direct-io: only inc/dec inode->i_dio_count for file systems
[cascardo/linux.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/bitops.h>
41
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46
47 #include <trace/events/ext4.h>
48
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52                               struct ext4_inode_info *ei)
53 {
54         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55         __u16 csum_lo;
56         __u16 csum_hi = 0;
57         __u32 csum;
58
59         csum_lo = le16_to_cpu(raw->i_checksum_lo);
60         raw->i_checksum_lo = 0;
61         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
62             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
63                 csum_hi = le16_to_cpu(raw->i_checksum_hi);
64                 raw->i_checksum_hi = 0;
65         }
66
67         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
68                            EXT4_INODE_SIZE(inode->i_sb));
69
70         raw->i_checksum_lo = cpu_to_le16(csum_lo);
71         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
72             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
73                 raw->i_checksum_hi = cpu_to_le16(csum_hi);
74
75         return csum;
76 }
77
78 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
79                                   struct ext4_inode_info *ei)
80 {
81         __u32 provided, calculated;
82
83         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
84             cpu_to_le32(EXT4_OS_LINUX) ||
85             !ext4_has_metadata_csum(inode->i_sb))
86                 return 1;
87
88         provided = le16_to_cpu(raw->i_checksum_lo);
89         calculated = ext4_inode_csum(inode, raw, ei);
90         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
91             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
92                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
93         else
94                 calculated &= 0xFFFF;
95
96         return provided == calculated;
97 }
98
99 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
100                                 struct ext4_inode_info *ei)
101 {
102         __u32 csum;
103
104         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
105             cpu_to_le32(EXT4_OS_LINUX) ||
106             !ext4_has_metadata_csum(inode->i_sb))
107                 return;
108
109         csum = ext4_inode_csum(inode, raw, ei);
110         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
111         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
112             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
113                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
114 }
115
116 static inline int ext4_begin_ordered_truncate(struct inode *inode,
117                                               loff_t new_size)
118 {
119         trace_ext4_begin_ordered_truncate(inode, new_size);
120         /*
121          * If jinode is zero, then we never opened the file for
122          * writing, so there's no need to call
123          * jbd2_journal_begin_ordered_truncate() since there's no
124          * outstanding writes we need to flush.
125          */
126         if (!EXT4_I(inode)->jinode)
127                 return 0;
128         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
129                                                    EXT4_I(inode)->jinode,
130                                                    new_size);
131 }
132
133 static void ext4_invalidatepage(struct page *page, unsigned int offset,
134                                 unsigned int length);
135 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
136 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
137 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
138                                   int pextents);
139
140 /*
141  * Test whether an inode is a fast symlink.
142  */
143 static int ext4_inode_is_fast_symlink(struct inode *inode)
144 {
145         int ea_blocks = EXT4_I(inode)->i_file_acl ?
146                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
147
148         if (ext4_has_inline_data(inode))
149                 return 0;
150
151         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
152 }
153
154 /*
155  * Restart the transaction associated with *handle.  This does a commit,
156  * so before we call here everything must be consistently dirtied against
157  * this transaction.
158  */
159 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
160                                  int nblocks)
161 {
162         int ret;
163
164         /*
165          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
166          * moment, get_block can be called only for blocks inside i_size since
167          * page cache has been already dropped and writes are blocked by
168          * i_mutex. So we can safely drop the i_data_sem here.
169          */
170         BUG_ON(EXT4_JOURNAL(inode) == NULL);
171         jbd_debug(2, "restarting handle %p\n", handle);
172         up_write(&EXT4_I(inode)->i_data_sem);
173         ret = ext4_journal_restart(handle, nblocks);
174         down_write(&EXT4_I(inode)->i_data_sem);
175         ext4_discard_preallocations(inode);
176
177         return ret;
178 }
179
180 /*
181  * Called at the last iput() if i_nlink is zero.
182  */
183 void ext4_evict_inode(struct inode *inode)
184 {
185         handle_t *handle;
186         int err;
187
188         trace_ext4_evict_inode(inode);
189
190         if (inode->i_nlink) {
191                 /*
192                  * When journalling data dirty buffers are tracked only in the
193                  * journal. So although mm thinks everything is clean and
194                  * ready for reaping the inode might still have some pages to
195                  * write in the running transaction or waiting to be
196                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
197                  * (via truncate_inode_pages()) to discard these buffers can
198                  * cause data loss. Also even if we did not discard these
199                  * buffers, we would have no way to find them after the inode
200                  * is reaped and thus user could see stale data if he tries to
201                  * read them before the transaction is checkpointed. So be
202                  * careful and force everything to disk here... We use
203                  * ei->i_datasync_tid to store the newest transaction
204                  * containing inode's data.
205                  *
206                  * Note that directories do not have this problem because they
207                  * don't use page cache.
208                  */
209                 if (ext4_should_journal_data(inode) &&
210                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
211                     inode->i_ino != EXT4_JOURNAL_INO) {
212                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
213                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
214
215                         jbd2_complete_transaction(journal, commit_tid);
216                         filemap_write_and_wait(&inode->i_data);
217                 }
218                 truncate_inode_pages_final(&inode->i_data);
219
220                 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
221                 goto no_delete;
222         }
223
224         if (is_bad_inode(inode))
225                 goto no_delete;
226         dquot_initialize(inode);
227
228         if (ext4_should_order_data(inode))
229                 ext4_begin_ordered_truncate(inode, 0);
230         truncate_inode_pages_final(&inode->i_data);
231
232         WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
233
234         /*
235          * Protect us against freezing - iput() caller didn't have to have any
236          * protection against it
237          */
238         sb_start_intwrite(inode->i_sb);
239         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
240                                     ext4_blocks_for_truncate(inode)+3);
241         if (IS_ERR(handle)) {
242                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
243                 /*
244                  * If we're going to skip the normal cleanup, we still need to
245                  * make sure that the in-core orphan linked list is properly
246                  * cleaned up.
247                  */
248                 ext4_orphan_del(NULL, inode);
249                 sb_end_intwrite(inode->i_sb);
250                 goto no_delete;
251         }
252
253         if (IS_SYNC(inode))
254                 ext4_handle_sync(handle);
255         inode->i_size = 0;
256         err = ext4_mark_inode_dirty(handle, inode);
257         if (err) {
258                 ext4_warning(inode->i_sb,
259                              "couldn't mark inode dirty (err %d)", err);
260                 goto stop_handle;
261         }
262         if (inode->i_blocks)
263                 ext4_truncate(inode);
264
265         /*
266          * ext4_ext_truncate() doesn't reserve any slop when it
267          * restarts journal transactions; therefore there may not be
268          * enough credits left in the handle to remove the inode from
269          * the orphan list and set the dtime field.
270          */
271         if (!ext4_handle_has_enough_credits(handle, 3)) {
272                 err = ext4_journal_extend(handle, 3);
273                 if (err > 0)
274                         err = ext4_journal_restart(handle, 3);
275                 if (err != 0) {
276                         ext4_warning(inode->i_sb,
277                                      "couldn't extend journal (err %d)", err);
278                 stop_handle:
279                         ext4_journal_stop(handle);
280                         ext4_orphan_del(NULL, inode);
281                         sb_end_intwrite(inode->i_sb);
282                         goto no_delete;
283                 }
284         }
285
286         /*
287          * Kill off the orphan record which ext4_truncate created.
288          * AKPM: I think this can be inside the above `if'.
289          * Note that ext4_orphan_del() has to be able to cope with the
290          * deletion of a non-existent orphan - this is because we don't
291          * know if ext4_truncate() actually created an orphan record.
292          * (Well, we could do this if we need to, but heck - it works)
293          */
294         ext4_orphan_del(handle, inode);
295         EXT4_I(inode)->i_dtime  = get_seconds();
296
297         /*
298          * One subtle ordering requirement: if anything has gone wrong
299          * (transaction abort, IO errors, whatever), then we can still
300          * do these next steps (the fs will already have been marked as
301          * having errors), but we can't free the inode if the mark_dirty
302          * fails.
303          */
304         if (ext4_mark_inode_dirty(handle, inode))
305                 /* If that failed, just do the required in-core inode clear. */
306                 ext4_clear_inode(inode);
307         else
308                 ext4_free_inode(handle, inode);
309         ext4_journal_stop(handle);
310         sb_end_intwrite(inode->i_sb);
311         return;
312 no_delete:
313         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
314 }
315
316 #ifdef CONFIG_QUOTA
317 qsize_t *ext4_get_reserved_space(struct inode *inode)
318 {
319         return &EXT4_I(inode)->i_reserved_quota;
320 }
321 #endif
322
323 /*
324  * Called with i_data_sem down, which is important since we can call
325  * ext4_discard_preallocations() from here.
326  */
327 void ext4_da_update_reserve_space(struct inode *inode,
328                                         int used, int quota_claim)
329 {
330         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
331         struct ext4_inode_info *ei = EXT4_I(inode);
332
333         spin_lock(&ei->i_block_reservation_lock);
334         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
335         if (unlikely(used > ei->i_reserved_data_blocks)) {
336                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
337                          "with only %d reserved data blocks",
338                          __func__, inode->i_ino, used,
339                          ei->i_reserved_data_blocks);
340                 WARN_ON(1);
341                 used = ei->i_reserved_data_blocks;
342         }
343
344         /* Update per-inode reservations */
345         ei->i_reserved_data_blocks -= used;
346         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
347
348         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
349
350         /* Update quota subsystem for data blocks */
351         if (quota_claim)
352                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
353         else {
354                 /*
355                  * We did fallocate with an offset that is already delayed
356                  * allocated. So on delayed allocated writeback we should
357                  * not re-claim the quota for fallocated blocks.
358                  */
359                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
360         }
361
362         /*
363          * If we have done all the pending block allocations and if
364          * there aren't any writers on the inode, we can discard the
365          * inode's preallocations.
366          */
367         if ((ei->i_reserved_data_blocks == 0) &&
368             (atomic_read(&inode->i_writecount) == 0))
369                 ext4_discard_preallocations(inode);
370 }
371
372 static int __check_block_validity(struct inode *inode, const char *func,
373                                 unsigned int line,
374                                 struct ext4_map_blocks *map)
375 {
376         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
377                                    map->m_len)) {
378                 ext4_error_inode(inode, func, line, map->m_pblk,
379                                  "lblock %lu mapped to illegal pblock "
380                                  "(length %d)", (unsigned long) map->m_lblk,
381                                  map->m_len);
382                 return -EIO;
383         }
384         return 0;
385 }
386
387 #define check_block_validity(inode, map)        \
388         __check_block_validity((inode), __func__, __LINE__, (map))
389
390 #ifdef ES_AGGRESSIVE_TEST
391 static void ext4_map_blocks_es_recheck(handle_t *handle,
392                                        struct inode *inode,
393                                        struct ext4_map_blocks *es_map,
394                                        struct ext4_map_blocks *map,
395                                        int flags)
396 {
397         int retval;
398
399         map->m_flags = 0;
400         /*
401          * There is a race window that the result is not the same.
402          * e.g. xfstests #223 when dioread_nolock enables.  The reason
403          * is that we lookup a block mapping in extent status tree with
404          * out taking i_data_sem.  So at the time the unwritten extent
405          * could be converted.
406          */
407         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
408                 down_read(&EXT4_I(inode)->i_data_sem);
409         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
410                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
411                                              EXT4_GET_BLOCKS_KEEP_SIZE);
412         } else {
413                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
414                                              EXT4_GET_BLOCKS_KEEP_SIZE);
415         }
416         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
417                 up_read((&EXT4_I(inode)->i_data_sem));
418
419         /*
420          * We don't check m_len because extent will be collpased in status
421          * tree.  So the m_len might not equal.
422          */
423         if (es_map->m_lblk != map->m_lblk ||
424             es_map->m_flags != map->m_flags ||
425             es_map->m_pblk != map->m_pblk) {
426                 printk("ES cache assertion failed for inode: %lu "
427                        "es_cached ex [%d/%d/%llu/%x] != "
428                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
429                        inode->i_ino, es_map->m_lblk, es_map->m_len,
430                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
431                        map->m_len, map->m_pblk, map->m_flags,
432                        retval, flags);
433         }
434 }
435 #endif /* ES_AGGRESSIVE_TEST */
436
437 /*
438  * The ext4_map_blocks() function tries to look up the requested blocks,
439  * and returns if the blocks are already mapped.
440  *
441  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
442  * and store the allocated blocks in the result buffer head and mark it
443  * mapped.
444  *
445  * If file type is extents based, it will call ext4_ext_map_blocks(),
446  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
447  * based files
448  *
449  * On success, it returns the number of blocks being mapped or allocated.
450  * if create==0 and the blocks are pre-allocated and unwritten block,
451  * the result buffer head is unmapped. If the create ==1, it will make sure
452  * the buffer head is mapped.
453  *
454  * It returns 0 if plain look up failed (blocks have not been allocated), in
455  * that case, buffer head is unmapped
456  *
457  * It returns the error in case of allocation failure.
458  */
459 int ext4_map_blocks(handle_t *handle, struct inode *inode,
460                     struct ext4_map_blocks *map, int flags)
461 {
462         struct extent_status es;
463         int retval;
464         int ret = 0;
465 #ifdef ES_AGGRESSIVE_TEST
466         struct ext4_map_blocks orig_map;
467
468         memcpy(&orig_map, map, sizeof(*map));
469 #endif
470
471         map->m_flags = 0;
472         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
473                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
474                   (unsigned long) map->m_lblk);
475
476         /*
477          * ext4_map_blocks returns an int, and m_len is an unsigned int
478          */
479         if (unlikely(map->m_len > INT_MAX))
480                 map->m_len = INT_MAX;
481
482         /* We can handle the block number less than EXT_MAX_BLOCKS */
483         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
484                 return -EIO;
485
486         /* Lookup extent status tree firstly */
487         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
488                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
489                         map->m_pblk = ext4_es_pblock(&es) +
490                                         map->m_lblk - es.es_lblk;
491                         map->m_flags |= ext4_es_is_written(&es) ?
492                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
493                         retval = es.es_len - (map->m_lblk - es.es_lblk);
494                         if (retval > map->m_len)
495                                 retval = map->m_len;
496                         map->m_len = retval;
497                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
498                         retval = 0;
499                 } else {
500                         BUG_ON(1);
501                 }
502 #ifdef ES_AGGRESSIVE_TEST
503                 ext4_map_blocks_es_recheck(handle, inode, map,
504                                            &orig_map, flags);
505 #endif
506                 goto found;
507         }
508
509         /*
510          * Try to see if we can get the block without requesting a new
511          * file system block.
512          */
513         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
514                 down_read(&EXT4_I(inode)->i_data_sem);
515         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
516                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
517                                              EXT4_GET_BLOCKS_KEEP_SIZE);
518         } else {
519                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
520                                              EXT4_GET_BLOCKS_KEEP_SIZE);
521         }
522         if (retval > 0) {
523                 unsigned int status;
524
525                 if (unlikely(retval != map->m_len)) {
526                         ext4_warning(inode->i_sb,
527                                      "ES len assertion failed for inode "
528                                      "%lu: retval %d != map->m_len %d",
529                                      inode->i_ino, retval, map->m_len);
530                         WARN_ON(1);
531                 }
532
533                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
534                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
535                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
536                     ext4_find_delalloc_range(inode, map->m_lblk,
537                                              map->m_lblk + map->m_len - 1))
538                         status |= EXTENT_STATUS_DELAYED;
539                 ret = ext4_es_insert_extent(inode, map->m_lblk,
540                                             map->m_len, map->m_pblk, status);
541                 if (ret < 0)
542                         retval = ret;
543         }
544         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
545                 up_read((&EXT4_I(inode)->i_data_sem));
546
547 found:
548         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
549                 ret = check_block_validity(inode, map);
550                 if (ret != 0)
551                         return ret;
552         }
553
554         /* If it is only a block(s) look up */
555         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
556                 return retval;
557
558         /*
559          * Returns if the blocks have already allocated
560          *
561          * Note that if blocks have been preallocated
562          * ext4_ext_get_block() returns the create = 0
563          * with buffer head unmapped.
564          */
565         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
566                 /*
567                  * If we need to convert extent to unwritten
568                  * we continue and do the actual work in
569                  * ext4_ext_map_blocks()
570                  */
571                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
572                         return retval;
573
574         /*
575          * Here we clear m_flags because after allocating an new extent,
576          * it will be set again.
577          */
578         map->m_flags &= ~EXT4_MAP_FLAGS;
579
580         /*
581          * New blocks allocate and/or writing to unwritten extent
582          * will possibly result in updating i_data, so we take
583          * the write lock of i_data_sem, and call get_block()
584          * with create == 1 flag.
585          */
586         down_write(&EXT4_I(inode)->i_data_sem);
587
588         /*
589          * We need to check for EXT4 here because migrate
590          * could have changed the inode type in between
591          */
592         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
593                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
594         } else {
595                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
596
597                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
598                         /*
599                          * We allocated new blocks which will result in
600                          * i_data's format changing.  Force the migrate
601                          * to fail by clearing migrate flags
602                          */
603                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
604                 }
605
606                 /*
607                  * Update reserved blocks/metadata blocks after successful
608                  * block allocation which had been deferred till now. We don't
609                  * support fallocate for non extent files. So we can update
610                  * reserve space here.
611                  */
612                 if ((retval > 0) &&
613                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
614                         ext4_da_update_reserve_space(inode, retval, 1);
615         }
616
617         if (retval > 0) {
618                 unsigned int status;
619
620                 if (unlikely(retval != map->m_len)) {
621                         ext4_warning(inode->i_sb,
622                                      "ES len assertion failed for inode "
623                                      "%lu: retval %d != map->m_len %d",
624                                      inode->i_ino, retval, map->m_len);
625                         WARN_ON(1);
626                 }
627
628                 /*
629                  * If the extent has been zeroed out, we don't need to update
630                  * extent status tree.
631                  */
632                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
633                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
634                         if (ext4_es_is_written(&es))
635                                 goto has_zeroout;
636                 }
637                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
638                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
639                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
640                     ext4_find_delalloc_range(inode, map->m_lblk,
641                                              map->m_lblk + map->m_len - 1))
642                         status |= EXTENT_STATUS_DELAYED;
643                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
644                                             map->m_pblk, status);
645                 if (ret < 0)
646                         retval = ret;
647         }
648
649 has_zeroout:
650         up_write((&EXT4_I(inode)->i_data_sem));
651         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
652                 ret = check_block_validity(inode, map);
653                 if (ret != 0)
654                         return ret;
655         }
656         return retval;
657 }
658
659 static void ext4_end_io_unwritten(struct buffer_head *bh, int uptodate)
660 {
661         struct inode *inode = bh->b_assoc_map->host;
662         /* XXX: breaks on 32-bit > 16GB. Is that even supported? */
663         loff_t offset = (loff_t)(uintptr_t)bh->b_private << inode->i_blkbits;
664         int err;
665         if (!uptodate)
666                 return;
667         WARN_ON(!buffer_unwritten(bh));
668         err = ext4_convert_unwritten_extents(NULL, inode, offset, bh->b_size);
669 }
670
671 /* Maximum number of blocks we map for direct IO at once. */
672 #define DIO_MAX_BLOCKS 4096
673
674 static int _ext4_get_block(struct inode *inode, sector_t iblock,
675                            struct buffer_head *bh, int flags)
676 {
677         handle_t *handle = ext4_journal_current_handle();
678         struct ext4_map_blocks map;
679         int ret = 0, started = 0;
680         int dio_credits;
681
682         if (ext4_has_inline_data(inode))
683                 return -ERANGE;
684
685         map.m_lblk = iblock;
686         map.m_len = bh->b_size >> inode->i_blkbits;
687
688         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
689                 /* Direct IO write... */
690                 if (map.m_len > DIO_MAX_BLOCKS)
691                         map.m_len = DIO_MAX_BLOCKS;
692                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
693                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
694                                             dio_credits);
695                 if (IS_ERR(handle)) {
696                         ret = PTR_ERR(handle);
697                         return ret;
698                 }
699                 started = 1;
700         }
701
702         ret = ext4_map_blocks(handle, inode, &map, flags);
703         if (ret > 0) {
704                 ext4_io_end_t *io_end = ext4_inode_aio(inode);
705
706                 map_bh(bh, inode->i_sb, map.m_pblk);
707                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
708                 if (IS_DAX(inode) && buffer_unwritten(bh) && !io_end) {
709                         bh->b_assoc_map = inode->i_mapping;
710                         bh->b_private = (void *)(unsigned long)iblock;
711                         bh->b_end_io = ext4_end_io_unwritten;
712                 }
713                 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
714                         set_buffer_defer_completion(bh);
715                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
716                 ret = 0;
717         }
718         if (started)
719                 ext4_journal_stop(handle);
720         return ret;
721 }
722
723 int ext4_get_block(struct inode *inode, sector_t iblock,
724                    struct buffer_head *bh, int create)
725 {
726         return _ext4_get_block(inode, iblock, bh,
727                                create ? EXT4_GET_BLOCKS_CREATE : 0);
728 }
729
730 /*
731  * `handle' can be NULL if create is zero
732  */
733 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
734                                 ext4_lblk_t block, int create)
735 {
736         struct ext4_map_blocks map;
737         struct buffer_head *bh;
738         int err;
739
740         J_ASSERT(handle != NULL || create == 0);
741
742         map.m_lblk = block;
743         map.m_len = 1;
744         err = ext4_map_blocks(handle, inode, &map,
745                               create ? EXT4_GET_BLOCKS_CREATE : 0);
746
747         if (err == 0)
748                 return create ? ERR_PTR(-ENOSPC) : NULL;
749         if (err < 0)
750                 return ERR_PTR(err);
751
752         bh = sb_getblk(inode->i_sb, map.m_pblk);
753         if (unlikely(!bh))
754                 return ERR_PTR(-ENOMEM);
755         if (map.m_flags & EXT4_MAP_NEW) {
756                 J_ASSERT(create != 0);
757                 J_ASSERT(handle != NULL);
758
759                 /*
760                  * Now that we do not always journal data, we should
761                  * keep in mind whether this should always journal the
762                  * new buffer as metadata.  For now, regular file
763                  * writes use ext4_get_block instead, so it's not a
764                  * problem.
765                  */
766                 lock_buffer(bh);
767                 BUFFER_TRACE(bh, "call get_create_access");
768                 err = ext4_journal_get_create_access(handle, bh);
769                 if (unlikely(err)) {
770                         unlock_buffer(bh);
771                         goto errout;
772                 }
773                 if (!buffer_uptodate(bh)) {
774                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
775                         set_buffer_uptodate(bh);
776                 }
777                 unlock_buffer(bh);
778                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
779                 err = ext4_handle_dirty_metadata(handle, inode, bh);
780                 if (unlikely(err))
781                         goto errout;
782         } else
783                 BUFFER_TRACE(bh, "not a new buffer");
784         return bh;
785 errout:
786         brelse(bh);
787         return ERR_PTR(err);
788 }
789
790 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
791                                ext4_lblk_t block, int create)
792 {
793         struct buffer_head *bh;
794
795         bh = ext4_getblk(handle, inode, block, create);
796         if (IS_ERR(bh))
797                 return bh;
798         if (!bh || buffer_uptodate(bh))
799                 return bh;
800         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
801         wait_on_buffer(bh);
802         if (buffer_uptodate(bh))
803                 return bh;
804         put_bh(bh);
805         return ERR_PTR(-EIO);
806 }
807
808 int ext4_walk_page_buffers(handle_t *handle,
809                            struct buffer_head *head,
810                            unsigned from,
811                            unsigned to,
812                            int *partial,
813                            int (*fn)(handle_t *handle,
814                                      struct buffer_head *bh))
815 {
816         struct buffer_head *bh;
817         unsigned block_start, block_end;
818         unsigned blocksize = head->b_size;
819         int err, ret = 0;
820         struct buffer_head *next;
821
822         for (bh = head, block_start = 0;
823              ret == 0 && (bh != head || !block_start);
824              block_start = block_end, bh = next) {
825                 next = bh->b_this_page;
826                 block_end = block_start + blocksize;
827                 if (block_end <= from || block_start >= to) {
828                         if (partial && !buffer_uptodate(bh))
829                                 *partial = 1;
830                         continue;
831                 }
832                 err = (*fn)(handle, bh);
833                 if (!ret)
834                         ret = err;
835         }
836         return ret;
837 }
838
839 /*
840  * To preserve ordering, it is essential that the hole instantiation and
841  * the data write be encapsulated in a single transaction.  We cannot
842  * close off a transaction and start a new one between the ext4_get_block()
843  * and the commit_write().  So doing the jbd2_journal_start at the start of
844  * prepare_write() is the right place.
845  *
846  * Also, this function can nest inside ext4_writepage().  In that case, we
847  * *know* that ext4_writepage() has generated enough buffer credits to do the
848  * whole page.  So we won't block on the journal in that case, which is good,
849  * because the caller may be PF_MEMALLOC.
850  *
851  * By accident, ext4 can be reentered when a transaction is open via
852  * quota file writes.  If we were to commit the transaction while thus
853  * reentered, there can be a deadlock - we would be holding a quota
854  * lock, and the commit would never complete if another thread had a
855  * transaction open and was blocking on the quota lock - a ranking
856  * violation.
857  *
858  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
859  * will _not_ run commit under these circumstances because handle->h_ref
860  * is elevated.  We'll still have enough credits for the tiny quotafile
861  * write.
862  */
863 int do_journal_get_write_access(handle_t *handle,
864                                 struct buffer_head *bh)
865 {
866         int dirty = buffer_dirty(bh);
867         int ret;
868
869         if (!buffer_mapped(bh) || buffer_freed(bh))
870                 return 0;
871         /*
872          * __block_write_begin() could have dirtied some buffers. Clean
873          * the dirty bit as jbd2_journal_get_write_access() could complain
874          * otherwise about fs integrity issues. Setting of the dirty bit
875          * by __block_write_begin() isn't a real problem here as we clear
876          * the bit before releasing a page lock and thus writeback cannot
877          * ever write the buffer.
878          */
879         if (dirty)
880                 clear_buffer_dirty(bh);
881         BUFFER_TRACE(bh, "get write access");
882         ret = ext4_journal_get_write_access(handle, bh);
883         if (!ret && dirty)
884                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
885         return ret;
886 }
887
888 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
889                    struct buffer_head *bh_result, int create);
890 static int ext4_write_begin(struct file *file, struct address_space *mapping,
891                             loff_t pos, unsigned len, unsigned flags,
892                             struct page **pagep, void **fsdata)
893 {
894         struct inode *inode = mapping->host;
895         int ret, needed_blocks;
896         handle_t *handle;
897         int retries = 0;
898         struct page *page;
899         pgoff_t index;
900         unsigned from, to;
901
902         trace_ext4_write_begin(inode, pos, len, flags);
903         /*
904          * Reserve one block more for addition to orphan list in case
905          * we allocate blocks but write fails for some reason
906          */
907         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
908         index = pos >> PAGE_CACHE_SHIFT;
909         from = pos & (PAGE_CACHE_SIZE - 1);
910         to = from + len;
911
912         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
913                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
914                                                     flags, pagep);
915                 if (ret < 0)
916                         return ret;
917                 if (ret == 1)
918                         return 0;
919         }
920
921         /*
922          * grab_cache_page_write_begin() can take a long time if the
923          * system is thrashing due to memory pressure, or if the page
924          * is being written back.  So grab it first before we start
925          * the transaction handle.  This also allows us to allocate
926          * the page (if needed) without using GFP_NOFS.
927          */
928 retry_grab:
929         page = grab_cache_page_write_begin(mapping, index, flags);
930         if (!page)
931                 return -ENOMEM;
932         unlock_page(page);
933
934 retry_journal:
935         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
936         if (IS_ERR(handle)) {
937                 page_cache_release(page);
938                 return PTR_ERR(handle);
939         }
940
941         lock_page(page);
942         if (page->mapping != mapping) {
943                 /* The page got truncated from under us */
944                 unlock_page(page);
945                 page_cache_release(page);
946                 ext4_journal_stop(handle);
947                 goto retry_grab;
948         }
949         /* In case writeback began while the page was unlocked */
950         wait_for_stable_page(page);
951
952         if (ext4_should_dioread_nolock(inode))
953                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
954         else
955                 ret = __block_write_begin(page, pos, len, ext4_get_block);
956
957         if (!ret && ext4_should_journal_data(inode)) {
958                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
959                                              from, to, NULL,
960                                              do_journal_get_write_access);
961         }
962
963         if (ret) {
964                 unlock_page(page);
965                 /*
966                  * __block_write_begin may have instantiated a few blocks
967                  * outside i_size.  Trim these off again. Don't need
968                  * i_size_read because we hold i_mutex.
969                  *
970                  * Add inode to orphan list in case we crash before
971                  * truncate finishes
972                  */
973                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
974                         ext4_orphan_add(handle, inode);
975
976                 ext4_journal_stop(handle);
977                 if (pos + len > inode->i_size) {
978                         ext4_truncate_failed_write(inode);
979                         /*
980                          * If truncate failed early the inode might
981                          * still be on the orphan list; we need to
982                          * make sure the inode is removed from the
983                          * orphan list in that case.
984                          */
985                         if (inode->i_nlink)
986                                 ext4_orphan_del(NULL, inode);
987                 }
988
989                 if (ret == -ENOSPC &&
990                     ext4_should_retry_alloc(inode->i_sb, &retries))
991                         goto retry_journal;
992                 page_cache_release(page);
993                 return ret;
994         }
995         *pagep = page;
996         return ret;
997 }
998
999 /* For write_end() in data=journal mode */
1000 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1001 {
1002         int ret;
1003         if (!buffer_mapped(bh) || buffer_freed(bh))
1004                 return 0;
1005         set_buffer_uptodate(bh);
1006         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1007         clear_buffer_meta(bh);
1008         clear_buffer_prio(bh);
1009         return ret;
1010 }
1011
1012 /*
1013  * We need to pick up the new inode size which generic_commit_write gave us
1014  * `file' can be NULL - eg, when called from page_symlink().
1015  *
1016  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1017  * buffers are managed internally.
1018  */
1019 static int ext4_write_end(struct file *file,
1020                           struct address_space *mapping,
1021                           loff_t pos, unsigned len, unsigned copied,
1022                           struct page *page, void *fsdata)
1023 {
1024         handle_t *handle = ext4_journal_current_handle();
1025         struct inode *inode = mapping->host;
1026         loff_t old_size = inode->i_size;
1027         int ret = 0, ret2;
1028         int i_size_changed = 0;
1029
1030         trace_ext4_write_end(inode, pos, len, copied);
1031         if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1032                 ret = ext4_jbd2_file_inode(handle, inode);
1033                 if (ret) {
1034                         unlock_page(page);
1035                         page_cache_release(page);
1036                         goto errout;
1037                 }
1038         }
1039
1040         if (ext4_has_inline_data(inode)) {
1041                 ret = ext4_write_inline_data_end(inode, pos, len,
1042                                                  copied, page);
1043                 if (ret < 0)
1044                         goto errout;
1045                 copied = ret;
1046         } else
1047                 copied = block_write_end(file, mapping, pos,
1048                                          len, copied, page, fsdata);
1049         /*
1050          * it's important to update i_size while still holding page lock:
1051          * page writeout could otherwise come in and zero beyond i_size.
1052          */
1053         i_size_changed = ext4_update_inode_size(inode, pos + copied);
1054         unlock_page(page);
1055         page_cache_release(page);
1056
1057         if (old_size < pos)
1058                 pagecache_isize_extended(inode, old_size, pos);
1059         /*
1060          * Don't mark the inode dirty under page lock. First, it unnecessarily
1061          * makes the holding time of page lock longer. Second, it forces lock
1062          * ordering of page lock and transaction start for journaling
1063          * filesystems.
1064          */
1065         if (i_size_changed)
1066                 ext4_mark_inode_dirty(handle, inode);
1067
1068         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1069                 /* if we have allocated more blocks and copied
1070                  * less. We will have blocks allocated outside
1071                  * inode->i_size. So truncate them
1072                  */
1073                 ext4_orphan_add(handle, inode);
1074 errout:
1075         ret2 = ext4_journal_stop(handle);
1076         if (!ret)
1077                 ret = ret2;
1078
1079         if (pos + len > inode->i_size) {
1080                 ext4_truncate_failed_write(inode);
1081                 /*
1082                  * If truncate failed early the inode might still be
1083                  * on the orphan list; we need to make sure the inode
1084                  * is removed from the orphan list in that case.
1085                  */
1086                 if (inode->i_nlink)
1087                         ext4_orphan_del(NULL, inode);
1088         }
1089
1090         return ret ? ret : copied;
1091 }
1092
1093 static int ext4_journalled_write_end(struct file *file,
1094                                      struct address_space *mapping,
1095                                      loff_t pos, unsigned len, unsigned copied,
1096                                      struct page *page, void *fsdata)
1097 {
1098         handle_t *handle = ext4_journal_current_handle();
1099         struct inode *inode = mapping->host;
1100         loff_t old_size = inode->i_size;
1101         int ret = 0, ret2;
1102         int partial = 0;
1103         unsigned from, to;
1104         int size_changed = 0;
1105
1106         trace_ext4_journalled_write_end(inode, pos, len, copied);
1107         from = pos & (PAGE_CACHE_SIZE - 1);
1108         to = from + len;
1109
1110         BUG_ON(!ext4_handle_valid(handle));
1111
1112         if (ext4_has_inline_data(inode))
1113                 copied = ext4_write_inline_data_end(inode, pos, len,
1114                                                     copied, page);
1115         else {
1116                 if (copied < len) {
1117                         if (!PageUptodate(page))
1118                                 copied = 0;
1119                         page_zero_new_buffers(page, from+copied, to);
1120                 }
1121
1122                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1123                                              to, &partial, write_end_fn);
1124                 if (!partial)
1125                         SetPageUptodate(page);
1126         }
1127         size_changed = ext4_update_inode_size(inode, pos + copied);
1128         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1129         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1130         unlock_page(page);
1131         page_cache_release(page);
1132
1133         if (old_size < pos)
1134                 pagecache_isize_extended(inode, old_size, pos);
1135
1136         if (size_changed) {
1137                 ret2 = ext4_mark_inode_dirty(handle, inode);
1138                 if (!ret)
1139                         ret = ret2;
1140         }
1141
1142         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1143                 /* if we have allocated more blocks and copied
1144                  * less. We will have blocks allocated outside
1145                  * inode->i_size. So truncate them
1146                  */
1147                 ext4_orphan_add(handle, inode);
1148
1149         ret2 = ext4_journal_stop(handle);
1150         if (!ret)
1151                 ret = ret2;
1152         if (pos + len > inode->i_size) {
1153                 ext4_truncate_failed_write(inode);
1154                 /*
1155                  * If truncate failed early the inode might still be
1156                  * on the orphan list; we need to make sure the inode
1157                  * is removed from the orphan list in that case.
1158                  */
1159                 if (inode->i_nlink)
1160                         ext4_orphan_del(NULL, inode);
1161         }
1162
1163         return ret ? ret : copied;
1164 }
1165
1166 /*
1167  * Reserve a single cluster located at lblock
1168  */
1169 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1170 {
1171         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1172         struct ext4_inode_info *ei = EXT4_I(inode);
1173         unsigned int md_needed;
1174         int ret;
1175
1176         /*
1177          * We will charge metadata quota at writeout time; this saves
1178          * us from metadata over-estimation, though we may go over by
1179          * a small amount in the end.  Here we just reserve for data.
1180          */
1181         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1182         if (ret)
1183                 return ret;
1184
1185         /*
1186          * recalculate the amount of metadata blocks to reserve
1187          * in order to allocate nrblocks
1188          * worse case is one extent per block
1189          */
1190         spin_lock(&ei->i_block_reservation_lock);
1191         /*
1192          * ext4_calc_metadata_amount() has side effects, which we have
1193          * to be prepared undo if we fail to claim space.
1194          */
1195         md_needed = 0;
1196         trace_ext4_da_reserve_space(inode, 0);
1197
1198         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1199                 spin_unlock(&ei->i_block_reservation_lock);
1200                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1201                 return -ENOSPC;
1202         }
1203         ei->i_reserved_data_blocks++;
1204         spin_unlock(&ei->i_block_reservation_lock);
1205
1206         return 0;       /* success */
1207 }
1208
1209 static void ext4_da_release_space(struct inode *inode, int to_free)
1210 {
1211         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1212         struct ext4_inode_info *ei = EXT4_I(inode);
1213
1214         if (!to_free)
1215                 return;         /* Nothing to release, exit */
1216
1217         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1218
1219         trace_ext4_da_release_space(inode, to_free);
1220         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1221                 /*
1222                  * if there aren't enough reserved blocks, then the
1223                  * counter is messed up somewhere.  Since this
1224                  * function is called from invalidate page, it's
1225                  * harmless to return without any action.
1226                  */
1227                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1228                          "ino %lu, to_free %d with only %d reserved "
1229                          "data blocks", inode->i_ino, to_free,
1230                          ei->i_reserved_data_blocks);
1231                 WARN_ON(1);
1232                 to_free = ei->i_reserved_data_blocks;
1233         }
1234         ei->i_reserved_data_blocks -= to_free;
1235
1236         /* update fs dirty data blocks counter */
1237         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1238
1239         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1240
1241         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1242 }
1243
1244 static void ext4_da_page_release_reservation(struct page *page,
1245                                              unsigned int offset,
1246                                              unsigned int length)
1247 {
1248         int to_release = 0;
1249         struct buffer_head *head, *bh;
1250         unsigned int curr_off = 0;
1251         struct inode *inode = page->mapping->host;
1252         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1253         unsigned int stop = offset + length;
1254         int num_clusters;
1255         ext4_fsblk_t lblk;
1256
1257         BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1258
1259         head = page_buffers(page);
1260         bh = head;
1261         do {
1262                 unsigned int next_off = curr_off + bh->b_size;
1263
1264                 if (next_off > stop)
1265                         break;
1266
1267                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1268                         to_release++;
1269                         clear_buffer_delay(bh);
1270                 }
1271                 curr_off = next_off;
1272         } while ((bh = bh->b_this_page) != head);
1273
1274         if (to_release) {
1275                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1276                 ext4_es_remove_extent(inode, lblk, to_release);
1277         }
1278
1279         /* If we have released all the blocks belonging to a cluster, then we
1280          * need to release the reserved space for that cluster. */
1281         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1282         while (num_clusters > 0) {
1283                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1284                         ((num_clusters - 1) << sbi->s_cluster_bits);
1285                 if (sbi->s_cluster_ratio == 1 ||
1286                     !ext4_find_delalloc_cluster(inode, lblk))
1287                         ext4_da_release_space(inode, 1);
1288
1289                 num_clusters--;
1290         }
1291 }
1292
1293 /*
1294  * Delayed allocation stuff
1295  */
1296
1297 struct mpage_da_data {
1298         struct inode *inode;
1299         struct writeback_control *wbc;
1300
1301         pgoff_t first_page;     /* The first page to write */
1302         pgoff_t next_page;      /* Current page to examine */
1303         pgoff_t last_page;      /* Last page to examine */
1304         /*
1305          * Extent to map - this can be after first_page because that can be
1306          * fully mapped. We somewhat abuse m_flags to store whether the extent
1307          * is delalloc or unwritten.
1308          */
1309         struct ext4_map_blocks map;
1310         struct ext4_io_submit io_submit;        /* IO submission data */
1311 };
1312
1313 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1314                                        bool invalidate)
1315 {
1316         int nr_pages, i;
1317         pgoff_t index, end;
1318         struct pagevec pvec;
1319         struct inode *inode = mpd->inode;
1320         struct address_space *mapping = inode->i_mapping;
1321
1322         /* This is necessary when next_page == 0. */
1323         if (mpd->first_page >= mpd->next_page)
1324                 return;
1325
1326         index = mpd->first_page;
1327         end   = mpd->next_page - 1;
1328         if (invalidate) {
1329                 ext4_lblk_t start, last;
1330                 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1331                 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1332                 ext4_es_remove_extent(inode, start, last - start + 1);
1333         }
1334
1335         pagevec_init(&pvec, 0);
1336         while (index <= end) {
1337                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1338                 if (nr_pages == 0)
1339                         break;
1340                 for (i = 0; i < nr_pages; i++) {
1341                         struct page *page = pvec.pages[i];
1342                         if (page->index > end)
1343                                 break;
1344                         BUG_ON(!PageLocked(page));
1345                         BUG_ON(PageWriteback(page));
1346                         if (invalidate) {
1347                                 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1348                                 ClearPageUptodate(page);
1349                         }
1350                         unlock_page(page);
1351                 }
1352                 index = pvec.pages[nr_pages - 1]->index + 1;
1353                 pagevec_release(&pvec);
1354         }
1355 }
1356
1357 static void ext4_print_free_blocks(struct inode *inode)
1358 {
1359         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1360         struct super_block *sb = inode->i_sb;
1361         struct ext4_inode_info *ei = EXT4_I(inode);
1362
1363         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1364                EXT4_C2B(EXT4_SB(inode->i_sb),
1365                         ext4_count_free_clusters(sb)));
1366         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1367         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1368                (long long) EXT4_C2B(EXT4_SB(sb),
1369                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1370         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1371                (long long) EXT4_C2B(EXT4_SB(sb),
1372                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1373         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1374         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1375                  ei->i_reserved_data_blocks);
1376         return;
1377 }
1378
1379 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1380 {
1381         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1382 }
1383
1384 /*
1385  * This function is grabs code from the very beginning of
1386  * ext4_map_blocks, but assumes that the caller is from delayed write
1387  * time. This function looks up the requested blocks and sets the
1388  * buffer delay bit under the protection of i_data_sem.
1389  */
1390 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1391                               struct ext4_map_blocks *map,
1392                               struct buffer_head *bh)
1393 {
1394         struct extent_status es;
1395         int retval;
1396         sector_t invalid_block = ~((sector_t) 0xffff);
1397 #ifdef ES_AGGRESSIVE_TEST
1398         struct ext4_map_blocks orig_map;
1399
1400         memcpy(&orig_map, map, sizeof(*map));
1401 #endif
1402
1403         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1404                 invalid_block = ~0;
1405
1406         map->m_flags = 0;
1407         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1408                   "logical block %lu\n", inode->i_ino, map->m_len,
1409                   (unsigned long) map->m_lblk);
1410
1411         /* Lookup extent status tree firstly */
1412         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1413                 if (ext4_es_is_hole(&es)) {
1414                         retval = 0;
1415                         down_read(&EXT4_I(inode)->i_data_sem);
1416                         goto add_delayed;
1417                 }
1418
1419                 /*
1420                  * Delayed extent could be allocated by fallocate.
1421                  * So we need to check it.
1422                  */
1423                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1424                         map_bh(bh, inode->i_sb, invalid_block);
1425                         set_buffer_new(bh);
1426                         set_buffer_delay(bh);
1427                         return 0;
1428                 }
1429
1430                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1431                 retval = es.es_len - (iblock - es.es_lblk);
1432                 if (retval > map->m_len)
1433                         retval = map->m_len;
1434                 map->m_len = retval;
1435                 if (ext4_es_is_written(&es))
1436                         map->m_flags |= EXT4_MAP_MAPPED;
1437                 else if (ext4_es_is_unwritten(&es))
1438                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1439                 else
1440                         BUG_ON(1);
1441
1442 #ifdef ES_AGGRESSIVE_TEST
1443                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1444 #endif
1445                 return retval;
1446         }
1447
1448         /*
1449          * Try to see if we can get the block without requesting a new
1450          * file system block.
1451          */
1452         down_read(&EXT4_I(inode)->i_data_sem);
1453         if (ext4_has_inline_data(inode))
1454                 retval = 0;
1455         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1456                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1457         else
1458                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1459
1460 add_delayed:
1461         if (retval == 0) {
1462                 int ret;
1463                 /*
1464                  * XXX: __block_prepare_write() unmaps passed block,
1465                  * is it OK?
1466                  */
1467                 /*
1468                  * If the block was allocated from previously allocated cluster,
1469                  * then we don't need to reserve it again. However we still need
1470                  * to reserve metadata for every block we're going to write.
1471                  */
1472                 if (EXT4_SB(inode->i_sb)->s_cluster_ratio <= 1 ||
1473                     !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1474                         ret = ext4_da_reserve_space(inode, iblock);
1475                         if (ret) {
1476                                 /* not enough space to reserve */
1477                                 retval = ret;
1478                                 goto out_unlock;
1479                         }
1480                 }
1481
1482                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1483                                             ~0, EXTENT_STATUS_DELAYED);
1484                 if (ret) {
1485                         retval = ret;
1486                         goto out_unlock;
1487                 }
1488
1489                 map_bh(bh, inode->i_sb, invalid_block);
1490                 set_buffer_new(bh);
1491                 set_buffer_delay(bh);
1492         } else if (retval > 0) {
1493                 int ret;
1494                 unsigned int status;
1495
1496                 if (unlikely(retval != map->m_len)) {
1497                         ext4_warning(inode->i_sb,
1498                                      "ES len assertion failed for inode "
1499                                      "%lu: retval %d != map->m_len %d",
1500                                      inode->i_ino, retval, map->m_len);
1501                         WARN_ON(1);
1502                 }
1503
1504                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1505                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1506                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1507                                             map->m_pblk, status);
1508                 if (ret != 0)
1509                         retval = ret;
1510         }
1511
1512 out_unlock:
1513         up_read((&EXT4_I(inode)->i_data_sem));
1514
1515         return retval;
1516 }
1517
1518 /*
1519  * This is a special get_block_t callback which is used by
1520  * ext4_da_write_begin().  It will either return mapped block or
1521  * reserve space for a single block.
1522  *
1523  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1524  * We also have b_blocknr = -1 and b_bdev initialized properly
1525  *
1526  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1527  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1528  * initialized properly.
1529  */
1530 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1531                            struct buffer_head *bh, int create)
1532 {
1533         struct ext4_map_blocks map;
1534         int ret = 0;
1535
1536         BUG_ON(create == 0);
1537         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1538
1539         map.m_lblk = iblock;
1540         map.m_len = 1;
1541
1542         /*
1543          * first, we need to know whether the block is allocated already
1544          * preallocated blocks are unmapped but should treated
1545          * the same as allocated blocks.
1546          */
1547         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1548         if (ret <= 0)
1549                 return ret;
1550
1551         map_bh(bh, inode->i_sb, map.m_pblk);
1552         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1553
1554         if (buffer_unwritten(bh)) {
1555                 /* A delayed write to unwritten bh should be marked
1556                  * new and mapped.  Mapped ensures that we don't do
1557                  * get_block multiple times when we write to the same
1558                  * offset and new ensures that we do proper zero out
1559                  * for partial write.
1560                  */
1561                 set_buffer_new(bh);
1562                 set_buffer_mapped(bh);
1563         }
1564         return 0;
1565 }
1566
1567 static int bget_one(handle_t *handle, struct buffer_head *bh)
1568 {
1569         get_bh(bh);
1570         return 0;
1571 }
1572
1573 static int bput_one(handle_t *handle, struct buffer_head *bh)
1574 {
1575         put_bh(bh);
1576         return 0;
1577 }
1578
1579 static int __ext4_journalled_writepage(struct page *page,
1580                                        unsigned int len)
1581 {
1582         struct address_space *mapping = page->mapping;
1583         struct inode *inode = mapping->host;
1584         struct buffer_head *page_bufs = NULL;
1585         handle_t *handle = NULL;
1586         int ret = 0, err = 0;
1587         int inline_data = ext4_has_inline_data(inode);
1588         struct buffer_head *inode_bh = NULL;
1589
1590         ClearPageChecked(page);
1591
1592         if (inline_data) {
1593                 BUG_ON(page->index != 0);
1594                 BUG_ON(len > ext4_get_max_inline_size(inode));
1595                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1596                 if (inode_bh == NULL)
1597                         goto out;
1598         } else {
1599                 page_bufs = page_buffers(page);
1600                 if (!page_bufs) {
1601                         BUG();
1602                         goto out;
1603                 }
1604                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1605                                        NULL, bget_one);
1606         }
1607         /* As soon as we unlock the page, it can go away, but we have
1608          * references to buffers so we are safe */
1609         unlock_page(page);
1610
1611         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1612                                     ext4_writepage_trans_blocks(inode));
1613         if (IS_ERR(handle)) {
1614                 ret = PTR_ERR(handle);
1615                 goto out;
1616         }
1617
1618         BUG_ON(!ext4_handle_valid(handle));
1619
1620         if (inline_data) {
1621                 BUFFER_TRACE(inode_bh, "get write access");
1622                 ret = ext4_journal_get_write_access(handle, inode_bh);
1623
1624                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1625
1626         } else {
1627                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1628                                              do_journal_get_write_access);
1629
1630                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1631                                              write_end_fn);
1632         }
1633         if (ret == 0)
1634                 ret = err;
1635         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1636         err = ext4_journal_stop(handle);
1637         if (!ret)
1638                 ret = err;
1639
1640         if (!ext4_has_inline_data(inode))
1641                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1642                                        NULL, bput_one);
1643         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1644 out:
1645         brelse(inode_bh);
1646         return ret;
1647 }
1648
1649 /*
1650  * Note that we don't need to start a transaction unless we're journaling data
1651  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1652  * need to file the inode to the transaction's list in ordered mode because if
1653  * we are writing back data added by write(), the inode is already there and if
1654  * we are writing back data modified via mmap(), no one guarantees in which
1655  * transaction the data will hit the disk. In case we are journaling data, we
1656  * cannot start transaction directly because transaction start ranks above page
1657  * lock so we have to do some magic.
1658  *
1659  * This function can get called via...
1660  *   - ext4_writepages after taking page lock (have journal handle)
1661  *   - journal_submit_inode_data_buffers (no journal handle)
1662  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1663  *   - grab_page_cache when doing write_begin (have journal handle)
1664  *
1665  * We don't do any block allocation in this function. If we have page with
1666  * multiple blocks we need to write those buffer_heads that are mapped. This
1667  * is important for mmaped based write. So if we do with blocksize 1K
1668  * truncate(f, 1024);
1669  * a = mmap(f, 0, 4096);
1670  * a[0] = 'a';
1671  * truncate(f, 4096);
1672  * we have in the page first buffer_head mapped via page_mkwrite call back
1673  * but other buffer_heads would be unmapped but dirty (dirty done via the
1674  * do_wp_page). So writepage should write the first block. If we modify
1675  * the mmap area beyond 1024 we will again get a page_fault and the
1676  * page_mkwrite callback will do the block allocation and mark the
1677  * buffer_heads mapped.
1678  *
1679  * We redirty the page if we have any buffer_heads that is either delay or
1680  * unwritten in the page.
1681  *
1682  * We can get recursively called as show below.
1683  *
1684  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1685  *              ext4_writepage()
1686  *
1687  * But since we don't do any block allocation we should not deadlock.
1688  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1689  */
1690 static int ext4_writepage(struct page *page,
1691                           struct writeback_control *wbc)
1692 {
1693         int ret = 0;
1694         loff_t size;
1695         unsigned int len;
1696         struct buffer_head *page_bufs = NULL;
1697         struct inode *inode = page->mapping->host;
1698         struct ext4_io_submit io_submit;
1699         bool keep_towrite = false;
1700
1701         trace_ext4_writepage(page);
1702         size = i_size_read(inode);
1703         if (page->index == size >> PAGE_CACHE_SHIFT)
1704                 len = size & ~PAGE_CACHE_MASK;
1705         else
1706                 len = PAGE_CACHE_SIZE;
1707
1708         page_bufs = page_buffers(page);
1709         /*
1710          * We cannot do block allocation or other extent handling in this
1711          * function. If there are buffers needing that, we have to redirty
1712          * the page. But we may reach here when we do a journal commit via
1713          * journal_submit_inode_data_buffers() and in that case we must write
1714          * allocated buffers to achieve data=ordered mode guarantees.
1715          */
1716         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1717                                    ext4_bh_delay_or_unwritten)) {
1718                 redirty_page_for_writepage(wbc, page);
1719                 if (current->flags & PF_MEMALLOC) {
1720                         /*
1721                          * For memory cleaning there's no point in writing only
1722                          * some buffers. So just bail out. Warn if we came here
1723                          * from direct reclaim.
1724                          */
1725                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1726                                                         == PF_MEMALLOC);
1727                         unlock_page(page);
1728                         return 0;
1729                 }
1730                 keep_towrite = true;
1731         }
1732
1733         if (PageChecked(page) && ext4_should_journal_data(inode))
1734                 /*
1735                  * It's mmapped pagecache.  Add buffers and journal it.  There
1736                  * doesn't seem much point in redirtying the page here.
1737                  */
1738                 return __ext4_journalled_writepage(page, len);
1739
1740         ext4_io_submit_init(&io_submit, wbc);
1741         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1742         if (!io_submit.io_end) {
1743                 redirty_page_for_writepage(wbc, page);
1744                 unlock_page(page);
1745                 return -ENOMEM;
1746         }
1747         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
1748         ext4_io_submit(&io_submit);
1749         /* Drop io_end reference we got from init */
1750         ext4_put_io_end_defer(io_submit.io_end);
1751         return ret;
1752 }
1753
1754 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1755 {
1756         int len;
1757         loff_t size = i_size_read(mpd->inode);
1758         int err;
1759
1760         BUG_ON(page->index != mpd->first_page);
1761         if (page->index == size >> PAGE_CACHE_SHIFT)
1762                 len = size & ~PAGE_CACHE_MASK;
1763         else
1764                 len = PAGE_CACHE_SIZE;
1765         clear_page_dirty_for_io(page);
1766         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
1767         if (!err)
1768                 mpd->wbc->nr_to_write--;
1769         mpd->first_page++;
1770
1771         return err;
1772 }
1773
1774 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1775
1776 /*
1777  * mballoc gives us at most this number of blocks...
1778  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1779  * The rest of mballoc seems to handle chunks up to full group size.
1780  */
1781 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1782
1783 /*
1784  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1785  *
1786  * @mpd - extent of blocks
1787  * @lblk - logical number of the block in the file
1788  * @bh - buffer head we want to add to the extent
1789  *
1790  * The function is used to collect contig. blocks in the same state. If the
1791  * buffer doesn't require mapping for writeback and we haven't started the
1792  * extent of buffers to map yet, the function returns 'true' immediately - the
1793  * caller can write the buffer right away. Otherwise the function returns true
1794  * if the block has been added to the extent, false if the block couldn't be
1795  * added.
1796  */
1797 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1798                                    struct buffer_head *bh)
1799 {
1800         struct ext4_map_blocks *map = &mpd->map;
1801
1802         /* Buffer that doesn't need mapping for writeback? */
1803         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1804             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1805                 /* So far no extent to map => we write the buffer right away */
1806                 if (map->m_len == 0)
1807                         return true;
1808                 return false;
1809         }
1810
1811         /* First block in the extent? */
1812         if (map->m_len == 0) {
1813                 map->m_lblk = lblk;
1814                 map->m_len = 1;
1815                 map->m_flags = bh->b_state & BH_FLAGS;
1816                 return true;
1817         }
1818
1819         /* Don't go larger than mballoc is willing to allocate */
1820         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1821                 return false;
1822
1823         /* Can we merge the block to our big extent? */
1824         if (lblk == map->m_lblk + map->m_len &&
1825             (bh->b_state & BH_FLAGS) == map->m_flags) {
1826                 map->m_len++;
1827                 return true;
1828         }
1829         return false;
1830 }
1831
1832 /*
1833  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1834  *
1835  * @mpd - extent of blocks for mapping
1836  * @head - the first buffer in the page
1837  * @bh - buffer we should start processing from
1838  * @lblk - logical number of the block in the file corresponding to @bh
1839  *
1840  * Walk through page buffers from @bh upto @head (exclusive) and either submit
1841  * the page for IO if all buffers in this page were mapped and there's no
1842  * accumulated extent of buffers to map or add buffers in the page to the
1843  * extent of buffers to map. The function returns 1 if the caller can continue
1844  * by processing the next page, 0 if it should stop adding buffers to the
1845  * extent to map because we cannot extend it anymore. It can also return value
1846  * < 0 in case of error during IO submission.
1847  */
1848 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1849                                    struct buffer_head *head,
1850                                    struct buffer_head *bh,
1851                                    ext4_lblk_t lblk)
1852 {
1853         struct inode *inode = mpd->inode;
1854         int err;
1855         ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1856                                                         >> inode->i_blkbits;
1857
1858         do {
1859                 BUG_ON(buffer_locked(bh));
1860
1861                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
1862                         /* Found extent to map? */
1863                         if (mpd->map.m_len)
1864                                 return 0;
1865                         /* Everything mapped so far and we hit EOF */
1866                         break;
1867                 }
1868         } while (lblk++, (bh = bh->b_this_page) != head);
1869         /* So far everything mapped? Submit the page for IO. */
1870         if (mpd->map.m_len == 0) {
1871                 err = mpage_submit_page(mpd, head->b_page);
1872                 if (err < 0)
1873                         return err;
1874         }
1875         return lblk < blocks;
1876 }
1877
1878 /*
1879  * mpage_map_buffers - update buffers corresponding to changed extent and
1880  *                     submit fully mapped pages for IO
1881  *
1882  * @mpd - description of extent to map, on return next extent to map
1883  *
1884  * Scan buffers corresponding to changed extent (we expect corresponding pages
1885  * to be already locked) and update buffer state according to new extent state.
1886  * We map delalloc buffers to their physical location, clear unwritten bits,
1887  * and mark buffers as uninit when we perform writes to unwritten extents
1888  * and do extent conversion after IO is finished. If the last page is not fully
1889  * mapped, we update @map to the next extent in the last page that needs
1890  * mapping. Otherwise we submit the page for IO.
1891  */
1892 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
1893 {
1894         struct pagevec pvec;
1895         int nr_pages, i;
1896         struct inode *inode = mpd->inode;
1897         struct buffer_head *head, *bh;
1898         int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
1899         pgoff_t start, end;
1900         ext4_lblk_t lblk;
1901         sector_t pblock;
1902         int err;
1903
1904         start = mpd->map.m_lblk >> bpp_bits;
1905         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
1906         lblk = start << bpp_bits;
1907         pblock = mpd->map.m_pblk;
1908
1909         pagevec_init(&pvec, 0);
1910         while (start <= end) {
1911                 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
1912                                           PAGEVEC_SIZE);
1913                 if (nr_pages == 0)
1914                         break;
1915                 for (i = 0; i < nr_pages; i++) {
1916                         struct page *page = pvec.pages[i];
1917
1918                         if (page->index > end)
1919                                 break;
1920                         /* Up to 'end' pages must be contiguous */
1921                         BUG_ON(page->index != start);
1922                         bh = head = page_buffers(page);
1923                         do {
1924                                 if (lblk < mpd->map.m_lblk)
1925                                         continue;
1926                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
1927                                         /*
1928                                          * Buffer after end of mapped extent.
1929                                          * Find next buffer in the page to map.
1930                                          */
1931                                         mpd->map.m_len = 0;
1932                                         mpd->map.m_flags = 0;
1933                                         /*
1934                                          * FIXME: If dioread_nolock supports
1935                                          * blocksize < pagesize, we need to make
1936                                          * sure we add size mapped so far to
1937                                          * io_end->size as the following call
1938                                          * can submit the page for IO.
1939                                          */
1940                                         err = mpage_process_page_bufs(mpd, head,
1941                                                                       bh, lblk);
1942                                         pagevec_release(&pvec);
1943                                         if (err > 0)
1944                                                 err = 0;
1945                                         return err;
1946                                 }
1947                                 if (buffer_delay(bh)) {
1948                                         clear_buffer_delay(bh);
1949                                         bh->b_blocknr = pblock++;
1950                                 }
1951                                 clear_buffer_unwritten(bh);
1952                         } while (lblk++, (bh = bh->b_this_page) != head);
1953
1954                         /*
1955                          * FIXME: This is going to break if dioread_nolock
1956                          * supports blocksize < pagesize as we will try to
1957                          * convert potentially unmapped parts of inode.
1958                          */
1959                         mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
1960                         /* Page fully mapped - let IO run! */
1961                         err = mpage_submit_page(mpd, page);
1962                         if (err < 0) {
1963                                 pagevec_release(&pvec);
1964                                 return err;
1965                         }
1966                         start++;
1967                 }
1968                 pagevec_release(&pvec);
1969         }
1970         /* Extent fully mapped and matches with page boundary. We are done. */
1971         mpd->map.m_len = 0;
1972         mpd->map.m_flags = 0;
1973         return 0;
1974 }
1975
1976 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
1977 {
1978         struct inode *inode = mpd->inode;
1979         struct ext4_map_blocks *map = &mpd->map;
1980         int get_blocks_flags;
1981         int err, dioread_nolock;
1982
1983         trace_ext4_da_write_pages_extent(inode, map);
1984         /*
1985          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
1986          * to convert an unwritten extent to be initialized (in the case
1987          * where we have written into one or more preallocated blocks).  It is
1988          * possible that we're going to need more metadata blocks than
1989          * previously reserved. However we must not fail because we're in
1990          * writeback and there is nothing we can do about it so it might result
1991          * in data loss.  So use reserved blocks to allocate metadata if
1992          * possible.
1993          *
1994          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
1995          * the blocks in question are delalloc blocks.  This indicates
1996          * that the blocks and quotas has already been checked when
1997          * the data was copied into the page cache.
1998          */
1999         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2000                            EXT4_GET_BLOCKS_METADATA_NOFAIL;
2001         dioread_nolock = ext4_should_dioread_nolock(inode);
2002         if (dioread_nolock)
2003                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2004         if (map->m_flags & (1 << BH_Delay))
2005                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2006
2007         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2008         if (err < 0)
2009                 return err;
2010         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2011                 if (!mpd->io_submit.io_end->handle &&
2012                     ext4_handle_valid(handle)) {
2013                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2014                         handle->h_rsv_handle = NULL;
2015                 }
2016                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2017         }
2018
2019         BUG_ON(map->m_len == 0);
2020         if (map->m_flags & EXT4_MAP_NEW) {
2021                 struct block_device *bdev = inode->i_sb->s_bdev;
2022                 int i;
2023
2024                 for (i = 0; i < map->m_len; i++)
2025                         unmap_underlying_metadata(bdev, map->m_pblk + i);
2026         }
2027         return 0;
2028 }
2029
2030 /*
2031  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2032  *                               mpd->len and submit pages underlying it for IO
2033  *
2034  * @handle - handle for journal operations
2035  * @mpd - extent to map
2036  * @give_up_on_write - we set this to true iff there is a fatal error and there
2037  *                     is no hope of writing the data. The caller should discard
2038  *                     dirty pages to avoid infinite loops.
2039  *
2040  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2041  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2042  * them to initialized or split the described range from larger unwritten
2043  * extent. Note that we need not map all the described range since allocation
2044  * can return less blocks or the range is covered by more unwritten extents. We
2045  * cannot map more because we are limited by reserved transaction credits. On
2046  * the other hand we always make sure that the last touched page is fully
2047  * mapped so that it can be written out (and thus forward progress is
2048  * guaranteed). After mapping we submit all mapped pages for IO.
2049  */
2050 static int mpage_map_and_submit_extent(handle_t *handle,
2051                                        struct mpage_da_data *mpd,
2052                                        bool *give_up_on_write)
2053 {
2054         struct inode *inode = mpd->inode;
2055         struct ext4_map_blocks *map = &mpd->map;
2056         int err;
2057         loff_t disksize;
2058         int progress = 0;
2059
2060         mpd->io_submit.io_end->offset =
2061                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2062         do {
2063                 err = mpage_map_one_extent(handle, mpd);
2064                 if (err < 0) {
2065                         struct super_block *sb = inode->i_sb;
2066
2067                         if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2068                                 goto invalidate_dirty_pages;
2069                         /*
2070                          * Let the uper layers retry transient errors.
2071                          * In the case of ENOSPC, if ext4_count_free_blocks()
2072                          * is non-zero, a commit should free up blocks.
2073                          */
2074                         if ((err == -ENOMEM) ||
2075                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2076                                 if (progress)
2077                                         goto update_disksize;
2078                                 return err;
2079                         }
2080                         ext4_msg(sb, KERN_CRIT,
2081                                  "Delayed block allocation failed for "
2082                                  "inode %lu at logical offset %llu with"
2083                                  " max blocks %u with error %d",
2084                                  inode->i_ino,
2085                                  (unsigned long long)map->m_lblk,
2086                                  (unsigned)map->m_len, -err);
2087                         ext4_msg(sb, KERN_CRIT,
2088                                  "This should not happen!! Data will "
2089                                  "be lost\n");
2090                         if (err == -ENOSPC)
2091                                 ext4_print_free_blocks(inode);
2092                 invalidate_dirty_pages:
2093                         *give_up_on_write = true;
2094                         return err;
2095                 }
2096                 progress = 1;
2097                 /*
2098                  * Update buffer state, submit mapped pages, and get us new
2099                  * extent to map
2100                  */
2101                 err = mpage_map_and_submit_buffers(mpd);
2102                 if (err < 0)
2103                         goto update_disksize;
2104         } while (map->m_len);
2105
2106 update_disksize:
2107         /*
2108          * Update on-disk size after IO is submitted.  Races with
2109          * truncate are avoided by checking i_size under i_data_sem.
2110          */
2111         disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2112         if (disksize > EXT4_I(inode)->i_disksize) {
2113                 int err2;
2114                 loff_t i_size;
2115
2116                 down_write(&EXT4_I(inode)->i_data_sem);
2117                 i_size = i_size_read(inode);
2118                 if (disksize > i_size)
2119                         disksize = i_size;
2120                 if (disksize > EXT4_I(inode)->i_disksize)
2121                         EXT4_I(inode)->i_disksize = disksize;
2122                 err2 = ext4_mark_inode_dirty(handle, inode);
2123                 up_write(&EXT4_I(inode)->i_data_sem);
2124                 if (err2)
2125                         ext4_error(inode->i_sb,
2126                                    "Failed to mark inode %lu dirty",
2127                                    inode->i_ino);
2128                 if (!err)
2129                         err = err2;
2130         }
2131         return err;
2132 }
2133
2134 /*
2135  * Calculate the total number of credits to reserve for one writepages
2136  * iteration. This is called from ext4_writepages(). We map an extent of
2137  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2138  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2139  * bpp - 1 blocks in bpp different extents.
2140  */
2141 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2142 {
2143         int bpp = ext4_journal_blocks_per_page(inode);
2144
2145         return ext4_meta_trans_blocks(inode,
2146                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2147 }
2148
2149 /*
2150  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2151  *                               and underlying extent to map
2152  *
2153  * @mpd - where to look for pages
2154  *
2155  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2156  * IO immediately. When we find a page which isn't mapped we start accumulating
2157  * extent of buffers underlying these pages that needs mapping (formed by
2158  * either delayed or unwritten buffers). We also lock the pages containing
2159  * these buffers. The extent found is returned in @mpd structure (starting at
2160  * mpd->lblk with length mpd->len blocks).
2161  *
2162  * Note that this function can attach bios to one io_end structure which are
2163  * neither logically nor physically contiguous. Although it may seem as an
2164  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2165  * case as we need to track IO to all buffers underlying a page in one io_end.
2166  */
2167 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2168 {
2169         struct address_space *mapping = mpd->inode->i_mapping;
2170         struct pagevec pvec;
2171         unsigned int nr_pages;
2172         long left = mpd->wbc->nr_to_write;
2173         pgoff_t index = mpd->first_page;
2174         pgoff_t end = mpd->last_page;
2175         int tag;
2176         int i, err = 0;
2177         int blkbits = mpd->inode->i_blkbits;
2178         ext4_lblk_t lblk;
2179         struct buffer_head *head;
2180
2181         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2182                 tag = PAGECACHE_TAG_TOWRITE;
2183         else
2184                 tag = PAGECACHE_TAG_DIRTY;
2185
2186         pagevec_init(&pvec, 0);
2187         mpd->map.m_len = 0;
2188         mpd->next_page = index;
2189         while (index <= end) {
2190                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2191                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2192                 if (nr_pages == 0)
2193                         goto out;
2194
2195                 for (i = 0; i < nr_pages; i++) {
2196                         struct page *page = pvec.pages[i];
2197
2198                         /*
2199                          * At this point, the page may be truncated or
2200                          * invalidated (changing page->mapping to NULL), or
2201                          * even swizzled back from swapper_space to tmpfs file
2202                          * mapping. However, page->index will not change
2203                          * because we have a reference on the page.
2204                          */
2205                         if (page->index > end)
2206                                 goto out;
2207
2208                         /*
2209                          * Accumulated enough dirty pages? This doesn't apply
2210                          * to WB_SYNC_ALL mode. For integrity sync we have to
2211                          * keep going because someone may be concurrently
2212                          * dirtying pages, and we might have synced a lot of
2213                          * newly appeared dirty pages, but have not synced all
2214                          * of the old dirty pages.
2215                          */
2216                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2217                                 goto out;
2218
2219                         /* If we can't merge this page, we are done. */
2220                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2221                                 goto out;
2222
2223                         lock_page(page);
2224                         /*
2225                          * If the page is no longer dirty, or its mapping no
2226                          * longer corresponds to inode we are writing (which
2227                          * means it has been truncated or invalidated), or the
2228                          * page is already under writeback and we are not doing
2229                          * a data integrity writeback, skip the page
2230                          */
2231                         if (!PageDirty(page) ||
2232                             (PageWriteback(page) &&
2233                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2234                             unlikely(page->mapping != mapping)) {
2235                                 unlock_page(page);
2236                                 continue;
2237                         }
2238
2239                         wait_on_page_writeback(page);
2240                         BUG_ON(PageWriteback(page));
2241
2242                         if (mpd->map.m_len == 0)
2243                                 mpd->first_page = page->index;
2244                         mpd->next_page = page->index + 1;
2245                         /* Add all dirty buffers to mpd */
2246                         lblk = ((ext4_lblk_t)page->index) <<
2247                                 (PAGE_CACHE_SHIFT - blkbits);
2248                         head = page_buffers(page);
2249                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2250                         if (err <= 0)
2251                                 goto out;
2252                         err = 0;
2253                         left--;
2254                 }
2255                 pagevec_release(&pvec);
2256                 cond_resched();
2257         }
2258         return 0;
2259 out:
2260         pagevec_release(&pvec);
2261         return err;
2262 }
2263
2264 static int __writepage(struct page *page, struct writeback_control *wbc,
2265                        void *data)
2266 {
2267         struct address_space *mapping = data;
2268         int ret = ext4_writepage(page, wbc);
2269         mapping_set_error(mapping, ret);
2270         return ret;
2271 }
2272
2273 static int ext4_writepages(struct address_space *mapping,
2274                            struct writeback_control *wbc)
2275 {
2276         pgoff_t writeback_index = 0;
2277         long nr_to_write = wbc->nr_to_write;
2278         int range_whole = 0;
2279         int cycled = 1;
2280         handle_t *handle = NULL;
2281         struct mpage_da_data mpd;
2282         struct inode *inode = mapping->host;
2283         int needed_blocks, rsv_blocks = 0, ret = 0;
2284         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2285         bool done;
2286         struct blk_plug plug;
2287         bool give_up_on_write = false;
2288
2289         trace_ext4_writepages(inode, wbc);
2290
2291         /*
2292          * No pages to write? This is mainly a kludge to avoid starting
2293          * a transaction for special inodes like journal inode on last iput()
2294          * because that could violate lock ordering on umount
2295          */
2296         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2297                 goto out_writepages;
2298
2299         if (ext4_should_journal_data(inode)) {
2300                 struct blk_plug plug;
2301
2302                 blk_start_plug(&plug);
2303                 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2304                 blk_finish_plug(&plug);
2305                 goto out_writepages;
2306         }
2307
2308         /*
2309          * If the filesystem has aborted, it is read-only, so return
2310          * right away instead of dumping stack traces later on that
2311          * will obscure the real source of the problem.  We test
2312          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2313          * the latter could be true if the filesystem is mounted
2314          * read-only, and in that case, ext4_writepages should
2315          * *never* be called, so if that ever happens, we would want
2316          * the stack trace.
2317          */
2318         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2319                 ret = -EROFS;
2320                 goto out_writepages;
2321         }
2322
2323         if (ext4_should_dioread_nolock(inode)) {
2324                 /*
2325                  * We may need to convert up to one extent per block in
2326                  * the page and we may dirty the inode.
2327                  */
2328                 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2329         }
2330
2331         /*
2332          * If we have inline data and arrive here, it means that
2333          * we will soon create the block for the 1st page, so
2334          * we'd better clear the inline data here.
2335          */
2336         if (ext4_has_inline_data(inode)) {
2337                 /* Just inode will be modified... */
2338                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2339                 if (IS_ERR(handle)) {
2340                         ret = PTR_ERR(handle);
2341                         goto out_writepages;
2342                 }
2343                 BUG_ON(ext4_test_inode_state(inode,
2344                                 EXT4_STATE_MAY_INLINE_DATA));
2345                 ext4_destroy_inline_data(handle, inode);
2346                 ext4_journal_stop(handle);
2347         }
2348
2349         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2350                 range_whole = 1;
2351
2352         if (wbc->range_cyclic) {
2353                 writeback_index = mapping->writeback_index;
2354                 if (writeback_index)
2355                         cycled = 0;
2356                 mpd.first_page = writeback_index;
2357                 mpd.last_page = -1;
2358         } else {
2359                 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2360                 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2361         }
2362
2363         mpd.inode = inode;
2364         mpd.wbc = wbc;
2365         ext4_io_submit_init(&mpd.io_submit, wbc);
2366 retry:
2367         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2368                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2369         done = false;
2370         blk_start_plug(&plug);
2371         while (!done && mpd.first_page <= mpd.last_page) {
2372                 /* For each extent of pages we use new io_end */
2373                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2374                 if (!mpd.io_submit.io_end) {
2375                         ret = -ENOMEM;
2376                         break;
2377                 }
2378
2379                 /*
2380                  * We have two constraints: We find one extent to map and we
2381                  * must always write out whole page (makes a difference when
2382                  * blocksize < pagesize) so that we don't block on IO when we
2383                  * try to write out the rest of the page. Journalled mode is
2384                  * not supported by delalloc.
2385                  */
2386                 BUG_ON(ext4_should_journal_data(inode));
2387                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2388
2389                 /* start a new transaction */
2390                 handle = ext4_journal_start_with_reserve(inode,
2391                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2392                 if (IS_ERR(handle)) {
2393                         ret = PTR_ERR(handle);
2394                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2395                                "%ld pages, ino %lu; err %d", __func__,
2396                                 wbc->nr_to_write, inode->i_ino, ret);
2397                         /* Release allocated io_end */
2398                         ext4_put_io_end(mpd.io_submit.io_end);
2399                         break;
2400                 }
2401
2402                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2403                 ret = mpage_prepare_extent_to_map(&mpd);
2404                 if (!ret) {
2405                         if (mpd.map.m_len)
2406                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2407                                         &give_up_on_write);
2408                         else {
2409                                 /*
2410                                  * We scanned the whole range (or exhausted
2411                                  * nr_to_write), submitted what was mapped and
2412                                  * didn't find anything needing mapping. We are
2413                                  * done.
2414                                  */
2415                                 done = true;
2416                         }
2417                 }
2418                 ext4_journal_stop(handle);
2419                 /* Submit prepared bio */
2420                 ext4_io_submit(&mpd.io_submit);
2421                 /* Unlock pages we didn't use */
2422                 mpage_release_unused_pages(&mpd, give_up_on_write);
2423                 /* Drop our io_end reference we got from init */
2424                 ext4_put_io_end(mpd.io_submit.io_end);
2425
2426                 if (ret == -ENOSPC && sbi->s_journal) {
2427                         /*
2428                          * Commit the transaction which would
2429                          * free blocks released in the transaction
2430                          * and try again
2431                          */
2432                         jbd2_journal_force_commit_nested(sbi->s_journal);
2433                         ret = 0;
2434                         continue;
2435                 }
2436                 /* Fatal error - ENOMEM, EIO... */
2437                 if (ret)
2438                         break;
2439         }
2440         blk_finish_plug(&plug);
2441         if (!ret && !cycled && wbc->nr_to_write > 0) {
2442                 cycled = 1;
2443                 mpd.last_page = writeback_index - 1;
2444                 mpd.first_page = 0;
2445                 goto retry;
2446         }
2447
2448         /* Update index */
2449         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2450                 /*
2451                  * Set the writeback_index so that range_cyclic
2452                  * mode will write it back later
2453                  */
2454                 mapping->writeback_index = mpd.first_page;
2455
2456 out_writepages:
2457         trace_ext4_writepages_result(inode, wbc, ret,
2458                                      nr_to_write - wbc->nr_to_write);
2459         return ret;
2460 }
2461
2462 static int ext4_nonda_switch(struct super_block *sb)
2463 {
2464         s64 free_clusters, dirty_clusters;
2465         struct ext4_sb_info *sbi = EXT4_SB(sb);
2466
2467         /*
2468          * switch to non delalloc mode if we are running low
2469          * on free block. The free block accounting via percpu
2470          * counters can get slightly wrong with percpu_counter_batch getting
2471          * accumulated on each CPU without updating global counters
2472          * Delalloc need an accurate free block accounting. So switch
2473          * to non delalloc when we are near to error range.
2474          */
2475         free_clusters =
2476                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2477         dirty_clusters =
2478                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2479         /*
2480          * Start pushing delalloc when 1/2 of free blocks are dirty.
2481          */
2482         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2483                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2484
2485         if (2 * free_clusters < 3 * dirty_clusters ||
2486             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2487                 /*
2488                  * free block count is less than 150% of dirty blocks
2489                  * or free blocks is less than watermark
2490                  */
2491                 return 1;
2492         }
2493         return 0;
2494 }
2495
2496 /* We always reserve for an inode update; the superblock could be there too */
2497 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2498 {
2499         if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
2500                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE)))
2501                 return 1;
2502
2503         if (pos + len <= 0x7fffffffULL)
2504                 return 1;
2505
2506         /* We might need to update the superblock to set LARGE_FILE */
2507         return 2;
2508 }
2509
2510 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2511                                loff_t pos, unsigned len, unsigned flags,
2512                                struct page **pagep, void **fsdata)
2513 {
2514         int ret, retries = 0;
2515         struct page *page;
2516         pgoff_t index;
2517         struct inode *inode = mapping->host;
2518         handle_t *handle;
2519
2520         index = pos >> PAGE_CACHE_SHIFT;
2521
2522         if (ext4_nonda_switch(inode->i_sb)) {
2523                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2524                 return ext4_write_begin(file, mapping, pos,
2525                                         len, flags, pagep, fsdata);
2526         }
2527         *fsdata = (void *)0;
2528         trace_ext4_da_write_begin(inode, pos, len, flags);
2529
2530         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2531                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2532                                                       pos, len, flags,
2533                                                       pagep, fsdata);
2534                 if (ret < 0)
2535                         return ret;
2536                 if (ret == 1)
2537                         return 0;
2538         }
2539
2540         /*
2541          * grab_cache_page_write_begin() can take a long time if the
2542          * system is thrashing due to memory pressure, or if the page
2543          * is being written back.  So grab it first before we start
2544          * the transaction handle.  This also allows us to allocate
2545          * the page (if needed) without using GFP_NOFS.
2546          */
2547 retry_grab:
2548         page = grab_cache_page_write_begin(mapping, index, flags);
2549         if (!page)
2550                 return -ENOMEM;
2551         unlock_page(page);
2552
2553         /*
2554          * With delayed allocation, we don't log the i_disksize update
2555          * if there is delayed block allocation. But we still need
2556          * to journalling the i_disksize update if writes to the end
2557          * of file which has an already mapped buffer.
2558          */
2559 retry_journal:
2560         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2561                                 ext4_da_write_credits(inode, pos, len));
2562         if (IS_ERR(handle)) {
2563                 page_cache_release(page);
2564                 return PTR_ERR(handle);
2565         }
2566
2567         lock_page(page);
2568         if (page->mapping != mapping) {
2569                 /* The page got truncated from under us */
2570                 unlock_page(page);
2571                 page_cache_release(page);
2572                 ext4_journal_stop(handle);
2573                 goto retry_grab;
2574         }
2575         /* In case writeback began while the page was unlocked */
2576         wait_for_stable_page(page);
2577
2578         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2579         if (ret < 0) {
2580                 unlock_page(page);
2581                 ext4_journal_stop(handle);
2582                 /*
2583                  * block_write_begin may have instantiated a few blocks
2584                  * outside i_size.  Trim these off again. Don't need
2585                  * i_size_read because we hold i_mutex.
2586                  */
2587                 if (pos + len > inode->i_size)
2588                         ext4_truncate_failed_write(inode);
2589
2590                 if (ret == -ENOSPC &&
2591                     ext4_should_retry_alloc(inode->i_sb, &retries))
2592                         goto retry_journal;
2593
2594                 page_cache_release(page);
2595                 return ret;
2596         }
2597
2598         *pagep = page;
2599         return ret;
2600 }
2601
2602 /*
2603  * Check if we should update i_disksize
2604  * when write to the end of file but not require block allocation
2605  */
2606 static int ext4_da_should_update_i_disksize(struct page *page,
2607                                             unsigned long offset)
2608 {
2609         struct buffer_head *bh;
2610         struct inode *inode = page->mapping->host;
2611         unsigned int idx;
2612         int i;
2613
2614         bh = page_buffers(page);
2615         idx = offset >> inode->i_blkbits;
2616
2617         for (i = 0; i < idx; i++)
2618                 bh = bh->b_this_page;
2619
2620         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2621                 return 0;
2622         return 1;
2623 }
2624
2625 static int ext4_da_write_end(struct file *file,
2626                              struct address_space *mapping,
2627                              loff_t pos, unsigned len, unsigned copied,
2628                              struct page *page, void *fsdata)
2629 {
2630         struct inode *inode = mapping->host;
2631         int ret = 0, ret2;
2632         handle_t *handle = ext4_journal_current_handle();
2633         loff_t new_i_size;
2634         unsigned long start, end;
2635         int write_mode = (int)(unsigned long)fsdata;
2636
2637         if (write_mode == FALL_BACK_TO_NONDELALLOC)
2638                 return ext4_write_end(file, mapping, pos,
2639                                       len, copied, page, fsdata);
2640
2641         trace_ext4_da_write_end(inode, pos, len, copied);
2642         start = pos & (PAGE_CACHE_SIZE - 1);
2643         end = start + copied - 1;
2644
2645         /*
2646          * generic_write_end() will run mark_inode_dirty() if i_size
2647          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2648          * into that.
2649          */
2650         new_i_size = pos + copied;
2651         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2652                 if (ext4_has_inline_data(inode) ||
2653                     ext4_da_should_update_i_disksize(page, end)) {
2654                         ext4_update_i_disksize(inode, new_i_size);
2655                         /* We need to mark inode dirty even if
2656                          * new_i_size is less that inode->i_size
2657                          * bu greater than i_disksize.(hint delalloc)
2658                          */
2659                         ext4_mark_inode_dirty(handle, inode);
2660                 }
2661         }
2662
2663         if (write_mode != CONVERT_INLINE_DATA &&
2664             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2665             ext4_has_inline_data(inode))
2666                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2667                                                      page);
2668         else
2669                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2670                                                         page, fsdata);
2671
2672         copied = ret2;
2673         if (ret2 < 0)
2674                 ret = ret2;
2675         ret2 = ext4_journal_stop(handle);
2676         if (!ret)
2677                 ret = ret2;
2678
2679         return ret ? ret : copied;
2680 }
2681
2682 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2683                                    unsigned int length)
2684 {
2685         /*
2686          * Drop reserved blocks
2687          */
2688         BUG_ON(!PageLocked(page));
2689         if (!page_has_buffers(page))
2690                 goto out;
2691
2692         ext4_da_page_release_reservation(page, offset, length);
2693
2694 out:
2695         ext4_invalidatepage(page, offset, length);
2696
2697         return;
2698 }
2699
2700 /*
2701  * Force all delayed allocation blocks to be allocated for a given inode.
2702  */
2703 int ext4_alloc_da_blocks(struct inode *inode)
2704 {
2705         trace_ext4_alloc_da_blocks(inode);
2706
2707         if (!EXT4_I(inode)->i_reserved_data_blocks)
2708                 return 0;
2709
2710         /*
2711          * We do something simple for now.  The filemap_flush() will
2712          * also start triggering a write of the data blocks, which is
2713          * not strictly speaking necessary (and for users of
2714          * laptop_mode, not even desirable).  However, to do otherwise
2715          * would require replicating code paths in:
2716          *
2717          * ext4_writepages() ->
2718          *    write_cache_pages() ---> (via passed in callback function)
2719          *        __mpage_da_writepage() -->
2720          *           mpage_add_bh_to_extent()
2721          *           mpage_da_map_blocks()
2722          *
2723          * The problem is that write_cache_pages(), located in
2724          * mm/page-writeback.c, marks pages clean in preparation for
2725          * doing I/O, which is not desirable if we're not planning on
2726          * doing I/O at all.
2727          *
2728          * We could call write_cache_pages(), and then redirty all of
2729          * the pages by calling redirty_page_for_writepage() but that
2730          * would be ugly in the extreme.  So instead we would need to
2731          * replicate parts of the code in the above functions,
2732          * simplifying them because we wouldn't actually intend to
2733          * write out the pages, but rather only collect contiguous
2734          * logical block extents, call the multi-block allocator, and
2735          * then update the buffer heads with the block allocations.
2736          *
2737          * For now, though, we'll cheat by calling filemap_flush(),
2738          * which will map the blocks, and start the I/O, but not
2739          * actually wait for the I/O to complete.
2740          */
2741         return filemap_flush(inode->i_mapping);
2742 }
2743
2744 /*
2745  * bmap() is special.  It gets used by applications such as lilo and by
2746  * the swapper to find the on-disk block of a specific piece of data.
2747  *
2748  * Naturally, this is dangerous if the block concerned is still in the
2749  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2750  * filesystem and enables swap, then they may get a nasty shock when the
2751  * data getting swapped to that swapfile suddenly gets overwritten by
2752  * the original zero's written out previously to the journal and
2753  * awaiting writeback in the kernel's buffer cache.
2754  *
2755  * So, if we see any bmap calls here on a modified, data-journaled file,
2756  * take extra steps to flush any blocks which might be in the cache.
2757  */
2758 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2759 {
2760         struct inode *inode = mapping->host;
2761         journal_t *journal;
2762         int err;
2763
2764         /*
2765          * We can get here for an inline file via the FIBMAP ioctl
2766          */
2767         if (ext4_has_inline_data(inode))
2768                 return 0;
2769
2770         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2771                         test_opt(inode->i_sb, DELALLOC)) {
2772                 /*
2773                  * With delalloc we want to sync the file
2774                  * so that we can make sure we allocate
2775                  * blocks for file
2776                  */
2777                 filemap_write_and_wait(mapping);
2778         }
2779
2780         if (EXT4_JOURNAL(inode) &&
2781             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2782                 /*
2783                  * This is a REALLY heavyweight approach, but the use of
2784                  * bmap on dirty files is expected to be extremely rare:
2785                  * only if we run lilo or swapon on a freshly made file
2786                  * do we expect this to happen.
2787                  *
2788                  * (bmap requires CAP_SYS_RAWIO so this does not
2789                  * represent an unprivileged user DOS attack --- we'd be
2790                  * in trouble if mortal users could trigger this path at
2791                  * will.)
2792                  *
2793                  * NB. EXT4_STATE_JDATA is not set on files other than
2794                  * regular files.  If somebody wants to bmap a directory
2795                  * or symlink and gets confused because the buffer
2796                  * hasn't yet been flushed to disk, they deserve
2797                  * everything they get.
2798                  */
2799
2800                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2801                 journal = EXT4_JOURNAL(inode);
2802                 jbd2_journal_lock_updates(journal);
2803                 err = jbd2_journal_flush(journal);
2804                 jbd2_journal_unlock_updates(journal);
2805
2806                 if (err)
2807                         return 0;
2808         }
2809
2810         return generic_block_bmap(mapping, block, ext4_get_block);
2811 }
2812
2813 static int ext4_readpage(struct file *file, struct page *page)
2814 {
2815         int ret = -EAGAIN;
2816         struct inode *inode = page->mapping->host;
2817
2818         trace_ext4_readpage(page);
2819
2820         if (ext4_has_inline_data(inode))
2821                 ret = ext4_readpage_inline(inode, page);
2822
2823         if (ret == -EAGAIN)
2824                 return mpage_readpage(page, ext4_get_block);
2825
2826         return ret;
2827 }
2828
2829 static int
2830 ext4_readpages(struct file *file, struct address_space *mapping,
2831                 struct list_head *pages, unsigned nr_pages)
2832 {
2833         struct inode *inode = mapping->host;
2834
2835         /* If the file has inline data, no need to do readpages. */
2836         if (ext4_has_inline_data(inode))
2837                 return 0;
2838
2839         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2840 }
2841
2842 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2843                                 unsigned int length)
2844 {
2845         trace_ext4_invalidatepage(page, offset, length);
2846
2847         /* No journalling happens on data buffers when this function is used */
2848         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2849
2850         block_invalidatepage(page, offset, length);
2851 }
2852
2853 static int __ext4_journalled_invalidatepage(struct page *page,
2854                                             unsigned int offset,
2855                                             unsigned int length)
2856 {
2857         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2858
2859         trace_ext4_journalled_invalidatepage(page, offset, length);
2860
2861         /*
2862          * If it's a full truncate we just forget about the pending dirtying
2863          */
2864         if (offset == 0 && length == PAGE_CACHE_SIZE)
2865                 ClearPageChecked(page);
2866
2867         return jbd2_journal_invalidatepage(journal, page, offset, length);
2868 }
2869
2870 /* Wrapper for aops... */
2871 static void ext4_journalled_invalidatepage(struct page *page,
2872                                            unsigned int offset,
2873                                            unsigned int length)
2874 {
2875         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
2876 }
2877
2878 static int ext4_releasepage(struct page *page, gfp_t wait)
2879 {
2880         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2881
2882         trace_ext4_releasepage(page);
2883
2884         /* Page has dirty journalled data -> cannot release */
2885         if (PageChecked(page))
2886                 return 0;
2887         if (journal)
2888                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2889         else
2890                 return try_to_free_buffers(page);
2891 }
2892
2893 /*
2894  * ext4_get_block used when preparing for a DIO write or buffer write.
2895  * We allocate an uinitialized extent if blocks haven't been allocated.
2896  * The extent will be converted to initialized after the IO is complete.
2897  */
2898 int ext4_get_block_write(struct inode *inode, sector_t iblock,
2899                    struct buffer_head *bh_result, int create)
2900 {
2901         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2902                    inode->i_ino, create);
2903         return _ext4_get_block(inode, iblock, bh_result,
2904                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
2905 }
2906
2907 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2908                    struct buffer_head *bh_result, int create)
2909 {
2910         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2911                    inode->i_ino, create);
2912         return _ext4_get_block(inode, iblock, bh_result,
2913                                EXT4_GET_BLOCKS_NO_LOCK);
2914 }
2915
2916 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2917                             ssize_t size, void *private)
2918 {
2919         ext4_io_end_t *io_end = iocb->private;
2920
2921         /* if not async direct IO just return */
2922         if (!io_end)
2923                 return;
2924
2925         ext_debug("ext4_end_io_dio(): io_end 0x%p "
2926                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2927                   iocb->private, io_end->inode->i_ino, iocb, offset,
2928                   size);
2929
2930         iocb->private = NULL;
2931         io_end->offset = offset;
2932         io_end->size = size;
2933         ext4_put_io_end(io_end);
2934 }
2935
2936 /*
2937  * For ext4 extent files, ext4 will do direct-io write to holes,
2938  * preallocated extents, and those write extend the file, no need to
2939  * fall back to buffered IO.
2940  *
2941  * For holes, we fallocate those blocks, mark them as unwritten
2942  * If those blocks were preallocated, we mark sure they are split, but
2943  * still keep the range to write as unwritten.
2944  *
2945  * The unwritten extents will be converted to written when DIO is completed.
2946  * For async direct IO, since the IO may still pending when return, we
2947  * set up an end_io call back function, which will do the conversion
2948  * when async direct IO completed.
2949  *
2950  * If the O_DIRECT write will extend the file then add this inode to the
2951  * orphan list.  So recovery will truncate it back to the original size
2952  * if the machine crashes during the write.
2953  *
2954  */
2955 static ssize_t ext4_ext_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
2956                                   loff_t offset)
2957 {
2958         struct file *file = iocb->ki_filp;
2959         struct inode *inode = file->f_mapping->host;
2960         ssize_t ret;
2961         size_t count = iov_iter_count(iter);
2962         int overwrite = 0;
2963         get_block_t *get_block_func = NULL;
2964         int dio_flags = 0;
2965         loff_t final_size = offset + count;
2966         ext4_io_end_t *io_end = NULL;
2967
2968         /* Use the old path for reads and writes beyond i_size. */
2969         if (iov_iter_rw(iter) != WRITE || final_size > inode->i_size)
2970                 return ext4_ind_direct_IO(iocb, iter, offset);
2971
2972         BUG_ON(iocb->private == NULL);
2973
2974         /*
2975          * Make all waiters for direct IO properly wait also for extent
2976          * conversion. This also disallows race between truncate() and
2977          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
2978          */
2979         if (iov_iter_rw(iter) == WRITE)
2980                 inode_dio_begin(inode);
2981
2982         /* If we do a overwrite dio, i_mutex locking can be released */
2983         overwrite = *((int *)iocb->private);
2984
2985         if (overwrite) {
2986                 down_read(&EXT4_I(inode)->i_data_sem);
2987                 mutex_unlock(&inode->i_mutex);
2988         }
2989
2990         /*
2991          * We could direct write to holes and fallocate.
2992          *
2993          * Allocated blocks to fill the hole are marked as
2994          * unwritten to prevent parallel buffered read to expose
2995          * the stale data before DIO complete the data IO.
2996          *
2997          * As to previously fallocated extents, ext4 get_block will
2998          * just simply mark the buffer mapped but still keep the
2999          * extents unwritten.
3000          *
3001          * For non AIO case, we will convert those unwritten extents
3002          * to written after return back from blockdev_direct_IO.
3003          *
3004          * For async DIO, the conversion needs to be deferred when the
3005          * IO is completed. The ext4 end_io callback function will be
3006          * called to take care of the conversion work.  Here for async
3007          * case, we allocate an io_end structure to hook to the iocb.
3008          */
3009         iocb->private = NULL;
3010         ext4_inode_aio_set(inode, NULL);
3011         if (!is_sync_kiocb(iocb)) {
3012                 io_end = ext4_init_io_end(inode, GFP_NOFS);
3013                 if (!io_end) {
3014                         ret = -ENOMEM;
3015                         goto retake_lock;
3016                 }
3017                 /*
3018                  * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3019                  */
3020                 iocb->private = ext4_get_io_end(io_end);
3021                 /*
3022                  * we save the io structure for current async direct
3023                  * IO, so that later ext4_map_blocks() could flag the
3024                  * io structure whether there is a unwritten extents
3025                  * needs to be converted when IO is completed.
3026                  */
3027                 ext4_inode_aio_set(inode, io_end);
3028         }
3029
3030         if (overwrite) {
3031                 get_block_func = ext4_get_block_write_nolock;
3032         } else {
3033                 get_block_func = ext4_get_block_write;
3034                 dio_flags = DIO_LOCKING;
3035         }
3036         if (IS_DAX(inode))
3037                 ret = dax_do_io(iocb, inode, iter, offset, get_block_func,
3038                                 ext4_end_io_dio, dio_flags);
3039         else
3040                 ret = __blockdev_direct_IO(iocb, inode,
3041                                            inode->i_sb->s_bdev, iter, offset,
3042                                            get_block_func,
3043                                            ext4_end_io_dio, NULL, dio_flags);
3044
3045         /*
3046          * Put our reference to io_end. This can free the io_end structure e.g.
3047          * in sync IO case or in case of error. It can even perform extent
3048          * conversion if all bios we submitted finished before we got here.
3049          * Note that in that case iocb->private can be already set to NULL
3050          * here.
3051          */
3052         if (io_end) {
3053                 ext4_inode_aio_set(inode, NULL);
3054                 ext4_put_io_end(io_end);
3055                 /*
3056                  * When no IO was submitted ext4_end_io_dio() was not
3057                  * called so we have to put iocb's reference.
3058                  */
3059                 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3060                         WARN_ON(iocb->private != io_end);
3061                         WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3062                         ext4_put_io_end(io_end);
3063                         iocb->private = NULL;
3064                 }
3065         }
3066         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3067                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3068                 int err;
3069                 /*
3070                  * for non AIO case, since the IO is already
3071                  * completed, we could do the conversion right here
3072                  */
3073                 err = ext4_convert_unwritten_extents(NULL, inode,
3074                                                      offset, ret);
3075                 if (err < 0)
3076                         ret = err;
3077                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3078         }
3079
3080 retake_lock:
3081         if (iov_iter_rw(iter) == WRITE)
3082                 inode_dio_end(inode);
3083         /* take i_mutex locking again if we do a ovewrite dio */
3084         if (overwrite) {
3085                 up_read(&EXT4_I(inode)->i_data_sem);
3086                 mutex_lock(&inode->i_mutex);
3087         }
3088
3089         return ret;
3090 }
3091
3092 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3093                               loff_t offset)
3094 {
3095         struct file *file = iocb->ki_filp;
3096         struct inode *inode = file->f_mapping->host;
3097         size_t count = iov_iter_count(iter);
3098         ssize_t ret;
3099
3100         /*
3101          * If we are doing data journalling we don't support O_DIRECT
3102          */
3103         if (ext4_should_journal_data(inode))
3104                 return 0;
3105
3106         /* Let buffer I/O handle the inline data case. */
3107         if (ext4_has_inline_data(inode))
3108                 return 0;
3109
3110         trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3111         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3112                 ret = ext4_ext_direct_IO(iocb, iter, offset);
3113         else
3114                 ret = ext4_ind_direct_IO(iocb, iter, offset);
3115         trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3116         return ret;
3117 }
3118
3119 /*
3120  * Pages can be marked dirty completely asynchronously from ext4's journalling
3121  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3122  * much here because ->set_page_dirty is called under VFS locks.  The page is
3123  * not necessarily locked.
3124  *
3125  * We cannot just dirty the page and leave attached buffers clean, because the
3126  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3127  * or jbddirty because all the journalling code will explode.
3128  *
3129  * So what we do is to mark the page "pending dirty" and next time writepage
3130  * is called, propagate that into the buffers appropriately.
3131  */
3132 static int ext4_journalled_set_page_dirty(struct page *page)
3133 {
3134         SetPageChecked(page);
3135         return __set_page_dirty_nobuffers(page);
3136 }
3137
3138 static const struct address_space_operations ext4_aops = {
3139         .readpage               = ext4_readpage,
3140         .readpages              = ext4_readpages,
3141         .writepage              = ext4_writepage,
3142         .writepages             = ext4_writepages,
3143         .write_begin            = ext4_write_begin,
3144         .write_end              = ext4_write_end,
3145         .bmap                   = ext4_bmap,
3146         .invalidatepage         = ext4_invalidatepage,
3147         .releasepage            = ext4_releasepage,
3148         .direct_IO              = ext4_direct_IO,
3149         .migratepage            = buffer_migrate_page,
3150         .is_partially_uptodate  = block_is_partially_uptodate,
3151         .error_remove_page      = generic_error_remove_page,
3152 };
3153
3154 static const struct address_space_operations ext4_journalled_aops = {
3155         .readpage               = ext4_readpage,
3156         .readpages              = ext4_readpages,
3157         .writepage              = ext4_writepage,
3158         .writepages             = ext4_writepages,
3159         .write_begin            = ext4_write_begin,
3160         .write_end              = ext4_journalled_write_end,
3161         .set_page_dirty         = ext4_journalled_set_page_dirty,
3162         .bmap                   = ext4_bmap,
3163         .invalidatepage         = ext4_journalled_invalidatepage,
3164         .releasepage            = ext4_releasepage,
3165         .direct_IO              = ext4_direct_IO,
3166         .is_partially_uptodate  = block_is_partially_uptodate,
3167         .error_remove_page      = generic_error_remove_page,
3168 };
3169
3170 static const struct address_space_operations ext4_da_aops = {
3171         .readpage               = ext4_readpage,
3172         .readpages              = ext4_readpages,
3173         .writepage              = ext4_writepage,
3174         .writepages             = ext4_writepages,
3175         .write_begin            = ext4_da_write_begin,
3176         .write_end              = ext4_da_write_end,
3177         .bmap                   = ext4_bmap,
3178         .invalidatepage         = ext4_da_invalidatepage,
3179         .releasepage            = ext4_releasepage,
3180         .direct_IO              = ext4_direct_IO,
3181         .migratepage            = buffer_migrate_page,
3182         .is_partially_uptodate  = block_is_partially_uptodate,
3183         .error_remove_page      = generic_error_remove_page,
3184 };
3185
3186 void ext4_set_aops(struct inode *inode)
3187 {
3188         switch (ext4_inode_journal_mode(inode)) {
3189         case EXT4_INODE_ORDERED_DATA_MODE:
3190                 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3191                 break;
3192         case EXT4_INODE_WRITEBACK_DATA_MODE:
3193                 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3194                 break;
3195         case EXT4_INODE_JOURNAL_DATA_MODE:
3196                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3197                 return;
3198         default:
3199                 BUG();
3200         }
3201         if (test_opt(inode->i_sb, DELALLOC))
3202                 inode->i_mapping->a_ops = &ext4_da_aops;
3203         else
3204                 inode->i_mapping->a_ops = &ext4_aops;
3205 }
3206
3207 static int __ext4_block_zero_page_range(handle_t *handle,
3208                 struct address_space *mapping, loff_t from, loff_t length)
3209 {
3210         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3211         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3212         unsigned blocksize, pos;
3213         ext4_lblk_t iblock;
3214         struct inode *inode = mapping->host;
3215         struct buffer_head *bh;
3216         struct page *page;
3217         int err = 0;
3218
3219         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3220                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3221         if (!page)
3222                 return -ENOMEM;
3223
3224         blocksize = inode->i_sb->s_blocksize;
3225
3226         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3227
3228         if (!page_has_buffers(page))
3229                 create_empty_buffers(page, blocksize, 0);
3230
3231         /* Find the buffer that contains "offset" */
3232         bh = page_buffers(page);
3233         pos = blocksize;
3234         while (offset >= pos) {
3235                 bh = bh->b_this_page;
3236                 iblock++;
3237                 pos += blocksize;
3238         }
3239         if (buffer_freed(bh)) {
3240                 BUFFER_TRACE(bh, "freed: skip");
3241                 goto unlock;
3242         }
3243         if (!buffer_mapped(bh)) {
3244                 BUFFER_TRACE(bh, "unmapped");
3245                 ext4_get_block(inode, iblock, bh, 0);
3246                 /* unmapped? It's a hole - nothing to do */
3247                 if (!buffer_mapped(bh)) {
3248                         BUFFER_TRACE(bh, "still unmapped");
3249                         goto unlock;
3250                 }
3251         }
3252
3253         /* Ok, it's mapped. Make sure it's up-to-date */
3254         if (PageUptodate(page))
3255                 set_buffer_uptodate(bh);
3256
3257         if (!buffer_uptodate(bh)) {
3258                 err = -EIO;
3259                 ll_rw_block(READ, 1, &bh);
3260                 wait_on_buffer(bh);
3261                 /* Uhhuh. Read error. Complain and punt. */
3262                 if (!buffer_uptodate(bh))
3263                         goto unlock;
3264         }
3265         if (ext4_should_journal_data(inode)) {
3266                 BUFFER_TRACE(bh, "get write access");
3267                 err = ext4_journal_get_write_access(handle, bh);
3268                 if (err)
3269                         goto unlock;
3270         }
3271         zero_user(page, offset, length);
3272         BUFFER_TRACE(bh, "zeroed end of block");
3273
3274         if (ext4_should_journal_data(inode)) {
3275                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3276         } else {
3277                 err = 0;
3278                 mark_buffer_dirty(bh);
3279                 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3280                         err = ext4_jbd2_file_inode(handle, inode);
3281         }
3282
3283 unlock:
3284         unlock_page(page);
3285         page_cache_release(page);
3286         return err;
3287 }
3288
3289 /*
3290  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3291  * starting from file offset 'from'.  The range to be zero'd must
3292  * be contained with in one block.  If the specified range exceeds
3293  * the end of the block it will be shortened to end of the block
3294  * that cooresponds to 'from'
3295  */
3296 static int ext4_block_zero_page_range(handle_t *handle,
3297                 struct address_space *mapping, loff_t from, loff_t length)
3298 {
3299         struct inode *inode = mapping->host;
3300         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3301         unsigned blocksize = inode->i_sb->s_blocksize;
3302         unsigned max = blocksize - (offset & (blocksize - 1));
3303
3304         /*
3305          * correct length if it does not fall between
3306          * 'from' and the end of the block
3307          */
3308         if (length > max || length < 0)
3309                 length = max;
3310
3311         if (IS_DAX(inode))
3312                 return dax_zero_page_range(inode, from, length, ext4_get_block);
3313         return __ext4_block_zero_page_range(handle, mapping, from, length);
3314 }
3315
3316 /*
3317  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3318  * up to the end of the block which corresponds to `from'.
3319  * This required during truncate. We need to physically zero the tail end
3320  * of that block so it doesn't yield old data if the file is later grown.
3321  */
3322 static int ext4_block_truncate_page(handle_t *handle,
3323                 struct address_space *mapping, loff_t from)
3324 {
3325         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3326         unsigned length;
3327         unsigned blocksize;
3328         struct inode *inode = mapping->host;
3329
3330         blocksize = inode->i_sb->s_blocksize;
3331         length = blocksize - (offset & (blocksize - 1));
3332
3333         return ext4_block_zero_page_range(handle, mapping, from, length);
3334 }
3335
3336 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3337                              loff_t lstart, loff_t length)
3338 {
3339         struct super_block *sb = inode->i_sb;
3340         struct address_space *mapping = inode->i_mapping;
3341         unsigned partial_start, partial_end;
3342         ext4_fsblk_t start, end;
3343         loff_t byte_end = (lstart + length - 1);
3344         int err = 0;
3345
3346         partial_start = lstart & (sb->s_blocksize - 1);
3347         partial_end = byte_end & (sb->s_blocksize - 1);
3348
3349         start = lstart >> sb->s_blocksize_bits;
3350         end = byte_end >> sb->s_blocksize_bits;
3351
3352         /* Handle partial zero within the single block */
3353         if (start == end &&
3354             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3355                 err = ext4_block_zero_page_range(handle, mapping,
3356                                                  lstart, length);
3357                 return err;
3358         }
3359         /* Handle partial zero out on the start of the range */
3360         if (partial_start) {
3361                 err = ext4_block_zero_page_range(handle, mapping,
3362                                                  lstart, sb->s_blocksize);
3363                 if (err)
3364                         return err;
3365         }
3366         /* Handle partial zero out on the end of the range */
3367         if (partial_end != sb->s_blocksize - 1)
3368                 err = ext4_block_zero_page_range(handle, mapping,
3369                                                  byte_end - partial_end,
3370                                                  partial_end + 1);
3371         return err;
3372 }
3373
3374 int ext4_can_truncate(struct inode *inode)
3375 {
3376         if (S_ISREG(inode->i_mode))
3377                 return 1;
3378         if (S_ISDIR(inode->i_mode))
3379                 return 1;
3380         if (S_ISLNK(inode->i_mode))
3381                 return !ext4_inode_is_fast_symlink(inode);
3382         return 0;
3383 }
3384
3385 /*
3386  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3387  * associated with the given offset and length
3388  *
3389  * @inode:  File inode
3390  * @offset: The offset where the hole will begin
3391  * @len:    The length of the hole
3392  *
3393  * Returns: 0 on success or negative on failure
3394  */
3395
3396 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3397 {
3398         struct super_block *sb = inode->i_sb;
3399         ext4_lblk_t first_block, stop_block;
3400         struct address_space *mapping = inode->i_mapping;
3401         loff_t first_block_offset, last_block_offset;
3402         handle_t *handle;
3403         unsigned int credits;
3404         int ret = 0;
3405
3406         if (!S_ISREG(inode->i_mode))
3407                 return -EOPNOTSUPP;
3408
3409         trace_ext4_punch_hole(inode, offset, length, 0);
3410
3411         /*
3412          * Write out all dirty pages to avoid race conditions
3413          * Then release them.
3414          */
3415         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3416                 ret = filemap_write_and_wait_range(mapping, offset,
3417                                                    offset + length - 1);
3418                 if (ret)
3419                         return ret;
3420         }
3421
3422         mutex_lock(&inode->i_mutex);
3423
3424         /* No need to punch hole beyond i_size */
3425         if (offset >= inode->i_size)
3426                 goto out_mutex;
3427
3428         /*
3429          * If the hole extends beyond i_size, set the hole
3430          * to end after the page that contains i_size
3431          */
3432         if (offset + length > inode->i_size) {
3433                 length = inode->i_size +
3434                    PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3435                    offset;
3436         }
3437
3438         if (offset & (sb->s_blocksize - 1) ||
3439             (offset + length) & (sb->s_blocksize - 1)) {
3440                 /*
3441                  * Attach jinode to inode for jbd2 if we do any zeroing of
3442                  * partial block
3443                  */
3444                 ret = ext4_inode_attach_jinode(inode);
3445                 if (ret < 0)
3446                         goto out_mutex;
3447
3448         }
3449
3450         first_block_offset = round_up(offset, sb->s_blocksize);
3451         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3452
3453         /* Now release the pages and zero block aligned part of pages*/
3454         if (last_block_offset > first_block_offset)
3455                 truncate_pagecache_range(inode, first_block_offset,
3456                                          last_block_offset);
3457
3458         /* Wait all existing dio workers, newcomers will block on i_mutex */
3459         ext4_inode_block_unlocked_dio(inode);
3460         inode_dio_wait(inode);
3461
3462         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3463                 credits = ext4_writepage_trans_blocks(inode);
3464         else
3465                 credits = ext4_blocks_for_truncate(inode);
3466         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3467         if (IS_ERR(handle)) {
3468                 ret = PTR_ERR(handle);
3469                 ext4_std_error(sb, ret);
3470                 goto out_dio;
3471         }
3472
3473         ret = ext4_zero_partial_blocks(handle, inode, offset,
3474                                        length);
3475         if (ret)
3476                 goto out_stop;
3477
3478         first_block = (offset + sb->s_blocksize - 1) >>
3479                 EXT4_BLOCK_SIZE_BITS(sb);
3480         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3481
3482         /* If there are no blocks to remove, return now */
3483         if (first_block >= stop_block)
3484                 goto out_stop;
3485
3486         down_write(&EXT4_I(inode)->i_data_sem);
3487         ext4_discard_preallocations(inode);
3488
3489         ret = ext4_es_remove_extent(inode, first_block,
3490                                     stop_block - first_block);
3491         if (ret) {
3492                 up_write(&EXT4_I(inode)->i_data_sem);
3493                 goto out_stop;
3494         }
3495
3496         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3497                 ret = ext4_ext_remove_space(inode, first_block,
3498                                             stop_block - 1);
3499         else
3500                 ret = ext4_ind_remove_space(handle, inode, first_block,
3501                                             stop_block);
3502
3503         up_write(&EXT4_I(inode)->i_data_sem);
3504         if (IS_SYNC(inode))
3505                 ext4_handle_sync(handle);
3506
3507         /* Now release the pages again to reduce race window */
3508         if (last_block_offset > first_block_offset)
3509                 truncate_pagecache_range(inode, first_block_offset,
3510                                          last_block_offset);
3511
3512         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3513         ext4_mark_inode_dirty(handle, inode);
3514 out_stop:
3515         ext4_journal_stop(handle);
3516 out_dio:
3517         ext4_inode_resume_unlocked_dio(inode);
3518 out_mutex:
3519         mutex_unlock(&inode->i_mutex);
3520         return ret;
3521 }
3522
3523 int ext4_inode_attach_jinode(struct inode *inode)
3524 {
3525         struct ext4_inode_info *ei = EXT4_I(inode);
3526         struct jbd2_inode *jinode;
3527
3528         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3529                 return 0;
3530
3531         jinode = jbd2_alloc_inode(GFP_KERNEL);
3532         spin_lock(&inode->i_lock);
3533         if (!ei->jinode) {
3534                 if (!jinode) {
3535                         spin_unlock(&inode->i_lock);
3536                         return -ENOMEM;
3537                 }
3538                 ei->jinode = jinode;
3539                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3540                 jinode = NULL;
3541         }
3542         spin_unlock(&inode->i_lock);
3543         if (unlikely(jinode != NULL))
3544                 jbd2_free_inode(jinode);
3545         return 0;
3546 }
3547
3548 /*
3549  * ext4_truncate()
3550  *
3551  * We block out ext4_get_block() block instantiations across the entire
3552  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3553  * simultaneously on behalf of the same inode.
3554  *
3555  * As we work through the truncate and commit bits of it to the journal there
3556  * is one core, guiding principle: the file's tree must always be consistent on
3557  * disk.  We must be able to restart the truncate after a crash.
3558  *
3559  * The file's tree may be transiently inconsistent in memory (although it
3560  * probably isn't), but whenever we close off and commit a journal transaction,
3561  * the contents of (the filesystem + the journal) must be consistent and
3562  * restartable.  It's pretty simple, really: bottom up, right to left (although
3563  * left-to-right works OK too).
3564  *
3565  * Note that at recovery time, journal replay occurs *before* the restart of
3566  * truncate against the orphan inode list.
3567  *
3568  * The committed inode has the new, desired i_size (which is the same as
3569  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3570  * that this inode's truncate did not complete and it will again call
3571  * ext4_truncate() to have another go.  So there will be instantiated blocks
3572  * to the right of the truncation point in a crashed ext4 filesystem.  But
3573  * that's fine - as long as they are linked from the inode, the post-crash
3574  * ext4_truncate() run will find them and release them.
3575  */
3576 void ext4_truncate(struct inode *inode)
3577 {
3578         struct ext4_inode_info *ei = EXT4_I(inode);
3579         unsigned int credits;
3580         handle_t *handle;
3581         struct address_space *mapping = inode->i_mapping;
3582
3583         /*
3584          * There is a possibility that we're either freeing the inode
3585          * or it's a completely new inode. In those cases we might not
3586          * have i_mutex locked because it's not necessary.
3587          */
3588         if (!(inode->i_state & (I_NEW|I_FREEING)))
3589                 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3590         trace_ext4_truncate_enter(inode);
3591
3592         if (!ext4_can_truncate(inode))
3593                 return;
3594
3595         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3596
3597         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3598                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3599
3600         if (ext4_has_inline_data(inode)) {
3601                 int has_inline = 1;
3602
3603                 ext4_inline_data_truncate(inode, &has_inline);
3604                 if (has_inline)
3605                         return;
3606         }
3607
3608         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3609         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3610                 if (ext4_inode_attach_jinode(inode) < 0)
3611                         return;
3612         }
3613
3614         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3615                 credits = ext4_writepage_trans_blocks(inode);
3616         else
3617                 credits = ext4_blocks_for_truncate(inode);
3618
3619         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3620         if (IS_ERR(handle)) {
3621                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3622                 return;
3623         }
3624
3625         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3626                 ext4_block_truncate_page(handle, mapping, inode->i_size);
3627
3628         /*
3629          * We add the inode to the orphan list, so that if this
3630          * truncate spans multiple transactions, and we crash, we will
3631          * resume the truncate when the filesystem recovers.  It also
3632          * marks the inode dirty, to catch the new size.
3633          *
3634          * Implication: the file must always be in a sane, consistent
3635          * truncatable state while each transaction commits.
3636          */
3637         if (ext4_orphan_add(handle, inode))
3638                 goto out_stop;
3639
3640         down_write(&EXT4_I(inode)->i_data_sem);
3641
3642         ext4_discard_preallocations(inode);
3643
3644         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3645                 ext4_ext_truncate(handle, inode);
3646         else
3647                 ext4_ind_truncate(handle, inode);
3648
3649         up_write(&ei->i_data_sem);
3650
3651         if (IS_SYNC(inode))
3652                 ext4_handle_sync(handle);
3653
3654 out_stop:
3655         /*
3656          * If this was a simple ftruncate() and the file will remain alive,
3657          * then we need to clear up the orphan record which we created above.
3658          * However, if this was a real unlink then we were called by
3659          * ext4_evict_inode(), and we allow that function to clean up the
3660          * orphan info for us.
3661          */
3662         if (inode->i_nlink)
3663                 ext4_orphan_del(handle, inode);
3664
3665         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3666         ext4_mark_inode_dirty(handle, inode);
3667         ext4_journal_stop(handle);
3668
3669         trace_ext4_truncate_exit(inode);
3670 }
3671
3672 /*
3673  * ext4_get_inode_loc returns with an extra refcount against the inode's
3674  * underlying buffer_head on success. If 'in_mem' is true, we have all
3675  * data in memory that is needed to recreate the on-disk version of this
3676  * inode.
3677  */
3678 static int __ext4_get_inode_loc(struct inode *inode,
3679                                 struct ext4_iloc *iloc, int in_mem)
3680 {
3681         struct ext4_group_desc  *gdp;
3682         struct buffer_head      *bh;
3683         struct super_block      *sb = inode->i_sb;
3684         ext4_fsblk_t            block;
3685         int                     inodes_per_block, inode_offset;
3686
3687         iloc->bh = NULL;
3688         if (!ext4_valid_inum(sb, inode->i_ino))
3689                 return -EIO;
3690
3691         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3692         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3693         if (!gdp)
3694                 return -EIO;
3695
3696         /*
3697          * Figure out the offset within the block group inode table
3698          */
3699         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3700         inode_offset = ((inode->i_ino - 1) %
3701                         EXT4_INODES_PER_GROUP(sb));
3702         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3703         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3704
3705         bh = sb_getblk(sb, block);
3706         if (unlikely(!bh))
3707                 return -ENOMEM;
3708         if (!buffer_uptodate(bh)) {
3709                 lock_buffer(bh);
3710
3711                 /*
3712                  * If the buffer has the write error flag, we have failed
3713                  * to write out another inode in the same block.  In this
3714                  * case, we don't have to read the block because we may
3715                  * read the old inode data successfully.
3716                  */
3717                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3718                         set_buffer_uptodate(bh);
3719
3720                 if (buffer_uptodate(bh)) {
3721                         /* someone brought it uptodate while we waited */
3722                         unlock_buffer(bh);
3723                         goto has_buffer;
3724                 }
3725
3726                 /*
3727                  * If we have all information of the inode in memory and this
3728                  * is the only valid inode in the block, we need not read the
3729                  * block.
3730                  */
3731                 if (in_mem) {
3732                         struct buffer_head *bitmap_bh;
3733                         int i, start;
3734
3735                         start = inode_offset & ~(inodes_per_block - 1);
3736
3737                         /* Is the inode bitmap in cache? */
3738                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3739                         if (unlikely(!bitmap_bh))
3740                                 goto make_io;
3741
3742                         /*
3743                          * If the inode bitmap isn't in cache then the
3744                          * optimisation may end up performing two reads instead
3745                          * of one, so skip it.
3746                          */
3747                         if (!buffer_uptodate(bitmap_bh)) {
3748                                 brelse(bitmap_bh);
3749                                 goto make_io;
3750                         }
3751                         for (i = start; i < start + inodes_per_block; i++) {
3752                                 if (i == inode_offset)
3753                                         continue;
3754                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3755                                         break;
3756                         }
3757                         brelse(bitmap_bh);
3758                         if (i == start + inodes_per_block) {
3759                                 /* all other inodes are free, so skip I/O */
3760                                 memset(bh->b_data, 0, bh->b_size);
3761                                 set_buffer_uptodate(bh);
3762                                 unlock_buffer(bh);
3763                                 goto has_buffer;
3764                         }
3765                 }
3766
3767 make_io:
3768                 /*
3769                  * If we need to do any I/O, try to pre-readahead extra
3770                  * blocks from the inode table.
3771                  */
3772                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3773                         ext4_fsblk_t b, end, table;
3774                         unsigned num;
3775                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3776
3777                         table = ext4_inode_table(sb, gdp);
3778                         /* s_inode_readahead_blks is always a power of 2 */
3779                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
3780                         if (table > b)
3781                                 b = table;
3782                         end = b + ra_blks;
3783                         num = EXT4_INODES_PER_GROUP(sb);
3784                         if (ext4_has_group_desc_csum(sb))
3785                                 num -= ext4_itable_unused_count(sb, gdp);
3786                         table += num / inodes_per_block;
3787                         if (end > table)
3788                                 end = table;
3789                         while (b <= end)
3790                                 sb_breadahead(sb, b++);
3791                 }
3792
3793                 /*
3794                  * There are other valid inodes in the buffer, this inode
3795                  * has in-inode xattrs, or we don't have this inode in memory.
3796                  * Read the block from disk.
3797                  */
3798                 trace_ext4_load_inode(inode);
3799                 get_bh(bh);
3800                 bh->b_end_io = end_buffer_read_sync;
3801                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3802                 wait_on_buffer(bh);
3803                 if (!buffer_uptodate(bh)) {
3804                         EXT4_ERROR_INODE_BLOCK(inode, block,
3805                                                "unable to read itable block");
3806                         brelse(bh);
3807                         return -EIO;
3808                 }
3809         }
3810 has_buffer:
3811         iloc->bh = bh;
3812         return 0;
3813 }
3814
3815 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3816 {
3817         /* We have all inode data except xattrs in memory here. */
3818         return __ext4_get_inode_loc(inode, iloc,
3819                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3820 }
3821
3822 void ext4_set_inode_flags(struct inode *inode)
3823 {
3824         unsigned int flags = EXT4_I(inode)->i_flags;
3825         unsigned int new_fl = 0;
3826
3827         if (flags & EXT4_SYNC_FL)
3828                 new_fl |= S_SYNC;
3829         if (flags & EXT4_APPEND_FL)
3830                 new_fl |= S_APPEND;
3831         if (flags & EXT4_IMMUTABLE_FL)
3832                 new_fl |= S_IMMUTABLE;
3833         if (flags & EXT4_NOATIME_FL)
3834                 new_fl |= S_NOATIME;
3835         if (flags & EXT4_DIRSYNC_FL)
3836                 new_fl |= S_DIRSYNC;
3837         if (test_opt(inode->i_sb, DAX))
3838                 new_fl |= S_DAX;
3839         inode_set_flags(inode, new_fl,
3840                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
3841 }
3842
3843 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3844 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3845 {
3846         unsigned int vfs_fl;
3847         unsigned long old_fl, new_fl;
3848
3849         do {
3850                 vfs_fl = ei->vfs_inode.i_flags;
3851                 old_fl = ei->i_flags;
3852                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3853                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3854                                 EXT4_DIRSYNC_FL);
3855                 if (vfs_fl & S_SYNC)
3856                         new_fl |= EXT4_SYNC_FL;
3857                 if (vfs_fl & S_APPEND)
3858                         new_fl |= EXT4_APPEND_FL;
3859                 if (vfs_fl & S_IMMUTABLE)
3860                         new_fl |= EXT4_IMMUTABLE_FL;
3861                 if (vfs_fl & S_NOATIME)
3862                         new_fl |= EXT4_NOATIME_FL;
3863                 if (vfs_fl & S_DIRSYNC)
3864                         new_fl |= EXT4_DIRSYNC_FL;
3865         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3866 }
3867
3868 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3869                                   struct ext4_inode_info *ei)
3870 {
3871         blkcnt_t i_blocks ;
3872         struct inode *inode = &(ei->vfs_inode);
3873         struct super_block *sb = inode->i_sb;
3874
3875         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3876                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3877                 /* we are using combined 48 bit field */
3878                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3879                                         le32_to_cpu(raw_inode->i_blocks_lo);
3880                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3881                         /* i_blocks represent file system block size */
3882                         return i_blocks  << (inode->i_blkbits - 9);
3883                 } else {
3884                         return i_blocks;
3885                 }
3886         } else {
3887                 return le32_to_cpu(raw_inode->i_blocks_lo);
3888         }
3889 }
3890
3891 static inline void ext4_iget_extra_inode(struct inode *inode,
3892                                          struct ext4_inode *raw_inode,
3893                                          struct ext4_inode_info *ei)
3894 {
3895         __le32 *magic = (void *)raw_inode +
3896                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3897         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3898                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3899                 ext4_find_inline_data_nolock(inode);
3900         } else
3901                 EXT4_I(inode)->i_inline_off = 0;
3902 }
3903
3904 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3905 {
3906         struct ext4_iloc iloc;
3907         struct ext4_inode *raw_inode;
3908         struct ext4_inode_info *ei;
3909         struct inode *inode;
3910         journal_t *journal = EXT4_SB(sb)->s_journal;
3911         long ret;
3912         int block;
3913         uid_t i_uid;
3914         gid_t i_gid;
3915
3916         inode = iget_locked(sb, ino);
3917         if (!inode)
3918                 return ERR_PTR(-ENOMEM);
3919         if (!(inode->i_state & I_NEW))
3920                 return inode;
3921
3922         ei = EXT4_I(inode);
3923         iloc.bh = NULL;
3924
3925         ret = __ext4_get_inode_loc(inode, &iloc, 0);
3926         if (ret < 0)
3927                 goto bad_inode;
3928         raw_inode = ext4_raw_inode(&iloc);
3929
3930         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3931                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3932                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3933                     EXT4_INODE_SIZE(inode->i_sb)) {
3934                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3935                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3936                                 EXT4_INODE_SIZE(inode->i_sb));
3937                         ret = -EIO;
3938                         goto bad_inode;
3939                 }
3940         } else
3941                 ei->i_extra_isize = 0;
3942
3943         /* Precompute checksum seed for inode metadata */
3944         if (ext4_has_metadata_csum(sb)) {
3945                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3946                 __u32 csum;
3947                 __le32 inum = cpu_to_le32(inode->i_ino);
3948                 __le32 gen = raw_inode->i_generation;
3949                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3950                                    sizeof(inum));
3951                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3952                                               sizeof(gen));
3953         }
3954
3955         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3956                 EXT4_ERROR_INODE(inode, "checksum invalid");
3957                 ret = -EIO;
3958                 goto bad_inode;
3959         }
3960
3961         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3962         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3963         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3964         if (!(test_opt(inode->i_sb, NO_UID32))) {
3965                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3966                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3967         }
3968         i_uid_write(inode, i_uid);
3969         i_gid_write(inode, i_gid);
3970         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3971
3972         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
3973         ei->i_inline_off = 0;
3974         ei->i_dir_start_lookup = 0;
3975         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3976         /* We now have enough fields to check if the inode was active or not.
3977          * This is needed because nfsd might try to access dead inodes
3978          * the test is that same one that e2fsck uses
3979          * NeilBrown 1999oct15
3980          */
3981         if (inode->i_nlink == 0) {
3982                 if ((inode->i_mode == 0 ||
3983                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
3984                     ino != EXT4_BOOT_LOADER_INO) {
3985                         /* this inode is deleted */
3986                         ret = -ESTALE;
3987                         goto bad_inode;
3988                 }
3989                 /* The only unlinked inodes we let through here have
3990                  * valid i_mode and are being read by the orphan
3991                  * recovery code: that's fine, we're about to complete
3992                  * the process of deleting those.
3993                  * OR it is the EXT4_BOOT_LOADER_INO which is
3994                  * not initialized on a new filesystem. */
3995         }
3996         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3997         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3998         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3999         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4000                 ei->i_file_acl |=
4001                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4002         inode->i_size = ext4_isize(raw_inode);
4003         ei->i_disksize = inode->i_size;
4004 #ifdef CONFIG_QUOTA
4005         ei->i_reserved_quota = 0;
4006 #endif
4007         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4008         ei->i_block_group = iloc.block_group;
4009         ei->i_last_alloc_group = ~0;
4010         /*
4011          * NOTE! The in-memory inode i_data array is in little-endian order
4012          * even on big-endian machines: we do NOT byteswap the block numbers!
4013          */
4014         for (block = 0; block < EXT4_N_BLOCKS; block++)
4015                 ei->i_data[block] = raw_inode->i_block[block];
4016         INIT_LIST_HEAD(&ei->i_orphan);
4017
4018         /*
4019          * Set transaction id's of transactions that have to be committed
4020          * to finish f[data]sync. We set them to currently running transaction
4021          * as we cannot be sure that the inode or some of its metadata isn't
4022          * part of the transaction - the inode could have been reclaimed and
4023          * now it is reread from disk.
4024          */
4025         if (journal) {
4026                 transaction_t *transaction;
4027                 tid_t tid;
4028
4029                 read_lock(&journal->j_state_lock);
4030                 if (journal->j_running_transaction)
4031                         transaction = journal->j_running_transaction;
4032                 else
4033                         transaction = journal->j_committing_transaction;
4034                 if (transaction)
4035                         tid = transaction->t_tid;
4036                 else
4037                         tid = journal->j_commit_sequence;
4038                 read_unlock(&journal->j_state_lock);
4039                 ei->i_sync_tid = tid;
4040                 ei->i_datasync_tid = tid;
4041         }
4042
4043         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4044                 if (ei->i_extra_isize == 0) {
4045                         /* The extra space is currently unused. Use it. */
4046                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4047                                             EXT4_GOOD_OLD_INODE_SIZE;
4048                 } else {
4049                         ext4_iget_extra_inode(inode, raw_inode, ei);
4050                 }
4051         }
4052
4053         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4054         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4055         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4056         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4057
4058         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4059                 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4060                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4061                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4062                                 inode->i_version |=
4063                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4064                 }
4065         }
4066
4067         ret = 0;
4068         if (ei->i_file_acl &&
4069             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4070                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4071                                  ei->i_file_acl);
4072                 ret = -EIO;
4073                 goto bad_inode;
4074         } else if (!ext4_has_inline_data(inode)) {
4075                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4076                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4077                             (S_ISLNK(inode->i_mode) &&
4078                              !ext4_inode_is_fast_symlink(inode))))
4079                                 /* Validate extent which is part of inode */
4080                                 ret = ext4_ext_check_inode(inode);
4081                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4082                            (S_ISLNK(inode->i_mode) &&
4083                             !ext4_inode_is_fast_symlink(inode))) {
4084                         /* Validate block references which are part of inode */
4085                         ret = ext4_ind_check_inode(inode);
4086                 }
4087         }
4088         if (ret)
4089                 goto bad_inode;
4090
4091         if (S_ISREG(inode->i_mode)) {
4092                 inode->i_op = &ext4_file_inode_operations;
4093                 if (test_opt(inode->i_sb, DAX))
4094                         inode->i_fop = &ext4_dax_file_operations;
4095                 else
4096                         inode->i_fop = &ext4_file_operations;
4097                 ext4_set_aops(inode);
4098         } else if (S_ISDIR(inode->i_mode)) {
4099                 inode->i_op = &ext4_dir_inode_operations;
4100                 inode->i_fop = &ext4_dir_operations;
4101         } else if (S_ISLNK(inode->i_mode)) {
4102                 if (ext4_inode_is_fast_symlink(inode)) {
4103                         inode->i_op = &ext4_fast_symlink_inode_operations;
4104                         nd_terminate_link(ei->i_data, inode->i_size,
4105                                 sizeof(ei->i_data) - 1);
4106                 } else {
4107                         inode->i_op = &ext4_symlink_inode_operations;
4108                         ext4_set_aops(inode);
4109                 }
4110         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4111               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4112                 inode->i_op = &ext4_special_inode_operations;
4113                 if (raw_inode->i_block[0])
4114                         init_special_inode(inode, inode->i_mode,
4115                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4116                 else
4117                         init_special_inode(inode, inode->i_mode,
4118                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4119         } else if (ino == EXT4_BOOT_LOADER_INO) {
4120                 make_bad_inode(inode);
4121         } else {
4122                 ret = -EIO;
4123                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4124                 goto bad_inode;
4125         }
4126         brelse(iloc.bh);
4127         ext4_set_inode_flags(inode);
4128         unlock_new_inode(inode);
4129         return inode;
4130
4131 bad_inode:
4132         brelse(iloc.bh);
4133         iget_failed(inode);
4134         return ERR_PTR(ret);
4135 }
4136
4137 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4138 {
4139         if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4140                 return ERR_PTR(-EIO);
4141         return ext4_iget(sb, ino);
4142 }
4143
4144 static int ext4_inode_blocks_set(handle_t *handle,
4145                                 struct ext4_inode *raw_inode,
4146                                 struct ext4_inode_info *ei)
4147 {
4148         struct inode *inode = &(ei->vfs_inode);
4149         u64 i_blocks = inode->i_blocks;
4150         struct super_block *sb = inode->i_sb;
4151
4152         if (i_blocks <= ~0U) {
4153                 /*
4154                  * i_blocks can be represented in a 32 bit variable
4155                  * as multiple of 512 bytes
4156                  */
4157                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4158                 raw_inode->i_blocks_high = 0;
4159                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4160                 return 0;
4161         }
4162         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4163                 return -EFBIG;
4164
4165         if (i_blocks <= 0xffffffffffffULL) {
4166                 /*
4167                  * i_blocks can be represented in a 48 bit variable
4168                  * as multiple of 512 bytes
4169                  */
4170                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4171                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4172                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4173         } else {
4174                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4175                 /* i_block is stored in file system block size */
4176                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4177                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4178                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4179         }
4180         return 0;
4181 }
4182
4183 struct other_inode {
4184         unsigned long           orig_ino;
4185         struct ext4_inode       *raw_inode;
4186 };
4187
4188 static int other_inode_match(struct inode * inode, unsigned long ino,
4189                              void *data)
4190 {
4191         struct other_inode *oi = (struct other_inode *) data;
4192
4193         if ((inode->i_ino != ino) ||
4194             (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4195                                I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4196             ((inode->i_state & I_DIRTY_TIME) == 0))
4197                 return 0;
4198         spin_lock(&inode->i_lock);
4199         if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4200                                 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4201             (inode->i_state & I_DIRTY_TIME)) {
4202                 struct ext4_inode_info  *ei = EXT4_I(inode);
4203
4204                 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4205                 spin_unlock(&inode->i_lock);
4206
4207                 spin_lock(&ei->i_raw_lock);
4208                 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4209                 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4210                 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4211                 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4212                 spin_unlock(&ei->i_raw_lock);
4213                 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4214                 return -1;
4215         }
4216         spin_unlock(&inode->i_lock);
4217         return -1;
4218 }
4219
4220 /*
4221  * Opportunistically update the other time fields for other inodes in
4222  * the same inode table block.
4223  */
4224 static void ext4_update_other_inodes_time(struct super_block *sb,
4225                                           unsigned long orig_ino, char *buf)
4226 {
4227         struct other_inode oi;
4228         unsigned long ino;
4229         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4230         int inode_size = EXT4_INODE_SIZE(sb);
4231
4232         oi.orig_ino = orig_ino;
4233         ino = orig_ino & ~(inodes_per_block - 1);
4234         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4235                 if (ino == orig_ino)
4236                         continue;
4237                 oi.raw_inode = (struct ext4_inode *) buf;
4238                 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4239         }
4240 }
4241
4242 /*
4243  * Post the struct inode info into an on-disk inode location in the
4244  * buffer-cache.  This gobbles the caller's reference to the
4245  * buffer_head in the inode location struct.
4246  *
4247  * The caller must have write access to iloc->bh.
4248  */
4249 static int ext4_do_update_inode(handle_t *handle,
4250                                 struct inode *inode,
4251                                 struct ext4_iloc *iloc)
4252 {
4253         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4254         struct ext4_inode_info *ei = EXT4_I(inode);
4255         struct buffer_head *bh = iloc->bh;
4256         struct super_block *sb = inode->i_sb;
4257         int err = 0, rc, block;
4258         int need_datasync = 0, set_large_file = 0;
4259         uid_t i_uid;
4260         gid_t i_gid;
4261
4262         spin_lock(&ei->i_raw_lock);
4263
4264         /* For fields not tracked in the in-memory inode,
4265          * initialise them to zero for new inodes. */
4266         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4267                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4268
4269         ext4_get_inode_flags(ei);
4270         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4271         i_uid = i_uid_read(inode);
4272         i_gid = i_gid_read(inode);
4273         if (!(test_opt(inode->i_sb, NO_UID32))) {
4274                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4275                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4276 /*
4277  * Fix up interoperability with old kernels. Otherwise, old inodes get
4278  * re-used with the upper 16 bits of the uid/gid intact
4279  */
4280                 if (!ei->i_dtime) {
4281                         raw_inode->i_uid_high =
4282                                 cpu_to_le16(high_16_bits(i_uid));
4283                         raw_inode->i_gid_high =
4284                                 cpu_to_le16(high_16_bits(i_gid));
4285                 } else {
4286                         raw_inode->i_uid_high = 0;
4287                         raw_inode->i_gid_high = 0;
4288                 }
4289         } else {
4290                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4291                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4292                 raw_inode->i_uid_high = 0;
4293                 raw_inode->i_gid_high = 0;
4294         }
4295         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4296
4297         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4298         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4299         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4300         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4301
4302         err = ext4_inode_blocks_set(handle, raw_inode, ei);
4303         if (err) {
4304                 spin_unlock(&ei->i_raw_lock);
4305                 goto out_brelse;
4306         }
4307         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4308         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4309         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4310                 raw_inode->i_file_acl_high =
4311                         cpu_to_le16(ei->i_file_acl >> 32);
4312         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4313         if (ei->i_disksize != ext4_isize(raw_inode)) {
4314                 ext4_isize_set(raw_inode, ei->i_disksize);
4315                 need_datasync = 1;
4316         }
4317         if (ei->i_disksize > 0x7fffffffULL) {
4318                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4319                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4320                                 EXT4_SB(sb)->s_es->s_rev_level ==
4321                     cpu_to_le32(EXT4_GOOD_OLD_REV))
4322                         set_large_file = 1;
4323         }
4324         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4325         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4326                 if (old_valid_dev(inode->i_rdev)) {
4327                         raw_inode->i_block[0] =
4328                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4329                         raw_inode->i_block[1] = 0;
4330                 } else {
4331                         raw_inode->i_block[0] = 0;
4332                         raw_inode->i_block[1] =
4333                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4334                         raw_inode->i_block[2] = 0;
4335                 }
4336         } else if (!ext4_has_inline_data(inode)) {
4337                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4338                         raw_inode->i_block[block] = ei->i_data[block];
4339         }
4340
4341         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4342                 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4343                 if (ei->i_extra_isize) {
4344                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4345                                 raw_inode->i_version_hi =
4346                                         cpu_to_le32(inode->i_version >> 32);
4347                         raw_inode->i_extra_isize =
4348                                 cpu_to_le16(ei->i_extra_isize);
4349                 }
4350         }
4351         ext4_inode_csum_set(inode, raw_inode, ei);
4352         spin_unlock(&ei->i_raw_lock);
4353         if (inode->i_sb->s_flags & MS_LAZYTIME)
4354                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4355                                               bh->b_data);
4356
4357         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4358         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4359         if (!err)
4360                 err = rc;
4361         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4362         if (set_large_file) {
4363                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4364                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4365                 if (err)
4366                         goto out_brelse;
4367                 ext4_update_dynamic_rev(sb);
4368                 EXT4_SET_RO_COMPAT_FEATURE(sb,
4369                                            EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4370                 ext4_handle_sync(handle);
4371                 err = ext4_handle_dirty_super(handle, sb);
4372         }
4373         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4374 out_brelse:
4375         brelse(bh);
4376         ext4_std_error(inode->i_sb, err);
4377         return err;
4378 }
4379
4380 /*
4381  * ext4_write_inode()
4382  *
4383  * We are called from a few places:
4384  *
4385  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4386  *   Here, there will be no transaction running. We wait for any running
4387  *   transaction to commit.
4388  *
4389  * - Within flush work (sys_sync(), kupdate and such).
4390  *   We wait on commit, if told to.
4391  *
4392  * - Within iput_final() -> write_inode_now()
4393  *   We wait on commit, if told to.
4394  *
4395  * In all cases it is actually safe for us to return without doing anything,
4396  * because the inode has been copied into a raw inode buffer in
4397  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
4398  * writeback.
4399  *
4400  * Note that we are absolutely dependent upon all inode dirtiers doing the
4401  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4402  * which we are interested.
4403  *
4404  * It would be a bug for them to not do this.  The code:
4405  *
4406  *      mark_inode_dirty(inode)
4407  *      stuff();
4408  *      inode->i_size = expr;
4409  *
4410  * is in error because write_inode() could occur while `stuff()' is running,
4411  * and the new i_size will be lost.  Plus the inode will no longer be on the
4412  * superblock's dirty inode list.
4413  */
4414 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4415 {
4416         int err;
4417
4418         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4419                 return 0;
4420
4421         if (EXT4_SB(inode->i_sb)->s_journal) {
4422                 if (ext4_journal_current_handle()) {
4423                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4424                         dump_stack();
4425                         return -EIO;
4426                 }
4427
4428                 /*
4429                  * No need to force transaction in WB_SYNC_NONE mode. Also
4430                  * ext4_sync_fs() will force the commit after everything is
4431                  * written.
4432                  */
4433                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4434                         return 0;
4435
4436                 err = ext4_force_commit(inode->i_sb);
4437         } else {
4438                 struct ext4_iloc iloc;
4439
4440                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4441                 if (err)
4442                         return err;
4443                 /*
4444                  * sync(2) will flush the whole buffer cache. No need to do
4445                  * it here separately for each inode.
4446                  */
4447                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4448                         sync_dirty_buffer(iloc.bh);
4449                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4450                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4451                                          "IO error syncing inode");
4452                         err = -EIO;
4453                 }
4454                 brelse(iloc.bh);
4455         }
4456         return err;
4457 }
4458
4459 /*
4460  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4461  * buffers that are attached to a page stradding i_size and are undergoing
4462  * commit. In that case we have to wait for commit to finish and try again.
4463  */
4464 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4465 {
4466         struct page *page;
4467         unsigned offset;
4468         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4469         tid_t commit_tid = 0;
4470         int ret;
4471
4472         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4473         /*
4474          * All buffers in the last page remain valid? Then there's nothing to
4475          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4476          * blocksize case
4477          */
4478         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4479                 return;
4480         while (1) {
4481                 page = find_lock_page(inode->i_mapping,
4482                                       inode->i_size >> PAGE_CACHE_SHIFT);
4483                 if (!page)
4484                         return;
4485                 ret = __ext4_journalled_invalidatepage(page, offset,
4486                                                 PAGE_CACHE_SIZE - offset);
4487                 unlock_page(page);
4488                 page_cache_release(page);
4489                 if (ret != -EBUSY)
4490                         return;
4491                 commit_tid = 0;
4492                 read_lock(&journal->j_state_lock);
4493                 if (journal->j_committing_transaction)
4494                         commit_tid = journal->j_committing_transaction->t_tid;
4495                 read_unlock(&journal->j_state_lock);
4496                 if (commit_tid)
4497                         jbd2_log_wait_commit(journal, commit_tid);
4498         }
4499 }
4500
4501 /*
4502  * ext4_setattr()
4503  *
4504  * Called from notify_change.
4505  *
4506  * We want to trap VFS attempts to truncate the file as soon as
4507  * possible.  In particular, we want to make sure that when the VFS
4508  * shrinks i_size, we put the inode on the orphan list and modify
4509  * i_disksize immediately, so that during the subsequent flushing of
4510  * dirty pages and freeing of disk blocks, we can guarantee that any
4511  * commit will leave the blocks being flushed in an unused state on
4512  * disk.  (On recovery, the inode will get truncated and the blocks will
4513  * be freed, so we have a strong guarantee that no future commit will
4514  * leave these blocks visible to the user.)
4515  *
4516  * Another thing we have to assure is that if we are in ordered mode
4517  * and inode is still attached to the committing transaction, we must
4518  * we start writeout of all the dirty pages which are being truncated.
4519  * This way we are sure that all the data written in the previous
4520  * transaction are already on disk (truncate waits for pages under
4521  * writeback).
4522  *
4523  * Called with inode->i_mutex down.
4524  */
4525 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4526 {
4527         struct inode *inode = d_inode(dentry);
4528         int error, rc = 0;
4529         int orphan = 0;
4530         const unsigned int ia_valid = attr->ia_valid;
4531
4532         error = inode_change_ok(inode, attr);
4533         if (error)
4534                 return error;
4535
4536         if (is_quota_modification(inode, attr))
4537                 dquot_initialize(inode);
4538         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4539             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4540                 handle_t *handle;
4541
4542                 /* (user+group)*(old+new) structure, inode write (sb,
4543                  * inode block, ? - but truncate inode update has it) */
4544                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4545                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4546                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4547                 if (IS_ERR(handle)) {
4548                         error = PTR_ERR(handle);
4549                         goto err_out;
4550                 }
4551                 error = dquot_transfer(inode, attr);
4552                 if (error) {
4553                         ext4_journal_stop(handle);
4554                         return error;
4555                 }
4556                 /* Update corresponding info in inode so that everything is in
4557                  * one transaction */
4558                 if (attr->ia_valid & ATTR_UID)
4559                         inode->i_uid = attr->ia_uid;
4560                 if (attr->ia_valid & ATTR_GID)
4561                         inode->i_gid = attr->ia_gid;
4562                 error = ext4_mark_inode_dirty(handle, inode);
4563                 ext4_journal_stop(handle);
4564         }
4565
4566         if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4567                 handle_t *handle;
4568
4569                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4570                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4571
4572                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4573                                 return -EFBIG;
4574                 }
4575
4576                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4577                         inode_inc_iversion(inode);
4578
4579                 if (S_ISREG(inode->i_mode) &&
4580                     (attr->ia_size < inode->i_size)) {
4581                         if (ext4_should_order_data(inode)) {
4582                                 error = ext4_begin_ordered_truncate(inode,
4583                                                             attr->ia_size);
4584                                 if (error)
4585                                         goto err_out;
4586                         }
4587                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4588                         if (IS_ERR(handle)) {
4589                                 error = PTR_ERR(handle);
4590                                 goto err_out;
4591                         }
4592                         if (ext4_handle_valid(handle)) {
4593                                 error = ext4_orphan_add(handle, inode);
4594                                 orphan = 1;
4595                         }
4596                         down_write(&EXT4_I(inode)->i_data_sem);
4597                         EXT4_I(inode)->i_disksize = attr->ia_size;
4598                         rc = ext4_mark_inode_dirty(handle, inode);
4599                         if (!error)
4600                                 error = rc;
4601                         /*
4602                          * We have to update i_size under i_data_sem together
4603                          * with i_disksize to avoid races with writeback code
4604                          * running ext4_wb_update_i_disksize().
4605                          */
4606                         if (!error)
4607                                 i_size_write(inode, attr->ia_size);
4608                         up_write(&EXT4_I(inode)->i_data_sem);
4609                         ext4_journal_stop(handle);
4610                         if (error) {
4611                                 ext4_orphan_del(NULL, inode);
4612                                 goto err_out;
4613                         }
4614                 } else {
4615                         loff_t oldsize = inode->i_size;
4616
4617                         i_size_write(inode, attr->ia_size);
4618                         pagecache_isize_extended(inode, oldsize, inode->i_size);
4619                 }
4620
4621                 /*
4622                  * Blocks are going to be removed from the inode. Wait
4623                  * for dio in flight.  Temporarily disable
4624                  * dioread_nolock to prevent livelock.
4625                  */
4626                 if (orphan) {
4627                         if (!ext4_should_journal_data(inode)) {
4628                                 ext4_inode_block_unlocked_dio(inode);
4629                                 inode_dio_wait(inode);
4630                                 ext4_inode_resume_unlocked_dio(inode);
4631                         } else
4632                                 ext4_wait_for_tail_page_commit(inode);
4633                 }
4634                 /*
4635                  * Truncate pagecache after we've waited for commit
4636                  * in data=journal mode to make pages freeable.
4637                  */
4638                 truncate_pagecache(inode, inode->i_size);
4639         }
4640         /*
4641          * We want to call ext4_truncate() even if attr->ia_size ==
4642          * inode->i_size for cases like truncation of fallocated space
4643          */
4644         if (attr->ia_valid & ATTR_SIZE)
4645                 ext4_truncate(inode);
4646
4647         if (!rc) {
4648                 setattr_copy(inode, attr);
4649                 mark_inode_dirty(inode);
4650         }
4651
4652         /*
4653          * If the call to ext4_truncate failed to get a transaction handle at
4654          * all, we need to clean up the in-core orphan list manually.
4655          */
4656         if (orphan && inode->i_nlink)
4657                 ext4_orphan_del(NULL, inode);
4658
4659         if (!rc && (ia_valid & ATTR_MODE))
4660                 rc = posix_acl_chmod(inode, inode->i_mode);
4661
4662 err_out:
4663         ext4_std_error(inode->i_sb, error);
4664         if (!error)
4665                 error = rc;
4666         return error;
4667 }
4668
4669 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4670                  struct kstat *stat)
4671 {
4672         struct inode *inode;
4673         unsigned long long delalloc_blocks;
4674
4675         inode = d_inode(dentry);
4676         generic_fillattr(inode, stat);
4677
4678         /*
4679          * If there is inline data in the inode, the inode will normally not
4680          * have data blocks allocated (it may have an external xattr block).
4681          * Report at least one sector for such files, so tools like tar, rsync,
4682          * others doen't incorrectly think the file is completely sparse.
4683          */
4684         if (unlikely(ext4_has_inline_data(inode)))
4685                 stat->blocks += (stat->size + 511) >> 9;
4686
4687         /*
4688          * We can't update i_blocks if the block allocation is delayed
4689          * otherwise in the case of system crash before the real block
4690          * allocation is done, we will have i_blocks inconsistent with
4691          * on-disk file blocks.
4692          * We always keep i_blocks updated together with real
4693          * allocation. But to not confuse with user, stat
4694          * will return the blocks that include the delayed allocation
4695          * blocks for this file.
4696          */
4697         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4698                                    EXT4_I(inode)->i_reserved_data_blocks);
4699         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
4700         return 0;
4701 }
4702
4703 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4704                                    int pextents)
4705 {
4706         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4707                 return ext4_ind_trans_blocks(inode, lblocks);
4708         return ext4_ext_index_trans_blocks(inode, pextents);
4709 }
4710
4711 /*
4712  * Account for index blocks, block groups bitmaps and block group
4713  * descriptor blocks if modify datablocks and index blocks
4714  * worse case, the indexs blocks spread over different block groups
4715  *
4716  * If datablocks are discontiguous, they are possible to spread over
4717  * different block groups too. If they are contiguous, with flexbg,
4718  * they could still across block group boundary.
4719  *
4720  * Also account for superblock, inode, quota and xattr blocks
4721  */
4722 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4723                                   int pextents)
4724 {
4725         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4726         int gdpblocks;
4727         int idxblocks;
4728         int ret = 0;
4729
4730         /*
4731          * How many index blocks need to touch to map @lblocks logical blocks
4732          * to @pextents physical extents?
4733          */
4734         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4735
4736         ret = idxblocks;
4737
4738         /*
4739          * Now let's see how many group bitmaps and group descriptors need
4740          * to account
4741          */
4742         groups = idxblocks + pextents;
4743         gdpblocks = groups;
4744         if (groups > ngroups)
4745                 groups = ngroups;
4746         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4747                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4748
4749         /* bitmaps and block group descriptor blocks */
4750         ret += groups + gdpblocks;
4751
4752         /* Blocks for super block, inode, quota and xattr blocks */
4753         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4754
4755         return ret;
4756 }
4757
4758 /*
4759  * Calculate the total number of credits to reserve to fit
4760  * the modification of a single pages into a single transaction,
4761  * which may include multiple chunks of block allocations.
4762  *
4763  * This could be called via ext4_write_begin()
4764  *
4765  * We need to consider the worse case, when
4766  * one new block per extent.
4767  */
4768 int ext4_writepage_trans_blocks(struct inode *inode)
4769 {
4770         int bpp = ext4_journal_blocks_per_page(inode);
4771         int ret;
4772
4773         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4774
4775         /* Account for data blocks for journalled mode */
4776         if (ext4_should_journal_data(inode))
4777                 ret += bpp;
4778         return ret;
4779 }
4780
4781 /*
4782  * Calculate the journal credits for a chunk of data modification.
4783  *
4784  * This is called from DIO, fallocate or whoever calling
4785  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4786  *
4787  * journal buffers for data blocks are not included here, as DIO
4788  * and fallocate do no need to journal data buffers.
4789  */
4790 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4791 {
4792         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4793 }
4794
4795 /*
4796  * The caller must have previously called ext4_reserve_inode_write().
4797  * Give this, we know that the caller already has write access to iloc->bh.
4798  */
4799 int ext4_mark_iloc_dirty(handle_t *handle,
4800                          struct inode *inode, struct ext4_iloc *iloc)
4801 {
4802         int err = 0;
4803
4804         if (IS_I_VERSION(inode))
4805                 inode_inc_iversion(inode);
4806
4807         /* the do_update_inode consumes one bh->b_count */
4808         get_bh(iloc->bh);
4809
4810         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4811         err = ext4_do_update_inode(handle, inode, iloc);
4812         put_bh(iloc->bh);
4813         return err;
4814 }
4815
4816 /*
4817  * On success, We end up with an outstanding reference count against
4818  * iloc->bh.  This _must_ be cleaned up later.
4819  */
4820
4821 int
4822 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4823                          struct ext4_iloc *iloc)
4824 {
4825         int err;
4826
4827         err = ext4_get_inode_loc(inode, iloc);
4828         if (!err) {
4829                 BUFFER_TRACE(iloc->bh, "get_write_access");
4830                 err = ext4_journal_get_write_access(handle, iloc->bh);
4831                 if (err) {
4832                         brelse(iloc->bh);
4833                         iloc->bh = NULL;
4834                 }
4835         }
4836         ext4_std_error(inode->i_sb, err);
4837         return err;
4838 }
4839
4840 /*
4841  * Expand an inode by new_extra_isize bytes.
4842  * Returns 0 on success or negative error number on failure.
4843  */
4844 static int ext4_expand_extra_isize(struct inode *inode,
4845                                    unsigned int new_extra_isize,
4846                                    struct ext4_iloc iloc,
4847                                    handle_t *handle)
4848 {
4849         struct ext4_inode *raw_inode;
4850         struct ext4_xattr_ibody_header *header;
4851
4852         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4853                 return 0;
4854
4855         raw_inode = ext4_raw_inode(&iloc);
4856
4857         header = IHDR(inode, raw_inode);
4858
4859         /* No extended attributes present */
4860         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4861             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4862                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4863                         new_extra_isize);
4864                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4865                 return 0;
4866         }
4867
4868         /* try to expand with EAs present */
4869         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4870                                           raw_inode, handle);
4871 }
4872
4873 /*
4874  * What we do here is to mark the in-core inode as clean with respect to inode
4875  * dirtiness (it may still be data-dirty).
4876  * This means that the in-core inode may be reaped by prune_icache
4877  * without having to perform any I/O.  This is a very good thing,
4878  * because *any* task may call prune_icache - even ones which
4879  * have a transaction open against a different journal.
4880  *
4881  * Is this cheating?  Not really.  Sure, we haven't written the
4882  * inode out, but prune_icache isn't a user-visible syncing function.
4883  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4884  * we start and wait on commits.
4885  */
4886 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4887 {
4888         struct ext4_iloc iloc;
4889         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4890         static unsigned int mnt_count;
4891         int err, ret;
4892
4893         might_sleep();
4894         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4895         err = ext4_reserve_inode_write(handle, inode, &iloc);
4896         if (ext4_handle_valid(handle) &&
4897             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4898             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4899                 /*
4900                  * We need extra buffer credits since we may write into EA block
4901                  * with this same handle. If journal_extend fails, then it will
4902                  * only result in a minor loss of functionality for that inode.
4903                  * If this is felt to be critical, then e2fsck should be run to
4904                  * force a large enough s_min_extra_isize.
4905                  */
4906                 if ((jbd2_journal_extend(handle,
4907                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4908                         ret = ext4_expand_extra_isize(inode,
4909                                                       sbi->s_want_extra_isize,
4910                                                       iloc, handle);
4911                         if (ret) {
4912                                 ext4_set_inode_state(inode,
4913                                                      EXT4_STATE_NO_EXPAND);
4914                                 if (mnt_count !=
4915                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4916                                         ext4_warning(inode->i_sb,
4917                                         "Unable to expand inode %lu. Delete"
4918                                         " some EAs or run e2fsck.",
4919                                         inode->i_ino);
4920                                         mnt_count =
4921                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4922                                 }
4923                         }
4924                 }
4925         }
4926         if (!err)
4927                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4928         return err;
4929 }
4930
4931 /*
4932  * ext4_dirty_inode() is called from __mark_inode_dirty()
4933  *
4934  * We're really interested in the case where a file is being extended.
4935  * i_size has been changed by generic_commit_write() and we thus need
4936  * to include the updated inode in the current transaction.
4937  *
4938  * Also, dquot_alloc_block() will always dirty the inode when blocks
4939  * are allocated to the file.
4940  *
4941  * If the inode is marked synchronous, we don't honour that here - doing
4942  * so would cause a commit on atime updates, which we don't bother doing.
4943  * We handle synchronous inodes at the highest possible level.
4944  *
4945  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
4946  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
4947  * to copy into the on-disk inode structure are the timestamp files.
4948  */
4949 void ext4_dirty_inode(struct inode *inode, int flags)
4950 {
4951         handle_t *handle;
4952
4953         if (flags == I_DIRTY_TIME)
4954                 return;
4955         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4956         if (IS_ERR(handle))
4957                 goto out;
4958
4959         ext4_mark_inode_dirty(handle, inode);
4960
4961         ext4_journal_stop(handle);
4962 out:
4963         return;
4964 }
4965
4966 #if 0
4967 /*
4968  * Bind an inode's backing buffer_head into this transaction, to prevent
4969  * it from being flushed to disk early.  Unlike
4970  * ext4_reserve_inode_write, this leaves behind no bh reference and
4971  * returns no iloc structure, so the caller needs to repeat the iloc
4972  * lookup to mark the inode dirty later.
4973  */
4974 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4975 {
4976         struct ext4_iloc iloc;
4977
4978         int err = 0;
4979         if (handle) {
4980                 err = ext4_get_inode_loc(inode, &iloc);
4981                 if (!err) {
4982                         BUFFER_TRACE(iloc.bh, "get_write_access");
4983                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4984                         if (!err)
4985                                 err = ext4_handle_dirty_metadata(handle,
4986                                                                  NULL,
4987                                                                  iloc.bh);
4988                         brelse(iloc.bh);
4989                 }
4990         }
4991         ext4_std_error(inode->i_sb, err);
4992         return err;
4993 }
4994 #endif
4995
4996 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4997 {
4998         journal_t *journal;
4999         handle_t *handle;
5000         int err;
5001
5002         /*
5003          * We have to be very careful here: changing a data block's
5004          * journaling status dynamically is dangerous.  If we write a
5005          * data block to the journal, change the status and then delete
5006          * that block, we risk forgetting to revoke the old log record
5007          * from the journal and so a subsequent replay can corrupt data.
5008          * So, first we make sure that the journal is empty and that
5009          * nobody is changing anything.
5010          */
5011
5012         journal = EXT4_JOURNAL(inode);
5013         if (!journal)
5014                 return 0;
5015         if (is_journal_aborted(journal))
5016                 return -EROFS;
5017         /* We have to allocate physical blocks for delalloc blocks
5018          * before flushing journal. otherwise delalloc blocks can not
5019          * be allocated any more. even more truncate on delalloc blocks
5020          * could trigger BUG by flushing delalloc blocks in journal.
5021          * There is no delalloc block in non-journal data mode.
5022          */
5023         if (val && test_opt(inode->i_sb, DELALLOC)) {
5024                 err = ext4_alloc_da_blocks(inode);
5025                 if (err < 0)
5026                         return err;
5027         }
5028
5029         /* Wait for all existing dio workers */
5030         ext4_inode_block_unlocked_dio(inode);
5031         inode_dio_wait(inode);
5032
5033         jbd2_journal_lock_updates(journal);
5034
5035         /*
5036          * OK, there are no updates running now, and all cached data is
5037          * synced to disk.  We are now in a completely consistent state
5038          * which doesn't have anything in the journal, and we know that
5039          * no filesystem updates are running, so it is safe to modify
5040          * the inode's in-core data-journaling state flag now.
5041          */
5042
5043         if (val)
5044                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5045         else {
5046                 err = jbd2_journal_flush(journal);
5047                 if (err < 0) {
5048                         jbd2_journal_unlock_updates(journal);
5049                         ext4_inode_resume_unlocked_dio(inode);
5050                         return err;
5051                 }
5052                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5053         }
5054         ext4_set_aops(inode);
5055
5056         jbd2_journal_unlock_updates(journal);
5057         ext4_inode_resume_unlocked_dio(inode);
5058
5059         /* Finally we can mark the inode as dirty. */
5060
5061         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5062         if (IS_ERR(handle))
5063                 return PTR_ERR(handle);
5064
5065         err = ext4_mark_inode_dirty(handle, inode);
5066         ext4_handle_sync(handle);
5067         ext4_journal_stop(handle);
5068         ext4_std_error(inode->i_sb, err);
5069
5070         return err;
5071 }
5072
5073 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5074 {
5075         return !buffer_mapped(bh);
5076 }
5077
5078 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5079 {
5080         struct page *page = vmf->page;
5081         loff_t size;
5082         unsigned long len;
5083         int ret;
5084         struct file *file = vma->vm_file;
5085         struct inode *inode = file_inode(file);
5086         struct address_space *mapping = inode->i_mapping;
5087         handle_t *handle;
5088         get_block_t *get_block;
5089         int retries = 0;
5090
5091         sb_start_pagefault(inode->i_sb);
5092         file_update_time(vma->vm_file);
5093         /* Delalloc case is easy... */
5094         if (test_opt(inode->i_sb, DELALLOC) &&
5095             !ext4_should_journal_data(inode) &&
5096             !ext4_nonda_switch(inode->i_sb)) {
5097                 do {
5098                         ret = __block_page_mkwrite(vma, vmf,
5099                                                    ext4_da_get_block_prep);
5100                 } while (ret == -ENOSPC &&
5101                        ext4_should_retry_alloc(inode->i_sb, &retries));
5102                 goto out_ret;
5103         }
5104
5105         lock_page(page);
5106         size = i_size_read(inode);
5107         /* Page got truncated from under us? */
5108         if (page->mapping != mapping || page_offset(page) > size) {
5109                 unlock_page(page);
5110                 ret = VM_FAULT_NOPAGE;
5111                 goto out;
5112         }
5113
5114         if (page->index == size >> PAGE_CACHE_SHIFT)
5115                 len = size & ~PAGE_CACHE_MASK;
5116         else
5117                 len = PAGE_CACHE_SIZE;
5118         /*
5119          * Return if we have all the buffers mapped. This avoids the need to do
5120          * journal_start/journal_stop which can block and take a long time
5121          */
5122         if (page_has_buffers(page)) {
5123                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5124                                             0, len, NULL,
5125                                             ext4_bh_unmapped)) {
5126                         /* Wait so that we don't change page under IO */
5127                         wait_for_stable_page(page);
5128                         ret = VM_FAULT_LOCKED;
5129                         goto out;
5130                 }
5131         }
5132         unlock_page(page);
5133         /* OK, we need to fill the hole... */
5134         if (ext4_should_dioread_nolock(inode))
5135                 get_block = ext4_get_block_write;
5136         else
5137                 get_block = ext4_get_block;
5138 retry_alloc:
5139         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5140                                     ext4_writepage_trans_blocks(inode));
5141         if (IS_ERR(handle)) {
5142                 ret = VM_FAULT_SIGBUS;
5143                 goto out;
5144         }
5145         ret = __block_page_mkwrite(vma, vmf, get_block);
5146         if (!ret && ext4_should_journal_data(inode)) {
5147                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5148                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5149                         unlock_page(page);
5150                         ret = VM_FAULT_SIGBUS;
5151                         ext4_journal_stop(handle);
5152                         goto out;
5153                 }
5154                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5155         }
5156         ext4_journal_stop(handle);
5157         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5158                 goto retry_alloc;
5159 out_ret:
5160         ret = block_page_mkwrite_return(ret);
5161 out:
5162         sb_end_pagefault(inode->i_sb);
5163         return ret;
5164 }