628  *      @indirect_blks: number of allocated indirect blocks
629  *      @blks: number of allocated direct blocks
630  *      @goal: preferred place for allocation
631  *      @offsets: offsets (in the blocks) to store the pointers to next.
632  *      @branch: place to store the chain in.
633  *
634  *      This function allocates blocks, zeroes out all but the last one,
635  *      links them into chain and (if we are synchronous) writes them to disk.
636  *      In other words, it prepares a branch that can be spliced onto the
637  *      inode. It stores the information about that chain in the branch[], in
638  *      the same format as ext3_get_branch() would do. We are calling it after
639  *      we had read the existing part of chain and partial points to the last
640  *      triple of that (one with zero ->key). Upon the exit we have the same
641  *      picture as after the successful ext3_get_block(), except that in one
642  *      place chain is disconnected - *branch->p is still zero (we did not
643  *      set the last link), but branch->key contains the number that should
644  *      be placed into *branch->p to fill that gap.
645  *
646  *      If allocation fails we free all blocks we've allocated (and forget
647  *      their buffer_heads) and return the error value the from failed
648  *      ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
649  *      as described above and return 0.
650  */
651 static int ext3_alloc_branch(handle_t *handle, struct inode *inode,
652                         int indirect_blks, int *blks, ext3_fsblk_t goal,
653                         int *offsets, Indirect *branch)
654 {
655         int blocksize = inode->i_sb->s_blocksize;
656         int i, n = 0;
657         int err = 0;
658         struct buffer_head *bh;
659         int num;
660         ext3_fsblk_t new_blocks[4];
661         ext3_fsblk_t current_block;
662
663         num = ext3_alloc_blocks(handle, inode, goal, indirect_blks,
664                                 *blks, new_blocks, &err);
665         if (err)
666                 return err;
667
668         branch[0].key = cpu_to_le32(new_blocks[0]);
669         /*
670          * metadata blocks and data blocks are allocated.
671          */
672         for (n = 1; n <= indirect_blks;  n++) {
673                 /*
674                  * Get buffer_head for parent block, zero it out
675                  * and set the pointer to new one, then send
676                  * parent to disk.
677                  */
678                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
679                 branch[n].bh = bh;
680                 lock_buffer(bh);
681                 BUFFER_TRACE(bh, "call get_create_access");
682                 err = ext3_journal_get_create_access(handle, bh);
683                 if (err) {
684                         unlock_buffer(bh);
685                         brelse(bh);
686                         goto failed;
687                 }
688
689                 memset(bh->b_data, 0, blocksize);
690                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
691                 branch[n].key = cpu_to_le32(new_blocks[n]);
692                 *branch[n].p = branch[n].key;
693                 if ( n == indirect_blks) {
694                         current_block = new_blocks[n];
695                         /*
696                          * End of chain, update the last new metablock of
697                          * the chain to point to the new allocated
698                          * data blocks numbers
699                          */
700                         for (i=1; i < num; i++)
701                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
702                 }
703                 BUFFER_TRACE(bh, "marking uptodate");
704                 set_buffer_uptodate(bh);
705                 unlock_buffer(bh);
706
707                 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
708                 err = ext3_journal_dirty_metadata(handle, bh);
709                 if (err)
710                         goto failed;
711         }
712         *blks = num;
713         return err;
714 failed:
715         /* Allocation failed, free what we already allocated */
716         for (i = 1; i <= n ; i++) {
717                 BUFFER_TRACE(branch[i].bh, "call journal_forget");
718                 ext3_journal_forget(handle, branch[i].bh);
719         }
720         for (i = 0; i <indirect_blks; i++)
721                 ext3_free_blocks(handle, inode, new_blocks[i], 1);
722
723         ext3_free_blocks(handle, inode, new_blocks[i], num);
724
725         return err;
726 }
727
728 /**
729  * ext3_splice_branch - splice the allocated branch onto inode.
730  * @handle: handle for this transaction
731  * @inode: owner
732  * @block: (logical) number of block we are adding
733  * @where: location of missing link
734  * @num:   number of indirect blocks we are adding
735  * @blks:  number of direct blocks we are adding
736  *
737  * This function fills the missing link and does all housekeeping needed in
738  * inode (->i_blocks, etc.). In case of success we end up with the full
739  * chain to new block and return 0.
740  */
741 static int ext3_splice_branch(handle_t *handle, struct inode *inode,
742                         long block, Indirect *where, int num, int blks)
743 {
744         int i;
745         int err = 0;
746         struct ext3_block_alloc_info *block_i;
747         ext3_fsblk_t current_block;
748         struct ext3_inode_info *ei = EXT3_I(inode);
749         struct timespec now;
750
751         block_i = ei->i_block_alloc_info;
752         /*
753          * If we're splicing into a [td]indirect block (as opposed to the
754          * inode) then we need to get write access to the [td]indirect block
755          * before the splice.
756          */
757         if (where->bh) {
758                 BUFFER_TRACE(where->bh, "get_write_access");
759                 err = ext3_journal_get_write_access(handle, where->bh);
760                 if (err)
761                         goto err_out;
762         }
763         /* That's it */
764
765         *where->p = where->key;
766
767         /*
768          * Update the host buffer_head or inode to point to more just allocated
769          * direct blocks blocks
770          */
771         if (num == 0 && blks > 1) {
772                 current_block = le32_to_cpu(where->key) + 1;
773                 for (i = 1; i < blks; i++)
774                         *(where->p + i ) = cpu_to_le32(current_block++);
775         }
776
777         /*
778          * update the most recently allocated logical & physical block
779          * in i_block_alloc_info, to assist find the proper goal block for next
780          * allocation
781          */
782         if (block_i) {
783                 block_i->last_alloc_logical_block = block + blks - 1;
784                 block_i->last_alloc_physical_block =
785                                 le32_to_cpu(where[num].key) + blks - 1;
786         }
787
788         /* We are done with atomic stuff, now do the rest of housekeeping */
789         now = CURRENT_TIME_SEC;
790         if (!timespec_equal(&inode->i_ctime, &now) || !where->bh) {
791                 inode->i_ctime = now;
792                 ext3_mark_inode_dirty(handle, inode);
793         }
794         /* ext3_mark_inode_dirty already updated i_sync_tid */
795         atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
796
797         /* had we spliced it onto indirect block? */
798         if (where->bh) {
799                 /*
800                  * If we spliced it onto an indirect block, we haven't
801                  * altered the inode.  Note however that if it is being spliced
802                  * onto an indirect block at the very end of the file (the
803                  * file is growing) then we *will* alter the inode to reflect
804                  * the new i_size.  But that is not done here - it is done in
805                  * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
806                  */
807                 jbd_debug(5, "splicing indirect only\n");
808                 BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata");
809                 err = ext3_journal_dirty_metadata(handle, where->bh);
810                 if (err)
811                         goto err_out;
812         } else {
813                 /*
814                  * OK, we spliced it into the inode itself on a direct block.
815                  * Inode was dirtied above.
816                  */
817                 jbd_debug(5, "splicing direct\n");
818         }
819         return err;
820
821 err_out:
822         for (i = 1; i <= num; i++) {
823                 BUFFER_TRACE(where[i].bh, "call journal_forget");
824                 ext3_journal_forget(handle, where[i].bh);
825                 ext3_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
826         }
827         ext3_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
828
829         return err;
830 }
831
832 /*
833  * Allocation strategy is simple: if we have to allocate something, we will
834  * have to go the whole way to leaf. So let's do it before attaching anything
835  * to tree, set linkage between the newborn blocks, write them if sync is
836  * required, recheck the path, free and repeat if check fails, otherwise
837  * set the last missing link (that will protect us from any truncate-generated
838  * removals - all blocks on the path are immune now) and possibly force the
839  * write on the parent block.
840  * That has a nice additional property: no special recovery from the failed
841  * allocations is needed - we simply release blocks and do not touch anything
842  * reachable from inode.
843  *
844  * `handle' can be NULL if create == 0.
845  *
846  * The BKL may not be held on entry here.  Be sure to take it early.
847  * return > 0, # of blocks mapped or allocated.
848  * return = 0, if plain lookup failed.
849  * return < 0, error case.
850  */
851 int ext3_get_blocks_handle(handle_t *handle, struct inode *inode,
852                 sector_t iblock, unsigned long maxblocks,
853                 struct buffer_head *bh_result,
854                 int create)
855 {
856         int err = -EIO;
857         int offsets[4];
858         Indirect chain[4];
859         Indirect *partial;
860         ext3_fsblk_t goal;
861         int indirect_blks;
862         int blocks_to_boundary = 0;
863         int depth;
864         struct ext3_inode_info *ei = EXT3_I(inode);
865         int count = 0;
866         ext3_fsblk_t first_block = 0;
867
868
869         trace_ext3_get_blocks_enter(inode, iblock, maxblocks, create);
870         J_ASSERT(handle != NULL || create == 0);
871         depth = ext3_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
872
873         if (depth == 0)
874                 goto out;
875
876         partial = ext3_get_branch(inode, depth, offsets, chain, &err);
877
878         /* Simplest case - block found, no allocation needed */
879         if (!partial) {
880                 first_block = le32_to_cpu(chain[depth - 1].key);
881                 clear_buffer_new(bh_result);
882                 count++;
883                 /*map more blocks*/
884                 while (count < maxblocks && count <= blocks_to_boundary) {
885                         ext3_fsblk_t blk;
886
887                         if (!verify_chain(chain, chain + depth - 1)) {
888                                 /*
889                                  * Indirect block might be removed by
890                                  * truncate while we were reading it.
891                                  * Handling of that case: forget what we've
892                                  * got now. Flag the err as EAGAIN, so it
893                                  * will reread.
894                                  */
895                                 err = -EAGAIN;
896                                 count = 0;
897                                 break;
898                         }
899                         blk = le32_to_cpu(*(chain[depth-1].p + count));
900
901                         if (blk == first_block + count)
902                                 count++;
903                         else
904                                 break;
905                 }
906                 if (err != -EAGAIN)
907                         goto got_it;
908         }
909
910         /* Next simple case - plain lookup or failed read of indirect block */
911         if (!create || err == -EIO)
912                 goto cleanup;
913
914         /*
915          * Block out ext3_truncate while we alter the tree
916          */
917         mutex_lock(&ei->truncate_mutex);
918
919         /*
920          * If the indirect block is missing while we are reading
921          * the chain(ext3_get_branch() returns -EAGAIN err), or
922          * if the chain has been changed after we grab the semaphore,
923          * (either because another process truncated this branch, or
924          * another get_block allocated this branch) re-grab the chain to see if
925          * the request block has been allocated or not.
926          *
927          * Since we already block the truncate/other get_block
928          * at this point, we will have the current copy of the chain when we
929          * splice the branch into the tree.
930          */
931         if (err == -EAGAIN || !verify_chain(chain, partial)) {
932                 while (partial > chain) {
933                         brelse(partial->bh);
934                         partial--;
935                 }
936                 partial = ext3_get_branch(inode, depth, offsets, chain, &err);
937                 if (!partial) {
938                         count++;
939                         mutex_unlock(&ei->truncate_mutex);
940                         if (err)
941                                 goto cleanup;
942                         clear_buffer_new(bh_result);
943                         goto got_it;
944                 }
945         }
946
947         /*
948          * Okay, we need to do block allocation.  Lazily initialize the block
949          * allocation info here if necessary
950         */
951         if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
952                 ext3_init_block_alloc_info(inode);
953
954         goal = ext3_find_goal(inode, iblock, partial);
955
956         /* the number of blocks need to allocate for [d,t]indirect blocks */
957         indirect_blks = (chain + depth) - partial - 1;
958
959         /*
960          * Next look up the indirect map to count the totoal number of
961          * direct blocks to allocate for this branch.
962          */
963         count = ext3_blks_to_allocate(partial, indirect_blks,
964                                         maxblocks, blocks_to_boundary);
965         err = ext3_alloc_branch(handle, inode, indirect_blks, &count, goal,
966                                 offsets + (partial - chain), partial);
967
968         /*
969          * The ext3_splice_branch call will free and forget any buffers
970          * on the new chain if there is a failure, but that risks using
971          * up transaction credits, especially for bitmaps where the
972          * credits cannot be returned.  Can we handle this somehow?  We
973          * may need to return -EAGAIN upwards in the worst case.  --sct
974          */
975         if (!err)
976                 err = ext3_splice_branch(handle, inode, iblock,
977                                         partial, indirect_blks, count);
978         mutex_unlock(&ei->truncate_mutex);
979         if (err)
980                 goto cleanup;
981
982         set_buffer_new(bh_result);
983 got_it:
984         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
985         if (count > blocks_to_boundary)
986                 set_buffer_boundary(bh_result);
987         err = count;
988         /* Clean up and exit */
989         partial = chain + depth - 1;    /* the whole chain */
990 cleanup:
991         while (partial > chain) {
992                 BUFFER_TRACE(partial->bh, "call brelse");
993                 brelse(partial->bh);
994                 partial--;
995         }
996         BUFFER_TRACE(bh_result, "returned");
997 out:
998         trace_ext3_get_blocks_exit(inode, iblock,
999                                    depth ? le32_to_cpu(chain[depth-1].key) : 0,
1000                                    count, err);
1001         return err;
1002 }
1003
1004 /* Maximum number of blocks we map for direct IO at once. */
1005 #define DIO_MAX_BLOCKS 4096
1006 /*
1007  * Number of credits we need for writing DIO_MAX_BLOCKS:
1008  * We need sb + group descriptor + bitmap + inode -> 4
1009  * For B blocks with A block pointers per block we need:
1010  * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
1011  * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
1012  */
1013 #define DIO_CREDITS 25
1014
1015 static int ext3_get_block(struct inode *inode, sector_t iblock,
1016                         struct buffer_head *bh_result, int create)
1017 {
1018         handle_t *handle = ext3_journal_current_handle();
1019         int ret = 0, started = 0;
1020         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1021
1022         if (create && !handle) {        /* Direct IO write... */
1023                 if (max_blocks > DIO_MAX_BLOCKS)
1024                         max_blocks = DIO_MAX_BLOCKS;
1025                 handle = ext3_journal_start(inode, DIO_CREDITS +
1026                                 EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb));
1027                 if (IS_ERR(handle)) {
1028                         ret = PTR_ERR(handle);
1029                         goto out;
1030                 }
1031                 started = 1;
1032         }
1033
1034         ret = ext3_get_blocks_handle(handle, inode, iblock,
1035                                         max_blocks, bh_result, create);
1036         if (ret > 0) {
1037                 bh_result->b_size = (ret << inode->i_blkbits);
1038                 ret = 0;
1039         }
1040         if (started)
1041                 ext3_journal_stop(handle);
1042 out:
1043         return ret;
1044 }
1045
1046 int ext3_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1047                 u64 start, u64 len)
1048 {
1049         return generic_block_fiemap(inode, fieinfo, start, len,
1050                                     ext3_get_block);
1051 }
1052
1053 /*
1054  * `handle' can be NULL if create is zero
1055  */
1056 struct buffer_head *ext3_getblk(handle_t *handle, struct inode *inode,
1057                                 long block, int create, int *errp)
1058 {
1059         struct buffer_head dummy;
1060         int fatal = 0, err;
1061
1062         J_ASSERT(handle != NULL || create == 0);
1063
1064         dummy.b_state = 0;
1065         dummy.b_blocknr = -1000;
1066         buffer_trace_init(&dummy.b_history);
1067         err = ext3_get_blocks_handle(handle, inode, block, 1,
1068                                         &dummy, create);
1069         /*
1070          * ext3_get_blocks_handle() returns number of blocks
1071          * mapped. 0 in case of a HOLE.
1072          */
1073         if (err > 0) {
1074                 WARN_ON(err > 1);
1075                 err = 0;
1076         }
1077         *errp = err;
1078         if (!err && buffer_mapped(&dummy)) {
1079                 struct buffer_head *bh;
1080                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1081                 if (!bh) {
1082                         *errp = -EIO;
1083                         goto err;
1084                 }
1085                 if (buffer_new(&dummy)) {
1086                         J_ASSERT(create != 0);
1087                         J_ASSERT(handle != NULL);
1088
1089                         /*
1090                          * Now that we do not always journal data, we should
1091                          * keep in mind whether this should always journal the
1092                          * new buffer as metadata.  For now, regular file
1093                          * writes use ext3_get_block instead, so it's not a
1094                          * problem.
1095                          */
1096                         lock_buffer(bh);
1097                         BUFFER_TRACE(bh, "call get_create_access");
1098                         fatal = ext3_journal_get_create_access(handle, bh);
1099                         if (!fatal && !buffer_uptodate(bh)) {
1100                                 memset(bh->b_data,0,inode->i_sb->s_blocksize);
1101                                 set_buffer_uptodate(bh);
1102                         }
1103                         unlock_buffer(bh);
1104                         BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
1105                         err = ext3_journal_dirty_metadata(handle, bh);
1106                         if (!fatal)
1107                                 fatal = err;
1108                 } else {
1109                         BUFFER_TRACE(bh, "not a new buffer");
1110                 }
1111                 if (fatal) {
1112                         *errp = fatal;
1113                         brelse(bh);
1114                         bh = NULL;
1115                 }
1116                 return bh;
1117         }
1118 err:
1119         return NULL;
1120 }
1121
1122 struct buffer_head *ext3_bread(handle_t *handle, struct inode *inode,
1123                                int block, int create, int *err)
1124 {
1125         struct buffer_head * bh;
1126
1127         bh = ext3_getblk(handle, inode, block, create, err);
1128         if (!bh)
1129                 return bh;
1130         if (bh_uptodate_or_lock(bh))
1131                 return bh;
1132         get_bh(bh);
1133         bh->b_end_io = end_buffer_read_sync;
1134         submit_bh(READ | REQ_META | REQ_PRIO, bh);
1135         wait_on_buffer(bh);
1136         if (buffer_uptodate(bh))
1137                 return bh;
1138         put_bh(bh);
1139         *err = -EIO;
1140         return NULL;
1141 }
1142
1143 static int walk_page_buffers(   handle_t *handle,
1144                                 struct buffer_head *head,
1145                                 unsigned from,
1146                                 unsigned to,
1147                                 int *partial,
1148                                 int (*fn)(      handle_t *handle,
1149                                                 struct buffer_head *bh))
1150 {
1151         struct buffer_head *bh;
1152         unsigned block_start, block_end;
1153         unsigned blocksize = head->b_size;
1154         int err, ret = 0;
1155         struct buffer_head *next;
1156
1157         for (   bh = head, block_start = 0;
1158                 ret == 0 && (bh != head || !block_start);
1159                 block_start = block_end, bh = next)
1160         {
1161                 next = bh->b_this_page;
1162                 block_end = block_start + blocksize;
1163                 if (block_end <= from || block_start >= to) {
1164                         if (partial && !buffer_uptodate(bh))
1165                                 *partial = 1;
1166                         continue;
1167                 }
1168                 err = (*fn)(handle, bh);
1169                 if (!ret)
1170                         ret = err;
1171         }
1172         return ret;
1173 }
1174
1175 /*
1176  * To preserve ordering, it is essential that the hole instantiation and
1177  * the data write be encapsulated in a single transaction.  We cannot
1178  * close off a transaction and start a new one between the ext3_get_block()
1179  * and the commit_write().  So doing the journal_start at the start of
1180  * prepare_write() is the right place.
1181  *
1182  * Also, this function can nest inside ext3_writepage() ->
1183  * block_write_full_page(). In that case, we *know* that ext3_writepage()
1184  * has generated enough buffer credits to do the whole page.  So we won't
1185  * block on the journal in that case, which is good, because the caller may
1186  * be PF_MEMALLOC.
1187  *
1188  * By accident, ext3 can be reentered when a transaction is open via
1189  * quota file writes.  If we were to commit the transaction while thus
1190  * reentered, there can be a deadlock - we would be holding a quota
1191  * lock, and the commit would never complete if another thread had a
1192  * transaction open and was blocking on the quota lock - a ranking
1193  * violation.
1194  *
1195  * So what we do is to rely on the fact that journal_stop/journal_start
1196  * will _not_ run commit under these circumstances because handle->h_ref
1197  * is elevated.  We'll still have enough credits for the tiny quotafile
1198  * write.
1199  */
1200 static int do_journal_get_write_access(handle_t *handle,
1201                                         struct buffer_head *bh)
1202 {
1203         int dirty = buffer_dirty(bh);
1204         int ret;
1205
1206         if (!buffer_mapped(bh) || buffer_freed(bh))
1207                 return 0;
1208         /*
1209          * __block_prepare_write() could have dirtied some buffers. Clean
1210          * the dirty bit as jbd2_journal_get_write_access() could complain
1211          * otherwise about fs integrity issues. Setting of the dirty bit
1212          * by __block_prepare_write() isn't a real problem here as we clear
1213          * the bit before releasing a page lock and thus writeback cannot
1214          * ever write the buffer.
1215          */
1216         if (dirty)
1217                 clear_buffer_dirty(bh);
1218         ret = ext3_journal_get_write_access(handle, bh);
1219         if (!ret && dirty)
1220                 ret = ext3_journal_dirty_metadata(handle, bh);
1221         return ret;
1222 }
1223
1224 /*
1225  * Truncate blocks that were not used by write. We have to truncate the
1226  * pagecache as well so that corresponding buffers get properly unmapped.
1227  */
1228 static void ext3_truncate_failed_write(struct inode *inode)
1229 {
1230         truncate_inode_pages(inode->i_mapping, inode->i_size);
1231         ext3_truncate(inode);
1232 }
1233
1234 /*
1235  * Truncate blocks that were not used by direct IO write. We have to zero out
1236  * the last file block as well because direct IO might have written to it.
1237  */
1238 static void ext3_truncate_failed_direct_write(struct inode *inode)
1239 {
1240         ext3_block_truncate_page(inode, inode->i_size);
1241         ext3_truncate(inode);
1242 }
1243
1244 static int ext3_write_begin(struct file *file, struct address_space *mapping,
1245                                 loff_t pos, unsigned len, unsigned flags,
1246                                 struct page **pagep, void **fsdata)
1247 {
1248         struct inode *inode = mapping->host;
1249         int ret;
1250         handle_t *handle;
1251         int retries = 0;
1252         struct page *page;
1253         pgoff_t index;
1254         unsigned from, to;
1255         /* Reserve one block more for addition to orphan list in case
1256          * we allocate blocks but write fails for some reason */
1257         int needed_blocks = ext3_writepage_trans_blocks(inode) + 1;
1258
1259         trace_ext3_write_begin(inode, pos, len, flags);
1260
1261         index = pos >> PAGE_CACHE_SHIFT;
1262         from = pos & (PAGE_CACHE_SIZE - 1);
1263         to = from + len;
1264
1265 retry:
1266         page = grab_cache_page_write_begin(mapping, index, flags);
1267         if (!page)
1268                 return -ENOMEM;
1269         *pagep = page;
1270
1271         handle = ext3_journal_start(inode, needed_blocks);
1272         if (IS_ERR(handle)) {
1273                 unlock_page(page);
1274                 page_cache_release(page);
1275                 ret = PTR_ERR(handle);
1276                 goto out;
1277         }
1278         ret = __block_write_begin(page, pos, len, ext3_get_block);
1279         if (ret)
1280                 goto write_begin_failed;
1281
1282         if (ext3_should_journal_data(inode)) {
1283                 ret = walk_page_buffers(handle, page_buffers(page),
1284                                 from, to, NULL, do_journal_get_write_access);
1285         }
1286 write_begin_failed:
1287         if (ret) {
1288                 /*
1289                  * block_write_begin may have instantiated a few blocks
1290                  * outside i_size.  Trim these off again. Don't need
1291                  * i_size_read because we hold i_mutex.
1292                  *
1293                  * Add inode to orphan list in case we crash before truncate
1294                  * finishes. Do this only if ext3_can_truncate() agrees so
1295                  * that orphan processing code is happy.
1296                  */
1297                 if (pos + len > inode->i_size && ext3_can_truncate(inode))
1298                         ext3_orphan_add(handle, inode);
1299                 ext3_journal_stop(handle);
1300                 unlock_page(page);
1301                 page_cache_release(page);
1302                 if (pos + len > inode->i_size)
1303                         ext3_truncate_failed_write(inode);
1304         }
1305         if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1306                 goto retry;
1307 out:
1308         return ret;
1309 }
1310
1311
1312 int ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1313 {
1314         int err = journal_dirty_data(handle, bh);
1315         if (err)
1316                 ext3_journal_abort_handle(__func__, __func__,
1317                                                 bh, handle, err);
1318         return err;
1319 }
1320
1321 /* For ordered writepage and write_end functions */
1322 static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1323 {
1324         /*
1325          * Write could have mapped the buffer but it didn't copy the data in
1326          * yet. So avoid filing such buffer into a transaction.
1327          */
1328         if (buffer_mapped(bh) && buffer_uptodate(bh))
1329                 return ext3_journal_dirty_data(handle, bh);
1330         return 0;
1331 }
1332
1333 /* For write_end() in data=journal mode */
1334 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1335 {
1336         if (!buffer_mapped(bh) || buffer_freed(bh))
1337                 return 0;
1338         set_buffer_uptodate(bh);
1339         return ext3_journal_dirty_metadata(handle, bh);
1340 }
1341
1342 /*
1343  * This is nasty and subtle: ext3_write_begin() could have allocated blocks
1344  * for the whole page but later we failed to copy the data in. Update inode
1345  * size according to what we managed to copy. The rest is going to be
1346  * truncated in write_end function.
1347  */
1348 static void update_file_sizes(struct inode *inode, loff_t pos, unsigned copied)
1349 {
1350         /* What matters to us is i_disksize. We don't write i_size anywhere */
1351         if (pos + copied > inode->i_size)
1352                 i_size_write(inode, pos + copied);
1353         if (pos + copied > EXT3_I(inode)->i_disksize) {
1354                 EXT3_I(inode)->i_disksize = pos + copied;
1355                 mark_inode_dirty(inode);
1356         }
1357 }
1358
1359 /*
1360  * We need to pick up the new inode size which generic_commit_write gave us
1361  * `file' can be NULL - eg, when called from page_symlink().
1362  *
1363  * ext3 never places buffers on inode->i_mapping->private_list.  metadata
1364  * buffers are managed internally.
1365  */
1366 static int ext3_ordered_write_end(struct file *file,
1367                                 struct address_space *mapping,
1368                                 loff_t pos, unsigned len, unsigned copied,
1369                                 struct page *page, void *fsdata)
1370 {
1371         handle_t *handle = ext3_journal_current_handle();
1372         struct inode *inode = file->f_mapping->host;
1373         unsigned from, to;
1374         int ret = 0, ret2;
1375
1376         trace_ext3_ordered_write_end(inode, pos, len, copied);
1377         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1378
1379         from = pos & (PAGE_CACHE_SIZE - 1);
1380         to = from + copied;
1381         ret = walk_page_buffers(handle, page_buffers(page),
1382                 from, to, NULL, journal_dirty_data_fn);
1383
1384         if (ret == 0)
1385                 update_file_sizes(inode, pos, copied);
1386         /*
1387          * There may be allocated blocks outside of i_size because
1388          * we failed to copy some data. Prepare for truncate.
1389          */
1390         if (pos + len > inode->i_size && ext3_can_truncate(inode))
1391                 ext3_orphan_add(handle, inode);
1392         ret2 = ext3_journal_stop(handle);
1393         if (!ret)
1394                 ret = ret2;
1395         unlock_page(page);
1396         page_cache_release(page);
1397
1398         if (pos + len > inode->i_size)
1399                 ext3_truncate_failed_write(inode);
1400         return ret ? ret : copied;
1401 }
1402
1403 static int ext3_writeback_write_end(struct file *file,
1404                                 struct address_space *mapping,
1405                                 loff_t pos, unsigned len, unsigned copied,
1406                                 struct page *page, void *fsdata)
1407 {
1408         handle_t *handle = ext3_journal_current_handle();
1409         struct inode *inode = file->f_mapping->host;
1410         int ret;
1411
1412         trace_ext3_writeback_write_end(inode, pos, len, copied);
1413         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1414         update_file_sizes(inode, pos, copied);
1415         /*
1416          * There may be allocated blocks outside of i_size because
1417          * we failed to copy some data. Prepare for truncate.
1418          */
1419         if (pos + len > inode->i_size && ext3_can_truncate(inode))
1420                 ext3_orphan_add(handle, inode);
1421         ret = ext3_journal_stop(handle);
1422         unlock_page(page);
1423         page_cache_release(page);
1424
1425         if (pos + len > inode->i_size)
1426                 ext3_truncate_failed_write(inode);
1427         return ret ? ret : copied;
1428 }
1429
1430 static int ext3_journalled_write_end(struct file *file,
1431                                 struct address_space *mapping,
1432                                 loff_t pos, unsigned len, unsigned copied,
1433                                 struct page *page, void *fsdata)
1434 {
1435         handle_t *handle = ext3_journal_current_handle();
1436         struct inode *inode = mapping->host;
1437         struct ext3_inode_info *ei = EXT3_I(inode);
1438         int ret = 0, ret2;
1439         int partial = 0;
1440         unsigned from, to;
1441
1442         trace_ext3_journalled_write_end(inode, pos, len, copied);
1443         from = pos & (PAGE_CACHE_SIZE - 1);
1444         to = from + len;
1445
1446         if (copied < len) {
1447                 if (!PageUptodate(page))
1448                         copied = 0;
1449                 page_zero_new_buffers(page, from + copied, to);
1450                 to = from + copied;
1451         }
1452
1453         ret = walk_page_buffers(handle, page_buffers(page), from,
1454                                 to, &partial, write_end_fn);
1455         if (!partial)
1456                 SetPageUptodate(page);
1457
1458         if (pos + copied > inode->i_size)
1459                 i_size_write(inode, pos + copied);
1460         /*
1461          * There may be allocated blocks outside of i_size because
1462          * we failed to copy some data. Prepare for truncate.
1463          */
1464         if (pos + len > inode->i_size && ext3_can_truncate(inode))
1465                 ext3_orphan_add(handle, inode);
1466         ext3_set_inode_state(inode, EXT3_STATE_JDATA);
1467         atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
1468         if (inode->i_size > ei->i_disksize) {
1469                 ei->i_disksize = inode->i_size;
1470                 ret2 = ext3_mark_inode_dirty(handle, inode);
1471                 if (!ret)
1472                         ret = ret2;
1473         }
1474
1475         ret2 = ext3_journal_stop(handle);
1476         if (!ret)
1477                 ret = ret2;
1478         unlock_page(page);
1479         page_cache_release(page);
1480
1481         if (pos + len > inode->i_size)
1482                 ext3_truncate_failed_write(inode);
1483         return ret ? ret : copied;
1484 }
1485
1486 /*
1487  * bmap() is special.  It gets used by applications such as lilo and by
1488  * the swapper to find the on-disk block of a specific piece of data.
1489  *
1490  * Naturally, this is dangerous if the block concerned is still in the
1491  * journal.  If somebody makes a swapfile on an ext3 data-journaling
1492  * filesystem and enables swap, then they may get a nasty shock when the
1493  * data getting swapped to that swapfile suddenly gets overwritten by
1494  * the original zero's written out previously to the journal and
1495  * awaiting writeback in the kernel's buffer cache.
1496  *
1497  * So, if we see any bmap calls here on a modified, data-journaled file,
1498  * take extra steps to flush any blocks which might be in the cache.
1499  */
1500 static sector_t ext3_bmap(struct address_space *mapping, sector_t block)
1501 {
1502         struct inode *inode = mapping->host;
1503         journal_t *journal;
1504         int err;
1505
1506         if (ext3_test_inode_state(inode, EXT3_STATE_JDATA)) {
1507                 /*
1508                  * This is a REALLY heavyweight approach, but the use of
1509                  * bmap on dirty files is expected to be extremely rare:
1510                  * only if we run lilo or swapon on a freshly made file
1511                  * do we expect this to happen.
1512                  *
1513                  * (bmap requires CAP_SYS_RAWIO so this does not
1514                  * represent an unprivileged user DOS attack --- we'd be
1515                  * in trouble if mortal users could trigger this path at
1516                  * will.)
1517                  *
1518                  * NB. EXT3_STATE_JDATA is not set on files other than
1519                  * regular files.  If somebody wants to bmap a directory
1520                  * or symlink and gets confused because the buffer
1521                  * hasn't yet been flushed to disk, they deserve
1522                  * everything they get.
1523                  */
1524
1525                 ext3_clear_inode_state(inode, EXT3_STATE_JDATA);
1526                 journal = EXT3_JOURNAL(inode);
1527                 journal_lock_updates(journal);
1528                 err = journal_flush(journal);
1529                 journal_unlock_updates(journal);
1530
1531                 if (err)
1532                         return 0;
1533         }
1534
1535         return generic_block_bmap(mapping,block,ext3_get_block);
1536 }
1537
1538 static int bget_one(handle_t *handle, struct buffer_head *bh)
1539 {
1540         get_bh(bh);
1541         return 0;
1542 }
1543
1544 static int bput_one(handle_t *handle, struct buffer_head *bh)
1545 {
1546         put_bh(bh);
1547         return 0;
1548 }
1549
1550 static int buffer_unmapped(handle_t *handle, struct buffer_head *bh)
1551 {
1552         return !buffer_mapped(bh);
1553 }
1554
1555 /*
1556  * Note that we always start a transaction even if we're not journalling
1557  * data.  This is to preserve ordering: any hole instantiation within
1558  * __block_write_full_page -> ext3_get_block() should be journalled
1559  * along with the data so we don't crash and then get metadata which
1560  * refers to old data.
1561  *
1562  * In all journalling modes block_write_full_page() will start the I/O.
1563  *
1564  * Problem:
1565  *
1566  *      ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1567  *              ext3_writepage()
1568  *
1569  * Similar for:
1570  *
1571  *      ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1572  *
1573  * Same applies to ext3_get_block().  We will deadlock on various things like
1574  * lock_journal and i_truncate_mutex.
1575  *
1576  * Setting PF_MEMALLOC here doesn't work - too many internal memory
1577  * allocations fail.
1578  *
1579  * 16May01: If we're reentered then journal_current_handle() will be
1580  *          non-zero. We simply *return*.
1581  *
1582  * 1 July 2001: @@@ FIXME:
1583  *   In journalled data mode, a data buffer may be metadata against the
1584  *   current transaction.  But the same file is part of a shared mapping
1585  *   and someone does a writepage() on it.
1586  *
1587  *   We will move the buffer onto the async_data list, but *after* it has
1588  *   been dirtied. So there's a small window where we have dirty data on
1589  *   BJ_Metadata.
1590  *
1591  *   Note that this only applies to the last partial page in the file.  The
1592  *   bit which block_write_full_page() uses prepare/commit for.  (That's
1593  *   broken code anyway: it's wrong for msync()).
1594  *
1595  *   It's a rare case: affects the final partial page, for journalled data
1596  *   where the file is subject to bith write() and writepage() in the same
1597  *   transction.  To fix it we'll need a custom block_write_full_page().
1598  *   We'll probably need that anyway for journalling writepage() output.
1599  *
1600  * We don't honour synchronous mounts for writepage().  That would be
1601  * disastrous.  Any write() or metadata operation will sync the fs for
1602  * us.
1603  *
1604  * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1605  * we don't need to open a transaction here.
1606  */
1607 static int ext3_ordered_writepage(struct page *page,
1608                                 struct writeback_control *wbc)
1609 {
1610         struct inode *inode = page->mapping->host;
1611         struct buffer_head *page_bufs;
1612         handle_t *handle = NULL;
1613         int ret = 0;
1614         int err;
1615
1616         J_ASSERT(PageLocked(page));
1617         /*
1618          * We don't want to warn for emergency remount. The condition is
1619          * ordered to avoid dereferencing inode->i_sb in non-error case to
1620          * avoid slow-downs.
1621          */
1622         WARN_ON_ONCE(IS_RDONLY(inode) &&
1623                      !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS));
1624
1625         /*
1626          * We give up here if we're reentered, because it might be for a
1627          * different filesystem.
1628          */
1629         if (ext3_journal_current_handle())
1630                 goto out_fail;
1631
1632         trace_ext3_ordered_writepage(page);
1633         if (!page_has_buffers(page)) {
1634                 create_empty_buffers(page, inode->i_sb->s_blocksize,
1635                                 (1 << BH_Dirty)|(1 << BH_Uptodate));
1636                 page_bufs = page_buffers(page);
1637         } else {
1638                 page_bufs = page_buffers(page);
1639                 if (!walk_page_buffers(NULL, page_bufs, 0, PAGE_CACHE_SIZE,
1640                                        NULL, buffer_unmapped)) {
1641                         /* Provide NULL get_block() to catch bugs if buffers
1642                          * weren't really mapped */
1643                         return block_write_full_page(page, NULL, wbc);
1644                 }
1645         }
1646         handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1647
1648         if (IS_ERR(handle)) {
1649                 ret = PTR_ERR(handle);
1650                 goto out_fail;
1651         }
1652
1653         walk_page_buffers(handle, page_bufs, 0,
1654                         PAGE_CACHE_SIZE, NULL, bget_one);
1655
1656         ret = block_write_full_page(page, ext3_get_block, wbc);
1657
1658         /*
1659          * The page can become unlocked at any point now, and
1660          * truncate can then come in and change things.  So we
1661          * can't touch *page from now on.  But *page_bufs is
1662          * safe due to elevated refcount.
1663          */
1664
1665         /*
1666          * And attach them to the current transaction.  But only if
1667          * block_write_full_page() succeeded.  Otherwise they are unmapped,
1668          * and generally junk.
1669          */
1670         if (ret == 0) {
1671                 err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1672                                         NULL, journal_dirty_data_fn);
1673                 if (!ret)
1674                         ret = err;
1675         }
1676         walk_page_buffers(handle, page_bufs, 0,
1677                         PAGE_CACHE_SIZE, NULL, bput_one);
1678         err = ext3_journal_stop(handle);
1679         if (!ret)
1680                 ret = err;
1681         return ret;
1682
1683 out_fail:
1684         redirty_page_for_writepage(wbc, page);
1685         unlock_page(page);
1686         return ret;
1687 }
1688
1689 static int ext3_writeback_writepage(struct page *page,
1690                                 struct writeback_control *wbc)
1691 {
1692         struct inode *inode = page->mapping->host;
1693         handle_t *handle = NULL;
1694         int ret = 0;
1695         int err;
1696
1697         J_ASSERT(PageLocked(page));
1698         /*
1699          * We don't want to warn for emergency remount. The condition is
1700          * ordered to avoid dereferencing inode->i_sb in non-error case to
1701          * avoid slow-downs.
1702          */
1703         WARN_ON_ONCE(IS_RDONLY(inode) &&
1704                      !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS));
1705
1706         if (ext3_journal_current_handle())
1707                 goto out_fail;
1708
1709         trace_ext3_writeback_writepage(page);
1710         if (page_has_buffers(page)) {
1711                 if (!walk_page_buffers(NULL, page_buffers(page), 0,
1712                                       PAGE_CACHE_SIZE, NULL, buffer_unmapped)) {
1713                         /* Provide NULL get_block() to catch bugs if buffers
1714                          * weren't really mapped */
1715                         return block_write_full_page(page, NULL, wbc);
1716                 }
1717         }
1718
1719         handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1720         if (IS_ERR(handle)) {
1721                 ret = PTR_ERR(handle);
1722                 goto out_fail;
1723         }
1724
1725         ret = block_write_full_page(page, ext3_get_block, wbc);
1726
1727         err = ext3_journal_stop(handle);
1728         if (!ret)
1729                 ret = err;
1730         return ret;
1731
1732 out_fail:
1733         redirty_page_for_writepage(wbc, page);
1734         unlock_page(page);
1735         return ret;
1736 }
1737
1738 static int ext3_journalled_writepage(struct page *page,
1739                                 struct writeback_control *wbc)
1740 {
1741         struct inode *inode = page->mapping->host;
1742         handle_t *handle = NULL;
1743         int ret = 0;
1744         int err;
1745
1746         J_ASSERT(PageLocked(page));
1747         /*
1748          * We don't want to warn for emergency remount. The condition is
1749          * ordered to avoid dereferencing inode->i_sb in non-error case to
1750          * avoid slow-downs.
1751          */
1752         WARN_ON_ONCE(IS_RDONLY(inode) &&
1753                      !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS));
1754
1755         if (ext3_journal_current_handle())
1756                 goto no_write;
1757
1758         trace_ext3_journalled_writepage(page);
1759         handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1760         if (IS_ERR(handle)) {
1761                 ret = PTR_ERR(handle);
1762                 goto no_write;
1763         }
1764
1765         if (!page_has_buffers(page) || PageChecked(page)) {
1766                 /*
1767                  * It's mmapped pagecache.  Add buffers and journal it.  There
1768                  * doesn't seem much point in redirtying the page here.
1769                  */
1770                 ClearPageChecked(page);
1771                 ret = __block_write_begin(page, 0, PAGE_CACHE_SIZE,
1772                                           ext3_get_block);
1773                 if (ret != 0) {
1774                         ext3_journal_stop(handle);
1775                         goto out_unlock;
1776                 }
1777                 ret = walk_page_buffers(handle, page_buffers(page), 0,
1778                         PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1779
1780                 err = walk_page_buffers(handle, page_buffers(page), 0,
1781                                 PAGE_CACHE_SIZE, NULL, write_end_fn);
1782                 if (ret == 0)
1783                         ret = err;
1784                 ext3_set_inode_state(inode, EXT3_STATE_JDATA);
1785                 atomic_set(&EXT3_I(inode)->i_datasync_tid,
1786                            handle->h_transaction->t_tid);
1787                 unlock_page(page);
1788         } else {
1789                 /*
1790                  * It may be a page full of checkpoint-mode buffers.  We don't
1791                  * really know unless we go poke around in the buffer_heads.
1792                  * But block_write_full_page will do the right thing.
1793                  */
1794                 ret = block_write_full_page(page, ext3_get_block, wbc);
1795         }
1796         err = ext3_journal_stop(handle);
1797         if (!ret)
1798                 ret = err;
1799 out:
1800         return ret;
1801
1802 no_write:
1803         redirty_page_for_writepage(wbc, page);
1804 out_unlock:
1805         unlock_page(page);
1806         goto out;
1807 }
1808
1809 static int ext3_readpage(struct file *file, struct page *page)
1810 {
1811         trace_ext3_readpage(page);
1812         return mpage_readpage(page, ext3_get_block);
1813 }
1814
1815 static int
1816 ext3_readpages(struct file *file, struct address_space *mapping,
1817                 struct list_head *pages, unsigned nr_pages)
1818 {
1819         return mpage_readpages(mapping, pages, nr_pages, ext3_get_block);
1820 }
1821
1822 static void ext3_invalidatepage(struct page *page, unsigned long offset)
1823 {
1824         journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1825
1826         trace_ext3_invalidatepage(page, offset);
1827
1828         /*
1829          * If it's a full truncate we just forget about the pending dirtying
1830          */
1831         if (offset == 0)
1832                 ClearPageChecked(page);
1833
1834         journal_invalidatepage(journal, page, offset);
1835 }
1836
1837 static int ext3_releasepage(struct page *page, gfp_t wait)
1838 {
1839         journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1840
1841         trace_ext3_releasepage(page);
1842         WARN_ON(PageChecked(page));
1843         if (!page_has_buffers(page))
1844                 return 0;
1845         return journal_try_to_free_buffers(journal, page, wait);
1846 }
1847
1848 /*
1849  * If the O_DIRECT write will extend the file then add this inode to the
1850  * orphan list.  So recovery will truncate it back to the original size
1851  * if the machine crashes during the write.
1852  *
1853  * If the O_DIRECT write is intantiating holes inside i_size and the machine
1854  * crashes then stale disk data _may_ be exposed inside the file. But current
1855  * VFS code falls back into buffered path in that case so we are safe.
1856  */
1857 static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb,
1858                         const struct iovec *iov, loff_t offset,
1859                         unsigned long nr_segs)
1860 {
1861         struct file *file = iocb->ki_filp;
1862         struct inode *inode = file->f_mapping->host;
1863         struct ext3_inode_info *ei = EXT3_I(inode);
1864         handle_t *handle;
1865         ssize_t ret;
1866         int orphan = 0;
1867         size_t count = iov_length(iov, nr_segs);
1868         int retries = 0;
1869
1870         trace_ext3_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
1871
1872         if (rw == WRITE) {
1873                 loff_t final_size = offset + count;
1874
1875                 if (final_size > inode->i_size) {
1876                         /* Credits for sb + inode write */
1877                         handle = ext3_journal_start(inode, 2);
1878                         if (IS_ERR(handle)) {
1879                                 ret = PTR_ERR(handle);
1880                                 goto out;
1881                         }
1882                         ret = ext3_orphan_add(handle, inode);
1883                         if (ret) {
1884                                 ext3_journal_stop(handle);
1885                                 goto out;
1886                         }
1887                         orphan = 1;
1888                         ei->i_disksize = inode->i_size;
1889                         ext3_journal_stop(handle);
1890                 }
1891         }
1892
1893 retry:
1894         ret = blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
1895                                  ext3_get_block);
1896         /*
1897          * In case of error extending write may have instantiated a few
1898          * blocks outside i_size. Trim these off again.
1899          */
1900         if (unlikely((rw & WRITE) && ret < 0)) {
1901                 loff_t isize = i_size_read(inode);
1902                 loff_t end = offset + iov_length(iov, nr_segs);
1903
1904                 if (end > isize)
1905                         ext3_truncate_failed_direct_write(inode);
1906         }
1907         if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1908                 goto retry;
1909
1910         if (orphan) {
1911                 int err;
1912
1913                 /* Credits for sb + inode write */
1914                 handle = ext3_journal_start(inode, 2);
1915                 if (IS_ERR(handle)) {
1916                         /* This is really bad luck. We've written the data
1917                          * but cannot extend i_size. Truncate allocated blocks
1918                          * and pretend the write failed... */
1919                         ext3_truncate_failed_direct_write(inode);
1920                         ret = PTR_ERR(handle);
1921                         goto out;
1922                 }
1923                 if (inode->i_nlink)
1924                         ext3_orphan_del(handle, inode);
1925                 if (ret > 0) {
1926                         loff_t end = offset + ret;
1927                         if (end > inode->i_size) {
1928                                 ei->i_disksize = end;
1929                                 i_size_write(inode, end);
1930                                 /*
1931                                  * We're going to return a positive `ret'
1932                                  * here due to non-zero-length I/O, so there's
1933                                  * no way of reporting error returns from
1934                                  * ext3_mark_inode_dirty() to userspace.  So
1935                                  * ignore it.
1936                                  */
1937                                 ext3_mark_inode_dirty(handle, inode);
1938                         }
1939                 }
1940                 err = ext3_journal_stop(handle);
1941                 if (ret == 0)
1942                         ret = err;
1943         }
1944 out:
1945         trace_ext3_direct_IO_exit(inode, offset,
1946                                 iov_length(iov, nr_segs), rw, ret);
1947         return ret;
1948 }
1949
1950 /*
1951  * Pages can be marked dirty completely asynchronously from ext3's journalling
1952  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
1953  * much here because ->set_page_dirty is called under VFS locks.  The page is
1954  * not necessarily locked.
1955  *
1956  * We cannot just dirty the page and leave attached buffers clean, because the
1957  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
1958  * or jbddirty because all the journalling code will explode.
1959  *
1960  * So what we do is to mark the page "pending dirty" and next time writepage
1961  * is called, propagate that into the buffers appropriately.
1962  */
1963 static int ext3_journalled_set_page_dirty(struct page *page)
1964 {
1965         SetPageChecked(page);
1966         return __set_page_dirty_nobuffers(page);
1967 }
1968
1969 static const struct address_space_operations ext3_ordered_aops = {
1970         .readpage               = ext3_readpage,
1971         .readpages              = ext3_readpages,
1972         .writepage              = ext3_ordered_writepage,
1973         .write_begin            = ext3_write_begin,
1974         .write_end              = ext3_ordered_write_end,
1975         .bmap                   = ext3_bmap,
1976         .invalidatepage         = ext3_invalidatepage,
1977         .releasepage            = ext3_releasepage,
1978         .direct_IO              = ext3_direct_IO,
1979         .migratepage            = buffer_migrate_page,
1980         .is_partially_uptodate  = block_is_partially_uptodate,
1981         .error_remove_page      = generic_error_remove_page,
1982 };
1983
1984 static const struct address_space_operations ext3_writeback_aops = {
1985         .readpage               = ext3_readpage,
1986         .readpages              = ext3_readpages,
1987         .writepage              = ext3_writeback_writepage,
1988         .write_begin            = ext3_write_begin,
1989         .write_end              = ext3_writeback_write_end,
1990         .bmap                   = ext3_bmap,
1991         .invalidatepage         = ext3_invalidatepage,
1992         .releasepage            = ext3_releasepage,
1993         .direct_IO              = ext3_direct_IO,
1994         .migratepage            = buffer_migrate_page,
1995         .is_partially_uptodate  = block_is_partially_uptodate,
1996         .error_remove_page      = generic_error_remove_page,
1997 };
1998
1999 static const struct address_space_operations ext3_journalled_aops = {
2000         .readpage               = ext3_readpage,
2001         .readpages              = ext3_readpages,
2002         .writepage              = ext3_journalled_writepage,
2003         .write_begin            = ext3_write_begin,
2004         .write_end              = ext3_journalled_write_end,
2005         .set_page_dirty         = ext3_journalled_set_page_dirty,
2006         .bmap                   = ext3_bmap,
2007         .invalidatepage         = ext3_invalidatepage,
2008         .releasepage            = ext3_releasepage,
2009         .is_partially_uptodate  = block_is_partially_uptodate,
2010         .error_remove_page      = generic_error_remove_page,
2011 };
2012
2013 void ext3_set_aops(struct inode *inode)
2014 {
2015         if (ext3_should_order_data(inode))
2016                 inode->i_mapping->a_ops = &ext3_ordered_aops;
2017         else if (ext3_should_writeback_data(inode))
2018                 inode->i_mapping->a_ops = &ext3_writeback_aops;
2019         else
2020                 inode->i_mapping->a_ops = &ext3_journalled_aops;
2021 }
2022
2023 /*
2024  * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
2025  * up to the end of the block which corresponds to `from'.
2026  * This required during truncate. We need to physically zero the tail end
2027  * of that block so it doesn't yield old data if the file is later grown.
2028  */
2029 static int ext3_block_truncate_page(struct inode *inode, loff_t from)
2030 {
2031         ext3_fsblk_t index = from >> PAGE_CACHE_SHIFT;
2032         unsigned offset = from & (PAGE_CACHE_SIZE - 1);
2033         unsigned blocksize, iblock, length, pos;
2034         struct page *page;
2035         handle_t *handle = NULL;
2036         struct buffer_head *bh;
2037         int err = 0;
2038
2039         /* Truncated on block boundary - nothing to do */
2040         blocksize = inode->i_sb->s_blocksize;
2041         if ((from & (blocksize - 1)) == 0)
2042                 return 0;
2043
2044         page = grab_cache_page(inode->i_mapping, index);
2045         if (!page)
2046                 return -ENOMEM;
2047         length = blocksize - (offset & (blocksize - 1));
2048         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
2049
2050         if (!page_has_buffers(page))
2051                 create_empty_buffers(page, blocksize, 0);
2052
2053         /* Find the buffer that contains "offset" */
2054         bh = page_buffers(page);
2055         pos = blocksize;
2056         while (offset >= pos) {
2057                 bh = bh->b_this_page;
2058                 iblock++;
2059                 pos += blocksize;
2060         }
2061
2062         err = 0;
2063         if (buffer_freed(bh)) {
2064                 BUFFER_TRACE(bh, "freed: skip");
2065                 goto unlock;
2066         }
2067
2068         if (!buffer_mapped(bh)) {
2069                 BUFFER_TRACE(bh, "unmapped");
2070                 ext3_get_block(inode, iblock, bh, 0);
2071                 /* unmapped? It's a hole - nothing to do */
2072                 if (!buffer_mapped(bh)) {
2073                         BUFFER_TRACE(bh, "still unmapped");
2074                         goto unlock;
2075                 }
2076         }
2077
2078         /* Ok, it's mapped. Make sure it's up-to-date */
2079         if (PageUptodate(page))
2080                 set_buffer_uptodate(bh);
2081
2082         if (!bh_uptodate_or_lock(bh)) {
2083                 err = bh_submit_read(bh);
2084                 /* Uhhuh. Read error. Complain and punt. */
2085                 if (err)
2086                         goto unlock;
2087         }
2088
2089         /* data=writeback mode doesn't need transaction to zero-out data */
2090         if (!ext3_should_writeback_data(inode)) {
2091                 /* We journal at most one block */
2092                 handle = ext3_journal_start(inode, 1);
2093                 if (IS_ERR(handle)) {
2094                         clear_highpage(page);
2095                         flush_dcache_page(page);
2096                         err = PTR_ERR(handle);
2097                         goto unlock;
2098                 }
2099         }
2100
2101         if (ext3_should_journal_data(inode)) {
2102                 BUFFER_TRACE(bh, "get write access");
2103                 err = ext3_journal_get_write_access(handle, bh);
2104                 if (err)
2105                         goto stop;
2106         }
2107
2108         zero_user(page, offset, length);
2109         BUFFER_TRACE(bh, "zeroed end of block");
2110
2111         err = 0;
2112         if (ext3_should_journal_data(inode)) {
2113                 err = ext3_journal_dirty_metadata(handle, bh);
2114         } else {
2115                 if (ext3_should_order_data(inode))
2116                         err = ext3_journal_dirty_data(handle, bh);
2117                 mark_buffer_dirty(bh);
2118         }
2119 stop:
2120         if (handle)
2121                 ext3_journal_stop(handle);
2122
2123 unlock:
2124         unlock_page(page);
2125         page_cache_release(page);
2126         return err;
2127 }
2128
2129 /*
2130  * Probably it should be a library function... search for first non-zero word
2131  * or memcmp with zero_page, whatever is better for particular architecture.
2132  * Linus?
2133  */
2134 static inline int all_zeroes(__le32 *p, __le32 *q)
2135 {
2136         while (p < q)
2137                 if (*p++)
2138                         return 0;
2139         return 1;
2140 }
2141
2142 /**
2143  *      ext3_find_shared - find the indirect blocks for partial truncation.
2144  *      @inode:   inode in question
2145  *      @depth:   depth of the affected branch
2146  *      @offsets: offsets of pointers in that branch (see ext3_block_to_path)
2147  *      @chain:   place to store the pointers to partial indirect blocks
2148  *      @top:     place to the (detached) top of branch
2149  *
2150  *      This is a helper function used by ext3_truncate().
2151  *
2152  *      When we do truncate() we may have to clean the ends of several
2153  *      indirect blocks but leave the blocks themselves alive. Block is
2154  *      partially truncated if some data below the new i_size is referred
2155  *      from it (and it is on the path to the first completely truncated
2156  *      data block, indeed).  We have to free the top of that path along
2157  *      with everything to the right of the path. Since no allocation
2158  *      past the truncation point is possible until ext3_truncate()
2159  *      finishes, we may safely do the latter, but top of branch may
2160  *      require special attention - pageout below the truncation point
2161  *      might try to populate it.
2162  *
2163  *      We atomically detach the top of branch from the tree, store the
2164  *      block number of its root in *@top, pointers to buffer_heads of
2165  *      partially truncated blocks - in @chain[].bh and pointers to
2166  *      their last elements that should not be removed - in
2167  *      @chain[].p. Return value is the pointer to last filled element
2168  *      of @chain.
2169  *
2170  *      The work left to caller to do the actual freeing of subtrees:
2171  *              a) free the subtree starting from *@top
2172  *              b) free the subtrees whose roots are stored in
2173  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
2174  *              c) free the subtrees growing from the inode past the @chain[0].
2175  *                      (no partially truncated stuff there).  */
2176
2177 static Indirect *ext3_find_shared(struct inode *inode, int depth,
2178                         int offsets[4], Indirect chain[4], __le32 *top)
2179 {
2180         Indirect *partial, *p;
2181         int k, err;
2182
2183         *top = 0;
2184         /* Make k index the deepest non-null offset + 1 */
2185         for (k = depth; k > 1 && !offsets[k-1]; k--)
2186                 ;
2187         partial = ext3_get_branch(inode, k, offsets, chain, &err);
2188         /* Writer: pointers */
2189         if (!partial)
2190                 partial = chain + k-1;
2191         /*
2192          * If the branch acquired continuation since we've looked at it -
2193          * fine, it should all survive and (new) top doesn't belong to us.
2194          */
2195         if (!partial->key && *partial->p)
2196                 /* Writer: end */
2197                 goto no_top;
2198         for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
2199                 ;
2200         /*
2201          * OK, we've found the last block that must survive. The rest of our
2202          * branch should be detached before unlocking. However, if that rest
2203          * of branch is all ours and does not grow immediately from the inode
2204          * it's easier to cheat and just decrement partial->p.
2205          */
2206         if (p == chain + k - 1 && p > chain) {
2207                 p->p--;
2208         } else {
2209                 *top = *p->p;
2210                 /* Nope, don't do this in ext3.  Must leave the tree intact */
2211 #if 0
2212                 *p->p = 0;
2213 #endif
2214         }
2215         /* Writer: end */
2216
2217         while(partial > p) {
2218                 brelse(partial->bh);
2219                 partial--;
2220         }
2221 no_top:
2222         return partial;
2223 }
2224
2225 /*
2226  * Zero a number of block pointers in either an inode or an indirect block.
2227  * If we restart the transaction we must again get write access to the
2228  * indirect block for further modification.
2229  *
2230  * We release `count' blocks on disk, but (last - first) may be greater
2231  * than `count' because there can be holes in there.
2232  */
2233 static void ext3_clear_blocks(handle_t *handle, struct inode *inode,
2234                 struct buffer_head *bh, ext3_fsblk_t block_to_free,
2235                 unsigned long count, __le32 *first, __le32 *last)
2236 {
2237         __le32 *p;
2238         if (try_to_extend_transaction(handle, inode)) {
2239                 if (bh) {
2240                         BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
2241                         if (ext3_journal_dirty_metadata(handle, bh))
2242                                 return;
2243                 }
2244                 ext3_mark_inode_dirty(handle, inode);
2245                 truncate_restart_transaction(handle, inode);
2246                 if (bh) {
2247                         BUFFER_TRACE(bh, "retaking write access");
2248                         if (ext3_journal_get_write_access(handle, bh))
2249                                 return;
2250                 }
2251         }
2252
2253         /*
2254          * Any buffers which are on the journal will be in memory. We find
2255          * them on the hash table so journal_revoke() will run journal_forget()
2256          * on them.  We've already detached each block from the file, so
2257          * bforget() in journal_forget() should be safe.
2258          *
2259          * AKPM: turn on bforget in journal_forget()!!!
2260          */
2261         for (p = first; p < last; p++) {
2262                 u32 nr = le32_to_cpu(*p);
2263                 if (nr) {
2264                         struct buffer_head *bh;
2265
2266                         *p = 0;
2267                         bh = sb_find_get_block(inode->i_sb, nr);
2268                         ext3_forget(handle, 0, inode, bh, nr);
2269                 }
2270         }
2271
2272         ext3_free_blocks(handle, inode, block_to_free, count);
2273 }
2274
2275 /**
2276  * ext3_free_data - free a list of data blocks
2277  * @handle:     handle for this transaction
2278  * @inode:      inode we are dealing with
2279  * @this_bh:    indirect buffer_head which contains *@first and *@last
2280  * @first:      array of block numbers
2281  * @last:       points immediately past the end of array
2282  *
2283  * We are freeing all blocks referred from that array (numbers are stored as
2284  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2285  *
2286  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
2287  * blocks are contiguous then releasing them at one time will only affect one
2288  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2289  * actually use a lot of journal space.
2290  *
2291  * @this_bh will be %NULL if @first and @last point into the inode's direct
2292  * block pointers.
2293  */
2294 static void ext3_free_data(handle_t *handle, struct inode *inode,
2295                            struct buffer_head *this_bh,
2296                            __le32 *first, __le32 *last)
2297 {
2298         ext3_fsblk_t block_to_free = 0;    /* Starting block # of a run */
2299         unsigned long count = 0;            /* Number of blocks in the run */
2300         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
2301                                                corresponding to
2302                                                block_to_free */
2303         ext3_fsblk_t nr;                    /* Current block # */
2304         __le32 *p;                          /* Pointer into inode/ind
2305                                                for current block */
2306         int err;
2307
2308         if (this_bh) {                          /* For indirect block */
2309                 BUFFER_TRACE(this_bh, "get_write_access");
2310                 err = ext3_journal_get_write_access(handle, this_bh);
2311                 /* Important: if we can't update the indirect pointers
2312                  * to the blocks, we can't free them. */
2313                 if (err)
2314                         return;
2315         }
2316
2317         for (p = first; p < last; p++) {
2318                 nr = le32_to_cpu(*p);
2319                 if (nr) {
2320                         /* accumulate blocks to free if they're contiguous */
2321                         if (count == 0) {
2322                                 block_to_free = nr;
2323                                 block_to_free_p = p;
2324                                 count = 1;
2325                         } else if (nr == block_to_free + count) {
2326                                 count++;
2327                         } else {
2328                                 ext3_clear_blocks(handle, inode, this_bh,
2329                                                   block_to_free,
2330                                                   count, block_to_free_p, p);
2331                                 block_to_free = nr;
2332                                 block_to_free_p = p;
2333                                 count = 1;
2334                         }
2335                 }
2336         }
2337
2338         if (count > 0)
2339                 ext3_clear_blocks(handle, inode, this_bh, block_to_free,
2340                                   count, block_to_free_p, p);
2341
2342         if (this_bh) {
2343                 BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata");
2344
2345                 /*
2346                  * The buffer head should have an attached journal head at this
2347                  * point. However, if the data is corrupted and an indirect
2348                  * block pointed to itself, it would have been detached when
2349                  * the block was cleared. Check for this instead of OOPSing.
2350                  */
2351                 if (bh2jh(this_bh))
2352                         ext3_journal_dirty_metadata(handle, this_bh);
2353                 else
2354                         ext3_error(inode->i_sb, "ext3_free_data",
2355                                    "circular indirect block detected, "
2356                                    "inode=%lu, block=%llu",
2357                                    inode->i_ino,
2358                                    (unsigned long long)this_bh->b_blocknr);
2359         }
2360 }
2361
2362 /**
2363  *      ext3_free_branches - free an array of branches
2364  *      @handle: JBD handle for this transaction
2365  *      @inode: inode we are dealing with
2366  *      @parent_bh: the buffer_head which contains *@first and *@last
2367  *      @first: array of block numbers
2368  *      @last:  pointer immediately past the end of array
2369  *      @depth: depth of the branches to free
2370  *
2371  *      We are freeing all blocks referred from these branches (numbers are
2372  *      stored as little-endian 32-bit) and updating @inode->i_blocks
2373  *      appropriately.
2374  */
2375 static void ext3_free_branches(handle_t *handle, struct inode *inode,
2376                                struct buffer_head *parent_bh,
2377                                __le32 *first, __le32 *last, int depth)
2378 {
2379         ext3_fsblk_t nr;
2380         __le32 *p;
2381
2382         if (is_handle_aborted(handle))
2383                 return;
2384
2385         if (depth--) {
2386                 struct buffer_head *bh;
2387                 int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2388                 p = last;
2389                 while (--p >= first) {
2390                         nr = le32_to_cpu(*p);
2391                         if (!nr)
2392                                 continue;               /* A hole */
2393
2394                         /* Go read the buffer for the next level down */
2395                         bh = sb_bread(inode->i_sb, nr);
2396
2397                         /*
2398                          * A read failure? Report error and clear slot
2399                          * (should be rare).
2400                          */
2401                         if (!bh) {
2402                                 ext3_error(inode->i_sb, "ext3_free_branches",
2403                                            "Read failure, inode=%lu, block="E3FSBLK,
2404                                            inode->i_ino, nr);
2405                                 continue;
2406                         }
2407
2408                         /* This zaps the entire block.  Bottom up. */
2409                         BUFFER_TRACE(bh, "free child branches");
2410                         ext3_free_branches(handle, inode, bh,
2411                                            (__le32*)bh->b_data,
2412                                            (__le32*)bh->b_data + addr_per_block,
2413                                            depth);
2414
2415                         /*
2416                          * Everything below this this pointer has been
2417                          * released.  Now let this top-of-subtree go.
2418                          *
2419                          * We want the freeing of this indirect block to be
2420                          * atomic in the journal with the updating of the
2421                          * bitmap block which owns it.  So make some room in
2422                          * the journal.
2423                          *
2424                          * We zero the parent pointer *after* freeing its
2425                          * pointee in the bitmaps, so if extend_transaction()
2426                          * for some reason fails to put the bitmap changes and
2427                          * the release into the same transaction, recovery
2428                          * will merely complain about releasing a free block,
2429                          * rather than leaking blocks.
2430                          */
2431                         if (is_handle_aborted(handle))
2432                                 return;
2433                         if (try_to_extend_transaction(handle, inode)) {
2434                                 ext3_mark_inode_dirty(handle, inode);
2435                                 truncate_restart_transaction(handle, inode);
2436                         }
2437
2438                         /*
2439                          * We've probably journalled the indirect block several
2440                          * times during the truncate.  But it's no longer
2441                          * needed and we now drop it from the transaction via
2442                          * journal_revoke().
2443                          *
2444                          * That's easy if it's exclusively part of this
2445                          * transaction.  But if it's part of the committing
2446                          * transaction then journal_forget() will simply
2447                          * brelse() it.  That means that if the underlying
2448                          * block is reallocated in ext3_get_block(),
2449                          * unmap_underlying_metadata() will find this block
2450                          * and will try to get rid of it.  damn, damn. Thus
2451                          * we don't allow a block to be reallocated until
2452                          * a transaction freeing it has fully committed.
2453                          *
2454                          * We also have to make sure journal replay after a
2455                          * crash does not overwrite non-journaled data blocks
2456                          * with old metadata when the block got reallocated for
2457                          * data.  Thus we have to store a revoke record for a
2458                          * block in the same transaction in which we free the
2459                          * block.
2460                          */
2461                         ext3_forget(handle, 1, inode, bh, bh->b_blocknr);
2462
2463                         ext3_free_blocks(handle, inode, nr, 1);
2464
2465                         if (parent_bh) {
2466                                 /*
2467                                  * The block which we have just freed is
2468                                  * pointed to by an indirect block: journal it
2469                                  */
2470                                 BUFFER_TRACE(parent_bh, "get_write_access");
2471                                 if (!ext3_journal_get_write_access(handle,
2472                                                                    parent_bh)){
2473                                         *p = 0;
2474                                         BUFFER_TRACE(parent_bh,
2475                                         "call ext3_journal_dirty_metadata");
2476                                         ext3_journal_dirty_metadata(handle,
2477                                                                     parent_bh);
2478                                 }
2479                         }
2480                 }
2481         } else {
2482                 /* We have reached the bottom of the tree. */
2483                 BUFFER_TRACE(parent_bh, "free data blocks");
2484                 ext3_free_data(handle, inode, parent_bh, first, last);
2485         }
2486 }
2487
2488 int ext3_can_truncate(struct inode *inode)
2489 {
2490         if (S_ISREG(inode->i_mode))
2491                 return 1;
2492         if (S_ISDIR(inode->i_mode))
2493                 return 1;
2494         if (S_ISLNK(inode->i_mode))
2495                 return !ext3_inode_is_fast_symlink(inode);
2496         return 0;
2497 }
2498
2499 /*
2500  * ext3_truncate()
2501  *
2502  * We block out ext3_get_block() block instantiations across the entire
2503  * transaction, and VFS/VM ensures that ext3_truncate() cannot run
2504  * simultaneously on behalf of the same inode.
2505  *
2506  * As we work through the truncate and commit bits of it to the journal there
2507  * is one core, guiding principle: the file's tree must always be consistent on
2508  * disk.  We must be able to restart the truncate after a crash.
2509  *
2510  * The file's tree may be transiently inconsistent in memory (although it
2511  * probably isn't), but whenever we close off and commit a journal transaction,
2512  * the contents of (the filesystem + the journal) must be consistent and
2513  * restartable.  It's pretty simple, really: bottom up, right to left (although
2514  * left-to-right works OK too).
2515  *
2516  * Note that at recovery time, journal replay occurs *before* the restart of
2517  * truncate against the orphan inode list.
2518  *
2519  * The committed inode has the new, desired i_size (which is the same as
2520  * i_disksize in this case).  After a crash, ext3_orphan_cleanup() will see
2521  * that this inode's truncate did not complete and it will again call
2522  * ext3_truncate() to have another go.  So there will be instantiated blocks
2523  * to the right of the truncation point in a crashed ext3 filesystem.  But
2524  * that's fine - as long as they are linked from the inode, the post-crash
2525  * ext3_truncate() run will find them and release them.
2526  */
2527 void ext3_truncate(struct inode *inode)
2528 {
2529         handle_t *handle;
2530         struct ext3_inode_info *ei = EXT3_I(inode);
2531         __le32 *i_data = ei->i_data;
2532         int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2533         int offsets[4];
2534         Indirect chain[4];
2535         Indirect *partial;
2536         __le32 nr = 0;
2537         int n;
2538         long last_block;
2539         unsigned blocksize = inode->i_sb->s_blocksize;
2540
2541         trace_ext3_truncate_enter(inode);
2542
2543         if (!ext3_can_truncate(inode))
2544                 goto out_notrans;
2545
2546         if (inode->i_size == 0 && ext3_should_writeback_data(inode))
2547                 ext3_set_inode_state(inode, EXT3_STATE_FLUSH_ON_CLOSE);
2548
2549         handle = start_transaction(inode);
2550         if (IS_ERR(handle))
2551                 goto out_notrans;
2552
2553         last_block = (inode->i_size + blocksize-1)
2554                                         >> EXT3_BLOCK_SIZE_BITS(inode->i_sb);
2555         n = ext3_block_to_path(inode, last_block, offsets, NULL);
2556         if (n == 0)
2557                 goto out_stop;  /* error */
2558
2559         /*
2560          * OK.  This truncate is going to happen.  We add the inode to the
2561          * orphan list, so that if this truncate spans multiple transactions,
2562          * and we crash, we will resume the truncate when the filesystem
2563          * recovers.  It also marks the inode dirty, to catch the new size.
2564          *
2565          * Implication: the file must always be in a sane, consistent
2566          * truncatable state while each transaction commits.
2567          */
2568         if (ext3_orphan_add(handle, inode))
2569                 goto out_stop;
2570
2571         /*
2572          * The orphan list entry will now protect us from any crash which
2573          * occurs before the truncate completes, so it is now safe to propagate
2574          * the new, shorter inode size (held for now in i_size) into the
2575          * on-disk inode. We do this via i_disksize, which is the value which
2576          * ext3 *really* writes onto the disk inode.
2577          */
2578         ei->i_disksize = inode->i_size;
2579
2580         /*
2581          * From here we block out all ext3_get_block() callers who want to
2582          * modify the block allocation tree.
2583          */
2584         mutex_lock(&ei->truncate_mutex);
2585
2586         if (n == 1) {           /* direct blocks */
2587                 ext3_free_data(handle, inode, NULL, i_data+offsets[0],
2588                                i_data + EXT3_NDIR_BLOCKS);
2589                 goto do_indirects;
2590         }
2591
2592         partial = ext3_find_shared(inode, n, offsets, chain, &nr);
2593         /* Kill the top of shared branch (not detached) */
2594         if (nr) {
2595                 if (partial == chain) {
2596                         /* Shared branch grows from the inode */
2597                         ext3_free_branches(handle, inode, NULL,
2598                                            &nr, &nr+1, (chain+n-1) - partial);
2599                         *partial->p = 0;
2600                         /*
2601                          * We mark the inode dirty prior to restart,
2602                          * and prior to stop.  No need for it here.
2603                          */
2604                 } else {
2605                         /* Shared branch grows from an indirect block */
2606                         ext3_free_branches(handle, inode, partial->bh,
2607                                         partial->p,
2608                                         partial->p+1, (chain+n-1) - partial);
2609                 }
2610         }
2611         /* Clear the ends of indirect blocks on the shared branch */
2612         while (partial > chain) {
2613                 ext3_free_branches(handle, inode, partial->bh, partial->p + 1,
2614                                    (__le32*)partial->bh->b_data+addr_per_block,
2615                                    (chain+n-1) - partial);
2616                 BUFFER_TRACE(partial->bh, "call brelse");
2617                 brelse (partial->bh);
2618                 partial--;
2619         }
2620 do_indirects:
2621         /* Kill the remaining (whole) subtrees */
2622         switch (offsets[0]) {
2623         default:
2624                 nr = i_data[EXT3_IND_BLOCK];
2625                 if (nr) {
2626                         ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
2627                         i_data[EXT3_IND_BLOCK] = 0;
2628                 }
2629         case EXT3_IND_BLOCK:
2630                 nr = i_data[EXT3_DIND_BLOCK];
2631                 if (nr) {
2632                         ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
2633                         i_data[EXT3_DIND_BLOCK] = 0;
2634                 }
2635         case EXT3_DIND_BLOCK:
2636                 nr = i_data[EXT3_TIND_BLOCK];
2637                 if (nr) {
2638                         ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
2639                         i_data[EXT3_TIND_BLOCK] = 0;
2640                 }
2641         case EXT3_TIND_BLOCK:
2642                 ;
2643         }
2644
2645         ext3_discard_reservation(inode);
2646
2647         mutex_unlock(&ei->truncate_mutex);
2648         inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
2649         ext3_mark_inode_dirty(handle, inode);
2650
2651         /*
2652          * In a multi-transaction truncate, we only make the final transaction
2653          * synchronous
2654          */
2655         if (IS_SYNC(inode))
2656                 handle->h_sync = 1;
2657 out_stop:
2658         /*
2659          * If this was a simple ftruncate(), and the file will remain alive
2660          * then we need to clear up the orphan record which we created above.
2661          * However, if this was a real unlink then we were called by
2662          * ext3_evict_inode(), and we allow that function to clean up the
2663          * orphan info for us.
2664          */
2665         if (inode->i_nlink)
2666                 ext3_orphan_del(handle, inode);
2667
2668         ext3_journal_stop(handle);
2669         trace_ext3_truncate_exit(inode);
2670         return;
2671 out_notrans:
2672         /*
2673          * Delete the inode from orphan list so that it doesn't stay there
2674          * forever and trigger assertion on umount.
2675          */
2676         if (inode->i_nlink)
2677                 ext3_orphan_del(NULL, inode);
2678         trace_ext3_truncate_exit(inode);
2679 }
2680
2681 static ext3_fsblk_t ext3_get_inode_block(struct super_block *sb,
2682                 unsigned long ino, struct ext3_iloc *iloc)
2683 {
2684         unsigned long block_group;
2685         unsigned long offset;
2686         ext3_fsblk_t block;
2687         struct ext3_group_desc *gdp;
2688
2689         if (!ext3_valid_inum(sb, ino)) {
2690                 /*
2691                  * This error is already checked for in namei.c unless we are
2692                  * looking at an NFS filehandle, in which case no error
2693                  * report is needed
2694                  */
2695                 return 0;
2696         }
2697
2698         block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb);
2699         gdp = ext3_get_group_desc(sb, block_group, NULL);
2700         if (!gdp)
2701                 return 0;
2702         /*
2703          * Figure out the offset within the block group inode table
2704          */
2705         offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) *
2706                 EXT3_INODE_SIZE(sb);
2707         block = le32_to_cpu(gdp->bg_inode_table) +
2708                 (offset >> EXT3_BLOCK_SIZE_BITS(sb));
2709
2710         iloc->block_group = block_group;
2711         iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1);
2712         return block;
2713 }
2714
2715 /*
2716  * ext3_get_inode_loc returns with an extra refcount against the inode's
2717  * underlying buffer_head on success. If 'in_mem' is true, we have all
2718  * data in memory that is needed to recreate the on-disk version of this
2719  * inode.
2720  */
2721 static int __ext3_get_inode_loc(struct inode *inode,
2722                                 struct ext3_iloc *iloc, int in_mem)
2723 {
2724         ext3_fsblk_t block;
2725         struct buffer_head *bh;
2726
2727         block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2728         if (!block)
2729                 return -EIO;
2730
2731         bh = sb_getblk(inode->i_sb, block);
2732         if (!bh) {
2733                 ext3_error (inode->i_sb, "ext3_get_inode_loc",
2734                                 "unable to read inode block - "
2735                                 "inode=%lu, block="E3FSBLK,
2736                                  inode->i_ino, block);
2737                 return -EIO;
2738         }
2739         if (!buffer_uptodate(bh)) {
2740                 lock_buffer(bh);
2741
2742                 /*
2743                  * If the buffer has the write error flag, we have failed
2744                  * to write out another inode in the same block.  In this
2745                  * case, we don't have to read the block because we may
2746                  * read the old inode data successfully.
2747                  */
2748                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
2749                         set_buffer_uptodate(bh);
2750
2751                 if (buffer_uptodate(bh)) {
2752                         /* someone brought it uptodate while we waited */
2753                         unlock_buffer(bh);
2754                         goto has_buffer;
2755                 }
2756
2757                 /*
2758                  * If we have all information of the inode in memory and this
2759                  * is the only valid inode in the block, we need not read the
2760                  * block.
2761                  */
2762                 if (in_mem) {
2763                         struct buffer_head *bitmap_bh;
2764                         struct ext3_group_desc *desc;
2765                         int inodes_per_buffer;
2766                         int inode_offset, i;
2767                         int block_group;
2768                         int start;
2769
2770                         block_group = (inode->i_ino - 1) /
2771                                         EXT3_INODES_PER_GROUP(inode->i_sb);
2772                         inodes_per_buffer = bh->b_size /
2773                                 EXT3_INODE_SIZE(inode->i_sb);
2774                         inode_offset = ((inode->i_ino - 1) %
2775                                         EXT3_INODES_PER_GROUP(inode->i_sb));
2776                         start = inode_offset & ~(inodes_per_buffer - 1);
2777
2778                         /* Is the inode bitmap in cache? */
2779                         desc = ext3_get_group_desc(inode->i_sb,
2780                                                 block_group, NULL);
2781                         if (!desc)
2782                                 goto make_io;
2783
2784                         bitmap_bh = sb_getblk(inode->i_sb,
2785                                         le32_to_cpu(desc->bg_inode_bitmap));
2786                         if (!bitmap_bh)
2787                                 goto make_io;
2788
2789                         /*
2790                          * If the inode bitmap isn't in cache then the
2791                          * optimisation may end up performing two reads instead
2792                          * of one, so skip it.
2793                          */
2794                         if (!buffer_uptodate(bitmap_bh)) {
2795                                 brelse(bitmap_bh);
2796                                 goto make_io;
2797                         }
2798                         for (i = start; i < start + inodes_per_buffer; i++) {
2799                                 if (i == inode_offset)
2800                                         continue;
2801                                 if (ext3_test_bit(i, bitmap_bh->b_data))
2802                                         break;
2803                         }
2804                         brelse(bitmap_bh);
2805                         if (i == start + inodes_per_buffer) {
2806                                 /* all other inodes are free, so skip I/O */
2807                                 memset(bh->b_data, 0, bh->b_size);
2808                                 set_buffer_uptodate(bh);
2809                                 unlock_buffer(bh);
2810                                 goto has_buffer;
2811                         }
2812                 }
2813
2814 make_io:
2815                 /*
2816                  * There are other valid inodes in the buffer, this inode
2817                  * has in-inode xattrs, or we don't have this inode in memory.
2818                  * Read the block from disk.
2819                  */
2820                 trace_ext3_load_inode(inode);
2821                 get_bh(bh);
2822                 bh->b_end_io = end_buffer_read_sync;
2823                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
2824                 wait_on_buffer(bh);
2825                 if (!buffer_uptodate(bh)) {
2826                         ext3_error(inode->i_sb, "ext3_get_inode_loc",
2827                                         "unable to read inode block - "
2828                                         "inode=%lu, block="E3FSBLK,
2829                                         inode->i_ino, block);
2830                         brelse(bh);
2831                         return -EIO;
2832                 }
2833         }
2834 has_buffer:
2835         iloc->bh = bh;
2836         return 0;
2837 }
2838
2839 int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc)
2840 {
2841         /* We have all inode data except xattrs in memory here. */
2842         return __ext3_get_inode_loc(inode, iloc,
2843                 !ext3_test_inode_state(inode, EXT3_STATE_XATTR));
2844 }
2845
2846 void ext3_set_inode_flags(struct inode *inode)
2847 {
2848         unsigned int flags = EXT3_I(inode)->i_flags;
2849
2850         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2851         if (flags & EXT3_SYNC_FL)
2852                 inode->i_flags |= S_SYNC;
2853         if (flags & EXT3_APPEND_FL)
2854                 inode->i_flags |= S_APPEND;
2855         if (flags & EXT3_IMMUTABLE_FL)
2856                 inode->i_flags |= S_IMMUTABLE;
2857         if (flags & EXT3_NOATIME_FL)
2858                 inode->i_flags |= S_NOATIME;
2859         if (flags & EXT3_DIRSYNC_FL)
2860                 inode->i_flags |= S_DIRSYNC;
2861 }
2862
2863 /* Propagate flags from i_flags to EXT3_I(inode)->i_flags */
2864 void ext3_get_inode_flags(struct ext3_inode_info *ei)
2865 {
2866         unsigned int flags = ei->vfs_inode.i_flags;
2867
2868         ei->i_flags &= ~(EXT3_SYNC_FL|EXT3_APPEND_FL|
2869                         EXT3_IMMUTABLE_FL|EXT3_NOATIME_FL|EXT3_DIRSYNC_FL);
2870         if (flags & S_SYNC)
2871                 ei->i_flags |= EXT3_SYNC_FL;
2872         if (flags & S_APPEND)
2873                 ei->i_flags |= EXT3_APPEND_FL;
2874         if (flags & S_IMMUTABLE)
2875                 ei->i_flags |= EXT3_IMMUTABLE_FL;
2876         if (flags & S_NOATIME)
2877                 ei->i_flags |= EXT3_NOATIME_FL;
2878         if (flags & S_DIRSYNC)
2879                 ei->i_flags |= EXT3_DIRSYNC_FL;
2880 }
2881
2882 struct inode *ext3_iget(struct super_block *sb, unsigned long ino)
2883 {
2884         struct ext3_iloc iloc;
2885         struct ext3_inode *raw_inode;
2886         struct ext3_inode_info *ei;
2887         struct buffer_head *bh;
2888         struct inode *inode;
2889         journal_t *journal = EXT3_SB(sb)->s_journal;
2890         transaction_t *transaction;
2891         long ret;
2892         int block;
2893         uid_t i_uid;
2894         gid_t i_gid;
2895
2896         inode = iget_locked(sb, ino);
2897         if (!inode)
2898                 return ERR_PTR(-ENOMEM);
2899         if (!(inode->i_state & I_NEW))
2900                 return inode;
2901
2902         ei = EXT3_I(inode);
2903         ei->i_block_alloc_info = NULL;
2904
2905         ret = __ext3_get_inode_loc(inode, &iloc, 0);
2906         if (ret < 0)
2907                 goto bad_inode;
2908         bh = iloc.bh;
2909         raw_inode = ext3_raw_inode(&iloc);
2910         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2911         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2912         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2913         if(!(test_opt (inode->i_sb, NO_UID32))) {
2914                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2915                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2916         }
2917         i_uid_write(inode, i_uid);
2918         i_gid_write(inode, i_gid);
2919         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
2920         inode->i_size = le32_to_cpu(raw_inode->i_size);
2921         inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
2922         inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
2923         inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
2924         inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
2925
2926         ei->i_state_flags = 0;
2927         ei->i_dir_start_lookup = 0;
2928         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2929         /* We now have enough fields to check if the inode was active or not.
2930          * This is needed because nfsd might try to access dead inodes
2931          * the test is that same one that e2fsck uses
2932          * NeilBrown 1999oct15
2933          */
2934         if (inode->i_nlink == 0) {
2935                 if (inode->i_mode == 0 ||
2936                     !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) {
2937                         /* this inode is deleted */
2938                         brelse (bh);
2939                         ret = -ESTALE;
2940                         goto bad_inode;
2941                 }
2942                 /* The only unlinked inodes we let through here have
2943                  * valid i_mode and are being read by the orphan
2944                  * recovery code: that's fine, we're about to complete
2945                  * the process of deleting those. */
2946         }
2947         inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
2948         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2949 #ifdef EXT3_FRAGMENTS
2950         ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
2951         ei->i_frag_no = raw_inode->i_frag;
2952         ei->i_frag_size = raw_inode->i_fsize;
2953 #endif
2954         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
2955         if (!S_ISREG(inode->i_mode)) {
2956                 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
2957         } else {
2958                 inode->i_size |=
2959                         ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
2960         }
2961         ei->i_disksize = inode->i_size;
2962         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2963         ei->i_block_group = iloc.block_group;
2964         /*
2965          * NOTE! The in-memory inode i_data array is in little-endian order
2966          * even on big-endian machines: we do NOT byteswap the block numbers!
2967          */
2968         for (block = 0; block < EXT3_N_BLOCKS; block++)
2969                 ei->i_data[block] = raw_inode->i_block[block];
2970         INIT_LIST_HEAD(&ei->i_orphan);
2971
2972         /*
2973          * Set transaction id's of transactions that have to be committed
2974          * to finish f[data]sync. We set them to currently running transaction
2975          * as we cannot be sure that the inode or some of its metadata isn't
2976          * part of the transaction - the inode could have been reclaimed and
2977          * now it is reread from disk.
2978          */
2979         if (journal) {
2980                 tid_t tid;
2981
2982                 spin_lock(&journal->j_state_lock);
2983                 if (journal->j_running_transaction)
2984                         transaction = journal->j_running_transaction;
2985                 else
2986                         transaction = journal->j_committing_transaction;
2987                 if (transaction)
2988                         tid = transaction->t_tid;
2989                 else
2990                         tid = journal->j_commit_sequence;
2991                 spin_unlock(&journal->j_state_lock);
2992                 atomic_set(&ei->i_sync_tid, tid);
2993                 atomic_set(&ei->i_datasync_tid, tid);
2994         }
2995
2996         if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 &&
2997             EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) {
2998                 /*
2999                  * When mke2fs creates big inodes it does not zero out
3000                  * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
3001                  * so ignore those first few inodes.
3002                  */
3003                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3004                 if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3005                     EXT3_INODE_SIZE(inode->i_sb)) {
3006                         brelse (bh);
3007                         ret = -EIO;
3008                         goto bad_inode;
3009                 }
3010                 if (ei->i_extra_isize == 0) {
3011                         /* The extra space is currently unused. Use it. */
3012                         ei->i_extra_isize = sizeof(struct ext3_inode) -
3013                                             EXT3_GOOD_OLD_INODE_SIZE;
3014                 } else {
3015                         __le32 *magic = (void *)raw_inode +
3016                                         EXT3_GOOD_OLD_INODE_SIZE +
3017                                         ei->i_extra_isize;
3018                         if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC))
3019                                  ext3_set_inode_state(inode, EXT3_STATE_XATTR);
3020                 }
3021         } else
3022                 ei->i_extra_isize = 0;
3023
3024         if (S_ISREG(inode->i_mode)) {
3025                 inode->i_op = &ext3_file_inode_operations;
3026                 inode->i_fop = &ext3_file_operations;
3027                 ext3_set_aops(inode);
3028         } else if (S_ISDIR(inode->i_mode)) {
3029                 inode->i_op = &ext3_dir_inode_operations;
3030                 inode->i_fop = &ext3_dir_operations;
3031         } else if (S_ISLNK(inode->i_mode)) {
3032                 if (ext3_inode_is_fast_symlink(inode)) {
3033                         inode->i_op = &ext3_fast_symlink_inode_operations;
3034                         nd_terminate_link(ei->i_data, inode->i_size,
3035                                 sizeof(ei->i_data) - 1);
3036                 } else {
3037                         inode->i_op = &ext3_symlink_inode_operations;
3038                         ext3_set_aops(inode);
3039                 }
3040         } else {
3041                 inode->i_op = &ext3_special_inode_operations;
3042                 if (raw_inode->i_block[0])
3043                         init_special_inode(inode, inode->i_mode,
3044                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3045                 else
3046                         init_special_inode(inode, inode->i_mode,
3047                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3048         }
3049         brelse (iloc.bh);
3050         ext3_set_inode_flags(inode);
3051         unlock_new_inode(inode);
3052         return inode;
3053
3054 bad_inode:
3055         iget_failed(inode);
3056         return ERR_PTR(ret);
3057 }
3058
3059 /*
3060  * Post the struct inode info into an on-disk inode location in the
3061  * buffer-cache.  This gobbles the caller's reference to the
3062  * buffer_head in the inode location struct.
3063  *
3064  * The caller must have write access to iloc->bh.
3065  */
3066 static int ext3_do_update_inode(handle_t *handle,
3067                                 struct inode *inode,
3068                                 struct ext3_iloc *iloc)
3069 {
3070         struct ext3_inode *raw_inode = ext3_raw_inode(iloc);
3071         struct ext3_inode_info *ei = EXT3_I(inode);
3072         struct buffer_head *bh = iloc->bh;
3073         int err = 0, rc, block;
3074         int need_datasync = 0;
3075         __le32 disksize;
3076         uid_t i_uid;
3077         gid_t i_gid;
3078
3079 again:
3080         /* we can't allow multiple procs in here at once, its a bit racey */
3081         lock_buffer(bh);
3082
3083         /* For fields not not tracking in the in-memory inode,
3084          * initialise them to zero for new inodes. */
3085         if (ext3_test_inode_state(inode, EXT3_STATE_NEW))
3086                 memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size);
3087
3088         ext3_get_inode_flags(ei);
3089         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3090         i_uid = i_uid_read(inode);
3091         i_gid = i_gid_read(inode);
3092         if(!(test_opt(inode->i_sb, NO_UID32))) {
3093                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
3094                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
3095 /*
3096  * Fix up interoperability with old kernels. Otherwise, old inodes get
3097  * re-used with the upper 16 bits of the uid/gid intact
3098  */
3099                 if(!ei->i_dtime) {
3100                         raw_inode->i_uid_high =
3101                                 cpu_to_le16(high_16_bits(i_uid));
3102                         raw_inode->i_gid_high =
3103                                 cpu_to_le16(high_16_bits(i_gid));
3104                 } else {
3105                         raw_inode->i_uid_high = 0;
3106                         raw_inode->i_gid_high = 0;
3107                 }
3108         } else {
3109                 raw_inode->i_uid_low =
3110                         cpu_to_le16(fs_high2lowuid(i_uid));
3111                 raw_inode->i_gid_low =
3112                         cpu_to_le16(fs_high2lowgid(i_gid));
3113                 raw_inode->i_uid_high = 0;
3114                 raw_inode->i_gid_high = 0;
3115         }
3116         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
3117         disksize = cpu_to_le32(ei->i_disksize);
3118         if (disksize != raw_inode->i_size) {
3119                 need_datasync = 1;
3120                 raw_inode->i_size = disksize;
3121         }
3122         raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
3123         raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
3124         raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
3125         raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
3126         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
3127         raw_inode->i_flags = cpu_to_le32(ei->i_flags);
3128 #ifdef EXT3_FRAGMENTS
3129         raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
3130         raw_inode->i_frag = ei->i_frag_no;
3131         raw_inode->i_fsize = ei->i_frag_size;
3132 #endif
3133         raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
3134         if (!S_ISREG(inode->i_mode)) {
3135                 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
3136         } else {
3137                 disksize = cpu_to_le32(ei->i_disksize >> 32);
3138                 if (disksize != raw_inode->i_size_high) {
3139                         raw_inode->i_size_high = disksize;
3140                         need_datasync = 1;
3141                 }
3142                 if (ei->i_disksize > 0x7fffffffULL) {
3143                         struct super_block *sb = inode->i_sb;
3144                         if (!EXT3_HAS_RO_COMPAT_FEATURE(sb,
3145                                         EXT3_FEATURE_RO_COMPAT_LARGE_FILE) ||
3146                             EXT3_SB(sb)->s_es->s_rev_level ==
3147                                         cpu_to_le32(EXT3_GOOD_OLD_REV)) {
3148                                /* If this is the first large file
3149                                 * created, add a flag to the superblock.
3150                                 */
3151                                 unlock_buffer(bh);
3152                                 err = ext3_journal_get_write_access(handle,
3153                                                 EXT3_SB(sb)->s_sbh);
3154                                 if (err)
3155                                         goto out_brelse;
3156
3157                                 ext3_update_dynamic_rev(sb);
3158                                 EXT3_SET_RO_COMPAT_FEATURE(sb,
3159                                         EXT3_FEATURE_RO_COMPAT_LARGE_FILE);
3160                                 handle->h_sync = 1;
3161                                 err = ext3_journal_dirty_metadata(handle,
3162                                                 EXT3_SB(sb)->s_sbh);
3163                                 /* get our lock and start over */
3164                                 goto again;
3165                         }
3166                 }
3167         }
3168         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
3169         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
3170                 if (old_valid_dev(inode->i_rdev)) {
3171                         raw_inode->i_block[0] =
3172                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
3173                         raw_inode->i_block[1] = 0;
3174                 } else {
3175                         raw_inode->i_block[0] = 0;
3176                         raw_inode->i_block[1] =
3177                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
3178                         raw_inode->i_block[2] = 0;
3179                 }
3180         } else for (block = 0; block < EXT3_N_BLOCKS; block++)
3181                 raw_inode->i_block[block] = ei->i_data[block];
3182
3183         if (ei->i_extra_isize)
3184                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
3185
3186         BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
3187         unlock_buffer(bh);
3188         rc = ext3_journal_dirty_metadata(handle, bh);
3189         if (!err)
3190                 err = rc;
3191         ext3_clear_inode_state(inode, EXT3_STATE_NEW);
3192
3193         atomic_set(&ei->i_sync_tid, handle->h_transaction->t_tid);
3194         if (need_datasync)
3195                 atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
3196 out_brelse:
3197         brelse (bh);
3198         ext3_std_error(inode->i_sb, err);
3199         return err;
3200 }
3201
3202 /*
3203  * ext3_write_inode()
3204  *
3205  * We are called from a few places:
3206  *
3207  * - Within generic_file_write() for O_SYNC files.
3208  *   Here, there will be no transaction running. We wait for any running
3209  *   transaction to commit.
3210  *
3211  * - Within sys_sync(), kupdate and such.
3212  *   We wait on commit, if tol to.
3213  *
3214  * - Within prune_icache() (PF_MEMALLOC == true)
3215  *   Here we simply return.  We can't afford to block kswapd on the
3216  *   journal commit.
3217  *
3218  * In all cases it is actually safe for us to return without doing anything,
3219  * because the inode has been copied into a raw inode buffer in
3220  * ext3_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
3221  * knfsd.
3222  *
3223  * Note that we are absolutely dependent upon all inode dirtiers doing the
3224  * right thing: they *must* call mark_inode_dirty() after dirtying info in
3225  * which we are interested.
3226  *
3227  * It would be a bug for them to not do this.  The code:
3228  *
3229  *      mark_inode_dirty(inode)
3230  *      stuff();
3231  *      inode->i_size = expr;
3232  *
3233  * is in error because a kswapd-driven write_inode() could occur while
3234  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
3235  * will no longer be on the superblock's dirty inode list.
3236  */
3237 int ext3_write_inode(struct inode *inode, struct writeback_control *wbc)
3238 {
3239         if (current->flags & PF_MEMALLOC)
3240                 return 0;
3241
3242         if (ext3_journal_current_handle()) {
3243                 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3244                 dump_stack();
3245                 return -EIO;
3246         }
3247
3248         if (wbc->sync_mode != WB_SYNC_ALL)
3249                 return 0;
3250
3251         return ext3_force_commit(inode->i_sb);
3252 }
3253
3254 /*
3255  * ext3_setattr()
3256  *
3257  * Called from notify_change.
3258  *
3259  * We want to trap VFS attempts to truncate the file as soon as
3260  * possible.  In particular, we want to make sure that when the VFS
3261  * shrinks i_size, we put the inode on the orphan list and modify
3262  * i_disksize immediately, so that during the subsequent flushing of
3263  * dirty pages and freeing of disk blocks, we can guarantee that any
3264  * commit will leave the blocks being flushed in an unused state on
3265  * disk.  (On recovery, the inode will get truncated and the blocks will
3266  * be freed, so we have a strong guarantee that no future commit will
3267  * leave these blocks visible to the user.)
3268  *
3269  * Called with inode->sem down.
3270  */
3271 int ext3_setattr(struct dentry *dentry, struct iattr *attr)
3272 {
3273         struct inode *inode = dentry->d_inode;
3274         int error, rc = 0;
3275         const unsigned int ia_valid = attr->ia_valid;
3276
3277         error = inode_change_ok(inode, attr);
3278         if (error)
3279                 return error;
3280
3281         if (is_quota_modification(inode, attr))
3282                 dquot_initialize(inode);
3283         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
3284             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
3285                 handle_t *handle;
3286
3287                 /* (user+group)*(old+new) structure, inode write (sb,
3288                  * inode block, ? - but truncate inode update has it) */
3289                 handle = ext3_journal_start(inode, EXT3_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
3290                                         EXT3_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)+3);
3291                 if (IS_ERR(handle)) {
3292                         error = PTR_ERR(handle);
3293                         goto err_out;
3294                 }
3295                 error = dquot_transfer(inode, attr);
3296                 if (error) {
3297                         ext3_journal_stop(handle);
3298                         return error;
3299                 }
3300                 /* Update corresponding info in inode so that everything is in
3301                  * one transaction */
3302                 if (attr->ia_valid & ATTR_UID)
3303                         inode->i_uid = attr->ia_uid;
3304                 if (attr->ia_valid & ATTR_GID)
3305                         inode->i_gid = attr->ia_gid;
3306                 error = ext3_mark_inode_dirty(handle, inode);
3307                 ext3_journal_stop(handle);
3308         }
3309
3310         if (attr->ia_valid & ATTR_SIZE)
3311                 inode_dio_wait(inode);
3312
3313         if (S_ISREG(inode->i_mode) &&
3314             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
3315                 handle_t *handle;
3316
3317                 handle = ext3_journal_start(inode, 3);
3318                 if (IS_ERR(handle)) {
3319                         error = PTR_ERR(handle);
3320                         goto err_out;
3321                 }
3322
3323                 error = ext3_orphan_add(handle, inode);
3324                 if (error) {
3325                         ext3_journal_stop(handle);
3326                         goto err_out;
3327                 }
3328                 EXT3_I(inode)->i_disksize = attr->ia_size;
3329                 error = ext3_mark_inode_dirty(handle, inode);
3330                 ext3_journal_stop(handle);
3331                 if (error) {
3332                         /* Some hard fs error must have happened. Bail out. */
3333                         ext3_orphan_del(NULL, inode);
3334                         goto err_out;
3335                 }
3336                 rc = ext3_block_truncate_page(inode, attr->ia_size);
3337                 if (rc) {
3338                         /* Cleanup orphan list and exit */
3339                         handle = ext3_journal_start(inode, 3);
3340                         if (IS_ERR(handle)) {
3341                                 ext3_orphan_del(NULL, inode);
3342                                 goto err_out;
3343                         }
3344                         ext3_orphan_del(handle, inode);
3345                         ext3_journal_stop(handle);
3346                         goto err_out;
3347                 }
3348         }
3349
3350         if ((attr->ia_valid & ATTR_SIZE) &&
3351             attr->ia_size != i_size_read(inode)) {
3352                 truncate_setsize(inode, attr->ia_size);
3353                 ext3_truncate(inode);
3354         }
3355
3356         setattr_copy(inode, attr);
3357         mark_inode_dirty(inode);
3358
3359         if (ia_valid & ATTR_MODE)
3360                 rc = ext3_acl_chmod(inode);
3361
3362 err_out:
3363         ext3_std_error(inode->i_sb, error);
3364         if (!error)
3365                 error = rc;
3366         return error;
3367 }
3368
3369
3370 /*
3371  * How many blocks doth make a writepage()?
3372  *
3373  * With N blocks per page, it may be:
3374  * N data blocks
3375  * 2 indirect block
3376  * 2 dindirect
3377  * 1 tindirect
3378  * N+5 bitmap blocks (from the above)
3379  * N+5 group descriptor summary blocks
3380  * 1 inode block
3381  * 1 superblock.
3382  * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
3383  *
3384  * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
3385  *
3386  * With ordered or writeback data it's the same, less the N data blocks.
3387  *
3388  * If the inode's direct blocks can hold an integral number of pages then a
3389  * page cannot straddle two indirect blocks, and we can only touch one indirect
3390  * and dindirect block, and the "5" above becomes "3".
3391  *
3392  * This still overestimates under most circumstances.  If we were to pass the
3393  * start and end offsets in here as well we could do block_to_path() on each
3394  * block and work out the exact number of indirects which are touched.  Pah.
3395  */
3396
3397 static int ext3_writepage_trans_blocks(struct inode *inode)
3398 {
3399         int bpp = ext3_journal_blocks_per_page(inode);
3400         int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3;
3401         int ret;
3402
3403         if (ext3_should_journal_data(inode))
3404                 ret = 3 * (bpp + indirects) + 2;
3405         else
3406                 ret = 2 * (bpp + indirects) + indirects + 2;
3407
3408 #ifdef CONFIG_QUOTA
3409         /* We know that structure was already allocated during dquot_initialize so
3410          * we will be updating only the data blocks + inodes */
3411         ret += EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
3412 #endif
3413
3414         return ret;
3415 }
3416
3417 /*
3418  * The caller must have previously called ext3_reserve_inode_write().
3419  * Give this, we know that the caller already has write access to iloc->bh.
3420  */
3421 int ext3_mark_iloc_dirty(handle_t *handle,
3422                 struct inode *inode, struct ext3_iloc *iloc)
3423 {
3424         int err = 0;
3425
3426         /* the do_update_inode consumes one bh->b_count */
3427         get_bh(iloc->bh);
3428
3429         /* ext3_do_update_inode() does journal_dirty_metadata */
3430         err = ext3_do_update_inode(handle, inode, iloc);
3431         put_bh(iloc->bh);
3432         return err;
3433 }
3434
3435 /*
3436  * On success, We end up with an outstanding reference count against
3437  * iloc->bh.  This _must_ be cleaned up later.
3438  */
3439
3440 int
3441 ext3_reserve_inode_write(handle_t *handle, struct inode *inode,
3442                          struct ext3_iloc *iloc)
3443 {
3444         int err = 0;
3445         if (handle) {
3446                 err = ext3_get_inode_loc(inode, iloc);
3447                 if (!err) {
3448                         BUFFER_TRACE(iloc->bh, "get_write_access");
3449                         err = ext3_journal_get_write_access(handle, iloc->bh);
3450                         if (err) {
3451                                 brelse(iloc->bh);
3452                                 iloc->bh = NULL;
3453                         }
3454                 }
3455         }
3456         ext3_std_error(inode->i_sb, err);
3457         return err;
3458 }
3459
3460 /*
3461  * What we do here is to mark the in-core inode as clean with respect to inode
3462  * dirtiness (it may still be data-dirty).
3463  * This means that the in-core inode may be reaped by prune_icache
3464  * without having to perform any I/O.  This is a very good thing,
3465  * because *any* task may call prune_icache - even ones which
3466  * have a transaction open against a different journal.
3467  *
3468  * Is this cheating?  Not really.  Sure, we haven't written the
3469  * inode out, but prune_icache isn't a user-visible syncing function.
3470  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3471  * we start and wait on commits.
3472  */
3473 int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode)
3474 {
3475         struct ext3_iloc iloc;
3476         int err;
3477
3478         might_sleep();
3479         trace_ext3_mark_inode_dirty(inode, _RET_IP_);
3480         err = ext3_reserve_inode_write(handle, inode, &iloc);
3481         if (!err)
3482                 err = ext3_mark_iloc_dirty(handle, inode, &iloc);
3483         return err;
3484 }
3485
3486 /*
3487  * ext3_dirty_inode() is called from __mark_inode_dirty()
3488  *
3489  * We're really interested in the case where a file is being extended.
3490  * i_size has been changed by generic_commit_write() and we thus need
3491  * to include the updated inode in the current transaction.
3492  *
3493  * Also, dquot_alloc_space() will always dirty the inode when blocks
3494  * are allocated to the file.
3495  *
3496  * If the inode is marked synchronous, we don't honour that here - doing
3497  * so would cause a commit on atime updates, which we don't bother doing.
3498  * We handle synchronous inodes at the highest possible level.
3499  */
3500 void ext3_dirty_inode(struct inode *inode, int flags)
3501 {
3502         handle_t *current_handle = ext3_journal_current_handle();
3503         handle_t *handle;
3504
3505         handle = ext3_journal_start(inode, 2);
3506         if (IS_ERR(handle))
3507                 goto out;
3508         if (current_handle &&
3509                 current_handle->h_transaction != handle->h_transaction) {
3510                 /* This task has a transaction open against a different fs */
3511                 printk(KERN_EMERG "%s: transactions do not match!\n",
3512                        __func__);
3513         } else {
3514                 jbd_debug(5, "marking dirty.  outer handle=%p\n",
3515                                 current_handle);
3516                 ext3_mark_inode_dirty(handle, inode);
3517         }
3518         ext3_journal_stop(handle);
3519 out:
3520         return;
3521 }
3522
3523 #if 0
3524 /*
3525  * Bind an inode's backing buffer_head into this transaction, to prevent
3526  * it from being flushed to disk early.  Unlike
3527  * ext3_reserve_inode_write, this leaves behind no bh reference and
3528  * returns no iloc structure, so the caller needs to repeat the iloc
3529  * lookup to mark the inode dirty later.
3530  */
3531 static int ext3_pin_inode(handle_t *handle, struct inode *inode)
3532 {
3533         struct ext3_iloc iloc;
3534
3535         int err = 0;
3536         if (handle) {
3537                 err = ext3_get_inode_loc(inode, &iloc);
3538                 if (!err) {
3539                         BUFFER_TRACE(iloc.bh, "get_write_access");
3540                         err = journal_get_write_access(handle, iloc.bh);
3541                         if (!err)
3542                                 err = ext3_journal_dirty_metadata(handle,
3543                                                                   iloc.bh);
3544                         brelse(iloc.bh);
3545                 }
3546         }
3547         ext3_std_error(inode->i_sb, err);
3548         return err;
3549 }
3550 #endif
3551
3552 int ext3_change_inode_journal_flag(struct inode *inode, int val)
3553 {
3554         journal_t *journal;
3555         handle_t *handle;
3556         int err;
3557
3558         /*
3559          * We have to be very careful here: changing a data block's
3560          * journaling status dynamically is dangerous.  If we write a
3561          * data block to the journal, change the status and then delete
3562          * that block, we risk forgetting to revoke the old log record
3563          * from the journal and so a subsequent replay can corrupt data.
3564          * So, first we make sure that the journal is empty and that
3565          * nobody is changing anything.
3566          */
3567
3568         journal = EXT3_JOURNAL(inode);
3569         if (is_journal_aborted(journal))
3570                 return -EROFS;
3571
3572         journal_lock_updates(journal);
3573         journal_flush(journal);
3574
3575         /*
3576          * OK, there are no updates running now, and all cached data is
3577          * synced to disk.  We are now in a completely consistent state
3578          * which doesn't have anything in the journal, and we know that
3579          * no filesystem updates are running, so it is safe to modify
3580          * the inode's in-core data-journaling state flag now.
3581          */
3582
3583         if (val)
3584                 EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL;
3585         else
3586                 EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL;
3587         ext3_set_aops(inode);
3588
3589         journal_unlock_updates(journal);
3590
3591         /* Finally we can mark the inode as dirty. */
3592
3593         handle = ext3_journal_start(inode, 1);
3594         if (IS_ERR(handle))
3595                 return PTR_ERR(handle);
3596
3597         err = ext3_mark_inode_dirty(handle, inode);
3598         handle->h_sync = 1;
3599         ext3_journal_stop(handle);
3600         ext3_std_error(inode->i_sb, err);
3601
3602         return err;
3603 }