ext4: fix crashes in dioread_nolock mode
[cascardo/linux.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
40
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45
46 #include <trace/events/ext4.h>
47
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51                               struct ext4_inode_info *ei)
52 {
53         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54         __u16 csum_lo;
55         __u16 csum_hi = 0;
56         __u32 csum;
57
58         csum_lo = le16_to_cpu(raw->i_checksum_lo);
59         raw->i_checksum_lo = 0;
60         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62                 csum_hi = le16_to_cpu(raw->i_checksum_hi);
63                 raw->i_checksum_hi = 0;
64         }
65
66         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67                            EXT4_INODE_SIZE(inode->i_sb));
68
69         raw->i_checksum_lo = cpu_to_le16(csum_lo);
70         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72                 raw->i_checksum_hi = cpu_to_le16(csum_hi);
73
74         return csum;
75 }
76
77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78                                   struct ext4_inode_info *ei)
79 {
80         __u32 provided, calculated;
81
82         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83             cpu_to_le32(EXT4_OS_LINUX) ||
84             !ext4_has_metadata_csum(inode->i_sb))
85                 return 1;
86
87         provided = le16_to_cpu(raw->i_checksum_lo);
88         calculated = ext4_inode_csum(inode, raw, ei);
89         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
90             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
91                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
92         else
93                 calculated &= 0xFFFF;
94
95         return provided == calculated;
96 }
97
98 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
99                                 struct ext4_inode_info *ei)
100 {
101         __u32 csum;
102
103         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
104             cpu_to_le32(EXT4_OS_LINUX) ||
105             !ext4_has_metadata_csum(inode->i_sb))
106                 return;
107
108         csum = ext4_inode_csum(inode, raw, ei);
109         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
110         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
111             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
112                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
113 }
114
115 static inline int ext4_begin_ordered_truncate(struct inode *inode,
116                                               loff_t new_size)
117 {
118         trace_ext4_begin_ordered_truncate(inode, new_size);
119         /*
120          * If jinode is zero, then we never opened the file for
121          * writing, so there's no need to call
122          * jbd2_journal_begin_ordered_truncate() since there's no
123          * outstanding writes we need to flush.
124          */
125         if (!EXT4_I(inode)->jinode)
126                 return 0;
127         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
128                                                    EXT4_I(inode)->jinode,
129                                                    new_size);
130 }
131
132 static void ext4_invalidatepage(struct page *page, unsigned int offset,
133                                 unsigned int length);
134 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
135 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
136 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
137                                   int pextents);
138
139 /*
140  * Test whether an inode is a fast symlink.
141  */
142 int ext4_inode_is_fast_symlink(struct inode *inode)
143 {
144         int ea_blocks = EXT4_I(inode)->i_file_acl ?
145                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
146
147         if (ext4_has_inline_data(inode))
148                 return 0;
149
150         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151 }
152
153 /*
154  * Restart the transaction associated with *handle.  This does a commit,
155  * so before we call here everything must be consistently dirtied against
156  * this transaction.
157  */
158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
159                                  int nblocks)
160 {
161         int ret;
162
163         /*
164          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
165          * moment, get_block can be called only for blocks inside i_size since
166          * page cache has been already dropped and writes are blocked by
167          * i_mutex. So we can safely drop the i_data_sem here.
168          */
169         BUG_ON(EXT4_JOURNAL(inode) == NULL);
170         jbd_debug(2, "restarting handle %p\n", handle);
171         up_write(&EXT4_I(inode)->i_data_sem);
172         ret = ext4_journal_restart(handle, nblocks);
173         down_write(&EXT4_I(inode)->i_data_sem);
174         ext4_discard_preallocations(inode);
175
176         return ret;
177 }
178
179 /*
180  * Called at the last iput() if i_nlink is zero.
181  */
182 void ext4_evict_inode(struct inode *inode)
183 {
184         handle_t *handle;
185         int err;
186
187         trace_ext4_evict_inode(inode);
188
189         if (inode->i_nlink) {
190                 /*
191                  * When journalling data dirty buffers are tracked only in the
192                  * journal. So although mm thinks everything is clean and
193                  * ready for reaping the inode might still have some pages to
194                  * write in the running transaction or waiting to be
195                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
196                  * (via truncate_inode_pages()) to discard these buffers can
197                  * cause data loss. Also even if we did not discard these
198                  * buffers, we would have no way to find them after the inode
199                  * is reaped and thus user could see stale data if he tries to
200                  * read them before the transaction is checkpointed. So be
201                  * careful and force everything to disk here... We use
202                  * ei->i_datasync_tid to store the newest transaction
203                  * containing inode's data.
204                  *
205                  * Note that directories do not have this problem because they
206                  * don't use page cache.
207                  */
208                 if (ext4_should_journal_data(inode) &&
209                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210                     inode->i_ino != EXT4_JOURNAL_INO) {
211                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213
214                         jbd2_complete_transaction(journal, commit_tid);
215                         filemap_write_and_wait(&inode->i_data);
216                 }
217                 truncate_inode_pages_final(&inode->i_data);
218
219                 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
220                 goto no_delete;
221         }
222
223         if (is_bad_inode(inode))
224                 goto no_delete;
225         dquot_initialize(inode);
226
227         if (ext4_should_order_data(inode))
228                 ext4_begin_ordered_truncate(inode, 0);
229         truncate_inode_pages_final(&inode->i_data);
230
231         WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
232
233         /*
234          * Protect us against freezing - iput() caller didn't have to have any
235          * protection against it
236          */
237         sb_start_intwrite(inode->i_sb);
238         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
239                                     ext4_blocks_for_truncate(inode)+3);
240         if (IS_ERR(handle)) {
241                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
242                 /*
243                  * If we're going to skip the normal cleanup, we still need to
244                  * make sure that the in-core orphan linked list is properly
245                  * cleaned up.
246                  */
247                 ext4_orphan_del(NULL, inode);
248                 sb_end_intwrite(inode->i_sb);
249                 goto no_delete;
250         }
251
252         if (IS_SYNC(inode))
253                 ext4_handle_sync(handle);
254         inode->i_size = 0;
255         err = ext4_mark_inode_dirty(handle, inode);
256         if (err) {
257                 ext4_warning(inode->i_sb,
258                              "couldn't mark inode dirty (err %d)", err);
259                 goto stop_handle;
260         }
261         if (inode->i_blocks)
262                 ext4_truncate(inode);
263
264         /*
265          * ext4_ext_truncate() doesn't reserve any slop when it
266          * restarts journal transactions; therefore there may not be
267          * enough credits left in the handle to remove the inode from
268          * the orphan list and set the dtime field.
269          */
270         if (!ext4_handle_has_enough_credits(handle, 3)) {
271                 err = ext4_journal_extend(handle, 3);
272                 if (err > 0)
273                         err = ext4_journal_restart(handle, 3);
274                 if (err != 0) {
275                         ext4_warning(inode->i_sb,
276                                      "couldn't extend journal (err %d)", err);
277                 stop_handle:
278                         ext4_journal_stop(handle);
279                         ext4_orphan_del(NULL, inode);
280                         sb_end_intwrite(inode->i_sb);
281                         goto no_delete;
282                 }
283         }
284
285         /*
286          * Kill off the orphan record which ext4_truncate created.
287          * AKPM: I think this can be inside the above `if'.
288          * Note that ext4_orphan_del() has to be able to cope with the
289          * deletion of a non-existent orphan - this is because we don't
290          * know if ext4_truncate() actually created an orphan record.
291          * (Well, we could do this if we need to, but heck - it works)
292          */
293         ext4_orphan_del(handle, inode);
294         EXT4_I(inode)->i_dtime  = get_seconds();
295
296         /*
297          * One subtle ordering requirement: if anything has gone wrong
298          * (transaction abort, IO errors, whatever), then we can still
299          * do these next steps (the fs will already have been marked as
300          * having errors), but we can't free the inode if the mark_dirty
301          * fails.
302          */
303         if (ext4_mark_inode_dirty(handle, inode))
304                 /* If that failed, just do the required in-core inode clear. */
305                 ext4_clear_inode(inode);
306         else
307                 ext4_free_inode(handle, inode);
308         ext4_journal_stop(handle);
309         sb_end_intwrite(inode->i_sb);
310         return;
311 no_delete:
312         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
313 }
314
315 #ifdef CONFIG_QUOTA
316 qsize_t *ext4_get_reserved_space(struct inode *inode)
317 {
318         return &EXT4_I(inode)->i_reserved_quota;
319 }
320 #endif
321
322 /*
323  * Called with i_data_sem down, which is important since we can call
324  * ext4_discard_preallocations() from here.
325  */
326 void ext4_da_update_reserve_space(struct inode *inode,
327                                         int used, int quota_claim)
328 {
329         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
330         struct ext4_inode_info *ei = EXT4_I(inode);
331
332         spin_lock(&ei->i_block_reservation_lock);
333         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
334         if (unlikely(used > ei->i_reserved_data_blocks)) {
335                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
336                          "with only %d reserved data blocks",
337                          __func__, inode->i_ino, used,
338                          ei->i_reserved_data_blocks);
339                 WARN_ON(1);
340                 used = ei->i_reserved_data_blocks;
341         }
342
343         /* Update per-inode reservations */
344         ei->i_reserved_data_blocks -= used;
345         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
346
347         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
348
349         /* Update quota subsystem for data blocks */
350         if (quota_claim)
351                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
352         else {
353                 /*
354                  * We did fallocate with an offset that is already delayed
355                  * allocated. So on delayed allocated writeback we should
356                  * not re-claim the quota for fallocated blocks.
357                  */
358                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
359         }
360
361         /*
362          * If we have done all the pending block allocations and if
363          * there aren't any writers on the inode, we can discard the
364          * inode's preallocations.
365          */
366         if ((ei->i_reserved_data_blocks == 0) &&
367             (atomic_read(&inode->i_writecount) == 0))
368                 ext4_discard_preallocations(inode);
369 }
370
371 static int __check_block_validity(struct inode *inode, const char *func,
372                                 unsigned int line,
373                                 struct ext4_map_blocks *map)
374 {
375         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
376                                    map->m_len)) {
377                 ext4_error_inode(inode, func, line, map->m_pblk,
378                                  "lblock %lu mapped to illegal pblock "
379                                  "(length %d)", (unsigned long) map->m_lblk,
380                                  map->m_len);
381                 return -EFSCORRUPTED;
382         }
383         return 0;
384 }
385
386 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
387                        ext4_lblk_t len)
388 {
389         int ret;
390
391         if (ext4_encrypted_inode(inode))
392                 return ext4_encrypted_zeroout(inode, lblk, pblk, len);
393
394         ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
395         if (ret > 0)
396                 ret = 0;
397
398         return ret;
399 }
400
401 #define check_block_validity(inode, map)        \
402         __check_block_validity((inode), __func__, __LINE__, (map))
403
404 #ifdef ES_AGGRESSIVE_TEST
405 static void ext4_map_blocks_es_recheck(handle_t *handle,
406                                        struct inode *inode,
407                                        struct ext4_map_blocks *es_map,
408                                        struct ext4_map_blocks *map,
409                                        int flags)
410 {
411         int retval;
412
413         map->m_flags = 0;
414         /*
415          * There is a race window that the result is not the same.
416          * e.g. xfstests #223 when dioread_nolock enables.  The reason
417          * is that we lookup a block mapping in extent status tree with
418          * out taking i_data_sem.  So at the time the unwritten extent
419          * could be converted.
420          */
421         down_read(&EXT4_I(inode)->i_data_sem);
422         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
423                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
424                                              EXT4_GET_BLOCKS_KEEP_SIZE);
425         } else {
426                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
427                                              EXT4_GET_BLOCKS_KEEP_SIZE);
428         }
429         up_read((&EXT4_I(inode)->i_data_sem));
430
431         /*
432          * We don't check m_len because extent will be collpased in status
433          * tree.  So the m_len might not equal.
434          */
435         if (es_map->m_lblk != map->m_lblk ||
436             es_map->m_flags != map->m_flags ||
437             es_map->m_pblk != map->m_pblk) {
438                 printk("ES cache assertion failed for inode: %lu "
439                        "es_cached ex [%d/%d/%llu/%x] != "
440                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
441                        inode->i_ino, es_map->m_lblk, es_map->m_len,
442                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
443                        map->m_len, map->m_pblk, map->m_flags,
444                        retval, flags);
445         }
446 }
447 #endif /* ES_AGGRESSIVE_TEST */
448
449 /*
450  * The ext4_map_blocks() function tries to look up the requested blocks,
451  * and returns if the blocks are already mapped.
452  *
453  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
454  * and store the allocated blocks in the result buffer head and mark it
455  * mapped.
456  *
457  * If file type is extents based, it will call ext4_ext_map_blocks(),
458  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
459  * based files
460  *
461  * On success, it returns the number of blocks being mapped or allocated.
462  * if create==0 and the blocks are pre-allocated and unwritten block,
463  * the result buffer head is unmapped. If the create ==1, it will make sure
464  * the buffer head is mapped.
465  *
466  * It returns 0 if plain look up failed (blocks have not been allocated), in
467  * that case, buffer head is unmapped
468  *
469  * It returns the error in case of allocation failure.
470  */
471 int ext4_map_blocks(handle_t *handle, struct inode *inode,
472                     struct ext4_map_blocks *map, int flags)
473 {
474         struct extent_status es;
475         int retval;
476         int ret = 0;
477 #ifdef ES_AGGRESSIVE_TEST
478         struct ext4_map_blocks orig_map;
479
480         memcpy(&orig_map, map, sizeof(*map));
481 #endif
482
483         map->m_flags = 0;
484         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
485                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
486                   (unsigned long) map->m_lblk);
487
488         /*
489          * ext4_map_blocks returns an int, and m_len is an unsigned int
490          */
491         if (unlikely(map->m_len > INT_MAX))
492                 map->m_len = INT_MAX;
493
494         /* We can handle the block number less than EXT_MAX_BLOCKS */
495         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
496                 return -EFSCORRUPTED;
497
498         /* Lookup extent status tree firstly */
499         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
500                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
501                         map->m_pblk = ext4_es_pblock(&es) +
502                                         map->m_lblk - es.es_lblk;
503                         map->m_flags |= ext4_es_is_written(&es) ?
504                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
505                         retval = es.es_len - (map->m_lblk - es.es_lblk);
506                         if (retval > map->m_len)
507                                 retval = map->m_len;
508                         map->m_len = retval;
509                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
510                         retval = 0;
511                 } else {
512                         BUG_ON(1);
513                 }
514 #ifdef ES_AGGRESSIVE_TEST
515                 ext4_map_blocks_es_recheck(handle, inode, map,
516                                            &orig_map, flags);
517 #endif
518                 goto found;
519         }
520
521         /*
522          * Try to see if we can get the block without requesting a new
523          * file system block.
524          */
525         down_read(&EXT4_I(inode)->i_data_sem);
526         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
527                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
528                                              EXT4_GET_BLOCKS_KEEP_SIZE);
529         } else {
530                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
531                                              EXT4_GET_BLOCKS_KEEP_SIZE);
532         }
533         if (retval > 0) {
534                 unsigned int status;
535
536                 if (unlikely(retval != map->m_len)) {
537                         ext4_warning(inode->i_sb,
538                                      "ES len assertion failed for inode "
539                                      "%lu: retval %d != map->m_len %d",
540                                      inode->i_ino, retval, map->m_len);
541                         WARN_ON(1);
542                 }
543
544                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
545                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
546                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
547                     !(status & EXTENT_STATUS_WRITTEN) &&
548                     ext4_find_delalloc_range(inode, map->m_lblk,
549                                              map->m_lblk + map->m_len - 1))
550                         status |= EXTENT_STATUS_DELAYED;
551                 ret = ext4_es_insert_extent(inode, map->m_lblk,
552                                             map->m_len, map->m_pblk, status);
553                 if (ret < 0)
554                         retval = ret;
555         }
556         up_read((&EXT4_I(inode)->i_data_sem));
557
558 found:
559         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
560                 ret = check_block_validity(inode, map);
561                 if (ret != 0)
562                         return ret;
563         }
564
565         /* If it is only a block(s) look up */
566         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
567                 return retval;
568
569         /*
570          * Returns if the blocks have already allocated
571          *
572          * Note that if blocks have been preallocated
573          * ext4_ext_get_block() returns the create = 0
574          * with buffer head unmapped.
575          */
576         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
577                 /*
578                  * If we need to convert extent to unwritten
579                  * we continue and do the actual work in
580                  * ext4_ext_map_blocks()
581                  */
582                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
583                         return retval;
584
585         /*
586          * Here we clear m_flags because after allocating an new extent,
587          * it will be set again.
588          */
589         map->m_flags &= ~EXT4_MAP_FLAGS;
590
591         /*
592          * New blocks allocate and/or writing to unwritten extent
593          * will possibly result in updating i_data, so we take
594          * the write lock of i_data_sem, and call get_block()
595          * with create == 1 flag.
596          */
597         down_write(&EXT4_I(inode)->i_data_sem);
598
599         /*
600          * We need to check for EXT4 here because migrate
601          * could have changed the inode type in between
602          */
603         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
604                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
605         } else {
606                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
607
608                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
609                         /*
610                          * We allocated new blocks which will result in
611                          * i_data's format changing.  Force the migrate
612                          * to fail by clearing migrate flags
613                          */
614                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
615                 }
616
617                 /*
618                  * Update reserved blocks/metadata blocks after successful
619                  * block allocation which had been deferred till now. We don't
620                  * support fallocate for non extent files. So we can update
621                  * reserve space here.
622                  */
623                 if ((retval > 0) &&
624                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
625                         ext4_da_update_reserve_space(inode, retval, 1);
626         }
627
628         if (retval > 0) {
629                 unsigned int status;
630
631                 if (unlikely(retval != map->m_len)) {
632                         ext4_warning(inode->i_sb,
633                                      "ES len assertion failed for inode "
634                                      "%lu: retval %d != map->m_len %d",
635                                      inode->i_ino, retval, map->m_len);
636                         WARN_ON(1);
637                 }
638
639                 /*
640                  * We have to zeroout blocks before inserting them into extent
641                  * status tree. Otherwise someone could look them up there and
642                  * use them before they are really zeroed.
643                  */
644                 if (flags & EXT4_GET_BLOCKS_ZERO &&
645                     map->m_flags & EXT4_MAP_MAPPED &&
646                     map->m_flags & EXT4_MAP_NEW) {
647                         ret = ext4_issue_zeroout(inode, map->m_lblk,
648                                                  map->m_pblk, map->m_len);
649                         if (ret) {
650                                 retval = ret;
651                                 goto out_sem;
652                         }
653                 }
654
655                 /*
656                  * If the extent has been zeroed out, we don't need to update
657                  * extent status tree.
658                  */
659                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
660                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
661                         if (ext4_es_is_written(&es))
662                                 goto out_sem;
663                 }
664                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
665                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
666                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
667                     !(status & EXTENT_STATUS_WRITTEN) &&
668                     ext4_find_delalloc_range(inode, map->m_lblk,
669                                              map->m_lblk + map->m_len - 1))
670                         status |= EXTENT_STATUS_DELAYED;
671                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
672                                             map->m_pblk, status);
673                 if (ret < 0) {
674                         retval = ret;
675                         goto out_sem;
676                 }
677         }
678
679 out_sem:
680         up_write((&EXT4_I(inode)->i_data_sem));
681         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
682                 ret = check_block_validity(inode, map);
683                 if (ret != 0)
684                         return ret;
685         }
686         return retval;
687 }
688
689 /*
690  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
691  * we have to be careful as someone else may be manipulating b_state as well.
692  */
693 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
694 {
695         unsigned long old_state;
696         unsigned long new_state;
697
698         flags &= EXT4_MAP_FLAGS;
699
700         /* Dummy buffer_head? Set non-atomically. */
701         if (!bh->b_page) {
702                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
703                 return;
704         }
705         /*
706          * Someone else may be modifying b_state. Be careful! This is ugly but
707          * once we get rid of using bh as a container for mapping information
708          * to pass to / from get_block functions, this can go away.
709          */
710         do {
711                 old_state = READ_ONCE(bh->b_state);
712                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
713         } while (unlikely(
714                  cmpxchg(&bh->b_state, old_state, new_state) != old_state));
715 }
716
717 /* Maximum number of blocks we map for direct IO at once. */
718 #define DIO_MAX_BLOCKS 4096
719
720 static int _ext4_get_block(struct inode *inode, sector_t iblock,
721                            struct buffer_head *bh, int flags)
722 {
723         handle_t *handle = ext4_journal_current_handle();
724         struct ext4_map_blocks map;
725         int ret = 0, started = 0;
726         int dio_credits;
727
728         if (ext4_has_inline_data(inode))
729                 return -ERANGE;
730
731         map.m_lblk = iblock;
732         map.m_len = bh->b_size >> inode->i_blkbits;
733
734         if (flags && !handle) {
735                 /* Direct IO write... */
736                 if (map.m_len > DIO_MAX_BLOCKS)
737                         map.m_len = DIO_MAX_BLOCKS;
738                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
739                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
740                                             dio_credits);
741                 if (IS_ERR(handle)) {
742                         ret = PTR_ERR(handle);
743                         return ret;
744                 }
745                 started = 1;
746         }
747
748         ret = ext4_map_blocks(handle, inode, &map, flags);
749         if (ret > 0) {
750                 ext4_io_end_t *io_end = ext4_inode_aio(inode);
751
752                 map_bh(bh, inode->i_sb, map.m_pblk);
753                 ext4_update_bh_state(bh, map.m_flags);
754                 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
755                         set_buffer_defer_completion(bh);
756                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
757                 ret = 0;
758         }
759         if (started)
760                 ext4_journal_stop(handle);
761         return ret;
762 }
763
764 int ext4_get_block(struct inode *inode, sector_t iblock,
765                    struct buffer_head *bh, int create)
766 {
767         return _ext4_get_block(inode, iblock, bh,
768                                create ? EXT4_GET_BLOCKS_CREATE : 0);
769 }
770
771 /*
772  * `handle' can be NULL if create is zero
773  */
774 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
775                                 ext4_lblk_t block, int map_flags)
776 {
777         struct ext4_map_blocks map;
778         struct buffer_head *bh;
779         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
780         int err;
781
782         J_ASSERT(handle != NULL || create == 0);
783
784         map.m_lblk = block;
785         map.m_len = 1;
786         err = ext4_map_blocks(handle, inode, &map, map_flags);
787
788         if (err == 0)
789                 return create ? ERR_PTR(-ENOSPC) : NULL;
790         if (err < 0)
791                 return ERR_PTR(err);
792
793         bh = sb_getblk(inode->i_sb, map.m_pblk);
794         if (unlikely(!bh))
795                 return ERR_PTR(-ENOMEM);
796         if (map.m_flags & EXT4_MAP_NEW) {
797                 J_ASSERT(create != 0);
798                 J_ASSERT(handle != NULL);
799
800                 /*
801                  * Now that we do not always journal data, we should
802                  * keep in mind whether this should always journal the
803                  * new buffer as metadata.  For now, regular file
804                  * writes use ext4_get_block instead, so it's not a
805                  * problem.
806                  */
807                 lock_buffer(bh);
808                 BUFFER_TRACE(bh, "call get_create_access");
809                 err = ext4_journal_get_create_access(handle, bh);
810                 if (unlikely(err)) {
811                         unlock_buffer(bh);
812                         goto errout;
813                 }
814                 if (!buffer_uptodate(bh)) {
815                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
816                         set_buffer_uptodate(bh);
817                 }
818                 unlock_buffer(bh);
819                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
820                 err = ext4_handle_dirty_metadata(handle, inode, bh);
821                 if (unlikely(err))
822                         goto errout;
823         } else
824                 BUFFER_TRACE(bh, "not a new buffer");
825         return bh;
826 errout:
827         brelse(bh);
828         return ERR_PTR(err);
829 }
830
831 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
832                                ext4_lblk_t block, int map_flags)
833 {
834         struct buffer_head *bh;
835
836         bh = ext4_getblk(handle, inode, block, map_flags);
837         if (IS_ERR(bh))
838                 return bh;
839         if (!bh || buffer_uptodate(bh))
840                 return bh;
841         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
842         wait_on_buffer(bh);
843         if (buffer_uptodate(bh))
844                 return bh;
845         put_bh(bh);
846         return ERR_PTR(-EIO);
847 }
848
849 int ext4_walk_page_buffers(handle_t *handle,
850                            struct buffer_head *head,
851                            unsigned from,
852                            unsigned to,
853                            int *partial,
854                            int (*fn)(handle_t *handle,
855                                      struct buffer_head *bh))
856 {
857         struct buffer_head *bh;
858         unsigned block_start, block_end;
859         unsigned blocksize = head->b_size;
860         int err, ret = 0;
861         struct buffer_head *next;
862
863         for (bh = head, block_start = 0;
864              ret == 0 && (bh != head || !block_start);
865              block_start = block_end, bh = next) {
866                 next = bh->b_this_page;
867                 block_end = block_start + blocksize;
868                 if (block_end <= from || block_start >= to) {
869                         if (partial && !buffer_uptodate(bh))
870                                 *partial = 1;
871                         continue;
872                 }
873                 err = (*fn)(handle, bh);
874                 if (!ret)
875                         ret = err;
876         }
877         return ret;
878 }
879
880 /*
881  * To preserve ordering, it is essential that the hole instantiation and
882  * the data write be encapsulated in a single transaction.  We cannot
883  * close off a transaction and start a new one between the ext4_get_block()
884  * and the commit_write().  So doing the jbd2_journal_start at the start of
885  * prepare_write() is the right place.
886  *
887  * Also, this function can nest inside ext4_writepage().  In that case, we
888  * *know* that ext4_writepage() has generated enough buffer credits to do the
889  * whole page.  So we won't block on the journal in that case, which is good,
890  * because the caller may be PF_MEMALLOC.
891  *
892  * By accident, ext4 can be reentered when a transaction is open via
893  * quota file writes.  If we were to commit the transaction while thus
894  * reentered, there can be a deadlock - we would be holding a quota
895  * lock, and the commit would never complete if another thread had a
896  * transaction open and was blocking on the quota lock - a ranking
897  * violation.
898  *
899  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
900  * will _not_ run commit under these circumstances because handle->h_ref
901  * is elevated.  We'll still have enough credits for the tiny quotafile
902  * write.
903  */
904 int do_journal_get_write_access(handle_t *handle,
905                                 struct buffer_head *bh)
906 {
907         int dirty = buffer_dirty(bh);
908         int ret;
909
910         if (!buffer_mapped(bh) || buffer_freed(bh))
911                 return 0;
912         /*
913          * __block_write_begin() could have dirtied some buffers. Clean
914          * the dirty bit as jbd2_journal_get_write_access() could complain
915          * otherwise about fs integrity issues. Setting of the dirty bit
916          * by __block_write_begin() isn't a real problem here as we clear
917          * the bit before releasing a page lock and thus writeback cannot
918          * ever write the buffer.
919          */
920         if (dirty)
921                 clear_buffer_dirty(bh);
922         BUFFER_TRACE(bh, "get write access");
923         ret = ext4_journal_get_write_access(handle, bh);
924         if (!ret && dirty)
925                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
926         return ret;
927 }
928
929 #ifdef CONFIG_EXT4_FS_ENCRYPTION
930 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
931                                   get_block_t *get_block)
932 {
933         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
934         unsigned to = from + len;
935         struct inode *inode = page->mapping->host;
936         unsigned block_start, block_end;
937         sector_t block;
938         int err = 0;
939         unsigned blocksize = inode->i_sb->s_blocksize;
940         unsigned bbits;
941         struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
942         bool decrypt = false;
943
944         BUG_ON(!PageLocked(page));
945         BUG_ON(from > PAGE_CACHE_SIZE);
946         BUG_ON(to > PAGE_CACHE_SIZE);
947         BUG_ON(from > to);
948
949         if (!page_has_buffers(page))
950                 create_empty_buffers(page, blocksize, 0);
951         head = page_buffers(page);
952         bbits = ilog2(blocksize);
953         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
954
955         for (bh = head, block_start = 0; bh != head || !block_start;
956             block++, block_start = block_end, bh = bh->b_this_page) {
957                 block_end = block_start + blocksize;
958                 if (block_end <= from || block_start >= to) {
959                         if (PageUptodate(page)) {
960                                 if (!buffer_uptodate(bh))
961                                         set_buffer_uptodate(bh);
962                         }
963                         continue;
964                 }
965                 if (buffer_new(bh))
966                         clear_buffer_new(bh);
967                 if (!buffer_mapped(bh)) {
968                         WARN_ON(bh->b_size != blocksize);
969                         err = get_block(inode, block, bh, 1);
970                         if (err)
971                                 break;
972                         if (buffer_new(bh)) {
973                                 unmap_underlying_metadata(bh->b_bdev,
974                                                           bh->b_blocknr);
975                                 if (PageUptodate(page)) {
976                                         clear_buffer_new(bh);
977                                         set_buffer_uptodate(bh);
978                                         mark_buffer_dirty(bh);
979                                         continue;
980                                 }
981                                 if (block_end > to || block_start < from)
982                                         zero_user_segments(page, to, block_end,
983                                                            block_start, from);
984                                 continue;
985                         }
986                 }
987                 if (PageUptodate(page)) {
988                         if (!buffer_uptodate(bh))
989                                 set_buffer_uptodate(bh);
990                         continue;
991                 }
992                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
993                     !buffer_unwritten(bh) &&
994                     (block_start < from || block_end > to)) {
995                         ll_rw_block(READ, 1, &bh);
996                         *wait_bh++ = bh;
997                         decrypt = ext4_encrypted_inode(inode) &&
998                                 S_ISREG(inode->i_mode);
999                 }
1000         }
1001         /*
1002          * If we issued read requests, let them complete.
1003          */
1004         while (wait_bh > wait) {
1005                 wait_on_buffer(*--wait_bh);
1006                 if (!buffer_uptodate(*wait_bh))
1007                         err = -EIO;
1008         }
1009         if (unlikely(err))
1010                 page_zero_new_buffers(page, from, to);
1011         else if (decrypt)
1012                 err = ext4_decrypt(page);
1013         return err;
1014 }
1015 #endif
1016
1017 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1018                             loff_t pos, unsigned len, unsigned flags,
1019                             struct page **pagep, void **fsdata)
1020 {
1021         struct inode *inode = mapping->host;
1022         int ret, needed_blocks;
1023         handle_t *handle;
1024         int retries = 0;
1025         struct page *page;
1026         pgoff_t index;
1027         unsigned from, to;
1028
1029         trace_ext4_write_begin(inode, pos, len, flags);
1030         /*
1031          * Reserve one block more for addition to orphan list in case
1032          * we allocate blocks but write fails for some reason
1033          */
1034         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1035         index = pos >> PAGE_CACHE_SHIFT;
1036         from = pos & (PAGE_CACHE_SIZE - 1);
1037         to = from + len;
1038
1039         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1040                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1041                                                     flags, pagep);
1042                 if (ret < 0)
1043                         return ret;
1044                 if (ret == 1)
1045                         return 0;
1046         }
1047
1048         /*
1049          * grab_cache_page_write_begin() can take a long time if the
1050          * system is thrashing due to memory pressure, or if the page
1051          * is being written back.  So grab it first before we start
1052          * the transaction handle.  This also allows us to allocate
1053          * the page (if needed) without using GFP_NOFS.
1054          */
1055 retry_grab:
1056         page = grab_cache_page_write_begin(mapping, index, flags);
1057         if (!page)
1058                 return -ENOMEM;
1059         unlock_page(page);
1060
1061 retry_journal:
1062         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1063         if (IS_ERR(handle)) {
1064                 page_cache_release(page);
1065                 return PTR_ERR(handle);
1066         }
1067
1068         lock_page(page);
1069         if (page->mapping != mapping) {
1070                 /* The page got truncated from under us */
1071                 unlock_page(page);
1072                 page_cache_release(page);
1073                 ext4_journal_stop(handle);
1074                 goto retry_grab;
1075         }
1076         /* In case writeback began while the page was unlocked */
1077         wait_for_stable_page(page);
1078
1079 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1080         if (ext4_should_dioread_nolock(inode))
1081                 ret = ext4_block_write_begin(page, pos, len,
1082                                              ext4_get_block_write);
1083         else
1084                 ret = ext4_block_write_begin(page, pos, len,
1085                                              ext4_get_block);
1086 #else
1087         if (ext4_should_dioread_nolock(inode))
1088                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1089         else
1090                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1091 #endif
1092         if (!ret && ext4_should_journal_data(inode)) {
1093                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1094                                              from, to, NULL,
1095                                              do_journal_get_write_access);
1096         }
1097
1098         if (ret) {
1099                 unlock_page(page);
1100                 /*
1101                  * __block_write_begin may have instantiated a few blocks
1102                  * outside i_size.  Trim these off again. Don't need
1103                  * i_size_read because we hold i_mutex.
1104                  *
1105                  * Add inode to orphan list in case we crash before
1106                  * truncate finishes
1107                  */
1108                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1109                         ext4_orphan_add(handle, inode);
1110
1111                 ext4_journal_stop(handle);
1112                 if (pos + len > inode->i_size) {
1113                         ext4_truncate_failed_write(inode);
1114                         /*
1115                          * If truncate failed early the inode might
1116                          * still be on the orphan list; we need to
1117                          * make sure the inode is removed from the
1118                          * orphan list in that case.
1119                          */
1120                         if (inode->i_nlink)
1121                                 ext4_orphan_del(NULL, inode);
1122                 }
1123
1124                 if (ret == -ENOSPC &&
1125                     ext4_should_retry_alloc(inode->i_sb, &retries))
1126                         goto retry_journal;
1127                 page_cache_release(page);
1128                 return ret;
1129         }
1130         *pagep = page;
1131         return ret;
1132 }
1133
1134 /* For write_end() in data=journal mode */
1135 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1136 {
1137         int ret;
1138         if (!buffer_mapped(bh) || buffer_freed(bh))
1139                 return 0;
1140         set_buffer_uptodate(bh);
1141         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1142         clear_buffer_meta(bh);
1143         clear_buffer_prio(bh);
1144         return ret;
1145 }
1146
1147 /*
1148  * We need to pick up the new inode size which generic_commit_write gave us
1149  * `file' can be NULL - eg, when called from page_symlink().
1150  *
1151  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1152  * buffers are managed internally.
1153  */
1154 static int ext4_write_end(struct file *file,
1155                           struct address_space *mapping,
1156                           loff_t pos, unsigned len, unsigned copied,
1157                           struct page *page, void *fsdata)
1158 {
1159         handle_t *handle = ext4_journal_current_handle();
1160         struct inode *inode = mapping->host;
1161         loff_t old_size = inode->i_size;
1162         int ret = 0, ret2;
1163         int i_size_changed = 0;
1164
1165         trace_ext4_write_end(inode, pos, len, copied);
1166         if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1167                 ret = ext4_jbd2_file_inode(handle, inode);
1168                 if (ret) {
1169                         unlock_page(page);
1170                         page_cache_release(page);
1171                         goto errout;
1172                 }
1173         }
1174
1175         if (ext4_has_inline_data(inode)) {
1176                 ret = ext4_write_inline_data_end(inode, pos, len,
1177                                                  copied, page);
1178                 if (ret < 0)
1179                         goto errout;
1180                 copied = ret;
1181         } else
1182                 copied = block_write_end(file, mapping, pos,
1183                                          len, copied, page, fsdata);
1184         /*
1185          * it's important to update i_size while still holding page lock:
1186          * page writeout could otherwise come in and zero beyond i_size.
1187          */
1188         i_size_changed = ext4_update_inode_size(inode, pos + copied);
1189         unlock_page(page);
1190         page_cache_release(page);
1191
1192         if (old_size < pos)
1193                 pagecache_isize_extended(inode, old_size, pos);
1194         /*
1195          * Don't mark the inode dirty under page lock. First, it unnecessarily
1196          * makes the holding time of page lock longer. Second, it forces lock
1197          * ordering of page lock and transaction start for journaling
1198          * filesystems.
1199          */
1200         if (i_size_changed)
1201                 ext4_mark_inode_dirty(handle, inode);
1202
1203         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1204                 /* if we have allocated more blocks and copied
1205                  * less. We will have blocks allocated outside
1206                  * inode->i_size. So truncate them
1207                  */
1208                 ext4_orphan_add(handle, inode);
1209 errout:
1210         ret2 = ext4_journal_stop(handle);
1211         if (!ret)
1212                 ret = ret2;
1213
1214         if (pos + len > inode->i_size) {
1215                 ext4_truncate_failed_write(inode);
1216                 /*
1217                  * If truncate failed early the inode might still be
1218                  * on the orphan list; we need to make sure the inode
1219                  * is removed from the orphan list in that case.
1220                  */
1221                 if (inode->i_nlink)
1222                         ext4_orphan_del(NULL, inode);
1223         }
1224
1225         return ret ? ret : copied;
1226 }
1227
1228 /*
1229  * This is a private version of page_zero_new_buffers() which doesn't
1230  * set the buffer to be dirty, since in data=journalled mode we need
1231  * to call ext4_handle_dirty_metadata() instead.
1232  */
1233 static void zero_new_buffers(struct page *page, unsigned from, unsigned to)
1234 {
1235         unsigned int block_start = 0, block_end;
1236         struct buffer_head *head, *bh;
1237
1238         bh = head = page_buffers(page);
1239         do {
1240                 block_end = block_start + bh->b_size;
1241                 if (buffer_new(bh)) {
1242                         if (block_end > from && block_start < to) {
1243                                 if (!PageUptodate(page)) {
1244                                         unsigned start, size;
1245
1246                                         start = max(from, block_start);
1247                                         size = min(to, block_end) - start;
1248
1249                                         zero_user(page, start, size);
1250                                         set_buffer_uptodate(bh);
1251                                 }
1252                                 clear_buffer_new(bh);
1253                         }
1254                 }
1255                 block_start = block_end;
1256                 bh = bh->b_this_page;
1257         } while (bh != head);
1258 }
1259
1260 static int ext4_journalled_write_end(struct file *file,
1261                                      struct address_space *mapping,
1262                                      loff_t pos, unsigned len, unsigned copied,
1263                                      struct page *page, void *fsdata)
1264 {
1265         handle_t *handle = ext4_journal_current_handle();
1266         struct inode *inode = mapping->host;
1267         loff_t old_size = inode->i_size;
1268         int ret = 0, ret2;
1269         int partial = 0;
1270         unsigned from, to;
1271         int size_changed = 0;
1272
1273         trace_ext4_journalled_write_end(inode, pos, len, copied);
1274         from = pos & (PAGE_CACHE_SIZE - 1);
1275         to = from + len;
1276
1277         BUG_ON(!ext4_handle_valid(handle));
1278
1279         if (ext4_has_inline_data(inode))
1280                 copied = ext4_write_inline_data_end(inode, pos, len,
1281                                                     copied, page);
1282         else {
1283                 if (copied < len) {
1284                         if (!PageUptodate(page))
1285                                 copied = 0;
1286                         zero_new_buffers(page, from+copied, to);
1287                 }
1288
1289                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1290                                              to, &partial, write_end_fn);
1291                 if (!partial)
1292                         SetPageUptodate(page);
1293         }
1294         size_changed = ext4_update_inode_size(inode, pos + copied);
1295         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1296         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1297         unlock_page(page);
1298         page_cache_release(page);
1299
1300         if (old_size < pos)
1301                 pagecache_isize_extended(inode, old_size, pos);
1302
1303         if (size_changed) {
1304                 ret2 = ext4_mark_inode_dirty(handle, inode);
1305                 if (!ret)
1306                         ret = ret2;
1307         }
1308
1309         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1310                 /* if we have allocated more blocks and copied
1311                  * less. We will have blocks allocated outside
1312                  * inode->i_size. So truncate them
1313                  */
1314                 ext4_orphan_add(handle, inode);
1315
1316         ret2 = ext4_journal_stop(handle);
1317         if (!ret)
1318                 ret = ret2;
1319         if (pos + len > inode->i_size) {
1320                 ext4_truncate_failed_write(inode);
1321                 /*
1322                  * If truncate failed early the inode might still be
1323                  * on the orphan list; we need to make sure the inode
1324                  * is removed from the orphan list in that case.
1325                  */
1326                 if (inode->i_nlink)
1327                         ext4_orphan_del(NULL, inode);
1328         }
1329
1330         return ret ? ret : copied;
1331 }
1332
1333 /*
1334  * Reserve space for a single cluster
1335  */
1336 static int ext4_da_reserve_space(struct inode *inode)
1337 {
1338         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1339         struct ext4_inode_info *ei = EXT4_I(inode);
1340         int ret;
1341
1342         /*
1343          * We will charge metadata quota at writeout time; this saves
1344          * us from metadata over-estimation, though we may go over by
1345          * a small amount in the end.  Here we just reserve for data.
1346          */
1347         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1348         if (ret)
1349                 return ret;
1350
1351         spin_lock(&ei->i_block_reservation_lock);
1352         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1353                 spin_unlock(&ei->i_block_reservation_lock);
1354                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1355                 return -ENOSPC;
1356         }
1357         ei->i_reserved_data_blocks++;
1358         trace_ext4_da_reserve_space(inode);
1359         spin_unlock(&ei->i_block_reservation_lock);
1360
1361         return 0;       /* success */
1362 }
1363
1364 static void ext4_da_release_space(struct inode *inode, int to_free)
1365 {
1366         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1367         struct ext4_inode_info *ei = EXT4_I(inode);
1368
1369         if (!to_free)
1370                 return;         /* Nothing to release, exit */
1371
1372         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1373
1374         trace_ext4_da_release_space(inode, to_free);
1375         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1376                 /*
1377                  * if there aren't enough reserved blocks, then the
1378                  * counter is messed up somewhere.  Since this
1379                  * function is called from invalidate page, it's
1380                  * harmless to return without any action.
1381                  */
1382                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1383                          "ino %lu, to_free %d with only %d reserved "
1384                          "data blocks", inode->i_ino, to_free,
1385                          ei->i_reserved_data_blocks);
1386                 WARN_ON(1);
1387                 to_free = ei->i_reserved_data_blocks;
1388         }
1389         ei->i_reserved_data_blocks -= to_free;
1390
1391         /* update fs dirty data blocks counter */
1392         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1393
1394         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1395
1396         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1397 }
1398
1399 static void ext4_da_page_release_reservation(struct page *page,
1400                                              unsigned int offset,
1401                                              unsigned int length)
1402 {
1403         int to_release = 0, contiguous_blks = 0;
1404         struct buffer_head *head, *bh;
1405         unsigned int curr_off = 0;
1406         struct inode *inode = page->mapping->host;
1407         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1408         unsigned int stop = offset + length;
1409         int num_clusters;
1410         ext4_fsblk_t lblk;
1411
1412         BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1413
1414         head = page_buffers(page);
1415         bh = head;
1416         do {
1417                 unsigned int next_off = curr_off + bh->b_size;
1418
1419                 if (next_off > stop)
1420                         break;
1421
1422                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1423                         to_release++;
1424                         contiguous_blks++;
1425                         clear_buffer_delay(bh);
1426                 } else if (contiguous_blks) {
1427                         lblk = page->index <<
1428                                (PAGE_CACHE_SHIFT - inode->i_blkbits);
1429                         lblk += (curr_off >> inode->i_blkbits) -
1430                                 contiguous_blks;
1431                         ext4_es_remove_extent(inode, lblk, contiguous_blks);
1432                         contiguous_blks = 0;
1433                 }
1434                 curr_off = next_off;
1435         } while ((bh = bh->b_this_page) != head);
1436
1437         if (contiguous_blks) {
1438                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1439                 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1440                 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1441         }
1442
1443         /* If we have released all the blocks belonging to a cluster, then we
1444          * need to release the reserved space for that cluster. */
1445         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1446         while (num_clusters > 0) {
1447                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1448                         ((num_clusters - 1) << sbi->s_cluster_bits);
1449                 if (sbi->s_cluster_ratio == 1 ||
1450                     !ext4_find_delalloc_cluster(inode, lblk))
1451                         ext4_da_release_space(inode, 1);
1452
1453                 num_clusters--;
1454         }
1455 }
1456
1457 /*
1458  * Delayed allocation stuff
1459  */
1460
1461 struct mpage_da_data {
1462         struct inode *inode;
1463         struct writeback_control *wbc;
1464
1465         pgoff_t first_page;     /* The first page to write */
1466         pgoff_t next_page;      /* Current page to examine */
1467         pgoff_t last_page;      /* Last page to examine */
1468         /*
1469          * Extent to map - this can be after first_page because that can be
1470          * fully mapped. We somewhat abuse m_flags to store whether the extent
1471          * is delalloc or unwritten.
1472          */
1473         struct ext4_map_blocks map;
1474         struct ext4_io_submit io_submit;        /* IO submission data */
1475 };
1476
1477 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1478                                        bool invalidate)
1479 {
1480         int nr_pages, i;
1481         pgoff_t index, end;
1482         struct pagevec pvec;
1483         struct inode *inode = mpd->inode;
1484         struct address_space *mapping = inode->i_mapping;
1485
1486         /* This is necessary when next_page == 0. */
1487         if (mpd->first_page >= mpd->next_page)
1488                 return;
1489
1490         index = mpd->first_page;
1491         end   = mpd->next_page - 1;
1492         if (invalidate) {
1493                 ext4_lblk_t start, last;
1494                 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1495                 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1496                 ext4_es_remove_extent(inode, start, last - start + 1);
1497         }
1498
1499         pagevec_init(&pvec, 0);
1500         while (index <= end) {
1501                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1502                 if (nr_pages == 0)
1503                         break;
1504                 for (i = 0; i < nr_pages; i++) {
1505                         struct page *page = pvec.pages[i];
1506                         if (page->index > end)
1507                                 break;
1508                         BUG_ON(!PageLocked(page));
1509                         BUG_ON(PageWriteback(page));
1510                         if (invalidate) {
1511                                 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1512                                 ClearPageUptodate(page);
1513                         }
1514                         unlock_page(page);
1515                 }
1516                 index = pvec.pages[nr_pages - 1]->index + 1;
1517                 pagevec_release(&pvec);
1518         }
1519 }
1520
1521 static void ext4_print_free_blocks(struct inode *inode)
1522 {
1523         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1524         struct super_block *sb = inode->i_sb;
1525         struct ext4_inode_info *ei = EXT4_I(inode);
1526
1527         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1528                EXT4_C2B(EXT4_SB(inode->i_sb),
1529                         ext4_count_free_clusters(sb)));
1530         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1531         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1532                (long long) EXT4_C2B(EXT4_SB(sb),
1533                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1534         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1535                (long long) EXT4_C2B(EXT4_SB(sb),
1536                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1537         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1538         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1539                  ei->i_reserved_data_blocks);
1540         return;
1541 }
1542
1543 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1544 {
1545         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1546 }
1547
1548 /*
1549  * This function is grabs code from the very beginning of
1550  * ext4_map_blocks, but assumes that the caller is from delayed write
1551  * time. This function looks up the requested blocks and sets the
1552  * buffer delay bit under the protection of i_data_sem.
1553  */
1554 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1555                               struct ext4_map_blocks *map,
1556                               struct buffer_head *bh)
1557 {
1558         struct extent_status es;
1559         int retval;
1560         sector_t invalid_block = ~((sector_t) 0xffff);
1561 #ifdef ES_AGGRESSIVE_TEST
1562         struct ext4_map_blocks orig_map;
1563
1564         memcpy(&orig_map, map, sizeof(*map));
1565 #endif
1566
1567         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1568                 invalid_block = ~0;
1569
1570         map->m_flags = 0;
1571         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1572                   "logical block %lu\n", inode->i_ino, map->m_len,
1573                   (unsigned long) map->m_lblk);
1574
1575         /* Lookup extent status tree firstly */
1576         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1577                 if (ext4_es_is_hole(&es)) {
1578                         retval = 0;
1579                         down_read(&EXT4_I(inode)->i_data_sem);
1580                         goto add_delayed;
1581                 }
1582
1583                 /*
1584                  * Delayed extent could be allocated by fallocate.
1585                  * So we need to check it.
1586                  */
1587                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1588                         map_bh(bh, inode->i_sb, invalid_block);
1589                         set_buffer_new(bh);
1590                         set_buffer_delay(bh);
1591                         return 0;
1592                 }
1593
1594                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1595                 retval = es.es_len - (iblock - es.es_lblk);
1596                 if (retval > map->m_len)
1597                         retval = map->m_len;
1598                 map->m_len = retval;
1599                 if (ext4_es_is_written(&es))
1600                         map->m_flags |= EXT4_MAP_MAPPED;
1601                 else if (ext4_es_is_unwritten(&es))
1602                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1603                 else
1604                         BUG_ON(1);
1605
1606 #ifdef ES_AGGRESSIVE_TEST
1607                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1608 #endif
1609                 return retval;
1610         }
1611
1612         /*
1613          * Try to see if we can get the block without requesting a new
1614          * file system block.
1615          */
1616         down_read(&EXT4_I(inode)->i_data_sem);
1617         if (ext4_has_inline_data(inode))
1618                 retval = 0;
1619         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1620                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1621         else
1622                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1623
1624 add_delayed:
1625         if (retval == 0) {
1626                 int ret;
1627                 /*
1628                  * XXX: __block_prepare_write() unmaps passed block,
1629                  * is it OK?
1630                  */
1631                 /*
1632                  * If the block was allocated from previously allocated cluster,
1633                  * then we don't need to reserve it again. However we still need
1634                  * to reserve metadata for every block we're going to write.
1635                  */
1636                 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1637                     !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1638                         ret = ext4_da_reserve_space(inode);
1639                         if (ret) {
1640                                 /* not enough space to reserve */
1641                                 retval = ret;
1642                                 goto out_unlock;
1643                         }
1644                 }
1645
1646                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1647                                             ~0, EXTENT_STATUS_DELAYED);
1648                 if (ret) {
1649                         retval = ret;
1650                         goto out_unlock;
1651                 }
1652
1653                 map_bh(bh, inode->i_sb, invalid_block);
1654                 set_buffer_new(bh);
1655                 set_buffer_delay(bh);
1656         } else if (retval > 0) {
1657                 int ret;
1658                 unsigned int status;
1659
1660                 if (unlikely(retval != map->m_len)) {
1661                         ext4_warning(inode->i_sb,
1662                                      "ES len assertion failed for inode "
1663                                      "%lu: retval %d != map->m_len %d",
1664                                      inode->i_ino, retval, map->m_len);
1665                         WARN_ON(1);
1666                 }
1667
1668                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1669                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1670                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1671                                             map->m_pblk, status);
1672                 if (ret != 0)
1673                         retval = ret;
1674         }
1675
1676 out_unlock:
1677         up_read((&EXT4_I(inode)->i_data_sem));
1678
1679         return retval;
1680 }
1681
1682 /*
1683  * This is a special get_block_t callback which is used by
1684  * ext4_da_write_begin().  It will either return mapped block or
1685  * reserve space for a single block.
1686  *
1687  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1688  * We also have b_blocknr = -1 and b_bdev initialized properly
1689  *
1690  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1691  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1692  * initialized properly.
1693  */
1694 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1695                            struct buffer_head *bh, int create)
1696 {
1697         struct ext4_map_blocks map;
1698         int ret = 0;
1699
1700         BUG_ON(create == 0);
1701         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1702
1703         map.m_lblk = iblock;
1704         map.m_len = 1;
1705
1706         /*
1707          * first, we need to know whether the block is allocated already
1708          * preallocated blocks are unmapped but should treated
1709          * the same as allocated blocks.
1710          */
1711         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1712         if (ret <= 0)
1713                 return ret;
1714
1715         map_bh(bh, inode->i_sb, map.m_pblk);
1716         ext4_update_bh_state(bh, map.m_flags);
1717
1718         if (buffer_unwritten(bh)) {
1719                 /* A delayed write to unwritten bh should be marked
1720                  * new and mapped.  Mapped ensures that we don't do
1721                  * get_block multiple times when we write to the same
1722                  * offset and new ensures that we do proper zero out
1723                  * for partial write.
1724                  */
1725                 set_buffer_new(bh);
1726                 set_buffer_mapped(bh);
1727         }
1728         return 0;
1729 }
1730
1731 static int bget_one(handle_t *handle, struct buffer_head *bh)
1732 {
1733         get_bh(bh);
1734         return 0;
1735 }
1736
1737 static int bput_one(handle_t *handle, struct buffer_head *bh)
1738 {
1739         put_bh(bh);
1740         return 0;
1741 }
1742
1743 static int __ext4_journalled_writepage(struct page *page,
1744                                        unsigned int len)
1745 {
1746         struct address_space *mapping = page->mapping;
1747         struct inode *inode = mapping->host;
1748         struct buffer_head *page_bufs = NULL;
1749         handle_t *handle = NULL;
1750         int ret = 0, err = 0;
1751         int inline_data = ext4_has_inline_data(inode);
1752         struct buffer_head *inode_bh = NULL;
1753
1754         ClearPageChecked(page);
1755
1756         if (inline_data) {
1757                 BUG_ON(page->index != 0);
1758                 BUG_ON(len > ext4_get_max_inline_size(inode));
1759                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1760                 if (inode_bh == NULL)
1761                         goto out;
1762         } else {
1763                 page_bufs = page_buffers(page);
1764                 if (!page_bufs) {
1765                         BUG();
1766                         goto out;
1767                 }
1768                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1769                                        NULL, bget_one);
1770         }
1771         /*
1772          * We need to release the page lock before we start the
1773          * journal, so grab a reference so the page won't disappear
1774          * out from under us.
1775          */
1776         get_page(page);
1777         unlock_page(page);
1778
1779         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1780                                     ext4_writepage_trans_blocks(inode));
1781         if (IS_ERR(handle)) {
1782                 ret = PTR_ERR(handle);
1783                 put_page(page);
1784                 goto out_no_pagelock;
1785         }
1786         BUG_ON(!ext4_handle_valid(handle));
1787
1788         lock_page(page);
1789         put_page(page);
1790         if (page->mapping != mapping) {
1791                 /* The page got truncated from under us */
1792                 ext4_journal_stop(handle);
1793                 ret = 0;
1794                 goto out;
1795         }
1796
1797         if (inline_data) {
1798                 BUFFER_TRACE(inode_bh, "get write access");
1799                 ret = ext4_journal_get_write_access(handle, inode_bh);
1800
1801                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1802
1803         } else {
1804                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1805                                              do_journal_get_write_access);
1806
1807                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1808                                              write_end_fn);
1809         }
1810         if (ret == 0)
1811                 ret = err;
1812         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1813         err = ext4_journal_stop(handle);
1814         if (!ret)
1815                 ret = err;
1816
1817         if (!ext4_has_inline_data(inode))
1818                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1819                                        NULL, bput_one);
1820         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1821 out:
1822         unlock_page(page);
1823 out_no_pagelock:
1824         brelse(inode_bh);
1825         return ret;
1826 }
1827
1828 /*
1829  * Note that we don't need to start a transaction unless we're journaling data
1830  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1831  * need to file the inode to the transaction's list in ordered mode because if
1832  * we are writing back data added by write(), the inode is already there and if
1833  * we are writing back data modified via mmap(), no one guarantees in which
1834  * transaction the data will hit the disk. In case we are journaling data, we
1835  * cannot start transaction directly because transaction start ranks above page
1836  * lock so we have to do some magic.
1837  *
1838  * This function can get called via...
1839  *   - ext4_writepages after taking page lock (have journal handle)
1840  *   - journal_submit_inode_data_buffers (no journal handle)
1841  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1842  *   - grab_page_cache when doing write_begin (have journal handle)
1843  *
1844  * We don't do any block allocation in this function. If we have page with
1845  * multiple blocks we need to write those buffer_heads that are mapped. This
1846  * is important for mmaped based write. So if we do with blocksize 1K
1847  * truncate(f, 1024);
1848  * a = mmap(f, 0, 4096);
1849  * a[0] = 'a';
1850  * truncate(f, 4096);
1851  * we have in the page first buffer_head mapped via page_mkwrite call back
1852  * but other buffer_heads would be unmapped but dirty (dirty done via the
1853  * do_wp_page). So writepage should write the first block. If we modify
1854  * the mmap area beyond 1024 we will again get a page_fault and the
1855  * page_mkwrite callback will do the block allocation and mark the
1856  * buffer_heads mapped.
1857  *
1858  * We redirty the page if we have any buffer_heads that is either delay or
1859  * unwritten in the page.
1860  *
1861  * We can get recursively called as show below.
1862  *
1863  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1864  *              ext4_writepage()
1865  *
1866  * But since we don't do any block allocation we should not deadlock.
1867  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1868  */
1869 static int ext4_writepage(struct page *page,
1870                           struct writeback_control *wbc)
1871 {
1872         int ret = 0;
1873         loff_t size;
1874         unsigned int len;
1875         struct buffer_head *page_bufs = NULL;
1876         struct inode *inode = page->mapping->host;
1877         struct ext4_io_submit io_submit;
1878         bool keep_towrite = false;
1879
1880         trace_ext4_writepage(page);
1881         size = i_size_read(inode);
1882         if (page->index == size >> PAGE_CACHE_SHIFT)
1883                 len = size & ~PAGE_CACHE_MASK;
1884         else
1885                 len = PAGE_CACHE_SIZE;
1886
1887         page_bufs = page_buffers(page);
1888         /*
1889          * We cannot do block allocation or other extent handling in this
1890          * function. If there are buffers needing that, we have to redirty
1891          * the page. But we may reach here when we do a journal commit via
1892          * journal_submit_inode_data_buffers() and in that case we must write
1893          * allocated buffers to achieve data=ordered mode guarantees.
1894          *
1895          * Also, if there is only one buffer per page (the fs block
1896          * size == the page size), if one buffer needs block
1897          * allocation or needs to modify the extent tree to clear the
1898          * unwritten flag, we know that the page can't be written at
1899          * all, so we might as well refuse the write immediately.
1900          * Unfortunately if the block size != page size, we can't as
1901          * easily detect this case using ext4_walk_page_buffers(), but
1902          * for the extremely common case, this is an optimization that
1903          * skips a useless round trip through ext4_bio_write_page().
1904          */
1905         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1906                                    ext4_bh_delay_or_unwritten)) {
1907                 redirty_page_for_writepage(wbc, page);
1908                 if ((current->flags & PF_MEMALLOC) ||
1909                     (inode->i_sb->s_blocksize == PAGE_CACHE_SIZE)) {
1910                         /*
1911                          * For memory cleaning there's no point in writing only
1912                          * some buffers. So just bail out. Warn if we came here
1913                          * from direct reclaim.
1914                          */
1915                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1916                                                         == PF_MEMALLOC);
1917                         unlock_page(page);
1918                         return 0;
1919                 }
1920                 keep_towrite = true;
1921         }
1922
1923         if (PageChecked(page) && ext4_should_journal_data(inode))
1924                 /*
1925                  * It's mmapped pagecache.  Add buffers and journal it.  There
1926                  * doesn't seem much point in redirtying the page here.
1927                  */
1928                 return __ext4_journalled_writepage(page, len);
1929
1930         ext4_io_submit_init(&io_submit, wbc);
1931         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1932         if (!io_submit.io_end) {
1933                 redirty_page_for_writepage(wbc, page);
1934                 unlock_page(page);
1935                 return -ENOMEM;
1936         }
1937         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
1938         ext4_io_submit(&io_submit);
1939         /* Drop io_end reference we got from init */
1940         ext4_put_io_end_defer(io_submit.io_end);
1941         return ret;
1942 }
1943
1944 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1945 {
1946         int len;
1947         loff_t size = i_size_read(mpd->inode);
1948         int err;
1949
1950         BUG_ON(page->index != mpd->first_page);
1951         if (page->index == size >> PAGE_CACHE_SHIFT)
1952                 len = size & ~PAGE_CACHE_MASK;
1953         else
1954                 len = PAGE_CACHE_SIZE;
1955         clear_page_dirty_for_io(page);
1956         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
1957         if (!err)
1958                 mpd->wbc->nr_to_write--;
1959         mpd->first_page++;
1960
1961         return err;
1962 }
1963
1964 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1965
1966 /*
1967  * mballoc gives us at most this number of blocks...
1968  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1969  * The rest of mballoc seems to handle chunks up to full group size.
1970  */
1971 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1972
1973 /*
1974  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1975  *
1976  * @mpd - extent of blocks
1977  * @lblk - logical number of the block in the file
1978  * @bh - buffer head we want to add to the extent
1979  *
1980  * The function is used to collect contig. blocks in the same state. If the
1981  * buffer doesn't require mapping for writeback and we haven't started the
1982  * extent of buffers to map yet, the function returns 'true' immediately - the
1983  * caller can write the buffer right away. Otherwise the function returns true
1984  * if the block has been added to the extent, false if the block couldn't be
1985  * added.
1986  */
1987 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1988                                    struct buffer_head *bh)
1989 {
1990         struct ext4_map_blocks *map = &mpd->map;
1991
1992         /* Buffer that doesn't need mapping for writeback? */
1993         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1994             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1995                 /* So far no extent to map => we write the buffer right away */
1996                 if (map->m_len == 0)
1997                         return true;
1998                 return false;
1999         }
2000
2001         /* First block in the extent? */
2002         if (map->m_len == 0) {
2003                 map->m_lblk = lblk;
2004                 map->m_len = 1;
2005                 map->m_flags = bh->b_state & BH_FLAGS;
2006                 return true;
2007         }
2008
2009         /* Don't go larger than mballoc is willing to allocate */
2010         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2011                 return false;
2012
2013         /* Can we merge the block to our big extent? */
2014         if (lblk == map->m_lblk + map->m_len &&
2015             (bh->b_state & BH_FLAGS) == map->m_flags) {
2016                 map->m_len++;
2017                 return true;
2018         }
2019         return false;
2020 }
2021
2022 /*
2023  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2024  *
2025  * @mpd - extent of blocks for mapping
2026  * @head - the first buffer in the page
2027  * @bh - buffer we should start processing from
2028  * @lblk - logical number of the block in the file corresponding to @bh
2029  *
2030  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2031  * the page for IO if all buffers in this page were mapped and there's no
2032  * accumulated extent of buffers to map or add buffers in the page to the
2033  * extent of buffers to map. The function returns 1 if the caller can continue
2034  * by processing the next page, 0 if it should stop adding buffers to the
2035  * extent to map because we cannot extend it anymore. It can also return value
2036  * < 0 in case of error during IO submission.
2037  */
2038 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2039                                    struct buffer_head *head,
2040                                    struct buffer_head *bh,
2041                                    ext4_lblk_t lblk)
2042 {
2043         struct inode *inode = mpd->inode;
2044         int err;
2045         ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2046                                                         >> inode->i_blkbits;
2047
2048         do {
2049                 BUG_ON(buffer_locked(bh));
2050
2051                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2052                         /* Found extent to map? */
2053                         if (mpd->map.m_len)
2054                                 return 0;
2055                         /* Everything mapped so far and we hit EOF */
2056                         break;
2057                 }
2058         } while (lblk++, (bh = bh->b_this_page) != head);
2059         /* So far everything mapped? Submit the page for IO. */
2060         if (mpd->map.m_len == 0) {
2061                 err = mpage_submit_page(mpd, head->b_page);
2062                 if (err < 0)
2063                         return err;
2064         }
2065         return lblk < blocks;
2066 }
2067
2068 /*
2069  * mpage_map_buffers - update buffers corresponding to changed extent and
2070  *                     submit fully mapped pages for IO
2071  *
2072  * @mpd - description of extent to map, on return next extent to map
2073  *
2074  * Scan buffers corresponding to changed extent (we expect corresponding pages
2075  * to be already locked) and update buffer state according to new extent state.
2076  * We map delalloc buffers to their physical location, clear unwritten bits,
2077  * and mark buffers as uninit when we perform writes to unwritten extents
2078  * and do extent conversion after IO is finished. If the last page is not fully
2079  * mapped, we update @map to the next extent in the last page that needs
2080  * mapping. Otherwise we submit the page for IO.
2081  */
2082 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2083 {
2084         struct pagevec pvec;
2085         int nr_pages, i;
2086         struct inode *inode = mpd->inode;
2087         struct buffer_head *head, *bh;
2088         int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2089         pgoff_t start, end;
2090         ext4_lblk_t lblk;
2091         sector_t pblock;
2092         int err;
2093
2094         start = mpd->map.m_lblk >> bpp_bits;
2095         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2096         lblk = start << bpp_bits;
2097         pblock = mpd->map.m_pblk;
2098
2099         pagevec_init(&pvec, 0);
2100         while (start <= end) {
2101                 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2102                                           PAGEVEC_SIZE);
2103                 if (nr_pages == 0)
2104                         break;
2105                 for (i = 0; i < nr_pages; i++) {
2106                         struct page *page = pvec.pages[i];
2107
2108                         if (page->index > end)
2109                                 break;
2110                         /* Up to 'end' pages must be contiguous */
2111                         BUG_ON(page->index != start);
2112                         bh = head = page_buffers(page);
2113                         do {
2114                                 if (lblk < mpd->map.m_lblk)
2115                                         continue;
2116                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2117                                         /*
2118                                          * Buffer after end of mapped extent.
2119                                          * Find next buffer in the page to map.
2120                                          */
2121                                         mpd->map.m_len = 0;
2122                                         mpd->map.m_flags = 0;
2123                                         /*
2124                                          * FIXME: If dioread_nolock supports
2125                                          * blocksize < pagesize, we need to make
2126                                          * sure we add size mapped so far to
2127                                          * io_end->size as the following call
2128                                          * can submit the page for IO.
2129                                          */
2130                                         err = mpage_process_page_bufs(mpd, head,
2131                                                                       bh, lblk);
2132                                         pagevec_release(&pvec);
2133                                         if (err > 0)
2134                                                 err = 0;
2135                                         return err;
2136                                 }
2137                                 if (buffer_delay(bh)) {
2138                                         clear_buffer_delay(bh);
2139                                         bh->b_blocknr = pblock++;
2140                                 }
2141                                 clear_buffer_unwritten(bh);
2142                         } while (lblk++, (bh = bh->b_this_page) != head);
2143
2144                         /*
2145                          * FIXME: This is going to break if dioread_nolock
2146                          * supports blocksize < pagesize as we will try to
2147                          * convert potentially unmapped parts of inode.
2148                          */
2149                         mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2150                         /* Page fully mapped - let IO run! */
2151                         err = mpage_submit_page(mpd, page);
2152                         if (err < 0) {
2153                                 pagevec_release(&pvec);
2154                                 return err;
2155                         }
2156                         start++;
2157                 }
2158                 pagevec_release(&pvec);
2159         }
2160         /* Extent fully mapped and matches with page boundary. We are done. */
2161         mpd->map.m_len = 0;
2162         mpd->map.m_flags = 0;
2163         return 0;
2164 }
2165
2166 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2167 {
2168         struct inode *inode = mpd->inode;
2169         struct ext4_map_blocks *map = &mpd->map;
2170         int get_blocks_flags;
2171         int err, dioread_nolock;
2172
2173         trace_ext4_da_write_pages_extent(inode, map);
2174         /*
2175          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2176          * to convert an unwritten extent to be initialized (in the case
2177          * where we have written into one or more preallocated blocks).  It is
2178          * possible that we're going to need more metadata blocks than
2179          * previously reserved. However we must not fail because we're in
2180          * writeback and there is nothing we can do about it so it might result
2181          * in data loss.  So use reserved blocks to allocate metadata if
2182          * possible.
2183          *
2184          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2185          * the blocks in question are delalloc blocks.  This indicates
2186          * that the blocks and quotas has already been checked when
2187          * the data was copied into the page cache.
2188          */
2189         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2190                            EXT4_GET_BLOCKS_METADATA_NOFAIL;
2191         dioread_nolock = ext4_should_dioread_nolock(inode);
2192         if (dioread_nolock)
2193                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2194         if (map->m_flags & (1 << BH_Delay))
2195                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2196
2197         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2198         if (err < 0)
2199                 return err;
2200         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2201                 if (!mpd->io_submit.io_end->handle &&
2202                     ext4_handle_valid(handle)) {
2203                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2204                         handle->h_rsv_handle = NULL;
2205                 }
2206                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2207         }
2208
2209         BUG_ON(map->m_len == 0);
2210         if (map->m_flags & EXT4_MAP_NEW) {
2211                 struct block_device *bdev = inode->i_sb->s_bdev;
2212                 int i;
2213
2214                 for (i = 0; i < map->m_len; i++)
2215                         unmap_underlying_metadata(bdev, map->m_pblk + i);
2216         }
2217         return 0;
2218 }
2219
2220 /*
2221  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2222  *                               mpd->len and submit pages underlying it for IO
2223  *
2224  * @handle - handle for journal operations
2225  * @mpd - extent to map
2226  * @give_up_on_write - we set this to true iff there is a fatal error and there
2227  *                     is no hope of writing the data. The caller should discard
2228  *                     dirty pages to avoid infinite loops.
2229  *
2230  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2231  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2232  * them to initialized or split the described range from larger unwritten
2233  * extent. Note that we need not map all the described range since allocation
2234  * can return less blocks or the range is covered by more unwritten extents. We
2235  * cannot map more because we are limited by reserved transaction credits. On
2236  * the other hand we always make sure that the last touched page is fully
2237  * mapped so that it can be written out (and thus forward progress is
2238  * guaranteed). After mapping we submit all mapped pages for IO.
2239  */
2240 static int mpage_map_and_submit_extent(handle_t *handle,
2241                                        struct mpage_da_data *mpd,
2242                                        bool *give_up_on_write)
2243 {
2244         struct inode *inode = mpd->inode;
2245         struct ext4_map_blocks *map = &mpd->map;
2246         int err;
2247         loff_t disksize;
2248         int progress = 0;
2249
2250         mpd->io_submit.io_end->offset =
2251                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2252         do {
2253                 err = mpage_map_one_extent(handle, mpd);
2254                 if (err < 0) {
2255                         struct super_block *sb = inode->i_sb;
2256
2257                         if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2258                                 goto invalidate_dirty_pages;
2259                         /*
2260                          * Let the uper layers retry transient errors.
2261                          * In the case of ENOSPC, if ext4_count_free_blocks()
2262                          * is non-zero, a commit should free up blocks.
2263                          */
2264                         if ((err == -ENOMEM) ||
2265                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2266                                 if (progress)
2267                                         goto update_disksize;
2268                                 return err;
2269                         }
2270                         ext4_msg(sb, KERN_CRIT,
2271                                  "Delayed block allocation failed for "
2272                                  "inode %lu at logical offset %llu with"
2273                                  " max blocks %u with error %d",
2274                                  inode->i_ino,
2275                                  (unsigned long long)map->m_lblk,
2276                                  (unsigned)map->m_len, -err);
2277                         ext4_msg(sb, KERN_CRIT,
2278                                  "This should not happen!! Data will "
2279                                  "be lost\n");
2280                         if (err == -ENOSPC)
2281                                 ext4_print_free_blocks(inode);
2282                 invalidate_dirty_pages:
2283                         *give_up_on_write = true;
2284                         return err;
2285                 }
2286                 progress = 1;
2287                 /*
2288                  * Update buffer state, submit mapped pages, and get us new
2289                  * extent to map
2290                  */
2291                 err = mpage_map_and_submit_buffers(mpd);
2292                 if (err < 0)
2293                         goto update_disksize;
2294         } while (map->m_len);
2295
2296 update_disksize:
2297         /*
2298          * Update on-disk size after IO is submitted.  Races with
2299          * truncate are avoided by checking i_size under i_data_sem.
2300          */
2301         disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2302         if (disksize > EXT4_I(inode)->i_disksize) {
2303                 int err2;
2304                 loff_t i_size;
2305
2306                 down_write(&EXT4_I(inode)->i_data_sem);
2307                 i_size = i_size_read(inode);
2308                 if (disksize > i_size)
2309                         disksize = i_size;
2310                 if (disksize > EXT4_I(inode)->i_disksize)
2311                         EXT4_I(inode)->i_disksize = disksize;
2312                 err2 = ext4_mark_inode_dirty(handle, inode);
2313                 up_write(&EXT4_I(inode)->i_data_sem);
2314                 if (err2)
2315                         ext4_error(inode->i_sb,
2316                                    "Failed to mark inode %lu dirty",
2317                                    inode->i_ino);
2318                 if (!err)
2319                         err = err2;
2320         }
2321         return err;
2322 }
2323
2324 /*
2325  * Calculate the total number of credits to reserve for one writepages
2326  * iteration. This is called from ext4_writepages(). We map an extent of
2327  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2328  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2329  * bpp - 1 blocks in bpp different extents.
2330  */
2331 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2332 {
2333         int bpp = ext4_journal_blocks_per_page(inode);
2334
2335         return ext4_meta_trans_blocks(inode,
2336                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2337 }
2338
2339 /*
2340  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2341  *                               and underlying extent to map
2342  *
2343  * @mpd - where to look for pages
2344  *
2345  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2346  * IO immediately. When we find a page which isn't mapped we start accumulating
2347  * extent of buffers underlying these pages that needs mapping (formed by
2348  * either delayed or unwritten buffers). We also lock the pages containing
2349  * these buffers. The extent found is returned in @mpd structure (starting at
2350  * mpd->lblk with length mpd->len blocks).
2351  *
2352  * Note that this function can attach bios to one io_end structure which are
2353  * neither logically nor physically contiguous. Although it may seem as an
2354  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2355  * case as we need to track IO to all buffers underlying a page in one io_end.
2356  */
2357 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2358 {
2359         struct address_space *mapping = mpd->inode->i_mapping;
2360         struct pagevec pvec;
2361         unsigned int nr_pages;
2362         long left = mpd->wbc->nr_to_write;
2363         pgoff_t index = mpd->first_page;
2364         pgoff_t end = mpd->last_page;
2365         int tag;
2366         int i, err = 0;
2367         int blkbits = mpd->inode->i_blkbits;
2368         ext4_lblk_t lblk;
2369         struct buffer_head *head;
2370
2371         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2372                 tag = PAGECACHE_TAG_TOWRITE;
2373         else
2374                 tag = PAGECACHE_TAG_DIRTY;
2375
2376         pagevec_init(&pvec, 0);
2377         mpd->map.m_len = 0;
2378         mpd->next_page = index;
2379         while (index <= end) {
2380                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2381                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2382                 if (nr_pages == 0)
2383                         goto out;
2384
2385                 for (i = 0; i < nr_pages; i++) {
2386                         struct page *page = pvec.pages[i];
2387
2388                         /*
2389                          * At this point, the page may be truncated or
2390                          * invalidated (changing page->mapping to NULL), or
2391                          * even swizzled back from swapper_space to tmpfs file
2392                          * mapping. However, page->index will not change
2393                          * because we have a reference on the page.
2394                          */
2395                         if (page->index > end)
2396                                 goto out;
2397
2398                         /*
2399                          * Accumulated enough dirty pages? This doesn't apply
2400                          * to WB_SYNC_ALL mode. For integrity sync we have to
2401                          * keep going because someone may be concurrently
2402                          * dirtying pages, and we might have synced a lot of
2403                          * newly appeared dirty pages, but have not synced all
2404                          * of the old dirty pages.
2405                          */
2406                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2407                                 goto out;
2408
2409                         /* If we can't merge this page, we are done. */
2410                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2411                                 goto out;
2412
2413                         lock_page(page);
2414                         /*
2415                          * If the page is no longer dirty, or its mapping no
2416                          * longer corresponds to inode we are writing (which
2417                          * means it has been truncated or invalidated), or the
2418                          * page is already under writeback and we are not doing
2419                          * a data integrity writeback, skip the page
2420                          */
2421                         if (!PageDirty(page) ||
2422                             (PageWriteback(page) &&
2423                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2424                             unlikely(page->mapping != mapping)) {
2425                                 unlock_page(page);
2426                                 continue;
2427                         }
2428
2429                         wait_on_page_writeback(page);
2430                         BUG_ON(PageWriteback(page));
2431
2432                         if (mpd->map.m_len == 0)
2433                                 mpd->first_page = page->index;
2434                         mpd->next_page = page->index + 1;
2435                         /* Add all dirty buffers to mpd */
2436                         lblk = ((ext4_lblk_t)page->index) <<
2437                                 (PAGE_CACHE_SHIFT - blkbits);
2438                         head = page_buffers(page);
2439                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2440                         if (err <= 0)
2441                                 goto out;
2442                         err = 0;
2443                         left--;
2444                 }
2445                 pagevec_release(&pvec);
2446                 cond_resched();
2447         }
2448         return 0;
2449 out:
2450         pagevec_release(&pvec);
2451         return err;
2452 }
2453
2454 static int __writepage(struct page *page, struct writeback_control *wbc,
2455                        void *data)
2456 {
2457         struct address_space *mapping = data;
2458         int ret = ext4_writepage(page, wbc);
2459         mapping_set_error(mapping, ret);
2460         return ret;
2461 }
2462
2463 static int ext4_writepages(struct address_space *mapping,
2464                            struct writeback_control *wbc)
2465 {
2466         pgoff_t writeback_index = 0;
2467         long nr_to_write = wbc->nr_to_write;
2468         int range_whole = 0;
2469         int cycled = 1;
2470         handle_t *handle = NULL;
2471         struct mpage_da_data mpd;
2472         struct inode *inode = mapping->host;
2473         int needed_blocks, rsv_blocks = 0, ret = 0;
2474         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2475         bool done;
2476         struct blk_plug plug;
2477         bool give_up_on_write = false;
2478
2479         trace_ext4_writepages(inode, wbc);
2480
2481         /*
2482          * No pages to write? This is mainly a kludge to avoid starting
2483          * a transaction for special inodes like journal inode on last iput()
2484          * because that could violate lock ordering on umount
2485          */
2486         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2487                 goto out_writepages;
2488
2489         if (ext4_should_journal_data(inode)) {
2490                 struct blk_plug plug;
2491
2492                 blk_start_plug(&plug);
2493                 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2494                 blk_finish_plug(&plug);
2495                 goto out_writepages;
2496         }
2497
2498         /*
2499          * If the filesystem has aborted, it is read-only, so return
2500          * right away instead of dumping stack traces later on that
2501          * will obscure the real source of the problem.  We test
2502          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2503          * the latter could be true if the filesystem is mounted
2504          * read-only, and in that case, ext4_writepages should
2505          * *never* be called, so if that ever happens, we would want
2506          * the stack trace.
2507          */
2508         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2509                 ret = -EROFS;
2510                 goto out_writepages;
2511         }
2512
2513         if (ext4_should_dioread_nolock(inode)) {
2514                 /*
2515                  * We may need to convert up to one extent per block in
2516                  * the page and we may dirty the inode.
2517                  */
2518                 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2519         }
2520
2521         /*
2522          * If we have inline data and arrive here, it means that
2523          * we will soon create the block for the 1st page, so
2524          * we'd better clear the inline data here.
2525          */
2526         if (ext4_has_inline_data(inode)) {
2527                 /* Just inode will be modified... */
2528                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2529                 if (IS_ERR(handle)) {
2530                         ret = PTR_ERR(handle);
2531                         goto out_writepages;
2532                 }
2533                 BUG_ON(ext4_test_inode_state(inode,
2534                                 EXT4_STATE_MAY_INLINE_DATA));
2535                 ext4_destroy_inline_data(handle, inode);
2536                 ext4_journal_stop(handle);
2537         }
2538
2539         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2540                 range_whole = 1;
2541
2542         if (wbc->range_cyclic) {
2543                 writeback_index = mapping->writeback_index;
2544                 if (writeback_index)
2545                         cycled = 0;
2546                 mpd.first_page = writeback_index;
2547                 mpd.last_page = -1;
2548         } else {
2549                 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2550                 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2551         }
2552
2553         mpd.inode = inode;
2554         mpd.wbc = wbc;
2555         ext4_io_submit_init(&mpd.io_submit, wbc);
2556 retry:
2557         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2558                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2559         done = false;
2560         blk_start_plug(&plug);
2561         while (!done && mpd.first_page <= mpd.last_page) {
2562                 /* For each extent of pages we use new io_end */
2563                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2564                 if (!mpd.io_submit.io_end) {
2565                         ret = -ENOMEM;
2566                         break;
2567                 }
2568
2569                 /*
2570                  * We have two constraints: We find one extent to map and we
2571                  * must always write out whole page (makes a difference when
2572                  * blocksize < pagesize) so that we don't block on IO when we
2573                  * try to write out the rest of the page. Journalled mode is
2574                  * not supported by delalloc.
2575                  */
2576                 BUG_ON(ext4_should_journal_data(inode));
2577                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2578
2579                 /* start a new transaction */
2580                 handle = ext4_journal_start_with_reserve(inode,
2581                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2582                 if (IS_ERR(handle)) {
2583                         ret = PTR_ERR(handle);
2584                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2585                                "%ld pages, ino %lu; err %d", __func__,
2586                                 wbc->nr_to_write, inode->i_ino, ret);
2587                         /* Release allocated io_end */
2588                         ext4_put_io_end(mpd.io_submit.io_end);
2589                         break;
2590                 }
2591
2592                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2593                 ret = mpage_prepare_extent_to_map(&mpd);
2594                 if (!ret) {
2595                         if (mpd.map.m_len)
2596                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2597                                         &give_up_on_write);
2598                         else {
2599                                 /*
2600                                  * We scanned the whole range (or exhausted
2601                                  * nr_to_write), submitted what was mapped and
2602                                  * didn't find anything needing mapping. We are
2603                                  * done.
2604                                  */
2605                                 done = true;
2606                         }
2607                 }
2608                 ext4_journal_stop(handle);
2609                 /* Submit prepared bio */
2610                 ext4_io_submit(&mpd.io_submit);
2611                 /* Unlock pages we didn't use */
2612                 mpage_release_unused_pages(&mpd, give_up_on_write);
2613                 /* Drop our io_end reference we got from init */
2614                 ext4_put_io_end(mpd.io_submit.io_end);
2615
2616                 if (ret == -ENOSPC && sbi->s_journal) {
2617                         /*
2618                          * Commit the transaction which would
2619                          * free blocks released in the transaction
2620                          * and try again
2621                          */
2622                         jbd2_journal_force_commit_nested(sbi->s_journal);
2623                         ret = 0;
2624                         continue;
2625                 }
2626                 /* Fatal error - ENOMEM, EIO... */
2627                 if (ret)
2628                         break;
2629         }
2630         blk_finish_plug(&plug);
2631         if (!ret && !cycled && wbc->nr_to_write > 0) {
2632                 cycled = 1;
2633                 mpd.last_page = writeback_index - 1;
2634                 mpd.first_page = 0;
2635                 goto retry;
2636         }
2637
2638         /* Update index */
2639         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2640                 /*
2641                  * Set the writeback_index so that range_cyclic
2642                  * mode will write it back later
2643                  */
2644                 mapping->writeback_index = mpd.first_page;
2645
2646 out_writepages:
2647         trace_ext4_writepages_result(inode, wbc, ret,
2648                                      nr_to_write - wbc->nr_to_write);
2649         return ret;
2650 }
2651
2652 static int ext4_nonda_switch(struct super_block *sb)
2653 {
2654         s64 free_clusters, dirty_clusters;
2655         struct ext4_sb_info *sbi = EXT4_SB(sb);
2656
2657         /*
2658          * switch to non delalloc mode if we are running low
2659          * on free block. The free block accounting via percpu
2660          * counters can get slightly wrong with percpu_counter_batch getting
2661          * accumulated on each CPU without updating global counters
2662          * Delalloc need an accurate free block accounting. So switch
2663          * to non delalloc when we are near to error range.
2664          */
2665         free_clusters =
2666                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2667         dirty_clusters =
2668                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2669         /*
2670          * Start pushing delalloc when 1/2 of free blocks are dirty.
2671          */
2672         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2673                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2674
2675         if (2 * free_clusters < 3 * dirty_clusters ||
2676             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2677                 /*
2678                  * free block count is less than 150% of dirty blocks
2679                  * or free blocks is less than watermark
2680                  */
2681                 return 1;
2682         }
2683         return 0;
2684 }
2685
2686 /* We always reserve for an inode update; the superblock could be there too */
2687 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2688 {
2689         if (likely(ext4_has_feature_large_file(inode->i_sb)))
2690                 return 1;
2691
2692         if (pos + len <= 0x7fffffffULL)
2693                 return 1;
2694
2695         /* We might need to update the superblock to set LARGE_FILE */
2696         return 2;
2697 }
2698
2699 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2700                                loff_t pos, unsigned len, unsigned flags,
2701                                struct page **pagep, void **fsdata)
2702 {
2703         int ret, retries = 0;
2704         struct page *page;
2705         pgoff_t index;
2706         struct inode *inode = mapping->host;
2707         handle_t *handle;
2708
2709         index = pos >> PAGE_CACHE_SHIFT;
2710
2711         if (ext4_nonda_switch(inode->i_sb)) {
2712                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2713                 return ext4_write_begin(file, mapping, pos,
2714                                         len, flags, pagep, fsdata);
2715         }
2716         *fsdata = (void *)0;
2717         trace_ext4_da_write_begin(inode, pos, len, flags);
2718
2719         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2720                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2721                                                       pos, len, flags,
2722                                                       pagep, fsdata);
2723                 if (ret < 0)
2724                         return ret;
2725                 if (ret == 1)
2726                         return 0;
2727         }
2728
2729         /*
2730          * grab_cache_page_write_begin() can take a long time if the
2731          * system is thrashing due to memory pressure, or if the page
2732          * is being written back.  So grab it first before we start
2733          * the transaction handle.  This also allows us to allocate
2734          * the page (if needed) without using GFP_NOFS.
2735          */
2736 retry_grab:
2737         page = grab_cache_page_write_begin(mapping, index, flags);
2738         if (!page)
2739                 return -ENOMEM;
2740         unlock_page(page);
2741
2742         /*
2743          * With delayed allocation, we don't log the i_disksize update
2744          * if there is delayed block allocation. But we still need
2745          * to journalling the i_disksize update if writes to the end
2746          * of file which has an already mapped buffer.
2747          */
2748 retry_journal:
2749         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2750                                 ext4_da_write_credits(inode, pos, len));
2751         if (IS_ERR(handle)) {
2752                 page_cache_release(page);
2753                 return PTR_ERR(handle);
2754         }
2755
2756         lock_page(page);
2757         if (page->mapping != mapping) {
2758                 /* The page got truncated from under us */
2759                 unlock_page(page);
2760                 page_cache_release(page);
2761                 ext4_journal_stop(handle);
2762                 goto retry_grab;
2763         }
2764         /* In case writeback began while the page was unlocked */
2765         wait_for_stable_page(page);
2766
2767 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2768         ret = ext4_block_write_begin(page, pos, len,
2769                                      ext4_da_get_block_prep);
2770 #else
2771         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2772 #endif
2773         if (ret < 0) {
2774                 unlock_page(page);
2775                 ext4_journal_stop(handle);
2776                 /*
2777                  * block_write_begin may have instantiated a few blocks
2778                  * outside i_size.  Trim these off again. Don't need
2779                  * i_size_read because we hold i_mutex.
2780                  */
2781                 if (pos + len > inode->i_size)
2782                         ext4_truncate_failed_write(inode);
2783
2784                 if (ret == -ENOSPC &&
2785                     ext4_should_retry_alloc(inode->i_sb, &retries))
2786                         goto retry_journal;
2787
2788                 page_cache_release(page);
2789                 return ret;
2790         }
2791
2792         *pagep = page;
2793         return ret;
2794 }
2795
2796 /*
2797  * Check if we should update i_disksize
2798  * when write to the end of file but not require block allocation
2799  */
2800 static int ext4_da_should_update_i_disksize(struct page *page,
2801                                             unsigned long offset)
2802 {
2803         struct buffer_head *bh;
2804         struct inode *inode = page->mapping->host;
2805         unsigned int idx;
2806         int i;
2807
2808         bh = page_buffers(page);
2809         idx = offset >> inode->i_blkbits;
2810
2811         for (i = 0; i < idx; i++)
2812                 bh = bh->b_this_page;
2813
2814         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2815                 return 0;
2816         return 1;
2817 }
2818
2819 static int ext4_da_write_end(struct file *file,
2820                              struct address_space *mapping,
2821                              loff_t pos, unsigned len, unsigned copied,
2822                              struct page *page, void *fsdata)
2823 {
2824         struct inode *inode = mapping->host;
2825         int ret = 0, ret2;
2826         handle_t *handle = ext4_journal_current_handle();
2827         loff_t new_i_size;
2828         unsigned long start, end;
2829         int write_mode = (int)(unsigned long)fsdata;
2830
2831         if (write_mode == FALL_BACK_TO_NONDELALLOC)
2832                 return ext4_write_end(file, mapping, pos,
2833                                       len, copied, page, fsdata);
2834
2835         trace_ext4_da_write_end(inode, pos, len, copied);
2836         start = pos & (PAGE_CACHE_SIZE - 1);
2837         end = start + copied - 1;
2838
2839         /*
2840          * generic_write_end() will run mark_inode_dirty() if i_size
2841          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2842          * into that.
2843          */
2844         new_i_size = pos + copied;
2845         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2846                 if (ext4_has_inline_data(inode) ||
2847                     ext4_da_should_update_i_disksize(page, end)) {
2848                         ext4_update_i_disksize(inode, new_i_size);
2849                         /* We need to mark inode dirty even if
2850                          * new_i_size is less that inode->i_size
2851                          * bu greater than i_disksize.(hint delalloc)
2852                          */
2853                         ext4_mark_inode_dirty(handle, inode);
2854                 }
2855         }
2856
2857         if (write_mode != CONVERT_INLINE_DATA &&
2858             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2859             ext4_has_inline_data(inode))
2860                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2861                                                      page);
2862         else
2863                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2864                                                         page, fsdata);
2865
2866         copied = ret2;
2867         if (ret2 < 0)
2868                 ret = ret2;
2869         ret2 = ext4_journal_stop(handle);
2870         if (!ret)
2871                 ret = ret2;
2872
2873         return ret ? ret : copied;
2874 }
2875
2876 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2877                                    unsigned int length)
2878 {
2879         /*
2880          * Drop reserved blocks
2881          */
2882         BUG_ON(!PageLocked(page));
2883         if (!page_has_buffers(page))
2884                 goto out;
2885
2886         ext4_da_page_release_reservation(page, offset, length);
2887
2888 out:
2889         ext4_invalidatepage(page, offset, length);
2890
2891         return;
2892 }
2893
2894 /*
2895  * Force all delayed allocation blocks to be allocated for a given inode.
2896  */
2897 int ext4_alloc_da_blocks(struct inode *inode)
2898 {
2899         trace_ext4_alloc_da_blocks(inode);
2900
2901         if (!EXT4_I(inode)->i_reserved_data_blocks)
2902                 return 0;
2903
2904         /*
2905          * We do something simple for now.  The filemap_flush() will
2906          * also start triggering a write of the data blocks, which is
2907          * not strictly speaking necessary (and for users of
2908          * laptop_mode, not even desirable).  However, to do otherwise
2909          * would require replicating code paths in:
2910          *
2911          * ext4_writepages() ->
2912          *    write_cache_pages() ---> (via passed in callback function)
2913          *        __mpage_da_writepage() -->
2914          *           mpage_add_bh_to_extent()
2915          *           mpage_da_map_blocks()
2916          *
2917          * The problem is that write_cache_pages(), located in
2918          * mm/page-writeback.c, marks pages clean in preparation for
2919          * doing I/O, which is not desirable if we're not planning on
2920          * doing I/O at all.
2921          *
2922          * We could call write_cache_pages(), and then redirty all of
2923          * the pages by calling redirty_page_for_writepage() but that
2924          * would be ugly in the extreme.  So instead we would need to
2925          * replicate parts of the code in the above functions,
2926          * simplifying them because we wouldn't actually intend to
2927          * write out the pages, but rather only collect contiguous
2928          * logical block extents, call the multi-block allocator, and
2929          * then update the buffer heads with the block allocations.
2930          *
2931          * For now, though, we'll cheat by calling filemap_flush(),
2932          * which will map the blocks, and start the I/O, but not
2933          * actually wait for the I/O to complete.
2934          */
2935         return filemap_flush(inode->i_mapping);
2936 }
2937
2938 /*
2939  * bmap() is special.  It gets used by applications such as lilo and by
2940  * the swapper to find the on-disk block of a specific piece of data.
2941  *
2942  * Naturally, this is dangerous if the block concerned is still in the
2943  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2944  * filesystem and enables swap, then they may get a nasty shock when the
2945  * data getting swapped to that swapfile suddenly gets overwritten by
2946  * the original zero's written out previously to the journal and
2947  * awaiting writeback in the kernel's buffer cache.
2948  *
2949  * So, if we see any bmap calls here on a modified, data-journaled file,
2950  * take extra steps to flush any blocks which might be in the cache.
2951  */
2952 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2953 {
2954         struct inode *inode = mapping->host;
2955         journal_t *journal;
2956         int err;
2957
2958         /*
2959          * We can get here for an inline file via the FIBMAP ioctl
2960          */
2961         if (ext4_has_inline_data(inode))
2962                 return 0;
2963
2964         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2965                         test_opt(inode->i_sb, DELALLOC)) {
2966                 /*
2967                  * With delalloc we want to sync the file
2968                  * so that we can make sure we allocate
2969                  * blocks for file
2970                  */
2971                 filemap_write_and_wait(mapping);
2972         }
2973
2974         if (EXT4_JOURNAL(inode) &&
2975             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2976                 /*
2977                  * This is a REALLY heavyweight approach, but the use of
2978                  * bmap on dirty files is expected to be extremely rare:
2979                  * only if we run lilo or swapon on a freshly made file
2980                  * do we expect this to happen.
2981                  *
2982                  * (bmap requires CAP_SYS_RAWIO so this does not
2983                  * represent an unprivileged user DOS attack --- we'd be
2984                  * in trouble if mortal users could trigger this path at
2985                  * will.)
2986                  *
2987                  * NB. EXT4_STATE_JDATA is not set on files other than
2988                  * regular files.  If somebody wants to bmap a directory
2989                  * or symlink and gets confused because the buffer
2990                  * hasn't yet been flushed to disk, they deserve
2991                  * everything they get.
2992                  */
2993
2994                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2995                 journal = EXT4_JOURNAL(inode);
2996                 jbd2_journal_lock_updates(journal);
2997                 err = jbd2_journal_flush(journal);
2998                 jbd2_journal_unlock_updates(journal);
2999
3000                 if (err)
3001                         return 0;
3002         }
3003
3004         return generic_block_bmap(mapping, block, ext4_get_block);
3005 }
3006
3007 static int ext4_readpage(struct file *file, struct page *page)
3008 {
3009         int ret = -EAGAIN;
3010         struct inode *inode = page->mapping->host;
3011
3012         trace_ext4_readpage(page);
3013
3014         if (ext4_has_inline_data(inode))
3015                 ret = ext4_readpage_inline(inode, page);
3016
3017         if (ret == -EAGAIN)
3018                 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3019
3020         return ret;
3021 }
3022
3023 static int
3024 ext4_readpages(struct file *file, struct address_space *mapping,
3025                 struct list_head *pages, unsigned nr_pages)
3026 {
3027         struct inode *inode = mapping->host;
3028
3029         /* If the file has inline data, no need to do readpages. */
3030         if (ext4_has_inline_data(inode))
3031                 return 0;
3032
3033         return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3034 }
3035
3036 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3037                                 unsigned int length)
3038 {
3039         trace_ext4_invalidatepage(page, offset, length);
3040
3041         /* No journalling happens on data buffers when this function is used */
3042         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3043
3044         block_invalidatepage(page, offset, length);
3045 }
3046
3047 static int __ext4_journalled_invalidatepage(struct page *page,
3048                                             unsigned int offset,
3049                                             unsigned int length)
3050 {
3051         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3052
3053         trace_ext4_journalled_invalidatepage(page, offset, length);
3054
3055         /*
3056          * If it's a full truncate we just forget about the pending dirtying
3057          */
3058         if (offset == 0 && length == PAGE_CACHE_SIZE)
3059                 ClearPageChecked(page);
3060
3061         return jbd2_journal_invalidatepage(journal, page, offset, length);
3062 }
3063
3064 /* Wrapper for aops... */
3065 static void ext4_journalled_invalidatepage(struct page *page,
3066                                            unsigned int offset,
3067                                            unsigned int length)
3068 {
3069         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3070 }
3071
3072 static int ext4_releasepage(struct page *page, gfp_t wait)
3073 {
3074         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3075
3076         trace_ext4_releasepage(page);
3077
3078         /* Page has dirty journalled data -> cannot release */
3079         if (PageChecked(page))
3080                 return 0;
3081         if (journal)
3082                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3083         else
3084                 return try_to_free_buffers(page);
3085 }
3086
3087 /*
3088  * ext4_get_block used when preparing for a DIO write or buffer write.
3089  * We allocate an uinitialized extent if blocks haven't been allocated.
3090  * The extent will be converted to initialized after the IO is complete.
3091  */
3092 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3093                    struct buffer_head *bh_result, int create)
3094 {
3095         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3096                    inode->i_ino, create);
3097         return _ext4_get_block(inode, iblock, bh_result,
3098                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
3099 }
3100
3101 static int ext4_get_block_overwrite(struct inode *inode, sector_t iblock,
3102                    struct buffer_head *bh_result, int create)
3103 {
3104         int ret;
3105
3106         ext4_debug("ext4_get_block_overwrite: inode %lu, create flag %d\n",
3107                    inode->i_ino, create);
3108         ret = _ext4_get_block(inode, iblock, bh_result, 0);
3109         /*
3110          * Blocks should have been preallocated! ext4_file_write_iter() checks
3111          * that.
3112          */
3113         WARN_ON_ONCE(!buffer_mapped(bh_result));
3114
3115         return ret;
3116 }
3117
3118 #ifdef CONFIG_FS_DAX
3119 int ext4_dax_mmap_get_block(struct inode *inode, sector_t iblock,
3120                             struct buffer_head *bh_result, int create)
3121 {
3122         int ret, err;
3123         int credits;
3124         struct ext4_map_blocks map;
3125         handle_t *handle = NULL;
3126         int flags = 0;
3127
3128         ext4_debug("ext4_dax_mmap_get_block: inode %lu, create flag %d\n",
3129                    inode->i_ino, create);
3130         map.m_lblk = iblock;
3131         map.m_len = bh_result->b_size >> inode->i_blkbits;
3132         credits = ext4_chunk_trans_blocks(inode, map.m_len);
3133         if (create) {
3134                 flags |= EXT4_GET_BLOCKS_PRE_IO | EXT4_GET_BLOCKS_CREATE_ZERO;
3135                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, credits);
3136                 if (IS_ERR(handle)) {
3137                         ret = PTR_ERR(handle);
3138                         return ret;
3139                 }
3140         }
3141
3142         ret = ext4_map_blocks(handle, inode, &map, flags);
3143         if (create) {
3144                 err = ext4_journal_stop(handle);
3145                 if (ret >= 0 && err < 0)
3146                         ret = err;
3147         }
3148         if (ret <= 0)
3149                 goto out;
3150         if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3151                 int err2;
3152
3153                 /*
3154                  * We are protected by i_mmap_sem so we know block cannot go
3155                  * away from under us even though we dropped i_data_sem.
3156                  * Convert extent to written and write zeros there.
3157                  *
3158                  * Note: We may get here even when create == 0.
3159                  */
3160                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, credits);
3161                 if (IS_ERR(handle)) {
3162                         ret = PTR_ERR(handle);
3163                         goto out;
3164                 }
3165
3166                 err = ext4_map_blocks(handle, inode, &map,
3167                       EXT4_GET_BLOCKS_CONVERT | EXT4_GET_BLOCKS_CREATE_ZERO);
3168                 if (err < 0)
3169                         ret = err;
3170                 err2 = ext4_journal_stop(handle);
3171                 if (err2 < 0 && ret > 0)
3172                         ret = err2;
3173         }
3174 out:
3175         WARN_ON_ONCE(ret == 0 && create);
3176         if (ret > 0) {
3177                 map_bh(bh_result, inode->i_sb, map.m_pblk);
3178                 bh_result->b_state = (bh_result->b_state & ~EXT4_MAP_FLAGS) |
3179                                         map.m_flags;
3180                 /*
3181                  * At least for now we have to clear BH_New so that DAX code
3182                  * doesn't attempt to zero blocks again in a racy way.
3183                  */
3184                 bh_result->b_state &= ~(1 << BH_New);
3185                 bh_result->b_size = map.m_len << inode->i_blkbits;
3186                 ret = 0;
3187         }
3188         return ret;
3189 }
3190 #endif
3191
3192 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3193                             ssize_t size, void *private)
3194 {
3195         ext4_io_end_t *io_end = iocb->private;
3196
3197         /* if not async direct IO just return */
3198         if (!io_end)
3199                 return;
3200
3201         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3202                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3203                   iocb->private, io_end->inode->i_ino, iocb, offset,
3204                   size);
3205
3206         iocb->private = NULL;
3207         io_end->offset = offset;
3208         io_end->size = size;
3209         ext4_put_io_end(io_end);
3210 }
3211
3212 /*
3213  * For ext4 extent files, ext4 will do direct-io write to holes,
3214  * preallocated extents, and those write extend the file, no need to
3215  * fall back to buffered IO.
3216  *
3217  * For holes, we fallocate those blocks, mark them as unwritten
3218  * If those blocks were preallocated, we mark sure they are split, but
3219  * still keep the range to write as unwritten.
3220  *
3221  * The unwritten extents will be converted to written when DIO is completed.
3222  * For async direct IO, since the IO may still pending when return, we
3223  * set up an end_io call back function, which will do the conversion
3224  * when async direct IO completed.
3225  *
3226  * If the O_DIRECT write will extend the file then add this inode to the
3227  * orphan list.  So recovery will truncate it back to the original size
3228  * if the machine crashes during the write.
3229  *
3230  */
3231 static ssize_t ext4_ext_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3232                                   loff_t offset)
3233 {
3234         struct file *file = iocb->ki_filp;
3235         struct inode *inode = file->f_mapping->host;
3236         ssize_t ret;
3237         size_t count = iov_iter_count(iter);
3238         int overwrite = 0;
3239         get_block_t *get_block_func = NULL;
3240         int dio_flags = 0;
3241         loff_t final_size = offset + count;
3242         ext4_io_end_t *io_end = NULL;
3243
3244         /* Use the old path for reads and writes beyond i_size. */
3245         if (iov_iter_rw(iter) != WRITE || final_size > inode->i_size)
3246                 return ext4_ind_direct_IO(iocb, iter, offset);
3247
3248         BUG_ON(iocb->private == NULL);
3249
3250         /*
3251          * Make all waiters for direct IO properly wait also for extent
3252          * conversion. This also disallows race between truncate() and
3253          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3254          */
3255         if (iov_iter_rw(iter) == WRITE)
3256                 inode_dio_begin(inode);
3257
3258         /* If we do a overwrite dio, i_mutex locking can be released */
3259         overwrite = *((int *)iocb->private);
3260
3261         if (overwrite)
3262                 inode_unlock(inode);
3263
3264         /*
3265          * We could direct write to holes and fallocate.
3266          *
3267          * Allocated blocks to fill the hole are marked as
3268          * unwritten to prevent parallel buffered read to expose
3269          * the stale data before DIO complete the data IO.
3270          *
3271          * As to previously fallocated extents, ext4 get_block will
3272          * just simply mark the buffer mapped but still keep the
3273          * extents unwritten.
3274          *
3275          * For non AIO case, we will convert those unwritten extents
3276          * to written after return back from blockdev_direct_IO.
3277          *
3278          * For async DIO, the conversion needs to be deferred when the
3279          * IO is completed. The ext4 end_io callback function will be
3280          * called to take care of the conversion work.  Here for async
3281          * case, we allocate an io_end structure to hook to the iocb.
3282          */
3283         iocb->private = NULL;
3284         if (overwrite) {
3285                 get_block_func = ext4_get_block_overwrite;
3286         } else {
3287                 ext4_inode_aio_set(inode, NULL);
3288                 if (!is_sync_kiocb(iocb)) {
3289                         io_end = ext4_init_io_end(inode, GFP_NOFS);
3290                         if (!io_end) {
3291                                 ret = -ENOMEM;
3292                                 goto retake_lock;
3293                         }
3294                         /*
3295                          * Grab reference for DIO. Will be dropped in
3296                          * ext4_end_io_dio()
3297                          */
3298                         iocb->private = ext4_get_io_end(io_end);
3299                         /*
3300                          * we save the io structure for current async direct
3301                          * IO, so that later ext4_map_blocks() could flag the
3302                          * io structure whether there is a unwritten extents
3303                          * needs to be converted when IO is completed.
3304                          */
3305                         ext4_inode_aio_set(inode, io_end);
3306                 }
3307                 get_block_func = ext4_get_block_write;
3308                 dio_flags = DIO_LOCKING;
3309         }
3310 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3311         BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3312 #endif
3313         if (IS_DAX(inode))
3314                 ret = dax_do_io(iocb, inode, iter, offset, get_block_func,
3315                                 ext4_end_io_dio, dio_flags);
3316         else
3317                 ret = __blockdev_direct_IO(iocb, inode,
3318                                            inode->i_sb->s_bdev, iter, offset,
3319                                            get_block_func,
3320                                            ext4_end_io_dio, NULL, dio_flags);
3321
3322         /*
3323          * Put our reference to io_end. This can free the io_end structure e.g.
3324          * in sync IO case or in case of error. It can even perform extent
3325          * conversion if all bios we submitted finished before we got here.
3326          * Note that in that case iocb->private can be already set to NULL
3327          * here.
3328          */
3329         if (io_end) {
3330                 ext4_inode_aio_set(inode, NULL);
3331                 ext4_put_io_end(io_end);
3332                 /*
3333                  * When no IO was submitted ext4_end_io_dio() was not
3334                  * called so we have to put iocb's reference.
3335                  */
3336                 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3337                         WARN_ON(iocb->private != io_end);
3338                         WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3339                         ext4_put_io_end(io_end);
3340                         iocb->private = NULL;
3341                 }
3342         }
3343         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3344                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3345                 int err;
3346                 /*
3347                  * for non AIO case, since the IO is already
3348                  * completed, we could do the conversion right here
3349                  */
3350                 err = ext4_convert_unwritten_extents(NULL, inode,
3351                                                      offset, ret);
3352                 if (err < 0)
3353                         ret = err;
3354                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3355         }
3356
3357 retake_lock:
3358         if (iov_iter_rw(iter) == WRITE)
3359                 inode_dio_end(inode);
3360         /* take i_mutex locking again if we do a ovewrite dio */
3361         if (overwrite)
3362                 inode_lock(inode);
3363
3364         return ret;
3365 }
3366
3367 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3368                               loff_t offset)
3369 {
3370         struct file *file = iocb->ki_filp;
3371         struct inode *inode = file->f_mapping->host;
3372         size_t count = iov_iter_count(iter);
3373         ssize_t ret;
3374
3375 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3376         if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3377                 return 0;
3378 #endif
3379
3380         /*
3381          * If we are doing data journalling we don't support O_DIRECT
3382          */
3383         if (ext4_should_journal_data(inode))
3384                 return 0;
3385
3386         /* Let buffer I/O handle the inline data case. */
3387         if (ext4_has_inline_data(inode))
3388                 return 0;
3389
3390         trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3391         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3392                 ret = ext4_ext_direct_IO(iocb, iter, offset);
3393         else
3394                 ret = ext4_ind_direct_IO(iocb, iter, offset);
3395         trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3396         return ret;
3397 }
3398
3399 /*
3400  * Pages can be marked dirty completely asynchronously from ext4's journalling
3401  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3402  * much here because ->set_page_dirty is called under VFS locks.  The page is
3403  * not necessarily locked.
3404  *
3405  * We cannot just dirty the page and leave attached buffers clean, because the
3406  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3407  * or jbddirty because all the journalling code will explode.
3408  *
3409  * So what we do is to mark the page "pending dirty" and next time writepage
3410  * is called, propagate that into the buffers appropriately.
3411  */
3412 static int ext4_journalled_set_page_dirty(struct page *page)
3413 {
3414         SetPageChecked(page);
3415         return __set_page_dirty_nobuffers(page);
3416 }
3417
3418 static const struct address_space_operations ext4_aops = {
3419         .readpage               = ext4_readpage,
3420         .readpages              = ext4_readpages,
3421         .writepage              = ext4_writepage,
3422         .writepages             = ext4_writepages,
3423         .write_begin            = ext4_write_begin,
3424         .write_end              = ext4_write_end,
3425         .bmap                   = ext4_bmap,
3426         .invalidatepage         = ext4_invalidatepage,
3427         .releasepage            = ext4_releasepage,
3428         .direct_IO              = ext4_direct_IO,
3429         .migratepage            = buffer_migrate_page,
3430         .is_partially_uptodate  = block_is_partially_uptodate,
3431         .error_remove_page      = generic_error_remove_page,
3432 };
3433
3434 static const struct address_space_operations ext4_journalled_aops = {
3435         .readpage               = ext4_readpage,
3436         .readpages              = ext4_readpages,
3437         .writepage              = ext4_writepage,
3438         .writepages             = ext4_writepages,
3439         .write_begin            = ext4_write_begin,
3440         .write_end              = ext4_journalled_write_end,
3441         .set_page_dirty         = ext4_journalled_set_page_dirty,
3442         .bmap                   = ext4_bmap,
3443         .invalidatepage         = ext4_journalled_invalidatepage,
3444         .releasepage            = ext4_releasepage,
3445         .direct_IO              = ext4_direct_IO,
3446         .is_partially_uptodate  = block_is_partially_uptodate,
3447         .error_remove_page      = generic_error_remove_page,
3448 };
3449
3450 static const struct address_space_operations ext4_da_aops = {
3451         .readpage               = ext4_readpage,
3452         .readpages              = ext4_readpages,
3453         .writepage              = ext4_writepage,
3454         .writepages             = ext4_writepages,
3455         .write_begin            = ext4_da_write_begin,
3456         .write_end              = ext4_da_write_end,
3457         .bmap                   = ext4_bmap,
3458         .invalidatepage         = ext4_da_invalidatepage,
3459         .releasepage            = ext4_releasepage,
3460         .direct_IO              = ext4_direct_IO,
3461         .migratepage            = buffer_migrate_page,
3462         .is_partially_uptodate  = block_is_partially_uptodate,
3463         .error_remove_page      = generic_error_remove_page,
3464 };
3465
3466 void ext4_set_aops(struct inode *inode)
3467 {
3468         switch (ext4_inode_journal_mode(inode)) {
3469         case EXT4_INODE_ORDERED_DATA_MODE:
3470                 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3471                 break;
3472         case EXT4_INODE_WRITEBACK_DATA_MODE:
3473                 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3474                 break;
3475         case EXT4_INODE_JOURNAL_DATA_MODE:
3476                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3477                 return;
3478         default:
3479                 BUG();
3480         }
3481         if (test_opt(inode->i_sb, DELALLOC))
3482                 inode->i_mapping->a_ops = &ext4_da_aops;
3483         else
3484                 inode->i_mapping->a_ops = &ext4_aops;
3485 }
3486
3487 static int __ext4_block_zero_page_range(handle_t *handle,
3488                 struct address_space *mapping, loff_t from, loff_t length)
3489 {
3490         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3491         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3492         unsigned blocksize, pos;
3493         ext4_lblk_t iblock;
3494         struct inode *inode = mapping->host;
3495         struct buffer_head *bh;
3496         struct page *page;
3497         int err = 0;
3498
3499         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3500                                    mapping_gfp_constraint(mapping, ~__GFP_FS));
3501         if (!page)
3502                 return -ENOMEM;
3503
3504         blocksize = inode->i_sb->s_blocksize;
3505
3506         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3507
3508         if (!page_has_buffers(page))
3509                 create_empty_buffers(page, blocksize, 0);
3510
3511         /* Find the buffer that contains "offset" */
3512         bh = page_buffers(page);
3513         pos = blocksize;
3514         while (offset >= pos) {
3515                 bh = bh->b_this_page;
3516                 iblock++;
3517                 pos += blocksize;
3518         }
3519         if (buffer_freed(bh)) {
3520                 BUFFER_TRACE(bh, "freed: skip");
3521                 goto unlock;
3522         }
3523         if (!buffer_mapped(bh)) {
3524                 BUFFER_TRACE(bh, "unmapped");
3525                 ext4_get_block(inode, iblock, bh, 0);
3526                 /* unmapped? It's a hole - nothing to do */
3527                 if (!buffer_mapped(bh)) {
3528                         BUFFER_TRACE(bh, "still unmapped");
3529                         goto unlock;
3530                 }
3531         }
3532
3533         /* Ok, it's mapped. Make sure it's up-to-date */
3534         if (PageUptodate(page))
3535                 set_buffer_uptodate(bh);
3536
3537         if (!buffer_uptodate(bh)) {
3538                 err = -EIO;
3539                 ll_rw_block(READ, 1, &bh);
3540                 wait_on_buffer(bh);
3541                 /* Uhhuh. Read error. Complain and punt. */
3542                 if (!buffer_uptodate(bh))
3543                         goto unlock;
3544                 if (S_ISREG(inode->i_mode) &&
3545                     ext4_encrypted_inode(inode)) {
3546                         /* We expect the key to be set. */
3547                         BUG_ON(!ext4_has_encryption_key(inode));
3548                         BUG_ON(blocksize != PAGE_CACHE_SIZE);
3549                         WARN_ON_ONCE(ext4_decrypt(page));
3550                 }
3551         }
3552         if (ext4_should_journal_data(inode)) {
3553                 BUFFER_TRACE(bh, "get write access");
3554                 err = ext4_journal_get_write_access(handle, bh);
3555                 if (err)
3556                         goto unlock;
3557         }
3558         zero_user(page, offset, length);
3559         BUFFER_TRACE(bh, "zeroed end of block");
3560
3561         if (ext4_should_journal_data(inode)) {
3562                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3563         } else {
3564                 err = 0;
3565                 mark_buffer_dirty(bh);
3566                 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3567                         err = ext4_jbd2_file_inode(handle, inode);
3568         }
3569
3570 unlock:
3571         unlock_page(page);
3572         page_cache_release(page);
3573         return err;
3574 }
3575
3576 /*
3577  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3578  * starting from file offset 'from'.  The range to be zero'd must
3579  * be contained with in one block.  If the specified range exceeds
3580  * the end of the block it will be shortened to end of the block
3581  * that cooresponds to 'from'
3582  */
3583 static int ext4_block_zero_page_range(handle_t *handle,
3584                 struct address_space *mapping, loff_t from, loff_t length)
3585 {
3586         struct inode *inode = mapping->host;
3587         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3588         unsigned blocksize = inode->i_sb->s_blocksize;
3589         unsigned max = blocksize - (offset & (blocksize - 1));
3590
3591         /*
3592          * correct length if it does not fall between
3593          * 'from' and the end of the block
3594          */
3595         if (length > max || length < 0)
3596                 length = max;
3597
3598         if (IS_DAX(inode))
3599                 return dax_zero_page_range(inode, from, length, ext4_get_block);
3600         return __ext4_block_zero_page_range(handle, mapping, from, length);
3601 }
3602
3603 /*
3604  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3605  * up to the end of the block which corresponds to `from'.
3606  * This required during truncate. We need to physically zero the tail end
3607  * of that block so it doesn't yield old data if the file is later grown.
3608  */
3609 static int ext4_block_truncate_page(handle_t *handle,
3610                 struct address_space *mapping, loff_t from)
3611 {
3612         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3613         unsigned length;
3614         unsigned blocksize;
3615         struct inode *inode = mapping->host;
3616
3617         blocksize = inode->i_sb->s_blocksize;
3618         length = blocksize - (offset & (blocksize - 1));
3619
3620         return ext4_block_zero_page_range(handle, mapping, from, length);
3621 }
3622
3623 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3624                              loff_t lstart, loff_t length)
3625 {
3626         struct super_block *sb = inode->i_sb;
3627         struct address_space *mapping = inode->i_mapping;
3628         unsigned partial_start, partial_end;
3629         ext4_fsblk_t start, end;
3630         loff_t byte_end = (lstart + length - 1);
3631         int err = 0;
3632
3633         partial_start = lstart & (sb->s_blocksize - 1);
3634         partial_end = byte_end & (sb->s_blocksize - 1);
3635
3636         start = lstart >> sb->s_blocksize_bits;
3637         end = byte_end >> sb->s_blocksize_bits;
3638
3639         /* Handle partial zero within the single block */
3640         if (start == end &&
3641             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3642                 err = ext4_block_zero_page_range(handle, mapping,
3643                                                  lstart, length);
3644                 return err;
3645         }
3646         /* Handle partial zero out on the start of the range */
3647         if (partial_start) {
3648                 err = ext4_block_zero_page_range(handle, mapping,
3649                                                  lstart, sb->s_blocksize);
3650                 if (err)
3651                         return err;
3652         }
3653         /* Handle partial zero out on the end of the range */
3654         if (partial_end != sb->s_blocksize - 1)
3655                 err = ext4_block_zero_page_range(handle, mapping,
3656                                                  byte_end - partial_end,
3657                                                  partial_end + 1);
3658         return err;
3659 }
3660
3661 int ext4_can_truncate(struct inode *inode)
3662 {
3663         if (S_ISREG(inode->i_mode))
3664                 return 1;
3665         if (S_ISDIR(inode->i_mode))
3666                 return 1;
3667         if (S_ISLNK(inode->i_mode))
3668                 return !ext4_inode_is_fast_symlink(inode);
3669         return 0;
3670 }
3671
3672 /*
3673  * We have to make sure i_disksize gets properly updated before we truncate
3674  * page cache due to hole punching or zero range. Otherwise i_disksize update
3675  * can get lost as it may have been postponed to submission of writeback but
3676  * that will never happen after we truncate page cache.
3677  */
3678 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3679                                       loff_t len)
3680 {
3681         handle_t *handle;
3682         loff_t size = i_size_read(inode);
3683
3684         WARN_ON(!inode_is_locked(inode));
3685         if (offset > size || offset + len < size)
3686                 return 0;
3687
3688         if (EXT4_I(inode)->i_disksize >= size)
3689                 return 0;
3690
3691         handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3692         if (IS_ERR(handle))
3693                 return PTR_ERR(handle);
3694         ext4_update_i_disksize(inode, size);
3695         ext4_mark_inode_dirty(handle, inode);
3696         ext4_journal_stop(handle);
3697
3698         return 0;
3699 }
3700
3701 /*
3702  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3703  * associated with the given offset and length
3704  *
3705  * @inode:  File inode
3706  * @offset: The offset where the hole will begin
3707  * @len:    The length of the hole
3708  *
3709  * Returns: 0 on success or negative on failure
3710  */
3711
3712 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3713 {
3714         struct super_block *sb = inode->i_sb;
3715         ext4_lblk_t first_block, stop_block;
3716         struct address_space *mapping = inode->i_mapping;
3717         loff_t first_block_offset, last_block_offset;
3718         handle_t *handle;
3719         unsigned int credits;
3720         int ret = 0;
3721
3722         if (!S_ISREG(inode->i_mode))
3723                 return -EOPNOTSUPP;
3724
3725         trace_ext4_punch_hole(inode, offset, length, 0);
3726
3727         /*
3728          * Write out all dirty pages to avoid race conditions
3729          * Then release them.
3730          */
3731         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3732                 ret = filemap_write_and_wait_range(mapping, offset,
3733                                                    offset + length - 1);
3734                 if (ret)
3735                         return ret;
3736         }
3737
3738         inode_lock(inode);
3739
3740         /* No need to punch hole beyond i_size */
3741         if (offset >= inode->i_size)
3742                 goto out_mutex;
3743
3744         /*
3745          * If the hole extends beyond i_size, set the hole
3746          * to end after the page that contains i_size
3747          */
3748         if (offset + length > inode->i_size) {
3749                 length = inode->i_size +
3750                    PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3751                    offset;
3752         }
3753
3754         if (offset & (sb->s_blocksize - 1) ||
3755             (offset + length) & (sb->s_blocksize - 1)) {
3756                 /*
3757                  * Attach jinode to inode for jbd2 if we do any zeroing of
3758                  * partial block
3759                  */
3760                 ret = ext4_inode_attach_jinode(inode);
3761                 if (ret < 0)
3762                         goto out_mutex;
3763
3764         }
3765
3766         /* Wait all existing dio workers, newcomers will block on i_mutex */
3767         ext4_inode_block_unlocked_dio(inode);
3768         inode_dio_wait(inode);
3769
3770         /*
3771          * Prevent page faults from reinstantiating pages we have released from
3772          * page cache.
3773          */
3774         down_write(&EXT4_I(inode)->i_mmap_sem);
3775         first_block_offset = round_up(offset, sb->s_blocksize);
3776         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3777
3778         /* Now release the pages and zero block aligned part of pages*/
3779         if (last_block_offset > first_block_offset) {
3780                 ret = ext4_update_disksize_before_punch(inode, offset, length);
3781                 if (ret)
3782                         goto out_dio;
3783                 truncate_pagecache_range(inode, first_block_offset,
3784                                          last_block_offset);
3785         }
3786
3787         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3788                 credits = ext4_writepage_trans_blocks(inode);
3789         else
3790                 credits = ext4_blocks_for_truncate(inode);
3791         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3792         if (IS_ERR(handle)) {
3793                 ret = PTR_ERR(handle);
3794                 ext4_std_error(sb, ret);
3795                 goto out_dio;
3796         }
3797
3798         ret = ext4_zero_partial_blocks(handle, inode, offset,
3799                                        length);
3800         if (ret)
3801                 goto out_stop;
3802
3803         first_block = (offset + sb->s_blocksize - 1) >>
3804                 EXT4_BLOCK_SIZE_BITS(sb);
3805         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3806
3807         /* If there are no blocks to remove, return now */
3808         if (first_block >= stop_block)
3809                 goto out_stop;
3810
3811         down_write(&EXT4_I(inode)->i_data_sem);
3812         ext4_discard_preallocations(inode);
3813
3814         ret = ext4_es_remove_extent(inode, first_block,
3815                                     stop_block - first_block);
3816         if (ret) {
3817                 up_write(&EXT4_I(inode)->i_data_sem);
3818                 goto out_stop;
3819         }
3820
3821         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3822                 ret = ext4_ext_remove_space(inode, first_block,
3823                                             stop_block - 1);
3824         else
3825                 ret = ext4_ind_remove_space(handle, inode, first_block,
3826                                             stop_block);
3827
3828         up_write(&EXT4_I(inode)->i_data_sem);
3829         if (IS_SYNC(inode))
3830                 ext4_handle_sync(handle);
3831
3832         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3833         ext4_mark_inode_dirty(handle, inode);
3834 out_stop:
3835         ext4_journal_stop(handle);
3836 out_dio:
3837         up_write(&EXT4_I(inode)->i_mmap_sem);
3838         ext4_inode_resume_unlocked_dio(inode);
3839 out_mutex:
3840         inode_unlock(inode);
3841         return ret;
3842 }
3843
3844 int ext4_inode_attach_jinode(struct inode *inode)
3845 {
3846         struct ext4_inode_info *ei = EXT4_I(inode);
3847         struct jbd2_inode *jinode;
3848
3849         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3850                 return 0;
3851
3852         jinode = jbd2_alloc_inode(GFP_KERNEL);
3853         spin_lock(&inode->i_lock);
3854         if (!ei->jinode) {
3855                 if (!jinode) {
3856                         spin_unlock(&inode->i_lock);
3857                         return -ENOMEM;
3858                 }
3859                 ei->jinode = jinode;
3860                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3861                 jinode = NULL;
3862         }
3863         spin_unlock(&inode->i_lock);
3864         if (unlikely(jinode != NULL))
3865                 jbd2_free_inode(jinode);
3866         return 0;
3867 }
3868
3869 /*
3870  * ext4_truncate()
3871  *
3872  * We block out ext4_get_block() block instantiations across the entire
3873  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3874  * simultaneously on behalf of the same inode.
3875  *
3876  * As we work through the truncate and commit bits of it to the journal there
3877  * is one core, guiding principle: the file's tree must always be consistent on
3878  * disk.  We must be able to restart the truncate after a crash.
3879  *
3880  * The file's tree may be transiently inconsistent in memory (although it
3881  * probably isn't), but whenever we close off and commit a journal transaction,
3882  * the contents of (the filesystem + the journal) must be consistent and
3883  * restartable.  It's pretty simple, really: bottom up, right to left (although
3884  * left-to-right works OK too).
3885  *
3886  * Note that at recovery time, journal replay occurs *before* the restart of
3887  * truncate against the orphan inode list.
3888  *
3889  * The committed inode has the new, desired i_size (which is the same as
3890  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3891  * that this inode's truncate did not complete and it will again call
3892  * ext4_truncate() to have another go.  So there will be instantiated blocks
3893  * to the right of the truncation point in a crashed ext4 filesystem.  But
3894  * that's fine - as long as they are linked from the inode, the post-crash
3895  * ext4_truncate() run will find them and release them.
3896  */
3897 void ext4_truncate(struct inode *inode)
3898 {
3899         struct ext4_inode_info *ei = EXT4_I(inode);
3900         unsigned int credits;
3901         handle_t *handle;
3902         struct address_space *mapping = inode->i_mapping;
3903
3904         /*
3905          * There is a possibility that we're either freeing the inode
3906          * or it's a completely new inode. In those cases we might not
3907          * have i_mutex locked because it's not necessary.
3908          */
3909         if (!(inode->i_state & (I_NEW|I_FREEING)))
3910                 WARN_ON(!inode_is_locked(inode));
3911         trace_ext4_truncate_enter(inode);
3912
3913         if (!ext4_can_truncate(inode))
3914                 return;
3915
3916         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3917
3918         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3919                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3920
3921         if (ext4_has_inline_data(inode)) {
3922                 int has_inline = 1;
3923
3924                 ext4_inline_data_truncate(inode, &has_inline);
3925                 if (has_inline)
3926                         return;
3927         }
3928
3929         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3930         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3931                 if (ext4_inode_attach_jinode(inode) < 0)
3932                         return;
3933         }
3934
3935         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3936                 credits = ext4_writepage_trans_blocks(inode);
3937         else
3938                 credits = ext4_blocks_for_truncate(inode);
3939
3940         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3941         if (IS_ERR(handle)) {
3942                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3943                 return;
3944         }
3945
3946         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3947                 ext4_block_truncate_page(handle, mapping, inode->i_size);
3948
3949         /*
3950          * We add the inode to the orphan list, so that if this
3951          * truncate spans multiple transactions, and we crash, we will
3952          * resume the truncate when the filesystem recovers.  It also
3953          * marks the inode dirty, to catch the new size.
3954          *
3955          * Implication: the file must always be in a sane, consistent
3956          * truncatable state while each transaction commits.
3957          */
3958         if (ext4_orphan_add(handle, inode))
3959                 goto out_stop;
3960
3961         down_write(&EXT4_I(inode)->i_data_sem);
3962
3963         ext4_discard_preallocations(inode);
3964
3965         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3966                 ext4_ext_truncate(handle, inode);
3967         else
3968                 ext4_ind_truncate(handle, inode);
3969
3970         up_write(&ei->i_data_sem);
3971
3972         if (IS_SYNC(inode))
3973                 ext4_handle_sync(handle);
3974
3975 out_stop:
3976         /*
3977          * If this was a simple ftruncate() and the file will remain alive,
3978          * then we need to clear up the orphan record which we created above.
3979          * However, if this was a real unlink then we were called by
3980          * ext4_evict_inode(), and we allow that function to clean up the
3981          * orphan info for us.
3982          */
3983         if (inode->i_nlink)
3984                 ext4_orphan_del(handle, inode);
3985
3986         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3987         ext4_mark_inode_dirty(handle, inode);
3988         ext4_journal_stop(handle);
3989
3990         trace_ext4_truncate_exit(inode);
3991 }
3992
3993 /*
3994  * ext4_get_inode_loc returns with an extra refcount against the inode's
3995  * underlying buffer_head on success. If 'in_mem' is true, we have all
3996  * data in memory that is needed to recreate the on-disk version of this
3997  * inode.
3998  */
3999 static int __ext4_get_inode_loc(struct inode *inode,
4000                                 struct ext4_iloc *iloc, int in_mem)
4001 {
4002         struct ext4_group_desc  *gdp;
4003         struct buffer_head      *bh;
4004         struct super_block      *sb = inode->i_sb;
4005         ext4_fsblk_t            block;
4006         int                     inodes_per_block, inode_offset;
4007
4008         iloc->bh = NULL;
4009         if (!ext4_valid_inum(sb, inode->i_ino))
4010                 return -EFSCORRUPTED;
4011
4012         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4013         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4014         if (!gdp)
4015                 return -EIO;
4016
4017         /*
4018          * Figure out the offset within the block group inode table
4019          */
4020         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4021         inode_offset = ((inode->i_ino - 1) %
4022                         EXT4_INODES_PER_GROUP(sb));
4023         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4024         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4025
4026         bh = sb_getblk(sb, block);
4027         if (unlikely(!bh))
4028                 return -ENOMEM;
4029         if (!buffer_uptodate(bh)) {
4030                 lock_buffer(bh);
4031
4032                 /*
4033                  * If the buffer has the write error flag, we have failed
4034                  * to write out another inode in the same block.  In this
4035                  * case, we don't have to read the block because we may
4036                  * read the old inode data successfully.
4037                  */
4038                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4039                         set_buffer_uptodate(bh);
4040
4041                 if (buffer_uptodate(bh)) {
4042                         /* someone brought it uptodate while we waited */
4043                         unlock_buffer(bh);
4044                         goto has_buffer;
4045                 }
4046
4047                 /*
4048                  * If we have all information of the inode in memory and this
4049                  * is the only valid inode in the block, we need not read the
4050                  * block.
4051                  */
4052                 if (in_mem) {
4053                         struct buffer_head *bitmap_bh;
4054                         int i, start;
4055
4056                         start = inode_offset & ~(inodes_per_block - 1);
4057
4058                         /* Is the inode bitmap in cache? */
4059                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4060                         if (unlikely(!bitmap_bh))
4061                                 goto make_io;
4062
4063                         /*
4064                          * If the inode bitmap isn't in cache then the
4065                          * optimisation may end up performing two reads instead
4066                          * of one, so skip it.
4067                          */
4068                         if (!buffer_uptodate(bitmap_bh)) {
4069                                 brelse(bitmap_bh);
4070                                 goto make_io;
4071                         }
4072                         for (i = start; i < start + inodes_per_block; i++) {
4073                                 if (i == inode_offset)
4074                                         continue;
4075                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4076                                         break;
4077                         }
4078                         brelse(bitmap_bh);
4079                         if (i == start + inodes_per_block) {
4080                                 /* all other inodes are free, so skip I/O */
4081                                 memset(bh->b_data, 0, bh->b_size);
4082                                 set_buffer_uptodate(bh);
4083                                 unlock_buffer(bh);
4084                                 goto has_buffer;
4085                         }
4086                 }
4087
4088 make_io:
4089                 /*
4090                  * If we need to do any I/O, try to pre-readahead extra
4091                  * blocks from the inode table.
4092                  */
4093                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4094                         ext4_fsblk_t b, end, table;
4095                         unsigned num;
4096                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4097
4098                         table = ext4_inode_table(sb, gdp);
4099                         /* s_inode_readahead_blks is always a power of 2 */
4100                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
4101                         if (table > b)
4102                                 b = table;
4103                         end = b + ra_blks;
4104                         num = EXT4_INODES_PER_GROUP(sb);
4105                         if (ext4_has_group_desc_csum(sb))
4106                                 num -= ext4_itable_unused_count(sb, gdp);
4107                         table += num / inodes_per_block;
4108                         if (end > table)
4109                                 end = table;
4110                         while (b <= end)
4111                                 sb_breadahead(sb, b++);
4112                 }
4113
4114                 /*
4115                  * There are other valid inodes in the buffer, this inode
4116                  * has in-inode xattrs, or we don't have this inode in memory.
4117                  * Read the block from disk.
4118                  */
4119                 trace_ext4_load_inode(inode);
4120                 get_bh(bh);
4121                 bh->b_end_io = end_buffer_read_sync;
4122                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
4123                 wait_on_buffer(bh);
4124                 if (!buffer_uptodate(bh)) {
4125                         EXT4_ERROR_INODE_BLOCK(inode, block,
4126                                                "unable to read itable block");
4127                         brelse(bh);
4128                         return -EIO;
4129                 }
4130         }
4131 has_buffer:
4132         iloc->bh = bh;
4133         return 0;
4134 }
4135
4136 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4137 {
4138         /* We have all inode data except xattrs in memory here. */
4139         return __ext4_get_inode_loc(inode, iloc,
4140                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4141 }
4142
4143 void ext4_set_inode_flags(struct inode *inode)
4144 {
4145         unsigned int flags = EXT4_I(inode)->i_flags;
4146         unsigned int new_fl = 0;
4147
4148         if (flags & EXT4_SYNC_FL)
4149                 new_fl |= S_SYNC;
4150         if (flags & EXT4_APPEND_FL)
4151                 new_fl |= S_APPEND;
4152         if (flags & EXT4_IMMUTABLE_FL)
4153                 new_fl |= S_IMMUTABLE;
4154         if (flags & EXT4_NOATIME_FL)
4155                 new_fl |= S_NOATIME;
4156         if (flags & EXT4_DIRSYNC_FL)
4157                 new_fl |= S_DIRSYNC;
4158         if (test_opt(inode->i_sb, DAX))
4159                 new_fl |= S_DAX;
4160         inode_set_flags(inode, new_fl,
4161                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4162 }
4163
4164 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4165 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4166 {
4167         unsigned int vfs_fl;
4168         unsigned long old_fl, new_fl;
4169
4170         do {
4171                 vfs_fl = ei->vfs_inode.i_flags;
4172                 old_fl = ei->i_flags;
4173                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4174                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4175                                 EXT4_DIRSYNC_FL);
4176                 if (vfs_fl & S_SYNC)
4177                         new_fl |= EXT4_SYNC_FL;
4178                 if (vfs_fl & S_APPEND)
4179                         new_fl |= EXT4_APPEND_FL;
4180                 if (vfs_fl & S_IMMUTABLE)
4181                         new_fl |= EXT4_IMMUTABLE_FL;
4182                 if (vfs_fl & S_NOATIME)
4183                         new_fl |= EXT4_NOATIME_FL;
4184                 if (vfs_fl & S_DIRSYNC)
4185                         new_fl |= EXT4_DIRSYNC_FL;
4186         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4187 }
4188
4189 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4190                                   struct ext4_inode_info *ei)
4191 {
4192         blkcnt_t i_blocks ;
4193         struct inode *inode = &(ei->vfs_inode);
4194         struct super_block *sb = inode->i_sb;
4195
4196         if (ext4_has_feature_huge_file(sb)) {
4197                 /* we are using combined 48 bit field */
4198                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4199                                         le32_to_cpu(raw_inode->i_blocks_lo);
4200                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4201                         /* i_blocks represent file system block size */
4202                         return i_blocks  << (inode->i_blkbits - 9);
4203                 } else {
4204                         return i_blocks;
4205                 }
4206         } else {
4207                 return le32_to_cpu(raw_inode->i_blocks_lo);
4208         }
4209 }
4210
4211 static inline void ext4_iget_extra_inode(struct inode *inode,
4212                                          struct ext4_inode *raw_inode,
4213                                          struct ext4_inode_info *ei)
4214 {
4215         __le32 *magic = (void *)raw_inode +
4216                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4217         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4218                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4219                 ext4_find_inline_data_nolock(inode);
4220         } else
4221                 EXT4_I(inode)->i_inline_off = 0;
4222 }
4223
4224 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4225 {
4226         if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, EXT4_FEATURE_RO_COMPAT_PROJECT))
4227                 return -EOPNOTSUPP;
4228         *projid = EXT4_I(inode)->i_projid;
4229         return 0;
4230 }
4231
4232 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4233 {
4234         struct ext4_iloc iloc;
4235         struct ext4_inode *raw_inode;
4236         struct ext4_inode_info *ei;
4237         struct inode *inode;
4238         journal_t *journal = EXT4_SB(sb)->s_journal;
4239         long ret;
4240         int block;
4241         uid_t i_uid;
4242         gid_t i_gid;
4243         projid_t i_projid;
4244
4245         inode = iget_locked(sb, ino);
4246         if (!inode)
4247                 return ERR_PTR(-ENOMEM);
4248         if (!(inode->i_state & I_NEW))
4249                 return inode;
4250
4251         ei = EXT4_I(inode);
4252         iloc.bh = NULL;
4253
4254         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4255         if (ret < 0)
4256                 goto bad_inode;
4257         raw_inode = ext4_raw_inode(&iloc);
4258
4259         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4260                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4261                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4262                     EXT4_INODE_SIZE(inode->i_sb)) {
4263                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4264                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4265                                 EXT4_INODE_SIZE(inode->i_sb));
4266                         ret = -EFSCORRUPTED;
4267                         goto bad_inode;
4268                 }
4269         } else
4270                 ei->i_extra_isize = 0;
4271
4272         /* Precompute checksum seed for inode metadata */
4273         if (ext4_has_metadata_csum(sb)) {
4274                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4275                 __u32 csum;
4276                 __le32 inum = cpu_to_le32(inode->i_ino);
4277                 __le32 gen = raw_inode->i_generation;
4278                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4279                                    sizeof(inum));
4280                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4281                                               sizeof(gen));
4282         }
4283
4284         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4285                 EXT4_ERROR_INODE(inode, "checksum invalid");
4286                 ret = -EFSBADCRC;
4287                 goto bad_inode;
4288         }
4289
4290         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4291         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4292         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4293         if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_PROJECT) &&
4294             EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4295             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4296                 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4297         else
4298                 i_projid = EXT4_DEF_PROJID;
4299
4300         if (!(test_opt(inode->i_sb, NO_UID32))) {
4301                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4302                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4303         }
4304         i_uid_write(inode, i_uid);
4305         i_gid_write(inode, i_gid);
4306         ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4307         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4308
4309         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4310         ei->i_inline_off = 0;
4311         ei->i_dir_start_lookup = 0;
4312         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4313         /* We now have enough fields to check if the inode was active or not.
4314          * This is needed because nfsd might try to access dead inodes
4315          * the test is that same one that e2fsck uses
4316          * NeilBrown 1999oct15
4317          */
4318         if (inode->i_nlink == 0) {
4319                 if ((inode->i_mode == 0 ||
4320                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4321                     ino != EXT4_BOOT_LOADER_INO) {
4322                         /* this inode is deleted */
4323                         ret = -ESTALE;
4324                         goto bad_inode;
4325                 }
4326                 /* The only unlinked inodes we let through here have
4327                  * valid i_mode and are being read by the orphan
4328                  * recovery code: that's fine, we're about to complete
4329                  * the process of deleting those.
4330                  * OR it is the EXT4_BOOT_LOADER_INO which is
4331                  * not initialized on a new filesystem. */
4332         }
4333         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4334         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4335         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4336         if (ext4_has_feature_64bit(sb))
4337                 ei->i_file_acl |=
4338                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4339         inode->i_size = ext4_isize(raw_inode);
4340         ei->i_disksize = inode->i_size;
4341 #ifdef CONFIG_QUOTA
4342         ei->i_reserved_quota = 0;
4343 #endif
4344         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4345         ei->i_block_group = iloc.block_group;
4346         ei->i_last_alloc_group = ~0;
4347         /*
4348          * NOTE! The in-memory inode i_data array is in little-endian order
4349          * even on big-endian machines: we do NOT byteswap the block numbers!
4350          */
4351         for (block = 0; block < EXT4_N_BLOCKS; block++)
4352                 ei->i_data[block] = raw_inode->i_block[block];
4353         INIT_LIST_HEAD(&ei->i_orphan);
4354
4355         /*
4356          * Set transaction id's of transactions that have to be committed
4357          * to finish f[data]sync. We set them to currently running transaction
4358          * as we cannot be sure that the inode or some of its metadata isn't
4359          * part of the transaction - the inode could have been reclaimed and
4360          * now it is reread from disk.
4361          */
4362         if (journal) {
4363                 transaction_t *transaction;
4364                 tid_t tid;
4365
4366                 read_lock(&journal->j_state_lock);
4367                 if (journal->j_running_transaction)
4368                         transaction = journal->j_running_transaction;
4369                 else
4370                         transaction = journal->j_committing_transaction;
4371                 if (transaction)
4372                         tid = transaction->t_tid;
4373                 else
4374                         tid = journal->j_commit_sequence;
4375                 read_unlock(&journal->j_state_lock);
4376                 ei->i_sync_tid = tid;
4377                 ei->i_datasync_tid = tid;
4378         }
4379
4380         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4381                 if (ei->i_extra_isize == 0) {
4382                         /* The extra space is currently unused. Use it. */
4383                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4384                                             EXT4_GOOD_OLD_INODE_SIZE;
4385                 } else {
4386                         ext4_iget_extra_inode(inode, raw_inode, ei);
4387                 }
4388         }
4389
4390         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4391         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4392         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4393         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4394
4395         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4396                 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4397                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4398                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4399                                 inode->i_version |=
4400                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4401                 }
4402         }
4403
4404         ret = 0;
4405         if (ei->i_file_acl &&
4406             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4407                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4408                                  ei->i_file_acl);
4409                 ret = -EFSCORRUPTED;
4410                 goto bad_inode;
4411         } else if (!ext4_has_inline_data(inode)) {
4412                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4413                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4414                             (S_ISLNK(inode->i_mode) &&
4415                              !ext4_inode_is_fast_symlink(inode))))
4416                                 /* Validate extent which is part of inode */
4417                                 ret = ext4_ext_check_inode(inode);
4418                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4419                            (S_ISLNK(inode->i_mode) &&
4420                             !ext4_inode_is_fast_symlink(inode))) {
4421                         /* Validate block references which are part of inode */
4422                         ret = ext4_ind_check_inode(inode);
4423                 }
4424         }
4425         if (ret)
4426                 goto bad_inode;
4427
4428         if (S_ISREG(inode->i_mode)) {
4429                 inode->i_op = &ext4_file_inode_operations;
4430                 inode->i_fop = &ext4_file_operations;
4431                 ext4_set_aops(inode);
4432         } else if (S_ISDIR(inode->i_mode)) {
4433                 inode->i_op = &ext4_dir_inode_operations;
4434                 inode->i_fop = &ext4_dir_operations;
4435         } else if (S_ISLNK(inode->i_mode)) {
4436                 if (ext4_encrypted_inode(inode)) {
4437                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
4438                         ext4_set_aops(inode);
4439                 } else if (ext4_inode_is_fast_symlink(inode)) {
4440                         inode->i_link = (char *)ei->i_data;
4441                         inode->i_op = &ext4_fast_symlink_inode_operations;
4442                         nd_terminate_link(ei->i_data, inode->i_size,
4443                                 sizeof(ei->i_data) - 1);
4444                 } else {
4445                         inode->i_op = &ext4_symlink_inode_operations;
4446                         ext4_set_aops(inode);
4447                 }
4448                 inode_nohighmem(inode);
4449         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4450               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4451                 inode->i_op = &ext4_special_inode_operations;
4452                 if (raw_inode->i_block[0])
4453                         init_special_inode(inode, inode->i_mode,
4454                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4455                 else
4456                         init_special_inode(inode, inode->i_mode,
4457                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4458         } else if (ino == EXT4_BOOT_LOADER_INO) {
4459                 make_bad_inode(inode);
4460         } else {
4461                 ret = -EFSCORRUPTED;
4462                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4463                 goto bad_inode;
4464         }
4465         brelse(iloc.bh);
4466         ext4_set_inode_flags(inode);
4467         unlock_new_inode(inode);
4468         return inode;
4469
4470 bad_inode:
4471         brelse(iloc.bh);
4472         iget_failed(inode);
4473         return ERR_PTR(ret);
4474 }
4475
4476 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4477 {
4478         if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4479                 return ERR_PTR(-EFSCORRUPTED);
4480         return ext4_iget(sb, ino);
4481 }
4482
4483 static int ext4_inode_blocks_set(handle_t *handle,
4484                                 struct ext4_inode *raw_inode,
4485                                 struct ext4_inode_info *ei)
4486 {
4487         struct inode *inode = &(ei->vfs_inode);
4488         u64 i_blocks = inode->i_blocks;
4489         struct super_block *sb = inode->i_sb;
4490
4491         if (i_blocks <= ~0U) {
4492                 /*
4493                  * i_blocks can be represented in a 32 bit variable
4494                  * as multiple of 512 bytes
4495                  */
4496                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4497                 raw_inode->i_blocks_high = 0;
4498                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4499                 return 0;
4500         }
4501         if (!ext4_has_feature_huge_file(sb))
4502                 return -EFBIG;
4503
4504         if (i_blocks <= 0xffffffffffffULL) {
4505                 /*
4506                  * i_blocks can be represented in a 48 bit variable
4507                  * as multiple of 512 bytes
4508                  */
4509                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4510                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4511                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4512         } else {
4513                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4514                 /* i_block is stored in file system block size */
4515                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4516                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4517                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4518         }
4519         return 0;
4520 }
4521
4522 struct other_inode {
4523         unsigned long           orig_ino;
4524         struct ext4_inode       *raw_inode;
4525 };
4526
4527 static int other_inode_match(struct inode * inode, unsigned long ino,
4528                              void *data)
4529 {
4530         struct other_inode *oi = (struct other_inode *) data;
4531
4532         if ((inode->i_ino != ino) ||
4533             (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4534                                I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4535             ((inode->i_state & I_DIRTY_TIME) == 0))
4536                 return 0;
4537         spin_lock(&inode->i_lock);
4538         if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4539                                 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4540             (inode->i_state & I_DIRTY_TIME)) {
4541                 struct ext4_inode_info  *ei = EXT4_I(inode);
4542
4543                 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4544                 spin_unlock(&inode->i_lock);
4545
4546                 spin_lock(&ei->i_raw_lock);
4547                 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4548                 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4549                 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4550                 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4551                 spin_unlock(&ei->i_raw_lock);
4552                 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4553                 return -1;
4554         }
4555         spin_unlock(&inode->i_lock);
4556         return -1;
4557 }
4558
4559 /*
4560  * Opportunistically update the other time fields for other inodes in
4561  * the same inode table block.
4562  */
4563 static void ext4_update_other_inodes_time(struct super_block *sb,
4564                                           unsigned long orig_ino, char *buf)
4565 {
4566         struct other_inode oi;
4567         unsigned long ino;
4568         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4569         int inode_size = EXT4_INODE_SIZE(sb);
4570
4571         oi.orig_ino = orig_ino;
4572         /*
4573          * Calculate the first inode in the inode table block.  Inode
4574          * numbers are one-based.  That is, the first inode in a block
4575          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4576          */
4577         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4578         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4579                 if (ino == orig_ino)
4580                         continue;
4581                 oi.raw_inode = (struct ext4_inode *) buf;
4582                 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4583         }
4584 }
4585
4586 /*
4587  * Post the struct inode info into an on-disk inode location in the
4588  * buffer-cache.  This gobbles the caller's reference to the
4589  * buffer_head in the inode location struct.
4590  *
4591  * The caller must have write access to iloc->bh.
4592  */
4593 static int ext4_do_update_inode(handle_t *handle,
4594                                 struct inode *inode,
4595                                 struct ext4_iloc *iloc)
4596 {
4597         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4598         struct ext4_inode_info *ei = EXT4_I(inode);
4599         struct buffer_head *bh = iloc->bh;
4600         struct super_block *sb = inode->i_sb;
4601         int err = 0, rc, block;
4602         int need_datasync = 0, set_large_file = 0;
4603         uid_t i_uid;
4604         gid_t i_gid;
4605         projid_t i_projid;
4606
4607         spin_lock(&ei->i_raw_lock);
4608
4609         /* For fields not tracked in the in-memory inode,
4610          * initialise them to zero for new inodes. */
4611         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4612                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4613
4614         ext4_get_inode_flags(ei);
4615         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4616         i_uid = i_uid_read(inode);
4617         i_gid = i_gid_read(inode);
4618         i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4619         if (!(test_opt(inode->i_sb, NO_UID32))) {
4620                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4621                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4622 /*
4623  * Fix up interoperability with old kernels. Otherwise, old inodes get
4624  * re-used with the upper 16 bits of the uid/gid intact
4625  */
4626                 if (!ei->i_dtime) {
4627                         raw_inode->i_uid_high =
4628                                 cpu_to_le16(high_16_bits(i_uid));
4629                         raw_inode->i_gid_high =
4630                                 cpu_to_le16(high_16_bits(i_gid));
4631                 } else {
4632                         raw_inode->i_uid_high = 0;
4633                         raw_inode->i_gid_high = 0;
4634                 }
4635         } else {
4636                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4637                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4638                 raw_inode->i_uid_high = 0;
4639                 raw_inode->i_gid_high = 0;
4640         }
4641         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4642
4643         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4644         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4645         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4646         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4647
4648         err = ext4_inode_blocks_set(handle, raw_inode, ei);
4649         if (err) {
4650                 spin_unlock(&ei->i_raw_lock);
4651                 goto out_brelse;
4652         }
4653         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4654         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4655         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4656                 raw_inode->i_file_acl_high =
4657                         cpu_to_le16(ei->i_file_acl >> 32);
4658         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4659         if (ei->i_disksize != ext4_isize(raw_inode)) {
4660                 ext4_isize_set(raw_inode, ei->i_disksize);
4661                 need_datasync = 1;
4662         }
4663         if (ei->i_disksize > 0x7fffffffULL) {
4664                 if (!ext4_has_feature_large_file(sb) ||
4665                                 EXT4_SB(sb)->s_es->s_rev_level ==
4666                     cpu_to_le32(EXT4_GOOD_OLD_REV))
4667                         set_large_file = 1;
4668         }
4669         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4670         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4671                 if (old_valid_dev(inode->i_rdev)) {
4672                         raw_inode->i_block[0] =
4673                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4674                         raw_inode->i_block[1] = 0;
4675                 } else {
4676                         raw_inode->i_block[0] = 0;
4677                         raw_inode->i_block[1] =
4678                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4679                         raw_inode->i_block[2] = 0;
4680                 }
4681         } else if (!ext4_has_inline_data(inode)) {
4682                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4683                         raw_inode->i_block[block] = ei->i_data[block];
4684         }
4685
4686         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4687                 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4688                 if (ei->i_extra_isize) {
4689                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4690                                 raw_inode->i_version_hi =
4691                                         cpu_to_le32(inode->i_version >> 32);
4692                         raw_inode->i_extra_isize =
4693                                 cpu_to_le16(ei->i_extra_isize);
4694                 }
4695         }
4696
4697         BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
4698                         EXT4_FEATURE_RO_COMPAT_PROJECT) &&
4699                i_projid != EXT4_DEF_PROJID);
4700
4701         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4702             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4703                 raw_inode->i_projid = cpu_to_le32(i_projid);
4704
4705         ext4_inode_csum_set(inode, raw_inode, ei);
4706         spin_unlock(&ei->i_raw_lock);
4707         if (inode->i_sb->s_flags & MS_LAZYTIME)
4708                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4709                                               bh->b_data);
4710
4711         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4712         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4713         if (!err)
4714                 err = rc;
4715         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4716         if (set_large_file) {
4717                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4718                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4719                 if (err)
4720                         goto out_brelse;
4721                 ext4_update_dynamic_rev(sb);
4722                 ext4_set_feature_large_file(sb);
4723                 ext4_handle_sync(handle);
4724                 err = ext4_handle_dirty_super(handle, sb);
4725         }
4726         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4727 out_brelse:
4728         brelse(bh);
4729         ext4_std_error(inode->i_sb, err);
4730         return err;
4731 }
4732
4733 /*
4734  * ext4_write_inode()
4735  *
4736  * We are called from a few places:
4737  *
4738  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4739  *   Here, there will be no transaction running. We wait for any running
4740  *   transaction to commit.
4741  *
4742  * - Within flush work (sys_sync(), kupdate and such).
4743  *   We wait on commit, if told to.
4744  *
4745  * - Within iput_final() -> write_inode_now()
4746  *   We wait on commit, if told to.
4747  *
4748  * In all cases it is actually safe for us to return without doing anything,
4749  * because the inode has been copied into a raw inode buffer in
4750  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
4751  * writeback.
4752  *
4753  * Note that we are absolutely dependent upon all inode dirtiers doing the
4754  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4755  * which we are interested.
4756  *
4757  * It would be a bug for them to not do this.  The code:
4758  *
4759  *      mark_inode_dirty(inode)
4760  *      stuff();
4761  *      inode->i_size = expr;
4762  *
4763  * is in error because write_inode() could occur while `stuff()' is running,
4764  * and the new i_size will be lost.  Plus the inode will no longer be on the
4765  * superblock's dirty inode list.
4766  */
4767 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4768 {
4769         int err;
4770
4771         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4772                 return 0;
4773
4774         if (EXT4_SB(inode->i_sb)->s_journal) {
4775                 if (ext4_journal_current_handle()) {
4776                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4777                         dump_stack();
4778                         return -EIO;
4779                 }
4780
4781                 /*
4782                  * No need to force transaction in WB_SYNC_NONE mode. Also
4783                  * ext4_sync_fs() will force the commit after everything is
4784                  * written.
4785                  */
4786                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4787                         return 0;
4788
4789                 err = ext4_force_commit(inode->i_sb);
4790         } else {
4791                 struct ext4_iloc iloc;
4792
4793                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4794                 if (err)
4795                         return err;
4796                 /*
4797                  * sync(2) will flush the whole buffer cache. No need to do
4798                  * it here separately for each inode.
4799                  */
4800                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4801                         sync_dirty_buffer(iloc.bh);
4802                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4803                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4804                                          "IO error syncing inode");
4805                         err = -EIO;
4806                 }
4807                 brelse(iloc.bh);
4808         }
4809         return err;
4810 }
4811
4812 /*
4813  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4814  * buffers that are attached to a page stradding i_size and are undergoing
4815  * commit. In that case we have to wait for commit to finish and try again.
4816  */
4817 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4818 {
4819         struct page *page;
4820         unsigned offset;
4821         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4822         tid_t commit_tid = 0;
4823         int ret;
4824
4825         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4826         /*
4827          * All buffers in the last page remain valid? Then there's nothing to
4828          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4829          * blocksize case
4830          */
4831         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4832                 return;
4833         while (1) {
4834                 page = find_lock_page(inode->i_mapping,
4835                                       inode->i_size >> PAGE_CACHE_SHIFT);
4836                 if (!page)
4837                         return;
4838                 ret = __ext4_journalled_invalidatepage(page, offset,
4839                                                 PAGE_CACHE_SIZE - offset);
4840                 unlock_page(page);
4841                 page_cache_release(page);
4842                 if (ret != -EBUSY)
4843                         return;
4844                 commit_tid = 0;
4845                 read_lock(&journal->j_state_lock);
4846                 if (journal->j_committing_transaction)
4847                         commit_tid = journal->j_committing_transaction->t_tid;
4848                 read_unlock(&journal->j_state_lock);
4849                 if (commit_tid)
4850                         jbd2_log_wait_commit(journal, commit_tid);
4851         }
4852 }
4853
4854 /*
4855  * ext4_setattr()
4856  *
4857  * Called from notify_change.
4858  *
4859  * We want to trap VFS attempts to truncate the file as soon as
4860  * possible.  In particular, we want to make sure that when the VFS
4861  * shrinks i_size, we put the inode on the orphan list and modify
4862  * i_disksize immediately, so that during the subsequent flushing of
4863  * dirty pages and freeing of disk blocks, we can guarantee that any
4864  * commit will leave the blocks being flushed in an unused state on
4865  * disk.  (On recovery, the inode will get truncated and the blocks will
4866  * be freed, so we have a strong guarantee that no future commit will
4867  * leave these blocks visible to the user.)
4868  *
4869  * Another thing we have to assure is that if we are in ordered mode
4870  * and inode is still attached to the committing transaction, we must
4871  * we start writeout of all the dirty pages which are being truncated.
4872  * This way we are sure that all the data written in the previous
4873  * transaction are already on disk (truncate waits for pages under
4874  * writeback).
4875  *
4876  * Called with inode->i_mutex down.
4877  */
4878 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4879 {
4880         struct inode *inode = d_inode(dentry);
4881         int error, rc = 0;
4882         int orphan = 0;
4883         const unsigned int ia_valid = attr->ia_valid;
4884
4885         error = inode_change_ok(inode, attr);
4886         if (error)
4887                 return error;
4888
4889         if (is_quota_modification(inode, attr)) {
4890                 error = dquot_initialize(inode);
4891                 if (error)
4892                         return error;
4893         }
4894         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4895             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4896                 handle_t *handle;
4897
4898                 /* (user+group)*(old+new) structure, inode write (sb,
4899                  * inode block, ? - but truncate inode update has it) */
4900                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4901                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4902                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4903                 if (IS_ERR(handle)) {
4904                         error = PTR_ERR(handle);
4905                         goto err_out;
4906                 }
4907                 error = dquot_transfer(inode, attr);
4908                 if (error) {
4909                         ext4_journal_stop(handle);
4910                         return error;
4911                 }
4912                 /* Update corresponding info in inode so that everything is in
4913                  * one transaction */
4914                 if (attr->ia_valid & ATTR_UID)
4915                         inode->i_uid = attr->ia_uid;
4916                 if (attr->ia_valid & ATTR_GID)
4917                         inode->i_gid = attr->ia_gid;
4918                 error = ext4_mark_inode_dirty(handle, inode);
4919                 ext4_journal_stop(handle);
4920         }
4921
4922         if (attr->ia_valid & ATTR_SIZE) {
4923                 handle_t *handle;
4924                 loff_t oldsize = inode->i_size;
4925                 int shrink = (attr->ia_size <= inode->i_size);
4926
4927                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4928                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4929
4930                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4931                                 return -EFBIG;
4932                 }
4933                 if (!S_ISREG(inode->i_mode))
4934                         return -EINVAL;
4935
4936                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4937                         inode_inc_iversion(inode);
4938
4939                 if (ext4_should_order_data(inode) &&
4940                     (attr->ia_size < inode->i_size)) {
4941                         error = ext4_begin_ordered_truncate(inode,
4942                                                             attr->ia_size);
4943                         if (error)
4944                                 goto err_out;
4945                 }
4946                 if (attr->ia_size != inode->i_size) {
4947                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4948                         if (IS_ERR(handle)) {
4949                                 error = PTR_ERR(handle);
4950                                 goto err_out;
4951                         }
4952                         if (ext4_handle_valid(handle) && shrink) {
4953                                 error = ext4_orphan_add(handle, inode);
4954                                 orphan = 1;
4955                         }
4956                         /*
4957                          * Update c/mtime on truncate up, ext4_truncate() will
4958                          * update c/mtime in shrink case below
4959                          */
4960                         if (!shrink) {
4961                                 inode->i_mtime = ext4_current_time(inode);
4962                                 inode->i_ctime = inode->i_mtime;
4963                         }
4964                         down_write(&EXT4_I(inode)->i_data_sem);
4965                         EXT4_I(inode)->i_disksize = attr->ia_size;
4966                         rc = ext4_mark_inode_dirty(handle, inode);
4967                         if (!error)
4968                                 error = rc;
4969                         /*
4970                          * We have to update i_size under i_data_sem together
4971                          * with i_disksize to avoid races with writeback code
4972                          * running ext4_wb_update_i_disksize().
4973                          */
4974                         if (!error)
4975                                 i_size_write(inode, attr->ia_size);
4976                         up_write(&EXT4_I(inode)->i_data_sem);
4977                         ext4_journal_stop(handle);
4978                         if (error) {
4979                                 if (orphan)
4980                                         ext4_orphan_del(NULL, inode);
4981                                 goto err_out;
4982                         }
4983                 }
4984                 if (!shrink)
4985                         pagecache_isize_extended(inode, oldsize, inode->i_size);
4986
4987                 /*
4988                  * Blocks are going to be removed from the inode. Wait
4989                  * for dio in flight.  Temporarily disable
4990                  * dioread_nolock to prevent livelock.
4991                  */
4992                 if (orphan) {
4993                         if (!ext4_should_journal_data(inode)) {
4994                                 ext4_inode_block_unlocked_dio(inode);
4995                                 inode_dio_wait(inode);
4996                                 ext4_inode_resume_unlocked_dio(inode);
4997                         } else
4998                                 ext4_wait_for_tail_page_commit(inode);
4999                 }
5000                 down_write(&EXT4_I(inode)->i_mmap_sem);
5001                 /*
5002                  * Truncate pagecache after we've waited for commit
5003                  * in data=journal mode to make pages freeable.
5004                  */
5005                 truncate_pagecache(inode, inode->i_size);
5006                 if (shrink)
5007                         ext4_truncate(inode);
5008                 up_write(&EXT4_I(inode)->i_mmap_sem);
5009         }
5010
5011         if (!rc) {
5012                 setattr_copy(inode, attr);
5013                 mark_inode_dirty(inode);
5014         }
5015
5016         /*
5017          * If the call to ext4_truncate failed to get a transaction handle at
5018          * all, we need to clean up the in-core orphan list manually.
5019          */
5020         if (orphan && inode->i_nlink)
5021                 ext4_orphan_del(NULL, inode);
5022
5023         if (!rc && (ia_valid & ATTR_MODE))
5024                 rc = posix_acl_chmod(inode, inode->i_mode);
5025
5026 err_out:
5027         ext4_std_error(inode->i_sb, error);
5028         if (!error)
5029                 error = rc;
5030         return error;
5031 }
5032
5033 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5034                  struct kstat *stat)
5035 {
5036         struct inode *inode;
5037         unsigned long long delalloc_blocks;
5038
5039         inode = d_inode(dentry);
5040         generic_fillattr(inode, stat);
5041
5042         /*
5043          * If there is inline data in the inode, the inode will normally not
5044          * have data blocks allocated (it may have an external xattr block).
5045          * Report at least one sector for such files, so tools like tar, rsync,
5046          * others doen't incorrectly think the file is completely sparse.
5047          */
5048         if (unlikely(ext4_has_inline_data(inode)))
5049                 stat->blocks += (stat->size + 511) >> 9;
5050
5051         /*
5052          * We can't update i_blocks if the block allocation is delayed
5053          * otherwise in the case of system crash before the real block
5054          * allocation is done, we will have i_blocks inconsistent with
5055          * on-disk file blocks.
5056          * We always keep i_blocks updated together with real
5057          * allocation. But to not confuse with user, stat
5058          * will return the blocks that include the delayed allocation
5059          * blocks for this file.
5060          */
5061         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5062                                    EXT4_I(inode)->i_reserved_data_blocks);
5063         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5064         return 0;
5065 }
5066
5067 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5068                                    int pextents)
5069 {
5070         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5071                 return ext4_ind_trans_blocks(inode, lblocks);
5072         return ext4_ext_index_trans_blocks(inode, pextents);
5073 }
5074
5075 /*
5076  * Account for index blocks, block groups bitmaps and block group
5077  * descriptor blocks if modify datablocks and index blocks
5078  * worse case, the indexs blocks spread over different block groups
5079  *
5080  * If datablocks are discontiguous, they are possible to spread over
5081  * different block groups too. If they are contiguous, with flexbg,
5082  * they could still across block group boundary.
5083  *
5084  * Also account for superblock, inode, quota and xattr blocks
5085  */
5086 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5087                                   int pextents)
5088 {
5089         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5090         int gdpblocks;
5091         int idxblocks;
5092         int ret = 0;
5093
5094         /*
5095          * How many index blocks need to touch to map @lblocks logical blocks
5096          * to @pextents physical extents?
5097          */
5098         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5099
5100         ret = idxblocks;
5101
5102         /*
5103          * Now let's see how many group bitmaps and group descriptors need
5104          * to account
5105          */
5106         groups = idxblocks + pextents;
5107         gdpblocks = groups;
5108         if (groups > ngroups)
5109                 groups = ngroups;
5110         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5111                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5112
5113         /* bitmaps and block group descriptor blocks */
5114         ret += groups + gdpblocks;
5115
5116         /* Blocks for super block, inode, quota and xattr blocks */
5117         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5118
5119         return ret;
5120 }
5121
5122 /*
5123  * Calculate the total number of credits to reserve to fit
5124  * the modification of a single pages into a single transaction,
5125  * which may include multiple chunks of block allocations.
5126  *
5127  * This could be called via ext4_write_begin()
5128  *
5129  * We need to consider the worse case, when
5130  * one new block per extent.
5131  */
5132 int ext4_writepage_trans_blocks(struct inode *inode)
5133 {
5134         int bpp = ext4_journal_blocks_per_page(inode);
5135         int ret;
5136
5137         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5138
5139         /* Account for data blocks for journalled mode */
5140         if (ext4_should_journal_data(inode))
5141                 ret += bpp;
5142         return ret;
5143 }
5144
5145 /*
5146  * Calculate the journal credits for a chunk of data modification.
5147  *
5148  * This is called from DIO, fallocate or whoever calling
5149  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5150  *
5151  * journal buffers for data blocks are not included here, as DIO
5152  * and fallocate do no need to journal data buffers.
5153  */
5154 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5155 {
5156         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5157 }
5158
5159 /*
5160  * The caller must have previously called ext4_reserve_inode_write().
5161  * Give this, we know that the caller already has write access to iloc->bh.
5162  */
5163 int ext4_mark_iloc_dirty(handle_t *handle,
5164                          struct inode *inode, struct ext4_iloc *iloc)
5165 {
5166         int err = 0;
5167
5168         if (IS_I_VERSION(inode))
5169                 inode_inc_iversion(inode);
5170
5171         /* the do_update_inode consumes one bh->b_count */
5172         get_bh(iloc->bh);
5173
5174         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5175         err = ext4_do_update_inode(handle, inode, iloc);
5176         put_bh(iloc->bh);
5177         return err;
5178 }
5179
5180 /*
5181  * On success, We end up with an outstanding reference count against
5182  * iloc->bh.  This _must_ be cleaned up later.
5183  */
5184
5185 int
5186 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5187                          struct ext4_iloc *iloc)
5188 {
5189         int err;
5190
5191         err = ext4_get_inode_loc(inode, iloc);
5192         if (!err) {
5193                 BUFFER_TRACE(iloc->bh, "get_write_access");
5194                 err = ext4_journal_get_write_access(handle, iloc->bh);
5195                 if (err) {
5196                         brelse(iloc->bh);
5197                         iloc->bh = NULL;
5198                 }
5199         }
5200         ext4_std_error(inode->i_sb, err);
5201         return err;
5202 }
5203
5204 /*
5205  * Expand an inode by new_extra_isize bytes.
5206  * Returns 0 on success or negative error number on failure.
5207  */
5208 static int ext4_expand_extra_isize(struct inode *inode,
5209                                    unsigned int new_extra_isize,
5210                                    struct ext4_iloc iloc,
5211                                    handle_t *handle)
5212 {
5213         struct ext4_inode *raw_inode;
5214         struct ext4_xattr_ibody_header *header;
5215
5216         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5217                 return 0;
5218
5219         raw_inode = ext4_raw_inode(&iloc);
5220
5221         header = IHDR(inode, raw_inode);
5222
5223         /* No extended attributes present */
5224         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5225             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5226                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5227                         new_extra_isize);
5228                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5229                 return 0;
5230         }
5231
5232         /* try to expand with EAs present */
5233         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5234                                           raw_inode, handle);
5235 }
5236
5237 /*
5238  * What we do here is to mark the in-core inode as clean with respect to inode
5239  * dirtiness (it may still be data-dirty).
5240  * This means that the in-core inode may be reaped by prune_icache
5241  * without having to perform any I/O.  This is a very good thing,
5242  * because *any* task may call prune_icache - even ones which
5243  * have a transaction open against a different journal.
5244  *
5245  * Is this cheating?  Not really.  Sure, we haven't written the
5246  * inode out, but prune_icache isn't a user-visible syncing function.
5247  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5248  * we start and wait on commits.
5249  */
5250 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5251 {
5252         struct ext4_iloc iloc;
5253         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5254         static unsigned int mnt_count;
5255         int err, ret;
5256
5257         might_sleep();
5258         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5259         err = ext4_reserve_inode_write(handle, inode, &iloc);
5260         if (ext4_handle_valid(handle) &&
5261             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5262             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5263                 /*
5264                  * We need extra buffer credits since we may write into EA block
5265                  * with this same handle. If journal_extend fails, then it will
5266                  * only result in a minor loss of functionality for that inode.
5267                  * If this is felt to be critical, then e2fsck should be run to
5268                  * force a large enough s_min_extra_isize.
5269                  */
5270                 if ((jbd2_journal_extend(handle,
5271                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5272                         ret = ext4_expand_extra_isize(inode,
5273                                                       sbi->s_want_extra_isize,
5274                                                       iloc, handle);
5275                         if (ret) {
5276                                 ext4_set_inode_state(inode,
5277                                                      EXT4_STATE_NO_EXPAND);
5278                                 if (mnt_count !=
5279                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5280                                         ext4_warning(inode->i_sb,
5281                                         "Unable to expand inode %lu. Delete"
5282                                         " some EAs or run e2fsck.",
5283                                         inode->i_ino);
5284                                         mnt_count =
5285                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5286                                 }
5287                         }
5288                 }
5289         }
5290         if (!err)
5291                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5292         return err;
5293 }
5294
5295 /*
5296  * ext4_dirty_inode() is called from __mark_inode_dirty()
5297  *
5298  * We're really interested in the case where a file is being extended.
5299  * i_size has been changed by generic_commit_write() and we thus need
5300  * to include the updated inode in the current transaction.
5301  *
5302  * Also, dquot_alloc_block() will always dirty the inode when blocks
5303  * are allocated to the file.
5304  *
5305  * If the inode is marked synchronous, we don't honour that here - doing
5306  * so would cause a commit on atime updates, which we don't bother doing.
5307  * We handle synchronous inodes at the highest possible level.
5308  *
5309  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5310  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5311  * to copy into the on-disk inode structure are the timestamp files.
5312  */
5313 void ext4_dirty_inode(struct inode *inode, int flags)
5314 {
5315         handle_t *handle;
5316
5317         if (flags == I_DIRTY_TIME)
5318                 return;
5319         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5320         if (IS_ERR(handle))
5321                 goto out;
5322
5323         ext4_mark_inode_dirty(handle, inode);
5324
5325         ext4_journal_stop(handle);
5326 out:
5327         return;
5328 }
5329
5330 #if 0
5331 /*
5332  * Bind an inode's backing buffer_head into this transaction, to prevent
5333  * it from being flushed to disk early.  Unlike
5334  * ext4_reserve_inode_write, this leaves behind no bh reference and
5335  * returns no iloc structure, so the caller needs to repeat the iloc
5336  * lookup to mark the inode dirty later.
5337  */
5338 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5339 {
5340         struct ext4_iloc iloc;
5341
5342         int err = 0;
5343         if (handle) {
5344                 err = ext4_get_inode_loc(inode, &iloc);
5345                 if (!err) {
5346                         BUFFER_TRACE(iloc.bh, "get_write_access");
5347                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5348                         if (!err)
5349                                 err = ext4_handle_dirty_metadata(handle,
5350                                                                  NULL,
5351                                                                  iloc.bh);
5352                         brelse(iloc.bh);
5353                 }
5354         }
5355         ext4_std_error(inode->i_sb, err);
5356         return err;
5357 }
5358 #endif
5359
5360 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5361 {
5362         journal_t *journal;
5363         handle_t *handle;
5364         int err;
5365
5366         /*
5367          * We have to be very careful here: changing a data block's
5368          * journaling status dynamically is dangerous.  If we write a
5369          * data block to the journal, change the status and then delete
5370          * that block, we risk forgetting to revoke the old log record
5371          * from the journal and so a subsequent replay can corrupt data.
5372          * So, first we make sure that the journal is empty and that
5373          * nobody is changing anything.
5374          */
5375
5376         journal = EXT4_JOURNAL(inode);
5377         if (!journal)
5378                 return 0;
5379         if (is_journal_aborted(journal))
5380                 return -EROFS;
5381         /* We have to allocate physical blocks for delalloc blocks
5382          * before flushing journal. otherwise delalloc blocks can not
5383          * be allocated any more. even more truncate on delalloc blocks
5384          * could trigger BUG by flushing delalloc blocks in journal.
5385          * There is no delalloc block in non-journal data mode.
5386          */
5387         if (val && test_opt(inode->i_sb, DELALLOC)) {
5388                 err = ext4_alloc_da_blocks(inode);
5389                 if (err < 0)
5390                         return err;
5391         }
5392
5393         /* Wait for all existing dio workers */
5394         ext4_inode_block_unlocked_dio(inode);
5395         inode_dio_wait(inode);
5396
5397         jbd2_journal_lock_updates(journal);
5398
5399         /*
5400          * OK, there are no updates running now, and all cached data is
5401          * synced to disk.  We are now in a completely consistent state
5402          * which doesn't have anything in the journal, and we know that
5403          * no filesystem updates are running, so it is safe to modify
5404          * the inode's in-core data-journaling state flag now.
5405          */
5406
5407         if (val)
5408                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5409         else {
5410                 err = jbd2_journal_flush(journal);
5411                 if (err < 0) {
5412                         jbd2_journal_unlock_updates(journal);
5413                         ext4_inode_resume_unlocked_dio(inode);
5414                         return err;
5415                 }
5416                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5417         }
5418         ext4_set_aops(inode);
5419
5420         jbd2_journal_unlock_updates(journal);
5421         ext4_inode_resume_unlocked_dio(inode);
5422
5423         /* Finally we can mark the inode as dirty. */
5424
5425         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5426         if (IS_ERR(handle))
5427                 return PTR_ERR(handle);
5428
5429         err = ext4_mark_inode_dirty(handle, inode);
5430         ext4_handle_sync(handle);
5431         ext4_journal_stop(handle);
5432         ext4_std_error(inode->i_sb, err);
5433
5434         return err;
5435 }
5436
5437 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5438 {
5439         return !buffer_mapped(bh);
5440 }
5441
5442 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5443 {
5444         struct page *page = vmf->page;
5445         loff_t size;
5446         unsigned long len;
5447         int ret;
5448         struct file *file = vma->vm_file;
5449         struct inode *inode = file_inode(file);
5450         struct address_space *mapping = inode->i_mapping;
5451         handle_t *handle;
5452         get_block_t *get_block;
5453         int retries = 0;
5454
5455         sb_start_pagefault(inode->i_sb);
5456         file_update_time(vma->vm_file);
5457
5458         down_read(&EXT4_I(inode)->i_mmap_sem);
5459         /* Delalloc case is easy... */
5460         if (test_opt(inode->i_sb, DELALLOC) &&
5461             !ext4_should_journal_data(inode) &&
5462             !ext4_nonda_switch(inode->i_sb)) {
5463                 do {
5464                         ret = block_page_mkwrite(vma, vmf,
5465                                                    ext4_da_get_block_prep);
5466                 } while (ret == -ENOSPC &&
5467                        ext4_should_retry_alloc(inode->i_sb, &retries));
5468                 goto out_ret;
5469         }
5470
5471         lock_page(page);
5472         size = i_size_read(inode);
5473         /* Page got truncated from under us? */
5474         if (page->mapping != mapping || page_offset(page) > size) {
5475                 unlock_page(page);
5476                 ret = VM_FAULT_NOPAGE;
5477                 goto out;
5478         }
5479
5480         if (page->index == size >> PAGE_CACHE_SHIFT)
5481                 len = size & ~PAGE_CACHE_MASK;
5482         else
5483                 len = PAGE_CACHE_SIZE;
5484         /*
5485          * Return if we have all the buffers mapped. This avoids the need to do
5486          * journal_start/journal_stop which can block and take a long time
5487          */
5488         if (page_has_buffers(page)) {
5489                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5490                                             0, len, NULL,
5491                                             ext4_bh_unmapped)) {
5492                         /* Wait so that we don't change page under IO */
5493                         wait_for_stable_page(page);
5494                         ret = VM_FAULT_LOCKED;
5495                         goto out;
5496                 }
5497         }
5498         unlock_page(page);
5499         /* OK, we need to fill the hole... */
5500         if (ext4_should_dioread_nolock(inode))
5501                 get_block = ext4_get_block_write;
5502         else
5503                 get_block = ext4_get_block;
5504 retry_alloc:
5505         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5506                                     ext4_writepage_trans_blocks(inode));
5507         if (IS_ERR(handle)) {
5508                 ret = VM_FAULT_SIGBUS;
5509                 goto out;
5510         }
5511         ret = block_page_mkwrite(vma, vmf, get_block);
5512         if (!ret && ext4_should_journal_data(inode)) {
5513                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5514                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5515                         unlock_page(page);
5516                         ret = VM_FAULT_SIGBUS;
5517                         ext4_journal_stop(handle);
5518                         goto out;
5519                 }
5520                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5521         }
5522         ext4_journal_stop(handle);
5523         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5524                 goto retry_alloc;
5525 out_ret:
5526         ret = block_page_mkwrite_return(ret);
5527 out:
5528         up_read(&EXT4_I(inode)->i_mmap_sem);
5529         sb_end_pagefault(inode->i_sb);
5530         return ret;
5531 }
5532
5533 int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
5534 {
5535         struct inode *inode = file_inode(vma->vm_file);
5536         int err;
5537
5538         down_read(&EXT4_I(inode)->i_mmap_sem);
5539         err = filemap_fault(vma, vmf);
5540         up_read(&EXT4_I(inode)->i_mmap_sem);
5541
5542         return err;
5543 }