ext4: rename ext4_indirect_* funcs to ext4_ind_*
[cascardo/linux.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
41 #include <linux/kernel.h>
42 #include <linux/printk.h>
43 #include <linux/slab.h>
44 #include <linux/ratelimit.h>
45
46 #include "ext4_jbd2.h"
47 #include "xattr.h"
48 #include "acl.h"
49 #include "ext4_extents.h"
50
51 #include <trace/events/ext4.h>
52
53 #define MPAGE_DA_EXTENT_TAIL 0x01
54
55 static inline int ext4_begin_ordered_truncate(struct inode *inode,
56                                               loff_t new_size)
57 {
58         trace_ext4_begin_ordered_truncate(inode, new_size);
59         /*
60          * If jinode is zero, then we never opened the file for
61          * writing, so there's no need to call
62          * jbd2_journal_begin_ordered_truncate() since there's no
63          * outstanding writes we need to flush.
64          */
65         if (!EXT4_I(inode)->jinode)
66                 return 0;
67         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
68                                                    EXT4_I(inode)->jinode,
69                                                    new_size);
70 }
71
72 static void ext4_invalidatepage(struct page *page, unsigned long offset);
73 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
74                                    struct buffer_head *bh_result, int create);
75 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
76 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
77 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
78 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
79
80 /*
81  * Test whether an inode is a fast symlink.
82  */
83 static int ext4_inode_is_fast_symlink(struct inode *inode)
84 {
85         int ea_blocks = EXT4_I(inode)->i_file_acl ?
86                 (inode->i_sb->s_blocksize >> 9) : 0;
87
88         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
89 }
90
91 /*
92  * Work out how many blocks we need to proceed with the next chunk of a
93  * truncate transaction.
94  */
95 static unsigned long blocks_for_truncate(struct inode *inode)
96 {
97         ext4_lblk_t needed;
98
99         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
100
101         /* Give ourselves just enough room to cope with inodes in which
102          * i_blocks is corrupt: we've seen disk corruptions in the past
103          * which resulted in random data in an inode which looked enough
104          * like a regular file for ext4 to try to delete it.  Things
105          * will go a bit crazy if that happens, but at least we should
106          * try not to panic the whole kernel. */
107         if (needed < 2)
108                 needed = 2;
109
110         /* But we need to bound the transaction so we don't overflow the
111          * journal. */
112         if (needed > EXT4_MAX_TRANS_DATA)
113                 needed = EXT4_MAX_TRANS_DATA;
114
115         return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
116 }
117
118 /*
119  * Truncate transactions can be complex and absolutely huge.  So we need to
120  * be able to restart the transaction at a conventient checkpoint to make
121  * sure we don't overflow the journal.
122  *
123  * start_transaction gets us a new handle for a truncate transaction,
124  * and extend_transaction tries to extend the existing one a bit.  If
125  * extend fails, we need to propagate the failure up and restart the
126  * transaction in the top-level truncate loop. --sct
127  */
128 static handle_t *start_transaction(struct inode *inode)
129 {
130         handle_t *result;
131
132         result = ext4_journal_start(inode, blocks_for_truncate(inode));
133         if (!IS_ERR(result))
134                 return result;
135
136         ext4_std_error(inode->i_sb, PTR_ERR(result));
137         return result;
138 }
139
140 /*
141  * Try to extend this transaction for the purposes of truncation.
142  *
143  * Returns 0 if we managed to create more room.  If we can't create more
144  * room, and the transaction must be restarted we return 1.
145  */
146 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
147 {
148         if (!ext4_handle_valid(handle))
149                 return 0;
150         if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
151                 return 0;
152         if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
153                 return 0;
154         return 1;
155 }
156
157 /*
158  * Restart the transaction associated with *handle.  This does a commit,
159  * so before we call here everything must be consistently dirtied against
160  * this transaction.
161  */
162 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
163                                  int nblocks)
164 {
165         int ret;
166
167         /*
168          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
169          * moment, get_block can be called only for blocks inside i_size since
170          * page cache has been already dropped and writes are blocked by
171          * i_mutex. So we can safely drop the i_data_sem here.
172          */
173         BUG_ON(EXT4_JOURNAL(inode) == NULL);
174         jbd_debug(2, "restarting handle %p\n", handle);
175         up_write(&EXT4_I(inode)->i_data_sem);
176         ret = ext4_journal_restart(handle, nblocks);
177         down_write(&EXT4_I(inode)->i_data_sem);
178         ext4_discard_preallocations(inode);
179
180         return ret;
181 }
182
183 /*
184  * Called at the last iput() if i_nlink is zero.
185  */
186 void ext4_evict_inode(struct inode *inode)
187 {
188         handle_t *handle;
189         int err;
190
191         trace_ext4_evict_inode(inode);
192         if (inode->i_nlink) {
193                 truncate_inode_pages(&inode->i_data, 0);
194                 goto no_delete;
195         }
196
197         if (!is_bad_inode(inode))
198                 dquot_initialize(inode);
199
200         if (ext4_should_order_data(inode))
201                 ext4_begin_ordered_truncate(inode, 0);
202         truncate_inode_pages(&inode->i_data, 0);
203
204         if (is_bad_inode(inode))
205                 goto no_delete;
206
207         handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
208         if (IS_ERR(handle)) {
209                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
210                 /*
211                  * If we're going to skip the normal cleanup, we still need to
212                  * make sure that the in-core orphan linked list is properly
213                  * cleaned up.
214                  */
215                 ext4_orphan_del(NULL, inode);
216                 goto no_delete;
217         }
218
219         if (IS_SYNC(inode))
220                 ext4_handle_sync(handle);
221         inode->i_size = 0;
222         err = ext4_mark_inode_dirty(handle, inode);
223         if (err) {
224                 ext4_warning(inode->i_sb,
225                              "couldn't mark inode dirty (err %d)", err);
226                 goto stop_handle;
227         }
228         if (inode->i_blocks)
229                 ext4_truncate(inode);
230
231         /*
232          * ext4_ext_truncate() doesn't reserve any slop when it
233          * restarts journal transactions; therefore there may not be
234          * enough credits left in the handle to remove the inode from
235          * the orphan list and set the dtime field.
236          */
237         if (!ext4_handle_has_enough_credits(handle, 3)) {
238                 err = ext4_journal_extend(handle, 3);
239                 if (err > 0)
240                         err = ext4_journal_restart(handle, 3);
241                 if (err != 0) {
242                         ext4_warning(inode->i_sb,
243                                      "couldn't extend journal (err %d)", err);
244                 stop_handle:
245                         ext4_journal_stop(handle);
246                         ext4_orphan_del(NULL, inode);
247                         goto no_delete;
248                 }
249         }
250
251         /*
252          * Kill off the orphan record which ext4_truncate created.
253          * AKPM: I think this can be inside the above `if'.
254          * Note that ext4_orphan_del() has to be able to cope with the
255          * deletion of a non-existent orphan - this is because we don't
256          * know if ext4_truncate() actually created an orphan record.
257          * (Well, we could do this if we need to, but heck - it works)
258          */
259         ext4_orphan_del(handle, inode);
260         EXT4_I(inode)->i_dtime  = get_seconds();
261
262         /*
263          * One subtle ordering requirement: if anything has gone wrong
264          * (transaction abort, IO errors, whatever), then we can still
265          * do these next steps (the fs will already have been marked as
266          * having errors), but we can't free the inode if the mark_dirty
267          * fails.
268          */
269         if (ext4_mark_inode_dirty(handle, inode))
270                 /* If that failed, just do the required in-core inode clear. */
271                 ext4_clear_inode(inode);
272         else
273                 ext4_free_inode(handle, inode);
274         ext4_journal_stop(handle);
275         return;
276 no_delete:
277         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
278 }
279
280 typedef struct {
281         __le32  *p;
282         __le32  key;
283         struct buffer_head *bh;
284 } Indirect;
285
286 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
287 {
288         p->key = *(p->p = v);
289         p->bh = bh;
290 }
291
292 /**
293  *      ext4_block_to_path - parse the block number into array of offsets
294  *      @inode: inode in question (we are only interested in its superblock)
295  *      @i_block: block number to be parsed
296  *      @offsets: array to store the offsets in
297  *      @boundary: set this non-zero if the referred-to block is likely to be
298  *             followed (on disk) by an indirect block.
299  *
300  *      To store the locations of file's data ext4 uses a data structure common
301  *      for UNIX filesystems - tree of pointers anchored in the inode, with
302  *      data blocks at leaves and indirect blocks in intermediate nodes.
303  *      This function translates the block number into path in that tree -
304  *      return value is the path length and @offsets[n] is the offset of
305  *      pointer to (n+1)th node in the nth one. If @block is out of range
306  *      (negative or too large) warning is printed and zero returned.
307  *
308  *      Note: function doesn't find node addresses, so no IO is needed. All
309  *      we need to know is the capacity of indirect blocks (taken from the
310  *      inode->i_sb).
311  */
312
313 /*
314  * Portability note: the last comparison (check that we fit into triple
315  * indirect block) is spelled differently, because otherwise on an
316  * architecture with 32-bit longs and 8Kb pages we might get into trouble
317  * if our filesystem had 8Kb blocks. We might use long long, but that would
318  * kill us on x86. Oh, well, at least the sign propagation does not matter -
319  * i_block would have to be negative in the very beginning, so we would not
320  * get there at all.
321  */
322
323 static int ext4_block_to_path(struct inode *inode,
324                               ext4_lblk_t i_block,
325                               ext4_lblk_t offsets[4], int *boundary)
326 {
327         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
328         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
329         const long direct_blocks = EXT4_NDIR_BLOCKS,
330                 indirect_blocks = ptrs,
331                 double_blocks = (1 << (ptrs_bits * 2));
332         int n = 0;
333         int final = 0;
334
335         if (i_block < direct_blocks) {
336                 offsets[n++] = i_block;
337                 final = direct_blocks;
338         } else if ((i_block -= direct_blocks) < indirect_blocks) {
339                 offsets[n++] = EXT4_IND_BLOCK;
340                 offsets[n++] = i_block;
341                 final = ptrs;
342         } else if ((i_block -= indirect_blocks) < double_blocks) {
343                 offsets[n++] = EXT4_DIND_BLOCK;
344                 offsets[n++] = i_block >> ptrs_bits;
345                 offsets[n++] = i_block & (ptrs - 1);
346                 final = ptrs;
347         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
348                 offsets[n++] = EXT4_TIND_BLOCK;
349                 offsets[n++] = i_block >> (ptrs_bits * 2);
350                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
351                 offsets[n++] = i_block & (ptrs - 1);
352                 final = ptrs;
353         } else {
354                 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
355                              i_block + direct_blocks +
356                              indirect_blocks + double_blocks, inode->i_ino);
357         }
358         if (boundary)
359                 *boundary = final - 1 - (i_block & (ptrs - 1));
360         return n;
361 }
362
363 static int __ext4_check_blockref(const char *function, unsigned int line,
364                                  struct inode *inode,
365                                  __le32 *p, unsigned int max)
366 {
367         struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
368         __le32 *bref = p;
369         unsigned int blk;
370
371         while (bref < p+max) {
372                 blk = le32_to_cpu(*bref++);
373                 if (blk &&
374                     unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
375                                                     blk, 1))) {
376                         es->s_last_error_block = cpu_to_le64(blk);
377                         ext4_error_inode(inode, function, line, blk,
378                                          "invalid block");
379                         return -EIO;
380                 }
381         }
382         return 0;
383 }
384
385
386 #define ext4_check_indirect_blockref(inode, bh)                         \
387         __ext4_check_blockref(__func__, __LINE__, inode,                \
388                               (__le32 *)(bh)->b_data,                   \
389                               EXT4_ADDR_PER_BLOCK((inode)->i_sb))
390
391 #define ext4_check_inode_blockref(inode)                                \
392         __ext4_check_blockref(__func__, __LINE__, inode,                \
393                               EXT4_I(inode)->i_data,                    \
394                               EXT4_NDIR_BLOCKS)
395
396 /**
397  *      ext4_get_branch - read the chain of indirect blocks leading to data
398  *      @inode: inode in question
399  *      @depth: depth of the chain (1 - direct pointer, etc.)
400  *      @offsets: offsets of pointers in inode/indirect blocks
401  *      @chain: place to store the result
402  *      @err: here we store the error value
403  *
404  *      Function fills the array of triples <key, p, bh> and returns %NULL
405  *      if everything went OK or the pointer to the last filled triple
406  *      (incomplete one) otherwise. Upon the return chain[i].key contains
407  *      the number of (i+1)-th block in the chain (as it is stored in memory,
408  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
409  *      number (it points into struct inode for i==0 and into the bh->b_data
410  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
411  *      block for i>0 and NULL for i==0. In other words, it holds the block
412  *      numbers of the chain, addresses they were taken from (and where we can
413  *      verify that chain did not change) and buffer_heads hosting these
414  *      numbers.
415  *
416  *      Function stops when it stumbles upon zero pointer (absent block)
417  *              (pointer to last triple returned, *@err == 0)
418  *      or when it gets an IO error reading an indirect block
419  *              (ditto, *@err == -EIO)
420  *      or when it reads all @depth-1 indirect blocks successfully and finds
421  *      the whole chain, all way to the data (returns %NULL, *err == 0).
422  *
423  *      Need to be called with
424  *      down_read(&EXT4_I(inode)->i_data_sem)
425  */
426 static Indirect *ext4_get_branch(struct inode *inode, int depth,
427                                  ext4_lblk_t  *offsets,
428                                  Indirect chain[4], int *err)
429 {
430         struct super_block *sb = inode->i_sb;
431         Indirect *p = chain;
432         struct buffer_head *bh;
433
434         *err = 0;
435         /* i_data is not going away, no lock needed */
436         add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
437         if (!p->key)
438                 goto no_block;
439         while (--depth) {
440                 bh = sb_getblk(sb, le32_to_cpu(p->key));
441                 if (unlikely(!bh))
442                         goto failure;
443
444                 if (!bh_uptodate_or_lock(bh)) {
445                         if (bh_submit_read(bh) < 0) {
446                                 put_bh(bh);
447                                 goto failure;
448                         }
449                         /* validate block references */
450                         if (ext4_check_indirect_blockref(inode, bh)) {
451                                 put_bh(bh);
452                                 goto failure;
453                         }
454                 }
455
456                 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
457                 /* Reader: end */
458                 if (!p->key)
459                         goto no_block;
460         }
461         return NULL;
462
463 failure:
464         *err = -EIO;
465 no_block:
466         return p;
467 }
468
469 /**
470  *      ext4_find_near - find a place for allocation with sufficient locality
471  *      @inode: owner
472  *      @ind: descriptor of indirect block.
473  *
474  *      This function returns the preferred place for block allocation.
475  *      It is used when heuristic for sequential allocation fails.
476  *      Rules are:
477  *        + if there is a block to the left of our position - allocate near it.
478  *        + if pointer will live in indirect block - allocate near that block.
479  *        + if pointer will live in inode - allocate in the same
480  *          cylinder group.
481  *
482  * In the latter case we colour the starting block by the callers PID to
483  * prevent it from clashing with concurrent allocations for a different inode
484  * in the same block group.   The PID is used here so that functionally related
485  * files will be close-by on-disk.
486  *
487  *      Caller must make sure that @ind is valid and will stay that way.
488  */
489 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
490 {
491         struct ext4_inode_info *ei = EXT4_I(inode);
492         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
493         __le32 *p;
494         ext4_fsblk_t bg_start;
495         ext4_fsblk_t last_block;
496         ext4_grpblk_t colour;
497         ext4_group_t block_group;
498         int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
499
500         /* Try to find previous block */
501         for (p = ind->p - 1; p >= start; p--) {
502                 if (*p)
503                         return le32_to_cpu(*p);
504         }
505
506         /* No such thing, so let's try location of indirect block */
507         if (ind->bh)
508                 return ind->bh->b_blocknr;
509
510         /*
511          * It is going to be referred to from the inode itself? OK, just put it
512          * into the same cylinder group then.
513          */
514         block_group = ei->i_block_group;
515         if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
516                 block_group &= ~(flex_size-1);
517                 if (S_ISREG(inode->i_mode))
518                         block_group++;
519         }
520         bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
521         last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
522
523         /*
524          * If we are doing delayed allocation, we don't need take
525          * colour into account.
526          */
527         if (test_opt(inode->i_sb, DELALLOC))
528                 return bg_start;
529
530         if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
531                 colour = (current->pid % 16) *
532                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
533         else
534                 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
535         return bg_start + colour;
536 }
537
538 /**
539  *      ext4_find_goal - find a preferred place for allocation.
540  *      @inode: owner
541  *      @block:  block we want
542  *      @partial: pointer to the last triple within a chain
543  *
544  *      Normally this function find the preferred place for block allocation,
545  *      returns it.
546  *      Because this is only used for non-extent files, we limit the block nr
547  *      to 32 bits.
548  */
549 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
550                                    Indirect *partial)
551 {
552         ext4_fsblk_t goal;
553
554         /*
555          * XXX need to get goal block from mballoc's data structures
556          */
557
558         goal = ext4_find_near(inode, partial);
559         goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
560         return goal;
561 }
562
563 /**
564  *      ext4_blks_to_allocate - Look up the block map and count the number
565  *      of direct blocks need to be allocated for the given branch.
566  *
567  *      @branch: chain of indirect blocks
568  *      @k: number of blocks need for indirect blocks
569  *      @blks: number of data blocks to be mapped.
570  *      @blocks_to_boundary:  the offset in the indirect block
571  *
572  *      return the total number of blocks to be allocate, including the
573  *      direct and indirect blocks.
574  */
575 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
576                                  int blocks_to_boundary)
577 {
578         unsigned int count = 0;
579
580         /*
581          * Simple case, [t,d]Indirect block(s) has not allocated yet
582          * then it's clear blocks on that path have not allocated
583          */
584         if (k > 0) {
585                 /* right now we don't handle cross boundary allocation */
586                 if (blks < blocks_to_boundary + 1)
587                         count += blks;
588                 else
589                         count += blocks_to_boundary + 1;
590                 return count;
591         }
592
593         count++;
594         while (count < blks && count <= blocks_to_boundary &&
595                 le32_to_cpu(*(branch[0].p + count)) == 0) {
596                 count++;
597         }
598         return count;
599 }
600
601 /**
602  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
603  *      @handle: handle for this transaction
604  *      @inode: inode which needs allocated blocks
605  *      @iblock: the logical block to start allocated at
606  *      @goal: preferred physical block of allocation
607  *      @indirect_blks: the number of blocks need to allocate for indirect
608  *                      blocks
609  *      @blks: number of desired blocks
610  *      @new_blocks: on return it will store the new block numbers for
611  *      the indirect blocks(if needed) and the first direct block,
612  *      @err: on return it will store the error code
613  *
614  *      This function will return the number of blocks allocated as
615  *      requested by the passed-in parameters.
616  */
617 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
618                              ext4_lblk_t iblock, ext4_fsblk_t goal,
619                              int indirect_blks, int blks,
620                              ext4_fsblk_t new_blocks[4], int *err)
621 {
622         struct ext4_allocation_request ar;
623         int target, i;
624         unsigned long count = 0, blk_allocated = 0;
625         int index = 0;
626         ext4_fsblk_t current_block = 0;
627         int ret = 0;
628
629         /*
630          * Here we try to allocate the requested multiple blocks at once,
631          * on a best-effort basis.
632          * To build a branch, we should allocate blocks for
633          * the indirect blocks(if not allocated yet), and at least
634          * the first direct block of this branch.  That's the
635          * minimum number of blocks need to allocate(required)
636          */
637         /* first we try to allocate the indirect blocks */
638         target = indirect_blks;
639         while (target > 0) {
640                 count = target;
641                 /* allocating blocks for indirect blocks and direct blocks */
642                 current_block = ext4_new_meta_blocks(handle, inode, goal,
643                                                      0, &count, err);
644                 if (*err)
645                         goto failed_out;
646
647                 if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
648                         EXT4_ERROR_INODE(inode,
649                                          "current_block %llu + count %lu > %d!",
650                                          current_block, count,
651                                          EXT4_MAX_BLOCK_FILE_PHYS);
652                         *err = -EIO;
653                         goto failed_out;
654                 }
655
656                 target -= count;
657                 /* allocate blocks for indirect blocks */
658                 while (index < indirect_blks && count) {
659                         new_blocks[index++] = current_block++;
660                         count--;
661                 }
662                 if (count > 0) {
663                         /*
664                          * save the new block number
665                          * for the first direct block
666                          */
667                         new_blocks[index] = current_block;
668                         printk(KERN_INFO "%s returned more blocks than "
669                                                 "requested\n", __func__);
670                         WARN_ON(1);
671                         break;
672                 }
673         }
674
675         target = blks - count ;
676         blk_allocated = count;
677         if (!target)
678                 goto allocated;
679         /* Now allocate data blocks */
680         memset(&ar, 0, sizeof(ar));
681         ar.inode = inode;
682         ar.goal = goal;
683         ar.len = target;
684         ar.logical = iblock;
685         if (S_ISREG(inode->i_mode))
686                 /* enable in-core preallocation only for regular files */
687                 ar.flags = EXT4_MB_HINT_DATA;
688
689         current_block = ext4_mb_new_blocks(handle, &ar, err);
690         if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
691                 EXT4_ERROR_INODE(inode,
692                                  "current_block %llu + ar.len %d > %d!",
693                                  current_block, ar.len,
694                                  EXT4_MAX_BLOCK_FILE_PHYS);
695                 *err = -EIO;
696                 goto failed_out;
697         }
698
699         if (*err && (target == blks)) {
700                 /*
701                  * if the allocation failed and we didn't allocate
702                  * any blocks before
703                  */
704                 goto failed_out;
705         }
706         if (!*err) {
707                 if (target == blks) {
708                         /*
709                          * save the new block number
710                          * for the first direct block
711                          */
712                         new_blocks[index] = current_block;
713                 }
714                 blk_allocated += ar.len;
715         }
716 allocated:
717         /* total number of blocks allocated for direct blocks */
718         ret = blk_allocated;
719         *err = 0;
720         return ret;
721 failed_out:
722         for (i = 0; i < index; i++)
723                 ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0);
724         return ret;
725 }
726
727 /**
728  *      ext4_alloc_branch - allocate and set up a chain of blocks.
729  *      @handle: handle for this transaction
730  *      @inode: owner
731  *      @indirect_blks: number of allocated indirect blocks
732  *      @blks: number of allocated direct blocks
733  *      @goal: preferred place for allocation
734  *      @offsets: offsets (in the blocks) to store the pointers to next.
735  *      @branch: place to store the chain in.
736  *
737  *      This function allocates blocks, zeroes out all but the last one,
738  *      links them into chain and (if we are synchronous) writes them to disk.
739  *      In other words, it prepares a branch that can be spliced onto the
740  *      inode. It stores the information about that chain in the branch[], in
741  *      the same format as ext4_get_branch() would do. We are calling it after
742  *      we had read the existing part of chain and partial points to the last
743  *      triple of that (one with zero ->key). Upon the exit we have the same
744  *      picture as after the successful ext4_get_block(), except that in one
745  *      place chain is disconnected - *branch->p is still zero (we did not
746  *      set the last link), but branch->key contains the number that should
747  *      be placed into *branch->p to fill that gap.
748  *
749  *      If allocation fails we free all blocks we've allocated (and forget
750  *      their buffer_heads) and return the error value the from failed
751  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
752  *      as described above and return 0.
753  */
754 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
755                              ext4_lblk_t iblock, int indirect_blks,
756                              int *blks, ext4_fsblk_t goal,
757                              ext4_lblk_t *offsets, Indirect *branch)
758 {
759         int blocksize = inode->i_sb->s_blocksize;
760         int i, n = 0;
761         int err = 0;
762         struct buffer_head *bh;
763         int num;
764         ext4_fsblk_t new_blocks[4];
765         ext4_fsblk_t current_block;
766
767         num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
768                                 *blks, new_blocks, &err);
769         if (err)
770                 return err;
771
772         branch[0].key = cpu_to_le32(new_blocks[0]);
773         /*
774          * metadata blocks and data blocks are allocated.
775          */
776         for (n = 1; n <= indirect_blks;  n++) {
777                 /*
778                  * Get buffer_head for parent block, zero it out
779                  * and set the pointer to new one, then send
780                  * parent to disk.
781                  */
782                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
783                 if (unlikely(!bh)) {
784                         err = -EIO;
785                         goto failed;
786                 }
787
788                 branch[n].bh = bh;
789                 lock_buffer(bh);
790                 BUFFER_TRACE(bh, "call get_create_access");
791                 err = ext4_journal_get_create_access(handle, bh);
792                 if (err) {
793                         /* Don't brelse(bh) here; it's done in
794                          * ext4_journal_forget() below */
795                         unlock_buffer(bh);
796                         goto failed;
797                 }
798
799                 memset(bh->b_data, 0, blocksize);
800                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
801                 branch[n].key = cpu_to_le32(new_blocks[n]);
802                 *branch[n].p = branch[n].key;
803                 if (n == indirect_blks) {
804                         current_block = new_blocks[n];
805                         /*
806                          * End of chain, update the last new metablock of
807                          * the chain to point to the new allocated
808                          * data blocks numbers
809                          */
810                         for (i = 1; i < num; i++)
811                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
812                 }
813                 BUFFER_TRACE(bh, "marking uptodate");
814                 set_buffer_uptodate(bh);
815                 unlock_buffer(bh);
816
817                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
818                 err = ext4_handle_dirty_metadata(handle, inode, bh);
819                 if (err)
820                         goto failed;
821         }
822         *blks = num;
823         return err;
824 failed:
825         /* Allocation failed, free what we already allocated */
826         ext4_free_blocks(handle, inode, NULL, new_blocks[0], 1, 0);
827         for (i = 1; i <= n ; i++) {
828                 /*
829                  * branch[i].bh is newly allocated, so there is no
830                  * need to revoke the block, which is why we don't
831                  * need to set EXT4_FREE_BLOCKS_METADATA.
832                  */
833                 ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1,
834                                  EXT4_FREE_BLOCKS_FORGET);
835         }
836         for (i = n+1; i < indirect_blks; i++)
837                 ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0);
838
839         ext4_free_blocks(handle, inode, NULL, new_blocks[i], num, 0);
840
841         return err;
842 }
843
844 /**
845  * ext4_splice_branch - splice the allocated branch onto inode.
846  * @handle: handle for this transaction
847  * @inode: owner
848  * @block: (logical) number of block we are adding
849  * @chain: chain of indirect blocks (with a missing link - see
850  *      ext4_alloc_branch)
851  * @where: location of missing link
852  * @num:   number of indirect blocks we are adding
853  * @blks:  number of direct blocks we are adding
854  *
855  * This function fills the missing link and does all housekeeping needed in
856  * inode (->i_blocks, etc.). In case of success we end up with the full
857  * chain to new block and return 0.
858  */
859 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
860                               ext4_lblk_t block, Indirect *where, int num,
861                               int blks)
862 {
863         int i;
864         int err = 0;
865         ext4_fsblk_t current_block;
866
867         /*
868          * If we're splicing into a [td]indirect block (as opposed to the
869          * inode) then we need to get write access to the [td]indirect block
870          * before the splice.
871          */
872         if (where->bh) {
873                 BUFFER_TRACE(where->bh, "get_write_access");
874                 err = ext4_journal_get_write_access(handle, where->bh);
875                 if (err)
876                         goto err_out;
877         }
878         /* That's it */
879
880         *where->p = where->key;
881
882         /*
883          * Update the host buffer_head or inode to point to more just allocated
884          * direct blocks blocks
885          */
886         if (num == 0 && blks > 1) {
887                 current_block = le32_to_cpu(where->key) + 1;
888                 for (i = 1; i < blks; i++)
889                         *(where->p + i) = cpu_to_le32(current_block++);
890         }
891
892         /* We are done with atomic stuff, now do the rest of housekeeping */
893         /* had we spliced it onto indirect block? */
894         if (where->bh) {
895                 /*
896                  * If we spliced it onto an indirect block, we haven't
897                  * altered the inode.  Note however that if it is being spliced
898                  * onto an indirect block at the very end of the file (the
899                  * file is growing) then we *will* alter the inode to reflect
900                  * the new i_size.  But that is not done here - it is done in
901                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
902                  */
903                 jbd_debug(5, "splicing indirect only\n");
904                 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
905                 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
906                 if (err)
907                         goto err_out;
908         } else {
909                 /*
910                  * OK, we spliced it into the inode itself on a direct block.
911                  */
912                 ext4_mark_inode_dirty(handle, inode);
913                 jbd_debug(5, "splicing direct\n");
914         }
915         return err;
916
917 err_out:
918         for (i = 1; i <= num; i++) {
919                 /*
920                  * branch[i].bh is newly allocated, so there is no
921                  * need to revoke the block, which is why we don't
922                  * need to set EXT4_FREE_BLOCKS_METADATA.
923                  */
924                 ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
925                                  EXT4_FREE_BLOCKS_FORGET);
926         }
927         ext4_free_blocks(handle, inode, NULL, le32_to_cpu(where[num].key),
928                          blks, 0);
929
930         return err;
931 }
932
933 /*
934  * The ext4_ind_map_blocks() function handles non-extents inodes
935  * (i.e., using the traditional indirect/double-indirect i_blocks
936  * scheme) for ext4_map_blocks().
937  *
938  * Allocation strategy is simple: if we have to allocate something, we will
939  * have to go the whole way to leaf. So let's do it before attaching anything
940  * to tree, set linkage between the newborn blocks, write them if sync is
941  * required, recheck the path, free and repeat if check fails, otherwise
942  * set the last missing link (that will protect us from any truncate-generated
943  * removals - all blocks on the path are immune now) and possibly force the
944  * write on the parent block.
945  * That has a nice additional property: no special recovery from the failed
946  * allocations is needed - we simply release blocks and do not touch anything
947  * reachable from inode.
948  *
949  * `handle' can be NULL if create == 0.
950  *
951  * return > 0, # of blocks mapped or allocated.
952  * return = 0, if plain lookup failed.
953  * return < 0, error case.
954  *
955  * The ext4_ind_get_blocks() function should be called with
956  * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
957  * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
958  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
959  * blocks.
960  */
961 static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
962                                struct ext4_map_blocks *map,
963                                int flags)
964 {
965         int err = -EIO;
966         ext4_lblk_t offsets[4];
967         Indirect chain[4];
968         Indirect *partial;
969         ext4_fsblk_t goal;
970         int indirect_blks;
971         int blocks_to_boundary = 0;
972         int depth;
973         int count = 0;
974         ext4_fsblk_t first_block = 0;
975
976         trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
977         J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
978         J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
979         depth = ext4_block_to_path(inode, map->m_lblk, offsets,
980                                    &blocks_to_boundary);
981
982         if (depth == 0)
983                 goto out;
984
985         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
986
987         /* Simplest case - block found, no allocation needed */
988         if (!partial) {
989                 first_block = le32_to_cpu(chain[depth - 1].key);
990                 count++;
991                 /*map more blocks*/
992                 while (count < map->m_len && count <= blocks_to_boundary) {
993                         ext4_fsblk_t blk;
994
995                         blk = le32_to_cpu(*(chain[depth-1].p + count));
996
997                         if (blk == first_block + count)
998                                 count++;
999                         else
1000                                 break;
1001                 }
1002                 goto got_it;
1003         }
1004
1005         /* Next simple case - plain lookup or failed read of indirect block */
1006         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
1007                 goto cleanup;
1008
1009         /*
1010          * Okay, we need to do block allocation.
1011         */
1012         goal = ext4_find_goal(inode, map->m_lblk, partial);
1013
1014         /* the number of blocks need to allocate for [d,t]indirect blocks */
1015         indirect_blks = (chain + depth) - partial - 1;
1016
1017         /*
1018          * Next look up the indirect map to count the totoal number of
1019          * direct blocks to allocate for this branch.
1020          */
1021         count = ext4_blks_to_allocate(partial, indirect_blks,
1022                                       map->m_len, blocks_to_boundary);
1023         /*
1024          * Block out ext4_truncate while we alter the tree
1025          */
1026         err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
1027                                 &count, goal,
1028                                 offsets + (partial - chain), partial);
1029
1030         /*
1031          * The ext4_splice_branch call will free and forget any buffers
1032          * on the new chain if there is a failure, but that risks using
1033          * up transaction credits, especially for bitmaps where the
1034          * credits cannot be returned.  Can we handle this somehow?  We
1035          * may need to return -EAGAIN upwards in the worst case.  --sct
1036          */
1037         if (!err)
1038                 err = ext4_splice_branch(handle, inode, map->m_lblk,
1039                                          partial, indirect_blks, count);
1040         if (err)
1041                 goto cleanup;
1042
1043         map->m_flags |= EXT4_MAP_NEW;
1044
1045         ext4_update_inode_fsync_trans(handle, inode, 1);
1046 got_it:
1047         map->m_flags |= EXT4_MAP_MAPPED;
1048         map->m_pblk = le32_to_cpu(chain[depth-1].key);
1049         map->m_len = count;
1050         if (count > blocks_to_boundary)
1051                 map->m_flags |= EXT4_MAP_BOUNDARY;
1052         err = count;
1053         /* Clean up and exit */
1054         partial = chain + depth - 1;    /* the whole chain */
1055 cleanup:
1056         while (partial > chain) {
1057                 BUFFER_TRACE(partial->bh, "call brelse");
1058                 brelse(partial->bh);
1059                 partial--;
1060         }
1061 out:
1062         trace_ext4_ind_map_blocks_exit(inode, map->m_lblk,
1063                                 map->m_pblk, map->m_len, err);
1064         return err;
1065 }
1066
1067 #ifdef CONFIG_QUOTA
1068 qsize_t *ext4_get_reserved_space(struct inode *inode)
1069 {
1070         return &EXT4_I(inode)->i_reserved_quota;
1071 }
1072 #endif
1073
1074 /*
1075  * Calculate the number of metadata blocks need to reserve
1076  * to allocate a new block at @lblocks for non extent file based file
1077  */
1078 static int ext4_ind_calc_metadata_amount(struct inode *inode, sector_t lblock)
1079 {
1080         struct ext4_inode_info *ei = EXT4_I(inode);
1081         sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
1082         int blk_bits;
1083
1084         if (lblock < EXT4_NDIR_BLOCKS)
1085                 return 0;
1086
1087         lblock -= EXT4_NDIR_BLOCKS;
1088
1089         if (ei->i_da_metadata_calc_len &&
1090             (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
1091                 ei->i_da_metadata_calc_len++;
1092                 return 0;
1093         }
1094         ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
1095         ei->i_da_metadata_calc_len = 1;
1096         blk_bits = order_base_2(lblock);
1097         return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
1098 }
1099
1100 /*
1101  * Calculate the number of metadata blocks need to reserve
1102  * to allocate a block located at @lblock
1103  */
1104 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
1105 {
1106         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1107                 return ext4_ext_calc_metadata_amount(inode, lblock);
1108
1109         return ext4_ind_calc_metadata_amount(inode, lblock);
1110 }
1111
1112 /*
1113  * Called with i_data_sem down, which is important since we can call
1114  * ext4_discard_preallocations() from here.
1115  */
1116 void ext4_da_update_reserve_space(struct inode *inode,
1117                                         int used, int quota_claim)
1118 {
1119         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1120         struct ext4_inode_info *ei = EXT4_I(inode);
1121
1122         spin_lock(&ei->i_block_reservation_lock);
1123         trace_ext4_da_update_reserve_space(inode, used);
1124         if (unlikely(used > ei->i_reserved_data_blocks)) {
1125                 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1126                          "with only %d reserved data blocks\n",
1127                          __func__, inode->i_ino, used,
1128                          ei->i_reserved_data_blocks);
1129                 WARN_ON(1);
1130                 used = ei->i_reserved_data_blocks;
1131         }
1132
1133         /* Update per-inode reservations */
1134         ei->i_reserved_data_blocks -= used;
1135         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
1136         percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1137                            used + ei->i_allocated_meta_blocks);
1138         ei->i_allocated_meta_blocks = 0;
1139
1140         if (ei->i_reserved_data_blocks == 0) {
1141                 /*
1142                  * We can release all of the reserved metadata blocks
1143                  * only when we have written all of the delayed
1144                  * allocation blocks.
1145                  */
1146                 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1147                                    ei->i_reserved_meta_blocks);
1148                 ei->i_reserved_meta_blocks = 0;
1149                 ei->i_da_metadata_calc_len = 0;
1150         }
1151         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1152
1153         /* Update quota subsystem for data blocks */
1154         if (quota_claim)
1155                 dquot_claim_block(inode, used);
1156         else {
1157                 /*
1158                  * We did fallocate with an offset that is already delayed
1159                  * allocated. So on delayed allocated writeback we should
1160                  * not re-claim the quota for fallocated blocks.
1161                  */
1162                 dquot_release_reservation_block(inode, used);
1163         }
1164
1165         /*
1166          * If we have done all the pending block allocations and if
1167          * there aren't any writers on the inode, we can discard the
1168          * inode's preallocations.
1169          */
1170         if ((ei->i_reserved_data_blocks == 0) &&
1171             (atomic_read(&inode->i_writecount) == 0))
1172                 ext4_discard_preallocations(inode);
1173 }
1174
1175 static int __check_block_validity(struct inode *inode, const char *func,
1176                                 unsigned int line,
1177                                 struct ext4_map_blocks *map)
1178 {
1179         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
1180                                    map->m_len)) {
1181                 ext4_error_inode(inode, func, line, map->m_pblk,
1182                                  "lblock %lu mapped to illegal pblock "
1183                                  "(length %d)", (unsigned long) map->m_lblk,
1184                                  map->m_len);
1185                 return -EIO;
1186         }
1187         return 0;
1188 }
1189
1190 #define check_block_validity(inode, map)        \
1191         __check_block_validity((inode), __func__, __LINE__, (map))
1192
1193 /*
1194  * Return the number of contiguous dirty pages in a given inode
1195  * starting at page frame idx.
1196  */
1197 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1198                                     unsigned int max_pages)
1199 {
1200         struct address_space *mapping = inode->i_mapping;
1201         pgoff_t index;
1202         struct pagevec pvec;
1203         pgoff_t num = 0;
1204         int i, nr_pages, done = 0;
1205
1206         if (max_pages == 0)
1207                 return 0;
1208         pagevec_init(&pvec, 0);
1209         while (!done) {
1210                 index = idx;
1211                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1212                                               PAGECACHE_TAG_DIRTY,
1213                                               (pgoff_t)PAGEVEC_SIZE);
1214                 if (nr_pages == 0)
1215                         break;
1216                 for (i = 0; i < nr_pages; i++) {
1217                         struct page *page = pvec.pages[i];
1218                         struct buffer_head *bh, *head;
1219
1220                         lock_page(page);
1221                         if (unlikely(page->mapping != mapping) ||
1222                             !PageDirty(page) ||
1223                             PageWriteback(page) ||
1224                             page->index != idx) {
1225                                 done = 1;
1226                                 unlock_page(page);
1227                                 break;
1228                         }
1229                         if (page_has_buffers(page)) {
1230                                 bh = head = page_buffers(page);
1231                                 do {
1232                                         if (!buffer_delay(bh) &&
1233                                             !buffer_unwritten(bh))
1234                                                 done = 1;
1235                                         bh = bh->b_this_page;
1236                                 } while (!done && (bh != head));
1237                         }
1238                         unlock_page(page);
1239                         if (done)
1240                                 break;
1241                         idx++;
1242                         num++;
1243                         if (num >= max_pages) {
1244                                 done = 1;
1245                                 break;
1246                         }
1247                 }
1248                 pagevec_release(&pvec);
1249         }
1250         return num;
1251 }
1252
1253 /*
1254  * The ext4_map_blocks() function tries to look up the requested blocks,
1255  * and returns if the blocks are already mapped.
1256  *
1257  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1258  * and store the allocated blocks in the result buffer head and mark it
1259  * mapped.
1260  *
1261  * If file type is extents based, it will call ext4_ext_map_blocks(),
1262  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
1263  * based files
1264  *
1265  * On success, it returns the number of blocks being mapped or allocate.
1266  * if create==0 and the blocks are pre-allocated and uninitialized block,
1267  * the result buffer head is unmapped. If the create ==1, it will make sure
1268  * the buffer head is mapped.
1269  *
1270  * It returns 0 if plain look up failed (blocks have not been allocated), in
1271  * that casem, buffer head is unmapped
1272  *
1273  * It returns the error in case of allocation failure.
1274  */
1275 int ext4_map_blocks(handle_t *handle, struct inode *inode,
1276                     struct ext4_map_blocks *map, int flags)
1277 {
1278         int retval;
1279
1280         map->m_flags = 0;
1281         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
1282                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
1283                   (unsigned long) map->m_lblk);
1284         /*
1285          * Try to see if we can get the block without requesting a new
1286          * file system block.
1287          */
1288         down_read((&EXT4_I(inode)->i_data_sem));
1289         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1290                 retval = ext4_ext_map_blocks(handle, inode, map, 0);
1291         } else {
1292                 retval = ext4_ind_map_blocks(handle, inode, map, 0);
1293         }
1294         up_read((&EXT4_I(inode)->i_data_sem));
1295
1296         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1297                 int ret = check_block_validity(inode, map);
1298                 if (ret != 0)
1299                         return ret;
1300         }
1301
1302         /* If it is only a block(s) look up */
1303         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1304                 return retval;
1305
1306         /*
1307          * Returns if the blocks have already allocated
1308          *
1309          * Note that if blocks have been preallocated
1310          * ext4_ext_get_block() returns th create = 0
1311          * with buffer head unmapped.
1312          */
1313         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
1314                 return retval;
1315
1316         /*
1317          * When we call get_blocks without the create flag, the
1318          * BH_Unwritten flag could have gotten set if the blocks
1319          * requested were part of a uninitialized extent.  We need to
1320          * clear this flag now that we are committed to convert all or
1321          * part of the uninitialized extent to be an initialized
1322          * extent.  This is because we need to avoid the combination
1323          * of BH_Unwritten and BH_Mapped flags being simultaneously
1324          * set on the buffer_head.
1325          */
1326         map->m_flags &= ~EXT4_MAP_UNWRITTEN;
1327
1328         /*
1329          * New blocks allocate and/or writing to uninitialized extent
1330          * will possibly result in updating i_data, so we take
1331          * the write lock of i_data_sem, and call get_blocks()
1332          * with create == 1 flag.
1333          */
1334         down_write((&EXT4_I(inode)->i_data_sem));
1335
1336         /*
1337          * if the caller is from delayed allocation writeout path
1338          * we have already reserved fs blocks for allocation
1339          * let the underlying get_block() function know to
1340          * avoid double accounting
1341          */
1342         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1343                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
1344         /*
1345          * We need to check for EXT4 here because migrate
1346          * could have changed the inode type in between
1347          */
1348         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1349                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
1350         } else {
1351                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
1352
1353                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
1354                         /*
1355                          * We allocated new blocks which will result in
1356                          * i_data's format changing.  Force the migrate
1357                          * to fail by clearing migrate flags
1358                          */
1359                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
1360                 }
1361
1362                 /*
1363                  * Update reserved blocks/metadata blocks after successful
1364                  * block allocation which had been deferred till now. We don't
1365                  * support fallocate for non extent files. So we can update
1366                  * reserve space here.
1367                  */
1368                 if ((retval > 0) &&
1369                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
1370                         ext4_da_update_reserve_space(inode, retval, 1);
1371         }
1372         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1373                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
1374
1375         up_write((&EXT4_I(inode)->i_data_sem));
1376         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1377                 int ret = check_block_validity(inode, map);
1378                 if (ret != 0)
1379                         return ret;
1380         }
1381         return retval;
1382 }
1383
1384 /* Maximum number of blocks we map for direct IO at once. */
1385 #define DIO_MAX_BLOCKS 4096
1386
1387 static int _ext4_get_block(struct inode *inode, sector_t iblock,
1388                            struct buffer_head *bh, int flags)
1389 {
1390         handle_t *handle = ext4_journal_current_handle();
1391         struct ext4_map_blocks map;
1392         int ret = 0, started = 0;
1393         int dio_credits;
1394
1395         map.m_lblk = iblock;
1396         map.m_len = bh->b_size >> inode->i_blkbits;
1397
1398         if (flags && !handle) {
1399                 /* Direct IO write... */
1400                 if (map.m_len > DIO_MAX_BLOCKS)
1401                         map.m_len = DIO_MAX_BLOCKS;
1402                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
1403                 handle = ext4_journal_start(inode, dio_credits);
1404                 if (IS_ERR(handle)) {
1405                         ret = PTR_ERR(handle);
1406                         return ret;
1407                 }
1408                 started = 1;
1409         }
1410
1411         ret = ext4_map_blocks(handle, inode, &map, flags);
1412         if (ret > 0) {
1413                 map_bh(bh, inode->i_sb, map.m_pblk);
1414                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1415                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
1416                 ret = 0;
1417         }
1418         if (started)
1419                 ext4_journal_stop(handle);
1420         return ret;
1421 }
1422
1423 int ext4_get_block(struct inode *inode, sector_t iblock,
1424                    struct buffer_head *bh, int create)
1425 {
1426         return _ext4_get_block(inode, iblock, bh,
1427                                create ? EXT4_GET_BLOCKS_CREATE : 0);
1428 }
1429
1430 /*
1431  * `handle' can be NULL if create is zero
1432  */
1433 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1434                                 ext4_lblk_t block, int create, int *errp)
1435 {
1436         struct ext4_map_blocks map;
1437         struct buffer_head *bh;
1438         int fatal = 0, err;
1439
1440         J_ASSERT(handle != NULL || create == 0);
1441
1442         map.m_lblk = block;
1443         map.m_len = 1;
1444         err = ext4_map_blocks(handle, inode, &map,
1445                               create ? EXT4_GET_BLOCKS_CREATE : 0);
1446
1447         if (err < 0)
1448                 *errp = err;
1449         if (err <= 0)
1450                 return NULL;
1451         *errp = 0;
1452
1453         bh = sb_getblk(inode->i_sb, map.m_pblk);
1454         if (!bh) {
1455                 *errp = -EIO;
1456                 return NULL;
1457         }
1458         if (map.m_flags & EXT4_MAP_NEW) {
1459                 J_ASSERT(create != 0);
1460                 J_ASSERT(handle != NULL);
1461
1462                 /*
1463                  * Now that we do not always journal data, we should
1464                  * keep in mind whether this should always journal the
1465                  * new buffer as metadata.  For now, regular file
1466                  * writes use ext4_get_block instead, so it's not a
1467                  * problem.
1468                  */
1469                 lock_buffer(bh);
1470                 BUFFER_TRACE(bh, "call get_create_access");
1471                 fatal = ext4_journal_get_create_access(handle, bh);
1472                 if (!fatal && !buffer_uptodate(bh)) {
1473                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1474                         set_buffer_uptodate(bh);
1475                 }
1476                 unlock_buffer(bh);
1477                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1478                 err = ext4_handle_dirty_metadata(handle, inode, bh);
1479                 if (!fatal)
1480                         fatal = err;
1481         } else {
1482                 BUFFER_TRACE(bh, "not a new buffer");
1483         }
1484         if (fatal) {
1485                 *errp = fatal;
1486                 brelse(bh);
1487                 bh = NULL;
1488         }
1489         return bh;
1490 }
1491
1492 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1493                                ext4_lblk_t block, int create, int *err)
1494 {
1495         struct buffer_head *bh;
1496
1497         bh = ext4_getblk(handle, inode, block, create, err);
1498         if (!bh)
1499                 return bh;
1500         if (buffer_uptodate(bh))
1501                 return bh;
1502         ll_rw_block(READ_META, 1, &bh);
1503         wait_on_buffer(bh);
1504         if (buffer_uptodate(bh))
1505                 return bh;
1506         put_bh(bh);
1507         *err = -EIO;
1508         return NULL;
1509 }
1510
1511 static int walk_page_buffers(handle_t *handle,
1512                              struct buffer_head *head,
1513                              unsigned from,
1514                              unsigned to,
1515                              int *partial,
1516                              int (*fn)(handle_t *handle,
1517                                        struct buffer_head *bh))
1518 {
1519         struct buffer_head *bh;
1520         unsigned block_start, block_end;
1521         unsigned blocksize = head->b_size;
1522         int err, ret = 0;
1523         struct buffer_head *next;
1524
1525         for (bh = head, block_start = 0;
1526              ret == 0 && (bh != head || !block_start);
1527              block_start = block_end, bh = next) {
1528                 next = bh->b_this_page;
1529                 block_end = block_start + blocksize;
1530                 if (block_end <= from || block_start >= to) {
1531                         if (partial && !buffer_uptodate(bh))
1532                                 *partial = 1;
1533                         continue;
1534                 }
1535                 err = (*fn)(handle, bh);
1536                 if (!ret)
1537                         ret = err;
1538         }
1539         return ret;
1540 }
1541
1542 /*
1543  * To preserve ordering, it is essential that the hole instantiation and
1544  * the data write be encapsulated in a single transaction.  We cannot
1545  * close off a transaction and start a new one between the ext4_get_block()
1546  * and the commit_write().  So doing the jbd2_journal_start at the start of
1547  * prepare_write() is the right place.
1548  *
1549  * Also, this function can nest inside ext4_writepage() ->
1550  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1551  * has generated enough buffer credits to do the whole page.  So we won't
1552  * block on the journal in that case, which is good, because the caller may
1553  * be PF_MEMALLOC.
1554  *
1555  * By accident, ext4 can be reentered when a transaction is open via
1556  * quota file writes.  If we were to commit the transaction while thus
1557  * reentered, there can be a deadlock - we would be holding a quota
1558  * lock, and the commit would never complete if another thread had a
1559  * transaction open and was blocking on the quota lock - a ranking
1560  * violation.
1561  *
1562  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1563  * will _not_ run commit under these circumstances because handle->h_ref
1564  * is elevated.  We'll still have enough credits for the tiny quotafile
1565  * write.
1566  */
1567 static int do_journal_get_write_access(handle_t *handle,
1568                                        struct buffer_head *bh)
1569 {
1570         int dirty = buffer_dirty(bh);
1571         int ret;
1572
1573         if (!buffer_mapped(bh) || buffer_freed(bh))
1574                 return 0;
1575         /*
1576          * __block_write_begin() could have dirtied some buffers. Clean
1577          * the dirty bit as jbd2_journal_get_write_access() could complain
1578          * otherwise about fs integrity issues. Setting of the dirty bit
1579          * by __block_write_begin() isn't a real problem here as we clear
1580          * the bit before releasing a page lock and thus writeback cannot
1581          * ever write the buffer.
1582          */
1583         if (dirty)
1584                 clear_buffer_dirty(bh);
1585         ret = ext4_journal_get_write_access(handle, bh);
1586         if (!ret && dirty)
1587                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1588         return ret;
1589 }
1590
1591 /*
1592  * Truncate blocks that were not used by write. We have to truncate the
1593  * pagecache as well so that corresponding buffers get properly unmapped.
1594  */
1595 static void ext4_truncate_failed_write(struct inode *inode)
1596 {
1597         truncate_inode_pages(inode->i_mapping, inode->i_size);
1598         ext4_truncate(inode);
1599 }
1600
1601 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
1602                    struct buffer_head *bh_result, int create);
1603 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1604                             loff_t pos, unsigned len, unsigned flags,
1605                             struct page **pagep, void **fsdata)
1606 {
1607         struct inode *inode = mapping->host;
1608         int ret, needed_blocks;
1609         handle_t *handle;
1610         int retries = 0;
1611         struct page *page;
1612         pgoff_t index;
1613         unsigned from, to;
1614
1615         trace_ext4_write_begin(inode, pos, len, flags);
1616         /*
1617          * Reserve one block more for addition to orphan list in case
1618          * we allocate blocks but write fails for some reason
1619          */
1620         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1621         index = pos >> PAGE_CACHE_SHIFT;
1622         from = pos & (PAGE_CACHE_SIZE - 1);
1623         to = from + len;
1624
1625 retry:
1626         handle = ext4_journal_start(inode, needed_blocks);
1627         if (IS_ERR(handle)) {
1628                 ret = PTR_ERR(handle);
1629                 goto out;
1630         }
1631
1632         /* We cannot recurse into the filesystem as the transaction is already
1633          * started */
1634         flags |= AOP_FLAG_NOFS;
1635
1636         page = grab_cache_page_write_begin(mapping, index, flags);
1637         if (!page) {
1638                 ext4_journal_stop(handle);
1639                 ret = -ENOMEM;
1640                 goto out;
1641         }
1642         *pagep = page;
1643
1644         if (ext4_should_dioread_nolock(inode))
1645                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1646         else
1647                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1648
1649         if (!ret && ext4_should_journal_data(inode)) {
1650                 ret = walk_page_buffers(handle, page_buffers(page),
1651                                 from, to, NULL, do_journal_get_write_access);
1652         }
1653
1654         if (ret) {
1655                 unlock_page(page);
1656                 page_cache_release(page);
1657                 /*
1658                  * __block_write_begin may have instantiated a few blocks
1659                  * outside i_size.  Trim these off again. Don't need
1660                  * i_size_read because we hold i_mutex.
1661                  *
1662                  * Add inode to orphan list in case we crash before
1663                  * truncate finishes
1664                  */
1665                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1666                         ext4_orphan_add(handle, inode);
1667
1668                 ext4_journal_stop(handle);
1669                 if (pos + len > inode->i_size) {
1670                         ext4_truncate_failed_write(inode);
1671                         /*
1672                          * If truncate failed early the inode might
1673                          * still be on the orphan list; we need to
1674                          * make sure the inode is removed from the
1675                          * orphan list in that case.
1676                          */
1677                         if (inode->i_nlink)
1678                                 ext4_orphan_del(NULL, inode);
1679                 }
1680         }
1681
1682         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1683                 goto retry;
1684 out:
1685         return ret;
1686 }
1687
1688 /* For write_end() in data=journal mode */
1689 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1690 {
1691         if (!buffer_mapped(bh) || buffer_freed(bh))
1692                 return 0;
1693         set_buffer_uptodate(bh);
1694         return ext4_handle_dirty_metadata(handle, NULL, bh);
1695 }
1696
1697 static int ext4_generic_write_end(struct file *file,
1698                                   struct address_space *mapping,
1699                                   loff_t pos, unsigned len, unsigned copied,
1700                                   struct page *page, void *fsdata)
1701 {
1702         int i_size_changed = 0;
1703         struct inode *inode = mapping->host;
1704         handle_t *handle = ext4_journal_current_handle();
1705
1706         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1707
1708         /*
1709          * No need to use i_size_read() here, the i_size
1710          * cannot change under us because we hold i_mutex.
1711          *
1712          * But it's important to update i_size while still holding page lock:
1713          * page writeout could otherwise come in and zero beyond i_size.
1714          */
1715         if (pos + copied > inode->i_size) {
1716                 i_size_write(inode, pos + copied);
1717                 i_size_changed = 1;
1718         }
1719
1720         if (pos + copied >  EXT4_I(inode)->i_disksize) {
1721                 /* We need to mark inode dirty even if
1722                  * new_i_size is less that inode->i_size
1723                  * bu greater than i_disksize.(hint delalloc)
1724                  */
1725                 ext4_update_i_disksize(inode, (pos + copied));
1726                 i_size_changed = 1;
1727         }
1728         unlock_page(page);
1729         page_cache_release(page);
1730
1731         /*
1732          * Don't mark the inode dirty under page lock. First, it unnecessarily
1733          * makes the holding time of page lock longer. Second, it forces lock
1734          * ordering of page lock and transaction start for journaling
1735          * filesystems.
1736          */
1737         if (i_size_changed)
1738                 ext4_mark_inode_dirty(handle, inode);
1739
1740         return copied;
1741 }
1742
1743 /*
1744  * We need to pick up the new inode size which generic_commit_write gave us
1745  * `file' can be NULL - eg, when called from page_symlink().
1746  *
1747  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1748  * buffers are managed internally.
1749  */
1750 static int ext4_ordered_write_end(struct file *file,
1751                                   struct address_space *mapping,
1752                                   loff_t pos, unsigned len, unsigned copied,
1753                                   struct page *page, void *fsdata)
1754 {
1755         handle_t *handle = ext4_journal_current_handle();
1756         struct inode *inode = mapping->host;
1757         int ret = 0, ret2;
1758
1759         trace_ext4_ordered_write_end(inode, pos, len, copied);
1760         ret = ext4_jbd2_file_inode(handle, inode);
1761
1762         if (ret == 0) {
1763                 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1764                                                         page, fsdata);
1765                 copied = ret2;
1766                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1767                         /* if we have allocated more blocks and copied
1768                          * less. We will have blocks allocated outside
1769                          * inode->i_size. So truncate them
1770                          */
1771                         ext4_orphan_add(handle, inode);
1772                 if (ret2 < 0)
1773                         ret = ret2;
1774         }
1775         ret2 = ext4_journal_stop(handle);
1776         if (!ret)
1777                 ret = ret2;
1778
1779         if (pos + len > inode->i_size) {
1780                 ext4_truncate_failed_write(inode);
1781                 /*
1782                  * If truncate failed early the inode might still be
1783                  * on the orphan list; we need to make sure the inode
1784                  * is removed from the orphan list in that case.
1785                  */
1786                 if (inode->i_nlink)
1787                         ext4_orphan_del(NULL, inode);
1788         }
1789
1790
1791         return ret ? ret : copied;
1792 }
1793
1794 static int ext4_writeback_write_end(struct file *file,
1795                                     struct address_space *mapping,
1796                                     loff_t pos, unsigned len, unsigned copied,
1797                                     struct page *page, void *fsdata)
1798 {
1799         handle_t *handle = ext4_journal_current_handle();
1800         struct inode *inode = mapping->host;
1801         int ret = 0, ret2;
1802
1803         trace_ext4_writeback_write_end(inode, pos, len, copied);
1804         ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1805                                                         page, fsdata);
1806         copied = ret2;
1807         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1808                 /* if we have allocated more blocks and copied
1809                  * less. We will have blocks allocated outside
1810                  * inode->i_size. So truncate them
1811                  */
1812                 ext4_orphan_add(handle, inode);
1813
1814         if (ret2 < 0)
1815                 ret = ret2;
1816
1817         ret2 = ext4_journal_stop(handle);
1818         if (!ret)
1819                 ret = ret2;
1820
1821         if (pos + len > inode->i_size) {
1822                 ext4_truncate_failed_write(inode);
1823                 /*
1824                  * If truncate failed early the inode might still be
1825                  * on the orphan list; we need to make sure the inode
1826                  * is removed from the orphan list in that case.
1827                  */
1828                 if (inode->i_nlink)
1829                         ext4_orphan_del(NULL, inode);
1830         }
1831
1832         return ret ? ret : copied;
1833 }
1834
1835 static int ext4_journalled_write_end(struct file *file,
1836                                      struct address_space *mapping,
1837                                      loff_t pos, unsigned len, unsigned copied,
1838                                      struct page *page, void *fsdata)
1839 {
1840         handle_t *handle = ext4_journal_current_handle();
1841         struct inode *inode = mapping->host;
1842         int ret = 0, ret2;
1843         int partial = 0;
1844         unsigned from, to;
1845         loff_t new_i_size;
1846
1847         trace_ext4_journalled_write_end(inode, pos, len, copied);
1848         from = pos & (PAGE_CACHE_SIZE - 1);
1849         to = from + len;
1850
1851         if (copied < len) {
1852                 if (!PageUptodate(page))
1853                         copied = 0;
1854                 page_zero_new_buffers(page, from+copied, to);
1855         }
1856
1857         ret = walk_page_buffers(handle, page_buffers(page), from,
1858                                 to, &partial, write_end_fn);
1859         if (!partial)
1860                 SetPageUptodate(page);
1861         new_i_size = pos + copied;
1862         if (new_i_size > inode->i_size)
1863                 i_size_write(inode, pos+copied);
1864         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1865         if (new_i_size > EXT4_I(inode)->i_disksize) {
1866                 ext4_update_i_disksize(inode, new_i_size);
1867                 ret2 = ext4_mark_inode_dirty(handle, inode);
1868                 if (!ret)
1869                         ret = ret2;
1870         }
1871
1872         unlock_page(page);
1873         page_cache_release(page);
1874         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1875                 /* if we have allocated more blocks and copied
1876                  * less. We will have blocks allocated outside
1877                  * inode->i_size. So truncate them
1878                  */
1879                 ext4_orphan_add(handle, inode);
1880
1881         ret2 = ext4_journal_stop(handle);
1882         if (!ret)
1883                 ret = ret2;
1884         if (pos + len > inode->i_size) {
1885                 ext4_truncate_failed_write(inode);
1886                 /*
1887                  * If truncate failed early the inode might still be
1888                  * on the orphan list; we need to make sure the inode
1889                  * is removed from the orphan list in that case.
1890                  */
1891                 if (inode->i_nlink)
1892                         ext4_orphan_del(NULL, inode);
1893         }
1894
1895         return ret ? ret : copied;
1896 }
1897
1898 /*
1899  * Reserve a single block located at lblock
1900  */
1901 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1902 {
1903         int retries = 0;
1904         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1905         struct ext4_inode_info *ei = EXT4_I(inode);
1906         unsigned long md_needed;
1907         int ret;
1908
1909         /*
1910          * recalculate the amount of metadata blocks to reserve
1911          * in order to allocate nrblocks
1912          * worse case is one extent per block
1913          */
1914 repeat:
1915         spin_lock(&ei->i_block_reservation_lock);
1916         md_needed = ext4_calc_metadata_amount(inode, lblock);
1917         trace_ext4_da_reserve_space(inode, md_needed);
1918         spin_unlock(&ei->i_block_reservation_lock);
1919
1920         /*
1921          * We will charge metadata quota at writeout time; this saves
1922          * us from metadata over-estimation, though we may go over by
1923          * a small amount in the end.  Here we just reserve for data.
1924          */
1925         ret = dquot_reserve_block(inode, 1);
1926         if (ret)
1927                 return ret;
1928         /*
1929          * We do still charge estimated metadata to the sb though;
1930          * we cannot afford to run out of free blocks.
1931          */
1932         if (ext4_claim_free_blocks(sbi, md_needed + 1, 0)) {
1933                 dquot_release_reservation_block(inode, 1);
1934                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1935                         yield();
1936                         goto repeat;
1937                 }
1938                 return -ENOSPC;
1939         }
1940         spin_lock(&ei->i_block_reservation_lock);
1941         ei->i_reserved_data_blocks++;
1942         ei->i_reserved_meta_blocks += md_needed;
1943         spin_unlock(&ei->i_block_reservation_lock);
1944
1945         return 0;       /* success */
1946 }
1947
1948 static void ext4_da_release_space(struct inode *inode, int to_free)
1949 {
1950         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1951         struct ext4_inode_info *ei = EXT4_I(inode);
1952
1953         if (!to_free)
1954                 return;         /* Nothing to release, exit */
1955
1956         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1957
1958         trace_ext4_da_release_space(inode, to_free);
1959         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1960                 /*
1961                  * if there aren't enough reserved blocks, then the
1962                  * counter is messed up somewhere.  Since this
1963                  * function is called from invalidate page, it's
1964                  * harmless to return without any action.
1965                  */
1966                 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1967                          "ino %lu, to_free %d with only %d reserved "
1968                          "data blocks\n", inode->i_ino, to_free,
1969                          ei->i_reserved_data_blocks);
1970                 WARN_ON(1);
1971                 to_free = ei->i_reserved_data_blocks;
1972         }
1973         ei->i_reserved_data_blocks -= to_free;
1974
1975         if (ei->i_reserved_data_blocks == 0) {
1976                 /*
1977                  * We can release all of the reserved metadata blocks
1978                  * only when we have written all of the delayed
1979                  * allocation blocks.
1980                  */
1981                 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1982                                    ei->i_reserved_meta_blocks);
1983                 ei->i_reserved_meta_blocks = 0;
1984                 ei->i_da_metadata_calc_len = 0;
1985         }
1986
1987         /* update fs dirty data blocks counter */
1988         percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1989
1990         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1991
1992         dquot_release_reservation_block(inode, to_free);
1993 }
1994
1995 static void ext4_da_page_release_reservation(struct page *page,
1996                                              unsigned long offset)
1997 {
1998         int to_release = 0;
1999         struct buffer_head *head, *bh;
2000         unsigned int curr_off = 0;
2001
2002         head = page_buffers(page);
2003         bh = head;
2004         do {
2005                 unsigned int next_off = curr_off + bh->b_size;
2006
2007                 if ((offset <= curr_off) && (buffer_delay(bh))) {
2008                         to_release++;
2009                         clear_buffer_delay(bh);
2010                 }
2011                 curr_off = next_off;
2012         } while ((bh = bh->b_this_page) != head);
2013         ext4_da_release_space(page->mapping->host, to_release);
2014 }
2015
2016 /*
2017  * Delayed allocation stuff
2018  */
2019
2020 /*
2021  * mpage_da_submit_io - walks through extent of pages and try to write
2022  * them with writepage() call back
2023  *
2024  * @mpd->inode: inode
2025  * @mpd->first_page: first page of the extent
2026  * @mpd->next_page: page after the last page of the extent
2027  *
2028  * By the time mpage_da_submit_io() is called we expect all blocks
2029  * to be allocated. this may be wrong if allocation failed.
2030  *
2031  * As pages are already locked by write_cache_pages(), we can't use it
2032  */
2033 static int mpage_da_submit_io(struct mpage_da_data *mpd,
2034                               struct ext4_map_blocks *map)
2035 {
2036         struct pagevec pvec;
2037         unsigned long index, end;
2038         int ret = 0, err, nr_pages, i;
2039         struct inode *inode = mpd->inode;
2040         struct address_space *mapping = inode->i_mapping;
2041         loff_t size = i_size_read(inode);
2042         unsigned int len, block_start;
2043         struct buffer_head *bh, *page_bufs = NULL;
2044         int journal_data = ext4_should_journal_data(inode);
2045         sector_t pblock = 0, cur_logical = 0;
2046         struct ext4_io_submit io_submit;
2047
2048         BUG_ON(mpd->next_page <= mpd->first_page);
2049         memset(&io_submit, 0, sizeof(io_submit));
2050         /*
2051          * We need to start from the first_page to the next_page - 1
2052          * to make sure we also write the mapped dirty buffer_heads.
2053          * If we look at mpd->b_blocknr we would only be looking
2054          * at the currently mapped buffer_heads.
2055          */
2056         index = mpd->first_page;
2057         end = mpd->next_page - 1;
2058
2059         pagevec_init(&pvec, 0);
2060         while (index <= end) {
2061                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2062                 if (nr_pages == 0)
2063                         break;
2064                 for (i = 0; i < nr_pages; i++) {
2065                         int commit_write = 0, skip_page = 0;
2066                         struct page *page = pvec.pages[i];
2067
2068                         index = page->index;
2069                         if (index > end)
2070                                 break;
2071
2072                         if (index == size >> PAGE_CACHE_SHIFT)
2073                                 len = size & ~PAGE_CACHE_MASK;
2074                         else
2075                                 len = PAGE_CACHE_SIZE;
2076                         if (map) {
2077                                 cur_logical = index << (PAGE_CACHE_SHIFT -
2078                                                         inode->i_blkbits);
2079                                 pblock = map->m_pblk + (cur_logical -
2080                                                         map->m_lblk);
2081                         }
2082                         index++;
2083
2084                         BUG_ON(!PageLocked(page));
2085                         BUG_ON(PageWriteback(page));
2086
2087                         /*
2088                          * If the page does not have buffers (for
2089                          * whatever reason), try to create them using
2090                          * __block_write_begin.  If this fails,
2091                          * skip the page and move on.
2092                          */
2093                         if (!page_has_buffers(page)) {
2094                                 if (__block_write_begin(page, 0, len,
2095                                                 noalloc_get_block_write)) {
2096                                 skip_page:
2097                                         unlock_page(page);
2098                                         continue;
2099                                 }
2100                                 commit_write = 1;
2101                         }
2102
2103                         bh = page_bufs = page_buffers(page);
2104                         block_start = 0;
2105                         do {
2106                                 if (!bh)
2107                                         goto skip_page;
2108                                 if (map && (cur_logical >= map->m_lblk) &&
2109                                     (cur_logical <= (map->m_lblk +
2110                                                      (map->m_len - 1)))) {
2111                                         if (buffer_delay(bh)) {
2112                                                 clear_buffer_delay(bh);
2113                                                 bh->b_blocknr = pblock;
2114                                         }
2115                                         if (buffer_unwritten(bh) ||
2116                                             buffer_mapped(bh))
2117                                                 BUG_ON(bh->b_blocknr != pblock);
2118                                         if (map->m_flags & EXT4_MAP_UNINIT)
2119                                                 set_buffer_uninit(bh);
2120                                         clear_buffer_unwritten(bh);
2121                                 }
2122
2123                                 /* skip page if block allocation undone */
2124                                 if (buffer_delay(bh) || buffer_unwritten(bh))
2125                                         skip_page = 1;
2126                                 bh = bh->b_this_page;
2127                                 block_start += bh->b_size;
2128                                 cur_logical++;
2129                                 pblock++;
2130                         } while (bh != page_bufs);
2131
2132                         if (skip_page)
2133                                 goto skip_page;
2134
2135                         if (commit_write)
2136                                 /* mark the buffer_heads as dirty & uptodate */
2137                                 block_commit_write(page, 0, len);
2138
2139                         clear_page_dirty_for_io(page);
2140                         /*
2141                          * Delalloc doesn't support data journalling,
2142                          * but eventually maybe we'll lift this
2143                          * restriction.
2144                          */
2145                         if (unlikely(journal_data && PageChecked(page)))
2146                                 err = __ext4_journalled_writepage(page, len);
2147                         else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
2148                                 err = ext4_bio_write_page(&io_submit, page,
2149                                                           len, mpd->wbc);
2150                         else
2151                                 err = block_write_full_page(page,
2152                                         noalloc_get_block_write, mpd->wbc);
2153
2154                         if (!err)
2155                                 mpd->pages_written++;
2156                         /*
2157                          * In error case, we have to continue because
2158                          * remaining pages are still locked
2159                          */
2160                         if (ret == 0)
2161                                 ret = err;
2162                 }
2163                 pagevec_release(&pvec);
2164         }
2165         ext4_io_submit(&io_submit);
2166         return ret;
2167 }
2168
2169 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
2170 {
2171         int nr_pages, i;
2172         pgoff_t index, end;
2173         struct pagevec pvec;
2174         struct inode *inode = mpd->inode;
2175         struct address_space *mapping = inode->i_mapping;
2176
2177         index = mpd->first_page;
2178         end   = mpd->next_page - 1;
2179         while (index <= end) {
2180                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2181                 if (nr_pages == 0)
2182                         break;
2183                 for (i = 0; i < nr_pages; i++) {
2184                         struct page *page = pvec.pages[i];
2185                         if (page->index > end)
2186                                 break;
2187                         BUG_ON(!PageLocked(page));
2188                         BUG_ON(PageWriteback(page));
2189                         block_invalidatepage(page, 0);
2190                         ClearPageUptodate(page);
2191                         unlock_page(page);
2192                 }
2193                 index = pvec.pages[nr_pages - 1]->index + 1;
2194                 pagevec_release(&pvec);
2195         }
2196         return;
2197 }
2198
2199 static void ext4_print_free_blocks(struct inode *inode)
2200 {
2201         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2202         printk(KERN_CRIT "Total free blocks count %lld\n",
2203                ext4_count_free_blocks(inode->i_sb));
2204         printk(KERN_CRIT "Free/Dirty block details\n");
2205         printk(KERN_CRIT "free_blocks=%lld\n",
2206                (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2207         printk(KERN_CRIT "dirty_blocks=%lld\n",
2208                (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2209         printk(KERN_CRIT "Block reservation details\n");
2210         printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2211                EXT4_I(inode)->i_reserved_data_blocks);
2212         printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2213                EXT4_I(inode)->i_reserved_meta_blocks);
2214         return;
2215 }
2216
2217 /*
2218  * mpage_da_map_and_submit - go through given space, map them
2219  *       if necessary, and then submit them for I/O
2220  *
2221  * @mpd - bh describing space
2222  *
2223  * The function skips space we know is already mapped to disk blocks.
2224  *
2225  */
2226 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
2227 {
2228         int err, blks, get_blocks_flags;
2229         struct ext4_map_blocks map, *mapp = NULL;
2230         sector_t next = mpd->b_blocknr;
2231         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2232         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2233         handle_t *handle = NULL;
2234
2235         /*
2236          * If the blocks are mapped already, or we couldn't accumulate
2237          * any blocks, then proceed immediately to the submission stage.
2238          */
2239         if ((mpd->b_size == 0) ||
2240             ((mpd->b_state  & (1 << BH_Mapped)) &&
2241              !(mpd->b_state & (1 << BH_Delay)) &&
2242              !(mpd->b_state & (1 << BH_Unwritten))))
2243                 goto submit_io;
2244
2245         handle = ext4_journal_current_handle();
2246         BUG_ON(!handle);
2247
2248         /*
2249          * Call ext4_map_blocks() to allocate any delayed allocation
2250          * blocks, or to convert an uninitialized extent to be
2251          * initialized (in the case where we have written into
2252          * one or more preallocated blocks).
2253          *
2254          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2255          * indicate that we are on the delayed allocation path.  This
2256          * affects functions in many different parts of the allocation
2257          * call path.  This flag exists primarily because we don't
2258          * want to change *many* call functions, so ext4_map_blocks()
2259          * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
2260          * inode's allocation semaphore is taken.
2261          *
2262          * If the blocks in questions were delalloc blocks, set
2263          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2264          * variables are updated after the blocks have been allocated.
2265          */
2266         map.m_lblk = next;
2267         map.m_len = max_blocks;
2268         get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
2269         if (ext4_should_dioread_nolock(mpd->inode))
2270                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2271         if (mpd->b_state & (1 << BH_Delay))
2272                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2273
2274         blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2275         if (blks < 0) {
2276                 struct super_block *sb = mpd->inode->i_sb;
2277
2278                 err = blks;
2279                 /*
2280                  * If get block returns EAGAIN or ENOSPC and there
2281                  * appears to be free blocks we will just let
2282                  * mpage_da_submit_io() unlock all of the pages.
2283                  */
2284                 if (err == -EAGAIN)
2285                         goto submit_io;
2286
2287                 if (err == -ENOSPC &&
2288                     ext4_count_free_blocks(sb)) {
2289                         mpd->retval = err;
2290                         goto submit_io;
2291                 }
2292
2293                 /*
2294                  * get block failure will cause us to loop in
2295                  * writepages, because a_ops->writepage won't be able
2296                  * to make progress. The page will be redirtied by
2297                  * writepage and writepages will again try to write
2298                  * the same.
2299                  */
2300                 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2301                         ext4_msg(sb, KERN_CRIT,
2302                                  "delayed block allocation failed for inode %lu "
2303                                  "at logical offset %llu with max blocks %zd "
2304                                  "with error %d", mpd->inode->i_ino,
2305                                  (unsigned long long) next,
2306                                  mpd->b_size >> mpd->inode->i_blkbits, err);
2307                         ext4_msg(sb, KERN_CRIT,
2308                                 "This should not happen!! Data will be lost\n");
2309                         if (err == -ENOSPC)
2310                                 ext4_print_free_blocks(mpd->inode);
2311                 }
2312                 /* invalidate all the pages */
2313                 ext4_da_block_invalidatepages(mpd);
2314
2315                 /* Mark this page range as having been completed */
2316                 mpd->io_done = 1;
2317                 return;
2318         }
2319         BUG_ON(blks == 0);
2320
2321         mapp = &map;
2322         if (map.m_flags & EXT4_MAP_NEW) {
2323                 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
2324                 int i;
2325
2326                 for (i = 0; i < map.m_len; i++)
2327                         unmap_underlying_metadata(bdev, map.m_pblk + i);
2328         }
2329
2330         if (ext4_should_order_data(mpd->inode)) {
2331                 err = ext4_jbd2_file_inode(handle, mpd->inode);
2332                 if (err)
2333                         /* This only happens if the journal is aborted */
2334                         return;
2335         }
2336
2337         /*
2338          * Update on-disk size along with block allocation.
2339          */
2340         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2341         if (disksize > i_size_read(mpd->inode))
2342                 disksize = i_size_read(mpd->inode);
2343         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2344                 ext4_update_i_disksize(mpd->inode, disksize);
2345                 err = ext4_mark_inode_dirty(handle, mpd->inode);
2346                 if (err)
2347                         ext4_error(mpd->inode->i_sb,
2348                                    "Failed to mark inode %lu dirty",
2349                                    mpd->inode->i_ino);
2350         }
2351
2352 submit_io:
2353         mpage_da_submit_io(mpd, mapp);
2354         mpd->io_done = 1;
2355 }
2356
2357 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2358                 (1 << BH_Delay) | (1 << BH_Unwritten))
2359
2360 /*
2361  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2362  *
2363  * @mpd->lbh - extent of blocks
2364  * @logical - logical number of the block in the file
2365  * @bh - bh of the block (used to access block's state)
2366  *
2367  * the function is used to collect contig. blocks in same state
2368  */
2369 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2370                                    sector_t logical, size_t b_size,
2371                                    unsigned long b_state)
2372 {
2373         sector_t next;
2374         int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2375
2376         /*
2377          * XXX Don't go larger than mballoc is willing to allocate
2378          * This is a stopgap solution.  We eventually need to fold
2379          * mpage_da_submit_io() into this function and then call
2380          * ext4_map_blocks() multiple times in a loop
2381          */
2382         if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
2383                 goto flush_it;
2384
2385         /* check if thereserved journal credits might overflow */
2386         if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
2387                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2388                         /*
2389                          * With non-extent format we are limited by the journal
2390                          * credit available.  Total credit needed to insert
2391                          * nrblocks contiguous blocks is dependent on the
2392                          * nrblocks.  So limit nrblocks.
2393                          */
2394                         goto flush_it;
2395                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2396                                 EXT4_MAX_TRANS_DATA) {
2397                         /*
2398                          * Adding the new buffer_head would make it cross the
2399                          * allowed limit for which we have journal credit
2400                          * reserved. So limit the new bh->b_size
2401                          */
2402                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2403                                                 mpd->inode->i_blkbits;
2404                         /* we will do mpage_da_submit_io in the next loop */
2405                 }
2406         }
2407         /*
2408          * First block in the extent
2409          */
2410         if (mpd->b_size == 0) {
2411                 mpd->b_blocknr = logical;
2412                 mpd->b_size = b_size;
2413                 mpd->b_state = b_state & BH_FLAGS;
2414                 return;
2415         }
2416
2417         next = mpd->b_blocknr + nrblocks;
2418         /*
2419          * Can we merge the block to our big extent?
2420          */
2421         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2422                 mpd->b_size += b_size;
2423                 return;
2424         }
2425
2426 flush_it:
2427         /*
2428          * We couldn't merge the block to our extent, so we
2429          * need to flush current  extent and start new one
2430          */
2431         mpage_da_map_and_submit(mpd);
2432         return;
2433 }
2434
2435 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2436 {
2437         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2438 }
2439
2440 /*
2441  * This is a special get_blocks_t callback which is used by
2442  * ext4_da_write_begin().  It will either return mapped block or
2443  * reserve space for a single block.
2444  *
2445  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2446  * We also have b_blocknr = -1 and b_bdev initialized properly
2447  *
2448  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2449  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2450  * initialized properly.
2451  */
2452 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2453                                   struct buffer_head *bh, int create)
2454 {
2455         struct ext4_map_blocks map;
2456         int ret = 0;
2457         sector_t invalid_block = ~((sector_t) 0xffff);
2458
2459         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2460                 invalid_block = ~0;
2461
2462         BUG_ON(create == 0);
2463         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2464
2465         map.m_lblk = iblock;
2466         map.m_len = 1;
2467
2468         /*
2469          * first, we need to know whether the block is allocated already
2470          * preallocated blocks are unmapped but should treated
2471          * the same as allocated blocks.
2472          */
2473         ret = ext4_map_blocks(NULL, inode, &map, 0);
2474         if (ret < 0)
2475                 return ret;
2476         if (ret == 0) {
2477                 if (buffer_delay(bh))
2478                         return 0; /* Not sure this could or should happen */
2479                 /*
2480                  * XXX: __block_write_begin() unmaps passed block, is it OK?
2481                  */
2482                 ret = ext4_da_reserve_space(inode, iblock);
2483                 if (ret)
2484                         /* not enough space to reserve */
2485                         return ret;
2486
2487                 map_bh(bh, inode->i_sb, invalid_block);
2488                 set_buffer_new(bh);
2489                 set_buffer_delay(bh);
2490                 return 0;
2491         }
2492
2493         map_bh(bh, inode->i_sb, map.m_pblk);
2494         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2495
2496         if (buffer_unwritten(bh)) {
2497                 /* A delayed write to unwritten bh should be marked
2498                  * new and mapped.  Mapped ensures that we don't do
2499                  * get_block multiple times when we write to the same
2500                  * offset and new ensures that we do proper zero out
2501                  * for partial write.
2502                  */
2503                 set_buffer_new(bh);
2504                 set_buffer_mapped(bh);
2505         }
2506         return 0;
2507 }
2508
2509 /*
2510  * This function is used as a standard get_block_t calback function
2511  * when there is no desire to allocate any blocks.  It is used as a
2512  * callback function for block_write_begin() and block_write_full_page().
2513  * These functions should only try to map a single block at a time.
2514  *
2515  * Since this function doesn't do block allocations even if the caller
2516  * requests it by passing in create=1, it is critically important that
2517  * any caller checks to make sure that any buffer heads are returned
2518  * by this function are either all already mapped or marked for
2519  * delayed allocation before calling  block_write_full_page().  Otherwise,
2520  * b_blocknr could be left unitialized, and the page write functions will
2521  * be taken by surprise.
2522  */
2523 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2524                                    struct buffer_head *bh_result, int create)
2525 {
2526         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2527         return _ext4_get_block(inode, iblock, bh_result, 0);
2528 }
2529
2530 static int bget_one(handle_t *handle, struct buffer_head *bh)
2531 {
2532         get_bh(bh);
2533         return 0;
2534 }
2535
2536 static int bput_one(handle_t *handle, struct buffer_head *bh)
2537 {
2538         put_bh(bh);
2539         return 0;
2540 }
2541
2542 static int __ext4_journalled_writepage(struct page *page,
2543                                        unsigned int len)
2544 {
2545         struct address_space *mapping = page->mapping;
2546         struct inode *inode = mapping->host;
2547         struct buffer_head *page_bufs;
2548         handle_t *handle = NULL;
2549         int ret = 0;
2550         int err;
2551
2552         ClearPageChecked(page);
2553         page_bufs = page_buffers(page);
2554         BUG_ON(!page_bufs);
2555         walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2556         /* As soon as we unlock the page, it can go away, but we have
2557          * references to buffers so we are safe */
2558         unlock_page(page);
2559
2560         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2561         if (IS_ERR(handle)) {
2562                 ret = PTR_ERR(handle);
2563                 goto out;
2564         }
2565
2566         ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2567                                 do_journal_get_write_access);
2568
2569         err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2570                                 write_end_fn);
2571         if (ret == 0)
2572                 ret = err;
2573         err = ext4_journal_stop(handle);
2574         if (!ret)
2575                 ret = err;
2576
2577         walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2578         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2579 out:
2580         return ret;
2581 }
2582
2583 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
2584 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
2585
2586 /*
2587  * Note that we don't need to start a transaction unless we're journaling data
2588  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2589  * need to file the inode to the transaction's list in ordered mode because if
2590  * we are writing back data added by write(), the inode is already there and if
2591  * we are writing back data modified via mmap(), no one guarantees in which
2592  * transaction the data will hit the disk. In case we are journaling data, we
2593  * cannot start transaction directly because transaction start ranks above page
2594  * lock so we have to do some magic.
2595  *
2596  * This function can get called via...
2597  *   - ext4_da_writepages after taking page lock (have journal handle)
2598  *   - journal_submit_inode_data_buffers (no journal handle)
2599  *   - shrink_page_list via pdflush (no journal handle)
2600  *   - grab_page_cache when doing write_begin (have journal handle)
2601  *
2602  * We don't do any block allocation in this function. If we have page with
2603  * multiple blocks we need to write those buffer_heads that are mapped. This
2604  * is important for mmaped based write. So if we do with blocksize 1K
2605  * truncate(f, 1024);
2606  * a = mmap(f, 0, 4096);
2607  * a[0] = 'a';
2608  * truncate(f, 4096);
2609  * we have in the page first buffer_head mapped via page_mkwrite call back
2610  * but other bufer_heads would be unmapped but dirty(dirty done via the
2611  * do_wp_page). So writepage should write the first block. If we modify
2612  * the mmap area beyond 1024 we will again get a page_fault and the
2613  * page_mkwrite callback will do the block allocation and mark the
2614  * buffer_heads mapped.
2615  *
2616  * We redirty the page if we have any buffer_heads that is either delay or
2617  * unwritten in the page.
2618  *
2619  * We can get recursively called as show below.
2620  *
2621  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2622  *              ext4_writepage()
2623  *
2624  * But since we don't do any block allocation we should not deadlock.
2625  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2626  */
2627 static int ext4_writepage(struct page *page,
2628                           struct writeback_control *wbc)
2629 {
2630         int ret = 0, commit_write = 0;
2631         loff_t size;
2632         unsigned int len;
2633         struct buffer_head *page_bufs = NULL;
2634         struct inode *inode = page->mapping->host;
2635
2636         trace_ext4_writepage(page);
2637         size = i_size_read(inode);
2638         if (page->index == size >> PAGE_CACHE_SHIFT)
2639                 len = size & ~PAGE_CACHE_MASK;
2640         else
2641                 len = PAGE_CACHE_SIZE;
2642
2643         /*
2644          * If the page does not have buffers (for whatever reason),
2645          * try to create them using __block_write_begin.  If this
2646          * fails, redirty the page and move on.
2647          */
2648         if (!page_has_buffers(page)) {
2649                 if (__block_write_begin(page, 0, len,
2650                                         noalloc_get_block_write)) {
2651                 redirty_page:
2652                         redirty_page_for_writepage(wbc, page);
2653                         unlock_page(page);
2654                         return 0;
2655                 }
2656                 commit_write = 1;
2657         }
2658         page_bufs = page_buffers(page);
2659         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2660                               ext4_bh_delay_or_unwritten)) {
2661                 /*
2662                  * We don't want to do block allocation, so redirty
2663                  * the page and return.  We may reach here when we do
2664                  * a journal commit via journal_submit_inode_data_buffers.
2665                  * We can also reach here via shrink_page_list
2666                  */
2667                 goto redirty_page;
2668         }
2669         if (commit_write)
2670                 /* now mark the buffer_heads as dirty and uptodate */
2671                 block_commit_write(page, 0, len);
2672
2673         if (PageChecked(page) && ext4_should_journal_data(inode))
2674                 /*
2675                  * It's mmapped pagecache.  Add buffers and journal it.  There
2676                  * doesn't seem much point in redirtying the page here.
2677                  */
2678                 return __ext4_journalled_writepage(page, len);
2679
2680         if (buffer_uninit(page_bufs)) {
2681                 ext4_set_bh_endio(page_bufs, inode);
2682                 ret = block_write_full_page_endio(page, noalloc_get_block_write,
2683                                             wbc, ext4_end_io_buffer_write);
2684         } else
2685                 ret = block_write_full_page(page, noalloc_get_block_write,
2686                                             wbc);
2687
2688         return ret;
2689 }
2690
2691 /*
2692  * This is called via ext4_da_writepages() to
2693  * calculate the total number of credits to reserve to fit
2694  * a single extent allocation into a single transaction,
2695  * ext4_da_writpeages() will loop calling this before
2696  * the block allocation.
2697  */
2698
2699 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2700 {
2701         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2702
2703         /*
2704          * With non-extent format the journal credit needed to
2705          * insert nrblocks contiguous block is dependent on
2706          * number of contiguous block. So we will limit
2707          * number of contiguous block to a sane value
2708          */
2709         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2710             (max_blocks > EXT4_MAX_TRANS_DATA))
2711                 max_blocks = EXT4_MAX_TRANS_DATA;
2712
2713         return ext4_chunk_trans_blocks(inode, max_blocks);
2714 }
2715
2716 /*
2717  * write_cache_pages_da - walk the list of dirty pages of the given
2718  * address space and accumulate pages that need writing, and call
2719  * mpage_da_map_and_submit to map a single contiguous memory region
2720  * and then write them.
2721  */
2722 static int write_cache_pages_da(struct address_space *mapping,
2723                                 struct writeback_control *wbc,
2724                                 struct mpage_da_data *mpd,
2725                                 pgoff_t *done_index)
2726 {
2727         struct buffer_head      *bh, *head;
2728         struct inode            *inode = mapping->host;
2729         struct pagevec          pvec;
2730         unsigned int            nr_pages;
2731         sector_t                logical;
2732         pgoff_t                 index, end;
2733         long                    nr_to_write = wbc->nr_to_write;
2734         int                     i, tag, ret = 0;
2735
2736         memset(mpd, 0, sizeof(struct mpage_da_data));
2737         mpd->wbc = wbc;
2738         mpd->inode = inode;
2739         pagevec_init(&pvec, 0);
2740         index = wbc->range_start >> PAGE_CACHE_SHIFT;
2741         end = wbc->range_end >> PAGE_CACHE_SHIFT;
2742
2743         if (wbc->sync_mode == WB_SYNC_ALL)
2744                 tag = PAGECACHE_TAG_TOWRITE;
2745         else
2746                 tag = PAGECACHE_TAG_DIRTY;
2747
2748         *done_index = index;
2749         while (index <= end) {
2750                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2751                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2752                 if (nr_pages == 0)
2753                         return 0;
2754
2755                 for (i = 0; i < nr_pages; i++) {
2756                         struct page *page = pvec.pages[i];
2757
2758                         /*
2759                          * At this point, the page may be truncated or
2760                          * invalidated (changing page->mapping to NULL), or
2761                          * even swizzled back from swapper_space to tmpfs file
2762                          * mapping. However, page->index will not change
2763                          * because we have a reference on the page.
2764                          */
2765                         if (page->index > end)
2766                                 goto out;
2767
2768                         *done_index = page->index + 1;
2769
2770                         /*
2771                          * If we can't merge this page, and we have
2772                          * accumulated an contiguous region, write it
2773                          */
2774                         if ((mpd->next_page != page->index) &&
2775                             (mpd->next_page != mpd->first_page)) {
2776                                 mpage_da_map_and_submit(mpd);
2777                                 goto ret_extent_tail;
2778                         }
2779
2780                         lock_page(page);
2781
2782                         /*
2783                          * If the page is no longer dirty, or its
2784                          * mapping no longer corresponds to inode we
2785                          * are writing (which means it has been
2786                          * truncated or invalidated), or the page is
2787                          * already under writeback and we are not
2788                          * doing a data integrity writeback, skip the page
2789                          */
2790                         if (!PageDirty(page) ||
2791                             (PageWriteback(page) &&
2792                              (wbc->sync_mode == WB_SYNC_NONE)) ||
2793                             unlikely(page->mapping != mapping)) {
2794                                 unlock_page(page);
2795                                 continue;
2796                         }
2797
2798                         wait_on_page_writeback(page);
2799                         BUG_ON(PageWriteback(page));
2800
2801                         if (mpd->next_page != page->index)
2802                                 mpd->first_page = page->index;
2803                         mpd->next_page = page->index + 1;
2804                         logical = (sector_t) page->index <<
2805                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2806
2807                         if (!page_has_buffers(page)) {
2808                                 mpage_add_bh_to_extent(mpd, logical,
2809                                                        PAGE_CACHE_SIZE,
2810                                                        (1 << BH_Dirty) | (1 << BH_Uptodate));
2811                                 if (mpd->io_done)
2812                                         goto ret_extent_tail;
2813                         } else {
2814                                 /*
2815                                  * Page with regular buffer heads,
2816                                  * just add all dirty ones
2817                                  */
2818                                 head = page_buffers(page);
2819                                 bh = head;
2820                                 do {
2821                                         BUG_ON(buffer_locked(bh));
2822                                         /*
2823                                          * We need to try to allocate
2824                                          * unmapped blocks in the same page.
2825                                          * Otherwise we won't make progress
2826                                          * with the page in ext4_writepage
2827                                          */
2828                                         if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2829                                                 mpage_add_bh_to_extent(mpd, logical,
2830                                                                        bh->b_size,
2831                                                                        bh->b_state);
2832                                                 if (mpd->io_done)
2833                                                         goto ret_extent_tail;
2834                                         } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2835                                                 /*
2836                                                  * mapped dirty buffer. We need
2837                                                  * to update the b_state
2838                                                  * because we look at b_state
2839                                                  * in mpage_da_map_blocks.  We
2840                                                  * don't update b_size because
2841                                                  * if we find an unmapped
2842                                                  * buffer_head later we need to
2843                                                  * use the b_state flag of that
2844                                                  * buffer_head.
2845                                                  */
2846                                                 if (mpd->b_size == 0)
2847                                                         mpd->b_state = bh->b_state & BH_FLAGS;
2848                                         }
2849                                         logical++;
2850                                 } while ((bh = bh->b_this_page) != head);
2851                         }
2852
2853                         if (nr_to_write > 0) {
2854                                 nr_to_write--;
2855                                 if (nr_to_write == 0 &&
2856                                     wbc->sync_mode == WB_SYNC_NONE)
2857                                         /*
2858                                          * We stop writing back only if we are
2859                                          * not doing integrity sync. In case of
2860                                          * integrity sync we have to keep going
2861                                          * because someone may be concurrently
2862                                          * dirtying pages, and we might have
2863                                          * synced a lot of newly appeared dirty
2864                                          * pages, but have not synced all of the
2865                                          * old dirty pages.
2866                                          */
2867                                         goto out;
2868                         }
2869                 }
2870                 pagevec_release(&pvec);
2871                 cond_resched();
2872         }
2873         return 0;
2874 ret_extent_tail:
2875         ret = MPAGE_DA_EXTENT_TAIL;
2876 out:
2877         pagevec_release(&pvec);
2878         cond_resched();
2879         return ret;
2880 }
2881
2882
2883 static int ext4_da_writepages(struct address_space *mapping,
2884                               struct writeback_control *wbc)
2885 {
2886         pgoff_t index;
2887         int range_whole = 0;
2888         handle_t *handle = NULL;
2889         struct mpage_da_data mpd;
2890         struct inode *inode = mapping->host;
2891         int pages_written = 0;
2892         unsigned int max_pages;
2893         int range_cyclic, cycled = 1, io_done = 0;
2894         int needed_blocks, ret = 0;
2895         long desired_nr_to_write, nr_to_writebump = 0;
2896         loff_t range_start = wbc->range_start;
2897         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2898         pgoff_t done_index = 0;
2899         pgoff_t end;
2900
2901         trace_ext4_da_writepages(inode, wbc);
2902
2903         /*
2904          * No pages to write? This is mainly a kludge to avoid starting
2905          * a transaction for special inodes like journal inode on last iput()
2906          * because that could violate lock ordering on umount
2907          */
2908         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2909                 return 0;
2910
2911         /*
2912          * If the filesystem has aborted, it is read-only, so return
2913          * right away instead of dumping stack traces later on that
2914          * will obscure the real source of the problem.  We test
2915          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2916          * the latter could be true if the filesystem is mounted
2917          * read-only, and in that case, ext4_da_writepages should
2918          * *never* be called, so if that ever happens, we would want
2919          * the stack trace.
2920          */
2921         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2922                 return -EROFS;
2923
2924         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2925                 range_whole = 1;
2926
2927         range_cyclic = wbc->range_cyclic;
2928         if (wbc->range_cyclic) {
2929                 index = mapping->writeback_index;
2930                 if (index)
2931                         cycled = 0;
2932                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2933                 wbc->range_end  = LLONG_MAX;
2934                 wbc->range_cyclic = 0;
2935                 end = -1;
2936         } else {
2937                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2938                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2939         }
2940
2941         /*
2942          * This works around two forms of stupidity.  The first is in
2943          * the writeback code, which caps the maximum number of pages
2944          * written to be 1024 pages.  This is wrong on multiple
2945          * levels; different architectues have a different page size,
2946          * which changes the maximum amount of data which gets
2947          * written.  Secondly, 4 megabytes is way too small.  XFS
2948          * forces this value to be 16 megabytes by multiplying
2949          * nr_to_write parameter by four, and then relies on its
2950          * allocator to allocate larger extents to make them
2951          * contiguous.  Unfortunately this brings us to the second
2952          * stupidity, which is that ext4's mballoc code only allocates
2953          * at most 2048 blocks.  So we force contiguous writes up to
2954          * the number of dirty blocks in the inode, or
2955          * sbi->max_writeback_mb_bump whichever is smaller.
2956          */
2957         max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2958         if (!range_cyclic && range_whole) {
2959                 if (wbc->nr_to_write == LONG_MAX)
2960                         desired_nr_to_write = wbc->nr_to_write;
2961                 else
2962                         desired_nr_to_write = wbc->nr_to_write * 8;
2963         } else
2964                 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2965                                                            max_pages);
2966         if (desired_nr_to_write > max_pages)
2967                 desired_nr_to_write = max_pages;
2968
2969         if (wbc->nr_to_write < desired_nr_to_write) {
2970                 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2971                 wbc->nr_to_write = desired_nr_to_write;
2972         }
2973
2974 retry:
2975         if (wbc->sync_mode == WB_SYNC_ALL)
2976                 tag_pages_for_writeback(mapping, index, end);
2977
2978         while (!ret && wbc->nr_to_write > 0) {
2979
2980                 /*
2981                  * we  insert one extent at a time. So we need
2982                  * credit needed for single extent allocation.
2983                  * journalled mode is currently not supported
2984                  * by delalloc
2985                  */
2986                 BUG_ON(ext4_should_journal_data(inode));
2987                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2988
2989                 /* start a new transaction*/
2990                 handle = ext4_journal_start(inode, needed_blocks);
2991                 if (IS_ERR(handle)) {
2992                         ret = PTR_ERR(handle);
2993                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2994                                "%ld pages, ino %lu; err %d", __func__,
2995                                 wbc->nr_to_write, inode->i_ino, ret);
2996                         goto out_writepages;
2997                 }
2998
2999                 /*
3000                  * Now call write_cache_pages_da() to find the next
3001                  * contiguous region of logical blocks that need
3002                  * blocks to be allocated by ext4 and submit them.
3003                  */
3004                 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
3005                 /*
3006                  * If we have a contiguous extent of pages and we
3007                  * haven't done the I/O yet, map the blocks and submit
3008                  * them for I/O.
3009                  */
3010                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
3011                         mpage_da_map_and_submit(&mpd);
3012                         ret = MPAGE_DA_EXTENT_TAIL;
3013                 }
3014                 trace_ext4_da_write_pages(inode, &mpd);
3015                 wbc->nr_to_write -= mpd.pages_written;
3016
3017                 ext4_journal_stop(handle);
3018
3019                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
3020                         /* commit the transaction which would
3021                          * free blocks released in the transaction
3022                          * and try again
3023                          */
3024                         jbd2_journal_force_commit_nested(sbi->s_journal);
3025                         ret = 0;
3026                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
3027                         /*
3028                          * got one extent now try with
3029                          * rest of the pages
3030                          */
3031                         pages_written += mpd.pages_written;
3032                         ret = 0;
3033                         io_done = 1;
3034                 } else if (wbc->nr_to_write)
3035                         /*
3036                          * There is no more writeout needed
3037                          * or we requested for a noblocking writeout
3038                          * and we found the device congested
3039                          */
3040                         break;
3041         }
3042         if (!io_done && !cycled) {
3043                 cycled = 1;
3044                 index = 0;
3045                 wbc->range_start = index << PAGE_CACHE_SHIFT;
3046                 wbc->range_end  = mapping->writeback_index - 1;
3047                 goto retry;
3048         }
3049
3050         /* Update index */
3051         wbc->range_cyclic = range_cyclic;
3052         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3053                 /*
3054                  * set the writeback_index so that range_cyclic
3055                  * mode will write it back later
3056                  */
3057                 mapping->writeback_index = done_index;
3058
3059 out_writepages:
3060         wbc->nr_to_write -= nr_to_writebump;
3061         wbc->range_start = range_start;
3062         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3063         return ret;
3064 }
3065
3066 #define FALL_BACK_TO_NONDELALLOC 1
3067 static int ext4_nonda_switch(struct super_block *sb)
3068 {
3069         s64 free_blocks, dirty_blocks;
3070         struct ext4_sb_info *sbi = EXT4_SB(sb);
3071
3072         /*
3073          * switch to non delalloc mode if we are running low
3074          * on free block. The free block accounting via percpu
3075          * counters can get slightly wrong with percpu_counter_batch getting
3076          * accumulated on each CPU without updating global counters
3077          * Delalloc need an accurate free block accounting. So switch
3078          * to non delalloc when we are near to error range.
3079          */
3080         free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3081         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3082         if (2 * free_blocks < 3 * dirty_blocks ||
3083                 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3084                 /*
3085                  * free block count is less than 150% of dirty blocks
3086                  * or free blocks is less than watermark
3087                  */
3088                 return 1;
3089         }
3090         /*
3091          * Even if we don't switch but are nearing capacity,
3092          * start pushing delalloc when 1/2 of free blocks are dirty.
3093          */
3094         if (free_blocks < 2 * dirty_blocks)
3095                 writeback_inodes_sb_if_idle(sb);
3096
3097         return 0;
3098 }
3099
3100 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3101                                loff_t pos, unsigned len, unsigned flags,
3102                                struct page **pagep, void **fsdata)
3103 {
3104         int ret, retries = 0;
3105         struct page *page;
3106         pgoff_t index;
3107         struct inode *inode = mapping->host;
3108         handle_t *handle;
3109
3110         index = pos >> PAGE_CACHE_SHIFT;
3111
3112         if (ext4_nonda_switch(inode->i_sb)) {
3113                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3114                 return ext4_write_begin(file, mapping, pos,
3115                                         len, flags, pagep, fsdata);
3116         }
3117         *fsdata = (void *)0;
3118         trace_ext4_da_write_begin(inode, pos, len, flags);
3119 retry:
3120         /*
3121          * With delayed allocation, we don't log the i_disksize update
3122          * if there is delayed block allocation. But we still need
3123          * to journalling the i_disksize update if writes to the end
3124          * of file which has an already mapped buffer.
3125          */
3126         handle = ext4_journal_start(inode, 1);
3127         if (IS_ERR(handle)) {
3128                 ret = PTR_ERR(handle);
3129                 goto out;
3130         }
3131         /* We cannot recurse into the filesystem as the transaction is already
3132          * started */
3133         flags |= AOP_FLAG_NOFS;
3134
3135         page = grab_cache_page_write_begin(mapping, index, flags);
3136         if (!page) {
3137                 ext4_journal_stop(handle);
3138                 ret = -ENOMEM;
3139                 goto out;
3140         }
3141         *pagep = page;
3142
3143         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3144         if (ret < 0) {
3145                 unlock_page(page);
3146                 ext4_journal_stop(handle);
3147                 page_cache_release(page);
3148                 /*
3149                  * block_write_begin may have instantiated a few blocks
3150                  * outside i_size.  Trim these off again. Don't need
3151                  * i_size_read because we hold i_mutex.
3152                  */
3153                 if (pos + len > inode->i_size)
3154                         ext4_truncate_failed_write(inode);
3155         }
3156
3157         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3158                 goto retry;
3159 out:
3160         return ret;
3161 }
3162
3163 /*
3164  * Check if we should update i_disksize
3165  * when write to the end of file but not require block allocation
3166  */
3167 static int ext4_da_should_update_i_disksize(struct page *page,
3168                                             unsigned long offset)
3169 {
3170         struct buffer_head *bh;
3171         struct inode *inode = page->mapping->host;
3172         unsigned int idx;
3173         int i;
3174
3175         bh = page_buffers(page);
3176         idx = offset >> inode->i_blkbits;
3177
3178         for (i = 0; i < idx; i++)
3179                 bh = bh->b_this_page;
3180
3181         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3182                 return 0;
3183         return 1;
3184 }
3185
3186 static int ext4_da_write_end(struct file *file,
3187                              struct address_space *mapping,
3188                              loff_t pos, unsigned len, unsigned copied,
3189                              struct page *page, void *fsdata)
3190 {
3191         struct inode *inode = mapping->host;
3192         int ret = 0, ret2;
3193         handle_t *handle = ext4_journal_current_handle();
3194         loff_t new_i_size;
3195         unsigned long start, end;
3196         int write_mode = (int)(unsigned long)fsdata;
3197
3198         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3199                 if (ext4_should_order_data(inode)) {
3200                         return ext4_ordered_write_end(file, mapping, pos,
3201                                         len, copied, page, fsdata);
3202                 } else if (ext4_should_writeback_data(inode)) {
3203                         return ext4_writeback_write_end(file, mapping, pos,
3204                                         len, copied, page, fsdata);
3205                 } else {
3206                         BUG();
3207                 }
3208         }
3209
3210         trace_ext4_da_write_end(inode, pos, len, copied);
3211         start = pos & (PAGE_CACHE_SIZE - 1);
3212         end = start + copied - 1;
3213
3214         /*
3215          * generic_write_end() will run mark_inode_dirty() if i_size
3216          * changes.  So let's piggyback the i_disksize mark_inode_dirty
3217          * into that.
3218          */
3219
3220         new_i_size = pos + copied;
3221         if (new_i_size > EXT4_I(inode)->i_disksize) {
3222                 if (ext4_da_should_update_i_disksize(page, end)) {
3223                         down_write(&EXT4_I(inode)->i_data_sem);
3224                         if (new_i_size > EXT4_I(inode)->i_disksize) {
3225                                 /*
3226                                  * Updating i_disksize when extending file
3227                                  * without needing block allocation
3228                                  */
3229                                 if (ext4_should_order_data(inode))
3230                                         ret = ext4_jbd2_file_inode(handle,
3231                                                                    inode);
3232
3233                                 EXT4_I(inode)->i_disksize = new_i_size;
3234                         }
3235                         up_write(&EXT4_I(inode)->i_data_sem);
3236                         /* We need to mark inode dirty even if
3237                          * new_i_size is less that inode->i_size
3238                          * bu greater than i_disksize.(hint delalloc)
3239                          */
3240                         ext4_mark_inode_dirty(handle, inode);
3241                 }
3242         }
3243         ret2 = generic_write_end(file, mapping, pos, len, copied,
3244                                                         page, fsdata);
3245         copied = ret2;
3246         if (ret2 < 0)
3247                 ret = ret2;
3248         ret2 = ext4_journal_stop(handle);
3249         if (!ret)
3250                 ret = ret2;
3251
3252         return ret ? ret : copied;
3253 }
3254
3255 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3256 {
3257         /*
3258          * Drop reserved blocks
3259          */
3260         BUG_ON(!PageLocked(page));
3261         if (!page_has_buffers(page))
3262                 goto out;
3263
3264         ext4_da_page_release_reservation(page, offset);
3265
3266 out:
3267         ext4_invalidatepage(page, offset);
3268
3269         return;
3270 }
3271
3272 /*
3273  * Force all delayed allocation blocks to be allocated for a given inode.
3274  */
3275 int ext4_alloc_da_blocks(struct inode *inode)
3276 {
3277         trace_ext4_alloc_da_blocks(inode);
3278
3279         if (!EXT4_I(inode)->i_reserved_data_blocks &&
3280             !EXT4_I(inode)->i_reserved_meta_blocks)
3281                 return 0;
3282
3283         /*
3284          * We do something simple for now.  The filemap_flush() will
3285          * also start triggering a write of the data blocks, which is
3286          * not strictly speaking necessary (and for users of
3287          * laptop_mode, not even desirable).  However, to do otherwise
3288          * would require replicating code paths in:
3289          *
3290          * ext4_da_writepages() ->
3291          *    write_cache_pages() ---> (via passed in callback function)
3292          *        __mpage_da_writepage() -->
3293          *           mpage_add_bh_to_extent()
3294          *           mpage_da_map_blocks()
3295          *
3296          * The problem is that write_cache_pages(), located in
3297          * mm/page-writeback.c, marks pages clean in preparation for
3298          * doing I/O, which is not desirable if we're not planning on
3299          * doing I/O at all.
3300          *
3301          * We could call write_cache_pages(), and then redirty all of
3302          * the pages by calling redirty_page_for_writepage() but that
3303          * would be ugly in the extreme.  So instead we would need to
3304          * replicate parts of the code in the above functions,
3305          * simplifying them because we wouldn't actually intend to
3306          * write out the pages, but rather only collect contiguous
3307          * logical block extents, call the multi-block allocator, and
3308          * then update the buffer heads with the block allocations.
3309          *
3310          * For now, though, we'll cheat by calling filemap_flush(),
3311          * which will map the blocks, and start the I/O, but not
3312          * actually wait for the I/O to complete.
3313          */
3314         return filemap_flush(inode->i_mapping);
3315 }
3316
3317 /*
3318  * bmap() is special.  It gets used by applications such as lilo and by
3319  * the swapper to find the on-disk block of a specific piece of data.
3320  *
3321  * Naturally, this is dangerous if the block concerned is still in the
3322  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3323  * filesystem and enables swap, then they may get a nasty shock when the
3324  * data getting swapped to that swapfile suddenly gets overwritten by
3325  * the original zero's written out previously to the journal and
3326  * awaiting writeback in the kernel's buffer cache.
3327  *
3328  * So, if we see any bmap calls here on a modified, data-journaled file,
3329  * take extra steps to flush any blocks which might be in the cache.
3330  */
3331 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3332 {
3333         struct inode *inode = mapping->host;
3334         journal_t *journal;
3335         int err;
3336
3337         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3338                         test_opt(inode->i_sb, DELALLOC)) {
3339                 /*
3340                  * With delalloc we want to sync the file
3341                  * so that we can make sure we allocate
3342                  * blocks for file
3343                  */
3344                 filemap_write_and_wait(mapping);
3345         }
3346
3347         if (EXT4_JOURNAL(inode) &&
3348             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3349                 /*
3350                  * This is a REALLY heavyweight approach, but the use of
3351                  * bmap on dirty files is expected to be extremely rare:
3352                  * only if we run lilo or swapon on a freshly made file
3353                  * do we expect this to happen.
3354                  *
3355                  * (bmap requires CAP_SYS_RAWIO so this does not
3356                  * represent an unprivileged user DOS attack --- we'd be
3357                  * in trouble if mortal users could trigger this path at
3358                  * will.)
3359                  *
3360                  * NB. EXT4_STATE_JDATA is not set on files other than
3361                  * regular files.  If somebody wants to bmap a directory
3362                  * or symlink and gets confused because the buffer
3363                  * hasn't yet been flushed to disk, they deserve
3364                  * everything they get.
3365                  */
3366
3367                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3368                 journal = EXT4_JOURNAL(inode);
3369                 jbd2_journal_lock_updates(journal);
3370                 err = jbd2_journal_flush(journal);
3371                 jbd2_journal_unlock_updates(journal);
3372
3373                 if (err)
3374                         return 0;
3375         }
3376
3377         return generic_block_bmap(mapping, block, ext4_get_block);
3378 }
3379
3380 static int ext4_readpage(struct file *file, struct page *page)
3381 {
3382         trace_ext4_readpage(page);
3383         return mpage_readpage(page, ext4_get_block);
3384 }
3385
3386 static int
3387 ext4_readpages(struct file *file, struct address_space *mapping,
3388                 struct list_head *pages, unsigned nr_pages)
3389 {
3390         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3391 }
3392
3393 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
3394 {
3395         struct buffer_head *head, *bh;
3396         unsigned int curr_off = 0;
3397
3398         if (!page_has_buffers(page))
3399                 return;
3400         head = bh = page_buffers(page);
3401         do {
3402                 if (offset <= curr_off && test_clear_buffer_uninit(bh)
3403                                         && bh->b_private) {
3404                         ext4_free_io_end(bh->b_private);
3405                         bh->b_private = NULL;
3406                         bh->b_end_io = NULL;
3407                 }
3408                 curr_off = curr_off + bh->b_size;
3409                 bh = bh->b_this_page;
3410         } while (bh != head);
3411 }
3412
3413 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3414 {
3415         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3416
3417         trace_ext4_invalidatepage(page, offset);
3418
3419         /*
3420          * free any io_end structure allocated for buffers to be discarded
3421          */
3422         if (ext4_should_dioread_nolock(page->mapping->host))
3423                 ext4_invalidatepage_free_endio(page, offset);
3424         /*
3425          * If it's a full truncate we just forget about the pending dirtying
3426          */
3427         if (offset == 0)
3428                 ClearPageChecked(page);
3429
3430         if (journal)
3431                 jbd2_journal_invalidatepage(journal, page, offset);
3432         else
3433                 block_invalidatepage(page, offset);
3434 }
3435
3436 static int ext4_releasepage(struct page *page, gfp_t wait)
3437 {
3438         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3439
3440         trace_ext4_releasepage(page);
3441
3442         WARN_ON(PageChecked(page));
3443         if (!page_has_buffers(page))
3444                 return 0;
3445         if (journal)
3446                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3447         else
3448                 return try_to_free_buffers(page);
3449 }
3450
3451 /*
3452  * O_DIRECT for ext3 (or indirect map) based files
3453  *
3454  * If the O_DIRECT write will extend the file then add this inode to the
3455  * orphan list.  So recovery will truncate it back to the original size
3456  * if the machine crashes during the write.
3457  *
3458  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3459  * crashes then stale disk data _may_ be exposed inside the file. But current
3460  * VFS code falls back into buffered path in that case so we are safe.
3461  */
3462 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3463                               const struct iovec *iov, loff_t offset,
3464                               unsigned long nr_segs)
3465 {
3466         struct file *file = iocb->ki_filp;
3467         struct inode *inode = file->f_mapping->host;
3468         struct ext4_inode_info *ei = EXT4_I(inode);
3469         handle_t *handle;
3470         ssize_t ret;
3471         int orphan = 0;
3472         size_t count = iov_length(iov, nr_segs);
3473         int retries = 0;
3474
3475         if (rw == WRITE) {
3476                 loff_t final_size = offset + count;
3477
3478                 if (final_size > inode->i_size) {
3479                         /* Credits for sb + inode write */
3480                         handle = ext4_journal_start(inode, 2);
3481                         if (IS_ERR(handle)) {
3482                                 ret = PTR_ERR(handle);
3483                                 goto out;
3484                         }
3485                         ret = ext4_orphan_add(handle, inode);
3486                         if (ret) {
3487                                 ext4_journal_stop(handle);
3488                                 goto out;
3489                         }
3490                         orphan = 1;
3491                         ei->i_disksize = inode->i_size;
3492                         ext4_journal_stop(handle);
3493                 }
3494         }
3495
3496 retry:
3497         if (rw == READ && ext4_should_dioread_nolock(inode))
3498                 ret = __blockdev_direct_IO(rw, iocb, inode,
3499                                  inode->i_sb->s_bdev, iov,
3500                                  offset, nr_segs,
3501                                  ext4_get_block, NULL, NULL, 0);
3502         else {
3503                 ret = blockdev_direct_IO(rw, iocb, inode,
3504                                  inode->i_sb->s_bdev, iov,
3505                                  offset, nr_segs,
3506                                  ext4_get_block, NULL);
3507
3508                 if (unlikely((rw & WRITE) && ret < 0)) {
3509                         loff_t isize = i_size_read(inode);
3510                         loff_t end = offset + iov_length(iov, nr_segs);
3511
3512                         if (end > isize)
3513                                 ext4_truncate_failed_write(inode);
3514                 }
3515         }
3516         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3517                 goto retry;
3518
3519         if (orphan) {
3520                 int err;
3521
3522                 /* Credits for sb + inode write */
3523                 handle = ext4_journal_start(inode, 2);
3524                 if (IS_ERR(handle)) {
3525                         /* This is really bad luck. We've written the data
3526                          * but cannot extend i_size. Bail out and pretend
3527                          * the write failed... */
3528                         ret = PTR_ERR(handle);
3529                         if (inode->i_nlink)
3530                                 ext4_orphan_del(NULL, inode);
3531
3532                         goto out;
3533                 }
3534                 if (inode->i_nlink)
3535                         ext4_orphan_del(handle, inode);
3536                 if (ret > 0) {
3537                         loff_t end = offset + ret;
3538                         if (end > inode->i_size) {
3539                                 ei->i_disksize = end;
3540                                 i_size_write(inode, end);
3541                                 /*
3542                                  * We're going to return a positive `ret'
3543                                  * here due to non-zero-length I/O, so there's
3544                                  * no way of reporting error returns from
3545                                  * ext4_mark_inode_dirty() to userspace.  So
3546                                  * ignore it.
3547                                  */
3548                                 ext4_mark_inode_dirty(handle, inode);
3549                         }
3550                 }
3551                 err = ext4_journal_stop(handle);
3552                 if (ret == 0)
3553                         ret = err;
3554         }
3555 out:
3556         return ret;
3557 }
3558
3559 /*
3560  * ext4_get_block used when preparing for a DIO write or buffer write.
3561  * We allocate an uinitialized extent if blocks haven't been allocated.
3562  * The extent will be converted to initialized after the IO is complete.
3563  */
3564 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
3565                    struct buffer_head *bh_result, int create)
3566 {
3567         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3568                    inode->i_ino, create);
3569         return _ext4_get_block(inode, iblock, bh_result,
3570                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
3571 }
3572
3573 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3574                             ssize_t size, void *private, int ret,
3575                             bool is_async)
3576 {
3577         ext4_io_end_t *io_end = iocb->private;
3578         struct workqueue_struct *wq;
3579         unsigned long flags;
3580         struct ext4_inode_info *ei;
3581
3582         /* if not async direct IO or dio with 0 bytes write, just return */
3583         if (!io_end || !size)
3584                 goto out;
3585
3586         ext_debug("ext4_end_io_dio(): io_end 0x%p"
3587                   "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3588                   iocb->private, io_end->inode->i_ino, iocb, offset,
3589                   size);
3590
3591         /* if not aio dio with unwritten extents, just free io and return */
3592         if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3593                 ext4_free_io_end(io_end);
3594                 iocb->private = NULL;
3595 out:
3596                 if (is_async)
3597                         aio_complete(iocb, ret, 0);
3598                 return;
3599         }
3600
3601         io_end->offset = offset;
3602         io_end->size = size;
3603         if (is_async) {
3604                 io_end->iocb = iocb;
3605                 io_end->result = ret;
3606         }
3607         wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3608
3609         /* Add the io_end to per-inode completed aio dio list*/
3610         ei = EXT4_I(io_end->inode);
3611         spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3612         list_add_tail(&io_end->list, &ei->i_completed_io_list);
3613         spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3614
3615         /* queue the work to convert unwritten extents to written */
3616         queue_work(wq, &io_end->work);
3617         iocb->private = NULL;
3618 }
3619
3620 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
3621 {
3622         ext4_io_end_t *io_end = bh->b_private;
3623         struct workqueue_struct *wq;
3624         struct inode *inode;
3625         unsigned long flags;
3626
3627         if (!test_clear_buffer_uninit(bh) || !io_end)
3628                 goto out;
3629
3630         if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
3631                 printk("sb umounted, discard end_io request for inode %lu\n",
3632                         io_end->inode->i_ino);
3633                 ext4_free_io_end(io_end);
3634                 goto out;
3635         }
3636
3637         io_end->flag = EXT4_IO_END_UNWRITTEN;
3638         inode = io_end->inode;
3639
3640         /* Add the io_end to per-inode completed io list*/
3641         spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3642         list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
3643         spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3644
3645         wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
3646         /* queue the work to convert unwritten extents to written */
3647         queue_work(wq, &io_end->work);
3648 out:
3649         bh->b_private = NULL;
3650         bh->b_end_io = NULL;
3651         clear_buffer_uninit(bh);
3652         end_buffer_async_write(bh, uptodate);
3653 }
3654
3655 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
3656 {
3657         ext4_io_end_t *io_end;
3658         struct page *page = bh->b_page;
3659         loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
3660         size_t size = bh->b_size;
3661
3662 retry:
3663         io_end = ext4_init_io_end(inode, GFP_ATOMIC);
3664         if (!io_end) {
3665                 pr_warn_ratelimited("%s: allocation fail\n", __func__);
3666                 schedule();
3667                 goto retry;
3668         }
3669         io_end->offset = offset;
3670         io_end->size = size;
3671         /*
3672          * We need to hold a reference to the page to make sure it
3673          * doesn't get evicted before ext4_end_io_work() has a chance
3674          * to convert the extent from written to unwritten.
3675          */
3676         io_end->page = page;
3677         get_page(io_end->page);
3678
3679         bh->b_private = io_end;
3680         bh->b_end_io = ext4_end_io_buffer_write;
3681         return 0;
3682 }
3683
3684 /*
3685  * For ext4 extent files, ext4 will do direct-io write to holes,
3686  * preallocated extents, and those write extend the file, no need to
3687  * fall back to buffered IO.
3688  *
3689  * For holes, we fallocate those blocks, mark them as uninitialized
3690  * If those blocks were preallocated, we mark sure they are splited, but
3691  * still keep the range to write as uninitialized.
3692  *
3693  * The unwrritten extents will be converted to written when DIO is completed.
3694  * For async direct IO, since the IO may still pending when return, we
3695  * set up an end_io call back function, which will do the conversion
3696  * when async direct IO completed.
3697  *
3698  * If the O_DIRECT write will extend the file then add this inode to the
3699  * orphan list.  So recovery will truncate it back to the original size
3700  * if the machine crashes during the write.
3701  *
3702  */
3703 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3704                               const struct iovec *iov, loff_t offset,
3705                               unsigned long nr_segs)
3706 {
3707         struct file *file = iocb->ki_filp;
3708         struct inode *inode = file->f_mapping->host;
3709         ssize_t ret;
3710         size_t count = iov_length(iov, nr_segs);
3711
3712         loff_t final_size = offset + count;
3713         if (rw == WRITE && final_size <= inode->i_size) {
3714                 /*
3715                  * We could direct write to holes and fallocate.
3716                  *
3717                  * Allocated blocks to fill the hole are marked as uninitialized
3718                  * to prevent parallel buffered read to expose the stale data
3719                  * before DIO complete the data IO.
3720                  *
3721                  * As to previously fallocated extents, ext4 get_block
3722                  * will just simply mark the buffer mapped but still
3723                  * keep the extents uninitialized.
3724                  *
3725                  * for non AIO case, we will convert those unwritten extents
3726                  * to written after return back from blockdev_direct_IO.
3727                  *
3728                  * for async DIO, the conversion needs to be defered when
3729                  * the IO is completed. The ext4 end_io callback function
3730                  * will be called to take care of the conversion work.
3731                  * Here for async case, we allocate an io_end structure to
3732                  * hook to the iocb.
3733                  */
3734                 iocb->private = NULL;
3735                 EXT4_I(inode)->cur_aio_dio = NULL;
3736                 if (!is_sync_kiocb(iocb)) {
3737                         iocb->private = ext4_init_io_end(inode, GFP_NOFS);
3738                         if (!iocb->private)
3739                                 return -ENOMEM;
3740                         /*
3741                          * we save the io structure for current async
3742                          * direct IO, so that later ext4_map_blocks()
3743                          * could flag the io structure whether there
3744                          * is a unwritten extents needs to be converted
3745                          * when IO is completed.
3746                          */
3747                         EXT4_I(inode)->cur_aio_dio = iocb->private;
3748                 }
3749
3750                 ret = blockdev_direct_IO(rw, iocb, inode,
3751                                          inode->i_sb->s_bdev, iov,
3752                                          offset, nr_segs,
3753                                          ext4_get_block_write,
3754                                          ext4_end_io_dio);
3755                 if (iocb->private)
3756                         EXT4_I(inode)->cur_aio_dio = NULL;
3757                 /*
3758                  * The io_end structure takes a reference to the inode,
3759                  * that structure needs to be destroyed and the
3760                  * reference to the inode need to be dropped, when IO is
3761                  * complete, even with 0 byte write, or failed.
3762                  *
3763                  * In the successful AIO DIO case, the io_end structure will be
3764                  * desctroyed and the reference to the inode will be dropped
3765                  * after the end_io call back function is called.
3766                  *
3767                  * In the case there is 0 byte write, or error case, since
3768                  * VFS direct IO won't invoke the end_io call back function,
3769                  * we need to free the end_io structure here.
3770                  */
3771                 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3772                         ext4_free_io_end(iocb->private);
3773                         iocb->private = NULL;
3774                 } else if (ret > 0 && ext4_test_inode_state(inode,
3775                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3776                         int err;
3777                         /*
3778                          * for non AIO case, since the IO is already
3779                          * completed, we could do the conversion right here
3780                          */
3781                         err = ext4_convert_unwritten_extents(inode,
3782                                                              offset, ret);
3783                         if (err < 0)
3784                                 ret = err;
3785                         ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3786                 }
3787                 return ret;
3788         }
3789
3790         /* for write the the end of file case, we fall back to old way */
3791         return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3792 }
3793
3794 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3795                               const struct iovec *iov, loff_t offset,
3796                               unsigned long nr_segs)
3797 {
3798         struct file *file = iocb->ki_filp;
3799         struct inode *inode = file->f_mapping->host;
3800         ssize_t ret;
3801
3802         trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3803         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3804                 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3805         else
3806                 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3807         trace_ext4_direct_IO_exit(inode, offset,
3808                                 iov_length(iov, nr_segs), rw, ret);
3809         return ret;
3810 }
3811
3812 /*
3813  * Pages can be marked dirty completely asynchronously from ext4's journalling
3814  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3815  * much here because ->set_page_dirty is called under VFS locks.  The page is
3816  * not necessarily locked.
3817  *
3818  * We cannot just dirty the page and leave attached buffers clean, because the
3819  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3820  * or jbddirty because all the journalling code will explode.
3821  *
3822  * So what we do is to mark the page "pending dirty" and next time writepage
3823  * is called, propagate that into the buffers appropriately.
3824  */
3825 static int ext4_journalled_set_page_dirty(struct page *page)
3826 {
3827         SetPageChecked(page);
3828         return __set_page_dirty_nobuffers(page);
3829 }
3830
3831 static const struct address_space_operations ext4_ordered_aops = {
3832         .readpage               = ext4_readpage,
3833         .readpages              = ext4_readpages,
3834         .writepage              = ext4_writepage,
3835         .write_begin            = ext4_write_begin,
3836         .write_end              = ext4_ordered_write_end,
3837         .bmap                   = ext4_bmap,
3838         .invalidatepage         = ext4_invalidatepage,
3839         .releasepage            = ext4_releasepage,
3840         .direct_IO              = ext4_direct_IO,
3841         .migratepage            = buffer_migrate_page,
3842         .is_partially_uptodate  = block_is_partially_uptodate,
3843         .error_remove_page      = generic_error_remove_page,
3844 };
3845
3846 static const struct address_space_operations ext4_writeback_aops = {
3847         .readpage               = ext4_readpage,
3848         .readpages              = ext4_readpages,
3849         .writepage              = ext4_writepage,
3850         .write_begin            = ext4_write_begin,
3851         .write_end              = ext4_writeback_write_end,
3852         .bmap                   = ext4_bmap,
3853         .invalidatepage         = ext4_invalidatepage,
3854         .releasepage            = ext4_releasepage,
3855         .direct_IO              = ext4_direct_IO,
3856         .migratepage            = buffer_migrate_page,
3857         .is_partially_uptodate  = block_is_partially_uptodate,
3858         .error_remove_page      = generic_error_remove_page,
3859 };
3860
3861 static const struct address_space_operations ext4_journalled_aops = {
3862         .readpage               = ext4_readpage,
3863         .readpages              = ext4_readpages,
3864         .writepage              = ext4_writepage,
3865         .write_begin            = ext4_write_begin,
3866         .write_end              = ext4_journalled_write_end,
3867         .set_page_dirty         = ext4_journalled_set_page_dirty,
3868         .bmap                   = ext4_bmap,
3869         .invalidatepage         = ext4_invalidatepage,
3870         .releasepage            = ext4_releasepage,
3871         .is_partially_uptodate  = block_is_partially_uptodate,
3872         .error_remove_page      = generic_error_remove_page,
3873 };
3874
3875 static const struct address_space_operations ext4_da_aops = {
3876         .readpage               = ext4_readpage,
3877         .readpages              = ext4_readpages,
3878         .writepage              = ext4_writepage,
3879         .writepages             = ext4_da_writepages,
3880         .write_begin            = ext4_da_write_begin,
3881         .write_end              = ext4_da_write_end,
3882         .bmap                   = ext4_bmap,
3883         .invalidatepage         = ext4_da_invalidatepage,
3884         .releasepage            = ext4_releasepage,
3885         .direct_IO              = ext4_direct_IO,
3886         .migratepage            = buffer_migrate_page,
3887         .is_partially_uptodate  = block_is_partially_uptodate,
3888         .error_remove_page      = generic_error_remove_page,
3889 };
3890
3891 void ext4_set_aops(struct inode *inode)
3892 {
3893         if (ext4_should_order_data(inode) &&
3894                 test_opt(inode->i_sb, DELALLOC))
3895                 inode->i_mapping->a_ops = &ext4_da_aops;
3896         else if (ext4_should_order_data(inode))
3897                 inode->i_mapping->a_ops = &ext4_ordered_aops;
3898         else if (ext4_should_writeback_data(inode) &&
3899                  test_opt(inode->i_sb, DELALLOC))
3900                 inode->i_mapping->a_ops = &ext4_da_aops;
3901         else if (ext4_should_writeback_data(inode))
3902                 inode->i_mapping->a_ops = &ext4_writeback_aops;
3903         else
3904                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3905 }
3906
3907 /*
3908  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3909  * up to the end of the block which corresponds to `from'.
3910  * This required during truncate. We need to physically zero the tail end
3911  * of that block so it doesn't yield old data if the file is later grown.
3912  */
3913 int ext4_block_truncate_page(handle_t *handle,
3914                 struct address_space *mapping, loff_t from)
3915 {
3916         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3917         unsigned length;
3918         unsigned blocksize;
3919         struct inode *inode = mapping->host;
3920
3921         blocksize = inode->i_sb->s_blocksize;
3922         length = blocksize - (offset & (blocksize - 1));
3923
3924         return ext4_block_zero_page_range(handle, mapping, from, length);
3925 }
3926
3927 /*
3928  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3929  * starting from file offset 'from'.  The range to be zero'd must
3930  * be contained with in one block.  If the specified range exceeds
3931  * the end of the block it will be shortened to end of the block
3932  * that cooresponds to 'from'
3933  */
3934 int ext4_block_zero_page_range(handle_t *handle,
3935                 struct address_space *mapping, loff_t from, loff_t length)
3936 {
3937         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3938         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3939         unsigned blocksize, max, pos;
3940         ext4_lblk_t iblock;
3941         struct inode *inode = mapping->host;
3942         struct buffer_head *bh;
3943         struct page *page;
3944         int err = 0;
3945
3946         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3947                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3948         if (!page)
3949                 return -EINVAL;
3950
3951         blocksize = inode->i_sb->s_blocksize;
3952         max = blocksize - (offset & (blocksize - 1));
3953
3954         /*
3955          * correct length if it does not fall between
3956          * 'from' and the end of the block
3957          */
3958         if (length > max || length < 0)
3959                 length = max;
3960
3961         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3962
3963         if (!page_has_buffers(page))
3964                 create_empty_buffers(page, blocksize, 0);
3965
3966         /* Find the buffer that contains "offset" */
3967         bh = page_buffers(page);
3968         pos = blocksize;
3969         while (offset >= pos) {
3970                 bh = bh->b_this_page;
3971                 iblock++;
3972                 pos += blocksize;
3973         }
3974
3975         err = 0;
3976         if (buffer_freed(bh)) {
3977                 BUFFER_TRACE(bh, "freed: skip");
3978                 goto unlock;
3979         }
3980
3981         if (!buffer_mapped(bh)) {
3982                 BUFFER_TRACE(bh, "unmapped");
3983                 ext4_get_block(inode, iblock, bh, 0);
3984                 /* unmapped? It's a hole - nothing to do */
3985                 if (!buffer_mapped(bh)) {
3986                         BUFFER_TRACE(bh, "still unmapped");
3987                         goto unlock;
3988                 }
3989         }
3990
3991         /* Ok, it's mapped. Make sure it's up-to-date */
3992         if (PageUptodate(page))
3993                 set_buffer_uptodate(bh);
3994
3995         if (!buffer_uptodate(bh)) {
3996                 err = -EIO;
3997                 ll_rw_block(READ, 1, &bh);
3998                 wait_on_buffer(bh);
3999                 /* Uhhuh. Read error. Complain and punt. */
4000                 if (!buffer_uptodate(bh))
4001                         goto unlock;
4002         }
4003
4004         if (ext4_should_journal_data(inode)) {
4005                 BUFFER_TRACE(bh, "get write access");
4006                 err = ext4_journal_get_write_access(handle, bh);
4007                 if (err)
4008                         goto unlock;
4009         }
4010
4011         zero_user(page, offset, length);
4012
4013         BUFFER_TRACE(bh, "zeroed end of block");
4014
4015         err = 0;
4016         if (ext4_should_journal_data(inode)) {
4017                 err = ext4_handle_dirty_metadata(handle, inode, bh);
4018         } else {
4019                 if (ext4_should_order_data(inode) && EXT4_I(inode)->jinode)
4020                         err = ext4_jbd2_file_inode(handle, inode);
4021                 mark_buffer_dirty(bh);
4022         }
4023
4024 unlock:
4025         unlock_page(page);
4026         page_cache_release(page);
4027         return err;
4028 }
4029
4030 /*
4031  * Probably it should be a library function... search for first non-zero word
4032  * or memcmp with zero_page, whatever is better for particular architecture.
4033  * Linus?
4034  */
4035 static inline int all_zeroes(__le32 *p, __le32 *q)
4036 {
4037         while (p < q)
4038                 if (*p++)
4039                         return 0;
4040         return 1;
4041 }
4042
4043 /**
4044  *      ext4_find_shared - find the indirect blocks for partial truncation.
4045  *      @inode:   inode in question
4046  *      @depth:   depth of the affected branch
4047  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
4048  *      @chain:   place to store the pointers to partial indirect blocks
4049  *      @top:     place to the (detached) top of branch
4050  *
4051  *      This is a helper function used by ext4_truncate().
4052  *
4053  *      When we do truncate() we may have to clean the ends of several
4054  *      indirect blocks but leave the blocks themselves alive. Block is
4055  *      partially truncated if some data below the new i_size is referred
4056  *      from it (and it is on the path to the first completely truncated
4057  *      data block, indeed).  We have to free the top of that path along
4058  *      with everything to the right of the path. Since no allocation
4059  *      past the truncation point is possible until ext4_truncate()
4060  *      finishes, we may safely do the latter, but top of branch may
4061  *      require special attention - pageout below the truncation point
4062  *      might try to populate it.
4063  *
4064  *      We atomically detach the top of branch from the tree, store the
4065  *      block number of its root in *@top, pointers to buffer_heads of
4066  *      partially truncated blocks - in @chain[].bh and pointers to
4067  *      their last elements that should not be removed - in
4068  *      @chain[].p. Return value is the pointer to last filled element
4069  *      of @chain.
4070  *
4071  *      The work left to caller to do the actual freeing of subtrees:
4072  *              a) free the subtree starting from *@top
4073  *              b) free the subtrees whose roots are stored in
4074  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4075  *              c) free the subtrees growing from the inode past the @chain[0].
4076  *                      (no partially truncated stuff there).  */
4077
4078 static Indirect *ext4_find_shared(struct inode *inode, int depth,
4079                                   ext4_lblk_t offsets[4], Indirect chain[4],
4080                                   __le32 *top)
4081 {
4082         Indirect *partial, *p;
4083         int k, err;
4084
4085         *top = 0;
4086         /* Make k index the deepest non-null offset + 1 */
4087         for (k = depth; k > 1 && !offsets[k-1]; k--)
4088                 ;
4089         partial = ext4_get_branch(inode, k, offsets, chain, &err);
4090         /* Writer: pointers */
4091         if (!partial)
4092                 partial = chain + k-1;
4093         /*
4094          * If the branch acquired continuation since we've looked at it -
4095          * fine, it should all survive and (new) top doesn't belong to us.
4096          */
4097         if (!partial->key && *partial->p)
4098                 /* Writer: end */
4099                 goto no_top;
4100         for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4101                 ;
4102         /*
4103          * OK, we've found the last block that must survive. The rest of our
4104          * branch should be detached before unlocking. However, if that rest
4105          * of branch is all ours and does not grow immediately from the inode
4106          * it's easier to cheat and just decrement partial->p.
4107          */
4108         if (p == chain + k - 1 && p > chain) {
4109                 p->p--;
4110         } else {
4111                 *top = *p->p;
4112                 /* Nope, don't do this in ext4.  Must leave the tree intact */
4113 #if 0
4114                 *p->p = 0;
4115 #endif
4116         }
4117         /* Writer: end */
4118
4119         while (partial > p) {
4120                 brelse(partial->bh);
4121                 partial--;
4122         }
4123 no_top:
4124         return partial;
4125 }
4126
4127 /*
4128  * Zero a number of block pointers in either an inode or an indirect block.
4129  * If we restart the transaction we must again get write access to the
4130  * indirect block for further modification.
4131  *
4132  * We release `count' blocks on disk, but (last - first) may be greater
4133  * than `count' because there can be holes in there.
4134  *
4135  * Return 0 on success, 1 on invalid block range
4136  * and < 0 on fatal error.
4137  */
4138 static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
4139                              struct buffer_head *bh,
4140                              ext4_fsblk_t block_to_free,
4141                              unsigned long count, __le32 *first,
4142                              __le32 *last)
4143 {
4144         __le32 *p;
4145         int     flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
4146         int     err;
4147
4148         if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
4149                 flags |= EXT4_FREE_BLOCKS_METADATA;
4150
4151         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
4152                                    count)) {
4153                 EXT4_ERROR_INODE(inode, "attempt to clear invalid "
4154                                  "blocks %llu len %lu",
4155                                  (unsigned long long) block_to_free, count);
4156                 return 1;
4157         }
4158
4159         if (try_to_extend_transaction(handle, inode)) {
4160                 if (bh) {
4161                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4162                         err = ext4_handle_dirty_metadata(handle, inode, bh);
4163                         if (unlikely(err))
4164                                 goto out_err;
4165                 }
4166                 err = ext4_mark_inode_dirty(handle, inode);
4167                 if (unlikely(err))
4168                         goto out_err;
4169                 err = ext4_truncate_restart_trans(handle, inode,
4170                                                   blocks_for_truncate(inode));
4171                 if (unlikely(err))
4172                         goto out_err;
4173                 if (bh) {
4174                         BUFFER_TRACE(bh, "retaking write access");
4175                         err = ext4_journal_get_write_access(handle, bh);
4176                         if (unlikely(err))
4177                                 goto out_err;
4178                 }
4179         }
4180
4181         for (p = first; p < last; p++)
4182                 *p = 0;
4183
4184         ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags);
4185         return 0;
4186 out_err:
4187         ext4_std_error(inode->i_sb, err);
4188         return err;
4189 }
4190
4191 /**
4192  * ext4_free_data - free a list of data blocks
4193  * @handle:     handle for this transaction
4194  * @inode:      inode we are dealing with
4195  * @this_bh:    indirect buffer_head which contains *@first and *@last
4196  * @first:      array of block numbers
4197  * @last:       points immediately past the end of array
4198  *
4199  * We are freeing all blocks referred from that array (numbers are stored as
4200  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4201  *
4202  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
4203  * blocks are contiguous then releasing them at one time will only affect one
4204  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4205  * actually use a lot of journal space.
4206  *
4207  * @this_bh will be %NULL if @first and @last point into the inode's direct
4208  * block pointers.
4209  */
4210 static void ext4_free_data(handle_t *handle, struct inode *inode,
4211                            struct buffer_head *this_bh,
4212                            __le32 *first, __le32 *last)
4213 {
4214         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
4215         unsigned long count = 0;            /* Number of blocks in the run */
4216         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
4217                                                corresponding to
4218                                                block_to_free */
4219         ext4_fsblk_t nr;                    /* Current block # */
4220         __le32 *p;                          /* Pointer into inode/ind
4221                                                for current block */
4222         int err = 0;
4223
4224         if (this_bh) {                          /* For indirect block */
4225                 BUFFER_TRACE(this_bh, "get_write_access");
4226                 err = ext4_journal_get_write_access(handle, this_bh);
4227                 /* Important: if we can't update the indirect pointers
4228                  * to the blocks, we can't free them. */
4229                 if (err)
4230                         return;
4231         }
4232
4233         for (p = first; p < last; p++) {
4234                 nr = le32_to_cpu(*p);
4235                 if (nr) {
4236                         /* accumulate blocks to free if they're contiguous */
4237                         if (count == 0) {
4238                                 block_to_free = nr;
4239                                 block_to_free_p = p;
4240                                 count = 1;
4241                         } else if (nr == block_to_free + count) {
4242                                 count++;
4243                         } else {
4244                                 err = ext4_clear_blocks(handle, inode, this_bh,
4245                                                         block_to_free, count,
4246                                                         block_to_free_p, p);
4247                                 if (err)
4248                                         break;
4249                                 block_to_free = nr;
4250                                 block_to_free_p = p;
4251                                 count = 1;
4252                         }
4253                 }
4254         }
4255
4256         if (!err && count > 0)
4257                 err = ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4258                                         count, block_to_free_p, p);
4259         if (err < 0)
4260                 /* fatal error */
4261                 return;
4262
4263         if (this_bh) {
4264                 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4265
4266                 /*
4267                  * The buffer head should have an attached journal head at this
4268                  * point. However, if the data is corrupted and an indirect
4269                  * block pointed to itself, it would have been detached when
4270                  * the block was cleared. Check for this instead of OOPSing.
4271                  */
4272                 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4273                         ext4_handle_dirty_metadata(handle, inode, this_bh);
4274                 else
4275                         EXT4_ERROR_INODE(inode,
4276                                          "circular indirect block detected at "
4277                                          "block %llu",
4278                                 (unsigned long long) this_bh->b_blocknr);
4279         }
4280 }
4281
4282 /**
4283  *      ext4_free_branches - free an array of branches
4284  *      @handle: JBD handle for this transaction
4285  *      @inode: inode we are dealing with
4286  *      @parent_bh: the buffer_head which contains *@first and *@last
4287  *      @first: array of block numbers
4288  *      @last:  pointer immediately past the end of array
4289  *      @depth: depth of the branches to free
4290  *
4291  *      We are freeing all blocks referred from these branches (numbers are
4292  *      stored as little-endian 32-bit) and updating @inode->i_blocks
4293  *      appropriately.
4294  */
4295 static void ext4_free_branches(handle_t *handle, struct inode *inode,
4296                                struct buffer_head *parent_bh,
4297                                __le32 *first, __le32 *last, int depth)
4298 {
4299         ext4_fsblk_t nr;
4300         __le32 *p;
4301
4302         if (ext4_handle_is_aborted(handle))
4303                 return;
4304
4305         if (depth--) {
4306                 struct buffer_head *bh;
4307                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4308                 p = last;
4309                 while (--p >= first) {
4310                         nr = le32_to_cpu(*p);
4311                         if (!nr)
4312                                 continue;               /* A hole */
4313
4314                         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
4315                                                    nr, 1)) {
4316                                 EXT4_ERROR_INODE(inode,
4317                                                  "invalid indirect mapped "
4318                                                  "block %lu (level %d)",
4319                                                  (unsigned long) nr, depth);
4320                                 break;
4321                         }
4322
4323                         /* Go read the buffer for the next level down */
4324                         bh = sb_bread(inode->i_sb, nr);
4325
4326                         /*
4327                          * A read failure? Report error and clear slot
4328                          * (should be rare).
4329                          */
4330                         if (!bh) {
4331                                 EXT4_ERROR_INODE_BLOCK(inode, nr,
4332                                                        "Read failure");
4333                                 continue;
4334                         }
4335
4336                         /* This zaps the entire block.  Bottom up. */
4337                         BUFFER_TRACE(bh, "free child branches");
4338                         ext4_free_branches(handle, inode, bh,
4339                                         (__le32 *) bh->b_data,
4340                                         (__le32 *) bh->b_data + addr_per_block,
4341                                         depth);
4342                         brelse(bh);
4343
4344                         /*
4345                          * Everything below this this pointer has been
4346                          * released.  Now let this top-of-subtree go.
4347                          *
4348                          * We want the freeing of this indirect block to be
4349                          * atomic in the journal with the updating of the
4350                          * bitmap block which owns it.  So make some room in
4351                          * the journal.
4352                          *
4353                          * We zero the parent pointer *after* freeing its
4354                          * pointee in the bitmaps, so if extend_transaction()
4355                          * for some reason fails to put the bitmap changes and
4356                          * the release into the same transaction, recovery
4357                          * will merely complain about releasing a free block,
4358                          * rather than leaking blocks.
4359                          */
4360                         if (ext4_handle_is_aborted(handle))
4361                                 return;
4362                         if (try_to_extend_transaction(handle, inode)) {
4363                                 ext4_mark_inode_dirty(handle, inode);
4364                                 ext4_truncate_restart_trans(handle, inode,
4365                                             blocks_for_truncate(inode));
4366                         }
4367
4368                         /*
4369                          * The forget flag here is critical because if
4370                          * we are journaling (and not doing data
4371                          * journaling), we have to make sure a revoke
4372                          * record is written to prevent the journal
4373                          * replay from overwriting the (former)
4374                          * indirect block if it gets reallocated as a
4375                          * data block.  This must happen in the same
4376                          * transaction where the data blocks are
4377                          * actually freed.
4378                          */
4379                         ext4_free_blocks(handle, inode, NULL, nr, 1,
4380                                          EXT4_FREE_BLOCKS_METADATA|
4381                                          EXT4_FREE_BLOCKS_FORGET);
4382
4383                         if (parent_bh) {
4384                                 /*
4385                                  * The block which we have just freed is
4386                                  * pointed to by an indirect block: journal it
4387                                  */
4388                                 BUFFER_TRACE(parent_bh, "get_write_access");
4389                                 if (!ext4_journal_get_write_access(handle,
4390                                                                    parent_bh)){
4391                                         *p = 0;
4392                                         BUFFER_TRACE(parent_bh,
4393                                         "call ext4_handle_dirty_metadata");
4394                                         ext4_handle_dirty_metadata(handle,
4395                                                                    inode,
4396                                                                    parent_bh);
4397                                 }
4398                         }
4399                 }
4400         } else {
4401                 /* We have reached the bottom of the tree. */
4402                 BUFFER_TRACE(parent_bh, "free data blocks");
4403                 ext4_free_data(handle, inode, parent_bh, first, last);
4404         }
4405 }
4406
4407 int ext4_can_truncate(struct inode *inode)
4408 {
4409         if (S_ISREG(inode->i_mode))
4410                 return 1;
4411         if (S_ISDIR(inode->i_mode))
4412                 return 1;
4413         if (S_ISLNK(inode->i_mode))
4414                 return !ext4_inode_is_fast_symlink(inode);
4415         return 0;
4416 }
4417
4418 /*
4419  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
4420  * associated with the given offset and length
4421  *
4422  * @inode:  File inode
4423  * @offset: The offset where the hole will begin
4424  * @len:    The length of the hole
4425  *
4426  * Returns: 0 on sucess or negative on failure
4427  */
4428
4429 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
4430 {
4431         struct inode *inode = file->f_path.dentry->d_inode;
4432         if (!S_ISREG(inode->i_mode))
4433                 return -ENOTSUPP;
4434
4435         if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4436                 /* TODO: Add support for non extent hole punching */
4437                 return -ENOTSUPP;
4438         }
4439
4440         return ext4_ext_punch_hole(file, offset, length);
4441 }
4442
4443 /*
4444  * ext4_truncate()
4445  *
4446  * We block out ext4_get_block() block instantiations across the entire
4447  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4448  * simultaneously on behalf of the same inode.
4449  *
4450  * As we work through the truncate and commmit bits of it to the journal there
4451  * is one core, guiding principle: the file's tree must always be consistent on
4452  * disk.  We must be able to restart the truncate after a crash.
4453  *
4454  * The file's tree may be transiently inconsistent in memory (although it
4455  * probably isn't), but whenever we close off and commit a journal transaction,
4456  * the contents of (the filesystem + the journal) must be consistent and
4457  * restartable.  It's pretty simple, really: bottom up, right to left (although
4458  * left-to-right works OK too).
4459  *
4460  * Note that at recovery time, journal replay occurs *before* the restart of
4461  * truncate against the orphan inode list.
4462  *
4463  * The committed inode has the new, desired i_size (which is the same as
4464  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4465  * that this inode's truncate did not complete and it will again call
4466  * ext4_truncate() to have another go.  So there will be instantiated blocks
4467  * to the right of the truncation point in a crashed ext4 filesystem.  But
4468  * that's fine - as long as they are linked from the inode, the post-crash
4469  * ext4_truncate() run will find them and release them.
4470  */
4471 void ext4_truncate(struct inode *inode)
4472 {
4473         trace_ext4_truncate_enter(inode);
4474
4475         if (!ext4_can_truncate(inode))
4476                 return;
4477
4478         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4479
4480         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4481                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4482
4483         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4484                 ext4_ext_truncate(inode);
4485         else
4486                 ext4_ind_truncate(inode);
4487
4488         trace_ext4_truncate_exit(inode);
4489 }
4490
4491 void ext4_ind_truncate(struct inode *inode)
4492 {
4493         handle_t *handle;
4494         struct ext4_inode_info *ei = EXT4_I(inode);
4495         __le32 *i_data = ei->i_data;
4496         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4497         struct address_space *mapping = inode->i_mapping;
4498         ext4_lblk_t offsets[4];
4499         Indirect chain[4];
4500         Indirect *partial;
4501         __le32 nr = 0;
4502         int n = 0;
4503         ext4_lblk_t last_block, max_block;
4504         unsigned blocksize = inode->i_sb->s_blocksize;
4505
4506         handle = start_transaction(inode);
4507         if (IS_ERR(handle))
4508                 return;         /* AKPM: return what? */
4509
4510         last_block = (inode->i_size + blocksize-1)
4511                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4512         max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
4513                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4514
4515         if (inode->i_size & (blocksize - 1))
4516                 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4517                         goto out_stop;
4518
4519         if (last_block != max_block) {
4520                 n = ext4_block_to_path(inode, last_block, offsets, NULL);
4521                 if (n == 0)
4522                         goto out_stop;  /* error */
4523         }
4524
4525         /*
4526          * OK.  This truncate is going to happen.  We add the inode to the
4527          * orphan list, so that if this truncate spans multiple transactions,
4528          * and we crash, we will resume the truncate when the filesystem
4529          * recovers.  It also marks the inode dirty, to catch the new size.
4530          *
4531          * Implication: the file must always be in a sane, consistent
4532          * truncatable state while each transaction commits.
4533          */
4534         if (ext4_orphan_add(handle, inode))
4535                 goto out_stop;
4536
4537         /*
4538          * From here we block out all ext4_get_block() callers who want to
4539          * modify the block allocation tree.
4540          */
4541         down_write(&ei->i_data_sem);
4542
4543         ext4_discard_preallocations(inode);
4544
4545         /*
4546          * The orphan list entry will now protect us from any crash which
4547          * occurs before the truncate completes, so it is now safe to propagate
4548          * the new, shorter inode size (held for now in i_size) into the
4549          * on-disk inode. We do this via i_disksize, which is the value which
4550          * ext4 *really* writes onto the disk inode.
4551          */
4552         ei->i_disksize = inode->i_size;
4553
4554         if (last_block == max_block) {
4555                 /*
4556                  * It is unnecessary to free any data blocks if last_block is
4557                  * equal to the indirect block limit.
4558                  */
4559                 goto out_unlock;
4560         } else if (n == 1) {            /* direct blocks */
4561                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4562                                i_data + EXT4_NDIR_BLOCKS);
4563                 goto do_indirects;
4564         }
4565
4566         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4567         /* Kill the top of shared branch (not detached) */
4568         if (nr) {
4569                 if (partial == chain) {
4570                         /* Shared branch grows from the inode */
4571                         ext4_free_branches(handle, inode, NULL,
4572                                            &nr, &nr+1, (chain+n-1) - partial);
4573                         *partial->p = 0;
4574                         /*
4575                          * We mark the inode dirty prior to restart,
4576                          * and prior to stop.  No need for it here.
4577                          */
4578                 } else {
4579                         /* Shared branch grows from an indirect block */
4580                         BUFFER_TRACE(partial->bh, "get_write_access");
4581                         ext4_free_branches(handle, inode, partial->bh,
4582                                         partial->p,
4583                                         partial->p+1, (chain+n-1) - partial);
4584                 }
4585         }
4586         /* Clear the ends of indirect blocks on the shared branch */
4587         while (partial > chain) {
4588                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4589                                    (__le32*)partial->bh->b_data+addr_per_block,
4590                                    (chain+n-1) - partial);
4591                 BUFFER_TRACE(partial->bh, "call brelse");
4592                 brelse(partial->bh);
4593                 partial--;
4594         }
4595 do_indirects:
4596         /* Kill the remaining (whole) subtrees */
4597         switch (offsets[0]) {
4598         default:
4599                 nr = i_data[EXT4_IND_BLOCK];
4600                 if (nr) {
4601                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4602                         i_data[EXT4_IND_BLOCK] = 0;
4603                 }
4604         case EXT4_IND_BLOCK:
4605                 nr = i_data[EXT4_DIND_BLOCK];
4606                 if (nr) {
4607                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4608                         i_data[EXT4_DIND_BLOCK] = 0;
4609                 }
4610         case EXT4_DIND_BLOCK:
4611                 nr = i_data[EXT4_TIND_BLOCK];
4612                 if (nr) {
4613                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4614                         i_data[EXT4_TIND_BLOCK] = 0;
4615                 }
4616         case EXT4_TIND_BLOCK:
4617                 ;
4618         }
4619
4620 out_unlock:
4621         up_write(&ei->i_data_sem);
4622         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4623         ext4_mark_inode_dirty(handle, inode);
4624
4625         /*
4626          * In a multi-transaction truncate, we only make the final transaction
4627          * synchronous
4628          */
4629         if (IS_SYNC(inode))
4630                 ext4_handle_sync(handle);
4631 out_stop:
4632         /*
4633          * If this was a simple ftruncate(), and the file will remain alive
4634          * then we need to clear up the orphan record which we created above.
4635          * However, if this was a real unlink then we were called by
4636          * ext4_delete_inode(), and we allow that function to clean up the
4637          * orphan info for us.
4638          */
4639         if (inode->i_nlink)
4640                 ext4_orphan_del(handle, inode);
4641
4642         ext4_journal_stop(handle);
4643         trace_ext4_truncate_exit(inode);
4644 }
4645
4646 /*
4647  * ext4_get_inode_loc returns with an extra refcount against the inode's
4648  * underlying buffer_head on success. If 'in_mem' is true, we have all
4649  * data in memory that is needed to recreate the on-disk version of this
4650  * inode.
4651  */
4652 static int __ext4_get_inode_loc(struct inode *inode,
4653                                 struct ext4_iloc *iloc, int in_mem)
4654 {
4655         struct ext4_group_desc  *gdp;
4656         struct buffer_head      *bh;
4657         struct super_block      *sb = inode->i_sb;
4658         ext4_fsblk_t            block;
4659         int                     inodes_per_block, inode_offset;
4660
4661         iloc->bh = NULL;
4662         if (!ext4_valid_inum(sb, inode->i_ino))
4663                 return -EIO;
4664
4665         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4666         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4667         if (!gdp)
4668                 return -EIO;
4669
4670         /*
4671          * Figure out the offset within the block group inode table
4672          */
4673         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4674         inode_offset = ((inode->i_ino - 1) %
4675                         EXT4_INODES_PER_GROUP(sb));
4676         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4677         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4678
4679         bh = sb_getblk(sb, block);
4680         if (!bh) {
4681                 EXT4_ERROR_INODE_BLOCK(inode, block,
4682                                        "unable to read itable block");
4683                 return -EIO;
4684         }
4685         if (!buffer_uptodate(bh)) {
4686                 lock_buffer(bh);
4687
4688                 /*
4689                  * If the buffer has the write error flag, we have failed
4690                  * to write out another inode in the same block.  In this
4691                  * case, we don't have to read the block because we may
4692                  * read the old inode data successfully.
4693                  */
4694                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4695                         set_buffer_uptodate(bh);
4696
4697                 if (buffer_uptodate(bh)) {
4698                         /* someone brought it uptodate while we waited */
4699                         unlock_buffer(bh);
4700                         goto has_buffer;
4701                 }
4702
4703                 /*
4704                  * If we have all information of the inode in memory and this
4705                  * is the only valid inode in the block, we need not read the
4706                  * block.
4707                  */
4708                 if (in_mem) {
4709                         struct buffer_head *bitmap_bh;
4710                         int i, start;
4711
4712                         start = inode_offset & ~(inodes_per_block - 1);
4713
4714                         /* Is the inode bitmap in cache? */
4715                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4716                         if (!bitmap_bh)
4717                                 goto make_io;
4718
4719                         /*
4720                          * If the inode bitmap isn't in cache then the
4721                          * optimisation may end up performing two reads instead
4722                          * of one, so skip it.
4723                          */
4724                         if (!buffer_uptodate(bitmap_bh)) {
4725                                 brelse(bitmap_bh);
4726                                 goto make_io;
4727                         }
4728                         for (i = start; i < start + inodes_per_block; i++) {
4729                                 if (i == inode_offset)
4730                                         continue;
4731                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4732                                         break;
4733                         }
4734                         brelse(bitmap_bh);
4735                         if (i == start + inodes_per_block) {
4736                                 /* all other inodes are free, so skip I/O */
4737                                 memset(bh->b_data, 0, bh->b_size);
4738                                 set_buffer_uptodate(bh);
4739                                 unlock_buffer(bh);
4740                                 goto has_buffer;
4741                         }
4742                 }
4743
4744 make_io:
4745                 /*
4746                  * If we need to do any I/O, try to pre-readahead extra
4747                  * blocks from the inode table.
4748                  */
4749                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4750                         ext4_fsblk_t b, end, table;
4751                         unsigned num;
4752
4753                         table = ext4_inode_table(sb, gdp);
4754                         /* s_inode_readahead_blks is always a power of 2 */
4755                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4756                         if (table > b)
4757                                 b = table;
4758                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4759                         num = EXT4_INODES_PER_GROUP(sb);
4760                         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4761                                        EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4762                                 num -= ext4_itable_unused_count(sb, gdp);
4763                         table += num / inodes_per_block;
4764                         if (end > table)
4765                                 end = table;
4766                         while (b <= end)
4767                                 sb_breadahead(sb, b++);
4768                 }
4769
4770                 /*
4771                  * There are other valid inodes in the buffer, this inode
4772                  * has in-inode xattrs, or we don't have this inode in memory.
4773                  * Read the block from disk.
4774                  */
4775                 trace_ext4_load_inode(inode);
4776                 get_bh(bh);
4777                 bh->b_end_io = end_buffer_read_sync;
4778                 submit_bh(READ_META, bh);
4779                 wait_on_buffer(bh);
4780                 if (!buffer_uptodate(bh)) {
4781                         EXT4_ERROR_INODE_BLOCK(inode, block,
4782                                                "unable to read itable block");
4783                         brelse(bh);
4784                         return -EIO;
4785                 }
4786         }
4787 has_buffer:
4788         iloc->bh = bh;
4789         return 0;
4790 }
4791
4792 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4793 {
4794         /* We have all inode data except xattrs in memory here. */
4795         return __ext4_get_inode_loc(inode, iloc,
4796                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4797 }
4798
4799 void ext4_set_inode_flags(struct inode *inode)
4800 {
4801         unsigned int flags = EXT4_I(inode)->i_flags;
4802
4803         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4804         if (flags & EXT4_SYNC_FL)
4805                 inode->i_flags |= S_SYNC;
4806         if (flags & EXT4_APPEND_FL)
4807                 inode->i_flags |= S_APPEND;
4808         if (flags & EXT4_IMMUTABLE_FL)
4809                 inode->i_flags |= S_IMMUTABLE;
4810         if (flags & EXT4_NOATIME_FL)
4811                 inode->i_flags |= S_NOATIME;
4812         if (flags & EXT4_DIRSYNC_FL)
4813                 inode->i_flags |= S_DIRSYNC;
4814 }
4815
4816 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4817 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4818 {
4819         unsigned int vfs_fl;
4820         unsigned long old_fl, new_fl;
4821
4822         do {
4823                 vfs_fl = ei->vfs_inode.i_flags;
4824                 old_fl = ei->i_flags;
4825                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4826                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4827                                 EXT4_DIRSYNC_FL);
4828                 if (vfs_fl & S_SYNC)
4829                         new_fl |= EXT4_SYNC_FL;
4830                 if (vfs_fl & S_APPEND)
4831                         new_fl |= EXT4_APPEND_FL;
4832                 if (vfs_fl & S_IMMUTABLE)
4833                         new_fl |= EXT4_IMMUTABLE_FL;
4834                 if (vfs_fl & S_NOATIME)
4835                         new_fl |= EXT4_NOATIME_FL;
4836                 if (vfs_fl & S_DIRSYNC)
4837                         new_fl |= EXT4_DIRSYNC_FL;
4838         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4839 }
4840
4841 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4842                                   struct ext4_inode_info *ei)
4843 {
4844         blkcnt_t i_blocks ;
4845         struct inode *inode = &(ei->vfs_inode);
4846         struct super_block *sb = inode->i_sb;
4847
4848         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4849                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4850                 /* we are using combined 48 bit field */
4851                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4852                                         le32_to_cpu(raw_inode->i_blocks_lo);
4853                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4854                         /* i_blocks represent file system block size */
4855                         return i_blocks  << (inode->i_blkbits - 9);
4856                 } else {
4857                         return i_blocks;
4858                 }
4859         } else {
4860                 return le32_to_cpu(raw_inode->i_blocks_lo);
4861         }
4862 }
4863
4864 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4865 {
4866         struct ext4_iloc iloc;
4867         struct ext4_inode *raw_inode;
4868         struct ext4_inode_info *ei;
4869         struct inode *inode;
4870         journal_t *journal = EXT4_SB(sb)->s_journal;
4871         long ret;
4872         int block;
4873
4874         inode = iget_locked(sb, ino);
4875         if (!inode)
4876                 return ERR_PTR(-ENOMEM);
4877         if (!(inode->i_state & I_NEW))
4878                 return inode;
4879
4880         ei = EXT4_I(inode);
4881         iloc.bh = NULL;
4882
4883         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4884         if (ret < 0)
4885                 goto bad_inode;
4886         raw_inode = ext4_raw_inode(&iloc);
4887         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4888         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4889         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4890         if (!(test_opt(inode->i_sb, NO_UID32))) {
4891                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4892                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4893         }
4894         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4895
4896         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4897         ei->i_dir_start_lookup = 0;
4898         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4899         /* We now have enough fields to check if the inode was active or not.
4900          * This is needed because nfsd might try to access dead inodes
4901          * the test is that same one that e2fsck uses
4902          * NeilBrown 1999oct15
4903          */
4904         if (inode->i_nlink == 0) {
4905                 if (inode->i_mode == 0 ||
4906                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4907                         /* this inode is deleted */
4908                         ret = -ESTALE;
4909                         goto bad_inode;
4910                 }
4911                 /* The only unlinked inodes we let through here have
4912                  * valid i_mode and are being read by the orphan
4913                  * recovery code: that's fine, we're about to complete
4914                  * the process of deleting those. */
4915         }
4916         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4917         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4918         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4919         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4920                 ei->i_file_acl |=
4921                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4922         inode->i_size = ext4_isize(raw_inode);
4923         ei->i_disksize = inode->i_size;
4924 #ifdef CONFIG_QUOTA
4925         ei->i_reserved_quota = 0;
4926 #endif
4927         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4928         ei->i_block_group = iloc.block_group;
4929         ei->i_last_alloc_group = ~0;
4930         /*
4931          * NOTE! The in-memory inode i_data array is in little-endian order
4932          * even on big-endian machines: we do NOT byteswap the block numbers!
4933          */
4934         for (block = 0; block < EXT4_N_BLOCKS; block++)
4935                 ei->i_data[block] = raw_inode->i_block[block];
4936         INIT_LIST_HEAD(&ei->i_orphan);
4937
4938         /*
4939          * Set transaction id's of transactions that have to be committed
4940          * to finish f[data]sync. We set them to currently running transaction
4941          * as we cannot be sure that the inode or some of its metadata isn't
4942          * part of the transaction - the inode could have been reclaimed and
4943          * now it is reread from disk.
4944          */
4945         if (journal) {
4946                 transaction_t *transaction;
4947                 tid_t tid;
4948
4949                 read_lock(&journal->j_state_lock);
4950                 if (journal->j_running_transaction)
4951                         transaction = journal->j_running_transaction;
4952                 else
4953                         transaction = journal->j_committing_transaction;
4954                 if (transaction)
4955                         tid = transaction->t_tid;
4956                 else
4957                         tid = journal->j_commit_sequence;
4958                 read_unlock(&journal->j_state_lock);
4959                 ei->i_sync_tid = tid;
4960                 ei->i_datasync_tid = tid;
4961         }
4962
4963         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4964                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4965                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4966                     EXT4_INODE_SIZE(inode->i_sb)) {
4967                         ret = -EIO;
4968                         goto bad_inode;
4969                 }
4970                 if (ei->i_extra_isize == 0) {
4971                         /* The extra space is currently unused. Use it. */
4972                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4973                                             EXT4_GOOD_OLD_INODE_SIZE;
4974                 } else {
4975                         __le32 *magic = (void *)raw_inode +
4976                                         EXT4_GOOD_OLD_INODE_SIZE +
4977                                         ei->i_extra_isize;
4978                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4979                                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4980                 }
4981         } else
4982                 ei->i_extra_isize = 0;
4983
4984         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4985         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4986         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4987         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4988
4989         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4990         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4991                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4992                         inode->i_version |=
4993                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4994         }
4995
4996         ret = 0;
4997         if (ei->i_file_acl &&
4998             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4999                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
5000                                  ei->i_file_acl);
5001                 ret = -EIO;
5002                 goto bad_inode;
5003         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
5004                 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5005                     (S_ISLNK(inode->i_mode) &&
5006                      !ext4_inode_is_fast_symlink(inode)))
5007                         /* Validate extent which is part of inode */
5008                         ret = ext4_ext_check_inode(inode);
5009         } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5010                    (S_ISLNK(inode->i_mode) &&
5011                     !ext4_inode_is_fast_symlink(inode))) {
5012                 /* Validate block references which are part of inode */
5013                 ret = ext4_check_inode_blockref(inode);
5014         }
5015         if (ret)
5016                 goto bad_inode;
5017
5018         if (S_ISREG(inode->i_mode)) {
5019                 inode->i_op = &ext4_file_inode_operations;
5020                 inode->i_fop = &ext4_file_operations;
5021                 ext4_set_aops(inode);
5022         } else if (S_ISDIR(inode->i_mode)) {
5023                 inode->i_op = &ext4_dir_inode_operations;
5024                 inode->i_fop = &ext4_dir_operations;
5025         } else if (S_ISLNK(inode->i_mode)) {
5026                 if (ext4_inode_is_fast_symlink(inode)) {
5027                         inode->i_op = &ext4_fast_symlink_inode_operations;
5028                         nd_terminate_link(ei->i_data, inode->i_size,
5029                                 sizeof(ei->i_data) - 1);
5030                 } else {
5031                         inode->i_op = &ext4_symlink_inode_operations;
5032                         ext4_set_aops(inode);
5033                 }
5034         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5035               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5036                 inode->i_op = &ext4_special_inode_operations;
5037                 if (raw_inode->i_block[0])
5038                         init_special_inode(inode, inode->i_mode,
5039                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5040                 else
5041                         init_special_inode(inode, inode->i_mode,
5042                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5043         } else {
5044                 ret = -EIO;
5045                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
5046                 goto bad_inode;
5047         }
5048         brelse(iloc.bh);
5049         ext4_set_inode_flags(inode);
5050         unlock_new_inode(inode);
5051         return inode;
5052
5053 bad_inode:
5054         brelse(iloc.bh);
5055         iget_failed(inode);
5056         return ERR_PTR(ret);
5057 }
5058
5059 static int ext4_inode_blocks_set(handle_t *handle,
5060                                 struct ext4_inode *raw_inode,
5061                                 struct ext4_inode_info *ei)
5062 {
5063         struct inode *inode = &(ei->vfs_inode);
5064         u64 i_blocks = inode->i_blocks;
5065         struct super_block *sb = inode->i_sb;
5066
5067         if (i_blocks <= ~0U) {
5068                 /*
5069                  * i_blocks can be represnted in a 32 bit variable
5070                  * as multiple of 512 bytes
5071                  */
5072                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5073                 raw_inode->i_blocks_high = 0;
5074                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5075                 return 0;
5076         }
5077         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
5078                 return -EFBIG;
5079
5080         if (i_blocks <= 0xffffffffffffULL) {
5081                 /*
5082                  * i_blocks can be represented in a 48 bit variable
5083                  * as multiple of 512 bytes
5084                  */
5085                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5086                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5087                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5088         } else {
5089                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5090                 /* i_block is stored in file system block size */
5091                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5092                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5093                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5094         }
5095         return 0;
5096 }
5097
5098 /*
5099  * Post the struct inode info into an on-disk inode location in the
5100  * buffer-cache.  This gobbles the caller's reference to the
5101  * buffer_head in the inode location struct.
5102  *
5103  * The caller must have write access to iloc->bh.
5104  */
5105 static int ext4_do_update_inode(handle_t *handle,
5106                                 struct inode *inode,
5107                                 struct ext4_iloc *iloc)
5108 {
5109         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5110         struct ext4_inode_info *ei = EXT4_I(inode);
5111         struct buffer_head *bh = iloc->bh;
5112         int err = 0, rc, block;
5113
5114         /* For fields not not tracking in the in-memory inode,
5115          * initialise them to zero for new inodes. */
5116         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5117                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5118
5119         ext4_get_inode_flags(ei);
5120         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5121         if (!(test_opt(inode->i_sb, NO_UID32))) {
5122                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5123                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5124 /*
5125  * Fix up interoperability with old kernels. Otherwise, old inodes get
5126  * re-used with the upper 16 bits of the uid/gid intact
5127  */
5128                 if (!ei->i_dtime) {
5129                         raw_inode->i_uid_high =
5130                                 cpu_to_le16(high_16_bits(inode->i_uid));
5131                         raw_inode->i_gid_high =
5132                                 cpu_to_le16(high_16_bits(inode->i_gid));
5133                 } else {
5134                         raw_inode->i_uid_high = 0;
5135                         raw_inode->i_gid_high = 0;
5136                 }
5137         } else {
5138                 raw_inode->i_uid_low =
5139                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
5140                 raw_inode->i_gid_low =
5141                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
5142                 raw_inode->i_uid_high = 0;
5143                 raw_inode->i_gid_high = 0;
5144         }
5145         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5146
5147         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5148         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5149         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5150         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5151
5152         if (ext4_inode_blocks_set(handle, raw_inode, ei))
5153                 goto out_brelse;
5154         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5155         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5156         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5157             cpu_to_le32(EXT4_OS_HURD))
5158                 raw_inode->i_file_acl_high =
5159                         cpu_to_le16(ei->i_file_acl >> 32);
5160         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5161         ext4_isize_set(raw_inode, ei->i_disksize);
5162         if (ei->i_disksize > 0x7fffffffULL) {
5163                 struct super_block *sb = inode->i_sb;
5164                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5165                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5166                                 EXT4_SB(sb)->s_es->s_rev_level ==
5167                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5168                         /* If this is the first large file
5169                          * created, add a flag to the superblock.
5170                          */
5171                         err = ext4_journal_get_write_access(handle,
5172                                         EXT4_SB(sb)->s_sbh);
5173                         if (err)
5174                                 goto out_brelse;
5175                         ext4_update_dynamic_rev(sb);
5176                         EXT4_SET_RO_COMPAT_FEATURE(sb,
5177                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5178                         sb->s_dirt = 1;
5179                         ext4_handle_sync(handle);
5180                         err = ext4_handle_dirty_metadata(handle, NULL,
5181                                         EXT4_SB(sb)->s_sbh);
5182                 }
5183         }
5184         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5185         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5186                 if (old_valid_dev(inode->i_rdev)) {
5187                         raw_inode->i_block[0] =
5188                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
5189                         raw_inode->i_block[1] = 0;
5190                 } else {
5191                         raw_inode->i_block[0] = 0;
5192                         raw_inode->i_block[1] =
5193                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
5194                         raw_inode->i_block[2] = 0;
5195                 }
5196         } else
5197                 for (block = 0; block < EXT4_N_BLOCKS; block++)
5198                         raw_inode->i_block[block] = ei->i_data[block];
5199
5200         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5201         if (ei->i_extra_isize) {
5202                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5203                         raw_inode->i_version_hi =
5204                         cpu_to_le32(inode->i_version >> 32);
5205                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5206         }
5207
5208         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5209         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5210         if (!err)
5211                 err = rc;
5212         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5213
5214         ext4_update_inode_fsync_trans(handle, inode, 0);
5215 out_brelse:
5216         brelse(bh);
5217         ext4_std_error(inode->i_sb, err);
5218         return err;
5219 }
5220
5221 /*
5222  * ext4_write_inode()
5223  *
5224  * We are called from a few places:
5225  *
5226  * - Within generic_file_write() for O_SYNC files.
5227  *   Here, there will be no transaction running. We wait for any running
5228  *   trasnaction to commit.
5229  *
5230  * - Within sys_sync(), kupdate and such.
5231  *   We wait on commit, if tol to.
5232  *
5233  * - Within prune_icache() (PF_MEMALLOC == true)
5234  *   Here we simply return.  We can't afford to block kswapd on the
5235  *   journal commit.
5236  *
5237  * In all cases it is actually safe for us to return without doing anything,
5238  * because the inode has been copied into a raw inode buffer in
5239  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
5240  * knfsd.
5241  *
5242  * Note that we are absolutely dependent upon all inode dirtiers doing the
5243  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5244  * which we are interested.
5245  *
5246  * It would be a bug for them to not do this.  The code:
5247  *
5248  *      mark_inode_dirty(inode)
5249  *      stuff();
5250  *      inode->i_size = expr;
5251  *
5252  * is in error because a kswapd-driven write_inode() could occur while
5253  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
5254  * will no longer be on the superblock's dirty inode list.
5255  */
5256 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5257 {
5258         int err;
5259
5260         if (current->flags & PF_MEMALLOC)
5261                 return 0;
5262
5263         if (EXT4_SB(inode->i_sb)->s_journal) {
5264                 if (ext4_journal_current_handle()) {
5265                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5266                         dump_stack();
5267                         return -EIO;
5268                 }
5269
5270                 if (wbc->sync_mode != WB_SYNC_ALL)
5271                         return 0;
5272
5273                 err = ext4_force_commit(inode->i_sb);
5274         } else {
5275                 struct ext4_iloc iloc;
5276
5277                 err = __ext4_get_inode_loc(inode, &iloc, 0);
5278                 if (err)
5279                         return err;
5280                 if (wbc->sync_mode == WB_SYNC_ALL)
5281                         sync_dirty_buffer(iloc.bh);
5282                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5283                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5284                                          "IO error syncing inode");
5285                         err = -EIO;
5286                 }
5287                 brelse(iloc.bh);
5288         }
5289         return err;
5290 }
5291
5292 /*
5293  * ext4_setattr()
5294  *
5295  * Called from notify_change.
5296  *
5297  * We want to trap VFS attempts to truncate the file as soon as
5298  * possible.  In particular, we want to make sure that when the VFS
5299  * shrinks i_size, we put the inode on the orphan list and modify
5300  * i_disksize immediately, so that during the subsequent flushing of
5301  * dirty pages and freeing of disk blocks, we can guarantee that any
5302  * commit will leave the blocks being flushed in an unused state on
5303  * disk.  (On recovery, the inode will get truncated and the blocks will
5304  * be freed, so we have a strong guarantee that no future commit will
5305  * leave these blocks visible to the user.)
5306  *
5307  * Another thing we have to assure is that if we are in ordered mode
5308  * and inode is still attached to the committing transaction, we must
5309  * we start writeout of all the dirty pages which are being truncated.
5310  * This way we are sure that all the data written in the previous
5311  * transaction are already on disk (truncate waits for pages under
5312  * writeback).
5313  *
5314  * Called with inode->i_mutex down.
5315  */
5316 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5317 {
5318         struct inode *inode = dentry->d_inode;
5319         int error, rc = 0;
5320         int orphan = 0;
5321         const unsigned int ia_valid = attr->ia_valid;
5322
5323         error = inode_change_ok(inode, attr);
5324         if (error)
5325                 return error;
5326
5327         if (is_quota_modification(inode, attr))
5328                 dquot_initialize(inode);
5329         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5330                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5331                 handle_t *handle;
5332
5333                 /* (user+group)*(old+new) structure, inode write (sb,
5334                  * inode block, ? - but truncate inode update has it) */
5335                 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5336                                         EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5337                 if (IS_ERR(handle)) {
5338                         error = PTR_ERR(handle);
5339                         goto err_out;
5340                 }
5341                 error = dquot_transfer(inode, attr);
5342                 if (error) {
5343                         ext4_journal_stop(handle);
5344                         return error;
5345                 }
5346                 /* Update corresponding info in inode so that everything is in
5347                  * one transaction */
5348                 if (attr->ia_valid & ATTR_UID)
5349                         inode->i_uid = attr->ia_uid;
5350                 if (attr->ia_valid & ATTR_GID)
5351                         inode->i_gid = attr->ia_gid;
5352                 error = ext4_mark_inode_dirty(handle, inode);
5353                 ext4_journal_stop(handle);
5354         }
5355
5356         if (attr->ia_valid & ATTR_SIZE) {
5357                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5358                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5359
5360                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
5361                                 return -EFBIG;
5362                 }
5363         }
5364
5365         if (S_ISREG(inode->i_mode) &&
5366             attr->ia_valid & ATTR_SIZE &&
5367             (attr->ia_size < inode->i_size)) {
5368                 handle_t *handle;
5369
5370                 handle = ext4_journal_start(inode, 3);
5371                 if (IS_ERR(handle)) {
5372                         error = PTR_ERR(handle);
5373                         goto err_out;
5374                 }
5375                 if (ext4_handle_valid(handle)) {
5376                         error = ext4_orphan_add(handle, inode);
5377                         orphan = 1;
5378                 }
5379                 EXT4_I(inode)->i_disksize = attr->ia_size;
5380                 rc = ext4_mark_inode_dirty(handle, inode);
5381                 if (!error)
5382                         error = rc;
5383                 ext4_journal_stop(handle);
5384
5385                 if (ext4_should_order_data(inode)) {
5386                         error = ext4_begin_ordered_truncate(inode,
5387                                                             attr->ia_size);
5388                         if (error) {
5389                                 /* Do as much error cleanup as possible */
5390                                 handle = ext4_journal_start(inode, 3);
5391                                 if (IS_ERR(handle)) {
5392                                         ext4_orphan_del(NULL, inode);
5393                                         goto err_out;
5394                                 }
5395                                 ext4_orphan_del(handle, inode);
5396                                 orphan = 0;
5397                                 ext4_journal_stop(handle);
5398                                 goto err_out;
5399                         }
5400                 }
5401         }
5402
5403         if (attr->ia_valid & ATTR_SIZE) {
5404                 if (attr->ia_size != i_size_read(inode)) {
5405                         truncate_setsize(inode, attr->ia_size);
5406                         ext4_truncate(inode);
5407                 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
5408                         ext4_truncate(inode);
5409         }
5410
5411         if (!rc) {
5412                 setattr_copy(inode, attr);
5413                 mark_inode_dirty(inode);
5414         }
5415
5416         /*
5417          * If the call to ext4_truncate failed to get a transaction handle at
5418          * all, we need to clean up the in-core orphan list manually.
5419          */
5420         if (orphan && inode->i_nlink)
5421                 ext4_orphan_del(NULL, inode);
5422
5423         if (!rc && (ia_valid & ATTR_MODE))
5424                 rc = ext4_acl_chmod(inode);
5425
5426 err_out:
5427         ext4_std_error(inode->i_sb, error);
5428         if (!error)
5429                 error = rc;
5430         return error;
5431 }
5432
5433 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5434                  struct kstat *stat)
5435 {
5436         struct inode *inode;
5437         unsigned long delalloc_blocks;
5438
5439         inode = dentry->d_inode;
5440         generic_fillattr(inode, stat);
5441
5442         /*
5443          * We can't update i_blocks if the block allocation is delayed
5444          * otherwise in the case of system crash before the real block
5445          * allocation is done, we will have i_blocks inconsistent with
5446          * on-disk file blocks.
5447          * We always keep i_blocks updated together with real
5448          * allocation. But to not confuse with user, stat
5449          * will return the blocks that include the delayed allocation
5450          * blocks for this file.
5451          */
5452         delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5453
5454         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5455         return 0;
5456 }
5457
5458 static int ext4_ind_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5459 {
5460         int indirects;
5461
5462         /* if nrblocks are contiguous */
5463         if (chunk) {
5464                 /*
5465                  * With N contiguous data blocks, we need at most
5466                  * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks,
5467                  * 2 dindirect blocks, and 1 tindirect block
5468                  */
5469                 return DIV_ROUND_UP(nrblocks,
5470                                     EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4;
5471         }
5472         /*
5473          * if nrblocks are not contiguous, worse case, each block touch
5474          * a indirect block, and each indirect block touch a double indirect
5475          * block, plus a triple indirect block
5476          */
5477         indirects = nrblocks * 2 + 1;
5478         return indirects;
5479 }
5480
5481 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5482 {
5483         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5484                 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
5485         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5486 }
5487
5488 /*
5489  * Account for index blocks, block groups bitmaps and block group
5490  * descriptor blocks if modify datablocks and index blocks
5491  * worse case, the indexs blocks spread over different block groups
5492  *
5493  * If datablocks are discontiguous, they are possible to spread over
5494  * different block groups too. If they are contiuguous, with flexbg,
5495  * they could still across block group boundary.
5496  *
5497  * Also account for superblock, inode, quota and xattr blocks
5498  */
5499 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5500 {
5501         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5502         int gdpblocks;
5503         int idxblocks;
5504         int ret = 0;
5505
5506         /*
5507          * How many index blocks need to touch to modify nrblocks?
5508          * The "Chunk" flag indicating whether the nrblocks is
5509          * physically contiguous on disk
5510          *
5511          * For Direct IO and fallocate, they calls get_block to allocate
5512          * one single extent at a time, so they could set the "Chunk" flag
5513          */
5514         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5515
5516         ret = idxblocks;
5517
5518         /*
5519          * Now let's see how many group bitmaps and group descriptors need
5520          * to account
5521          */
5522         groups = idxblocks;
5523         if (chunk)
5524                 groups += 1;
5525         else
5526                 groups += nrblocks;
5527
5528         gdpblocks = groups;
5529         if (groups > ngroups)
5530                 groups = ngroups;
5531         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5532                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5533
5534         /* bitmaps and block group descriptor blocks */
5535         ret += groups + gdpblocks;
5536
5537         /* Blocks for super block, inode, quota and xattr blocks */
5538         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5539
5540         return ret;
5541 }
5542
5543 /*
5544  * Calculate the total number of credits to reserve to fit
5545  * the modification of a single pages into a single transaction,
5546  * which may include multiple chunks of block allocations.
5547  *
5548  * This could be called via ext4_write_begin()
5549  *
5550  * We need to consider the worse case, when
5551  * one new block per extent.
5552  */
5553 int ext4_writepage_trans_blocks(struct inode *inode)
5554 {
5555         int bpp = ext4_journal_blocks_per_page(inode);
5556         int ret;
5557
5558         ret = ext4_meta_trans_blocks(inode, bpp, 0);
5559
5560         /* Account for data blocks for journalled mode */
5561         if (ext4_should_journal_data(inode))
5562                 ret += bpp;
5563         return ret;
5564 }
5565
5566 /*
5567  * Calculate the journal credits for a chunk of data modification.
5568  *
5569  * This is called from DIO, fallocate or whoever calling
5570  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5571  *
5572  * journal buffers for data blocks are not included here, as DIO
5573  * and fallocate do no need to journal data buffers.
5574  */
5575 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5576 {
5577         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5578 }
5579
5580 /*
5581  * The caller must have previously called ext4_reserve_inode_write().
5582  * Give this, we know that the caller already has write access to iloc->bh.
5583  */
5584 int ext4_mark_iloc_dirty(handle_t *handle,
5585                          struct inode *inode, struct ext4_iloc *iloc)
5586 {
5587         int err = 0;
5588
5589         if (test_opt(inode->i_sb, I_VERSION))
5590                 inode_inc_iversion(inode);
5591
5592         /* the do_update_inode consumes one bh->b_count */
5593         get_bh(iloc->bh);
5594
5595         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5596         err = ext4_do_update_inode(handle, inode, iloc);
5597         put_bh(iloc->bh);
5598         return err;
5599 }
5600
5601 /*
5602  * On success, We end up with an outstanding reference count against
5603  * iloc->bh.  This _must_ be cleaned up later.
5604  */
5605
5606 int
5607 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5608                          struct ext4_iloc *iloc)
5609 {
5610         int err;
5611
5612         err = ext4_get_inode_loc(inode, iloc);
5613         if (!err) {
5614                 BUFFER_TRACE(iloc->bh, "get_write_access");
5615                 err = ext4_journal_get_write_access(handle, iloc->bh);
5616                 if (err) {
5617                         brelse(iloc->bh);
5618                         iloc->bh = NULL;
5619                 }
5620         }
5621         ext4_std_error(inode->i_sb, err);
5622         return err;
5623 }
5624
5625 /*
5626  * Expand an inode by new_extra_isize bytes.
5627  * Returns 0 on success or negative error number on failure.
5628  */
5629 static int ext4_expand_extra_isize(struct inode *inode,
5630                                    unsigned int new_extra_isize,
5631                                    struct ext4_iloc iloc,
5632                                    handle_t *handle)
5633 {
5634         struct ext4_inode *raw_inode;
5635         struct ext4_xattr_ibody_header *header;
5636
5637         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5638                 return 0;
5639
5640         raw_inode = ext4_raw_inode(&iloc);
5641
5642         header = IHDR(inode, raw_inode);
5643
5644         /* No extended attributes present */
5645         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5646             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5647                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5648                         new_extra_isize);
5649                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5650                 return 0;
5651         }
5652
5653         /* try to expand with EAs present */
5654         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5655                                           raw_inode, handle);
5656 }
5657
5658 /*
5659  * What we do here is to mark the in-core inode as clean with respect to inode
5660  * dirtiness (it may still be data-dirty).
5661  * This means that the in-core inode may be reaped by prune_icache
5662  * without having to perform any I/O.  This is a very good thing,
5663  * because *any* task may call prune_icache - even ones which
5664  * have a transaction open against a different journal.
5665  *
5666  * Is this cheating?  Not really.  Sure, we haven't written the
5667  * inode out, but prune_icache isn't a user-visible syncing function.
5668  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5669  * we start and wait on commits.
5670  *
5671  * Is this efficient/effective?  Well, we're being nice to the system
5672  * by cleaning up our inodes proactively so they can be reaped
5673  * without I/O.  But we are potentially leaving up to five seconds'
5674  * worth of inodes floating about which prune_icache wants us to
5675  * write out.  One way to fix that would be to get prune_icache()
5676  * to do a write_super() to free up some memory.  It has the desired
5677  * effect.
5678  */
5679 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5680 {
5681         struct ext4_iloc iloc;
5682         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5683         static unsigned int mnt_count;
5684         int err, ret;
5685
5686         might_sleep();
5687         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5688         err = ext4_reserve_inode_write(handle, inode, &iloc);
5689         if (ext4_handle_valid(handle) &&
5690             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5691             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5692                 /*
5693                  * We need extra buffer credits since we may write into EA block
5694                  * with this same handle. If journal_extend fails, then it will
5695                  * only result in a minor loss of functionality for that inode.
5696                  * If this is felt to be critical, then e2fsck should be run to
5697                  * force a large enough s_min_extra_isize.
5698                  */
5699                 if ((jbd2_journal_extend(handle,
5700                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5701                         ret = ext4_expand_extra_isize(inode,
5702                                                       sbi->s_want_extra_isize,
5703                                                       iloc, handle);
5704                         if (ret) {
5705                                 ext4_set_inode_state(inode,
5706                                                      EXT4_STATE_NO_EXPAND);
5707                                 if (mnt_count !=
5708                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5709                                         ext4_warning(inode->i_sb,
5710                                         "Unable to expand inode %lu. Delete"
5711                                         " some EAs or run e2fsck.",
5712                                         inode->i_ino);
5713                                         mnt_count =
5714                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5715                                 }
5716                         }
5717                 }
5718         }
5719         if (!err)
5720                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5721         return err;
5722 }
5723
5724 /*
5725  * ext4_dirty_inode() is called from __mark_inode_dirty()
5726  *
5727  * We're really interested in the case where a file is being extended.
5728  * i_size has been changed by generic_commit_write() and we thus need
5729  * to include the updated inode in the current transaction.
5730  *
5731  * Also, dquot_alloc_block() will always dirty the inode when blocks
5732  * are allocated to the file.
5733  *
5734  * If the inode is marked synchronous, we don't honour that here - doing
5735  * so would cause a commit on atime updates, which we don't bother doing.
5736  * We handle synchronous inodes at the highest possible level.
5737  */
5738 void ext4_dirty_inode(struct inode *inode, int flags)
5739 {
5740         handle_t *handle;
5741
5742         handle = ext4_journal_start(inode, 2);
5743         if (IS_ERR(handle))
5744                 goto out;
5745
5746         ext4_mark_inode_dirty(handle, inode);
5747
5748         ext4_journal_stop(handle);
5749 out:
5750         return;
5751 }
5752
5753 #if 0
5754 /*
5755  * Bind an inode's backing buffer_head into this transaction, to prevent
5756  * it from being flushed to disk early.  Unlike
5757  * ext4_reserve_inode_write, this leaves behind no bh reference and
5758  * returns no iloc structure, so the caller needs to repeat the iloc
5759  * lookup to mark the inode dirty later.
5760  */
5761 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5762 {
5763         struct ext4_iloc iloc;
5764
5765         int err = 0;
5766         if (handle) {
5767                 err = ext4_get_inode_loc(inode, &iloc);
5768                 if (!err) {
5769                         BUFFER_TRACE(iloc.bh, "get_write_access");
5770                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5771                         if (!err)
5772                                 err = ext4_handle_dirty_metadata(handle,
5773                                                                  NULL,
5774                                                                  iloc.bh);
5775                         brelse(iloc.bh);
5776                 }
5777         }
5778         ext4_std_error(inode->i_sb, err);
5779         return err;
5780 }
5781 #endif
5782
5783 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5784 {
5785         journal_t *journal;
5786         handle_t *handle;
5787         int err;
5788
5789         /*
5790          * We have to be very careful here: changing a data block's
5791          * journaling status dynamically is dangerous.  If we write a
5792          * data block to the journal, change the status and then delete
5793          * that block, we risk forgetting to revoke the old log record
5794          * from the journal and so a subsequent replay can corrupt data.
5795          * So, first we make sure that the journal is empty and that
5796          * nobody is changing anything.
5797          */
5798
5799         journal = EXT4_JOURNAL(inode);
5800         if (!journal)
5801                 return 0;
5802         if (is_journal_aborted(journal))
5803                 return -EROFS;
5804
5805         jbd2_journal_lock_updates(journal);
5806         jbd2_journal_flush(journal);
5807
5808         /*
5809          * OK, there are no updates running now, and all cached data is
5810          * synced to disk.  We are now in a completely consistent state
5811          * which doesn't have anything in the journal, and we know that
5812          * no filesystem updates are running, so it is safe to modify
5813          * the inode's in-core data-journaling state flag now.
5814          */
5815
5816         if (val)
5817                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5818         else
5819                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5820         ext4_set_aops(inode);
5821
5822         jbd2_journal_unlock_updates(journal);
5823
5824         /* Finally we can mark the inode as dirty. */
5825
5826         handle = ext4_journal_start(inode, 1);
5827         if (IS_ERR(handle))
5828                 return PTR_ERR(handle);
5829
5830         err = ext4_mark_inode_dirty(handle, inode);
5831         ext4_handle_sync(handle);
5832         ext4_journal_stop(handle);
5833         ext4_std_error(inode->i_sb, err);
5834
5835         return err;
5836 }
5837
5838 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5839 {
5840         return !buffer_mapped(bh);
5841 }
5842
5843 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5844 {
5845         struct page *page = vmf->page;
5846         loff_t size;
5847         unsigned long len;
5848         int ret = -EINVAL;
5849         void *fsdata;
5850         struct file *file = vma->vm_file;
5851         struct inode *inode = file->f_path.dentry->d_inode;
5852         struct address_space *mapping = inode->i_mapping;
5853
5854         /*
5855          * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5856          * get i_mutex because we are already holding mmap_sem.
5857          */
5858         down_read(&inode->i_alloc_sem);
5859         size = i_size_read(inode);
5860         if (page->mapping != mapping || size <= page_offset(page)
5861             || !PageUptodate(page)) {
5862                 /* page got truncated from under us? */
5863                 goto out_unlock;
5864         }
5865         ret = 0;
5866
5867         lock_page(page);
5868         wait_on_page_writeback(page);
5869         if (PageMappedToDisk(page)) {
5870                 up_read(&inode->i_alloc_sem);
5871                 return VM_FAULT_LOCKED;
5872         }
5873
5874         if (page->index == size >> PAGE_CACHE_SHIFT)
5875                 len = size & ~PAGE_CACHE_MASK;
5876         else
5877                 len = PAGE_CACHE_SIZE;
5878
5879         /*
5880          * return if we have all the buffers mapped. This avoid
5881          * the need to call write_begin/write_end which does a
5882          * journal_start/journal_stop which can block and take
5883          * long time
5884          */
5885         if (page_has_buffers(page)) {
5886                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5887                                         ext4_bh_unmapped)) {
5888                         up_read(&inode->i_alloc_sem);
5889                         return VM_FAULT_LOCKED;
5890                 }
5891         }
5892         unlock_page(page);
5893         /*
5894          * OK, we need to fill the hole... Do write_begin write_end
5895          * to do block allocation/reservation.We are not holding
5896          * inode.i__mutex here. That allow * parallel write_begin,
5897          * write_end call. lock_page prevent this from happening
5898          * on the same page though
5899          */
5900         ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5901                         len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5902         if (ret < 0)
5903                 goto out_unlock;
5904         ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5905                         len, len, page, fsdata);
5906         if (ret < 0)
5907                 goto out_unlock;
5908         ret = 0;
5909
5910         /*
5911          * write_begin/end might have created a dirty page and someone
5912          * could wander in and start the IO.  Make sure that hasn't
5913          * happened.
5914          */
5915         lock_page(page);
5916         wait_on_page_writeback(page);
5917         up_read(&inode->i_alloc_sem);
5918         return VM_FAULT_LOCKED;
5919 out_unlock:
5920         if (ret)
5921                 ret = VM_FAULT_SIGBUS;
5922         up_read(&inode->i_alloc_sem);
5923         return ret;
5924 }