Merge tag 'fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/arm...
[cascardo/linux.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41 #include <linux/bitops.h>
42
43 #include "ext4_jbd2.h"
44 #include "xattr.h"
45 #include "acl.h"
46 #include "truncate.h"
47
48 #include <trace/events/ext4.h>
49
50 #define MPAGE_DA_EXTENT_TAIL 0x01
51
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53                               struct ext4_inode_info *ei)
54 {
55         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56         __u16 csum_lo;
57         __u16 csum_hi = 0;
58         __u32 csum;
59
60         csum_lo = le16_to_cpu(raw->i_checksum_lo);
61         raw->i_checksum_lo = 0;
62         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
63             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
64                 csum_hi = le16_to_cpu(raw->i_checksum_hi);
65                 raw->i_checksum_hi = 0;
66         }
67
68         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
69                            EXT4_INODE_SIZE(inode->i_sb));
70
71         raw->i_checksum_lo = cpu_to_le16(csum_lo);
72         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
73             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
74                 raw->i_checksum_hi = cpu_to_le16(csum_hi);
75
76         return csum;
77 }
78
79 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
80                                   struct ext4_inode_info *ei)
81 {
82         __u32 provided, calculated;
83
84         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
85             cpu_to_le32(EXT4_OS_LINUX) ||
86             !ext4_has_metadata_csum(inode->i_sb))
87                 return 1;
88
89         provided = le16_to_cpu(raw->i_checksum_lo);
90         calculated = ext4_inode_csum(inode, raw, ei);
91         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
92             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
93                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
94         else
95                 calculated &= 0xFFFF;
96
97         return provided == calculated;
98 }
99
100 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
101                                 struct ext4_inode_info *ei)
102 {
103         __u32 csum;
104
105         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
106             cpu_to_le32(EXT4_OS_LINUX) ||
107             !ext4_has_metadata_csum(inode->i_sb))
108                 return;
109
110         csum = ext4_inode_csum(inode, raw, ei);
111         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
112         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
113             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
114                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
115 }
116
117 static inline int ext4_begin_ordered_truncate(struct inode *inode,
118                                               loff_t new_size)
119 {
120         trace_ext4_begin_ordered_truncate(inode, new_size);
121         /*
122          * If jinode is zero, then we never opened the file for
123          * writing, so there's no need to call
124          * jbd2_journal_begin_ordered_truncate() since there's no
125          * outstanding writes we need to flush.
126          */
127         if (!EXT4_I(inode)->jinode)
128                 return 0;
129         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
130                                                    EXT4_I(inode)->jinode,
131                                                    new_size);
132 }
133
134 static void ext4_invalidatepage(struct page *page, unsigned int offset,
135                                 unsigned int length);
136 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
137 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
138 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
139                                   int pextents);
140
141 /*
142  * Test whether an inode is a fast symlink.
143  */
144 static int ext4_inode_is_fast_symlink(struct inode *inode)
145 {
146         int ea_blocks = EXT4_I(inode)->i_file_acl ?
147                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
148
149         if (ext4_has_inline_data(inode))
150                 return 0;
151
152         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
153 }
154
155 /*
156  * Restart the transaction associated with *handle.  This does a commit,
157  * so before we call here everything must be consistently dirtied against
158  * this transaction.
159  */
160 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
161                                  int nblocks)
162 {
163         int ret;
164
165         /*
166          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
167          * moment, get_block can be called only for blocks inside i_size since
168          * page cache has been already dropped and writes are blocked by
169          * i_mutex. So we can safely drop the i_data_sem here.
170          */
171         BUG_ON(EXT4_JOURNAL(inode) == NULL);
172         jbd_debug(2, "restarting handle %p\n", handle);
173         up_write(&EXT4_I(inode)->i_data_sem);
174         ret = ext4_journal_restart(handle, nblocks);
175         down_write(&EXT4_I(inode)->i_data_sem);
176         ext4_discard_preallocations(inode);
177
178         return ret;
179 }
180
181 /*
182  * Called at the last iput() if i_nlink is zero.
183  */
184 void ext4_evict_inode(struct inode *inode)
185 {
186         handle_t *handle;
187         int err;
188
189         trace_ext4_evict_inode(inode);
190
191         if (inode->i_nlink) {
192                 /*
193                  * When journalling data dirty buffers are tracked only in the
194                  * journal. So although mm thinks everything is clean and
195                  * ready for reaping the inode might still have some pages to
196                  * write in the running transaction or waiting to be
197                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
198                  * (via truncate_inode_pages()) to discard these buffers can
199                  * cause data loss. Also even if we did not discard these
200                  * buffers, we would have no way to find them after the inode
201                  * is reaped and thus user could see stale data if he tries to
202                  * read them before the transaction is checkpointed. So be
203                  * careful and force everything to disk here... We use
204                  * ei->i_datasync_tid to store the newest transaction
205                  * containing inode's data.
206                  *
207                  * Note that directories do not have this problem because they
208                  * don't use page cache.
209                  */
210                 if (ext4_should_journal_data(inode) &&
211                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
212                     inode->i_ino != EXT4_JOURNAL_INO) {
213                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
214                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
215
216                         jbd2_complete_transaction(journal, commit_tid);
217                         filemap_write_and_wait(&inode->i_data);
218                 }
219                 truncate_inode_pages_final(&inode->i_data);
220
221                 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
222                 goto no_delete;
223         }
224
225         if (is_bad_inode(inode))
226                 goto no_delete;
227         dquot_initialize(inode);
228
229         if (ext4_should_order_data(inode))
230                 ext4_begin_ordered_truncate(inode, 0);
231         truncate_inode_pages_final(&inode->i_data);
232
233         WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
234
235         /*
236          * Protect us against freezing - iput() caller didn't have to have any
237          * protection against it
238          */
239         sb_start_intwrite(inode->i_sb);
240         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
241                                     ext4_blocks_for_truncate(inode)+3);
242         if (IS_ERR(handle)) {
243                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
244                 /*
245                  * If we're going to skip the normal cleanup, we still need to
246                  * make sure that the in-core orphan linked list is properly
247                  * cleaned up.
248                  */
249                 ext4_orphan_del(NULL, inode);
250                 sb_end_intwrite(inode->i_sb);
251                 goto no_delete;
252         }
253
254         if (IS_SYNC(inode))
255                 ext4_handle_sync(handle);
256         inode->i_size = 0;
257         err = ext4_mark_inode_dirty(handle, inode);
258         if (err) {
259                 ext4_warning(inode->i_sb,
260                              "couldn't mark inode dirty (err %d)", err);
261                 goto stop_handle;
262         }
263         if (inode->i_blocks)
264                 ext4_truncate(inode);
265
266         /*
267          * ext4_ext_truncate() doesn't reserve any slop when it
268          * restarts journal transactions; therefore there may not be
269          * enough credits left in the handle to remove the inode from
270          * the orphan list and set the dtime field.
271          */
272         if (!ext4_handle_has_enough_credits(handle, 3)) {
273                 err = ext4_journal_extend(handle, 3);
274                 if (err > 0)
275                         err = ext4_journal_restart(handle, 3);
276                 if (err != 0) {
277                         ext4_warning(inode->i_sb,
278                                      "couldn't extend journal (err %d)", err);
279                 stop_handle:
280                         ext4_journal_stop(handle);
281                         ext4_orphan_del(NULL, inode);
282                         sb_end_intwrite(inode->i_sb);
283                         goto no_delete;
284                 }
285         }
286
287         /*
288          * Kill off the orphan record which ext4_truncate created.
289          * AKPM: I think this can be inside the above `if'.
290          * Note that ext4_orphan_del() has to be able to cope with the
291          * deletion of a non-existent orphan - this is because we don't
292          * know if ext4_truncate() actually created an orphan record.
293          * (Well, we could do this if we need to, but heck - it works)
294          */
295         ext4_orphan_del(handle, inode);
296         EXT4_I(inode)->i_dtime  = get_seconds();
297
298         /*
299          * One subtle ordering requirement: if anything has gone wrong
300          * (transaction abort, IO errors, whatever), then we can still
301          * do these next steps (the fs will already have been marked as
302          * having errors), but we can't free the inode if the mark_dirty
303          * fails.
304          */
305         if (ext4_mark_inode_dirty(handle, inode))
306                 /* If that failed, just do the required in-core inode clear. */
307                 ext4_clear_inode(inode);
308         else
309                 ext4_free_inode(handle, inode);
310         ext4_journal_stop(handle);
311         sb_end_intwrite(inode->i_sb);
312         return;
313 no_delete:
314         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
315 }
316
317 #ifdef CONFIG_QUOTA
318 qsize_t *ext4_get_reserved_space(struct inode *inode)
319 {
320         return &EXT4_I(inode)->i_reserved_quota;
321 }
322 #endif
323
324 /*
325  * Called with i_data_sem down, which is important since we can call
326  * ext4_discard_preallocations() from here.
327  */
328 void ext4_da_update_reserve_space(struct inode *inode,
329                                         int used, int quota_claim)
330 {
331         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
332         struct ext4_inode_info *ei = EXT4_I(inode);
333
334         spin_lock(&ei->i_block_reservation_lock);
335         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
336         if (unlikely(used > ei->i_reserved_data_blocks)) {
337                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
338                          "with only %d reserved data blocks",
339                          __func__, inode->i_ino, used,
340                          ei->i_reserved_data_blocks);
341                 WARN_ON(1);
342                 used = ei->i_reserved_data_blocks;
343         }
344
345         /* Update per-inode reservations */
346         ei->i_reserved_data_blocks -= used;
347         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
348
349         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
350
351         /* Update quota subsystem for data blocks */
352         if (quota_claim)
353                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
354         else {
355                 /*
356                  * We did fallocate with an offset that is already delayed
357                  * allocated. So on delayed allocated writeback we should
358                  * not re-claim the quota for fallocated blocks.
359                  */
360                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
361         }
362
363         /*
364          * If we have done all the pending block allocations and if
365          * there aren't any writers on the inode, we can discard the
366          * inode's preallocations.
367          */
368         if ((ei->i_reserved_data_blocks == 0) &&
369             (atomic_read(&inode->i_writecount) == 0))
370                 ext4_discard_preallocations(inode);
371 }
372
373 static int __check_block_validity(struct inode *inode, const char *func,
374                                 unsigned int line,
375                                 struct ext4_map_blocks *map)
376 {
377         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
378                                    map->m_len)) {
379                 ext4_error_inode(inode, func, line, map->m_pblk,
380                                  "lblock %lu mapped to illegal pblock "
381                                  "(length %d)", (unsigned long) map->m_lblk,
382                                  map->m_len);
383                 return -EIO;
384         }
385         return 0;
386 }
387
388 #define check_block_validity(inode, map)        \
389         __check_block_validity((inode), __func__, __LINE__, (map))
390
391 #ifdef ES_AGGRESSIVE_TEST
392 static void ext4_map_blocks_es_recheck(handle_t *handle,
393                                        struct inode *inode,
394                                        struct ext4_map_blocks *es_map,
395                                        struct ext4_map_blocks *map,
396                                        int flags)
397 {
398         int retval;
399
400         map->m_flags = 0;
401         /*
402          * There is a race window that the result is not the same.
403          * e.g. xfstests #223 when dioread_nolock enables.  The reason
404          * is that we lookup a block mapping in extent status tree with
405          * out taking i_data_sem.  So at the time the unwritten extent
406          * could be converted.
407          */
408         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
409                 down_read(&EXT4_I(inode)->i_data_sem);
410         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
411                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
412                                              EXT4_GET_BLOCKS_KEEP_SIZE);
413         } else {
414                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
415                                              EXT4_GET_BLOCKS_KEEP_SIZE);
416         }
417         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
418                 up_read((&EXT4_I(inode)->i_data_sem));
419
420         /*
421          * We don't check m_len because extent will be collpased in status
422          * tree.  So the m_len might not equal.
423          */
424         if (es_map->m_lblk != map->m_lblk ||
425             es_map->m_flags != map->m_flags ||
426             es_map->m_pblk != map->m_pblk) {
427                 printk("ES cache assertion failed for inode: %lu "
428                        "es_cached ex [%d/%d/%llu/%x] != "
429                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
430                        inode->i_ino, es_map->m_lblk, es_map->m_len,
431                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
432                        map->m_len, map->m_pblk, map->m_flags,
433                        retval, flags);
434         }
435 }
436 #endif /* ES_AGGRESSIVE_TEST */
437
438 /*
439  * The ext4_map_blocks() function tries to look up the requested blocks,
440  * and returns if the blocks are already mapped.
441  *
442  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
443  * and store the allocated blocks in the result buffer head and mark it
444  * mapped.
445  *
446  * If file type is extents based, it will call ext4_ext_map_blocks(),
447  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
448  * based files
449  *
450  * On success, it returns the number of blocks being mapped or allocated.
451  * if create==0 and the blocks are pre-allocated and unwritten block,
452  * the result buffer head is unmapped. If the create ==1, it will make sure
453  * the buffer head is mapped.
454  *
455  * It returns 0 if plain look up failed (blocks have not been allocated), in
456  * that case, buffer head is unmapped
457  *
458  * It returns the error in case of allocation failure.
459  */
460 int ext4_map_blocks(handle_t *handle, struct inode *inode,
461                     struct ext4_map_blocks *map, int flags)
462 {
463         struct extent_status es;
464         int retval;
465         int ret = 0;
466 #ifdef ES_AGGRESSIVE_TEST
467         struct ext4_map_blocks orig_map;
468
469         memcpy(&orig_map, map, sizeof(*map));
470 #endif
471
472         map->m_flags = 0;
473         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
474                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
475                   (unsigned long) map->m_lblk);
476
477         /*
478          * ext4_map_blocks returns an int, and m_len is an unsigned int
479          */
480         if (unlikely(map->m_len > INT_MAX))
481                 map->m_len = INT_MAX;
482
483         /* We can handle the block number less than EXT_MAX_BLOCKS */
484         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
485                 return -EIO;
486
487         /* Lookup extent status tree firstly */
488         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
489                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
490                         map->m_pblk = ext4_es_pblock(&es) +
491                                         map->m_lblk - es.es_lblk;
492                         map->m_flags |= ext4_es_is_written(&es) ?
493                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
494                         retval = es.es_len - (map->m_lblk - es.es_lblk);
495                         if (retval > map->m_len)
496                                 retval = map->m_len;
497                         map->m_len = retval;
498                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
499                         retval = 0;
500                 } else {
501                         BUG_ON(1);
502                 }
503 #ifdef ES_AGGRESSIVE_TEST
504                 ext4_map_blocks_es_recheck(handle, inode, map,
505                                            &orig_map, flags);
506 #endif
507                 goto found;
508         }
509
510         /*
511          * Try to see if we can get the block without requesting a new
512          * file system block.
513          */
514         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
515                 down_read(&EXT4_I(inode)->i_data_sem);
516         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
517                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
518                                              EXT4_GET_BLOCKS_KEEP_SIZE);
519         } else {
520                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
521                                              EXT4_GET_BLOCKS_KEEP_SIZE);
522         }
523         if (retval > 0) {
524                 unsigned int status;
525
526                 if (unlikely(retval != map->m_len)) {
527                         ext4_warning(inode->i_sb,
528                                      "ES len assertion failed for inode "
529                                      "%lu: retval %d != map->m_len %d",
530                                      inode->i_ino, retval, map->m_len);
531                         WARN_ON(1);
532                 }
533
534                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
535                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
536                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
537                     ext4_find_delalloc_range(inode, map->m_lblk,
538                                              map->m_lblk + map->m_len - 1))
539                         status |= EXTENT_STATUS_DELAYED;
540                 ret = ext4_es_insert_extent(inode, map->m_lblk,
541                                             map->m_len, map->m_pblk, status);
542                 if (ret < 0)
543                         retval = ret;
544         }
545         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
546                 up_read((&EXT4_I(inode)->i_data_sem));
547
548 found:
549         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
550                 ret = check_block_validity(inode, map);
551                 if (ret != 0)
552                         return ret;
553         }
554
555         /* If it is only a block(s) look up */
556         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
557                 return retval;
558
559         /*
560          * Returns if the blocks have already allocated
561          *
562          * Note that if blocks have been preallocated
563          * ext4_ext_get_block() returns the create = 0
564          * with buffer head unmapped.
565          */
566         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
567                 /*
568                  * If we need to convert extent to unwritten
569                  * we continue and do the actual work in
570                  * ext4_ext_map_blocks()
571                  */
572                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
573                         return retval;
574
575         /*
576          * Here we clear m_flags because after allocating an new extent,
577          * it will be set again.
578          */
579         map->m_flags &= ~EXT4_MAP_FLAGS;
580
581         /*
582          * New blocks allocate and/or writing to unwritten extent
583          * will possibly result in updating i_data, so we take
584          * the write lock of i_data_sem, and call get_block()
585          * with create == 1 flag.
586          */
587         down_write(&EXT4_I(inode)->i_data_sem);
588
589         /*
590          * We need to check for EXT4 here because migrate
591          * could have changed the inode type in between
592          */
593         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
594                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
595         } else {
596                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
597
598                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
599                         /*
600                          * We allocated new blocks which will result in
601                          * i_data's format changing.  Force the migrate
602                          * to fail by clearing migrate flags
603                          */
604                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
605                 }
606
607                 /*
608                  * Update reserved blocks/metadata blocks after successful
609                  * block allocation which had been deferred till now. We don't
610                  * support fallocate for non extent files. So we can update
611                  * reserve space here.
612                  */
613                 if ((retval > 0) &&
614                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
615                         ext4_da_update_reserve_space(inode, retval, 1);
616         }
617
618         if (retval > 0) {
619                 unsigned int status;
620
621                 if (unlikely(retval != map->m_len)) {
622                         ext4_warning(inode->i_sb,
623                                      "ES len assertion failed for inode "
624                                      "%lu: retval %d != map->m_len %d",
625                                      inode->i_ino, retval, map->m_len);
626                         WARN_ON(1);
627                 }
628
629                 /*
630                  * If the extent has been zeroed out, we don't need to update
631                  * extent status tree.
632                  */
633                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
634                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
635                         if (ext4_es_is_written(&es))
636                                 goto has_zeroout;
637                 }
638                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
639                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
640                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
641                     ext4_find_delalloc_range(inode, map->m_lblk,
642                                              map->m_lblk + map->m_len - 1))
643                         status |= EXTENT_STATUS_DELAYED;
644                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
645                                             map->m_pblk, status);
646                 if (ret < 0)
647                         retval = ret;
648         }
649
650 has_zeroout:
651         up_write((&EXT4_I(inode)->i_data_sem));
652         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
653                 ret = check_block_validity(inode, map);
654                 if (ret != 0)
655                         return ret;
656         }
657         return retval;
658 }
659
660 static void ext4_end_io_unwritten(struct buffer_head *bh, int uptodate)
661 {
662         struct inode *inode = bh->b_assoc_map->host;
663         /* XXX: breaks on 32-bit > 16GB. Is that even supported? */
664         loff_t offset = (loff_t)(uintptr_t)bh->b_private << inode->i_blkbits;
665         int err;
666         if (!uptodate)
667                 return;
668         WARN_ON(!buffer_unwritten(bh));
669         err = ext4_convert_unwritten_extents(NULL, inode, offset, bh->b_size);
670 }
671
672 /* Maximum number of blocks we map for direct IO at once. */
673 #define DIO_MAX_BLOCKS 4096
674
675 static int _ext4_get_block(struct inode *inode, sector_t iblock,
676                            struct buffer_head *bh, int flags)
677 {
678         handle_t *handle = ext4_journal_current_handle();
679         struct ext4_map_blocks map;
680         int ret = 0, started = 0;
681         int dio_credits;
682
683         if (ext4_has_inline_data(inode))
684                 return -ERANGE;
685
686         map.m_lblk = iblock;
687         map.m_len = bh->b_size >> inode->i_blkbits;
688
689         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
690                 /* Direct IO write... */
691                 if (map.m_len > DIO_MAX_BLOCKS)
692                         map.m_len = DIO_MAX_BLOCKS;
693                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
694                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
695                                             dio_credits);
696                 if (IS_ERR(handle)) {
697                         ret = PTR_ERR(handle);
698                         return ret;
699                 }
700                 started = 1;
701         }
702
703         ret = ext4_map_blocks(handle, inode, &map, flags);
704         if (ret > 0) {
705                 ext4_io_end_t *io_end = ext4_inode_aio(inode);
706
707                 map_bh(bh, inode->i_sb, map.m_pblk);
708                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
709                 if (IS_DAX(inode) && buffer_unwritten(bh) && !io_end) {
710                         bh->b_assoc_map = inode->i_mapping;
711                         bh->b_private = (void *)(unsigned long)iblock;
712                         bh->b_end_io = ext4_end_io_unwritten;
713                 }
714                 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
715                         set_buffer_defer_completion(bh);
716                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
717                 ret = 0;
718         }
719         if (started)
720                 ext4_journal_stop(handle);
721         return ret;
722 }
723
724 int ext4_get_block(struct inode *inode, sector_t iblock,
725                    struct buffer_head *bh, int create)
726 {
727         return _ext4_get_block(inode, iblock, bh,
728                                create ? EXT4_GET_BLOCKS_CREATE : 0);
729 }
730
731 /*
732  * `handle' can be NULL if create is zero
733  */
734 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
735                                 ext4_lblk_t block, int create)
736 {
737         struct ext4_map_blocks map;
738         struct buffer_head *bh;
739         int err;
740
741         J_ASSERT(handle != NULL || create == 0);
742
743         map.m_lblk = block;
744         map.m_len = 1;
745         err = ext4_map_blocks(handle, inode, &map,
746                               create ? EXT4_GET_BLOCKS_CREATE : 0);
747
748         if (err == 0)
749                 return create ? ERR_PTR(-ENOSPC) : NULL;
750         if (err < 0)
751                 return ERR_PTR(err);
752
753         bh = sb_getblk(inode->i_sb, map.m_pblk);
754         if (unlikely(!bh))
755                 return ERR_PTR(-ENOMEM);
756         if (map.m_flags & EXT4_MAP_NEW) {
757                 J_ASSERT(create != 0);
758                 J_ASSERT(handle != NULL);
759
760                 /*
761                  * Now that we do not always journal data, we should
762                  * keep in mind whether this should always journal the
763                  * new buffer as metadata.  For now, regular file
764                  * writes use ext4_get_block instead, so it's not a
765                  * problem.
766                  */
767                 lock_buffer(bh);
768                 BUFFER_TRACE(bh, "call get_create_access");
769                 err = ext4_journal_get_create_access(handle, bh);
770                 if (unlikely(err)) {
771                         unlock_buffer(bh);
772                         goto errout;
773                 }
774                 if (!buffer_uptodate(bh)) {
775                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
776                         set_buffer_uptodate(bh);
777                 }
778                 unlock_buffer(bh);
779                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
780                 err = ext4_handle_dirty_metadata(handle, inode, bh);
781                 if (unlikely(err))
782                         goto errout;
783         } else
784                 BUFFER_TRACE(bh, "not a new buffer");
785         return bh;
786 errout:
787         brelse(bh);
788         return ERR_PTR(err);
789 }
790
791 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
792                                ext4_lblk_t block, int create)
793 {
794         struct buffer_head *bh;
795
796         bh = ext4_getblk(handle, inode, block, create);
797         if (IS_ERR(bh))
798                 return bh;
799         if (!bh || buffer_uptodate(bh))
800                 return bh;
801         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
802         wait_on_buffer(bh);
803         if (buffer_uptodate(bh))
804                 return bh;
805         put_bh(bh);
806         return ERR_PTR(-EIO);
807 }
808
809 int ext4_walk_page_buffers(handle_t *handle,
810                            struct buffer_head *head,
811                            unsigned from,
812                            unsigned to,
813                            int *partial,
814                            int (*fn)(handle_t *handle,
815                                      struct buffer_head *bh))
816 {
817         struct buffer_head *bh;
818         unsigned block_start, block_end;
819         unsigned blocksize = head->b_size;
820         int err, ret = 0;
821         struct buffer_head *next;
822
823         for (bh = head, block_start = 0;
824              ret == 0 && (bh != head || !block_start);
825              block_start = block_end, bh = next) {
826                 next = bh->b_this_page;
827                 block_end = block_start + blocksize;
828                 if (block_end <= from || block_start >= to) {
829                         if (partial && !buffer_uptodate(bh))
830                                 *partial = 1;
831                         continue;
832                 }
833                 err = (*fn)(handle, bh);
834                 if (!ret)
835                         ret = err;
836         }
837         return ret;
838 }
839
840 /*
841  * To preserve ordering, it is essential that the hole instantiation and
842  * the data write be encapsulated in a single transaction.  We cannot
843  * close off a transaction and start a new one between the ext4_get_block()
844  * and the commit_write().  So doing the jbd2_journal_start at the start of
845  * prepare_write() is the right place.
846  *
847  * Also, this function can nest inside ext4_writepage().  In that case, we
848  * *know* that ext4_writepage() has generated enough buffer credits to do the
849  * whole page.  So we won't block on the journal in that case, which is good,
850  * because the caller may be PF_MEMALLOC.
851  *
852  * By accident, ext4 can be reentered when a transaction is open via
853  * quota file writes.  If we were to commit the transaction while thus
854  * reentered, there can be a deadlock - we would be holding a quota
855  * lock, and the commit would never complete if another thread had a
856  * transaction open and was blocking on the quota lock - a ranking
857  * violation.
858  *
859  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
860  * will _not_ run commit under these circumstances because handle->h_ref
861  * is elevated.  We'll still have enough credits for the tiny quotafile
862  * write.
863  */
864 int do_journal_get_write_access(handle_t *handle,
865                                 struct buffer_head *bh)
866 {
867         int dirty = buffer_dirty(bh);
868         int ret;
869
870         if (!buffer_mapped(bh) || buffer_freed(bh))
871                 return 0;
872         /*
873          * __block_write_begin() could have dirtied some buffers. Clean
874          * the dirty bit as jbd2_journal_get_write_access() could complain
875          * otherwise about fs integrity issues. Setting of the dirty bit
876          * by __block_write_begin() isn't a real problem here as we clear
877          * the bit before releasing a page lock and thus writeback cannot
878          * ever write the buffer.
879          */
880         if (dirty)
881                 clear_buffer_dirty(bh);
882         BUFFER_TRACE(bh, "get write access");
883         ret = ext4_journal_get_write_access(handle, bh);
884         if (!ret && dirty)
885                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
886         return ret;
887 }
888
889 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
890                    struct buffer_head *bh_result, int create);
891 static int ext4_write_begin(struct file *file, struct address_space *mapping,
892                             loff_t pos, unsigned len, unsigned flags,
893                             struct page **pagep, void **fsdata)
894 {
895         struct inode *inode = mapping->host;
896         int ret, needed_blocks;
897         handle_t *handle;
898         int retries = 0;
899         struct page *page;
900         pgoff_t index;
901         unsigned from, to;
902
903         trace_ext4_write_begin(inode, pos, len, flags);
904         /*
905          * Reserve one block more for addition to orphan list in case
906          * we allocate blocks but write fails for some reason
907          */
908         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
909         index = pos >> PAGE_CACHE_SHIFT;
910         from = pos & (PAGE_CACHE_SIZE - 1);
911         to = from + len;
912
913         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
914                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
915                                                     flags, pagep);
916                 if (ret < 0)
917                         return ret;
918                 if (ret == 1)
919                         return 0;
920         }
921
922         /*
923          * grab_cache_page_write_begin() can take a long time if the
924          * system is thrashing due to memory pressure, or if the page
925          * is being written back.  So grab it first before we start
926          * the transaction handle.  This also allows us to allocate
927          * the page (if needed) without using GFP_NOFS.
928          */
929 retry_grab:
930         page = grab_cache_page_write_begin(mapping, index, flags);
931         if (!page)
932                 return -ENOMEM;
933         unlock_page(page);
934
935 retry_journal:
936         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
937         if (IS_ERR(handle)) {
938                 page_cache_release(page);
939                 return PTR_ERR(handle);
940         }
941
942         lock_page(page);
943         if (page->mapping != mapping) {
944                 /* The page got truncated from under us */
945                 unlock_page(page);
946                 page_cache_release(page);
947                 ext4_journal_stop(handle);
948                 goto retry_grab;
949         }
950         /* In case writeback began while the page was unlocked */
951         wait_for_stable_page(page);
952
953         if (ext4_should_dioread_nolock(inode))
954                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
955         else
956                 ret = __block_write_begin(page, pos, len, ext4_get_block);
957
958         if (!ret && ext4_should_journal_data(inode)) {
959                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
960                                              from, to, NULL,
961                                              do_journal_get_write_access);
962         }
963
964         if (ret) {
965                 unlock_page(page);
966                 /*
967                  * __block_write_begin may have instantiated a few blocks
968                  * outside i_size.  Trim these off again. Don't need
969                  * i_size_read because we hold i_mutex.
970                  *
971                  * Add inode to orphan list in case we crash before
972                  * truncate finishes
973                  */
974                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
975                         ext4_orphan_add(handle, inode);
976
977                 ext4_journal_stop(handle);
978                 if (pos + len > inode->i_size) {
979                         ext4_truncate_failed_write(inode);
980                         /*
981                          * If truncate failed early the inode might
982                          * still be on the orphan list; we need to
983                          * make sure the inode is removed from the
984                          * orphan list in that case.
985                          */
986                         if (inode->i_nlink)
987                                 ext4_orphan_del(NULL, inode);
988                 }
989
990                 if (ret == -ENOSPC &&
991                     ext4_should_retry_alloc(inode->i_sb, &retries))
992                         goto retry_journal;
993                 page_cache_release(page);
994                 return ret;
995         }
996         *pagep = page;
997         return ret;
998 }
999
1000 /* For write_end() in data=journal mode */
1001 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1002 {
1003         int ret;
1004         if (!buffer_mapped(bh) || buffer_freed(bh))
1005                 return 0;
1006         set_buffer_uptodate(bh);
1007         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1008         clear_buffer_meta(bh);
1009         clear_buffer_prio(bh);
1010         return ret;
1011 }
1012
1013 /*
1014  * We need to pick up the new inode size which generic_commit_write gave us
1015  * `file' can be NULL - eg, when called from page_symlink().
1016  *
1017  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1018  * buffers are managed internally.
1019  */
1020 static int ext4_write_end(struct file *file,
1021                           struct address_space *mapping,
1022                           loff_t pos, unsigned len, unsigned copied,
1023                           struct page *page, void *fsdata)
1024 {
1025         handle_t *handle = ext4_journal_current_handle();
1026         struct inode *inode = mapping->host;
1027         int ret = 0, ret2;
1028         int i_size_changed = 0;
1029
1030         trace_ext4_write_end(inode, pos, len, copied);
1031         if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1032                 ret = ext4_jbd2_file_inode(handle, inode);
1033                 if (ret) {
1034                         unlock_page(page);
1035                         page_cache_release(page);
1036                         goto errout;
1037                 }
1038         }
1039
1040         if (ext4_has_inline_data(inode)) {
1041                 ret = ext4_write_inline_data_end(inode, pos, len,
1042                                                  copied, page);
1043                 if (ret < 0)
1044                         goto errout;
1045                 copied = ret;
1046         } else
1047                 copied = block_write_end(file, mapping, pos,
1048                                          len, copied, page, fsdata);
1049         /*
1050          * it's important to update i_size while still holding page lock:
1051          * page writeout could otherwise come in and zero beyond i_size.
1052          */
1053         i_size_changed = ext4_update_inode_size(inode, pos + copied);
1054         unlock_page(page);
1055         page_cache_release(page);
1056
1057         /*
1058          * Don't mark the inode dirty under page lock. First, it unnecessarily
1059          * makes the holding time of page lock longer. Second, it forces lock
1060          * ordering of page lock and transaction start for journaling
1061          * filesystems.
1062          */
1063         if (i_size_changed)
1064                 ext4_mark_inode_dirty(handle, inode);
1065
1066         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1067                 /* if we have allocated more blocks and copied
1068                  * less. We will have blocks allocated outside
1069                  * inode->i_size. So truncate them
1070                  */
1071                 ext4_orphan_add(handle, inode);
1072 errout:
1073         ret2 = ext4_journal_stop(handle);
1074         if (!ret)
1075                 ret = ret2;
1076
1077         if (pos + len > inode->i_size) {
1078                 ext4_truncate_failed_write(inode);
1079                 /*
1080                  * If truncate failed early the inode might still be
1081                  * on the orphan list; we need to make sure the inode
1082                  * is removed from the orphan list in that case.
1083                  */
1084                 if (inode->i_nlink)
1085                         ext4_orphan_del(NULL, inode);
1086         }
1087
1088         return ret ? ret : copied;
1089 }
1090
1091 static int ext4_journalled_write_end(struct file *file,
1092                                      struct address_space *mapping,
1093                                      loff_t pos, unsigned len, unsigned copied,
1094                                      struct page *page, void *fsdata)
1095 {
1096         handle_t *handle = ext4_journal_current_handle();
1097         struct inode *inode = mapping->host;
1098         int ret = 0, ret2;
1099         int partial = 0;
1100         unsigned from, to;
1101         int size_changed = 0;
1102
1103         trace_ext4_journalled_write_end(inode, pos, len, copied);
1104         from = pos & (PAGE_CACHE_SIZE - 1);
1105         to = from + len;
1106
1107         BUG_ON(!ext4_handle_valid(handle));
1108
1109         if (ext4_has_inline_data(inode))
1110                 copied = ext4_write_inline_data_end(inode, pos, len,
1111                                                     copied, page);
1112         else {
1113                 if (copied < len) {
1114                         if (!PageUptodate(page))
1115                                 copied = 0;
1116                         page_zero_new_buffers(page, from+copied, to);
1117                 }
1118
1119                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1120                                              to, &partial, write_end_fn);
1121                 if (!partial)
1122                         SetPageUptodate(page);
1123         }
1124         size_changed = ext4_update_inode_size(inode, pos + copied);
1125         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1126         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1127         unlock_page(page);
1128         page_cache_release(page);
1129
1130         if (size_changed) {
1131                 ret2 = ext4_mark_inode_dirty(handle, inode);
1132                 if (!ret)
1133                         ret = ret2;
1134         }
1135
1136         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1137                 /* if we have allocated more blocks and copied
1138                  * less. We will have blocks allocated outside
1139                  * inode->i_size. So truncate them
1140                  */
1141                 ext4_orphan_add(handle, inode);
1142
1143         ret2 = ext4_journal_stop(handle);
1144         if (!ret)
1145                 ret = ret2;
1146         if (pos + len > inode->i_size) {
1147                 ext4_truncate_failed_write(inode);
1148                 /*
1149                  * If truncate failed early the inode might still be
1150                  * on the orphan list; we need to make sure the inode
1151                  * is removed from the orphan list in that case.
1152                  */
1153                 if (inode->i_nlink)
1154                         ext4_orphan_del(NULL, inode);
1155         }
1156
1157         return ret ? ret : copied;
1158 }
1159
1160 /*
1161  * Reserve a single cluster located at lblock
1162  */
1163 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1164 {
1165         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1166         struct ext4_inode_info *ei = EXT4_I(inode);
1167         unsigned int md_needed;
1168         int ret;
1169
1170         /*
1171          * We will charge metadata quota at writeout time; this saves
1172          * us from metadata over-estimation, though we may go over by
1173          * a small amount in the end.  Here we just reserve for data.
1174          */
1175         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1176         if (ret)
1177                 return ret;
1178
1179         /*
1180          * recalculate the amount of metadata blocks to reserve
1181          * in order to allocate nrblocks
1182          * worse case is one extent per block
1183          */
1184         spin_lock(&ei->i_block_reservation_lock);
1185         /*
1186          * ext4_calc_metadata_amount() has side effects, which we have
1187          * to be prepared undo if we fail to claim space.
1188          */
1189         md_needed = 0;
1190         trace_ext4_da_reserve_space(inode, 0);
1191
1192         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1193                 spin_unlock(&ei->i_block_reservation_lock);
1194                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1195                 return -ENOSPC;
1196         }
1197         ei->i_reserved_data_blocks++;
1198         spin_unlock(&ei->i_block_reservation_lock);
1199
1200         return 0;       /* success */
1201 }
1202
1203 static void ext4_da_release_space(struct inode *inode, int to_free)
1204 {
1205         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1206         struct ext4_inode_info *ei = EXT4_I(inode);
1207
1208         if (!to_free)
1209                 return;         /* Nothing to release, exit */
1210
1211         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1212
1213         trace_ext4_da_release_space(inode, to_free);
1214         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1215                 /*
1216                  * if there aren't enough reserved blocks, then the
1217                  * counter is messed up somewhere.  Since this
1218                  * function is called from invalidate page, it's
1219                  * harmless to return without any action.
1220                  */
1221                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1222                          "ino %lu, to_free %d with only %d reserved "
1223                          "data blocks", inode->i_ino, to_free,
1224                          ei->i_reserved_data_blocks);
1225                 WARN_ON(1);
1226                 to_free = ei->i_reserved_data_blocks;
1227         }
1228         ei->i_reserved_data_blocks -= to_free;
1229
1230         /* update fs dirty data blocks counter */
1231         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1232
1233         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1234
1235         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1236 }
1237
1238 static void ext4_da_page_release_reservation(struct page *page,
1239                                              unsigned int offset,
1240                                              unsigned int length)
1241 {
1242         int to_release = 0;
1243         struct buffer_head *head, *bh;
1244         unsigned int curr_off = 0;
1245         struct inode *inode = page->mapping->host;
1246         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1247         unsigned int stop = offset + length;
1248         int num_clusters;
1249         ext4_fsblk_t lblk;
1250
1251         BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1252
1253         head = page_buffers(page);
1254         bh = head;
1255         do {
1256                 unsigned int next_off = curr_off + bh->b_size;
1257
1258                 if (next_off > stop)
1259                         break;
1260
1261                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1262                         to_release++;
1263                         clear_buffer_delay(bh);
1264                 }
1265                 curr_off = next_off;
1266         } while ((bh = bh->b_this_page) != head);
1267
1268         if (to_release) {
1269                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1270                 ext4_es_remove_extent(inode, lblk, to_release);
1271         }
1272
1273         /* If we have released all the blocks belonging to a cluster, then we
1274          * need to release the reserved space for that cluster. */
1275         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1276         while (num_clusters > 0) {
1277                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1278                         ((num_clusters - 1) << sbi->s_cluster_bits);
1279                 if (sbi->s_cluster_ratio == 1 ||
1280                     !ext4_find_delalloc_cluster(inode, lblk))
1281                         ext4_da_release_space(inode, 1);
1282
1283                 num_clusters--;
1284         }
1285 }
1286
1287 /*
1288  * Delayed allocation stuff
1289  */
1290
1291 struct mpage_da_data {
1292         struct inode *inode;
1293         struct writeback_control *wbc;
1294
1295         pgoff_t first_page;     /* The first page to write */
1296         pgoff_t next_page;      /* Current page to examine */
1297         pgoff_t last_page;      /* Last page to examine */
1298         /*
1299          * Extent to map - this can be after first_page because that can be
1300          * fully mapped. We somewhat abuse m_flags to store whether the extent
1301          * is delalloc or unwritten.
1302          */
1303         struct ext4_map_blocks map;
1304         struct ext4_io_submit io_submit;        /* IO submission data */
1305 };
1306
1307 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1308                                        bool invalidate)
1309 {
1310         int nr_pages, i;
1311         pgoff_t index, end;
1312         struct pagevec pvec;
1313         struct inode *inode = mpd->inode;
1314         struct address_space *mapping = inode->i_mapping;
1315
1316         /* This is necessary when next_page == 0. */
1317         if (mpd->first_page >= mpd->next_page)
1318                 return;
1319
1320         index = mpd->first_page;
1321         end   = mpd->next_page - 1;
1322         if (invalidate) {
1323                 ext4_lblk_t start, last;
1324                 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1325                 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1326                 ext4_es_remove_extent(inode, start, last - start + 1);
1327         }
1328
1329         pagevec_init(&pvec, 0);
1330         while (index <= end) {
1331                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1332                 if (nr_pages == 0)
1333                         break;
1334                 for (i = 0; i < nr_pages; i++) {
1335                         struct page *page = pvec.pages[i];
1336                         if (page->index > end)
1337                                 break;
1338                         BUG_ON(!PageLocked(page));
1339                         BUG_ON(PageWriteback(page));
1340                         if (invalidate) {
1341                                 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1342                                 ClearPageUptodate(page);
1343                         }
1344                         unlock_page(page);
1345                 }
1346                 index = pvec.pages[nr_pages - 1]->index + 1;
1347                 pagevec_release(&pvec);
1348         }
1349 }
1350
1351 static void ext4_print_free_blocks(struct inode *inode)
1352 {
1353         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1354         struct super_block *sb = inode->i_sb;
1355         struct ext4_inode_info *ei = EXT4_I(inode);
1356
1357         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1358                EXT4_C2B(EXT4_SB(inode->i_sb),
1359                         ext4_count_free_clusters(sb)));
1360         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1361         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1362                (long long) EXT4_C2B(EXT4_SB(sb),
1363                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1364         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1365                (long long) EXT4_C2B(EXT4_SB(sb),
1366                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1367         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1368         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1369                  ei->i_reserved_data_blocks);
1370         return;
1371 }
1372
1373 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1374 {
1375         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1376 }
1377
1378 /*
1379  * This function is grabs code from the very beginning of
1380  * ext4_map_blocks, but assumes that the caller is from delayed write
1381  * time. This function looks up the requested blocks and sets the
1382  * buffer delay bit under the protection of i_data_sem.
1383  */
1384 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1385                               struct ext4_map_blocks *map,
1386                               struct buffer_head *bh)
1387 {
1388         struct extent_status es;
1389         int retval;
1390         sector_t invalid_block = ~((sector_t) 0xffff);
1391 #ifdef ES_AGGRESSIVE_TEST
1392         struct ext4_map_blocks orig_map;
1393
1394         memcpy(&orig_map, map, sizeof(*map));
1395 #endif
1396
1397         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1398                 invalid_block = ~0;
1399
1400         map->m_flags = 0;
1401         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1402                   "logical block %lu\n", inode->i_ino, map->m_len,
1403                   (unsigned long) map->m_lblk);
1404
1405         /* Lookup extent status tree firstly */
1406         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1407                 if (ext4_es_is_hole(&es)) {
1408                         retval = 0;
1409                         down_read(&EXT4_I(inode)->i_data_sem);
1410                         goto add_delayed;
1411                 }
1412
1413                 /*
1414                  * Delayed extent could be allocated by fallocate.
1415                  * So we need to check it.
1416                  */
1417                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1418                         map_bh(bh, inode->i_sb, invalid_block);
1419                         set_buffer_new(bh);
1420                         set_buffer_delay(bh);
1421                         return 0;
1422                 }
1423
1424                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1425                 retval = es.es_len - (iblock - es.es_lblk);
1426                 if (retval > map->m_len)
1427                         retval = map->m_len;
1428                 map->m_len = retval;
1429                 if (ext4_es_is_written(&es))
1430                         map->m_flags |= EXT4_MAP_MAPPED;
1431                 else if (ext4_es_is_unwritten(&es))
1432                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1433                 else
1434                         BUG_ON(1);
1435
1436 #ifdef ES_AGGRESSIVE_TEST
1437                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1438 #endif
1439                 return retval;
1440         }
1441
1442         /*
1443          * Try to see if we can get the block without requesting a new
1444          * file system block.
1445          */
1446         down_read(&EXT4_I(inode)->i_data_sem);
1447         if (ext4_has_inline_data(inode))
1448                 retval = 0;
1449         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1450                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1451         else
1452                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1453
1454 add_delayed:
1455         if (retval == 0) {
1456                 int ret;
1457                 /*
1458                  * XXX: __block_prepare_write() unmaps passed block,
1459                  * is it OK?
1460                  */
1461                 /*
1462                  * If the block was allocated from previously allocated cluster,
1463                  * then we don't need to reserve it again. However we still need
1464                  * to reserve metadata for every block we're going to write.
1465                  */
1466                 if (EXT4_SB(inode->i_sb)->s_cluster_ratio <= 1 ||
1467                     !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1468                         ret = ext4_da_reserve_space(inode, iblock);
1469                         if (ret) {
1470                                 /* not enough space to reserve */
1471                                 retval = ret;
1472                                 goto out_unlock;
1473                         }
1474                 }
1475
1476                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1477                                             ~0, EXTENT_STATUS_DELAYED);
1478                 if (ret) {
1479                         retval = ret;
1480                         goto out_unlock;
1481                 }
1482
1483                 map_bh(bh, inode->i_sb, invalid_block);
1484                 set_buffer_new(bh);
1485                 set_buffer_delay(bh);
1486         } else if (retval > 0) {
1487                 int ret;
1488                 unsigned int status;
1489
1490                 if (unlikely(retval != map->m_len)) {
1491                         ext4_warning(inode->i_sb,
1492                                      "ES len assertion failed for inode "
1493                                      "%lu: retval %d != map->m_len %d",
1494                                      inode->i_ino, retval, map->m_len);
1495                         WARN_ON(1);
1496                 }
1497
1498                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1499                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1500                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1501                                             map->m_pblk, status);
1502                 if (ret != 0)
1503                         retval = ret;
1504         }
1505
1506 out_unlock:
1507         up_read((&EXT4_I(inode)->i_data_sem));
1508
1509         return retval;
1510 }
1511
1512 /*
1513  * This is a special get_block_t callback which is used by
1514  * ext4_da_write_begin().  It will either return mapped block or
1515  * reserve space for a single block.
1516  *
1517  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1518  * We also have b_blocknr = -1 and b_bdev initialized properly
1519  *
1520  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1521  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1522  * initialized properly.
1523  */
1524 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1525                            struct buffer_head *bh, int create)
1526 {
1527         struct ext4_map_blocks map;
1528         int ret = 0;
1529
1530         BUG_ON(create == 0);
1531         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1532
1533         map.m_lblk = iblock;
1534         map.m_len = 1;
1535
1536         /*
1537          * first, we need to know whether the block is allocated already
1538          * preallocated blocks are unmapped but should treated
1539          * the same as allocated blocks.
1540          */
1541         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1542         if (ret <= 0)
1543                 return ret;
1544
1545         map_bh(bh, inode->i_sb, map.m_pblk);
1546         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1547
1548         if (buffer_unwritten(bh)) {
1549                 /* A delayed write to unwritten bh should be marked
1550                  * new and mapped.  Mapped ensures that we don't do
1551                  * get_block multiple times when we write to the same
1552                  * offset and new ensures that we do proper zero out
1553                  * for partial write.
1554                  */
1555                 set_buffer_new(bh);
1556                 set_buffer_mapped(bh);
1557         }
1558         return 0;
1559 }
1560
1561 static int bget_one(handle_t *handle, struct buffer_head *bh)
1562 {
1563         get_bh(bh);
1564         return 0;
1565 }
1566
1567 static int bput_one(handle_t *handle, struct buffer_head *bh)
1568 {
1569         put_bh(bh);
1570         return 0;
1571 }
1572
1573 static int __ext4_journalled_writepage(struct page *page,
1574                                        unsigned int len)
1575 {
1576         struct address_space *mapping = page->mapping;
1577         struct inode *inode = mapping->host;
1578         struct buffer_head *page_bufs = NULL;
1579         handle_t *handle = NULL;
1580         int ret = 0, err = 0;
1581         int inline_data = ext4_has_inline_data(inode);
1582         struct buffer_head *inode_bh = NULL;
1583
1584         ClearPageChecked(page);
1585
1586         if (inline_data) {
1587                 BUG_ON(page->index != 0);
1588                 BUG_ON(len > ext4_get_max_inline_size(inode));
1589                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1590                 if (inode_bh == NULL)
1591                         goto out;
1592         } else {
1593                 page_bufs = page_buffers(page);
1594                 if (!page_bufs) {
1595                         BUG();
1596                         goto out;
1597                 }
1598                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1599                                        NULL, bget_one);
1600         }
1601         /* As soon as we unlock the page, it can go away, but we have
1602          * references to buffers so we are safe */
1603         unlock_page(page);
1604
1605         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1606                                     ext4_writepage_trans_blocks(inode));
1607         if (IS_ERR(handle)) {
1608                 ret = PTR_ERR(handle);
1609                 goto out;
1610         }
1611
1612         BUG_ON(!ext4_handle_valid(handle));
1613
1614         if (inline_data) {
1615                 BUFFER_TRACE(inode_bh, "get write access");
1616                 ret = ext4_journal_get_write_access(handle, inode_bh);
1617
1618                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1619
1620         } else {
1621                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1622                                              do_journal_get_write_access);
1623
1624                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1625                                              write_end_fn);
1626         }
1627         if (ret == 0)
1628                 ret = err;
1629         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1630         err = ext4_journal_stop(handle);
1631         if (!ret)
1632                 ret = err;
1633
1634         if (!ext4_has_inline_data(inode))
1635                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1636                                        NULL, bput_one);
1637         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1638 out:
1639         brelse(inode_bh);
1640         return ret;
1641 }
1642
1643 /*
1644  * Note that we don't need to start a transaction unless we're journaling data
1645  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1646  * need to file the inode to the transaction's list in ordered mode because if
1647  * we are writing back data added by write(), the inode is already there and if
1648  * we are writing back data modified via mmap(), no one guarantees in which
1649  * transaction the data will hit the disk. In case we are journaling data, we
1650  * cannot start transaction directly because transaction start ranks above page
1651  * lock so we have to do some magic.
1652  *
1653  * This function can get called via...
1654  *   - ext4_writepages after taking page lock (have journal handle)
1655  *   - journal_submit_inode_data_buffers (no journal handle)
1656  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1657  *   - grab_page_cache when doing write_begin (have journal handle)
1658  *
1659  * We don't do any block allocation in this function. If we have page with
1660  * multiple blocks we need to write those buffer_heads that are mapped. This
1661  * is important for mmaped based write. So if we do with blocksize 1K
1662  * truncate(f, 1024);
1663  * a = mmap(f, 0, 4096);
1664  * a[0] = 'a';
1665  * truncate(f, 4096);
1666  * we have in the page first buffer_head mapped via page_mkwrite call back
1667  * but other buffer_heads would be unmapped but dirty (dirty done via the
1668  * do_wp_page). So writepage should write the first block. If we modify
1669  * the mmap area beyond 1024 we will again get a page_fault and the
1670  * page_mkwrite callback will do the block allocation and mark the
1671  * buffer_heads mapped.
1672  *
1673  * We redirty the page if we have any buffer_heads that is either delay or
1674  * unwritten in the page.
1675  *
1676  * We can get recursively called as show below.
1677  *
1678  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1679  *              ext4_writepage()
1680  *
1681  * But since we don't do any block allocation we should not deadlock.
1682  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1683  */
1684 static int ext4_writepage(struct page *page,
1685                           struct writeback_control *wbc)
1686 {
1687         int ret = 0;
1688         loff_t size;
1689         unsigned int len;
1690         struct buffer_head *page_bufs = NULL;
1691         struct inode *inode = page->mapping->host;
1692         struct ext4_io_submit io_submit;
1693         bool keep_towrite = false;
1694
1695         trace_ext4_writepage(page);
1696         size = i_size_read(inode);
1697         if (page->index == size >> PAGE_CACHE_SHIFT)
1698                 len = size & ~PAGE_CACHE_MASK;
1699         else
1700                 len = PAGE_CACHE_SIZE;
1701
1702         page_bufs = page_buffers(page);
1703         /*
1704          * We cannot do block allocation or other extent handling in this
1705          * function. If there are buffers needing that, we have to redirty
1706          * the page. But we may reach here when we do a journal commit via
1707          * journal_submit_inode_data_buffers() and in that case we must write
1708          * allocated buffers to achieve data=ordered mode guarantees.
1709          */
1710         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1711                                    ext4_bh_delay_or_unwritten)) {
1712                 redirty_page_for_writepage(wbc, page);
1713                 if (current->flags & PF_MEMALLOC) {
1714                         /*
1715                          * For memory cleaning there's no point in writing only
1716                          * some buffers. So just bail out. Warn if we came here
1717                          * from direct reclaim.
1718                          */
1719                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1720                                                         == PF_MEMALLOC);
1721                         unlock_page(page);
1722                         return 0;
1723                 }
1724                 keep_towrite = true;
1725         }
1726
1727         if (PageChecked(page) && ext4_should_journal_data(inode))
1728                 /*
1729                  * It's mmapped pagecache.  Add buffers and journal it.  There
1730                  * doesn't seem much point in redirtying the page here.
1731                  */
1732                 return __ext4_journalled_writepage(page, len);
1733
1734         ext4_io_submit_init(&io_submit, wbc);
1735         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1736         if (!io_submit.io_end) {
1737                 redirty_page_for_writepage(wbc, page);
1738                 unlock_page(page);
1739                 return -ENOMEM;
1740         }
1741         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
1742         ext4_io_submit(&io_submit);
1743         /* Drop io_end reference we got from init */
1744         ext4_put_io_end_defer(io_submit.io_end);
1745         return ret;
1746 }
1747
1748 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1749 {
1750         int len;
1751         loff_t size = i_size_read(mpd->inode);
1752         int err;
1753
1754         BUG_ON(page->index != mpd->first_page);
1755         if (page->index == size >> PAGE_CACHE_SHIFT)
1756                 len = size & ~PAGE_CACHE_MASK;
1757         else
1758                 len = PAGE_CACHE_SIZE;
1759         clear_page_dirty_for_io(page);
1760         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
1761         if (!err)
1762                 mpd->wbc->nr_to_write--;
1763         mpd->first_page++;
1764
1765         return err;
1766 }
1767
1768 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1769
1770 /*
1771  * mballoc gives us at most this number of blocks...
1772  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1773  * The rest of mballoc seems to handle chunks up to full group size.
1774  */
1775 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1776
1777 /*
1778  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1779  *
1780  * @mpd - extent of blocks
1781  * @lblk - logical number of the block in the file
1782  * @bh - buffer head we want to add to the extent
1783  *
1784  * The function is used to collect contig. blocks in the same state. If the
1785  * buffer doesn't require mapping for writeback and we haven't started the
1786  * extent of buffers to map yet, the function returns 'true' immediately - the
1787  * caller can write the buffer right away. Otherwise the function returns true
1788  * if the block has been added to the extent, false if the block couldn't be
1789  * added.
1790  */
1791 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1792                                    struct buffer_head *bh)
1793 {
1794         struct ext4_map_blocks *map = &mpd->map;
1795
1796         /* Buffer that doesn't need mapping for writeback? */
1797         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1798             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1799                 /* So far no extent to map => we write the buffer right away */
1800                 if (map->m_len == 0)
1801                         return true;
1802                 return false;
1803         }
1804
1805         /* First block in the extent? */
1806         if (map->m_len == 0) {
1807                 map->m_lblk = lblk;
1808                 map->m_len = 1;
1809                 map->m_flags = bh->b_state & BH_FLAGS;
1810                 return true;
1811         }
1812
1813         /* Don't go larger than mballoc is willing to allocate */
1814         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1815                 return false;
1816
1817         /* Can we merge the block to our big extent? */
1818         if (lblk == map->m_lblk + map->m_len &&
1819             (bh->b_state & BH_FLAGS) == map->m_flags) {
1820                 map->m_len++;
1821                 return true;
1822         }
1823         return false;
1824 }
1825
1826 /*
1827  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1828  *
1829  * @mpd - extent of blocks for mapping
1830  * @head - the first buffer in the page
1831  * @bh - buffer we should start processing from
1832  * @lblk - logical number of the block in the file corresponding to @bh
1833  *
1834  * Walk through page buffers from @bh upto @head (exclusive) and either submit
1835  * the page for IO if all buffers in this page were mapped and there's no
1836  * accumulated extent of buffers to map or add buffers in the page to the
1837  * extent of buffers to map. The function returns 1 if the caller can continue
1838  * by processing the next page, 0 if it should stop adding buffers to the
1839  * extent to map because we cannot extend it anymore. It can also return value
1840  * < 0 in case of error during IO submission.
1841  */
1842 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1843                                    struct buffer_head *head,
1844                                    struct buffer_head *bh,
1845                                    ext4_lblk_t lblk)
1846 {
1847         struct inode *inode = mpd->inode;
1848         int err;
1849         ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1850                                                         >> inode->i_blkbits;
1851
1852         do {
1853                 BUG_ON(buffer_locked(bh));
1854
1855                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
1856                         /* Found extent to map? */
1857                         if (mpd->map.m_len)
1858                                 return 0;
1859                         /* Everything mapped so far and we hit EOF */
1860                         break;
1861                 }
1862         } while (lblk++, (bh = bh->b_this_page) != head);
1863         /* So far everything mapped? Submit the page for IO. */
1864         if (mpd->map.m_len == 0) {
1865                 err = mpage_submit_page(mpd, head->b_page);
1866                 if (err < 0)
1867                         return err;
1868         }
1869         return lblk < blocks;
1870 }
1871
1872 /*
1873  * mpage_map_buffers - update buffers corresponding to changed extent and
1874  *                     submit fully mapped pages for IO
1875  *
1876  * @mpd - description of extent to map, on return next extent to map
1877  *
1878  * Scan buffers corresponding to changed extent (we expect corresponding pages
1879  * to be already locked) and update buffer state according to new extent state.
1880  * We map delalloc buffers to their physical location, clear unwritten bits,
1881  * and mark buffers as uninit when we perform writes to unwritten extents
1882  * and do extent conversion after IO is finished. If the last page is not fully
1883  * mapped, we update @map to the next extent in the last page that needs
1884  * mapping. Otherwise we submit the page for IO.
1885  */
1886 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
1887 {
1888         struct pagevec pvec;
1889         int nr_pages, i;
1890         struct inode *inode = mpd->inode;
1891         struct buffer_head *head, *bh;
1892         int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
1893         pgoff_t start, end;
1894         ext4_lblk_t lblk;
1895         sector_t pblock;
1896         int err;
1897
1898         start = mpd->map.m_lblk >> bpp_bits;
1899         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
1900         lblk = start << bpp_bits;
1901         pblock = mpd->map.m_pblk;
1902
1903         pagevec_init(&pvec, 0);
1904         while (start <= end) {
1905                 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
1906                                           PAGEVEC_SIZE);
1907                 if (nr_pages == 0)
1908                         break;
1909                 for (i = 0; i < nr_pages; i++) {
1910                         struct page *page = pvec.pages[i];
1911
1912                         if (page->index > end)
1913                                 break;
1914                         /* Up to 'end' pages must be contiguous */
1915                         BUG_ON(page->index != start);
1916                         bh = head = page_buffers(page);
1917                         do {
1918                                 if (lblk < mpd->map.m_lblk)
1919                                         continue;
1920                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
1921                                         /*
1922                                          * Buffer after end of mapped extent.
1923                                          * Find next buffer in the page to map.
1924                                          */
1925                                         mpd->map.m_len = 0;
1926                                         mpd->map.m_flags = 0;
1927                                         /*
1928                                          * FIXME: If dioread_nolock supports
1929                                          * blocksize < pagesize, we need to make
1930                                          * sure we add size mapped so far to
1931                                          * io_end->size as the following call
1932                                          * can submit the page for IO.
1933                                          */
1934                                         err = mpage_process_page_bufs(mpd, head,
1935                                                                       bh, lblk);
1936                                         pagevec_release(&pvec);
1937                                         if (err > 0)
1938                                                 err = 0;
1939                                         return err;
1940                                 }
1941                                 if (buffer_delay(bh)) {
1942                                         clear_buffer_delay(bh);
1943                                         bh->b_blocknr = pblock++;
1944                                 }
1945                                 clear_buffer_unwritten(bh);
1946                         } while (lblk++, (bh = bh->b_this_page) != head);
1947
1948                         /*
1949                          * FIXME: This is going to break if dioread_nolock
1950                          * supports blocksize < pagesize as we will try to
1951                          * convert potentially unmapped parts of inode.
1952                          */
1953                         mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
1954                         /* Page fully mapped - let IO run! */
1955                         err = mpage_submit_page(mpd, page);
1956                         if (err < 0) {
1957                                 pagevec_release(&pvec);
1958                                 return err;
1959                         }
1960                         start++;
1961                 }
1962                 pagevec_release(&pvec);
1963         }
1964         /* Extent fully mapped and matches with page boundary. We are done. */
1965         mpd->map.m_len = 0;
1966         mpd->map.m_flags = 0;
1967         return 0;
1968 }
1969
1970 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
1971 {
1972         struct inode *inode = mpd->inode;
1973         struct ext4_map_blocks *map = &mpd->map;
1974         int get_blocks_flags;
1975         int err, dioread_nolock;
1976
1977         trace_ext4_da_write_pages_extent(inode, map);
1978         /*
1979          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
1980          * to convert an unwritten extent to be initialized (in the case
1981          * where we have written into one or more preallocated blocks).  It is
1982          * possible that we're going to need more metadata blocks than
1983          * previously reserved. However we must not fail because we're in
1984          * writeback and there is nothing we can do about it so it might result
1985          * in data loss.  So use reserved blocks to allocate metadata if
1986          * possible.
1987          *
1988          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
1989          * the blocks in question are delalloc blocks.  This indicates
1990          * that the blocks and quotas has already been checked when
1991          * the data was copied into the page cache.
1992          */
1993         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
1994                            EXT4_GET_BLOCKS_METADATA_NOFAIL;
1995         dioread_nolock = ext4_should_dioread_nolock(inode);
1996         if (dioread_nolock)
1997                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1998         if (map->m_flags & (1 << BH_Delay))
1999                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2000
2001         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2002         if (err < 0)
2003                 return err;
2004         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2005                 if (!mpd->io_submit.io_end->handle &&
2006                     ext4_handle_valid(handle)) {
2007                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2008                         handle->h_rsv_handle = NULL;
2009                 }
2010                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2011         }
2012
2013         BUG_ON(map->m_len == 0);
2014         if (map->m_flags & EXT4_MAP_NEW) {
2015                 struct block_device *bdev = inode->i_sb->s_bdev;
2016                 int i;
2017
2018                 for (i = 0; i < map->m_len; i++)
2019                         unmap_underlying_metadata(bdev, map->m_pblk + i);
2020         }
2021         return 0;
2022 }
2023
2024 /*
2025  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2026  *                               mpd->len and submit pages underlying it for IO
2027  *
2028  * @handle - handle for journal operations
2029  * @mpd - extent to map
2030  * @give_up_on_write - we set this to true iff there is a fatal error and there
2031  *                     is no hope of writing the data. The caller should discard
2032  *                     dirty pages to avoid infinite loops.
2033  *
2034  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2035  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2036  * them to initialized or split the described range from larger unwritten
2037  * extent. Note that we need not map all the described range since allocation
2038  * can return less blocks or the range is covered by more unwritten extents. We
2039  * cannot map more because we are limited by reserved transaction credits. On
2040  * the other hand we always make sure that the last touched page is fully
2041  * mapped so that it can be written out (and thus forward progress is
2042  * guaranteed). After mapping we submit all mapped pages for IO.
2043  */
2044 static int mpage_map_and_submit_extent(handle_t *handle,
2045                                        struct mpage_da_data *mpd,
2046                                        bool *give_up_on_write)
2047 {
2048         struct inode *inode = mpd->inode;
2049         struct ext4_map_blocks *map = &mpd->map;
2050         int err;
2051         loff_t disksize;
2052         int progress = 0;
2053
2054         mpd->io_submit.io_end->offset =
2055                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2056         do {
2057                 err = mpage_map_one_extent(handle, mpd);
2058                 if (err < 0) {
2059                         struct super_block *sb = inode->i_sb;
2060
2061                         if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2062                                 goto invalidate_dirty_pages;
2063                         /*
2064                          * Let the uper layers retry transient errors.
2065                          * In the case of ENOSPC, if ext4_count_free_blocks()
2066                          * is non-zero, a commit should free up blocks.
2067                          */
2068                         if ((err == -ENOMEM) ||
2069                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2070                                 if (progress)
2071                                         goto update_disksize;
2072                                 return err;
2073                         }
2074                         ext4_msg(sb, KERN_CRIT,
2075                                  "Delayed block allocation failed for "
2076                                  "inode %lu at logical offset %llu with"
2077                                  " max blocks %u with error %d",
2078                                  inode->i_ino,
2079                                  (unsigned long long)map->m_lblk,
2080                                  (unsigned)map->m_len, -err);
2081                         ext4_msg(sb, KERN_CRIT,
2082                                  "This should not happen!! Data will "
2083                                  "be lost\n");
2084                         if (err == -ENOSPC)
2085                                 ext4_print_free_blocks(inode);
2086                 invalidate_dirty_pages:
2087                         *give_up_on_write = true;
2088                         return err;
2089                 }
2090                 progress = 1;
2091                 /*
2092                  * Update buffer state, submit mapped pages, and get us new
2093                  * extent to map
2094                  */
2095                 err = mpage_map_and_submit_buffers(mpd);
2096                 if (err < 0)
2097                         goto update_disksize;
2098         } while (map->m_len);
2099
2100 update_disksize:
2101         /*
2102          * Update on-disk size after IO is submitted.  Races with
2103          * truncate are avoided by checking i_size under i_data_sem.
2104          */
2105         disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2106         if (disksize > EXT4_I(inode)->i_disksize) {
2107                 int err2;
2108                 loff_t i_size;
2109
2110                 down_write(&EXT4_I(inode)->i_data_sem);
2111                 i_size = i_size_read(inode);
2112                 if (disksize > i_size)
2113                         disksize = i_size;
2114                 if (disksize > EXT4_I(inode)->i_disksize)
2115                         EXT4_I(inode)->i_disksize = disksize;
2116                 err2 = ext4_mark_inode_dirty(handle, inode);
2117                 up_write(&EXT4_I(inode)->i_data_sem);
2118                 if (err2)
2119                         ext4_error(inode->i_sb,
2120                                    "Failed to mark inode %lu dirty",
2121                                    inode->i_ino);
2122                 if (!err)
2123                         err = err2;
2124         }
2125         return err;
2126 }
2127
2128 /*
2129  * Calculate the total number of credits to reserve for one writepages
2130  * iteration. This is called from ext4_writepages(). We map an extent of
2131  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2132  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2133  * bpp - 1 blocks in bpp different extents.
2134  */
2135 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2136 {
2137         int bpp = ext4_journal_blocks_per_page(inode);
2138
2139         return ext4_meta_trans_blocks(inode,
2140                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2141 }
2142
2143 /*
2144  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2145  *                               and underlying extent to map
2146  *
2147  * @mpd - where to look for pages
2148  *
2149  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2150  * IO immediately. When we find a page which isn't mapped we start accumulating
2151  * extent of buffers underlying these pages that needs mapping (formed by
2152  * either delayed or unwritten buffers). We also lock the pages containing
2153  * these buffers. The extent found is returned in @mpd structure (starting at
2154  * mpd->lblk with length mpd->len blocks).
2155  *
2156  * Note that this function can attach bios to one io_end structure which are
2157  * neither logically nor physically contiguous. Although it may seem as an
2158  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2159  * case as we need to track IO to all buffers underlying a page in one io_end.
2160  */
2161 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2162 {
2163         struct address_space *mapping = mpd->inode->i_mapping;
2164         struct pagevec pvec;
2165         unsigned int nr_pages;
2166         long left = mpd->wbc->nr_to_write;
2167         pgoff_t index = mpd->first_page;
2168         pgoff_t end = mpd->last_page;
2169         int tag;
2170         int i, err = 0;
2171         int blkbits = mpd->inode->i_blkbits;
2172         ext4_lblk_t lblk;
2173         struct buffer_head *head;
2174
2175         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2176                 tag = PAGECACHE_TAG_TOWRITE;
2177         else
2178                 tag = PAGECACHE_TAG_DIRTY;
2179
2180         pagevec_init(&pvec, 0);
2181         mpd->map.m_len = 0;
2182         mpd->next_page = index;
2183         while (index <= end) {
2184                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2185                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2186                 if (nr_pages == 0)
2187                         goto out;
2188
2189                 for (i = 0; i < nr_pages; i++) {
2190                         struct page *page = pvec.pages[i];
2191
2192                         /*
2193                          * At this point, the page may be truncated or
2194                          * invalidated (changing page->mapping to NULL), or
2195                          * even swizzled back from swapper_space to tmpfs file
2196                          * mapping. However, page->index will not change
2197                          * because we have a reference on the page.
2198                          */
2199                         if (page->index > end)
2200                                 goto out;
2201
2202                         /*
2203                          * Accumulated enough dirty pages? This doesn't apply
2204                          * to WB_SYNC_ALL mode. For integrity sync we have to
2205                          * keep going because someone may be concurrently
2206                          * dirtying pages, and we might have synced a lot of
2207                          * newly appeared dirty pages, but have not synced all
2208                          * of the old dirty pages.
2209                          */
2210                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2211                                 goto out;
2212
2213                         /* If we can't merge this page, we are done. */
2214                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2215                                 goto out;
2216
2217                         lock_page(page);
2218                         /*
2219                          * If the page is no longer dirty, or its mapping no
2220                          * longer corresponds to inode we are writing (which
2221                          * means it has been truncated or invalidated), or the
2222                          * page is already under writeback and we are not doing
2223                          * a data integrity writeback, skip the page
2224                          */
2225                         if (!PageDirty(page) ||
2226                             (PageWriteback(page) &&
2227                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2228                             unlikely(page->mapping != mapping)) {
2229                                 unlock_page(page);
2230                                 continue;
2231                         }
2232
2233                         wait_on_page_writeback(page);
2234                         BUG_ON(PageWriteback(page));
2235
2236                         if (mpd->map.m_len == 0)
2237                                 mpd->first_page = page->index;
2238                         mpd->next_page = page->index + 1;
2239                         /* Add all dirty buffers to mpd */
2240                         lblk = ((ext4_lblk_t)page->index) <<
2241                                 (PAGE_CACHE_SHIFT - blkbits);
2242                         head = page_buffers(page);
2243                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2244                         if (err <= 0)
2245                                 goto out;
2246                         err = 0;
2247                         left--;
2248                 }
2249                 pagevec_release(&pvec);
2250                 cond_resched();
2251         }
2252         return 0;
2253 out:
2254         pagevec_release(&pvec);
2255         return err;
2256 }
2257
2258 static int __writepage(struct page *page, struct writeback_control *wbc,
2259                        void *data)
2260 {
2261         struct address_space *mapping = data;
2262         int ret = ext4_writepage(page, wbc);
2263         mapping_set_error(mapping, ret);
2264         return ret;
2265 }
2266
2267 static int ext4_writepages(struct address_space *mapping,
2268                            struct writeback_control *wbc)
2269 {
2270         pgoff_t writeback_index = 0;
2271         long nr_to_write = wbc->nr_to_write;
2272         int range_whole = 0;
2273         int cycled = 1;
2274         handle_t *handle = NULL;
2275         struct mpage_da_data mpd;
2276         struct inode *inode = mapping->host;
2277         int needed_blocks, rsv_blocks = 0, ret = 0;
2278         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2279         bool done;
2280         struct blk_plug plug;
2281         bool give_up_on_write = false;
2282
2283         trace_ext4_writepages(inode, wbc);
2284
2285         /*
2286          * No pages to write? This is mainly a kludge to avoid starting
2287          * a transaction for special inodes like journal inode on last iput()
2288          * because that could violate lock ordering on umount
2289          */
2290         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2291                 goto out_writepages;
2292
2293         if (ext4_should_journal_data(inode)) {
2294                 struct blk_plug plug;
2295
2296                 blk_start_plug(&plug);
2297                 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2298                 blk_finish_plug(&plug);
2299                 goto out_writepages;
2300         }
2301
2302         /*
2303          * If the filesystem has aborted, it is read-only, so return
2304          * right away instead of dumping stack traces later on that
2305          * will obscure the real source of the problem.  We test
2306          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2307          * the latter could be true if the filesystem is mounted
2308          * read-only, and in that case, ext4_writepages should
2309          * *never* be called, so if that ever happens, we would want
2310          * the stack trace.
2311          */
2312         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2313                 ret = -EROFS;
2314                 goto out_writepages;
2315         }
2316
2317         if (ext4_should_dioread_nolock(inode)) {
2318                 /*
2319                  * We may need to convert up to one extent per block in
2320                  * the page and we may dirty the inode.
2321                  */
2322                 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2323         }
2324
2325         /*
2326          * If we have inline data and arrive here, it means that
2327          * we will soon create the block for the 1st page, so
2328          * we'd better clear the inline data here.
2329          */
2330         if (ext4_has_inline_data(inode)) {
2331                 /* Just inode will be modified... */
2332                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2333                 if (IS_ERR(handle)) {
2334                         ret = PTR_ERR(handle);
2335                         goto out_writepages;
2336                 }
2337                 BUG_ON(ext4_test_inode_state(inode,
2338                                 EXT4_STATE_MAY_INLINE_DATA));
2339                 ext4_destroy_inline_data(handle, inode);
2340                 ext4_journal_stop(handle);
2341         }
2342
2343         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2344                 range_whole = 1;
2345
2346         if (wbc->range_cyclic) {
2347                 writeback_index = mapping->writeback_index;
2348                 if (writeback_index)
2349                         cycled = 0;
2350                 mpd.first_page = writeback_index;
2351                 mpd.last_page = -1;
2352         } else {
2353                 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2354                 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2355         }
2356
2357         mpd.inode = inode;
2358         mpd.wbc = wbc;
2359         ext4_io_submit_init(&mpd.io_submit, wbc);
2360 retry:
2361         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2362                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2363         done = false;
2364         blk_start_plug(&plug);
2365         while (!done && mpd.first_page <= mpd.last_page) {
2366                 /* For each extent of pages we use new io_end */
2367                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2368                 if (!mpd.io_submit.io_end) {
2369                         ret = -ENOMEM;
2370                         break;
2371                 }
2372
2373                 /*
2374                  * We have two constraints: We find one extent to map and we
2375                  * must always write out whole page (makes a difference when
2376                  * blocksize < pagesize) so that we don't block on IO when we
2377                  * try to write out the rest of the page. Journalled mode is
2378                  * not supported by delalloc.
2379                  */
2380                 BUG_ON(ext4_should_journal_data(inode));
2381                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2382
2383                 /* start a new transaction */
2384                 handle = ext4_journal_start_with_reserve(inode,
2385                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2386                 if (IS_ERR(handle)) {
2387                         ret = PTR_ERR(handle);
2388                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2389                                "%ld pages, ino %lu; err %d", __func__,
2390                                 wbc->nr_to_write, inode->i_ino, ret);
2391                         /* Release allocated io_end */
2392                         ext4_put_io_end(mpd.io_submit.io_end);
2393                         break;
2394                 }
2395
2396                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2397                 ret = mpage_prepare_extent_to_map(&mpd);
2398                 if (!ret) {
2399                         if (mpd.map.m_len)
2400                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2401                                         &give_up_on_write);
2402                         else {
2403                                 /*
2404                                  * We scanned the whole range (or exhausted
2405                                  * nr_to_write), submitted what was mapped and
2406                                  * didn't find anything needing mapping. We are
2407                                  * done.
2408                                  */
2409                                 done = true;
2410                         }
2411                 }
2412                 ext4_journal_stop(handle);
2413                 /* Submit prepared bio */
2414                 ext4_io_submit(&mpd.io_submit);
2415                 /* Unlock pages we didn't use */
2416                 mpage_release_unused_pages(&mpd, give_up_on_write);
2417                 /* Drop our io_end reference we got from init */
2418                 ext4_put_io_end(mpd.io_submit.io_end);
2419
2420                 if (ret == -ENOSPC && sbi->s_journal) {
2421                         /*
2422                          * Commit the transaction which would
2423                          * free blocks released in the transaction
2424                          * and try again
2425                          */
2426                         jbd2_journal_force_commit_nested(sbi->s_journal);
2427                         ret = 0;
2428                         continue;
2429                 }
2430                 /* Fatal error - ENOMEM, EIO... */
2431                 if (ret)
2432                         break;
2433         }
2434         blk_finish_plug(&plug);
2435         if (!ret && !cycled && wbc->nr_to_write > 0) {
2436                 cycled = 1;
2437                 mpd.last_page = writeback_index - 1;
2438                 mpd.first_page = 0;
2439                 goto retry;
2440         }
2441
2442         /* Update index */
2443         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2444                 /*
2445                  * Set the writeback_index so that range_cyclic
2446                  * mode will write it back later
2447                  */
2448                 mapping->writeback_index = mpd.first_page;
2449
2450 out_writepages:
2451         trace_ext4_writepages_result(inode, wbc, ret,
2452                                      nr_to_write - wbc->nr_to_write);
2453         return ret;
2454 }
2455
2456 static int ext4_nonda_switch(struct super_block *sb)
2457 {
2458         s64 free_clusters, dirty_clusters;
2459         struct ext4_sb_info *sbi = EXT4_SB(sb);
2460
2461         /*
2462          * switch to non delalloc mode if we are running low
2463          * on free block. The free block accounting via percpu
2464          * counters can get slightly wrong with percpu_counter_batch getting
2465          * accumulated on each CPU without updating global counters
2466          * Delalloc need an accurate free block accounting. So switch
2467          * to non delalloc when we are near to error range.
2468          */
2469         free_clusters =
2470                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2471         dirty_clusters =
2472                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2473         /*
2474          * Start pushing delalloc when 1/2 of free blocks are dirty.
2475          */
2476         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2477                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2478
2479         if (2 * free_clusters < 3 * dirty_clusters ||
2480             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2481                 /*
2482                  * free block count is less than 150% of dirty blocks
2483                  * or free blocks is less than watermark
2484                  */
2485                 return 1;
2486         }
2487         return 0;
2488 }
2489
2490 /* We always reserve for an inode update; the superblock could be there too */
2491 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2492 {
2493         if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
2494                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE)))
2495                 return 1;
2496
2497         if (pos + len <= 0x7fffffffULL)
2498                 return 1;
2499
2500         /* We might need to update the superblock to set LARGE_FILE */
2501         return 2;
2502 }
2503
2504 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2505                                loff_t pos, unsigned len, unsigned flags,
2506                                struct page **pagep, void **fsdata)
2507 {
2508         int ret, retries = 0;
2509         struct page *page;
2510         pgoff_t index;
2511         struct inode *inode = mapping->host;
2512         handle_t *handle;
2513
2514         index = pos >> PAGE_CACHE_SHIFT;
2515
2516         if (ext4_nonda_switch(inode->i_sb)) {
2517                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2518                 return ext4_write_begin(file, mapping, pos,
2519                                         len, flags, pagep, fsdata);
2520         }
2521         *fsdata = (void *)0;
2522         trace_ext4_da_write_begin(inode, pos, len, flags);
2523
2524         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2525                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2526                                                       pos, len, flags,
2527                                                       pagep, fsdata);
2528                 if (ret < 0)
2529                         return ret;
2530                 if (ret == 1)
2531                         return 0;
2532         }
2533
2534         /*
2535          * grab_cache_page_write_begin() can take a long time if the
2536          * system is thrashing due to memory pressure, or if the page
2537          * is being written back.  So grab it first before we start
2538          * the transaction handle.  This also allows us to allocate
2539          * the page (if needed) without using GFP_NOFS.
2540          */
2541 retry_grab:
2542         page = grab_cache_page_write_begin(mapping, index, flags);
2543         if (!page)
2544                 return -ENOMEM;
2545         unlock_page(page);
2546
2547         /*
2548          * With delayed allocation, we don't log the i_disksize update
2549          * if there is delayed block allocation. But we still need
2550          * to journalling the i_disksize update if writes to the end
2551          * of file which has an already mapped buffer.
2552          */
2553 retry_journal:
2554         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2555                                 ext4_da_write_credits(inode, pos, len));
2556         if (IS_ERR(handle)) {
2557                 page_cache_release(page);
2558                 return PTR_ERR(handle);
2559         }
2560
2561         lock_page(page);
2562         if (page->mapping != mapping) {
2563                 /* The page got truncated from under us */
2564                 unlock_page(page);
2565                 page_cache_release(page);
2566                 ext4_journal_stop(handle);
2567                 goto retry_grab;
2568         }
2569         /* In case writeback began while the page was unlocked */
2570         wait_for_stable_page(page);
2571
2572         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2573         if (ret < 0) {
2574                 unlock_page(page);
2575                 ext4_journal_stop(handle);
2576                 /*
2577                  * block_write_begin may have instantiated a few blocks
2578                  * outside i_size.  Trim these off again. Don't need
2579                  * i_size_read because we hold i_mutex.
2580                  */
2581                 if (pos + len > inode->i_size)
2582                         ext4_truncate_failed_write(inode);
2583
2584                 if (ret == -ENOSPC &&
2585                     ext4_should_retry_alloc(inode->i_sb, &retries))
2586                         goto retry_journal;
2587
2588                 page_cache_release(page);
2589                 return ret;
2590         }
2591
2592         *pagep = page;
2593         return ret;
2594 }
2595
2596 /*
2597  * Check if we should update i_disksize
2598  * when write to the end of file but not require block allocation
2599  */
2600 static int ext4_da_should_update_i_disksize(struct page *page,
2601                                             unsigned long offset)
2602 {
2603         struct buffer_head *bh;
2604         struct inode *inode = page->mapping->host;
2605         unsigned int idx;
2606         int i;
2607
2608         bh = page_buffers(page);
2609         idx = offset >> inode->i_blkbits;
2610
2611         for (i = 0; i < idx; i++)
2612                 bh = bh->b_this_page;
2613
2614         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2615                 return 0;
2616         return 1;
2617 }
2618
2619 static int ext4_da_write_end(struct file *file,
2620                              struct address_space *mapping,
2621                              loff_t pos, unsigned len, unsigned copied,
2622                              struct page *page, void *fsdata)
2623 {
2624         struct inode *inode = mapping->host;
2625         int ret = 0, ret2;
2626         handle_t *handle = ext4_journal_current_handle();
2627         loff_t new_i_size;
2628         unsigned long start, end;
2629         int write_mode = (int)(unsigned long)fsdata;
2630
2631         if (write_mode == FALL_BACK_TO_NONDELALLOC)
2632                 return ext4_write_end(file, mapping, pos,
2633                                       len, copied, page, fsdata);
2634
2635         trace_ext4_da_write_end(inode, pos, len, copied);
2636         start = pos & (PAGE_CACHE_SIZE - 1);
2637         end = start + copied - 1;
2638
2639         /*
2640          * generic_write_end() will run mark_inode_dirty() if i_size
2641          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2642          * into that.
2643          */
2644         new_i_size = pos + copied;
2645         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2646                 if (ext4_has_inline_data(inode) ||
2647                     ext4_da_should_update_i_disksize(page, end)) {
2648                         ext4_update_i_disksize(inode, new_i_size);
2649                         /* We need to mark inode dirty even if
2650                          * new_i_size is less that inode->i_size
2651                          * bu greater than i_disksize.(hint delalloc)
2652                          */
2653                         ext4_mark_inode_dirty(handle, inode);
2654                 }
2655         }
2656
2657         if (write_mode != CONVERT_INLINE_DATA &&
2658             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2659             ext4_has_inline_data(inode))
2660                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2661                                                      page);
2662         else
2663                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2664                                                         page, fsdata);
2665
2666         copied = ret2;
2667         if (ret2 < 0)
2668                 ret = ret2;
2669         ret2 = ext4_journal_stop(handle);
2670         if (!ret)
2671                 ret = ret2;
2672
2673         return ret ? ret : copied;
2674 }
2675
2676 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2677                                    unsigned int length)
2678 {
2679         /*
2680          * Drop reserved blocks
2681          */
2682         BUG_ON(!PageLocked(page));
2683         if (!page_has_buffers(page))
2684                 goto out;
2685
2686         ext4_da_page_release_reservation(page, offset, length);
2687
2688 out:
2689         ext4_invalidatepage(page, offset, length);
2690
2691         return;
2692 }
2693
2694 /*
2695  * Force all delayed allocation blocks to be allocated for a given inode.
2696  */
2697 int ext4_alloc_da_blocks(struct inode *inode)
2698 {
2699         trace_ext4_alloc_da_blocks(inode);
2700
2701         if (!EXT4_I(inode)->i_reserved_data_blocks)
2702                 return 0;
2703
2704         /*
2705          * We do something simple for now.  The filemap_flush() will
2706          * also start triggering a write of the data blocks, which is
2707          * not strictly speaking necessary (and for users of
2708          * laptop_mode, not even desirable).  However, to do otherwise
2709          * would require replicating code paths in:
2710          *
2711          * ext4_writepages() ->
2712          *    write_cache_pages() ---> (via passed in callback function)
2713          *        __mpage_da_writepage() -->
2714          *           mpage_add_bh_to_extent()
2715          *           mpage_da_map_blocks()
2716          *
2717          * The problem is that write_cache_pages(), located in
2718          * mm/page-writeback.c, marks pages clean in preparation for
2719          * doing I/O, which is not desirable if we're not planning on
2720          * doing I/O at all.
2721          *
2722          * We could call write_cache_pages(), and then redirty all of
2723          * the pages by calling redirty_page_for_writepage() but that
2724          * would be ugly in the extreme.  So instead we would need to
2725          * replicate parts of the code in the above functions,
2726          * simplifying them because we wouldn't actually intend to
2727          * write out the pages, but rather only collect contiguous
2728          * logical block extents, call the multi-block allocator, and
2729          * then update the buffer heads with the block allocations.
2730          *
2731          * For now, though, we'll cheat by calling filemap_flush(),
2732          * which will map the blocks, and start the I/O, but not
2733          * actually wait for the I/O to complete.
2734          */
2735         return filemap_flush(inode->i_mapping);
2736 }
2737
2738 /*
2739  * bmap() is special.  It gets used by applications such as lilo and by
2740  * the swapper to find the on-disk block of a specific piece of data.
2741  *
2742  * Naturally, this is dangerous if the block concerned is still in the
2743  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2744  * filesystem and enables swap, then they may get a nasty shock when the
2745  * data getting swapped to that swapfile suddenly gets overwritten by
2746  * the original zero's written out previously to the journal and
2747  * awaiting writeback in the kernel's buffer cache.
2748  *
2749  * So, if we see any bmap calls here on a modified, data-journaled file,
2750  * take extra steps to flush any blocks which might be in the cache.
2751  */
2752 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2753 {
2754         struct inode *inode = mapping->host;
2755         journal_t *journal;
2756         int err;
2757
2758         /*
2759          * We can get here for an inline file via the FIBMAP ioctl
2760          */
2761         if (ext4_has_inline_data(inode))
2762                 return 0;
2763
2764         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2765                         test_opt(inode->i_sb, DELALLOC)) {
2766                 /*
2767                  * With delalloc we want to sync the file
2768                  * so that we can make sure we allocate
2769                  * blocks for file
2770                  */
2771                 filemap_write_and_wait(mapping);
2772         }
2773
2774         if (EXT4_JOURNAL(inode) &&
2775             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2776                 /*
2777                  * This is a REALLY heavyweight approach, but the use of
2778                  * bmap on dirty files is expected to be extremely rare:
2779                  * only if we run lilo or swapon on a freshly made file
2780                  * do we expect this to happen.
2781                  *
2782                  * (bmap requires CAP_SYS_RAWIO so this does not
2783                  * represent an unprivileged user DOS attack --- we'd be
2784                  * in trouble if mortal users could trigger this path at
2785                  * will.)
2786                  *
2787                  * NB. EXT4_STATE_JDATA is not set on files other than
2788                  * regular files.  If somebody wants to bmap a directory
2789                  * or symlink and gets confused because the buffer
2790                  * hasn't yet been flushed to disk, they deserve
2791                  * everything they get.
2792                  */
2793
2794                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2795                 journal = EXT4_JOURNAL(inode);
2796                 jbd2_journal_lock_updates(journal);
2797                 err = jbd2_journal_flush(journal);
2798                 jbd2_journal_unlock_updates(journal);
2799
2800                 if (err)
2801                         return 0;
2802         }
2803
2804         return generic_block_bmap(mapping, block, ext4_get_block);
2805 }
2806
2807 static int ext4_readpage(struct file *file, struct page *page)
2808 {
2809         int ret = -EAGAIN;
2810         struct inode *inode = page->mapping->host;
2811
2812         trace_ext4_readpage(page);
2813
2814         if (ext4_has_inline_data(inode))
2815                 ret = ext4_readpage_inline(inode, page);
2816
2817         if (ret == -EAGAIN)
2818                 return mpage_readpage(page, ext4_get_block);
2819
2820         return ret;
2821 }
2822
2823 static int
2824 ext4_readpages(struct file *file, struct address_space *mapping,
2825                 struct list_head *pages, unsigned nr_pages)
2826 {
2827         struct inode *inode = mapping->host;
2828
2829         /* If the file has inline data, no need to do readpages. */
2830         if (ext4_has_inline_data(inode))
2831                 return 0;
2832
2833         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2834 }
2835
2836 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2837                                 unsigned int length)
2838 {
2839         trace_ext4_invalidatepage(page, offset, length);
2840
2841         /* No journalling happens on data buffers when this function is used */
2842         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2843
2844         block_invalidatepage(page, offset, length);
2845 }
2846
2847 static int __ext4_journalled_invalidatepage(struct page *page,
2848                                             unsigned int offset,
2849                                             unsigned int length)
2850 {
2851         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2852
2853         trace_ext4_journalled_invalidatepage(page, offset, length);
2854
2855         /*
2856          * If it's a full truncate we just forget about the pending dirtying
2857          */
2858         if (offset == 0 && length == PAGE_CACHE_SIZE)
2859                 ClearPageChecked(page);
2860
2861         return jbd2_journal_invalidatepage(journal, page, offset, length);
2862 }
2863
2864 /* Wrapper for aops... */
2865 static void ext4_journalled_invalidatepage(struct page *page,
2866                                            unsigned int offset,
2867                                            unsigned int length)
2868 {
2869         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
2870 }
2871
2872 static int ext4_releasepage(struct page *page, gfp_t wait)
2873 {
2874         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2875
2876         trace_ext4_releasepage(page);
2877
2878         /* Page has dirty journalled data -> cannot release */
2879         if (PageChecked(page))
2880                 return 0;
2881         if (journal)
2882                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2883         else
2884                 return try_to_free_buffers(page);
2885 }
2886
2887 /*
2888  * ext4_get_block used when preparing for a DIO write or buffer write.
2889  * We allocate an uinitialized extent if blocks haven't been allocated.
2890  * The extent will be converted to initialized after the IO is complete.
2891  */
2892 int ext4_get_block_write(struct inode *inode, sector_t iblock,
2893                    struct buffer_head *bh_result, int create)
2894 {
2895         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2896                    inode->i_ino, create);
2897         return _ext4_get_block(inode, iblock, bh_result,
2898                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
2899 }
2900
2901 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2902                    struct buffer_head *bh_result, int create)
2903 {
2904         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2905                    inode->i_ino, create);
2906         return _ext4_get_block(inode, iblock, bh_result,
2907                                EXT4_GET_BLOCKS_NO_LOCK);
2908 }
2909
2910 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2911                             ssize_t size, void *private)
2912 {
2913         ext4_io_end_t *io_end = iocb->private;
2914
2915         /* if not async direct IO just return */
2916         if (!io_end)
2917                 return;
2918
2919         ext_debug("ext4_end_io_dio(): io_end 0x%p "
2920                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2921                   iocb->private, io_end->inode->i_ino, iocb, offset,
2922                   size);
2923
2924         iocb->private = NULL;
2925         io_end->offset = offset;
2926         io_end->size = size;
2927         ext4_put_io_end(io_end);
2928 }
2929
2930 /*
2931  * For ext4 extent files, ext4 will do direct-io write to holes,
2932  * preallocated extents, and those write extend the file, no need to
2933  * fall back to buffered IO.
2934  *
2935  * For holes, we fallocate those blocks, mark them as unwritten
2936  * If those blocks were preallocated, we mark sure they are split, but
2937  * still keep the range to write as unwritten.
2938  *
2939  * The unwritten extents will be converted to written when DIO is completed.
2940  * For async direct IO, since the IO may still pending when return, we
2941  * set up an end_io call back function, which will do the conversion
2942  * when async direct IO completed.
2943  *
2944  * If the O_DIRECT write will extend the file then add this inode to the
2945  * orphan list.  So recovery will truncate it back to the original size
2946  * if the machine crashes during the write.
2947  *
2948  */
2949 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2950                               struct iov_iter *iter, loff_t offset)
2951 {
2952         struct file *file = iocb->ki_filp;
2953         struct inode *inode = file->f_mapping->host;
2954         ssize_t ret;
2955         size_t count = iov_iter_count(iter);
2956         int overwrite = 0;
2957         get_block_t *get_block_func = NULL;
2958         int dio_flags = 0;
2959         loff_t final_size = offset + count;
2960         ext4_io_end_t *io_end = NULL;
2961
2962         /* Use the old path for reads and writes beyond i_size. */
2963         if (rw != WRITE || final_size > inode->i_size)
2964                 return ext4_ind_direct_IO(rw, iocb, iter, offset);
2965
2966         BUG_ON(iocb->private == NULL);
2967
2968         /*
2969          * Make all waiters for direct IO properly wait also for extent
2970          * conversion. This also disallows race between truncate() and
2971          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
2972          */
2973         if (rw == WRITE)
2974                 atomic_inc(&inode->i_dio_count);
2975
2976         /* If we do a overwrite dio, i_mutex locking can be released */
2977         overwrite = *((int *)iocb->private);
2978
2979         if (overwrite) {
2980                 down_read(&EXT4_I(inode)->i_data_sem);
2981                 mutex_unlock(&inode->i_mutex);
2982         }
2983
2984         /*
2985          * We could direct write to holes and fallocate.
2986          *
2987          * Allocated blocks to fill the hole are marked as
2988          * unwritten to prevent parallel buffered read to expose
2989          * the stale data before DIO complete the data IO.
2990          *
2991          * As to previously fallocated extents, ext4 get_block will
2992          * just simply mark the buffer mapped but still keep the
2993          * extents unwritten.
2994          *
2995          * For non AIO case, we will convert those unwritten extents
2996          * to written after return back from blockdev_direct_IO.
2997          *
2998          * For async DIO, the conversion needs to be deferred when the
2999          * IO is completed. The ext4 end_io callback function will be
3000          * called to take care of the conversion work.  Here for async
3001          * case, we allocate an io_end structure to hook to the iocb.
3002          */
3003         iocb->private = NULL;
3004         ext4_inode_aio_set(inode, NULL);
3005         if (!is_sync_kiocb(iocb)) {
3006                 io_end = ext4_init_io_end(inode, GFP_NOFS);
3007                 if (!io_end) {
3008                         ret = -ENOMEM;
3009                         goto retake_lock;
3010                 }
3011                 /*
3012                  * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3013                  */
3014                 iocb->private = ext4_get_io_end(io_end);
3015                 /*
3016                  * we save the io structure for current async direct
3017                  * IO, so that later ext4_map_blocks() could flag the
3018                  * io structure whether there is a unwritten extents
3019                  * needs to be converted when IO is completed.
3020                  */
3021                 ext4_inode_aio_set(inode, io_end);
3022         }
3023
3024         if (overwrite) {
3025                 get_block_func = ext4_get_block_write_nolock;
3026         } else {
3027                 get_block_func = ext4_get_block_write;
3028                 dio_flags = DIO_LOCKING;
3029         }
3030         if (IS_DAX(inode))
3031                 ret = dax_do_io(rw, iocb, inode, iter, offset, get_block_func,
3032                                 ext4_end_io_dio, dio_flags);
3033         else
3034                 ret = __blockdev_direct_IO(rw, iocb, inode,
3035                                            inode->i_sb->s_bdev, iter, offset,
3036                                            get_block_func,
3037                                            ext4_end_io_dio, NULL, dio_flags);
3038
3039         /*
3040          * Put our reference to io_end. This can free the io_end structure e.g.
3041          * in sync IO case or in case of error. It can even perform extent
3042          * conversion if all bios we submitted finished before we got here.
3043          * Note that in that case iocb->private can be already set to NULL
3044          * here.
3045          */
3046         if (io_end) {
3047                 ext4_inode_aio_set(inode, NULL);
3048                 ext4_put_io_end(io_end);
3049                 /*
3050                  * When no IO was submitted ext4_end_io_dio() was not
3051                  * called so we have to put iocb's reference.
3052                  */
3053                 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3054                         WARN_ON(iocb->private != io_end);
3055                         WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3056                         ext4_put_io_end(io_end);
3057                         iocb->private = NULL;
3058                 }
3059         }
3060         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3061                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3062                 int err;
3063                 /*
3064                  * for non AIO case, since the IO is already
3065                  * completed, we could do the conversion right here
3066                  */
3067                 err = ext4_convert_unwritten_extents(NULL, inode,
3068                                                      offset, ret);
3069                 if (err < 0)
3070                         ret = err;
3071                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3072         }
3073
3074 retake_lock:
3075         if (rw == WRITE)
3076                 inode_dio_done(inode);
3077         /* take i_mutex locking again if we do a ovewrite dio */
3078         if (overwrite) {
3079                 up_read(&EXT4_I(inode)->i_data_sem);
3080                 mutex_lock(&inode->i_mutex);
3081         }
3082
3083         return ret;
3084 }
3085
3086 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3087                               struct iov_iter *iter, loff_t offset)
3088 {
3089         struct file *file = iocb->ki_filp;
3090         struct inode *inode = file->f_mapping->host;
3091         size_t count = iov_iter_count(iter);
3092         ssize_t ret;
3093
3094         /*
3095          * If we are doing data journalling we don't support O_DIRECT
3096          */
3097         if (ext4_should_journal_data(inode))
3098                 return 0;
3099
3100         /* Let buffer I/O handle the inline data case. */
3101         if (ext4_has_inline_data(inode))
3102                 return 0;
3103
3104         trace_ext4_direct_IO_enter(inode, offset, count, rw);
3105         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3106                 ret = ext4_ext_direct_IO(rw, iocb, iter, offset);
3107         else
3108                 ret = ext4_ind_direct_IO(rw, iocb, iter, offset);
3109         trace_ext4_direct_IO_exit(inode, offset, count, rw, ret);
3110         return ret;
3111 }
3112
3113 /*
3114  * Pages can be marked dirty completely asynchronously from ext4's journalling
3115  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3116  * much here because ->set_page_dirty is called under VFS locks.  The page is
3117  * not necessarily locked.
3118  *
3119  * We cannot just dirty the page and leave attached buffers clean, because the
3120  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3121  * or jbddirty because all the journalling code will explode.
3122  *
3123  * So what we do is to mark the page "pending dirty" and next time writepage
3124  * is called, propagate that into the buffers appropriately.
3125  */
3126 static int ext4_journalled_set_page_dirty(struct page *page)
3127 {
3128         SetPageChecked(page);
3129         return __set_page_dirty_nobuffers(page);
3130 }
3131
3132 static const struct address_space_operations ext4_aops = {
3133         .readpage               = ext4_readpage,
3134         .readpages              = ext4_readpages,
3135         .writepage              = ext4_writepage,
3136         .writepages             = ext4_writepages,
3137         .write_begin            = ext4_write_begin,
3138         .write_end              = ext4_write_end,
3139         .bmap                   = ext4_bmap,
3140         .invalidatepage         = ext4_invalidatepage,
3141         .releasepage            = ext4_releasepage,
3142         .direct_IO              = ext4_direct_IO,
3143         .migratepage            = buffer_migrate_page,
3144         .is_partially_uptodate  = block_is_partially_uptodate,
3145         .error_remove_page      = generic_error_remove_page,
3146 };
3147
3148 static const struct address_space_operations ext4_journalled_aops = {
3149         .readpage               = ext4_readpage,
3150         .readpages              = ext4_readpages,
3151         .writepage              = ext4_writepage,
3152         .writepages             = ext4_writepages,
3153         .write_begin            = ext4_write_begin,
3154         .write_end              = ext4_journalled_write_end,
3155         .set_page_dirty         = ext4_journalled_set_page_dirty,
3156         .bmap                   = ext4_bmap,
3157         .invalidatepage         = ext4_journalled_invalidatepage,
3158         .releasepage            = ext4_releasepage,
3159         .direct_IO              = ext4_direct_IO,
3160         .is_partially_uptodate  = block_is_partially_uptodate,
3161         .error_remove_page      = generic_error_remove_page,
3162 };
3163
3164 static const struct address_space_operations ext4_da_aops = {
3165         .readpage               = ext4_readpage,
3166         .readpages              = ext4_readpages,
3167         .writepage              = ext4_writepage,
3168         .writepages             = ext4_writepages,
3169         .write_begin            = ext4_da_write_begin,
3170         .write_end              = ext4_da_write_end,
3171         .bmap                   = ext4_bmap,
3172         .invalidatepage         = ext4_da_invalidatepage,
3173         .releasepage            = ext4_releasepage,
3174         .direct_IO              = ext4_direct_IO,
3175         .migratepage            = buffer_migrate_page,
3176         .is_partially_uptodate  = block_is_partially_uptodate,
3177         .error_remove_page      = generic_error_remove_page,
3178 };
3179
3180 void ext4_set_aops(struct inode *inode)
3181 {
3182         switch (ext4_inode_journal_mode(inode)) {
3183         case EXT4_INODE_ORDERED_DATA_MODE:
3184                 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3185                 break;
3186         case EXT4_INODE_WRITEBACK_DATA_MODE:
3187                 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3188                 break;
3189         case EXT4_INODE_JOURNAL_DATA_MODE:
3190                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3191                 return;
3192         default:
3193                 BUG();
3194         }
3195         if (test_opt(inode->i_sb, DELALLOC))
3196                 inode->i_mapping->a_ops = &ext4_da_aops;
3197         else
3198                 inode->i_mapping->a_ops = &ext4_aops;
3199 }
3200
3201 static int __ext4_block_zero_page_range(handle_t *handle,
3202                 struct address_space *mapping, loff_t from, loff_t length)
3203 {
3204         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3205         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3206         unsigned blocksize, pos;
3207         ext4_lblk_t iblock;
3208         struct inode *inode = mapping->host;
3209         struct buffer_head *bh;
3210         struct page *page;
3211         int err = 0;
3212
3213         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3214                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3215         if (!page)
3216                 return -ENOMEM;
3217
3218         blocksize = inode->i_sb->s_blocksize;
3219
3220         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3221
3222         if (!page_has_buffers(page))
3223                 create_empty_buffers(page, blocksize, 0);
3224
3225         /* Find the buffer that contains "offset" */
3226         bh = page_buffers(page);
3227         pos = blocksize;
3228         while (offset >= pos) {
3229                 bh = bh->b_this_page;
3230                 iblock++;
3231                 pos += blocksize;
3232         }
3233         if (buffer_freed(bh)) {
3234                 BUFFER_TRACE(bh, "freed: skip");
3235                 goto unlock;
3236         }
3237         if (!buffer_mapped(bh)) {
3238                 BUFFER_TRACE(bh, "unmapped");
3239                 ext4_get_block(inode, iblock, bh, 0);
3240                 /* unmapped? It's a hole - nothing to do */
3241                 if (!buffer_mapped(bh)) {
3242                         BUFFER_TRACE(bh, "still unmapped");
3243                         goto unlock;
3244                 }
3245         }
3246
3247         /* Ok, it's mapped. Make sure it's up-to-date */
3248         if (PageUptodate(page))
3249                 set_buffer_uptodate(bh);
3250
3251         if (!buffer_uptodate(bh)) {
3252                 err = -EIO;
3253                 ll_rw_block(READ, 1, &bh);
3254                 wait_on_buffer(bh);
3255                 /* Uhhuh. Read error. Complain and punt. */
3256                 if (!buffer_uptodate(bh))
3257                         goto unlock;
3258         }
3259         if (ext4_should_journal_data(inode)) {
3260                 BUFFER_TRACE(bh, "get write access");
3261                 err = ext4_journal_get_write_access(handle, bh);
3262                 if (err)
3263                         goto unlock;
3264         }
3265         zero_user(page, offset, length);
3266         BUFFER_TRACE(bh, "zeroed end of block");
3267
3268         if (ext4_should_journal_data(inode)) {
3269                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3270         } else {
3271                 err = 0;
3272                 mark_buffer_dirty(bh);
3273                 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3274                         err = ext4_jbd2_file_inode(handle, inode);
3275         }
3276
3277 unlock:
3278         unlock_page(page);
3279         page_cache_release(page);
3280         return err;
3281 }
3282
3283 /*
3284  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3285  * starting from file offset 'from'.  The range to be zero'd must
3286  * be contained with in one block.  If the specified range exceeds
3287  * the end of the block it will be shortened to end of the block
3288  * that cooresponds to 'from'
3289  */
3290 static int ext4_block_zero_page_range(handle_t *handle,
3291                 struct address_space *mapping, loff_t from, loff_t length)
3292 {
3293         struct inode *inode = mapping->host;
3294         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3295         unsigned blocksize = inode->i_sb->s_blocksize;
3296         unsigned max = blocksize - (offset & (blocksize - 1));
3297
3298         /*
3299          * correct length if it does not fall between
3300          * 'from' and the end of the block
3301          */
3302         if (length > max || length < 0)
3303                 length = max;
3304
3305         if (IS_DAX(inode))
3306                 return dax_zero_page_range(inode, from, length, ext4_get_block);
3307         return __ext4_block_zero_page_range(handle, mapping, from, length);
3308 }
3309
3310 /*
3311  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3312  * up to the end of the block which corresponds to `from'.
3313  * This required during truncate. We need to physically zero the tail end
3314  * of that block so it doesn't yield old data if the file is later grown.
3315  */
3316 static int ext4_block_truncate_page(handle_t *handle,
3317                 struct address_space *mapping, loff_t from)
3318 {
3319         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3320         unsigned length;
3321         unsigned blocksize;
3322         struct inode *inode = mapping->host;
3323
3324         blocksize = inode->i_sb->s_blocksize;
3325         length = blocksize - (offset & (blocksize - 1));
3326
3327         return ext4_block_zero_page_range(handle, mapping, from, length);
3328 }
3329
3330 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3331                              loff_t lstart, loff_t length)
3332 {
3333         struct super_block *sb = inode->i_sb;
3334         struct address_space *mapping = inode->i_mapping;
3335         unsigned partial_start, partial_end;
3336         ext4_fsblk_t start, end;
3337         loff_t byte_end = (lstart + length - 1);
3338         int err = 0;
3339
3340         partial_start = lstart & (sb->s_blocksize - 1);
3341         partial_end = byte_end & (sb->s_blocksize - 1);
3342
3343         start = lstart >> sb->s_blocksize_bits;
3344         end = byte_end >> sb->s_blocksize_bits;
3345
3346         /* Handle partial zero within the single block */
3347         if (start == end &&
3348             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3349                 err = ext4_block_zero_page_range(handle, mapping,
3350                                                  lstart, length);
3351                 return err;
3352         }
3353         /* Handle partial zero out on the start of the range */
3354         if (partial_start) {
3355                 err = ext4_block_zero_page_range(handle, mapping,
3356                                                  lstart, sb->s_blocksize);
3357                 if (err)
3358                         return err;
3359         }
3360         /* Handle partial zero out on the end of the range */
3361         if (partial_end != sb->s_blocksize - 1)
3362                 err = ext4_block_zero_page_range(handle, mapping,
3363                                                  byte_end - partial_end,
3364                                                  partial_end + 1);
3365         return err;
3366 }
3367
3368 int ext4_can_truncate(struct inode *inode)
3369 {
3370         if (S_ISREG(inode->i_mode))
3371                 return 1;
3372         if (S_ISDIR(inode->i_mode))
3373                 return 1;
3374         if (S_ISLNK(inode->i_mode))
3375                 return !ext4_inode_is_fast_symlink(inode);
3376         return 0;
3377 }
3378
3379 /*
3380  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3381  * associated with the given offset and length
3382  *
3383  * @inode:  File inode
3384  * @offset: The offset where the hole will begin
3385  * @len:    The length of the hole
3386  *
3387  * Returns: 0 on success or negative on failure
3388  */
3389
3390 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3391 {
3392         struct super_block *sb = inode->i_sb;
3393         ext4_lblk_t first_block, stop_block;
3394         struct address_space *mapping = inode->i_mapping;
3395         loff_t first_block_offset, last_block_offset;
3396         handle_t *handle;
3397         unsigned int credits;
3398         int ret = 0;
3399
3400         if (!S_ISREG(inode->i_mode))
3401                 return -EOPNOTSUPP;
3402
3403         trace_ext4_punch_hole(inode, offset, length, 0);
3404
3405         /*
3406          * Write out all dirty pages to avoid race conditions
3407          * Then release them.
3408          */
3409         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3410                 ret = filemap_write_and_wait_range(mapping, offset,
3411                                                    offset + length - 1);
3412                 if (ret)
3413                         return ret;
3414         }
3415
3416         mutex_lock(&inode->i_mutex);
3417
3418         /* No need to punch hole beyond i_size */
3419         if (offset >= inode->i_size)
3420                 goto out_mutex;
3421
3422         /*
3423          * If the hole extends beyond i_size, set the hole
3424          * to end after the page that contains i_size
3425          */
3426         if (offset + length > inode->i_size) {
3427                 length = inode->i_size +
3428                    PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3429                    offset;
3430         }
3431
3432         if (offset & (sb->s_blocksize - 1) ||
3433             (offset + length) & (sb->s_blocksize - 1)) {
3434                 /*
3435                  * Attach jinode to inode for jbd2 if we do any zeroing of
3436                  * partial block
3437                  */
3438                 ret = ext4_inode_attach_jinode(inode);
3439                 if (ret < 0)
3440                         goto out_mutex;
3441
3442         }
3443
3444         first_block_offset = round_up(offset, sb->s_blocksize);
3445         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3446
3447         /* Now release the pages and zero block aligned part of pages*/
3448         if (last_block_offset > first_block_offset)
3449                 truncate_pagecache_range(inode, first_block_offset,
3450                                          last_block_offset);
3451
3452         /* Wait all existing dio workers, newcomers will block on i_mutex */
3453         ext4_inode_block_unlocked_dio(inode);
3454         inode_dio_wait(inode);
3455
3456         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3457                 credits = ext4_writepage_trans_blocks(inode);
3458         else
3459                 credits = ext4_blocks_for_truncate(inode);
3460         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3461         if (IS_ERR(handle)) {
3462                 ret = PTR_ERR(handle);
3463                 ext4_std_error(sb, ret);
3464                 goto out_dio;
3465         }
3466
3467         ret = ext4_zero_partial_blocks(handle, inode, offset,
3468                                        length);
3469         if (ret)
3470                 goto out_stop;
3471
3472         first_block = (offset + sb->s_blocksize - 1) >>
3473                 EXT4_BLOCK_SIZE_BITS(sb);
3474         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3475
3476         /* If there are no blocks to remove, return now */
3477         if (first_block >= stop_block)
3478                 goto out_stop;
3479
3480         down_write(&EXT4_I(inode)->i_data_sem);
3481         ext4_discard_preallocations(inode);
3482
3483         ret = ext4_es_remove_extent(inode, first_block,
3484                                     stop_block - first_block);
3485         if (ret) {
3486                 up_write(&EXT4_I(inode)->i_data_sem);
3487                 goto out_stop;
3488         }
3489
3490         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3491                 ret = ext4_ext_remove_space(inode, first_block,
3492                                             stop_block - 1);
3493         else
3494                 ret = ext4_ind_remove_space(handle, inode, first_block,
3495                                             stop_block);
3496
3497         up_write(&EXT4_I(inode)->i_data_sem);
3498         if (IS_SYNC(inode))
3499                 ext4_handle_sync(handle);
3500
3501         /* Now release the pages again to reduce race window */
3502         if (last_block_offset > first_block_offset)
3503                 truncate_pagecache_range(inode, first_block_offset,
3504                                          last_block_offset);
3505
3506         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3507         ext4_mark_inode_dirty(handle, inode);
3508 out_stop:
3509         ext4_journal_stop(handle);
3510 out_dio:
3511         ext4_inode_resume_unlocked_dio(inode);
3512 out_mutex:
3513         mutex_unlock(&inode->i_mutex);
3514         return ret;
3515 }
3516
3517 int ext4_inode_attach_jinode(struct inode *inode)
3518 {
3519         struct ext4_inode_info *ei = EXT4_I(inode);
3520         struct jbd2_inode *jinode;
3521
3522         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3523                 return 0;
3524
3525         jinode = jbd2_alloc_inode(GFP_KERNEL);
3526         spin_lock(&inode->i_lock);
3527         if (!ei->jinode) {
3528                 if (!jinode) {
3529                         spin_unlock(&inode->i_lock);
3530                         return -ENOMEM;
3531                 }
3532                 ei->jinode = jinode;
3533                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3534                 jinode = NULL;
3535         }
3536         spin_unlock(&inode->i_lock);
3537         if (unlikely(jinode != NULL))
3538                 jbd2_free_inode(jinode);
3539         return 0;
3540 }
3541
3542 /*
3543  * ext4_truncate()
3544  *
3545  * We block out ext4_get_block() block instantiations across the entire
3546  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3547  * simultaneously on behalf of the same inode.
3548  *
3549  * As we work through the truncate and commit bits of it to the journal there
3550  * is one core, guiding principle: the file's tree must always be consistent on
3551  * disk.  We must be able to restart the truncate after a crash.
3552  *
3553  * The file's tree may be transiently inconsistent in memory (although it
3554  * probably isn't), but whenever we close off and commit a journal transaction,
3555  * the contents of (the filesystem + the journal) must be consistent and
3556  * restartable.  It's pretty simple, really: bottom up, right to left (although
3557  * left-to-right works OK too).
3558  *
3559  * Note that at recovery time, journal replay occurs *before* the restart of
3560  * truncate against the orphan inode list.
3561  *
3562  * The committed inode has the new, desired i_size (which is the same as
3563  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3564  * that this inode's truncate did not complete and it will again call
3565  * ext4_truncate() to have another go.  So there will be instantiated blocks
3566  * to the right of the truncation point in a crashed ext4 filesystem.  But
3567  * that's fine - as long as they are linked from the inode, the post-crash
3568  * ext4_truncate() run will find them and release them.
3569  */
3570 void ext4_truncate(struct inode *inode)
3571 {
3572         struct ext4_inode_info *ei = EXT4_I(inode);
3573         unsigned int credits;
3574         handle_t *handle;
3575         struct address_space *mapping = inode->i_mapping;
3576
3577         /*
3578          * There is a possibility that we're either freeing the inode
3579          * or it's a completely new inode. In those cases we might not
3580          * have i_mutex locked because it's not necessary.
3581          */
3582         if (!(inode->i_state & (I_NEW|I_FREEING)))
3583                 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3584         trace_ext4_truncate_enter(inode);
3585
3586         if (!ext4_can_truncate(inode))
3587                 return;
3588
3589         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3590
3591         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3592                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3593
3594         if (ext4_has_inline_data(inode)) {
3595                 int has_inline = 1;
3596
3597                 ext4_inline_data_truncate(inode, &has_inline);
3598                 if (has_inline)
3599                         return;
3600         }
3601
3602         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3603         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3604                 if (ext4_inode_attach_jinode(inode) < 0)
3605                         return;
3606         }
3607
3608         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3609                 credits = ext4_writepage_trans_blocks(inode);
3610         else
3611                 credits = ext4_blocks_for_truncate(inode);
3612
3613         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3614         if (IS_ERR(handle)) {
3615                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3616                 return;
3617         }
3618
3619         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3620                 ext4_block_truncate_page(handle, mapping, inode->i_size);
3621
3622         /*
3623          * We add the inode to the orphan list, so that if this
3624          * truncate spans multiple transactions, and we crash, we will
3625          * resume the truncate when the filesystem recovers.  It also
3626          * marks the inode dirty, to catch the new size.
3627          *
3628          * Implication: the file must always be in a sane, consistent
3629          * truncatable state while each transaction commits.
3630          */
3631         if (ext4_orphan_add(handle, inode))
3632                 goto out_stop;
3633
3634         down_write(&EXT4_I(inode)->i_data_sem);
3635
3636         ext4_discard_preallocations(inode);
3637
3638         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3639                 ext4_ext_truncate(handle, inode);
3640         else
3641                 ext4_ind_truncate(handle, inode);
3642
3643         up_write(&ei->i_data_sem);
3644
3645         if (IS_SYNC(inode))
3646                 ext4_handle_sync(handle);
3647
3648 out_stop:
3649         /*
3650          * If this was a simple ftruncate() and the file will remain alive,
3651          * then we need to clear up the orphan record which we created above.
3652          * However, if this was a real unlink then we were called by
3653          * ext4_evict_inode(), and we allow that function to clean up the
3654          * orphan info for us.
3655          */
3656         if (inode->i_nlink)
3657                 ext4_orphan_del(handle, inode);
3658
3659         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3660         ext4_mark_inode_dirty(handle, inode);
3661         ext4_journal_stop(handle);
3662
3663         trace_ext4_truncate_exit(inode);
3664 }
3665
3666 /*
3667  * ext4_get_inode_loc returns with an extra refcount against the inode's
3668  * underlying buffer_head on success. If 'in_mem' is true, we have all
3669  * data in memory that is needed to recreate the on-disk version of this
3670  * inode.
3671  */
3672 static int __ext4_get_inode_loc(struct inode *inode,
3673                                 struct ext4_iloc *iloc, int in_mem)
3674 {
3675         struct ext4_group_desc  *gdp;
3676         struct buffer_head      *bh;
3677         struct super_block      *sb = inode->i_sb;
3678         ext4_fsblk_t            block;
3679         int                     inodes_per_block, inode_offset;
3680
3681         iloc->bh = NULL;
3682         if (!ext4_valid_inum(sb, inode->i_ino))
3683                 return -EIO;
3684
3685         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3686         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3687         if (!gdp)
3688                 return -EIO;
3689
3690         /*
3691          * Figure out the offset within the block group inode table
3692          */
3693         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3694         inode_offset = ((inode->i_ino - 1) %
3695                         EXT4_INODES_PER_GROUP(sb));
3696         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3697         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3698
3699         bh = sb_getblk(sb, block);
3700         if (unlikely(!bh))
3701                 return -ENOMEM;
3702         if (!buffer_uptodate(bh)) {
3703                 lock_buffer(bh);
3704
3705                 /*
3706                  * If the buffer has the write error flag, we have failed
3707                  * to write out another inode in the same block.  In this
3708                  * case, we don't have to read the block because we may
3709                  * read the old inode data successfully.
3710                  */
3711                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3712                         set_buffer_uptodate(bh);
3713
3714                 if (buffer_uptodate(bh)) {
3715                         /* someone brought it uptodate while we waited */
3716                         unlock_buffer(bh);
3717                         goto has_buffer;
3718                 }
3719
3720                 /*
3721                  * If we have all information of the inode in memory and this
3722                  * is the only valid inode in the block, we need not read the
3723                  * block.
3724                  */
3725                 if (in_mem) {
3726                         struct buffer_head *bitmap_bh;
3727                         int i, start;
3728
3729                         start = inode_offset & ~(inodes_per_block - 1);
3730
3731                         /* Is the inode bitmap in cache? */
3732                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3733                         if (unlikely(!bitmap_bh))
3734                                 goto make_io;
3735
3736                         /*
3737                          * If the inode bitmap isn't in cache then the
3738                          * optimisation may end up performing two reads instead
3739                          * of one, so skip it.
3740                          */
3741                         if (!buffer_uptodate(bitmap_bh)) {
3742                                 brelse(bitmap_bh);
3743                                 goto make_io;
3744                         }
3745                         for (i = start; i < start + inodes_per_block; i++) {
3746                                 if (i == inode_offset)
3747                                         continue;
3748                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3749                                         break;
3750                         }
3751                         brelse(bitmap_bh);
3752                         if (i == start + inodes_per_block) {
3753                                 /* all other inodes are free, so skip I/O */
3754                                 memset(bh->b_data, 0, bh->b_size);
3755                                 set_buffer_uptodate(bh);
3756                                 unlock_buffer(bh);
3757                                 goto has_buffer;
3758                         }
3759                 }
3760
3761 make_io:
3762                 /*
3763                  * If we need to do any I/O, try to pre-readahead extra
3764                  * blocks from the inode table.
3765                  */
3766                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3767                         ext4_fsblk_t b, end, table;
3768                         unsigned num;
3769                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3770
3771                         table = ext4_inode_table(sb, gdp);
3772                         /* s_inode_readahead_blks is always a power of 2 */
3773                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
3774                         if (table > b)
3775                                 b = table;
3776                         end = b + ra_blks;
3777                         num = EXT4_INODES_PER_GROUP(sb);
3778                         if (ext4_has_group_desc_csum(sb))
3779                                 num -= ext4_itable_unused_count(sb, gdp);
3780                         table += num / inodes_per_block;
3781                         if (end > table)
3782                                 end = table;
3783                         while (b <= end)
3784                                 sb_breadahead(sb, b++);
3785                 }
3786
3787                 /*
3788                  * There are other valid inodes in the buffer, this inode
3789                  * has in-inode xattrs, or we don't have this inode in memory.
3790                  * Read the block from disk.
3791                  */
3792                 trace_ext4_load_inode(inode);
3793                 get_bh(bh);
3794                 bh->b_end_io = end_buffer_read_sync;
3795                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3796                 wait_on_buffer(bh);
3797                 if (!buffer_uptodate(bh)) {
3798                         EXT4_ERROR_INODE_BLOCK(inode, block,
3799                                                "unable to read itable block");
3800                         brelse(bh);
3801                         return -EIO;
3802                 }
3803         }
3804 has_buffer:
3805         iloc->bh = bh;
3806         return 0;
3807 }
3808
3809 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3810 {
3811         /* We have all inode data except xattrs in memory here. */
3812         return __ext4_get_inode_loc(inode, iloc,
3813                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3814 }
3815
3816 void ext4_set_inode_flags(struct inode *inode)
3817 {
3818         unsigned int flags = EXT4_I(inode)->i_flags;
3819         unsigned int new_fl = 0;
3820
3821         if (flags & EXT4_SYNC_FL)
3822                 new_fl |= S_SYNC;
3823         if (flags & EXT4_APPEND_FL)
3824                 new_fl |= S_APPEND;
3825         if (flags & EXT4_IMMUTABLE_FL)
3826                 new_fl |= S_IMMUTABLE;
3827         if (flags & EXT4_NOATIME_FL)
3828                 new_fl |= S_NOATIME;
3829         if (flags & EXT4_DIRSYNC_FL)
3830                 new_fl |= S_DIRSYNC;
3831         if (test_opt(inode->i_sb, DAX))
3832                 new_fl |= S_DAX;
3833         inode_set_flags(inode, new_fl,
3834                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
3835 }
3836
3837 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3838 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3839 {
3840         unsigned int vfs_fl;
3841         unsigned long old_fl, new_fl;
3842
3843         do {
3844                 vfs_fl = ei->vfs_inode.i_flags;
3845                 old_fl = ei->i_flags;
3846                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3847                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3848                                 EXT4_DIRSYNC_FL);
3849                 if (vfs_fl & S_SYNC)
3850                         new_fl |= EXT4_SYNC_FL;
3851                 if (vfs_fl & S_APPEND)
3852                         new_fl |= EXT4_APPEND_FL;
3853                 if (vfs_fl & S_IMMUTABLE)
3854                         new_fl |= EXT4_IMMUTABLE_FL;
3855                 if (vfs_fl & S_NOATIME)
3856                         new_fl |= EXT4_NOATIME_FL;
3857                 if (vfs_fl & S_DIRSYNC)
3858                         new_fl |= EXT4_DIRSYNC_FL;
3859         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3860 }
3861
3862 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3863                                   struct ext4_inode_info *ei)
3864 {
3865         blkcnt_t i_blocks ;
3866         struct inode *inode = &(ei->vfs_inode);
3867         struct super_block *sb = inode->i_sb;
3868
3869         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3870                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3871                 /* we are using combined 48 bit field */
3872                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3873                                         le32_to_cpu(raw_inode->i_blocks_lo);
3874                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3875                         /* i_blocks represent file system block size */
3876                         return i_blocks  << (inode->i_blkbits - 9);
3877                 } else {
3878                         return i_blocks;
3879                 }
3880         } else {
3881                 return le32_to_cpu(raw_inode->i_blocks_lo);
3882         }
3883 }
3884
3885 static inline void ext4_iget_extra_inode(struct inode *inode,
3886                                          struct ext4_inode *raw_inode,
3887                                          struct ext4_inode_info *ei)
3888 {
3889         __le32 *magic = (void *)raw_inode +
3890                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3891         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3892                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3893                 ext4_find_inline_data_nolock(inode);
3894         } else
3895                 EXT4_I(inode)->i_inline_off = 0;
3896 }
3897
3898 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3899 {
3900         struct ext4_iloc iloc;
3901         struct ext4_inode *raw_inode;
3902         struct ext4_inode_info *ei;
3903         struct inode *inode;
3904         journal_t *journal = EXT4_SB(sb)->s_journal;
3905         long ret;
3906         int block;
3907         uid_t i_uid;
3908         gid_t i_gid;
3909
3910         inode = iget_locked(sb, ino);
3911         if (!inode)
3912                 return ERR_PTR(-ENOMEM);
3913         if (!(inode->i_state & I_NEW))
3914                 return inode;
3915
3916         ei = EXT4_I(inode);
3917         iloc.bh = NULL;
3918
3919         ret = __ext4_get_inode_loc(inode, &iloc, 0);
3920         if (ret < 0)
3921                 goto bad_inode;
3922         raw_inode = ext4_raw_inode(&iloc);
3923
3924         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3925                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3926                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3927                     EXT4_INODE_SIZE(inode->i_sb)) {
3928                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3929                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3930                                 EXT4_INODE_SIZE(inode->i_sb));
3931                         ret = -EIO;
3932                         goto bad_inode;
3933                 }
3934         } else
3935                 ei->i_extra_isize = 0;
3936
3937         /* Precompute checksum seed for inode metadata */
3938         if (ext4_has_metadata_csum(sb)) {
3939                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3940                 __u32 csum;
3941                 __le32 inum = cpu_to_le32(inode->i_ino);
3942                 __le32 gen = raw_inode->i_generation;
3943                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3944                                    sizeof(inum));
3945                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3946                                               sizeof(gen));
3947         }
3948
3949         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3950                 EXT4_ERROR_INODE(inode, "checksum invalid");
3951                 ret = -EIO;
3952                 goto bad_inode;
3953         }
3954
3955         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3956         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3957         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3958         if (!(test_opt(inode->i_sb, NO_UID32))) {
3959                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3960                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3961         }
3962         i_uid_write(inode, i_uid);
3963         i_gid_write(inode, i_gid);
3964         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3965
3966         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
3967         ei->i_inline_off = 0;
3968         ei->i_dir_start_lookup = 0;
3969         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3970         /* We now have enough fields to check if the inode was active or not.
3971          * This is needed because nfsd might try to access dead inodes
3972          * the test is that same one that e2fsck uses
3973          * NeilBrown 1999oct15
3974          */
3975         if (inode->i_nlink == 0) {
3976                 if ((inode->i_mode == 0 ||
3977                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
3978                     ino != EXT4_BOOT_LOADER_INO) {
3979                         /* this inode is deleted */
3980                         ret = -ESTALE;
3981                         goto bad_inode;
3982                 }
3983                 /* The only unlinked inodes we let through here have
3984                  * valid i_mode and are being read by the orphan
3985                  * recovery code: that's fine, we're about to complete
3986                  * the process of deleting those.
3987                  * OR it is the EXT4_BOOT_LOADER_INO which is
3988                  * not initialized on a new filesystem. */
3989         }
3990         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3991         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3992         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3993         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3994                 ei->i_file_acl |=
3995                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3996         inode->i_size = ext4_isize(raw_inode);
3997         ei->i_disksize = inode->i_size;
3998 #ifdef CONFIG_QUOTA
3999         ei->i_reserved_quota = 0;
4000 #endif
4001         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4002         ei->i_block_group = iloc.block_group;
4003         ei->i_last_alloc_group = ~0;
4004         /*
4005          * NOTE! The in-memory inode i_data array is in little-endian order
4006          * even on big-endian machines: we do NOT byteswap the block numbers!
4007          */
4008         for (block = 0; block < EXT4_N_BLOCKS; block++)
4009                 ei->i_data[block] = raw_inode->i_block[block];
4010         INIT_LIST_HEAD(&ei->i_orphan);
4011
4012         /*
4013          * Set transaction id's of transactions that have to be committed
4014          * to finish f[data]sync. We set them to currently running transaction
4015          * as we cannot be sure that the inode or some of its metadata isn't
4016          * part of the transaction - the inode could have been reclaimed and
4017          * now it is reread from disk.
4018          */
4019         if (journal) {
4020                 transaction_t *transaction;
4021                 tid_t tid;
4022
4023                 read_lock(&journal->j_state_lock);
4024                 if (journal->j_running_transaction)
4025                         transaction = journal->j_running_transaction;
4026                 else
4027                         transaction = journal->j_committing_transaction;
4028                 if (transaction)
4029                         tid = transaction->t_tid;
4030                 else
4031                         tid = journal->j_commit_sequence;
4032                 read_unlock(&journal->j_state_lock);
4033                 ei->i_sync_tid = tid;
4034                 ei->i_datasync_tid = tid;
4035         }
4036
4037         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4038                 if (ei->i_extra_isize == 0) {
4039                         /* The extra space is currently unused. Use it. */
4040                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4041                                             EXT4_GOOD_OLD_INODE_SIZE;
4042                 } else {
4043                         ext4_iget_extra_inode(inode, raw_inode, ei);
4044                 }
4045         }
4046
4047         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4048         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4049         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4050         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4051
4052         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4053                 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4054                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4055                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4056                                 inode->i_version |=
4057                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4058                 }
4059         }
4060
4061         ret = 0;
4062         if (ei->i_file_acl &&
4063             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4064                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4065                                  ei->i_file_acl);
4066                 ret = -EIO;
4067                 goto bad_inode;
4068         } else if (!ext4_has_inline_data(inode)) {
4069                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4070                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4071                             (S_ISLNK(inode->i_mode) &&
4072                              !ext4_inode_is_fast_symlink(inode))))
4073                                 /* Validate extent which is part of inode */
4074                                 ret = ext4_ext_check_inode(inode);
4075                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4076                            (S_ISLNK(inode->i_mode) &&
4077                             !ext4_inode_is_fast_symlink(inode))) {
4078                         /* Validate block references which are part of inode */
4079                         ret = ext4_ind_check_inode(inode);
4080                 }
4081         }
4082         if (ret)
4083                 goto bad_inode;
4084
4085         if (S_ISREG(inode->i_mode)) {
4086                 inode->i_op = &ext4_file_inode_operations;
4087                 if (test_opt(inode->i_sb, DAX))
4088                         inode->i_fop = &ext4_dax_file_operations;
4089                 else
4090                         inode->i_fop = &ext4_file_operations;
4091                 ext4_set_aops(inode);
4092         } else if (S_ISDIR(inode->i_mode)) {
4093                 inode->i_op = &ext4_dir_inode_operations;
4094                 inode->i_fop = &ext4_dir_operations;
4095         } else if (S_ISLNK(inode->i_mode)) {
4096                 if (ext4_inode_is_fast_symlink(inode)) {
4097                         inode->i_op = &ext4_fast_symlink_inode_operations;
4098                         nd_terminate_link(ei->i_data, inode->i_size,
4099                                 sizeof(ei->i_data) - 1);
4100                 } else {
4101                         inode->i_op = &ext4_symlink_inode_operations;
4102                         ext4_set_aops(inode);
4103                 }
4104         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4105               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4106                 inode->i_op = &ext4_special_inode_operations;
4107                 if (raw_inode->i_block[0])
4108                         init_special_inode(inode, inode->i_mode,
4109                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4110                 else
4111                         init_special_inode(inode, inode->i_mode,
4112                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4113         } else if (ino == EXT4_BOOT_LOADER_INO) {
4114                 make_bad_inode(inode);
4115         } else {
4116                 ret = -EIO;
4117                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4118                 goto bad_inode;
4119         }
4120         brelse(iloc.bh);
4121         ext4_set_inode_flags(inode);
4122         unlock_new_inode(inode);
4123         return inode;
4124
4125 bad_inode:
4126         brelse(iloc.bh);
4127         iget_failed(inode);
4128         return ERR_PTR(ret);
4129 }
4130
4131 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4132 {
4133         if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4134                 return ERR_PTR(-EIO);
4135         return ext4_iget(sb, ino);
4136 }
4137
4138 static int ext4_inode_blocks_set(handle_t *handle,
4139                                 struct ext4_inode *raw_inode,
4140                                 struct ext4_inode_info *ei)
4141 {
4142         struct inode *inode = &(ei->vfs_inode);
4143         u64 i_blocks = inode->i_blocks;
4144         struct super_block *sb = inode->i_sb;
4145
4146         if (i_blocks <= ~0U) {
4147                 /*
4148                  * i_blocks can be represented in a 32 bit variable
4149                  * as multiple of 512 bytes
4150                  */
4151                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4152                 raw_inode->i_blocks_high = 0;
4153                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4154                 return 0;
4155         }
4156         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4157                 return -EFBIG;
4158
4159         if (i_blocks <= 0xffffffffffffULL) {
4160                 /*
4161                  * i_blocks can be represented in a 48 bit variable
4162                  * as multiple of 512 bytes
4163                  */
4164                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4165                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4166                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4167         } else {
4168                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4169                 /* i_block is stored in file system block size */
4170                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4171                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4172                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4173         }
4174         return 0;
4175 }
4176
4177 struct other_inode {
4178         unsigned long           orig_ino;
4179         struct ext4_inode       *raw_inode;
4180 };
4181
4182 static int other_inode_match(struct inode * inode, unsigned long ino,
4183                              void *data)
4184 {
4185         struct other_inode *oi = (struct other_inode *) data;
4186
4187         if ((inode->i_ino != ino) ||
4188             (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4189                                I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4190             ((inode->i_state & I_DIRTY_TIME) == 0))
4191                 return 0;
4192         spin_lock(&inode->i_lock);
4193         if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4194                                 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4195             (inode->i_state & I_DIRTY_TIME)) {
4196                 struct ext4_inode_info  *ei = EXT4_I(inode);
4197
4198                 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4199                 spin_unlock(&inode->i_lock);
4200
4201                 spin_lock(&ei->i_raw_lock);
4202                 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4203                 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4204                 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4205                 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4206                 spin_unlock(&ei->i_raw_lock);
4207                 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4208                 return -1;
4209         }
4210         spin_unlock(&inode->i_lock);
4211         return -1;
4212 }
4213
4214 /*
4215  * Opportunistically update the other time fields for other inodes in
4216  * the same inode table block.
4217  */
4218 static void ext4_update_other_inodes_time(struct super_block *sb,
4219                                           unsigned long orig_ino, char *buf)
4220 {
4221         struct other_inode oi;
4222         unsigned long ino;
4223         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4224         int inode_size = EXT4_INODE_SIZE(sb);
4225
4226         oi.orig_ino = orig_ino;
4227         ino = orig_ino & ~(inodes_per_block - 1);
4228         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4229                 if (ino == orig_ino)
4230                         continue;
4231                 oi.raw_inode = (struct ext4_inode *) buf;
4232                 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4233         }
4234 }
4235
4236 /*
4237  * Post the struct inode info into an on-disk inode location in the
4238  * buffer-cache.  This gobbles the caller's reference to the
4239  * buffer_head in the inode location struct.
4240  *
4241  * The caller must have write access to iloc->bh.
4242  */
4243 static int ext4_do_update_inode(handle_t *handle,
4244                                 struct inode *inode,
4245                                 struct ext4_iloc *iloc)
4246 {
4247         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4248         struct ext4_inode_info *ei = EXT4_I(inode);
4249         struct buffer_head *bh = iloc->bh;
4250         struct super_block *sb = inode->i_sb;
4251         int err = 0, rc, block;
4252         int need_datasync = 0, set_large_file = 0;
4253         uid_t i_uid;
4254         gid_t i_gid;
4255
4256         spin_lock(&ei->i_raw_lock);
4257
4258         /* For fields not tracked in the in-memory inode,
4259          * initialise them to zero for new inodes. */
4260         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4261                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4262
4263         ext4_get_inode_flags(ei);
4264         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4265         i_uid = i_uid_read(inode);
4266         i_gid = i_gid_read(inode);
4267         if (!(test_opt(inode->i_sb, NO_UID32))) {
4268                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4269                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4270 /*
4271  * Fix up interoperability with old kernels. Otherwise, old inodes get
4272  * re-used with the upper 16 bits of the uid/gid intact
4273  */
4274                 if (!ei->i_dtime) {
4275                         raw_inode->i_uid_high =
4276                                 cpu_to_le16(high_16_bits(i_uid));
4277                         raw_inode->i_gid_high =
4278                                 cpu_to_le16(high_16_bits(i_gid));
4279                 } else {
4280                         raw_inode->i_uid_high = 0;
4281                         raw_inode->i_gid_high = 0;
4282                 }
4283         } else {
4284                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4285                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4286                 raw_inode->i_uid_high = 0;
4287                 raw_inode->i_gid_high = 0;
4288         }
4289         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4290
4291         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4292         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4293         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4294         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4295
4296         err = ext4_inode_blocks_set(handle, raw_inode, ei);
4297         if (err) {
4298                 spin_unlock(&ei->i_raw_lock);
4299                 goto out_brelse;
4300         }
4301         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4302         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4303         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4304                 raw_inode->i_file_acl_high =
4305                         cpu_to_le16(ei->i_file_acl >> 32);
4306         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4307         if (ei->i_disksize != ext4_isize(raw_inode)) {
4308                 ext4_isize_set(raw_inode, ei->i_disksize);
4309                 need_datasync = 1;
4310         }
4311         if (ei->i_disksize > 0x7fffffffULL) {
4312                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4313                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4314                                 EXT4_SB(sb)->s_es->s_rev_level ==
4315                     cpu_to_le32(EXT4_GOOD_OLD_REV))
4316                         set_large_file = 1;
4317         }
4318         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4319         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4320                 if (old_valid_dev(inode->i_rdev)) {
4321                         raw_inode->i_block[0] =
4322                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4323                         raw_inode->i_block[1] = 0;
4324                 } else {
4325                         raw_inode->i_block[0] = 0;
4326                         raw_inode->i_block[1] =
4327                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4328                         raw_inode->i_block[2] = 0;
4329                 }
4330         } else if (!ext4_has_inline_data(inode)) {
4331                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4332                         raw_inode->i_block[block] = ei->i_data[block];
4333         }
4334
4335         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4336                 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4337                 if (ei->i_extra_isize) {
4338                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4339                                 raw_inode->i_version_hi =
4340                                         cpu_to_le32(inode->i_version >> 32);
4341                         raw_inode->i_extra_isize =
4342                                 cpu_to_le16(ei->i_extra_isize);
4343                 }
4344         }
4345         ext4_inode_csum_set(inode, raw_inode, ei);
4346         spin_unlock(&ei->i_raw_lock);
4347         if (inode->i_sb->s_flags & MS_LAZYTIME)
4348                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4349                                               bh->b_data);
4350
4351         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4352         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4353         if (!err)
4354                 err = rc;
4355         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4356         if (set_large_file) {
4357                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4358                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4359                 if (err)
4360                         goto out_brelse;
4361                 ext4_update_dynamic_rev(sb);
4362                 EXT4_SET_RO_COMPAT_FEATURE(sb,
4363                                            EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4364                 ext4_handle_sync(handle);
4365                 err = ext4_handle_dirty_super(handle, sb);
4366         }
4367         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4368 out_brelse:
4369         brelse(bh);
4370         ext4_std_error(inode->i_sb, err);
4371         return err;
4372 }
4373
4374 /*
4375  * ext4_write_inode()
4376  *
4377  * We are called from a few places:
4378  *
4379  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4380  *   Here, there will be no transaction running. We wait for any running
4381  *   transaction to commit.
4382  *
4383  * - Within flush work (sys_sync(), kupdate and such).
4384  *   We wait on commit, if told to.
4385  *
4386  * - Within iput_final() -> write_inode_now()
4387  *   We wait on commit, if told to.
4388  *
4389  * In all cases it is actually safe for us to return without doing anything,
4390  * because the inode has been copied into a raw inode buffer in
4391  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
4392  * writeback.
4393  *
4394  * Note that we are absolutely dependent upon all inode dirtiers doing the
4395  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4396  * which we are interested.
4397  *
4398  * It would be a bug for them to not do this.  The code:
4399  *
4400  *      mark_inode_dirty(inode)
4401  *      stuff();
4402  *      inode->i_size = expr;
4403  *
4404  * is in error because write_inode() could occur while `stuff()' is running,
4405  * and the new i_size will be lost.  Plus the inode will no longer be on the
4406  * superblock's dirty inode list.
4407  */
4408 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4409 {
4410         int err;
4411
4412         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4413                 return 0;
4414
4415         if (EXT4_SB(inode->i_sb)->s_journal) {
4416                 if (ext4_journal_current_handle()) {
4417                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4418                         dump_stack();
4419                         return -EIO;
4420                 }
4421
4422                 /*
4423                  * No need to force transaction in WB_SYNC_NONE mode. Also
4424                  * ext4_sync_fs() will force the commit after everything is
4425                  * written.
4426                  */
4427                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4428                         return 0;
4429
4430                 err = ext4_force_commit(inode->i_sb);
4431         } else {
4432                 struct ext4_iloc iloc;
4433
4434                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4435                 if (err)
4436                         return err;
4437                 /*
4438                  * sync(2) will flush the whole buffer cache. No need to do
4439                  * it here separately for each inode.
4440                  */
4441                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4442                         sync_dirty_buffer(iloc.bh);
4443                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4444                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4445                                          "IO error syncing inode");
4446                         err = -EIO;
4447                 }
4448                 brelse(iloc.bh);
4449         }
4450         return err;
4451 }
4452
4453 /*
4454  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4455  * buffers that are attached to a page stradding i_size and are undergoing
4456  * commit. In that case we have to wait for commit to finish and try again.
4457  */
4458 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4459 {
4460         struct page *page;
4461         unsigned offset;
4462         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4463         tid_t commit_tid = 0;
4464         int ret;
4465
4466         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4467         /*
4468          * All buffers in the last page remain valid? Then there's nothing to
4469          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4470          * blocksize case
4471          */
4472         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4473                 return;
4474         while (1) {
4475                 page = find_lock_page(inode->i_mapping,
4476                                       inode->i_size >> PAGE_CACHE_SHIFT);
4477                 if (!page)
4478                         return;
4479                 ret = __ext4_journalled_invalidatepage(page, offset,
4480                                                 PAGE_CACHE_SIZE - offset);
4481                 unlock_page(page);
4482                 page_cache_release(page);
4483                 if (ret != -EBUSY)
4484                         return;
4485                 commit_tid = 0;
4486                 read_lock(&journal->j_state_lock);
4487                 if (journal->j_committing_transaction)
4488                         commit_tid = journal->j_committing_transaction->t_tid;
4489                 read_unlock(&journal->j_state_lock);
4490                 if (commit_tid)
4491                         jbd2_log_wait_commit(journal, commit_tid);
4492         }
4493 }
4494
4495 /*
4496  * ext4_setattr()
4497  *
4498  * Called from notify_change.
4499  *
4500  * We want to trap VFS attempts to truncate the file as soon as
4501  * possible.  In particular, we want to make sure that when the VFS
4502  * shrinks i_size, we put the inode on the orphan list and modify
4503  * i_disksize immediately, so that during the subsequent flushing of
4504  * dirty pages and freeing of disk blocks, we can guarantee that any
4505  * commit will leave the blocks being flushed in an unused state on
4506  * disk.  (On recovery, the inode will get truncated and the blocks will
4507  * be freed, so we have a strong guarantee that no future commit will
4508  * leave these blocks visible to the user.)
4509  *
4510  * Another thing we have to assure is that if we are in ordered mode
4511  * and inode is still attached to the committing transaction, we must
4512  * we start writeout of all the dirty pages which are being truncated.
4513  * This way we are sure that all the data written in the previous
4514  * transaction are already on disk (truncate waits for pages under
4515  * writeback).
4516  *
4517  * Called with inode->i_mutex down.
4518  */
4519 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4520 {
4521         struct inode *inode = dentry->d_inode;
4522         int error, rc = 0;
4523         int orphan = 0;
4524         const unsigned int ia_valid = attr->ia_valid;
4525
4526         error = inode_change_ok(inode, attr);
4527         if (error)
4528                 return error;
4529
4530         if (is_quota_modification(inode, attr))
4531                 dquot_initialize(inode);
4532         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4533             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4534                 handle_t *handle;
4535
4536                 /* (user+group)*(old+new) structure, inode write (sb,
4537                  * inode block, ? - but truncate inode update has it) */
4538                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4539                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4540                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4541                 if (IS_ERR(handle)) {
4542                         error = PTR_ERR(handle);
4543                         goto err_out;
4544                 }
4545                 error = dquot_transfer(inode, attr);
4546                 if (error) {
4547                         ext4_journal_stop(handle);
4548                         return error;
4549                 }
4550                 /* Update corresponding info in inode so that everything is in
4551                  * one transaction */
4552                 if (attr->ia_valid & ATTR_UID)
4553                         inode->i_uid = attr->ia_uid;
4554                 if (attr->ia_valid & ATTR_GID)
4555                         inode->i_gid = attr->ia_gid;
4556                 error = ext4_mark_inode_dirty(handle, inode);
4557                 ext4_journal_stop(handle);
4558         }
4559
4560         if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4561                 handle_t *handle;
4562
4563                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4564                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4565
4566                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4567                                 return -EFBIG;
4568                 }
4569
4570                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4571                         inode_inc_iversion(inode);
4572
4573                 if (S_ISREG(inode->i_mode) &&
4574                     (attr->ia_size < inode->i_size)) {
4575                         if (ext4_should_order_data(inode)) {
4576                                 error = ext4_begin_ordered_truncate(inode,
4577                                                             attr->ia_size);
4578                                 if (error)
4579                                         goto err_out;
4580                         }
4581                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4582                         if (IS_ERR(handle)) {
4583                                 error = PTR_ERR(handle);
4584                                 goto err_out;
4585                         }
4586                         if (ext4_handle_valid(handle)) {
4587                                 error = ext4_orphan_add(handle, inode);
4588                                 orphan = 1;
4589                         }
4590                         down_write(&EXT4_I(inode)->i_data_sem);
4591                         EXT4_I(inode)->i_disksize = attr->ia_size;
4592                         rc = ext4_mark_inode_dirty(handle, inode);
4593                         if (!error)
4594                                 error = rc;
4595                         /*
4596                          * We have to update i_size under i_data_sem together
4597                          * with i_disksize to avoid races with writeback code
4598                          * running ext4_wb_update_i_disksize().
4599                          */
4600                         if (!error)
4601                                 i_size_write(inode, attr->ia_size);
4602                         up_write(&EXT4_I(inode)->i_data_sem);
4603                         ext4_journal_stop(handle);
4604                         if (error) {
4605                                 ext4_orphan_del(NULL, inode);
4606                                 goto err_out;
4607                         }
4608                 } else {
4609                         loff_t oldsize = inode->i_size;
4610
4611                         i_size_write(inode, attr->ia_size);
4612                         pagecache_isize_extended(inode, oldsize, inode->i_size);
4613                 }
4614
4615                 /*
4616                  * Blocks are going to be removed from the inode. Wait
4617                  * for dio in flight.  Temporarily disable
4618                  * dioread_nolock to prevent livelock.
4619                  */
4620                 if (orphan) {
4621                         if (!ext4_should_journal_data(inode)) {
4622                                 ext4_inode_block_unlocked_dio(inode);
4623                                 inode_dio_wait(inode);
4624                                 ext4_inode_resume_unlocked_dio(inode);
4625                         } else
4626                                 ext4_wait_for_tail_page_commit(inode);
4627                 }
4628                 /*
4629                  * Truncate pagecache after we've waited for commit
4630                  * in data=journal mode to make pages freeable.
4631                  */
4632                 truncate_pagecache(inode, inode->i_size);
4633         }
4634         /*
4635          * We want to call ext4_truncate() even if attr->ia_size ==
4636          * inode->i_size for cases like truncation of fallocated space
4637          */
4638         if (attr->ia_valid & ATTR_SIZE)
4639                 ext4_truncate(inode);
4640
4641         if (!rc) {
4642                 setattr_copy(inode, attr);
4643                 mark_inode_dirty(inode);
4644         }
4645
4646         /*
4647          * If the call to ext4_truncate failed to get a transaction handle at
4648          * all, we need to clean up the in-core orphan list manually.
4649          */
4650         if (orphan && inode->i_nlink)
4651                 ext4_orphan_del(NULL, inode);
4652
4653         if (!rc && (ia_valid & ATTR_MODE))
4654                 rc = posix_acl_chmod(inode, inode->i_mode);
4655
4656 err_out:
4657         ext4_std_error(inode->i_sb, error);
4658         if (!error)
4659                 error = rc;
4660         return error;
4661 }
4662
4663 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4664                  struct kstat *stat)
4665 {
4666         struct inode *inode;
4667         unsigned long long delalloc_blocks;
4668
4669         inode = dentry->d_inode;
4670         generic_fillattr(inode, stat);
4671
4672         /*
4673          * If there is inline data in the inode, the inode will normally not
4674          * have data blocks allocated (it may have an external xattr block).
4675          * Report at least one sector for such files, so tools like tar, rsync,
4676          * others doen't incorrectly think the file is completely sparse.
4677          */
4678         if (unlikely(ext4_has_inline_data(inode)))
4679                 stat->blocks += (stat->size + 511) >> 9;
4680
4681         /*
4682          * We can't update i_blocks if the block allocation is delayed
4683          * otherwise in the case of system crash before the real block
4684          * allocation is done, we will have i_blocks inconsistent with
4685          * on-disk file blocks.
4686          * We always keep i_blocks updated together with real
4687          * allocation. But to not confuse with user, stat
4688          * will return the blocks that include the delayed allocation
4689          * blocks for this file.
4690          */
4691         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4692                                    EXT4_I(inode)->i_reserved_data_blocks);
4693         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
4694         return 0;
4695 }
4696
4697 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4698                                    int pextents)
4699 {
4700         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4701                 return ext4_ind_trans_blocks(inode, lblocks);
4702         return ext4_ext_index_trans_blocks(inode, pextents);
4703 }
4704
4705 /*
4706  * Account for index blocks, block groups bitmaps and block group
4707  * descriptor blocks if modify datablocks and index blocks
4708  * worse case, the indexs blocks spread over different block groups
4709  *
4710  * If datablocks are discontiguous, they are possible to spread over
4711  * different block groups too. If they are contiguous, with flexbg,
4712  * they could still across block group boundary.
4713  *
4714  * Also account for superblock, inode, quota and xattr blocks
4715  */
4716 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4717                                   int pextents)
4718 {
4719         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4720         int gdpblocks;
4721         int idxblocks;
4722         int ret = 0;
4723
4724         /*
4725          * How many index blocks need to touch to map @lblocks logical blocks
4726          * to @pextents physical extents?
4727          */
4728         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4729
4730         ret = idxblocks;
4731
4732         /*
4733          * Now let's see how many group bitmaps and group descriptors need
4734          * to account
4735          */
4736         groups = idxblocks + pextents;
4737         gdpblocks = groups;
4738         if (groups > ngroups)
4739                 groups = ngroups;
4740         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4741                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4742
4743         /* bitmaps and block group descriptor blocks */
4744         ret += groups + gdpblocks;
4745
4746         /* Blocks for super block, inode, quota and xattr blocks */
4747         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4748
4749         return ret;
4750 }
4751
4752 /*
4753  * Calculate the total number of credits to reserve to fit
4754  * the modification of a single pages into a single transaction,
4755  * which may include multiple chunks of block allocations.
4756  *
4757  * This could be called via ext4_write_begin()
4758  *
4759  * We need to consider the worse case, when
4760  * one new block per extent.
4761  */
4762 int ext4_writepage_trans_blocks(struct inode *inode)
4763 {
4764         int bpp = ext4_journal_blocks_per_page(inode);
4765         int ret;
4766
4767         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4768
4769         /* Account for data blocks for journalled mode */
4770         if (ext4_should_journal_data(inode))
4771                 ret += bpp;
4772         return ret;
4773 }
4774
4775 /*
4776  * Calculate the journal credits for a chunk of data modification.
4777  *
4778  * This is called from DIO, fallocate or whoever calling
4779  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4780  *
4781  * journal buffers for data blocks are not included here, as DIO
4782  * and fallocate do no need to journal data buffers.
4783  */
4784 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4785 {
4786         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4787 }
4788
4789 /*
4790  * The caller must have previously called ext4_reserve_inode_write().
4791  * Give this, we know that the caller already has write access to iloc->bh.
4792  */
4793 int ext4_mark_iloc_dirty(handle_t *handle,
4794                          struct inode *inode, struct ext4_iloc *iloc)
4795 {
4796         int err = 0;
4797
4798         if (IS_I_VERSION(inode))
4799                 inode_inc_iversion(inode);
4800
4801         /* the do_update_inode consumes one bh->b_count */
4802         get_bh(iloc->bh);
4803
4804         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4805         err = ext4_do_update_inode(handle, inode, iloc);
4806         put_bh(iloc->bh);
4807         return err;
4808 }
4809
4810 /*
4811  * On success, We end up with an outstanding reference count against
4812  * iloc->bh.  This _must_ be cleaned up later.
4813  */
4814
4815 int
4816 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4817                          struct ext4_iloc *iloc)
4818 {
4819         int err;
4820
4821         err = ext4_get_inode_loc(inode, iloc);
4822         if (!err) {
4823                 BUFFER_TRACE(iloc->bh, "get_write_access");
4824                 err = ext4_journal_get_write_access(handle, iloc->bh);
4825                 if (err) {
4826                         brelse(iloc->bh);
4827                         iloc->bh = NULL;
4828                 }
4829         }
4830         ext4_std_error(inode->i_sb, err);
4831         return err;
4832 }
4833
4834 /*
4835  * Expand an inode by new_extra_isize bytes.
4836  * Returns 0 on success or negative error number on failure.
4837  */
4838 static int ext4_expand_extra_isize(struct inode *inode,
4839                                    unsigned int new_extra_isize,
4840                                    struct ext4_iloc iloc,
4841                                    handle_t *handle)
4842 {
4843         struct ext4_inode *raw_inode;
4844         struct ext4_xattr_ibody_header *header;
4845
4846         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4847                 return 0;
4848
4849         raw_inode = ext4_raw_inode(&iloc);
4850
4851         header = IHDR(inode, raw_inode);
4852
4853         /* No extended attributes present */
4854         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4855             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4856                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4857                         new_extra_isize);
4858                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4859                 return 0;
4860         }
4861
4862         /* try to expand with EAs present */
4863         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4864                                           raw_inode, handle);
4865 }
4866
4867 /*
4868  * What we do here is to mark the in-core inode as clean with respect to inode
4869  * dirtiness (it may still be data-dirty).
4870  * This means that the in-core inode may be reaped by prune_icache
4871  * without having to perform any I/O.  This is a very good thing,
4872  * because *any* task may call prune_icache - even ones which
4873  * have a transaction open against a different journal.
4874  *
4875  * Is this cheating?  Not really.  Sure, we haven't written the
4876  * inode out, but prune_icache isn't a user-visible syncing function.
4877  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4878  * we start and wait on commits.
4879  */
4880 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4881 {
4882         struct ext4_iloc iloc;
4883         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4884         static unsigned int mnt_count;
4885         int err, ret;
4886
4887         might_sleep();
4888         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4889         err = ext4_reserve_inode_write(handle, inode, &iloc);
4890         if (ext4_handle_valid(handle) &&
4891             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4892             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4893                 /*
4894                  * We need extra buffer credits since we may write into EA block
4895                  * with this same handle. If journal_extend fails, then it will
4896                  * only result in a minor loss of functionality for that inode.
4897                  * If this is felt to be critical, then e2fsck should be run to
4898                  * force a large enough s_min_extra_isize.
4899                  */
4900                 if ((jbd2_journal_extend(handle,
4901                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4902                         ret = ext4_expand_extra_isize(inode,
4903                                                       sbi->s_want_extra_isize,
4904                                                       iloc, handle);
4905                         if (ret) {
4906                                 ext4_set_inode_state(inode,
4907                                                      EXT4_STATE_NO_EXPAND);
4908                                 if (mnt_count !=
4909                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4910                                         ext4_warning(inode->i_sb,
4911                                         "Unable to expand inode %lu. Delete"
4912                                         " some EAs or run e2fsck.",
4913                                         inode->i_ino);
4914                                         mnt_count =
4915                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4916                                 }
4917                         }
4918                 }
4919         }
4920         if (!err)
4921                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4922         return err;
4923 }
4924
4925 /*
4926  * ext4_dirty_inode() is called from __mark_inode_dirty()
4927  *
4928  * We're really interested in the case where a file is being extended.
4929  * i_size has been changed by generic_commit_write() and we thus need
4930  * to include the updated inode in the current transaction.
4931  *
4932  * Also, dquot_alloc_block() will always dirty the inode when blocks
4933  * are allocated to the file.
4934  *
4935  * If the inode is marked synchronous, we don't honour that here - doing
4936  * so would cause a commit on atime updates, which we don't bother doing.
4937  * We handle synchronous inodes at the highest possible level.
4938  *
4939  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
4940  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
4941  * to copy into the on-disk inode structure are the timestamp files.
4942  */
4943 void ext4_dirty_inode(struct inode *inode, int flags)
4944 {
4945         handle_t *handle;
4946
4947         if (flags == I_DIRTY_TIME)
4948                 return;
4949         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4950         if (IS_ERR(handle))
4951                 goto out;
4952
4953         ext4_mark_inode_dirty(handle, inode);
4954
4955         ext4_journal_stop(handle);
4956 out:
4957         return;
4958 }
4959
4960 #if 0
4961 /*
4962  * Bind an inode's backing buffer_head into this transaction, to prevent
4963  * it from being flushed to disk early.  Unlike
4964  * ext4_reserve_inode_write, this leaves behind no bh reference and
4965  * returns no iloc structure, so the caller needs to repeat the iloc
4966  * lookup to mark the inode dirty later.
4967  */
4968 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4969 {
4970         struct ext4_iloc iloc;
4971
4972         int err = 0;
4973         if (handle) {
4974                 err = ext4_get_inode_loc(inode, &iloc);
4975                 if (!err) {
4976                         BUFFER_TRACE(iloc.bh, "get_write_access");
4977                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4978                         if (!err)
4979                                 err = ext4_handle_dirty_metadata(handle,
4980                                                                  NULL,
4981                                                                  iloc.bh);
4982                         brelse(iloc.bh);
4983                 }
4984         }
4985         ext4_std_error(inode->i_sb, err);
4986         return err;
4987 }
4988 #endif
4989
4990 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4991 {
4992         journal_t *journal;
4993         handle_t *handle;
4994         int err;
4995
4996         /*
4997          * We have to be very careful here: changing a data block's
4998          * journaling status dynamically is dangerous.  If we write a
4999          * data block to the journal, change the status and then delete
5000          * that block, we risk forgetting to revoke the old log record
5001          * from the journal and so a subsequent replay can corrupt data.
5002          * So, first we make sure that the journal is empty and that
5003          * nobody is changing anything.
5004          */
5005
5006         journal = EXT4_JOURNAL(inode);
5007         if (!journal)
5008                 return 0;
5009         if (is_journal_aborted(journal))
5010                 return -EROFS;
5011         /* We have to allocate physical blocks for delalloc blocks
5012          * before flushing journal. otherwise delalloc blocks can not
5013          * be allocated any more. even more truncate on delalloc blocks
5014          * could trigger BUG by flushing delalloc blocks in journal.
5015          * There is no delalloc block in non-journal data mode.
5016          */
5017         if (val && test_opt(inode->i_sb, DELALLOC)) {
5018                 err = ext4_alloc_da_blocks(inode);
5019                 if (err < 0)
5020                         return err;
5021         }
5022
5023         /* Wait for all existing dio workers */
5024         ext4_inode_block_unlocked_dio(inode);
5025         inode_dio_wait(inode);
5026
5027         jbd2_journal_lock_updates(journal);
5028
5029         /*
5030          * OK, there are no updates running now, and all cached data is
5031          * synced to disk.  We are now in a completely consistent state
5032          * which doesn't have anything in the journal, and we know that
5033          * no filesystem updates are running, so it is safe to modify
5034          * the inode's in-core data-journaling state flag now.
5035          */
5036
5037         if (val)
5038                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5039         else {
5040                 err = jbd2_journal_flush(journal);
5041                 if (err < 0) {
5042                         jbd2_journal_unlock_updates(journal);
5043                         ext4_inode_resume_unlocked_dio(inode);
5044                         return err;
5045                 }
5046                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5047         }
5048         ext4_set_aops(inode);
5049
5050         jbd2_journal_unlock_updates(journal);
5051         ext4_inode_resume_unlocked_dio(inode);
5052
5053         /* Finally we can mark the inode as dirty. */
5054
5055         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5056         if (IS_ERR(handle))
5057                 return PTR_ERR(handle);
5058
5059         err = ext4_mark_inode_dirty(handle, inode);
5060         ext4_handle_sync(handle);
5061         ext4_journal_stop(handle);
5062         ext4_std_error(inode->i_sb, err);
5063
5064         return err;
5065 }
5066
5067 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5068 {
5069         return !buffer_mapped(bh);
5070 }
5071
5072 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5073 {
5074         struct page *page = vmf->page;
5075         loff_t size;
5076         unsigned long len;
5077         int ret;
5078         struct file *file = vma->vm_file;
5079         struct inode *inode = file_inode(file);
5080         struct address_space *mapping = inode->i_mapping;
5081         handle_t *handle;
5082         get_block_t *get_block;
5083         int retries = 0;
5084
5085         sb_start_pagefault(inode->i_sb);
5086         file_update_time(vma->vm_file);
5087         /* Delalloc case is easy... */
5088         if (test_opt(inode->i_sb, DELALLOC) &&
5089             !ext4_should_journal_data(inode) &&
5090             !ext4_nonda_switch(inode->i_sb)) {
5091                 do {
5092                         ret = __block_page_mkwrite(vma, vmf,
5093                                                    ext4_da_get_block_prep);
5094                 } while (ret == -ENOSPC &&
5095                        ext4_should_retry_alloc(inode->i_sb, &retries));
5096                 goto out_ret;
5097         }
5098
5099         lock_page(page);
5100         size = i_size_read(inode);
5101         /* Page got truncated from under us? */
5102         if (page->mapping != mapping || page_offset(page) > size) {
5103                 unlock_page(page);
5104                 ret = VM_FAULT_NOPAGE;
5105                 goto out;
5106         }
5107
5108         if (page->index == size >> PAGE_CACHE_SHIFT)
5109                 len = size & ~PAGE_CACHE_MASK;
5110         else
5111                 len = PAGE_CACHE_SIZE;
5112         /*
5113          * Return if we have all the buffers mapped. This avoids the need to do
5114          * journal_start/journal_stop which can block and take a long time
5115          */
5116         if (page_has_buffers(page)) {
5117                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5118                                             0, len, NULL,
5119                                             ext4_bh_unmapped)) {
5120                         /* Wait so that we don't change page under IO */
5121                         wait_for_stable_page(page);
5122                         ret = VM_FAULT_LOCKED;
5123                         goto out;
5124                 }
5125         }
5126         unlock_page(page);
5127         /* OK, we need to fill the hole... */
5128         if (ext4_should_dioread_nolock(inode))
5129                 get_block = ext4_get_block_write;
5130         else
5131                 get_block = ext4_get_block;
5132 retry_alloc:
5133         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5134                                     ext4_writepage_trans_blocks(inode));
5135         if (IS_ERR(handle)) {
5136                 ret = VM_FAULT_SIGBUS;
5137                 goto out;
5138         }
5139         ret = __block_page_mkwrite(vma, vmf, get_block);
5140         if (!ret && ext4_should_journal_data(inode)) {
5141                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5142                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5143                         unlock_page(page);
5144                         ret = VM_FAULT_SIGBUS;
5145                         ext4_journal_stop(handle);
5146                         goto out;
5147                 }
5148                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5149         }
5150         ext4_journal_stop(handle);
5151         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5152                 goto retry_alloc;
5153 out_ret:
5154         ret = block_page_mkwrite_return(ret);
5155 out:
5156         sb_end_pagefault(inode->i_sb);
5157         return ret;
5158 }