Merge tag 'efi-urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/mfleming...
[cascardo/linux.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41 #include <linux/bitops.h>
42
43 #include "ext4_jbd2.h"
44 #include "xattr.h"
45 #include "acl.h"
46 #include "truncate.h"
47
48 #include <trace/events/ext4.h>
49
50 #define MPAGE_DA_EXTENT_TAIL 0x01
51
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53                               struct ext4_inode_info *ei)
54 {
55         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56         __u16 csum_lo;
57         __u16 csum_hi = 0;
58         __u32 csum;
59
60         csum_lo = le16_to_cpu(raw->i_checksum_lo);
61         raw->i_checksum_lo = 0;
62         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
63             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
64                 csum_hi = le16_to_cpu(raw->i_checksum_hi);
65                 raw->i_checksum_hi = 0;
66         }
67
68         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
69                            EXT4_INODE_SIZE(inode->i_sb));
70
71         raw->i_checksum_lo = cpu_to_le16(csum_lo);
72         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
73             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
74                 raw->i_checksum_hi = cpu_to_le16(csum_hi);
75
76         return csum;
77 }
78
79 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
80                                   struct ext4_inode_info *ei)
81 {
82         __u32 provided, calculated;
83
84         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
85             cpu_to_le32(EXT4_OS_LINUX) ||
86             !ext4_has_metadata_csum(inode->i_sb))
87                 return 1;
88
89         provided = le16_to_cpu(raw->i_checksum_lo);
90         calculated = ext4_inode_csum(inode, raw, ei);
91         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
92             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
93                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
94         else
95                 calculated &= 0xFFFF;
96
97         return provided == calculated;
98 }
99
100 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
101                                 struct ext4_inode_info *ei)
102 {
103         __u32 csum;
104
105         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
106             cpu_to_le32(EXT4_OS_LINUX) ||
107             !ext4_has_metadata_csum(inode->i_sb))
108                 return;
109
110         csum = ext4_inode_csum(inode, raw, ei);
111         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
112         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
113             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
114                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
115 }
116
117 static inline int ext4_begin_ordered_truncate(struct inode *inode,
118                                               loff_t new_size)
119 {
120         trace_ext4_begin_ordered_truncate(inode, new_size);
121         /*
122          * If jinode is zero, then we never opened the file for
123          * writing, so there's no need to call
124          * jbd2_journal_begin_ordered_truncate() since there's no
125          * outstanding writes we need to flush.
126          */
127         if (!EXT4_I(inode)->jinode)
128                 return 0;
129         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
130                                                    EXT4_I(inode)->jinode,
131                                                    new_size);
132 }
133
134 static void ext4_invalidatepage(struct page *page, unsigned int offset,
135                                 unsigned int length);
136 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
137 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
138 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
139                                   int pextents);
140
141 /*
142  * Test whether an inode is a fast symlink.
143  */
144 static int ext4_inode_is_fast_symlink(struct inode *inode)
145 {
146         int ea_blocks = EXT4_I(inode)->i_file_acl ?
147                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
148
149         if (ext4_has_inline_data(inode))
150                 return 0;
151
152         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
153 }
154
155 /*
156  * Restart the transaction associated with *handle.  This does a commit,
157  * so before we call here everything must be consistently dirtied against
158  * this transaction.
159  */
160 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
161                                  int nblocks)
162 {
163         int ret;
164
165         /*
166          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
167          * moment, get_block can be called only for blocks inside i_size since
168          * page cache has been already dropped and writes are blocked by
169          * i_mutex. So we can safely drop the i_data_sem here.
170          */
171         BUG_ON(EXT4_JOURNAL(inode) == NULL);
172         jbd_debug(2, "restarting handle %p\n", handle);
173         up_write(&EXT4_I(inode)->i_data_sem);
174         ret = ext4_journal_restart(handle, nblocks);
175         down_write(&EXT4_I(inode)->i_data_sem);
176         ext4_discard_preallocations(inode);
177
178         return ret;
179 }
180
181 /*
182  * Called at the last iput() if i_nlink is zero.
183  */
184 void ext4_evict_inode(struct inode *inode)
185 {
186         handle_t *handle;
187         int err;
188
189         trace_ext4_evict_inode(inode);
190
191         if (inode->i_nlink) {
192                 /*
193                  * When journalling data dirty buffers are tracked only in the
194                  * journal. So although mm thinks everything is clean and
195                  * ready for reaping the inode might still have some pages to
196                  * write in the running transaction or waiting to be
197                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
198                  * (via truncate_inode_pages()) to discard these buffers can
199                  * cause data loss. Also even if we did not discard these
200                  * buffers, we would have no way to find them after the inode
201                  * is reaped and thus user could see stale data if he tries to
202                  * read them before the transaction is checkpointed. So be
203                  * careful and force everything to disk here... We use
204                  * ei->i_datasync_tid to store the newest transaction
205                  * containing inode's data.
206                  *
207                  * Note that directories do not have this problem because they
208                  * don't use page cache.
209                  */
210                 if (ext4_should_journal_data(inode) &&
211                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
212                     inode->i_ino != EXT4_JOURNAL_INO) {
213                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
214                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
215
216                         jbd2_complete_transaction(journal, commit_tid);
217                         filemap_write_and_wait(&inode->i_data);
218                 }
219                 truncate_inode_pages_final(&inode->i_data);
220
221                 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
222                 goto no_delete;
223         }
224
225         if (is_bad_inode(inode))
226                 goto no_delete;
227         dquot_initialize(inode);
228
229         if (ext4_should_order_data(inode))
230                 ext4_begin_ordered_truncate(inode, 0);
231         truncate_inode_pages_final(&inode->i_data);
232
233         WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
234
235         /*
236          * Protect us against freezing - iput() caller didn't have to have any
237          * protection against it
238          */
239         sb_start_intwrite(inode->i_sb);
240         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
241                                     ext4_blocks_for_truncate(inode)+3);
242         if (IS_ERR(handle)) {
243                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
244                 /*
245                  * If we're going to skip the normal cleanup, we still need to
246                  * make sure that the in-core orphan linked list is properly
247                  * cleaned up.
248                  */
249                 ext4_orphan_del(NULL, inode);
250                 sb_end_intwrite(inode->i_sb);
251                 goto no_delete;
252         }
253
254         if (IS_SYNC(inode))
255                 ext4_handle_sync(handle);
256         inode->i_size = 0;
257         err = ext4_mark_inode_dirty(handle, inode);
258         if (err) {
259                 ext4_warning(inode->i_sb,
260                              "couldn't mark inode dirty (err %d)", err);
261                 goto stop_handle;
262         }
263         if (inode->i_blocks)
264                 ext4_truncate(inode);
265
266         /*
267          * ext4_ext_truncate() doesn't reserve any slop when it
268          * restarts journal transactions; therefore there may not be
269          * enough credits left in the handle to remove the inode from
270          * the orphan list and set the dtime field.
271          */
272         if (!ext4_handle_has_enough_credits(handle, 3)) {
273                 err = ext4_journal_extend(handle, 3);
274                 if (err > 0)
275                         err = ext4_journal_restart(handle, 3);
276                 if (err != 0) {
277                         ext4_warning(inode->i_sb,
278                                      "couldn't extend journal (err %d)", err);
279                 stop_handle:
280                         ext4_journal_stop(handle);
281                         ext4_orphan_del(NULL, inode);
282                         sb_end_intwrite(inode->i_sb);
283                         goto no_delete;
284                 }
285         }
286
287         /*
288          * Kill off the orphan record which ext4_truncate created.
289          * AKPM: I think this can be inside the above `if'.
290          * Note that ext4_orphan_del() has to be able to cope with the
291          * deletion of a non-existent orphan - this is because we don't
292          * know if ext4_truncate() actually created an orphan record.
293          * (Well, we could do this if we need to, but heck - it works)
294          */
295         ext4_orphan_del(handle, inode);
296         EXT4_I(inode)->i_dtime  = get_seconds();
297
298         /*
299          * One subtle ordering requirement: if anything has gone wrong
300          * (transaction abort, IO errors, whatever), then we can still
301          * do these next steps (the fs will already have been marked as
302          * having errors), but we can't free the inode if the mark_dirty
303          * fails.
304          */
305         if (ext4_mark_inode_dirty(handle, inode))
306                 /* If that failed, just do the required in-core inode clear. */
307                 ext4_clear_inode(inode);
308         else
309                 ext4_free_inode(handle, inode);
310         ext4_journal_stop(handle);
311         sb_end_intwrite(inode->i_sb);
312         return;
313 no_delete:
314         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
315 }
316
317 #ifdef CONFIG_QUOTA
318 qsize_t *ext4_get_reserved_space(struct inode *inode)
319 {
320         return &EXT4_I(inode)->i_reserved_quota;
321 }
322 #endif
323
324 /*
325  * Called with i_data_sem down, which is important since we can call
326  * ext4_discard_preallocations() from here.
327  */
328 void ext4_da_update_reserve_space(struct inode *inode,
329                                         int used, int quota_claim)
330 {
331         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
332         struct ext4_inode_info *ei = EXT4_I(inode);
333
334         spin_lock(&ei->i_block_reservation_lock);
335         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
336         if (unlikely(used > ei->i_reserved_data_blocks)) {
337                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
338                          "with only %d reserved data blocks",
339                          __func__, inode->i_ino, used,
340                          ei->i_reserved_data_blocks);
341                 WARN_ON(1);
342                 used = ei->i_reserved_data_blocks;
343         }
344
345         /* Update per-inode reservations */
346         ei->i_reserved_data_blocks -= used;
347         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
348
349         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
350
351         /* Update quota subsystem for data blocks */
352         if (quota_claim)
353                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
354         else {
355                 /*
356                  * We did fallocate with an offset that is already delayed
357                  * allocated. So on delayed allocated writeback we should
358                  * not re-claim the quota for fallocated blocks.
359                  */
360                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
361         }
362
363         /*
364          * If we have done all the pending block allocations and if
365          * there aren't any writers on the inode, we can discard the
366          * inode's preallocations.
367          */
368         if ((ei->i_reserved_data_blocks == 0) &&
369             (atomic_read(&inode->i_writecount) == 0))
370                 ext4_discard_preallocations(inode);
371 }
372
373 static int __check_block_validity(struct inode *inode, const char *func,
374                                 unsigned int line,
375                                 struct ext4_map_blocks *map)
376 {
377         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
378                                    map->m_len)) {
379                 ext4_error_inode(inode, func, line, map->m_pblk,
380                                  "lblock %lu mapped to illegal pblock "
381                                  "(length %d)", (unsigned long) map->m_lblk,
382                                  map->m_len);
383                 return -EIO;
384         }
385         return 0;
386 }
387
388 #define check_block_validity(inode, map)        \
389         __check_block_validity((inode), __func__, __LINE__, (map))
390
391 #ifdef ES_AGGRESSIVE_TEST
392 static void ext4_map_blocks_es_recheck(handle_t *handle,
393                                        struct inode *inode,
394                                        struct ext4_map_blocks *es_map,
395                                        struct ext4_map_blocks *map,
396                                        int flags)
397 {
398         int retval;
399
400         map->m_flags = 0;
401         /*
402          * There is a race window that the result is not the same.
403          * e.g. xfstests #223 when dioread_nolock enables.  The reason
404          * is that we lookup a block mapping in extent status tree with
405          * out taking i_data_sem.  So at the time the unwritten extent
406          * could be converted.
407          */
408         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
409                 down_read(&EXT4_I(inode)->i_data_sem);
410         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
411                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
412                                              EXT4_GET_BLOCKS_KEEP_SIZE);
413         } else {
414                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
415                                              EXT4_GET_BLOCKS_KEEP_SIZE);
416         }
417         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
418                 up_read((&EXT4_I(inode)->i_data_sem));
419
420         /*
421          * We don't check m_len because extent will be collpased in status
422          * tree.  So the m_len might not equal.
423          */
424         if (es_map->m_lblk != map->m_lblk ||
425             es_map->m_flags != map->m_flags ||
426             es_map->m_pblk != map->m_pblk) {
427                 printk("ES cache assertion failed for inode: %lu "
428                        "es_cached ex [%d/%d/%llu/%x] != "
429                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
430                        inode->i_ino, es_map->m_lblk, es_map->m_len,
431                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
432                        map->m_len, map->m_pblk, map->m_flags,
433                        retval, flags);
434         }
435 }
436 #endif /* ES_AGGRESSIVE_TEST */
437
438 /*
439  * The ext4_map_blocks() function tries to look up the requested blocks,
440  * and returns if the blocks are already mapped.
441  *
442  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
443  * and store the allocated blocks in the result buffer head and mark it
444  * mapped.
445  *
446  * If file type is extents based, it will call ext4_ext_map_blocks(),
447  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
448  * based files
449  *
450  * On success, it returns the number of blocks being mapped or allocated.
451  * if create==0 and the blocks are pre-allocated and unwritten block,
452  * the result buffer head is unmapped. If the create ==1, it will make sure
453  * the buffer head is mapped.
454  *
455  * It returns 0 if plain look up failed (blocks have not been allocated), in
456  * that case, buffer head is unmapped
457  *
458  * It returns the error in case of allocation failure.
459  */
460 int ext4_map_blocks(handle_t *handle, struct inode *inode,
461                     struct ext4_map_blocks *map, int flags)
462 {
463         struct extent_status es;
464         int retval;
465         int ret = 0;
466 #ifdef ES_AGGRESSIVE_TEST
467         struct ext4_map_blocks orig_map;
468
469         memcpy(&orig_map, map, sizeof(*map));
470 #endif
471
472         map->m_flags = 0;
473         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
474                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
475                   (unsigned long) map->m_lblk);
476
477         /*
478          * ext4_map_blocks returns an int, and m_len is an unsigned int
479          */
480         if (unlikely(map->m_len > INT_MAX))
481                 map->m_len = INT_MAX;
482
483         /* We can handle the block number less than EXT_MAX_BLOCKS */
484         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
485                 return -EIO;
486
487         /* Lookup extent status tree firstly */
488         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
489                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
490                         map->m_pblk = ext4_es_pblock(&es) +
491                                         map->m_lblk - es.es_lblk;
492                         map->m_flags |= ext4_es_is_written(&es) ?
493                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
494                         retval = es.es_len - (map->m_lblk - es.es_lblk);
495                         if (retval > map->m_len)
496                                 retval = map->m_len;
497                         map->m_len = retval;
498                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
499                         retval = 0;
500                 } else {
501                         BUG_ON(1);
502                 }
503 #ifdef ES_AGGRESSIVE_TEST
504                 ext4_map_blocks_es_recheck(handle, inode, map,
505                                            &orig_map, flags);
506 #endif
507                 goto found;
508         }
509
510         /*
511          * Try to see if we can get the block without requesting a new
512          * file system block.
513          */
514         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
515                 down_read(&EXT4_I(inode)->i_data_sem);
516         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
517                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
518                                              EXT4_GET_BLOCKS_KEEP_SIZE);
519         } else {
520                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
521                                              EXT4_GET_BLOCKS_KEEP_SIZE);
522         }
523         if (retval > 0) {
524                 unsigned int status;
525
526                 if (unlikely(retval != map->m_len)) {
527                         ext4_warning(inode->i_sb,
528                                      "ES len assertion failed for inode "
529                                      "%lu: retval %d != map->m_len %d",
530                                      inode->i_ino, retval, map->m_len);
531                         WARN_ON(1);
532                 }
533
534                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
535                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
536                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
537                     ext4_find_delalloc_range(inode, map->m_lblk,
538                                              map->m_lblk + map->m_len - 1))
539                         status |= EXTENT_STATUS_DELAYED;
540                 ret = ext4_es_insert_extent(inode, map->m_lblk,
541                                             map->m_len, map->m_pblk, status);
542                 if (ret < 0)
543                         retval = ret;
544         }
545         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
546                 up_read((&EXT4_I(inode)->i_data_sem));
547
548 found:
549         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
550                 ret = check_block_validity(inode, map);
551                 if (ret != 0)
552                         return ret;
553         }
554
555         /* If it is only a block(s) look up */
556         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
557                 return retval;
558
559         /*
560          * Returns if the blocks have already allocated
561          *
562          * Note that if blocks have been preallocated
563          * ext4_ext_get_block() returns the create = 0
564          * with buffer head unmapped.
565          */
566         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
567                 /*
568                  * If we need to convert extent to unwritten
569                  * we continue and do the actual work in
570                  * ext4_ext_map_blocks()
571                  */
572                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
573                         return retval;
574
575         /*
576          * Here we clear m_flags because after allocating an new extent,
577          * it will be set again.
578          */
579         map->m_flags &= ~EXT4_MAP_FLAGS;
580
581         /*
582          * New blocks allocate and/or writing to unwritten extent
583          * will possibly result in updating i_data, so we take
584          * the write lock of i_data_sem, and call get_block()
585          * with create == 1 flag.
586          */
587         down_write(&EXT4_I(inode)->i_data_sem);
588
589         /*
590          * We need to check for EXT4 here because migrate
591          * could have changed the inode type in between
592          */
593         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
594                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
595         } else {
596                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
597
598                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
599                         /*
600                          * We allocated new blocks which will result in
601                          * i_data's format changing.  Force the migrate
602                          * to fail by clearing migrate flags
603                          */
604                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
605                 }
606
607                 /*
608                  * Update reserved blocks/metadata blocks after successful
609                  * block allocation which had been deferred till now. We don't
610                  * support fallocate for non extent files. So we can update
611                  * reserve space here.
612                  */
613                 if ((retval > 0) &&
614                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
615                         ext4_da_update_reserve_space(inode, retval, 1);
616         }
617
618         if (retval > 0) {
619                 unsigned int status;
620
621                 if (unlikely(retval != map->m_len)) {
622                         ext4_warning(inode->i_sb,
623                                      "ES len assertion failed for inode "
624                                      "%lu: retval %d != map->m_len %d",
625                                      inode->i_ino, retval, map->m_len);
626                         WARN_ON(1);
627                 }
628
629                 /*
630                  * If the extent has been zeroed out, we don't need to update
631                  * extent status tree.
632                  */
633                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
634                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
635                         if (ext4_es_is_written(&es))
636                                 goto has_zeroout;
637                 }
638                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
639                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
640                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
641                     ext4_find_delalloc_range(inode, map->m_lblk,
642                                              map->m_lblk + map->m_len - 1))
643                         status |= EXTENT_STATUS_DELAYED;
644                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
645                                             map->m_pblk, status);
646                 if (ret < 0)
647                         retval = ret;
648         }
649
650 has_zeroout:
651         up_write((&EXT4_I(inode)->i_data_sem));
652         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
653                 ret = check_block_validity(inode, map);
654                 if (ret != 0)
655                         return ret;
656         }
657         return retval;
658 }
659
660 static void ext4_end_io_unwritten(struct buffer_head *bh, int uptodate)
661 {
662         struct inode *inode = bh->b_assoc_map->host;
663         /* XXX: breaks on 32-bit > 16GB. Is that even supported? */
664         loff_t offset = (loff_t)(uintptr_t)bh->b_private << inode->i_blkbits;
665         int err;
666         if (!uptodate)
667                 return;
668         WARN_ON(!buffer_unwritten(bh));
669         err = ext4_convert_unwritten_extents(NULL, inode, offset, bh->b_size);
670 }
671
672 /* Maximum number of blocks we map for direct IO at once. */
673 #define DIO_MAX_BLOCKS 4096
674
675 static int _ext4_get_block(struct inode *inode, sector_t iblock,
676                            struct buffer_head *bh, int flags)
677 {
678         handle_t *handle = ext4_journal_current_handle();
679         struct ext4_map_blocks map;
680         int ret = 0, started = 0;
681         int dio_credits;
682
683         if (ext4_has_inline_data(inode))
684                 return -ERANGE;
685
686         map.m_lblk = iblock;
687         map.m_len = bh->b_size >> inode->i_blkbits;
688
689         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
690                 /* Direct IO write... */
691                 if (map.m_len > DIO_MAX_BLOCKS)
692                         map.m_len = DIO_MAX_BLOCKS;
693                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
694                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
695                                             dio_credits);
696                 if (IS_ERR(handle)) {
697                         ret = PTR_ERR(handle);
698                         return ret;
699                 }
700                 started = 1;
701         }
702
703         ret = ext4_map_blocks(handle, inode, &map, flags);
704         if (ret > 0) {
705                 ext4_io_end_t *io_end = ext4_inode_aio(inode);
706
707                 map_bh(bh, inode->i_sb, map.m_pblk);
708                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
709                 if (IS_DAX(inode) && buffer_unwritten(bh) && !io_end) {
710                         bh->b_assoc_map = inode->i_mapping;
711                         bh->b_private = (void *)(unsigned long)iblock;
712                         bh->b_end_io = ext4_end_io_unwritten;
713                 }
714                 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
715                         set_buffer_defer_completion(bh);
716                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
717                 ret = 0;
718         }
719         if (started)
720                 ext4_journal_stop(handle);
721         return ret;
722 }
723
724 int ext4_get_block(struct inode *inode, sector_t iblock,
725                    struct buffer_head *bh, int create)
726 {
727         return _ext4_get_block(inode, iblock, bh,
728                                create ? EXT4_GET_BLOCKS_CREATE : 0);
729 }
730
731 /*
732  * `handle' can be NULL if create is zero
733  */
734 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
735                                 ext4_lblk_t block, int create)
736 {
737         struct ext4_map_blocks map;
738         struct buffer_head *bh;
739         int err;
740
741         J_ASSERT(handle != NULL || create == 0);
742
743         map.m_lblk = block;
744         map.m_len = 1;
745         err = ext4_map_blocks(handle, inode, &map,
746                               create ? EXT4_GET_BLOCKS_CREATE : 0);
747
748         if (err == 0)
749                 return create ? ERR_PTR(-ENOSPC) : NULL;
750         if (err < 0)
751                 return ERR_PTR(err);
752
753         bh = sb_getblk(inode->i_sb, map.m_pblk);
754         if (unlikely(!bh))
755                 return ERR_PTR(-ENOMEM);
756         if (map.m_flags & EXT4_MAP_NEW) {
757                 J_ASSERT(create != 0);
758                 J_ASSERT(handle != NULL);
759
760                 /*
761                  * Now that we do not always journal data, we should
762                  * keep in mind whether this should always journal the
763                  * new buffer as metadata.  For now, regular file
764                  * writes use ext4_get_block instead, so it's not a
765                  * problem.
766                  */
767                 lock_buffer(bh);
768                 BUFFER_TRACE(bh, "call get_create_access");
769                 err = ext4_journal_get_create_access(handle, bh);
770                 if (unlikely(err)) {
771                         unlock_buffer(bh);
772                         goto errout;
773                 }
774                 if (!buffer_uptodate(bh)) {
775                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
776                         set_buffer_uptodate(bh);
777                 }
778                 unlock_buffer(bh);
779                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
780                 err = ext4_handle_dirty_metadata(handle, inode, bh);
781                 if (unlikely(err))
782                         goto errout;
783         } else
784                 BUFFER_TRACE(bh, "not a new buffer");
785         return bh;
786 errout:
787         brelse(bh);
788         return ERR_PTR(err);
789 }
790
791 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
792                                ext4_lblk_t block, int create)
793 {
794         struct buffer_head *bh;
795
796         bh = ext4_getblk(handle, inode, block, create);
797         if (IS_ERR(bh))
798                 return bh;
799         if (!bh || buffer_uptodate(bh))
800                 return bh;
801         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
802         wait_on_buffer(bh);
803         if (buffer_uptodate(bh))
804                 return bh;
805         put_bh(bh);
806         return ERR_PTR(-EIO);
807 }
808
809 int ext4_walk_page_buffers(handle_t *handle,
810                            struct buffer_head *head,
811                            unsigned from,
812                            unsigned to,
813                            int *partial,
814                            int (*fn)(handle_t *handle,
815                                      struct buffer_head *bh))
816 {
817         struct buffer_head *bh;
818         unsigned block_start, block_end;
819         unsigned blocksize = head->b_size;
820         int err, ret = 0;
821         struct buffer_head *next;
822
823         for (bh = head, block_start = 0;
824              ret == 0 && (bh != head || !block_start);
825              block_start = block_end, bh = next) {
826                 next = bh->b_this_page;
827                 block_end = block_start + blocksize;
828                 if (block_end <= from || block_start >= to) {
829                         if (partial && !buffer_uptodate(bh))
830                                 *partial = 1;
831                         continue;
832                 }
833                 err = (*fn)(handle, bh);
834                 if (!ret)
835                         ret = err;
836         }
837         return ret;
838 }
839
840 /*
841  * To preserve ordering, it is essential that the hole instantiation and
842  * the data write be encapsulated in a single transaction.  We cannot
843  * close off a transaction and start a new one between the ext4_get_block()
844  * and the commit_write().  So doing the jbd2_journal_start at the start of
845  * prepare_write() is the right place.
846  *
847  * Also, this function can nest inside ext4_writepage().  In that case, we
848  * *know* that ext4_writepage() has generated enough buffer credits to do the
849  * whole page.  So we won't block on the journal in that case, which is good,
850  * because the caller may be PF_MEMALLOC.
851  *
852  * By accident, ext4 can be reentered when a transaction is open via
853  * quota file writes.  If we were to commit the transaction while thus
854  * reentered, there can be a deadlock - we would be holding a quota
855  * lock, and the commit would never complete if another thread had a
856  * transaction open and was blocking on the quota lock - a ranking
857  * violation.
858  *
859  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
860  * will _not_ run commit under these circumstances because handle->h_ref
861  * is elevated.  We'll still have enough credits for the tiny quotafile
862  * write.
863  */
864 int do_journal_get_write_access(handle_t *handle,
865                                 struct buffer_head *bh)
866 {
867         int dirty = buffer_dirty(bh);
868         int ret;
869
870         if (!buffer_mapped(bh) || buffer_freed(bh))
871                 return 0;
872         /*
873          * __block_write_begin() could have dirtied some buffers. Clean
874          * the dirty bit as jbd2_journal_get_write_access() could complain
875          * otherwise about fs integrity issues. Setting of the dirty bit
876          * by __block_write_begin() isn't a real problem here as we clear
877          * the bit before releasing a page lock and thus writeback cannot
878          * ever write the buffer.
879          */
880         if (dirty)
881                 clear_buffer_dirty(bh);
882         BUFFER_TRACE(bh, "get write access");
883         ret = ext4_journal_get_write_access(handle, bh);
884         if (!ret && dirty)
885                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
886         return ret;
887 }
888
889 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
890                    struct buffer_head *bh_result, int create);
891 static int ext4_write_begin(struct file *file, struct address_space *mapping,
892                             loff_t pos, unsigned len, unsigned flags,
893                             struct page **pagep, void **fsdata)
894 {
895         struct inode *inode = mapping->host;
896         int ret, needed_blocks;
897         handle_t *handle;
898         int retries = 0;
899         struct page *page;
900         pgoff_t index;
901         unsigned from, to;
902
903         trace_ext4_write_begin(inode, pos, len, flags);
904         /*
905          * Reserve one block more for addition to orphan list in case
906          * we allocate blocks but write fails for some reason
907          */
908         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
909         index = pos >> PAGE_CACHE_SHIFT;
910         from = pos & (PAGE_CACHE_SIZE - 1);
911         to = from + len;
912
913         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
914                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
915                                                     flags, pagep);
916                 if (ret < 0)
917                         return ret;
918                 if (ret == 1)
919                         return 0;
920         }
921
922         /*
923          * grab_cache_page_write_begin() can take a long time if the
924          * system is thrashing due to memory pressure, or if the page
925          * is being written back.  So grab it first before we start
926          * the transaction handle.  This also allows us to allocate
927          * the page (if needed) without using GFP_NOFS.
928          */
929 retry_grab:
930         page = grab_cache_page_write_begin(mapping, index, flags);
931         if (!page)
932                 return -ENOMEM;
933         unlock_page(page);
934
935 retry_journal:
936         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
937         if (IS_ERR(handle)) {
938                 page_cache_release(page);
939                 return PTR_ERR(handle);
940         }
941
942         lock_page(page);
943         if (page->mapping != mapping) {
944                 /* The page got truncated from under us */
945                 unlock_page(page);
946                 page_cache_release(page);
947                 ext4_journal_stop(handle);
948                 goto retry_grab;
949         }
950         /* In case writeback began while the page was unlocked */
951         wait_for_stable_page(page);
952
953         if (ext4_should_dioread_nolock(inode))
954                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
955         else
956                 ret = __block_write_begin(page, pos, len, ext4_get_block);
957
958         if (!ret && ext4_should_journal_data(inode)) {
959                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
960                                              from, to, NULL,
961                                              do_journal_get_write_access);
962         }
963
964         if (ret) {
965                 unlock_page(page);
966                 /*
967                  * __block_write_begin may have instantiated a few blocks
968                  * outside i_size.  Trim these off again. Don't need
969                  * i_size_read because we hold i_mutex.
970                  *
971                  * Add inode to orphan list in case we crash before
972                  * truncate finishes
973                  */
974                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
975                         ext4_orphan_add(handle, inode);
976
977                 ext4_journal_stop(handle);
978                 if (pos + len > inode->i_size) {
979                         ext4_truncate_failed_write(inode);
980                         /*
981                          * If truncate failed early the inode might
982                          * still be on the orphan list; we need to
983                          * make sure the inode is removed from the
984                          * orphan list in that case.
985                          */
986                         if (inode->i_nlink)
987                                 ext4_orphan_del(NULL, inode);
988                 }
989
990                 if (ret == -ENOSPC &&
991                     ext4_should_retry_alloc(inode->i_sb, &retries))
992                         goto retry_journal;
993                 page_cache_release(page);
994                 return ret;
995         }
996         *pagep = page;
997         return ret;
998 }
999
1000 /* For write_end() in data=journal mode */
1001 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1002 {
1003         int ret;
1004         if (!buffer_mapped(bh) || buffer_freed(bh))
1005                 return 0;
1006         set_buffer_uptodate(bh);
1007         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1008         clear_buffer_meta(bh);
1009         clear_buffer_prio(bh);
1010         return ret;
1011 }
1012
1013 /*
1014  * We need to pick up the new inode size which generic_commit_write gave us
1015  * `file' can be NULL - eg, when called from page_symlink().
1016  *
1017  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1018  * buffers are managed internally.
1019  */
1020 static int ext4_write_end(struct file *file,
1021                           struct address_space *mapping,
1022                           loff_t pos, unsigned len, unsigned copied,
1023                           struct page *page, void *fsdata)
1024 {
1025         handle_t *handle = ext4_journal_current_handle();
1026         struct inode *inode = mapping->host;
1027         loff_t old_size = inode->i_size;
1028         int ret = 0, ret2;
1029         int i_size_changed = 0;
1030
1031         trace_ext4_write_end(inode, pos, len, copied);
1032         if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1033                 ret = ext4_jbd2_file_inode(handle, inode);
1034                 if (ret) {
1035                         unlock_page(page);
1036                         page_cache_release(page);
1037                         goto errout;
1038                 }
1039         }
1040
1041         if (ext4_has_inline_data(inode)) {
1042                 ret = ext4_write_inline_data_end(inode, pos, len,
1043                                                  copied, page);
1044                 if (ret < 0)
1045                         goto errout;
1046                 copied = ret;
1047         } else
1048                 copied = block_write_end(file, mapping, pos,
1049                                          len, copied, page, fsdata);
1050         /*
1051          * it's important to update i_size while still holding page lock:
1052          * page writeout could otherwise come in and zero beyond i_size.
1053          */
1054         i_size_changed = ext4_update_inode_size(inode, pos + copied);
1055         unlock_page(page);
1056         page_cache_release(page);
1057
1058         if (old_size < pos)
1059                 pagecache_isize_extended(inode, old_size, pos);
1060         /*
1061          * Don't mark the inode dirty under page lock. First, it unnecessarily
1062          * makes the holding time of page lock longer. Second, it forces lock
1063          * ordering of page lock and transaction start for journaling
1064          * filesystems.
1065          */
1066         if (i_size_changed)
1067                 ext4_mark_inode_dirty(handle, inode);
1068
1069         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1070                 /* if we have allocated more blocks and copied
1071                  * less. We will have blocks allocated outside
1072                  * inode->i_size. So truncate them
1073                  */
1074                 ext4_orphan_add(handle, inode);
1075 errout:
1076         ret2 = ext4_journal_stop(handle);
1077         if (!ret)
1078                 ret = ret2;
1079
1080         if (pos + len > inode->i_size) {
1081                 ext4_truncate_failed_write(inode);
1082                 /*
1083                  * If truncate failed early the inode might still be
1084                  * on the orphan list; we need to make sure the inode
1085                  * is removed from the orphan list in that case.
1086                  */
1087                 if (inode->i_nlink)
1088                         ext4_orphan_del(NULL, inode);
1089         }
1090
1091         return ret ? ret : copied;
1092 }
1093
1094 static int ext4_journalled_write_end(struct file *file,
1095                                      struct address_space *mapping,
1096                                      loff_t pos, unsigned len, unsigned copied,
1097                                      struct page *page, void *fsdata)
1098 {
1099         handle_t *handle = ext4_journal_current_handle();
1100         struct inode *inode = mapping->host;
1101         loff_t old_size = inode->i_size;
1102         int ret = 0, ret2;
1103         int partial = 0;
1104         unsigned from, to;
1105         int size_changed = 0;
1106
1107         trace_ext4_journalled_write_end(inode, pos, len, copied);
1108         from = pos & (PAGE_CACHE_SIZE - 1);
1109         to = from + len;
1110
1111         BUG_ON(!ext4_handle_valid(handle));
1112
1113         if (ext4_has_inline_data(inode))
1114                 copied = ext4_write_inline_data_end(inode, pos, len,
1115                                                     copied, page);
1116         else {
1117                 if (copied < len) {
1118                         if (!PageUptodate(page))
1119                                 copied = 0;
1120                         page_zero_new_buffers(page, from+copied, to);
1121                 }
1122
1123                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1124                                              to, &partial, write_end_fn);
1125                 if (!partial)
1126                         SetPageUptodate(page);
1127         }
1128         size_changed = ext4_update_inode_size(inode, pos + copied);
1129         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1130         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1131         unlock_page(page);
1132         page_cache_release(page);
1133
1134         if (old_size < pos)
1135                 pagecache_isize_extended(inode, old_size, pos);
1136
1137         if (size_changed) {
1138                 ret2 = ext4_mark_inode_dirty(handle, inode);
1139                 if (!ret)
1140                         ret = ret2;
1141         }
1142
1143         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1144                 /* if we have allocated more blocks and copied
1145                  * less. We will have blocks allocated outside
1146                  * inode->i_size. So truncate them
1147                  */
1148                 ext4_orphan_add(handle, inode);
1149
1150         ret2 = ext4_journal_stop(handle);
1151         if (!ret)
1152                 ret = ret2;
1153         if (pos + len > inode->i_size) {
1154                 ext4_truncate_failed_write(inode);
1155                 /*
1156                  * If truncate failed early the inode might still be
1157                  * on the orphan list; we need to make sure the inode
1158                  * is removed from the orphan list in that case.
1159                  */
1160                 if (inode->i_nlink)
1161                         ext4_orphan_del(NULL, inode);
1162         }
1163
1164         return ret ? ret : copied;
1165 }
1166
1167 /*
1168  * Reserve a single cluster located at lblock
1169  */
1170 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1171 {
1172         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1173         struct ext4_inode_info *ei = EXT4_I(inode);
1174         unsigned int md_needed;
1175         int ret;
1176
1177         /*
1178          * We will charge metadata quota at writeout time; this saves
1179          * us from metadata over-estimation, though we may go over by
1180          * a small amount in the end.  Here we just reserve for data.
1181          */
1182         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1183         if (ret)
1184                 return ret;
1185
1186         /*
1187          * recalculate the amount of metadata blocks to reserve
1188          * in order to allocate nrblocks
1189          * worse case is one extent per block
1190          */
1191         spin_lock(&ei->i_block_reservation_lock);
1192         /*
1193          * ext4_calc_metadata_amount() has side effects, which we have
1194          * to be prepared undo if we fail to claim space.
1195          */
1196         md_needed = 0;
1197         trace_ext4_da_reserve_space(inode, 0);
1198
1199         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1200                 spin_unlock(&ei->i_block_reservation_lock);
1201                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1202                 return -ENOSPC;
1203         }
1204         ei->i_reserved_data_blocks++;
1205         spin_unlock(&ei->i_block_reservation_lock);
1206
1207         return 0;       /* success */
1208 }
1209
1210 static void ext4_da_release_space(struct inode *inode, int to_free)
1211 {
1212         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1213         struct ext4_inode_info *ei = EXT4_I(inode);
1214
1215         if (!to_free)
1216                 return;         /* Nothing to release, exit */
1217
1218         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1219
1220         trace_ext4_da_release_space(inode, to_free);
1221         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1222                 /*
1223                  * if there aren't enough reserved blocks, then the
1224                  * counter is messed up somewhere.  Since this
1225                  * function is called from invalidate page, it's
1226                  * harmless to return without any action.
1227                  */
1228                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1229                          "ino %lu, to_free %d with only %d reserved "
1230                          "data blocks", inode->i_ino, to_free,
1231                          ei->i_reserved_data_blocks);
1232                 WARN_ON(1);
1233                 to_free = ei->i_reserved_data_blocks;
1234         }
1235         ei->i_reserved_data_blocks -= to_free;
1236
1237         /* update fs dirty data blocks counter */
1238         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1239
1240         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1241
1242         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1243 }
1244
1245 static void ext4_da_page_release_reservation(struct page *page,
1246                                              unsigned int offset,
1247                                              unsigned int length)
1248 {
1249         int to_release = 0;
1250         struct buffer_head *head, *bh;
1251         unsigned int curr_off = 0;
1252         struct inode *inode = page->mapping->host;
1253         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1254         unsigned int stop = offset + length;
1255         int num_clusters;
1256         ext4_fsblk_t lblk;
1257
1258         BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1259
1260         head = page_buffers(page);
1261         bh = head;
1262         do {
1263                 unsigned int next_off = curr_off + bh->b_size;
1264
1265                 if (next_off > stop)
1266                         break;
1267
1268                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1269                         to_release++;
1270                         clear_buffer_delay(bh);
1271                 }
1272                 curr_off = next_off;
1273         } while ((bh = bh->b_this_page) != head);
1274
1275         if (to_release) {
1276                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1277                 ext4_es_remove_extent(inode, lblk, to_release);
1278         }
1279
1280         /* If we have released all the blocks belonging to a cluster, then we
1281          * need to release the reserved space for that cluster. */
1282         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1283         while (num_clusters > 0) {
1284                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1285                         ((num_clusters - 1) << sbi->s_cluster_bits);
1286                 if (sbi->s_cluster_ratio == 1 ||
1287                     !ext4_find_delalloc_cluster(inode, lblk))
1288                         ext4_da_release_space(inode, 1);
1289
1290                 num_clusters--;
1291         }
1292 }
1293
1294 /*
1295  * Delayed allocation stuff
1296  */
1297
1298 struct mpage_da_data {
1299         struct inode *inode;
1300         struct writeback_control *wbc;
1301
1302         pgoff_t first_page;     /* The first page to write */
1303         pgoff_t next_page;      /* Current page to examine */
1304         pgoff_t last_page;      /* Last page to examine */
1305         /*
1306          * Extent to map - this can be after first_page because that can be
1307          * fully mapped. We somewhat abuse m_flags to store whether the extent
1308          * is delalloc or unwritten.
1309          */
1310         struct ext4_map_blocks map;
1311         struct ext4_io_submit io_submit;        /* IO submission data */
1312 };
1313
1314 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1315                                        bool invalidate)
1316 {
1317         int nr_pages, i;
1318         pgoff_t index, end;
1319         struct pagevec pvec;
1320         struct inode *inode = mpd->inode;
1321         struct address_space *mapping = inode->i_mapping;
1322
1323         /* This is necessary when next_page == 0. */
1324         if (mpd->first_page >= mpd->next_page)
1325                 return;
1326
1327         index = mpd->first_page;
1328         end   = mpd->next_page - 1;
1329         if (invalidate) {
1330                 ext4_lblk_t start, last;
1331                 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1332                 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1333                 ext4_es_remove_extent(inode, start, last - start + 1);
1334         }
1335
1336         pagevec_init(&pvec, 0);
1337         while (index <= end) {
1338                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1339                 if (nr_pages == 0)
1340                         break;
1341                 for (i = 0; i < nr_pages; i++) {
1342                         struct page *page = pvec.pages[i];
1343                         if (page->index > end)
1344                                 break;
1345                         BUG_ON(!PageLocked(page));
1346                         BUG_ON(PageWriteback(page));
1347                         if (invalidate) {
1348                                 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1349                                 ClearPageUptodate(page);
1350                         }
1351                         unlock_page(page);
1352                 }
1353                 index = pvec.pages[nr_pages - 1]->index + 1;
1354                 pagevec_release(&pvec);
1355         }
1356 }
1357
1358 static void ext4_print_free_blocks(struct inode *inode)
1359 {
1360         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1361         struct super_block *sb = inode->i_sb;
1362         struct ext4_inode_info *ei = EXT4_I(inode);
1363
1364         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1365                EXT4_C2B(EXT4_SB(inode->i_sb),
1366                         ext4_count_free_clusters(sb)));
1367         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1368         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1369                (long long) EXT4_C2B(EXT4_SB(sb),
1370                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1371         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1372                (long long) EXT4_C2B(EXT4_SB(sb),
1373                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1374         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1375         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1376                  ei->i_reserved_data_blocks);
1377         return;
1378 }
1379
1380 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1381 {
1382         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1383 }
1384
1385 /*
1386  * This function is grabs code from the very beginning of
1387  * ext4_map_blocks, but assumes that the caller is from delayed write
1388  * time. This function looks up the requested blocks and sets the
1389  * buffer delay bit under the protection of i_data_sem.
1390  */
1391 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1392                               struct ext4_map_blocks *map,
1393                               struct buffer_head *bh)
1394 {
1395         struct extent_status es;
1396         int retval;
1397         sector_t invalid_block = ~((sector_t) 0xffff);
1398 #ifdef ES_AGGRESSIVE_TEST
1399         struct ext4_map_blocks orig_map;
1400
1401         memcpy(&orig_map, map, sizeof(*map));
1402 #endif
1403
1404         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1405                 invalid_block = ~0;
1406
1407         map->m_flags = 0;
1408         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1409                   "logical block %lu\n", inode->i_ino, map->m_len,
1410                   (unsigned long) map->m_lblk);
1411
1412         /* Lookup extent status tree firstly */
1413         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1414                 if (ext4_es_is_hole(&es)) {
1415                         retval = 0;
1416                         down_read(&EXT4_I(inode)->i_data_sem);
1417                         goto add_delayed;
1418                 }
1419
1420                 /*
1421                  * Delayed extent could be allocated by fallocate.
1422                  * So we need to check it.
1423                  */
1424                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1425                         map_bh(bh, inode->i_sb, invalid_block);
1426                         set_buffer_new(bh);
1427                         set_buffer_delay(bh);
1428                         return 0;
1429                 }
1430
1431                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1432                 retval = es.es_len - (iblock - es.es_lblk);
1433                 if (retval > map->m_len)
1434                         retval = map->m_len;
1435                 map->m_len = retval;
1436                 if (ext4_es_is_written(&es))
1437                         map->m_flags |= EXT4_MAP_MAPPED;
1438                 else if (ext4_es_is_unwritten(&es))
1439                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1440                 else
1441                         BUG_ON(1);
1442
1443 #ifdef ES_AGGRESSIVE_TEST
1444                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1445 #endif
1446                 return retval;
1447         }
1448
1449         /*
1450          * Try to see if we can get the block without requesting a new
1451          * file system block.
1452          */
1453         down_read(&EXT4_I(inode)->i_data_sem);
1454         if (ext4_has_inline_data(inode))
1455                 retval = 0;
1456         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1457                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1458         else
1459                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1460
1461 add_delayed:
1462         if (retval == 0) {
1463                 int ret;
1464                 /*
1465                  * XXX: __block_prepare_write() unmaps passed block,
1466                  * is it OK?
1467                  */
1468                 /*
1469                  * If the block was allocated from previously allocated cluster,
1470                  * then we don't need to reserve it again. However we still need
1471                  * to reserve metadata for every block we're going to write.
1472                  */
1473                 if (EXT4_SB(inode->i_sb)->s_cluster_ratio <= 1 ||
1474                     !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1475                         ret = ext4_da_reserve_space(inode, iblock);
1476                         if (ret) {
1477                                 /* not enough space to reserve */
1478                                 retval = ret;
1479                                 goto out_unlock;
1480                         }
1481                 }
1482
1483                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1484                                             ~0, EXTENT_STATUS_DELAYED);
1485                 if (ret) {
1486                         retval = ret;
1487                         goto out_unlock;
1488                 }
1489
1490                 map_bh(bh, inode->i_sb, invalid_block);
1491                 set_buffer_new(bh);
1492                 set_buffer_delay(bh);
1493         } else if (retval > 0) {
1494                 int ret;
1495                 unsigned int status;
1496
1497                 if (unlikely(retval != map->m_len)) {
1498                         ext4_warning(inode->i_sb,
1499                                      "ES len assertion failed for inode "
1500                                      "%lu: retval %d != map->m_len %d",
1501                                      inode->i_ino, retval, map->m_len);
1502                         WARN_ON(1);
1503                 }
1504
1505                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1506                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1507                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1508                                             map->m_pblk, status);
1509                 if (ret != 0)
1510                         retval = ret;
1511         }
1512
1513 out_unlock:
1514         up_read((&EXT4_I(inode)->i_data_sem));
1515
1516         return retval;
1517 }
1518
1519 /*
1520  * This is a special get_block_t callback which is used by
1521  * ext4_da_write_begin().  It will either return mapped block or
1522  * reserve space for a single block.
1523  *
1524  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1525  * We also have b_blocknr = -1 and b_bdev initialized properly
1526  *
1527  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1528  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1529  * initialized properly.
1530  */
1531 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1532                            struct buffer_head *bh, int create)
1533 {
1534         struct ext4_map_blocks map;
1535         int ret = 0;
1536
1537         BUG_ON(create == 0);
1538         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1539
1540         map.m_lblk = iblock;
1541         map.m_len = 1;
1542
1543         /*
1544          * first, we need to know whether the block is allocated already
1545          * preallocated blocks are unmapped but should treated
1546          * the same as allocated blocks.
1547          */
1548         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1549         if (ret <= 0)
1550                 return ret;
1551
1552         map_bh(bh, inode->i_sb, map.m_pblk);
1553         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1554
1555         if (buffer_unwritten(bh)) {
1556                 /* A delayed write to unwritten bh should be marked
1557                  * new and mapped.  Mapped ensures that we don't do
1558                  * get_block multiple times when we write to the same
1559                  * offset and new ensures that we do proper zero out
1560                  * for partial write.
1561                  */
1562                 set_buffer_new(bh);
1563                 set_buffer_mapped(bh);
1564         }
1565         return 0;
1566 }
1567
1568 static int bget_one(handle_t *handle, struct buffer_head *bh)
1569 {
1570         get_bh(bh);
1571         return 0;
1572 }
1573
1574 static int bput_one(handle_t *handle, struct buffer_head *bh)
1575 {
1576         put_bh(bh);
1577         return 0;
1578 }
1579
1580 static int __ext4_journalled_writepage(struct page *page,
1581                                        unsigned int len)
1582 {
1583         struct address_space *mapping = page->mapping;
1584         struct inode *inode = mapping->host;
1585         struct buffer_head *page_bufs = NULL;
1586         handle_t *handle = NULL;
1587         int ret = 0, err = 0;
1588         int inline_data = ext4_has_inline_data(inode);
1589         struct buffer_head *inode_bh = NULL;
1590
1591         ClearPageChecked(page);
1592
1593         if (inline_data) {
1594                 BUG_ON(page->index != 0);
1595                 BUG_ON(len > ext4_get_max_inline_size(inode));
1596                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1597                 if (inode_bh == NULL)
1598                         goto out;
1599         } else {
1600                 page_bufs = page_buffers(page);
1601                 if (!page_bufs) {
1602                         BUG();
1603                         goto out;
1604                 }
1605                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1606                                        NULL, bget_one);
1607         }
1608         /* As soon as we unlock the page, it can go away, but we have
1609          * references to buffers so we are safe */
1610         unlock_page(page);
1611
1612         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1613                                     ext4_writepage_trans_blocks(inode));
1614         if (IS_ERR(handle)) {
1615                 ret = PTR_ERR(handle);
1616                 goto out;
1617         }
1618
1619         BUG_ON(!ext4_handle_valid(handle));
1620
1621         if (inline_data) {
1622                 BUFFER_TRACE(inode_bh, "get write access");
1623                 ret = ext4_journal_get_write_access(handle, inode_bh);
1624
1625                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1626
1627         } else {
1628                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1629                                              do_journal_get_write_access);
1630
1631                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1632                                              write_end_fn);
1633         }
1634         if (ret == 0)
1635                 ret = err;
1636         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1637         err = ext4_journal_stop(handle);
1638         if (!ret)
1639                 ret = err;
1640
1641         if (!ext4_has_inline_data(inode))
1642                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1643                                        NULL, bput_one);
1644         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1645 out:
1646         brelse(inode_bh);
1647         return ret;
1648 }
1649
1650 /*
1651  * Note that we don't need to start a transaction unless we're journaling data
1652  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1653  * need to file the inode to the transaction's list in ordered mode because if
1654  * we are writing back data added by write(), the inode is already there and if
1655  * we are writing back data modified via mmap(), no one guarantees in which
1656  * transaction the data will hit the disk. In case we are journaling data, we
1657  * cannot start transaction directly because transaction start ranks above page
1658  * lock so we have to do some magic.
1659  *
1660  * This function can get called via...
1661  *   - ext4_writepages after taking page lock (have journal handle)
1662  *   - journal_submit_inode_data_buffers (no journal handle)
1663  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1664  *   - grab_page_cache when doing write_begin (have journal handle)
1665  *
1666  * We don't do any block allocation in this function. If we have page with
1667  * multiple blocks we need to write those buffer_heads that are mapped. This
1668  * is important for mmaped based write. So if we do with blocksize 1K
1669  * truncate(f, 1024);
1670  * a = mmap(f, 0, 4096);
1671  * a[0] = 'a';
1672  * truncate(f, 4096);
1673  * we have in the page first buffer_head mapped via page_mkwrite call back
1674  * but other buffer_heads would be unmapped but dirty (dirty done via the
1675  * do_wp_page). So writepage should write the first block. If we modify
1676  * the mmap area beyond 1024 we will again get a page_fault and the
1677  * page_mkwrite callback will do the block allocation and mark the
1678  * buffer_heads mapped.
1679  *
1680  * We redirty the page if we have any buffer_heads that is either delay or
1681  * unwritten in the page.
1682  *
1683  * We can get recursively called as show below.
1684  *
1685  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1686  *              ext4_writepage()
1687  *
1688  * But since we don't do any block allocation we should not deadlock.
1689  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1690  */
1691 static int ext4_writepage(struct page *page,
1692                           struct writeback_control *wbc)
1693 {
1694         int ret = 0;
1695         loff_t size;
1696         unsigned int len;
1697         struct buffer_head *page_bufs = NULL;
1698         struct inode *inode = page->mapping->host;
1699         struct ext4_io_submit io_submit;
1700         bool keep_towrite = false;
1701
1702         trace_ext4_writepage(page);
1703         size = i_size_read(inode);
1704         if (page->index == size >> PAGE_CACHE_SHIFT)
1705                 len = size & ~PAGE_CACHE_MASK;
1706         else
1707                 len = PAGE_CACHE_SIZE;
1708
1709         page_bufs = page_buffers(page);
1710         /*
1711          * We cannot do block allocation or other extent handling in this
1712          * function. If there are buffers needing that, we have to redirty
1713          * the page. But we may reach here when we do a journal commit via
1714          * journal_submit_inode_data_buffers() and in that case we must write
1715          * allocated buffers to achieve data=ordered mode guarantees.
1716          */
1717         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1718                                    ext4_bh_delay_or_unwritten)) {
1719                 redirty_page_for_writepage(wbc, page);
1720                 if (current->flags & PF_MEMALLOC) {
1721                         /*
1722                          * For memory cleaning there's no point in writing only
1723                          * some buffers. So just bail out. Warn if we came here
1724                          * from direct reclaim.
1725                          */
1726                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1727                                                         == PF_MEMALLOC);
1728                         unlock_page(page);
1729                         return 0;
1730                 }
1731                 keep_towrite = true;
1732         }
1733
1734         if (PageChecked(page) && ext4_should_journal_data(inode))
1735                 /*
1736                  * It's mmapped pagecache.  Add buffers and journal it.  There
1737                  * doesn't seem much point in redirtying the page here.
1738                  */
1739                 return __ext4_journalled_writepage(page, len);
1740
1741         ext4_io_submit_init(&io_submit, wbc);
1742         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1743         if (!io_submit.io_end) {
1744                 redirty_page_for_writepage(wbc, page);
1745                 unlock_page(page);
1746                 return -ENOMEM;
1747         }
1748         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
1749         ext4_io_submit(&io_submit);
1750         /* Drop io_end reference we got from init */
1751         ext4_put_io_end_defer(io_submit.io_end);
1752         return ret;
1753 }
1754
1755 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1756 {
1757         int len;
1758         loff_t size = i_size_read(mpd->inode);
1759         int err;
1760
1761         BUG_ON(page->index != mpd->first_page);
1762         if (page->index == size >> PAGE_CACHE_SHIFT)
1763                 len = size & ~PAGE_CACHE_MASK;
1764         else
1765                 len = PAGE_CACHE_SIZE;
1766         clear_page_dirty_for_io(page);
1767         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
1768         if (!err)
1769                 mpd->wbc->nr_to_write--;
1770         mpd->first_page++;
1771
1772         return err;
1773 }
1774
1775 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1776
1777 /*
1778  * mballoc gives us at most this number of blocks...
1779  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1780  * The rest of mballoc seems to handle chunks up to full group size.
1781  */
1782 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1783
1784 /*
1785  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1786  *
1787  * @mpd - extent of blocks
1788  * @lblk - logical number of the block in the file
1789  * @bh - buffer head we want to add to the extent
1790  *
1791  * The function is used to collect contig. blocks in the same state. If the
1792  * buffer doesn't require mapping for writeback and we haven't started the
1793  * extent of buffers to map yet, the function returns 'true' immediately - the
1794  * caller can write the buffer right away. Otherwise the function returns true
1795  * if the block has been added to the extent, false if the block couldn't be
1796  * added.
1797  */
1798 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1799                                    struct buffer_head *bh)
1800 {
1801         struct ext4_map_blocks *map = &mpd->map;
1802
1803         /* Buffer that doesn't need mapping for writeback? */
1804         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1805             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1806                 /* So far no extent to map => we write the buffer right away */
1807                 if (map->m_len == 0)
1808                         return true;
1809                 return false;
1810         }
1811
1812         /* First block in the extent? */
1813         if (map->m_len == 0) {
1814                 map->m_lblk = lblk;
1815                 map->m_len = 1;
1816                 map->m_flags = bh->b_state & BH_FLAGS;
1817                 return true;
1818         }
1819
1820         /* Don't go larger than mballoc is willing to allocate */
1821         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1822                 return false;
1823
1824         /* Can we merge the block to our big extent? */
1825         if (lblk == map->m_lblk + map->m_len &&
1826             (bh->b_state & BH_FLAGS) == map->m_flags) {
1827                 map->m_len++;
1828                 return true;
1829         }
1830         return false;
1831 }
1832
1833 /*
1834  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1835  *
1836  * @mpd - extent of blocks for mapping
1837  * @head - the first buffer in the page
1838  * @bh - buffer we should start processing from
1839  * @lblk - logical number of the block in the file corresponding to @bh
1840  *
1841  * Walk through page buffers from @bh upto @head (exclusive) and either submit
1842  * the page for IO if all buffers in this page were mapped and there's no
1843  * accumulated extent of buffers to map or add buffers in the page to the
1844  * extent of buffers to map. The function returns 1 if the caller can continue
1845  * by processing the next page, 0 if it should stop adding buffers to the
1846  * extent to map because we cannot extend it anymore. It can also return value
1847  * < 0 in case of error during IO submission.
1848  */
1849 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1850                                    struct buffer_head *head,
1851                                    struct buffer_head *bh,
1852                                    ext4_lblk_t lblk)
1853 {
1854         struct inode *inode = mpd->inode;
1855         int err;
1856         ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1857                                                         >> inode->i_blkbits;
1858
1859         do {
1860                 BUG_ON(buffer_locked(bh));
1861
1862                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
1863                         /* Found extent to map? */
1864                         if (mpd->map.m_len)
1865                                 return 0;
1866                         /* Everything mapped so far and we hit EOF */
1867                         break;
1868                 }
1869         } while (lblk++, (bh = bh->b_this_page) != head);
1870         /* So far everything mapped? Submit the page for IO. */
1871         if (mpd->map.m_len == 0) {
1872                 err = mpage_submit_page(mpd, head->b_page);
1873                 if (err < 0)
1874                         return err;
1875         }
1876         return lblk < blocks;
1877 }
1878
1879 /*
1880  * mpage_map_buffers - update buffers corresponding to changed extent and
1881  *                     submit fully mapped pages for IO
1882  *
1883  * @mpd - description of extent to map, on return next extent to map
1884  *
1885  * Scan buffers corresponding to changed extent (we expect corresponding pages
1886  * to be already locked) and update buffer state according to new extent state.
1887  * We map delalloc buffers to their physical location, clear unwritten bits,
1888  * and mark buffers as uninit when we perform writes to unwritten extents
1889  * and do extent conversion after IO is finished. If the last page is not fully
1890  * mapped, we update @map to the next extent in the last page that needs
1891  * mapping. Otherwise we submit the page for IO.
1892  */
1893 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
1894 {
1895         struct pagevec pvec;
1896         int nr_pages, i;
1897         struct inode *inode = mpd->inode;
1898         struct buffer_head *head, *bh;
1899         int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
1900         pgoff_t start, end;
1901         ext4_lblk_t lblk;
1902         sector_t pblock;
1903         int err;
1904
1905         start = mpd->map.m_lblk >> bpp_bits;
1906         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
1907         lblk = start << bpp_bits;
1908         pblock = mpd->map.m_pblk;
1909
1910         pagevec_init(&pvec, 0);
1911         while (start <= end) {
1912                 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
1913                                           PAGEVEC_SIZE);
1914                 if (nr_pages == 0)
1915                         break;
1916                 for (i = 0; i < nr_pages; i++) {
1917                         struct page *page = pvec.pages[i];
1918
1919                         if (page->index > end)
1920                                 break;
1921                         /* Up to 'end' pages must be contiguous */
1922                         BUG_ON(page->index != start);
1923                         bh = head = page_buffers(page);
1924                         do {
1925                                 if (lblk < mpd->map.m_lblk)
1926                                         continue;
1927                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
1928                                         /*
1929                                          * Buffer after end of mapped extent.
1930                                          * Find next buffer in the page to map.
1931                                          */
1932                                         mpd->map.m_len = 0;
1933                                         mpd->map.m_flags = 0;
1934                                         /*
1935                                          * FIXME: If dioread_nolock supports
1936                                          * blocksize < pagesize, we need to make
1937                                          * sure we add size mapped so far to
1938                                          * io_end->size as the following call
1939                                          * can submit the page for IO.
1940                                          */
1941                                         err = mpage_process_page_bufs(mpd, head,
1942                                                                       bh, lblk);
1943                                         pagevec_release(&pvec);
1944                                         if (err > 0)
1945                                                 err = 0;
1946                                         return err;
1947                                 }
1948                                 if (buffer_delay(bh)) {
1949                                         clear_buffer_delay(bh);
1950                                         bh->b_blocknr = pblock++;
1951                                 }
1952                                 clear_buffer_unwritten(bh);
1953                         } while (lblk++, (bh = bh->b_this_page) != head);
1954
1955                         /*
1956                          * FIXME: This is going to break if dioread_nolock
1957                          * supports blocksize < pagesize as we will try to
1958                          * convert potentially unmapped parts of inode.
1959                          */
1960                         mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
1961                         /* Page fully mapped - let IO run! */
1962                         err = mpage_submit_page(mpd, page);
1963                         if (err < 0) {
1964                                 pagevec_release(&pvec);
1965                                 return err;
1966                         }
1967                         start++;
1968                 }
1969                 pagevec_release(&pvec);
1970         }
1971         /* Extent fully mapped and matches with page boundary. We are done. */
1972         mpd->map.m_len = 0;
1973         mpd->map.m_flags = 0;
1974         return 0;
1975 }
1976
1977 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
1978 {
1979         struct inode *inode = mpd->inode;
1980         struct ext4_map_blocks *map = &mpd->map;
1981         int get_blocks_flags;
1982         int err, dioread_nolock;
1983
1984         trace_ext4_da_write_pages_extent(inode, map);
1985         /*
1986          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
1987          * to convert an unwritten extent to be initialized (in the case
1988          * where we have written into one or more preallocated blocks).  It is
1989          * possible that we're going to need more metadata blocks than
1990          * previously reserved. However we must not fail because we're in
1991          * writeback and there is nothing we can do about it so it might result
1992          * in data loss.  So use reserved blocks to allocate metadata if
1993          * possible.
1994          *
1995          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
1996          * the blocks in question are delalloc blocks.  This indicates
1997          * that the blocks and quotas has already been checked when
1998          * the data was copied into the page cache.
1999          */
2000         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2001                            EXT4_GET_BLOCKS_METADATA_NOFAIL;
2002         dioread_nolock = ext4_should_dioread_nolock(inode);
2003         if (dioread_nolock)
2004                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2005         if (map->m_flags & (1 << BH_Delay))
2006                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2007
2008         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2009         if (err < 0)
2010                 return err;
2011         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2012                 if (!mpd->io_submit.io_end->handle &&
2013                     ext4_handle_valid(handle)) {
2014                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2015                         handle->h_rsv_handle = NULL;
2016                 }
2017                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2018         }
2019
2020         BUG_ON(map->m_len == 0);
2021         if (map->m_flags & EXT4_MAP_NEW) {
2022                 struct block_device *bdev = inode->i_sb->s_bdev;
2023                 int i;
2024
2025                 for (i = 0; i < map->m_len; i++)
2026                         unmap_underlying_metadata(bdev, map->m_pblk + i);
2027         }
2028         return 0;
2029 }
2030
2031 /*
2032  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2033  *                               mpd->len and submit pages underlying it for IO
2034  *
2035  * @handle - handle for journal operations
2036  * @mpd - extent to map
2037  * @give_up_on_write - we set this to true iff there is a fatal error and there
2038  *                     is no hope of writing the data. The caller should discard
2039  *                     dirty pages to avoid infinite loops.
2040  *
2041  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2042  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2043  * them to initialized or split the described range from larger unwritten
2044  * extent. Note that we need not map all the described range since allocation
2045  * can return less blocks or the range is covered by more unwritten extents. We
2046  * cannot map more because we are limited by reserved transaction credits. On
2047  * the other hand we always make sure that the last touched page is fully
2048  * mapped so that it can be written out (and thus forward progress is
2049  * guaranteed). After mapping we submit all mapped pages for IO.
2050  */
2051 static int mpage_map_and_submit_extent(handle_t *handle,
2052                                        struct mpage_da_data *mpd,
2053                                        bool *give_up_on_write)
2054 {
2055         struct inode *inode = mpd->inode;
2056         struct ext4_map_blocks *map = &mpd->map;
2057         int err;
2058         loff_t disksize;
2059         int progress = 0;
2060
2061         mpd->io_submit.io_end->offset =
2062                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2063         do {
2064                 err = mpage_map_one_extent(handle, mpd);
2065                 if (err < 0) {
2066                         struct super_block *sb = inode->i_sb;
2067
2068                         if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2069                                 goto invalidate_dirty_pages;
2070                         /*
2071                          * Let the uper layers retry transient errors.
2072                          * In the case of ENOSPC, if ext4_count_free_blocks()
2073                          * is non-zero, a commit should free up blocks.
2074                          */
2075                         if ((err == -ENOMEM) ||
2076                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2077                                 if (progress)
2078                                         goto update_disksize;
2079                                 return err;
2080                         }
2081                         ext4_msg(sb, KERN_CRIT,
2082                                  "Delayed block allocation failed for "
2083                                  "inode %lu at logical offset %llu with"
2084                                  " max blocks %u with error %d",
2085                                  inode->i_ino,
2086                                  (unsigned long long)map->m_lblk,
2087                                  (unsigned)map->m_len, -err);
2088                         ext4_msg(sb, KERN_CRIT,
2089                                  "This should not happen!! Data will "
2090                                  "be lost\n");
2091                         if (err == -ENOSPC)
2092                                 ext4_print_free_blocks(inode);
2093                 invalidate_dirty_pages:
2094                         *give_up_on_write = true;
2095                         return err;
2096                 }
2097                 progress = 1;
2098                 /*
2099                  * Update buffer state, submit mapped pages, and get us new
2100                  * extent to map
2101                  */
2102                 err = mpage_map_and_submit_buffers(mpd);
2103                 if (err < 0)
2104                         goto update_disksize;
2105         } while (map->m_len);
2106
2107 update_disksize:
2108         /*
2109          * Update on-disk size after IO is submitted.  Races with
2110          * truncate are avoided by checking i_size under i_data_sem.
2111          */
2112         disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2113         if (disksize > EXT4_I(inode)->i_disksize) {
2114                 int err2;
2115                 loff_t i_size;
2116
2117                 down_write(&EXT4_I(inode)->i_data_sem);
2118                 i_size = i_size_read(inode);
2119                 if (disksize > i_size)
2120                         disksize = i_size;
2121                 if (disksize > EXT4_I(inode)->i_disksize)
2122                         EXT4_I(inode)->i_disksize = disksize;
2123                 err2 = ext4_mark_inode_dirty(handle, inode);
2124                 up_write(&EXT4_I(inode)->i_data_sem);
2125                 if (err2)
2126                         ext4_error(inode->i_sb,
2127                                    "Failed to mark inode %lu dirty",
2128                                    inode->i_ino);
2129                 if (!err)
2130                         err = err2;
2131         }
2132         return err;
2133 }
2134
2135 /*
2136  * Calculate the total number of credits to reserve for one writepages
2137  * iteration. This is called from ext4_writepages(). We map an extent of
2138  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2139  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2140  * bpp - 1 blocks in bpp different extents.
2141  */
2142 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2143 {
2144         int bpp = ext4_journal_blocks_per_page(inode);
2145
2146         return ext4_meta_trans_blocks(inode,
2147                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2148 }
2149
2150 /*
2151  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2152  *                               and underlying extent to map
2153  *
2154  * @mpd - where to look for pages
2155  *
2156  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2157  * IO immediately. When we find a page which isn't mapped we start accumulating
2158  * extent of buffers underlying these pages that needs mapping (formed by
2159  * either delayed or unwritten buffers). We also lock the pages containing
2160  * these buffers. The extent found is returned in @mpd structure (starting at
2161  * mpd->lblk with length mpd->len blocks).
2162  *
2163  * Note that this function can attach bios to one io_end structure which are
2164  * neither logically nor physically contiguous. Although it may seem as an
2165  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2166  * case as we need to track IO to all buffers underlying a page in one io_end.
2167  */
2168 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2169 {
2170         struct address_space *mapping = mpd->inode->i_mapping;
2171         struct pagevec pvec;
2172         unsigned int nr_pages;
2173         long left = mpd->wbc->nr_to_write;
2174         pgoff_t index = mpd->first_page;
2175         pgoff_t end = mpd->last_page;
2176         int tag;
2177         int i, err = 0;
2178         int blkbits = mpd->inode->i_blkbits;
2179         ext4_lblk_t lblk;
2180         struct buffer_head *head;
2181
2182         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2183                 tag = PAGECACHE_TAG_TOWRITE;
2184         else
2185                 tag = PAGECACHE_TAG_DIRTY;
2186
2187         pagevec_init(&pvec, 0);
2188         mpd->map.m_len = 0;
2189         mpd->next_page = index;
2190         while (index <= end) {
2191                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2192                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2193                 if (nr_pages == 0)
2194                         goto out;
2195
2196                 for (i = 0; i < nr_pages; i++) {
2197                         struct page *page = pvec.pages[i];
2198
2199                         /*
2200                          * At this point, the page may be truncated or
2201                          * invalidated (changing page->mapping to NULL), or
2202                          * even swizzled back from swapper_space to tmpfs file
2203                          * mapping. However, page->index will not change
2204                          * because we have a reference on the page.
2205                          */
2206                         if (page->index > end)
2207                                 goto out;
2208
2209                         /*
2210                          * Accumulated enough dirty pages? This doesn't apply
2211                          * to WB_SYNC_ALL mode. For integrity sync we have to
2212                          * keep going because someone may be concurrently
2213                          * dirtying pages, and we might have synced a lot of
2214                          * newly appeared dirty pages, but have not synced all
2215                          * of the old dirty pages.
2216                          */
2217                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2218                                 goto out;
2219
2220                         /* If we can't merge this page, we are done. */
2221                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2222                                 goto out;
2223
2224                         lock_page(page);
2225                         /*
2226                          * If the page is no longer dirty, or its mapping no
2227                          * longer corresponds to inode we are writing (which
2228                          * means it has been truncated or invalidated), or the
2229                          * page is already under writeback and we are not doing
2230                          * a data integrity writeback, skip the page
2231                          */
2232                         if (!PageDirty(page) ||
2233                             (PageWriteback(page) &&
2234                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2235                             unlikely(page->mapping != mapping)) {
2236                                 unlock_page(page);
2237                                 continue;
2238                         }
2239
2240                         wait_on_page_writeback(page);
2241                         BUG_ON(PageWriteback(page));
2242
2243                         if (mpd->map.m_len == 0)
2244                                 mpd->first_page = page->index;
2245                         mpd->next_page = page->index + 1;
2246                         /* Add all dirty buffers to mpd */
2247                         lblk = ((ext4_lblk_t)page->index) <<
2248                                 (PAGE_CACHE_SHIFT - blkbits);
2249                         head = page_buffers(page);
2250                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2251                         if (err <= 0)
2252                                 goto out;
2253                         err = 0;
2254                         left--;
2255                 }
2256                 pagevec_release(&pvec);
2257                 cond_resched();
2258         }
2259         return 0;
2260 out:
2261         pagevec_release(&pvec);
2262         return err;
2263 }
2264
2265 static int __writepage(struct page *page, struct writeback_control *wbc,
2266                        void *data)
2267 {
2268         struct address_space *mapping = data;
2269         int ret = ext4_writepage(page, wbc);
2270         mapping_set_error(mapping, ret);
2271         return ret;
2272 }
2273
2274 static int ext4_writepages(struct address_space *mapping,
2275                            struct writeback_control *wbc)
2276 {
2277         pgoff_t writeback_index = 0;
2278         long nr_to_write = wbc->nr_to_write;
2279         int range_whole = 0;
2280         int cycled = 1;
2281         handle_t *handle = NULL;
2282         struct mpage_da_data mpd;
2283         struct inode *inode = mapping->host;
2284         int needed_blocks, rsv_blocks = 0, ret = 0;
2285         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2286         bool done;
2287         struct blk_plug plug;
2288         bool give_up_on_write = false;
2289
2290         trace_ext4_writepages(inode, wbc);
2291
2292         /*
2293          * No pages to write? This is mainly a kludge to avoid starting
2294          * a transaction for special inodes like journal inode on last iput()
2295          * because that could violate lock ordering on umount
2296          */
2297         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2298                 goto out_writepages;
2299
2300         if (ext4_should_journal_data(inode)) {
2301                 struct blk_plug plug;
2302
2303                 blk_start_plug(&plug);
2304                 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2305                 blk_finish_plug(&plug);
2306                 goto out_writepages;
2307         }
2308
2309         /*
2310          * If the filesystem has aborted, it is read-only, so return
2311          * right away instead of dumping stack traces later on that
2312          * will obscure the real source of the problem.  We test
2313          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2314          * the latter could be true if the filesystem is mounted
2315          * read-only, and in that case, ext4_writepages should
2316          * *never* be called, so if that ever happens, we would want
2317          * the stack trace.
2318          */
2319         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2320                 ret = -EROFS;
2321                 goto out_writepages;
2322         }
2323
2324         if (ext4_should_dioread_nolock(inode)) {
2325                 /*
2326                  * We may need to convert up to one extent per block in
2327                  * the page and we may dirty the inode.
2328                  */
2329                 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2330         }
2331
2332         /*
2333          * If we have inline data and arrive here, it means that
2334          * we will soon create the block for the 1st page, so
2335          * we'd better clear the inline data here.
2336          */
2337         if (ext4_has_inline_data(inode)) {
2338                 /* Just inode will be modified... */
2339                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2340                 if (IS_ERR(handle)) {
2341                         ret = PTR_ERR(handle);
2342                         goto out_writepages;
2343                 }
2344                 BUG_ON(ext4_test_inode_state(inode,
2345                                 EXT4_STATE_MAY_INLINE_DATA));
2346                 ext4_destroy_inline_data(handle, inode);
2347                 ext4_journal_stop(handle);
2348         }
2349
2350         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2351                 range_whole = 1;
2352
2353         if (wbc->range_cyclic) {
2354                 writeback_index = mapping->writeback_index;
2355                 if (writeback_index)
2356                         cycled = 0;
2357                 mpd.first_page = writeback_index;
2358                 mpd.last_page = -1;
2359         } else {
2360                 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2361                 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2362         }
2363
2364         mpd.inode = inode;
2365         mpd.wbc = wbc;
2366         ext4_io_submit_init(&mpd.io_submit, wbc);
2367 retry:
2368         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2369                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2370         done = false;
2371         blk_start_plug(&plug);
2372         while (!done && mpd.first_page <= mpd.last_page) {
2373                 /* For each extent of pages we use new io_end */
2374                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2375                 if (!mpd.io_submit.io_end) {
2376                         ret = -ENOMEM;
2377                         break;
2378                 }
2379
2380                 /*
2381                  * We have two constraints: We find one extent to map and we
2382                  * must always write out whole page (makes a difference when
2383                  * blocksize < pagesize) so that we don't block on IO when we
2384                  * try to write out the rest of the page. Journalled mode is
2385                  * not supported by delalloc.
2386                  */
2387                 BUG_ON(ext4_should_journal_data(inode));
2388                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2389
2390                 /* start a new transaction */
2391                 handle = ext4_journal_start_with_reserve(inode,
2392                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2393                 if (IS_ERR(handle)) {
2394                         ret = PTR_ERR(handle);
2395                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2396                                "%ld pages, ino %lu; err %d", __func__,
2397                                 wbc->nr_to_write, inode->i_ino, ret);
2398                         /* Release allocated io_end */
2399                         ext4_put_io_end(mpd.io_submit.io_end);
2400                         break;
2401                 }
2402
2403                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2404                 ret = mpage_prepare_extent_to_map(&mpd);
2405                 if (!ret) {
2406                         if (mpd.map.m_len)
2407                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2408                                         &give_up_on_write);
2409                         else {
2410                                 /*
2411                                  * We scanned the whole range (or exhausted
2412                                  * nr_to_write), submitted what was mapped and
2413                                  * didn't find anything needing mapping. We are
2414                                  * done.
2415                                  */
2416                                 done = true;
2417                         }
2418                 }
2419                 ext4_journal_stop(handle);
2420                 /* Submit prepared bio */
2421                 ext4_io_submit(&mpd.io_submit);
2422                 /* Unlock pages we didn't use */
2423                 mpage_release_unused_pages(&mpd, give_up_on_write);
2424                 /* Drop our io_end reference we got from init */
2425                 ext4_put_io_end(mpd.io_submit.io_end);
2426
2427                 if (ret == -ENOSPC && sbi->s_journal) {
2428                         /*
2429                          * Commit the transaction which would
2430                          * free blocks released in the transaction
2431                          * and try again
2432                          */
2433                         jbd2_journal_force_commit_nested(sbi->s_journal);
2434                         ret = 0;
2435                         continue;
2436                 }
2437                 /* Fatal error - ENOMEM, EIO... */
2438                 if (ret)
2439                         break;
2440         }
2441         blk_finish_plug(&plug);
2442         if (!ret && !cycled && wbc->nr_to_write > 0) {
2443                 cycled = 1;
2444                 mpd.last_page = writeback_index - 1;
2445                 mpd.first_page = 0;
2446                 goto retry;
2447         }
2448
2449         /* Update index */
2450         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2451                 /*
2452                  * Set the writeback_index so that range_cyclic
2453                  * mode will write it back later
2454                  */
2455                 mapping->writeback_index = mpd.first_page;
2456
2457 out_writepages:
2458         trace_ext4_writepages_result(inode, wbc, ret,
2459                                      nr_to_write - wbc->nr_to_write);
2460         return ret;
2461 }
2462
2463 static int ext4_nonda_switch(struct super_block *sb)
2464 {
2465         s64 free_clusters, dirty_clusters;
2466         struct ext4_sb_info *sbi = EXT4_SB(sb);
2467
2468         /*
2469          * switch to non delalloc mode if we are running low
2470          * on free block. The free block accounting via percpu
2471          * counters can get slightly wrong with percpu_counter_batch getting
2472          * accumulated on each CPU without updating global counters
2473          * Delalloc need an accurate free block accounting. So switch
2474          * to non delalloc when we are near to error range.
2475          */
2476         free_clusters =
2477                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2478         dirty_clusters =
2479                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2480         /*
2481          * Start pushing delalloc when 1/2 of free blocks are dirty.
2482          */
2483         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2484                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2485
2486         if (2 * free_clusters < 3 * dirty_clusters ||
2487             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2488                 /*
2489                  * free block count is less than 150% of dirty blocks
2490                  * or free blocks is less than watermark
2491                  */
2492                 return 1;
2493         }
2494         return 0;
2495 }
2496
2497 /* We always reserve for an inode update; the superblock could be there too */
2498 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2499 {
2500         if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
2501                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE)))
2502                 return 1;
2503
2504         if (pos + len <= 0x7fffffffULL)
2505                 return 1;
2506
2507         /* We might need to update the superblock to set LARGE_FILE */
2508         return 2;
2509 }
2510
2511 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2512                                loff_t pos, unsigned len, unsigned flags,
2513                                struct page **pagep, void **fsdata)
2514 {
2515         int ret, retries = 0;
2516         struct page *page;
2517         pgoff_t index;
2518         struct inode *inode = mapping->host;
2519         handle_t *handle;
2520
2521         index = pos >> PAGE_CACHE_SHIFT;
2522
2523         if (ext4_nonda_switch(inode->i_sb)) {
2524                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2525                 return ext4_write_begin(file, mapping, pos,
2526                                         len, flags, pagep, fsdata);
2527         }
2528         *fsdata = (void *)0;
2529         trace_ext4_da_write_begin(inode, pos, len, flags);
2530
2531         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2532                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2533                                                       pos, len, flags,
2534                                                       pagep, fsdata);
2535                 if (ret < 0)
2536                         return ret;
2537                 if (ret == 1)
2538                         return 0;
2539         }
2540
2541         /*
2542          * grab_cache_page_write_begin() can take a long time if the
2543          * system is thrashing due to memory pressure, or if the page
2544          * is being written back.  So grab it first before we start
2545          * the transaction handle.  This also allows us to allocate
2546          * the page (if needed) without using GFP_NOFS.
2547          */
2548 retry_grab:
2549         page = grab_cache_page_write_begin(mapping, index, flags);
2550         if (!page)
2551                 return -ENOMEM;
2552         unlock_page(page);
2553
2554         /*
2555          * With delayed allocation, we don't log the i_disksize update
2556          * if there is delayed block allocation. But we still need
2557          * to journalling the i_disksize update if writes to the end
2558          * of file which has an already mapped buffer.
2559          */
2560 retry_journal:
2561         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2562                                 ext4_da_write_credits(inode, pos, len));
2563         if (IS_ERR(handle)) {
2564                 page_cache_release(page);
2565                 return PTR_ERR(handle);
2566         }
2567
2568         lock_page(page);
2569         if (page->mapping != mapping) {
2570                 /* The page got truncated from under us */
2571                 unlock_page(page);
2572                 page_cache_release(page);
2573                 ext4_journal_stop(handle);
2574                 goto retry_grab;
2575         }
2576         /* In case writeback began while the page was unlocked */
2577         wait_for_stable_page(page);
2578
2579         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2580         if (ret < 0) {
2581                 unlock_page(page);
2582                 ext4_journal_stop(handle);
2583                 /*
2584                  * block_write_begin may have instantiated a few blocks
2585                  * outside i_size.  Trim these off again. Don't need
2586                  * i_size_read because we hold i_mutex.
2587                  */
2588                 if (pos + len > inode->i_size)
2589                         ext4_truncate_failed_write(inode);
2590
2591                 if (ret == -ENOSPC &&
2592                     ext4_should_retry_alloc(inode->i_sb, &retries))
2593                         goto retry_journal;
2594
2595                 page_cache_release(page);
2596                 return ret;
2597         }
2598
2599         *pagep = page;
2600         return ret;
2601 }
2602
2603 /*
2604  * Check if we should update i_disksize
2605  * when write to the end of file but not require block allocation
2606  */
2607 static int ext4_da_should_update_i_disksize(struct page *page,
2608                                             unsigned long offset)
2609 {
2610         struct buffer_head *bh;
2611         struct inode *inode = page->mapping->host;
2612         unsigned int idx;
2613         int i;
2614
2615         bh = page_buffers(page);
2616         idx = offset >> inode->i_blkbits;
2617
2618         for (i = 0; i < idx; i++)
2619                 bh = bh->b_this_page;
2620
2621         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2622                 return 0;
2623         return 1;
2624 }
2625
2626 static int ext4_da_write_end(struct file *file,
2627                              struct address_space *mapping,
2628                              loff_t pos, unsigned len, unsigned copied,
2629                              struct page *page, void *fsdata)
2630 {
2631         struct inode *inode = mapping->host;
2632         int ret = 0, ret2;
2633         handle_t *handle = ext4_journal_current_handle();
2634         loff_t new_i_size;
2635         unsigned long start, end;
2636         int write_mode = (int)(unsigned long)fsdata;
2637
2638         if (write_mode == FALL_BACK_TO_NONDELALLOC)
2639                 return ext4_write_end(file, mapping, pos,
2640                                       len, copied, page, fsdata);
2641
2642         trace_ext4_da_write_end(inode, pos, len, copied);
2643         start = pos & (PAGE_CACHE_SIZE - 1);
2644         end = start + copied - 1;
2645
2646         /*
2647          * generic_write_end() will run mark_inode_dirty() if i_size
2648          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2649          * into that.
2650          */
2651         new_i_size = pos + copied;
2652         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2653                 if (ext4_has_inline_data(inode) ||
2654                     ext4_da_should_update_i_disksize(page, end)) {
2655                         ext4_update_i_disksize(inode, new_i_size);
2656                         /* We need to mark inode dirty even if
2657                          * new_i_size is less that inode->i_size
2658                          * bu greater than i_disksize.(hint delalloc)
2659                          */
2660                         ext4_mark_inode_dirty(handle, inode);
2661                 }
2662         }
2663
2664         if (write_mode != CONVERT_INLINE_DATA &&
2665             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2666             ext4_has_inline_data(inode))
2667                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2668                                                      page);
2669         else
2670                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2671                                                         page, fsdata);
2672
2673         copied = ret2;
2674         if (ret2 < 0)
2675                 ret = ret2;
2676         ret2 = ext4_journal_stop(handle);
2677         if (!ret)
2678                 ret = ret2;
2679
2680         return ret ? ret : copied;
2681 }
2682
2683 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2684                                    unsigned int length)
2685 {
2686         /*
2687          * Drop reserved blocks
2688          */
2689         BUG_ON(!PageLocked(page));
2690         if (!page_has_buffers(page))
2691                 goto out;
2692
2693         ext4_da_page_release_reservation(page, offset, length);
2694
2695 out:
2696         ext4_invalidatepage(page, offset, length);
2697
2698         return;
2699 }
2700
2701 /*
2702  * Force all delayed allocation blocks to be allocated for a given inode.
2703  */
2704 int ext4_alloc_da_blocks(struct inode *inode)
2705 {
2706         trace_ext4_alloc_da_blocks(inode);
2707
2708         if (!EXT4_I(inode)->i_reserved_data_blocks)
2709                 return 0;
2710
2711         /*
2712          * We do something simple for now.  The filemap_flush() will
2713          * also start triggering a write of the data blocks, which is
2714          * not strictly speaking necessary (and for users of
2715          * laptop_mode, not even desirable).  However, to do otherwise
2716          * would require replicating code paths in:
2717          *
2718          * ext4_writepages() ->
2719          *    write_cache_pages() ---> (via passed in callback function)
2720          *        __mpage_da_writepage() -->
2721          *           mpage_add_bh_to_extent()
2722          *           mpage_da_map_blocks()
2723          *
2724          * The problem is that write_cache_pages(), located in
2725          * mm/page-writeback.c, marks pages clean in preparation for
2726          * doing I/O, which is not desirable if we're not planning on
2727          * doing I/O at all.
2728          *
2729          * We could call write_cache_pages(), and then redirty all of
2730          * the pages by calling redirty_page_for_writepage() but that
2731          * would be ugly in the extreme.  So instead we would need to
2732          * replicate parts of the code in the above functions,
2733          * simplifying them because we wouldn't actually intend to
2734          * write out the pages, but rather only collect contiguous
2735          * logical block extents, call the multi-block allocator, and
2736          * then update the buffer heads with the block allocations.
2737          *
2738          * For now, though, we'll cheat by calling filemap_flush(),
2739          * which will map the blocks, and start the I/O, but not
2740          * actually wait for the I/O to complete.
2741          */
2742         return filemap_flush(inode->i_mapping);
2743 }
2744
2745 /*
2746  * bmap() is special.  It gets used by applications such as lilo and by
2747  * the swapper to find the on-disk block of a specific piece of data.
2748  *
2749  * Naturally, this is dangerous if the block concerned is still in the
2750  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2751  * filesystem and enables swap, then they may get a nasty shock when the
2752  * data getting swapped to that swapfile suddenly gets overwritten by
2753  * the original zero's written out previously to the journal and
2754  * awaiting writeback in the kernel's buffer cache.
2755  *
2756  * So, if we see any bmap calls here on a modified, data-journaled file,
2757  * take extra steps to flush any blocks which might be in the cache.
2758  */
2759 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2760 {
2761         struct inode *inode = mapping->host;
2762         journal_t *journal;
2763         int err;
2764
2765         /*
2766          * We can get here for an inline file via the FIBMAP ioctl
2767          */
2768         if (ext4_has_inline_data(inode))
2769                 return 0;
2770
2771         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2772                         test_opt(inode->i_sb, DELALLOC)) {
2773                 /*
2774                  * With delalloc we want to sync the file
2775                  * so that we can make sure we allocate
2776                  * blocks for file
2777                  */
2778                 filemap_write_and_wait(mapping);
2779         }
2780
2781         if (EXT4_JOURNAL(inode) &&
2782             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2783                 /*
2784                  * This is a REALLY heavyweight approach, but the use of
2785                  * bmap on dirty files is expected to be extremely rare:
2786                  * only if we run lilo or swapon on a freshly made file
2787                  * do we expect this to happen.
2788                  *
2789                  * (bmap requires CAP_SYS_RAWIO so this does not
2790                  * represent an unprivileged user DOS attack --- we'd be
2791                  * in trouble if mortal users could trigger this path at
2792                  * will.)
2793                  *
2794                  * NB. EXT4_STATE_JDATA is not set on files other than
2795                  * regular files.  If somebody wants to bmap a directory
2796                  * or symlink and gets confused because the buffer
2797                  * hasn't yet been flushed to disk, they deserve
2798                  * everything they get.
2799                  */
2800
2801                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2802                 journal = EXT4_JOURNAL(inode);
2803                 jbd2_journal_lock_updates(journal);
2804                 err = jbd2_journal_flush(journal);
2805                 jbd2_journal_unlock_updates(journal);
2806
2807                 if (err)
2808                         return 0;
2809         }
2810
2811         return generic_block_bmap(mapping, block, ext4_get_block);
2812 }
2813
2814 static int ext4_readpage(struct file *file, struct page *page)
2815 {
2816         int ret = -EAGAIN;
2817         struct inode *inode = page->mapping->host;
2818
2819         trace_ext4_readpage(page);
2820
2821         if (ext4_has_inline_data(inode))
2822                 ret = ext4_readpage_inline(inode, page);
2823
2824         if (ret == -EAGAIN)
2825                 return mpage_readpage(page, ext4_get_block);
2826
2827         return ret;
2828 }
2829
2830 static int
2831 ext4_readpages(struct file *file, struct address_space *mapping,
2832                 struct list_head *pages, unsigned nr_pages)
2833 {
2834         struct inode *inode = mapping->host;
2835
2836         /* If the file has inline data, no need to do readpages. */
2837         if (ext4_has_inline_data(inode))
2838                 return 0;
2839
2840         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2841 }
2842
2843 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2844                                 unsigned int length)
2845 {
2846         trace_ext4_invalidatepage(page, offset, length);
2847
2848         /* No journalling happens on data buffers when this function is used */
2849         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2850
2851         block_invalidatepage(page, offset, length);
2852 }
2853
2854 static int __ext4_journalled_invalidatepage(struct page *page,
2855                                             unsigned int offset,
2856                                             unsigned int length)
2857 {
2858         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2859
2860         trace_ext4_journalled_invalidatepage(page, offset, length);
2861
2862         /*
2863          * If it's a full truncate we just forget about the pending dirtying
2864          */
2865         if (offset == 0 && length == PAGE_CACHE_SIZE)
2866                 ClearPageChecked(page);
2867
2868         return jbd2_journal_invalidatepage(journal, page, offset, length);
2869 }
2870
2871 /* Wrapper for aops... */
2872 static void ext4_journalled_invalidatepage(struct page *page,
2873                                            unsigned int offset,
2874                                            unsigned int length)
2875 {
2876         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
2877 }
2878
2879 static int ext4_releasepage(struct page *page, gfp_t wait)
2880 {
2881         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2882
2883         trace_ext4_releasepage(page);
2884
2885         /* Page has dirty journalled data -> cannot release */
2886         if (PageChecked(page))
2887                 return 0;
2888         if (journal)
2889                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2890         else
2891                 return try_to_free_buffers(page);
2892 }
2893
2894 /*
2895  * ext4_get_block used when preparing for a DIO write or buffer write.
2896  * We allocate an uinitialized extent if blocks haven't been allocated.
2897  * The extent will be converted to initialized after the IO is complete.
2898  */
2899 int ext4_get_block_write(struct inode *inode, sector_t iblock,
2900                    struct buffer_head *bh_result, int create)
2901 {
2902         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2903                    inode->i_ino, create);
2904         return _ext4_get_block(inode, iblock, bh_result,
2905                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
2906 }
2907
2908 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2909                    struct buffer_head *bh_result, int create)
2910 {
2911         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2912                    inode->i_ino, create);
2913         return _ext4_get_block(inode, iblock, bh_result,
2914                                EXT4_GET_BLOCKS_NO_LOCK);
2915 }
2916
2917 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2918                             ssize_t size, void *private)
2919 {
2920         ext4_io_end_t *io_end = iocb->private;
2921
2922         /* if not async direct IO just return */
2923         if (!io_end)
2924                 return;
2925
2926         ext_debug("ext4_end_io_dio(): io_end 0x%p "
2927                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2928                   iocb->private, io_end->inode->i_ino, iocb, offset,
2929                   size);
2930
2931         iocb->private = NULL;
2932         io_end->offset = offset;
2933         io_end->size = size;
2934         ext4_put_io_end(io_end);
2935 }
2936
2937 /*
2938  * For ext4 extent files, ext4 will do direct-io write to holes,
2939  * preallocated extents, and those write extend the file, no need to
2940  * fall back to buffered IO.
2941  *
2942  * For holes, we fallocate those blocks, mark them as unwritten
2943  * If those blocks were preallocated, we mark sure they are split, but
2944  * still keep the range to write as unwritten.
2945  *
2946  * The unwritten extents will be converted to written when DIO is completed.
2947  * For async direct IO, since the IO may still pending when return, we
2948  * set up an end_io call back function, which will do the conversion
2949  * when async direct IO completed.
2950  *
2951  * If the O_DIRECT write will extend the file then add this inode to the
2952  * orphan list.  So recovery will truncate it back to the original size
2953  * if the machine crashes during the write.
2954  *
2955  */
2956 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2957                               struct iov_iter *iter, loff_t offset)
2958 {
2959         struct file *file = iocb->ki_filp;
2960         struct inode *inode = file->f_mapping->host;
2961         ssize_t ret;
2962         size_t count = iov_iter_count(iter);
2963         int overwrite = 0;
2964         get_block_t *get_block_func = NULL;
2965         int dio_flags = 0;
2966         loff_t final_size = offset + count;
2967         ext4_io_end_t *io_end = NULL;
2968
2969         /* Use the old path for reads and writes beyond i_size. */
2970         if (rw != WRITE || final_size > inode->i_size)
2971                 return ext4_ind_direct_IO(rw, iocb, iter, offset);
2972
2973         BUG_ON(iocb->private == NULL);
2974
2975         /*
2976          * Make all waiters for direct IO properly wait also for extent
2977          * conversion. This also disallows race between truncate() and
2978          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
2979          */
2980         if (rw == WRITE)
2981                 atomic_inc(&inode->i_dio_count);
2982
2983         /* If we do a overwrite dio, i_mutex locking can be released */
2984         overwrite = *((int *)iocb->private);
2985
2986         if (overwrite) {
2987                 down_read(&EXT4_I(inode)->i_data_sem);
2988                 mutex_unlock(&inode->i_mutex);
2989         }
2990
2991         /*
2992          * We could direct write to holes and fallocate.
2993          *
2994          * Allocated blocks to fill the hole are marked as
2995          * unwritten to prevent parallel buffered read to expose
2996          * the stale data before DIO complete the data IO.
2997          *
2998          * As to previously fallocated extents, ext4 get_block will
2999          * just simply mark the buffer mapped but still keep the
3000          * extents unwritten.
3001          *
3002          * For non AIO case, we will convert those unwritten extents
3003          * to written after return back from blockdev_direct_IO.
3004          *
3005          * For async DIO, the conversion needs to be deferred when the
3006          * IO is completed. The ext4 end_io callback function will be
3007          * called to take care of the conversion work.  Here for async
3008          * case, we allocate an io_end structure to hook to the iocb.
3009          */
3010         iocb->private = NULL;
3011         ext4_inode_aio_set(inode, NULL);
3012         if (!is_sync_kiocb(iocb)) {
3013                 io_end = ext4_init_io_end(inode, GFP_NOFS);
3014                 if (!io_end) {
3015                         ret = -ENOMEM;
3016                         goto retake_lock;
3017                 }
3018                 /*
3019                  * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3020                  */
3021                 iocb->private = ext4_get_io_end(io_end);
3022                 /*
3023                  * we save the io structure for current async direct
3024                  * IO, so that later ext4_map_blocks() could flag the
3025                  * io structure whether there is a unwritten extents
3026                  * needs to be converted when IO is completed.
3027                  */
3028                 ext4_inode_aio_set(inode, io_end);
3029         }
3030
3031         if (overwrite) {
3032                 get_block_func = ext4_get_block_write_nolock;
3033         } else {
3034                 get_block_func = ext4_get_block_write;
3035                 dio_flags = DIO_LOCKING;
3036         }
3037         if (IS_DAX(inode))
3038                 ret = dax_do_io(rw, iocb, inode, iter, offset, get_block_func,
3039                                 ext4_end_io_dio, dio_flags);
3040         else
3041                 ret = __blockdev_direct_IO(rw, iocb, inode,
3042                                            inode->i_sb->s_bdev, iter, offset,
3043                                            get_block_func,
3044                                            ext4_end_io_dio, NULL, dio_flags);
3045
3046         /*
3047          * Put our reference to io_end. This can free the io_end structure e.g.
3048          * in sync IO case or in case of error. It can even perform extent
3049          * conversion if all bios we submitted finished before we got here.
3050          * Note that in that case iocb->private can be already set to NULL
3051          * here.
3052          */
3053         if (io_end) {
3054                 ext4_inode_aio_set(inode, NULL);
3055                 ext4_put_io_end(io_end);
3056                 /*
3057                  * When no IO was submitted ext4_end_io_dio() was not
3058                  * called so we have to put iocb's reference.
3059                  */
3060                 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3061                         WARN_ON(iocb->private != io_end);
3062                         WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3063                         ext4_put_io_end(io_end);
3064                         iocb->private = NULL;
3065                 }
3066         }
3067         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3068                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3069                 int err;
3070                 /*
3071                  * for non AIO case, since the IO is already
3072                  * completed, we could do the conversion right here
3073                  */
3074                 err = ext4_convert_unwritten_extents(NULL, inode,
3075                                                      offset, ret);
3076                 if (err < 0)
3077                         ret = err;
3078                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3079         }
3080
3081 retake_lock:
3082         if (rw == WRITE)
3083                 inode_dio_done(inode);
3084         /* take i_mutex locking again if we do a ovewrite dio */
3085         if (overwrite) {
3086                 up_read(&EXT4_I(inode)->i_data_sem);
3087                 mutex_lock(&inode->i_mutex);
3088         }
3089
3090         return ret;
3091 }
3092
3093 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3094                               struct iov_iter *iter, loff_t offset)
3095 {
3096         struct file *file = iocb->ki_filp;
3097         struct inode *inode = file->f_mapping->host;
3098         size_t count = iov_iter_count(iter);
3099         ssize_t ret;
3100
3101         /*
3102          * If we are doing data journalling we don't support O_DIRECT
3103          */
3104         if (ext4_should_journal_data(inode))
3105                 return 0;
3106
3107         /* Let buffer I/O handle the inline data case. */
3108         if (ext4_has_inline_data(inode))
3109                 return 0;
3110
3111         trace_ext4_direct_IO_enter(inode, offset, count, rw);
3112         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3113                 ret = ext4_ext_direct_IO(rw, iocb, iter, offset);
3114         else
3115                 ret = ext4_ind_direct_IO(rw, iocb, iter, offset);
3116         trace_ext4_direct_IO_exit(inode, offset, count, rw, ret);
3117         return ret;
3118 }
3119
3120 /*
3121  * Pages can be marked dirty completely asynchronously from ext4's journalling
3122  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3123  * much here because ->set_page_dirty is called under VFS locks.  The page is
3124  * not necessarily locked.
3125  *
3126  * We cannot just dirty the page and leave attached buffers clean, because the
3127  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3128  * or jbddirty because all the journalling code will explode.
3129  *
3130  * So what we do is to mark the page "pending dirty" and next time writepage
3131  * is called, propagate that into the buffers appropriately.
3132  */
3133 static int ext4_journalled_set_page_dirty(struct page *page)
3134 {
3135         SetPageChecked(page);
3136         return __set_page_dirty_nobuffers(page);
3137 }
3138
3139 static const struct address_space_operations ext4_aops = {
3140         .readpage               = ext4_readpage,
3141         .readpages              = ext4_readpages,
3142         .writepage              = ext4_writepage,
3143         .writepages             = ext4_writepages,
3144         .write_begin            = ext4_write_begin,
3145         .write_end              = ext4_write_end,
3146         .bmap                   = ext4_bmap,
3147         .invalidatepage         = ext4_invalidatepage,
3148         .releasepage            = ext4_releasepage,
3149         .direct_IO              = ext4_direct_IO,
3150         .migratepage            = buffer_migrate_page,
3151         .is_partially_uptodate  = block_is_partially_uptodate,
3152         .error_remove_page      = generic_error_remove_page,
3153 };
3154
3155 static const struct address_space_operations ext4_journalled_aops = {
3156         .readpage               = ext4_readpage,
3157         .readpages              = ext4_readpages,
3158         .writepage              = ext4_writepage,
3159         .writepages             = ext4_writepages,
3160         .write_begin            = ext4_write_begin,
3161         .write_end              = ext4_journalled_write_end,
3162         .set_page_dirty         = ext4_journalled_set_page_dirty,
3163         .bmap                   = ext4_bmap,
3164         .invalidatepage         = ext4_journalled_invalidatepage,
3165         .releasepage            = ext4_releasepage,
3166         .direct_IO              = ext4_direct_IO,
3167         .is_partially_uptodate  = block_is_partially_uptodate,
3168         .error_remove_page      = generic_error_remove_page,
3169 };
3170
3171 static const struct address_space_operations ext4_da_aops = {
3172         .readpage               = ext4_readpage,
3173         .readpages              = ext4_readpages,
3174         .writepage              = ext4_writepage,
3175         .writepages             = ext4_writepages,
3176         .write_begin            = ext4_da_write_begin,
3177         .write_end              = ext4_da_write_end,
3178         .bmap                   = ext4_bmap,
3179         .invalidatepage         = ext4_da_invalidatepage,
3180         .releasepage            = ext4_releasepage,
3181         .direct_IO              = ext4_direct_IO,
3182         .migratepage            = buffer_migrate_page,
3183         .is_partially_uptodate  = block_is_partially_uptodate,
3184         .error_remove_page      = generic_error_remove_page,
3185 };
3186
3187 void ext4_set_aops(struct inode *inode)
3188 {
3189         switch (ext4_inode_journal_mode(inode)) {
3190         case EXT4_INODE_ORDERED_DATA_MODE:
3191                 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3192                 break;
3193         case EXT4_INODE_WRITEBACK_DATA_MODE:
3194                 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3195                 break;
3196         case EXT4_INODE_JOURNAL_DATA_MODE:
3197                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3198                 return;
3199         default:
3200                 BUG();
3201         }
3202         if (test_opt(inode->i_sb, DELALLOC))
3203                 inode->i_mapping->a_ops = &ext4_da_aops;
3204         else
3205                 inode->i_mapping->a_ops = &ext4_aops;
3206 }
3207
3208 static int __ext4_block_zero_page_range(handle_t *handle,
3209                 struct address_space *mapping, loff_t from, loff_t length)
3210 {
3211         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3212         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3213         unsigned blocksize, pos;
3214         ext4_lblk_t iblock;
3215         struct inode *inode = mapping->host;
3216         struct buffer_head *bh;
3217         struct page *page;
3218         int err = 0;
3219
3220         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3221                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3222         if (!page)
3223                 return -ENOMEM;
3224
3225         blocksize = inode->i_sb->s_blocksize;
3226
3227         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3228
3229         if (!page_has_buffers(page))
3230                 create_empty_buffers(page, blocksize, 0);
3231
3232         /* Find the buffer that contains "offset" */
3233         bh = page_buffers(page);
3234         pos = blocksize;
3235         while (offset >= pos) {
3236                 bh = bh->b_this_page;
3237                 iblock++;
3238                 pos += blocksize;
3239         }
3240         if (buffer_freed(bh)) {
3241                 BUFFER_TRACE(bh, "freed: skip");
3242                 goto unlock;
3243         }
3244         if (!buffer_mapped(bh)) {
3245                 BUFFER_TRACE(bh, "unmapped");
3246                 ext4_get_block(inode, iblock, bh, 0);
3247                 /* unmapped? It's a hole - nothing to do */
3248                 if (!buffer_mapped(bh)) {
3249                         BUFFER_TRACE(bh, "still unmapped");
3250                         goto unlock;
3251                 }
3252         }
3253
3254         /* Ok, it's mapped. Make sure it's up-to-date */
3255         if (PageUptodate(page))
3256                 set_buffer_uptodate(bh);
3257
3258         if (!buffer_uptodate(bh)) {
3259                 err = -EIO;
3260                 ll_rw_block(READ, 1, &bh);
3261                 wait_on_buffer(bh);
3262                 /* Uhhuh. Read error. Complain and punt. */
3263                 if (!buffer_uptodate(bh))
3264                         goto unlock;
3265         }
3266         if (ext4_should_journal_data(inode)) {
3267                 BUFFER_TRACE(bh, "get write access");
3268                 err = ext4_journal_get_write_access(handle, bh);
3269                 if (err)
3270                         goto unlock;
3271         }
3272         zero_user(page, offset, length);
3273         BUFFER_TRACE(bh, "zeroed end of block");
3274
3275         if (ext4_should_journal_data(inode)) {
3276                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3277         } else {
3278                 err = 0;
3279                 mark_buffer_dirty(bh);
3280                 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3281                         err = ext4_jbd2_file_inode(handle, inode);
3282         }
3283
3284 unlock:
3285         unlock_page(page);
3286         page_cache_release(page);
3287         return err;
3288 }
3289
3290 /*
3291  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3292  * starting from file offset 'from'.  The range to be zero'd must
3293  * be contained with in one block.  If the specified range exceeds
3294  * the end of the block it will be shortened to end of the block
3295  * that cooresponds to 'from'
3296  */
3297 static int ext4_block_zero_page_range(handle_t *handle,
3298                 struct address_space *mapping, loff_t from, loff_t length)
3299 {
3300         struct inode *inode = mapping->host;
3301         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3302         unsigned blocksize = inode->i_sb->s_blocksize;
3303         unsigned max = blocksize - (offset & (blocksize - 1));
3304
3305         /*
3306          * correct length if it does not fall between
3307          * 'from' and the end of the block
3308          */
3309         if (length > max || length < 0)
3310                 length = max;
3311
3312         if (IS_DAX(inode))
3313                 return dax_zero_page_range(inode, from, length, ext4_get_block);
3314         return __ext4_block_zero_page_range(handle, mapping, from, length);
3315 }
3316
3317 /*
3318  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3319  * up to the end of the block which corresponds to `from'.
3320  * This required during truncate. We need to physically zero the tail end
3321  * of that block so it doesn't yield old data if the file is later grown.
3322  */
3323 static int ext4_block_truncate_page(handle_t *handle,
3324                 struct address_space *mapping, loff_t from)
3325 {
3326         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3327         unsigned length;
3328         unsigned blocksize;
3329         struct inode *inode = mapping->host;
3330
3331         blocksize = inode->i_sb->s_blocksize;
3332         length = blocksize - (offset & (blocksize - 1));
3333
3334         return ext4_block_zero_page_range(handle, mapping, from, length);
3335 }
3336
3337 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3338                              loff_t lstart, loff_t length)
3339 {
3340         struct super_block *sb = inode->i_sb;
3341         struct address_space *mapping = inode->i_mapping;
3342         unsigned partial_start, partial_end;
3343         ext4_fsblk_t start, end;
3344         loff_t byte_end = (lstart + length - 1);
3345         int err = 0;
3346
3347         partial_start = lstart & (sb->s_blocksize - 1);
3348         partial_end = byte_end & (sb->s_blocksize - 1);
3349
3350         start = lstart >> sb->s_blocksize_bits;
3351         end = byte_end >> sb->s_blocksize_bits;
3352
3353         /* Handle partial zero within the single block */
3354         if (start == end &&
3355             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3356                 err = ext4_block_zero_page_range(handle, mapping,
3357                                                  lstart, length);
3358                 return err;
3359         }
3360         /* Handle partial zero out on the start of the range */
3361         if (partial_start) {
3362                 err = ext4_block_zero_page_range(handle, mapping,
3363                                                  lstart, sb->s_blocksize);
3364                 if (err)
3365                         return err;
3366         }
3367         /* Handle partial zero out on the end of the range */
3368         if (partial_end != sb->s_blocksize - 1)
3369                 err = ext4_block_zero_page_range(handle, mapping,
3370                                                  byte_end - partial_end,
3371                                                  partial_end + 1);
3372         return err;
3373 }
3374
3375 int ext4_can_truncate(struct inode *inode)
3376 {
3377         if (S_ISREG(inode->i_mode))
3378                 return 1;
3379         if (S_ISDIR(inode->i_mode))
3380                 return 1;
3381         if (S_ISLNK(inode->i_mode))
3382                 return !ext4_inode_is_fast_symlink(inode);
3383         return 0;
3384 }
3385
3386 /*
3387  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3388  * associated with the given offset and length
3389  *
3390  * @inode:  File inode
3391  * @offset: The offset where the hole will begin
3392  * @len:    The length of the hole
3393  *
3394  * Returns: 0 on success or negative on failure
3395  */
3396
3397 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3398 {
3399         struct super_block *sb = inode->i_sb;
3400         ext4_lblk_t first_block, stop_block;
3401         struct address_space *mapping = inode->i_mapping;
3402         loff_t first_block_offset, last_block_offset;
3403         handle_t *handle;
3404         unsigned int credits;
3405         int ret = 0;
3406
3407         if (!S_ISREG(inode->i_mode))
3408                 return -EOPNOTSUPP;
3409
3410         trace_ext4_punch_hole(inode, offset, length, 0);
3411
3412         /*
3413          * Write out all dirty pages to avoid race conditions
3414          * Then release them.
3415          */
3416         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3417                 ret = filemap_write_and_wait_range(mapping, offset,
3418                                                    offset + length - 1);
3419                 if (ret)
3420                         return ret;
3421         }
3422
3423         mutex_lock(&inode->i_mutex);
3424
3425         /* No need to punch hole beyond i_size */
3426         if (offset >= inode->i_size)
3427                 goto out_mutex;
3428
3429         /*
3430          * If the hole extends beyond i_size, set the hole
3431          * to end after the page that contains i_size
3432          */
3433         if (offset + length > inode->i_size) {
3434                 length = inode->i_size +
3435                    PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3436                    offset;
3437         }
3438
3439         if (offset & (sb->s_blocksize - 1) ||
3440             (offset + length) & (sb->s_blocksize - 1)) {
3441                 /*
3442                  * Attach jinode to inode for jbd2 if we do any zeroing of
3443                  * partial block
3444                  */
3445                 ret = ext4_inode_attach_jinode(inode);
3446                 if (ret < 0)
3447                         goto out_mutex;
3448
3449         }
3450
3451         first_block_offset = round_up(offset, sb->s_blocksize);
3452         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3453
3454         /* Now release the pages and zero block aligned part of pages*/
3455         if (last_block_offset > first_block_offset)
3456                 truncate_pagecache_range(inode, first_block_offset,
3457                                          last_block_offset);
3458
3459         /* Wait all existing dio workers, newcomers will block on i_mutex */
3460         ext4_inode_block_unlocked_dio(inode);
3461         inode_dio_wait(inode);
3462
3463         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3464                 credits = ext4_writepage_trans_blocks(inode);
3465         else
3466                 credits = ext4_blocks_for_truncate(inode);
3467         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3468         if (IS_ERR(handle)) {
3469                 ret = PTR_ERR(handle);
3470                 ext4_std_error(sb, ret);
3471                 goto out_dio;
3472         }
3473
3474         ret = ext4_zero_partial_blocks(handle, inode, offset,
3475                                        length);
3476         if (ret)
3477                 goto out_stop;
3478
3479         first_block = (offset + sb->s_blocksize - 1) >>
3480                 EXT4_BLOCK_SIZE_BITS(sb);
3481         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3482
3483         /* If there are no blocks to remove, return now */
3484         if (first_block >= stop_block)
3485                 goto out_stop;
3486
3487         down_write(&EXT4_I(inode)->i_data_sem);
3488         ext4_discard_preallocations(inode);
3489
3490         ret = ext4_es_remove_extent(inode, first_block,
3491                                     stop_block - first_block);
3492         if (ret) {
3493                 up_write(&EXT4_I(inode)->i_data_sem);
3494                 goto out_stop;
3495         }
3496
3497         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3498                 ret = ext4_ext_remove_space(inode, first_block,
3499                                             stop_block - 1);
3500         else
3501                 ret = ext4_ind_remove_space(handle, inode, first_block,
3502                                             stop_block);
3503
3504         up_write(&EXT4_I(inode)->i_data_sem);
3505         if (IS_SYNC(inode))
3506                 ext4_handle_sync(handle);
3507
3508         /* Now release the pages again to reduce race window */
3509         if (last_block_offset > first_block_offset)
3510                 truncate_pagecache_range(inode, first_block_offset,
3511                                          last_block_offset);
3512
3513         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3514         ext4_mark_inode_dirty(handle, inode);
3515 out_stop:
3516         ext4_journal_stop(handle);
3517 out_dio:
3518         ext4_inode_resume_unlocked_dio(inode);
3519 out_mutex:
3520         mutex_unlock(&inode->i_mutex);
3521         return ret;
3522 }
3523
3524 int ext4_inode_attach_jinode(struct inode *inode)
3525 {
3526         struct ext4_inode_info *ei = EXT4_I(inode);
3527         struct jbd2_inode *jinode;
3528
3529         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3530                 return 0;
3531
3532         jinode = jbd2_alloc_inode(GFP_KERNEL);
3533         spin_lock(&inode->i_lock);
3534         if (!ei->jinode) {
3535                 if (!jinode) {
3536                         spin_unlock(&inode->i_lock);
3537                         return -ENOMEM;
3538                 }
3539                 ei->jinode = jinode;
3540                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3541                 jinode = NULL;
3542         }
3543         spin_unlock(&inode->i_lock);
3544         if (unlikely(jinode != NULL))
3545                 jbd2_free_inode(jinode);
3546         return 0;
3547 }
3548
3549 /*
3550  * ext4_truncate()
3551  *
3552  * We block out ext4_get_block() block instantiations across the entire
3553  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3554  * simultaneously on behalf of the same inode.
3555  *
3556  * As we work through the truncate and commit bits of it to the journal there
3557  * is one core, guiding principle: the file's tree must always be consistent on
3558  * disk.  We must be able to restart the truncate after a crash.
3559  *
3560  * The file's tree may be transiently inconsistent in memory (although it
3561  * probably isn't), but whenever we close off and commit a journal transaction,
3562  * the contents of (the filesystem + the journal) must be consistent and
3563  * restartable.  It's pretty simple, really: bottom up, right to left (although
3564  * left-to-right works OK too).
3565  *
3566  * Note that at recovery time, journal replay occurs *before* the restart of
3567  * truncate against the orphan inode list.
3568  *
3569  * The committed inode has the new, desired i_size (which is the same as
3570  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3571  * that this inode's truncate did not complete and it will again call
3572  * ext4_truncate() to have another go.  So there will be instantiated blocks
3573  * to the right of the truncation point in a crashed ext4 filesystem.  But
3574  * that's fine - as long as they are linked from the inode, the post-crash
3575  * ext4_truncate() run will find them and release them.
3576  */
3577 void ext4_truncate(struct inode *inode)
3578 {
3579         struct ext4_inode_info *ei = EXT4_I(inode);
3580         unsigned int credits;
3581         handle_t *handle;
3582         struct address_space *mapping = inode->i_mapping;
3583
3584         /*
3585          * There is a possibility that we're either freeing the inode
3586          * or it's a completely new inode. In those cases we might not
3587          * have i_mutex locked because it's not necessary.
3588          */
3589         if (!(inode->i_state & (I_NEW|I_FREEING)))
3590                 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3591         trace_ext4_truncate_enter(inode);
3592
3593         if (!ext4_can_truncate(inode))
3594                 return;
3595
3596         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3597
3598         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3599                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3600
3601         if (ext4_has_inline_data(inode)) {
3602                 int has_inline = 1;
3603
3604                 ext4_inline_data_truncate(inode, &has_inline);
3605                 if (has_inline)
3606                         return;
3607         }
3608
3609         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3610         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3611                 if (ext4_inode_attach_jinode(inode) < 0)
3612                         return;
3613         }
3614
3615         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3616                 credits = ext4_writepage_trans_blocks(inode);
3617         else
3618                 credits = ext4_blocks_for_truncate(inode);
3619
3620         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3621         if (IS_ERR(handle)) {
3622                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3623                 return;
3624         }
3625
3626         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3627                 ext4_block_truncate_page(handle, mapping, inode->i_size);
3628
3629         /*
3630          * We add the inode to the orphan list, so that if this
3631          * truncate spans multiple transactions, and we crash, we will
3632          * resume the truncate when the filesystem recovers.  It also
3633          * marks the inode dirty, to catch the new size.
3634          *
3635          * Implication: the file must always be in a sane, consistent
3636          * truncatable state while each transaction commits.
3637          */
3638         if (ext4_orphan_add(handle, inode))
3639                 goto out_stop;
3640
3641         down_write(&EXT4_I(inode)->i_data_sem);
3642
3643         ext4_discard_preallocations(inode);
3644
3645         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3646                 ext4_ext_truncate(handle, inode);
3647         else
3648                 ext4_ind_truncate(handle, inode);
3649
3650         up_write(&ei->i_data_sem);
3651
3652         if (IS_SYNC(inode))
3653                 ext4_handle_sync(handle);
3654
3655 out_stop:
3656         /*
3657          * If this was a simple ftruncate() and the file will remain alive,
3658          * then we need to clear up the orphan record which we created above.
3659          * However, if this was a real unlink then we were called by
3660          * ext4_evict_inode(), and we allow that function to clean up the
3661          * orphan info for us.
3662          */
3663         if (inode->i_nlink)
3664                 ext4_orphan_del(handle, inode);
3665
3666         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3667         ext4_mark_inode_dirty(handle, inode);
3668         ext4_journal_stop(handle);
3669
3670         trace_ext4_truncate_exit(inode);
3671 }
3672
3673 /*
3674  * ext4_get_inode_loc returns with an extra refcount against the inode's
3675  * underlying buffer_head on success. If 'in_mem' is true, we have all
3676  * data in memory that is needed to recreate the on-disk version of this
3677  * inode.
3678  */
3679 static int __ext4_get_inode_loc(struct inode *inode,
3680                                 struct ext4_iloc *iloc, int in_mem)
3681 {
3682         struct ext4_group_desc  *gdp;
3683         struct buffer_head      *bh;
3684         struct super_block      *sb = inode->i_sb;
3685         ext4_fsblk_t            block;
3686         int                     inodes_per_block, inode_offset;
3687
3688         iloc->bh = NULL;
3689         if (!ext4_valid_inum(sb, inode->i_ino))
3690                 return -EIO;
3691
3692         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3693         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3694         if (!gdp)
3695                 return -EIO;
3696
3697         /*
3698          * Figure out the offset within the block group inode table
3699          */
3700         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3701         inode_offset = ((inode->i_ino - 1) %
3702                         EXT4_INODES_PER_GROUP(sb));
3703         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3704         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3705
3706         bh = sb_getblk(sb, block);
3707         if (unlikely(!bh))
3708                 return -ENOMEM;
3709         if (!buffer_uptodate(bh)) {
3710                 lock_buffer(bh);
3711
3712                 /*
3713                  * If the buffer has the write error flag, we have failed
3714                  * to write out another inode in the same block.  In this
3715                  * case, we don't have to read the block because we may
3716                  * read the old inode data successfully.
3717                  */
3718                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3719                         set_buffer_uptodate(bh);
3720
3721                 if (buffer_uptodate(bh)) {
3722                         /* someone brought it uptodate while we waited */
3723                         unlock_buffer(bh);
3724                         goto has_buffer;
3725                 }
3726
3727                 /*
3728                  * If we have all information of the inode in memory and this
3729                  * is the only valid inode in the block, we need not read the
3730                  * block.
3731                  */
3732                 if (in_mem) {
3733                         struct buffer_head *bitmap_bh;
3734                         int i, start;
3735
3736                         start = inode_offset & ~(inodes_per_block - 1);
3737
3738                         /* Is the inode bitmap in cache? */
3739                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3740                         if (unlikely(!bitmap_bh))
3741                                 goto make_io;
3742
3743                         /*
3744                          * If the inode bitmap isn't in cache then the
3745                          * optimisation may end up performing two reads instead
3746                          * of one, so skip it.
3747                          */
3748                         if (!buffer_uptodate(bitmap_bh)) {
3749                                 brelse(bitmap_bh);
3750                                 goto make_io;
3751                         }
3752                         for (i = start; i < start + inodes_per_block; i++) {
3753                                 if (i == inode_offset)
3754                                         continue;
3755                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3756                                         break;
3757                         }
3758                         brelse(bitmap_bh);
3759                         if (i == start + inodes_per_block) {
3760                                 /* all other inodes are free, so skip I/O */
3761                                 memset(bh->b_data, 0, bh->b_size);
3762                                 set_buffer_uptodate(bh);
3763                                 unlock_buffer(bh);
3764                                 goto has_buffer;
3765                         }
3766                 }
3767
3768 make_io:
3769                 /*
3770                  * If we need to do any I/O, try to pre-readahead extra
3771                  * blocks from the inode table.
3772                  */
3773                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3774                         ext4_fsblk_t b, end, table;
3775                         unsigned num;
3776                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3777
3778                         table = ext4_inode_table(sb, gdp);
3779                         /* s_inode_readahead_blks is always a power of 2 */
3780                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
3781                         if (table > b)
3782                                 b = table;
3783                         end = b + ra_blks;
3784                         num = EXT4_INODES_PER_GROUP(sb);
3785                         if (ext4_has_group_desc_csum(sb))
3786                                 num -= ext4_itable_unused_count(sb, gdp);
3787                         table += num / inodes_per_block;
3788                         if (end > table)
3789                                 end = table;
3790                         while (b <= end)
3791                                 sb_breadahead(sb, b++);
3792                 }
3793
3794                 /*
3795                  * There are other valid inodes in the buffer, this inode
3796                  * has in-inode xattrs, or we don't have this inode in memory.
3797                  * Read the block from disk.
3798                  */
3799                 trace_ext4_load_inode(inode);
3800                 get_bh(bh);
3801                 bh->b_end_io = end_buffer_read_sync;
3802                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3803                 wait_on_buffer(bh);
3804                 if (!buffer_uptodate(bh)) {
3805                         EXT4_ERROR_INODE_BLOCK(inode, block,
3806                                                "unable to read itable block");
3807                         brelse(bh);
3808                         return -EIO;
3809                 }
3810         }
3811 has_buffer:
3812         iloc->bh = bh;
3813         return 0;
3814 }
3815
3816 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3817 {
3818         /* We have all inode data except xattrs in memory here. */
3819         return __ext4_get_inode_loc(inode, iloc,
3820                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3821 }
3822
3823 void ext4_set_inode_flags(struct inode *inode)
3824 {
3825         unsigned int flags = EXT4_I(inode)->i_flags;
3826         unsigned int new_fl = 0;
3827
3828         if (flags & EXT4_SYNC_FL)
3829                 new_fl |= S_SYNC;
3830         if (flags & EXT4_APPEND_FL)
3831                 new_fl |= S_APPEND;
3832         if (flags & EXT4_IMMUTABLE_FL)
3833                 new_fl |= S_IMMUTABLE;
3834         if (flags & EXT4_NOATIME_FL)
3835                 new_fl |= S_NOATIME;
3836         if (flags & EXT4_DIRSYNC_FL)
3837                 new_fl |= S_DIRSYNC;
3838         if (test_opt(inode->i_sb, DAX))
3839                 new_fl |= S_DAX;
3840         inode_set_flags(inode, new_fl,
3841                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
3842 }
3843
3844 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3845 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3846 {
3847         unsigned int vfs_fl;
3848         unsigned long old_fl, new_fl;
3849
3850         do {
3851                 vfs_fl = ei->vfs_inode.i_flags;
3852                 old_fl = ei->i_flags;
3853                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3854                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3855                                 EXT4_DIRSYNC_FL);
3856                 if (vfs_fl & S_SYNC)
3857                         new_fl |= EXT4_SYNC_FL;
3858                 if (vfs_fl & S_APPEND)
3859                         new_fl |= EXT4_APPEND_FL;
3860                 if (vfs_fl & S_IMMUTABLE)
3861                         new_fl |= EXT4_IMMUTABLE_FL;
3862                 if (vfs_fl & S_NOATIME)
3863                         new_fl |= EXT4_NOATIME_FL;
3864                 if (vfs_fl & S_DIRSYNC)
3865                         new_fl |= EXT4_DIRSYNC_FL;
3866         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3867 }
3868
3869 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3870                                   struct ext4_inode_info *ei)
3871 {
3872         blkcnt_t i_blocks ;
3873         struct inode *inode = &(ei->vfs_inode);
3874         struct super_block *sb = inode->i_sb;
3875
3876         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3877                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3878                 /* we are using combined 48 bit field */
3879                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3880                                         le32_to_cpu(raw_inode->i_blocks_lo);
3881                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3882                         /* i_blocks represent file system block size */
3883                         return i_blocks  << (inode->i_blkbits - 9);
3884                 } else {
3885                         return i_blocks;
3886                 }
3887         } else {
3888                 return le32_to_cpu(raw_inode->i_blocks_lo);
3889         }
3890 }
3891
3892 static inline void ext4_iget_extra_inode(struct inode *inode,
3893                                          struct ext4_inode *raw_inode,
3894                                          struct ext4_inode_info *ei)
3895 {
3896         __le32 *magic = (void *)raw_inode +
3897                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3898         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3899                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3900                 ext4_find_inline_data_nolock(inode);
3901         } else
3902                 EXT4_I(inode)->i_inline_off = 0;
3903 }
3904
3905 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3906 {
3907         struct ext4_iloc iloc;
3908         struct ext4_inode *raw_inode;
3909         struct ext4_inode_info *ei;
3910         struct inode *inode;
3911         journal_t *journal = EXT4_SB(sb)->s_journal;
3912         long ret;
3913         int block;
3914         uid_t i_uid;
3915         gid_t i_gid;
3916
3917         inode = iget_locked(sb, ino);
3918         if (!inode)
3919                 return ERR_PTR(-ENOMEM);
3920         if (!(inode->i_state & I_NEW))
3921                 return inode;
3922
3923         ei = EXT4_I(inode);
3924         iloc.bh = NULL;
3925
3926         ret = __ext4_get_inode_loc(inode, &iloc, 0);
3927         if (ret < 0)
3928                 goto bad_inode;
3929         raw_inode = ext4_raw_inode(&iloc);
3930
3931         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3932                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3933                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3934                     EXT4_INODE_SIZE(inode->i_sb)) {
3935                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3936                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3937                                 EXT4_INODE_SIZE(inode->i_sb));
3938                         ret = -EIO;
3939                         goto bad_inode;
3940                 }
3941         } else
3942                 ei->i_extra_isize = 0;
3943
3944         /* Precompute checksum seed for inode metadata */
3945         if (ext4_has_metadata_csum(sb)) {
3946                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3947                 __u32 csum;
3948                 __le32 inum = cpu_to_le32(inode->i_ino);
3949                 __le32 gen = raw_inode->i_generation;
3950                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3951                                    sizeof(inum));
3952                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3953                                               sizeof(gen));
3954         }
3955
3956         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3957                 EXT4_ERROR_INODE(inode, "checksum invalid");
3958                 ret = -EIO;
3959                 goto bad_inode;
3960         }
3961
3962         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3963         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3964         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3965         if (!(test_opt(inode->i_sb, NO_UID32))) {
3966                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3967                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3968         }
3969         i_uid_write(inode, i_uid);
3970         i_gid_write(inode, i_gid);
3971         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3972
3973         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
3974         ei->i_inline_off = 0;
3975         ei->i_dir_start_lookup = 0;
3976         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3977         /* We now have enough fields to check if the inode was active or not.
3978          * This is needed because nfsd might try to access dead inodes
3979          * the test is that same one that e2fsck uses
3980          * NeilBrown 1999oct15
3981          */
3982         if (inode->i_nlink == 0) {
3983                 if ((inode->i_mode == 0 ||
3984                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
3985                     ino != EXT4_BOOT_LOADER_INO) {
3986                         /* this inode is deleted */
3987                         ret = -ESTALE;
3988                         goto bad_inode;
3989                 }
3990                 /* The only unlinked inodes we let through here have
3991                  * valid i_mode and are being read by the orphan
3992                  * recovery code: that's fine, we're about to complete
3993                  * the process of deleting those.
3994                  * OR it is the EXT4_BOOT_LOADER_INO which is
3995                  * not initialized on a new filesystem. */
3996         }
3997         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3998         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3999         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4000         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4001                 ei->i_file_acl |=
4002                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4003         inode->i_size = ext4_isize(raw_inode);
4004         ei->i_disksize = inode->i_size;
4005 #ifdef CONFIG_QUOTA
4006         ei->i_reserved_quota = 0;
4007 #endif
4008         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4009         ei->i_block_group = iloc.block_group;
4010         ei->i_last_alloc_group = ~0;
4011         /*
4012          * NOTE! The in-memory inode i_data array is in little-endian order
4013          * even on big-endian machines: we do NOT byteswap the block numbers!
4014          */
4015         for (block = 0; block < EXT4_N_BLOCKS; block++)
4016                 ei->i_data[block] = raw_inode->i_block[block];
4017         INIT_LIST_HEAD(&ei->i_orphan);
4018
4019         /*
4020          * Set transaction id's of transactions that have to be committed
4021          * to finish f[data]sync. We set them to currently running transaction
4022          * as we cannot be sure that the inode or some of its metadata isn't
4023          * part of the transaction - the inode could have been reclaimed and
4024          * now it is reread from disk.
4025          */
4026         if (journal) {
4027                 transaction_t *transaction;
4028                 tid_t tid;
4029
4030                 read_lock(&journal->j_state_lock);
4031                 if (journal->j_running_transaction)
4032                         transaction = journal->j_running_transaction;
4033                 else
4034                         transaction = journal->j_committing_transaction;
4035                 if (transaction)
4036                         tid = transaction->t_tid;
4037                 else
4038                         tid = journal->j_commit_sequence;
4039                 read_unlock(&journal->j_state_lock);
4040                 ei->i_sync_tid = tid;
4041                 ei->i_datasync_tid = tid;
4042         }
4043
4044         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4045                 if (ei->i_extra_isize == 0) {
4046                         /* The extra space is currently unused. Use it. */
4047                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4048                                             EXT4_GOOD_OLD_INODE_SIZE;
4049                 } else {
4050                         ext4_iget_extra_inode(inode, raw_inode, ei);
4051                 }
4052         }
4053
4054         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4055         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4056         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4057         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4058
4059         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4060                 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4061                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4062                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4063                                 inode->i_version |=
4064                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4065                 }
4066         }
4067
4068         ret = 0;
4069         if (ei->i_file_acl &&
4070             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4071                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4072                                  ei->i_file_acl);
4073                 ret = -EIO;
4074                 goto bad_inode;
4075         } else if (!ext4_has_inline_data(inode)) {
4076                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4077                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4078                             (S_ISLNK(inode->i_mode) &&
4079                              !ext4_inode_is_fast_symlink(inode))))
4080                                 /* Validate extent which is part of inode */
4081                                 ret = ext4_ext_check_inode(inode);
4082                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4083                            (S_ISLNK(inode->i_mode) &&
4084                             !ext4_inode_is_fast_symlink(inode))) {
4085                         /* Validate block references which are part of inode */
4086                         ret = ext4_ind_check_inode(inode);
4087                 }
4088         }
4089         if (ret)
4090                 goto bad_inode;
4091
4092         if (S_ISREG(inode->i_mode)) {
4093                 inode->i_op = &ext4_file_inode_operations;
4094                 if (test_opt(inode->i_sb, DAX))
4095                         inode->i_fop = &ext4_dax_file_operations;
4096                 else
4097                         inode->i_fop = &ext4_file_operations;
4098                 ext4_set_aops(inode);
4099         } else if (S_ISDIR(inode->i_mode)) {
4100                 inode->i_op = &ext4_dir_inode_operations;
4101                 inode->i_fop = &ext4_dir_operations;
4102         } else if (S_ISLNK(inode->i_mode)) {
4103                 if (ext4_inode_is_fast_symlink(inode)) {
4104                         inode->i_op = &ext4_fast_symlink_inode_operations;
4105                         nd_terminate_link(ei->i_data, inode->i_size,
4106                                 sizeof(ei->i_data) - 1);
4107                 } else {
4108                         inode->i_op = &ext4_symlink_inode_operations;
4109                         ext4_set_aops(inode);
4110                 }
4111         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4112               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4113                 inode->i_op = &ext4_special_inode_operations;
4114                 if (raw_inode->i_block[0])
4115                         init_special_inode(inode, inode->i_mode,
4116                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4117                 else
4118                         init_special_inode(inode, inode->i_mode,
4119                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4120         } else if (ino == EXT4_BOOT_LOADER_INO) {
4121                 make_bad_inode(inode);
4122         } else {
4123                 ret = -EIO;
4124                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4125                 goto bad_inode;
4126         }
4127         brelse(iloc.bh);
4128         ext4_set_inode_flags(inode);
4129         unlock_new_inode(inode);
4130         return inode;
4131
4132 bad_inode:
4133         brelse(iloc.bh);
4134         iget_failed(inode);
4135         return ERR_PTR(ret);
4136 }
4137
4138 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4139 {
4140         if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4141                 return ERR_PTR(-EIO);
4142         return ext4_iget(sb, ino);
4143 }
4144
4145 static int ext4_inode_blocks_set(handle_t *handle,
4146                                 struct ext4_inode *raw_inode,
4147                                 struct ext4_inode_info *ei)
4148 {
4149         struct inode *inode = &(ei->vfs_inode);
4150         u64 i_blocks = inode->i_blocks;
4151         struct super_block *sb = inode->i_sb;
4152
4153         if (i_blocks <= ~0U) {
4154                 /*
4155                  * i_blocks can be represented in a 32 bit variable
4156                  * as multiple of 512 bytes
4157                  */
4158                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4159                 raw_inode->i_blocks_high = 0;
4160                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4161                 return 0;
4162         }
4163         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4164                 return -EFBIG;
4165
4166         if (i_blocks <= 0xffffffffffffULL) {
4167                 /*
4168                  * i_blocks can be represented in a 48 bit variable
4169                  * as multiple of 512 bytes
4170                  */
4171                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4172                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4173                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4174         } else {
4175                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4176                 /* i_block is stored in file system block size */
4177                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4178                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4179                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4180         }
4181         return 0;
4182 }
4183
4184 struct other_inode {
4185         unsigned long           orig_ino;
4186         struct ext4_inode       *raw_inode;
4187 };
4188
4189 static int other_inode_match(struct inode * inode, unsigned long ino,
4190                              void *data)
4191 {
4192         struct other_inode *oi = (struct other_inode *) data;
4193
4194         if ((inode->i_ino != ino) ||
4195             (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4196                                I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4197             ((inode->i_state & I_DIRTY_TIME) == 0))
4198                 return 0;
4199         spin_lock(&inode->i_lock);
4200         if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4201                                 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4202             (inode->i_state & I_DIRTY_TIME)) {
4203                 struct ext4_inode_info  *ei = EXT4_I(inode);
4204
4205                 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4206                 spin_unlock(&inode->i_lock);
4207
4208                 spin_lock(&ei->i_raw_lock);
4209                 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4210                 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4211                 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4212                 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4213                 spin_unlock(&ei->i_raw_lock);
4214                 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4215                 return -1;
4216         }
4217         spin_unlock(&inode->i_lock);
4218         return -1;
4219 }
4220
4221 /*
4222  * Opportunistically update the other time fields for other inodes in
4223  * the same inode table block.
4224  */
4225 static void ext4_update_other_inodes_time(struct super_block *sb,
4226                                           unsigned long orig_ino, char *buf)
4227 {
4228         struct other_inode oi;
4229         unsigned long ino;
4230         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4231         int inode_size = EXT4_INODE_SIZE(sb);
4232
4233         oi.orig_ino = orig_ino;
4234         ino = orig_ino & ~(inodes_per_block - 1);
4235         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4236                 if (ino == orig_ino)
4237                         continue;
4238                 oi.raw_inode = (struct ext4_inode *) buf;
4239                 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4240         }
4241 }
4242
4243 /*
4244  * Post the struct inode info into an on-disk inode location in the
4245  * buffer-cache.  This gobbles the caller's reference to the
4246  * buffer_head in the inode location struct.
4247  *
4248  * The caller must have write access to iloc->bh.
4249  */
4250 static int ext4_do_update_inode(handle_t *handle,
4251                                 struct inode *inode,
4252                                 struct ext4_iloc *iloc)
4253 {
4254         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4255         struct ext4_inode_info *ei = EXT4_I(inode);
4256         struct buffer_head *bh = iloc->bh;
4257         struct super_block *sb = inode->i_sb;
4258         int err = 0, rc, block;
4259         int need_datasync = 0, set_large_file = 0;
4260         uid_t i_uid;
4261         gid_t i_gid;
4262
4263         spin_lock(&ei->i_raw_lock);
4264
4265         /* For fields not tracked in the in-memory inode,
4266          * initialise them to zero for new inodes. */
4267         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4268                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4269
4270         ext4_get_inode_flags(ei);
4271         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4272         i_uid = i_uid_read(inode);
4273         i_gid = i_gid_read(inode);
4274         if (!(test_opt(inode->i_sb, NO_UID32))) {
4275                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4276                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4277 /*
4278  * Fix up interoperability with old kernels. Otherwise, old inodes get
4279  * re-used with the upper 16 bits of the uid/gid intact
4280  */
4281                 if (!ei->i_dtime) {
4282                         raw_inode->i_uid_high =
4283                                 cpu_to_le16(high_16_bits(i_uid));
4284                         raw_inode->i_gid_high =
4285                                 cpu_to_le16(high_16_bits(i_gid));
4286                 } else {
4287                         raw_inode->i_uid_high = 0;
4288                         raw_inode->i_gid_high = 0;
4289                 }
4290         } else {
4291                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4292                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4293                 raw_inode->i_uid_high = 0;
4294                 raw_inode->i_gid_high = 0;
4295         }
4296         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4297
4298         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4299         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4300         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4301         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4302
4303         err = ext4_inode_blocks_set(handle, raw_inode, ei);
4304         if (err) {
4305                 spin_unlock(&ei->i_raw_lock);
4306                 goto out_brelse;
4307         }
4308         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4309         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4310         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4311                 raw_inode->i_file_acl_high =
4312                         cpu_to_le16(ei->i_file_acl >> 32);
4313         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4314         if (ei->i_disksize != ext4_isize(raw_inode)) {
4315                 ext4_isize_set(raw_inode, ei->i_disksize);
4316                 need_datasync = 1;
4317         }
4318         if (ei->i_disksize > 0x7fffffffULL) {
4319                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4320                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4321                                 EXT4_SB(sb)->s_es->s_rev_level ==
4322                     cpu_to_le32(EXT4_GOOD_OLD_REV))
4323                         set_large_file = 1;
4324         }
4325         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4326         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4327                 if (old_valid_dev(inode->i_rdev)) {
4328                         raw_inode->i_block[0] =
4329                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4330                         raw_inode->i_block[1] = 0;
4331                 } else {
4332                         raw_inode->i_block[0] = 0;
4333                         raw_inode->i_block[1] =
4334                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4335                         raw_inode->i_block[2] = 0;
4336                 }
4337         } else if (!ext4_has_inline_data(inode)) {
4338                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4339                         raw_inode->i_block[block] = ei->i_data[block];
4340         }
4341
4342         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4343                 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4344                 if (ei->i_extra_isize) {
4345                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4346                                 raw_inode->i_version_hi =
4347                                         cpu_to_le32(inode->i_version >> 32);
4348                         raw_inode->i_extra_isize =
4349                                 cpu_to_le16(ei->i_extra_isize);
4350                 }
4351         }
4352         ext4_inode_csum_set(inode, raw_inode, ei);
4353         spin_unlock(&ei->i_raw_lock);
4354         if (inode->i_sb->s_flags & MS_LAZYTIME)
4355                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4356                                               bh->b_data);
4357
4358         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4359         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4360         if (!err)
4361                 err = rc;
4362         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4363         if (set_large_file) {
4364                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4365                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4366                 if (err)
4367                         goto out_brelse;
4368                 ext4_update_dynamic_rev(sb);
4369                 EXT4_SET_RO_COMPAT_FEATURE(sb,
4370                                            EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4371                 ext4_handle_sync(handle);
4372                 err = ext4_handle_dirty_super(handle, sb);
4373         }
4374         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4375 out_brelse:
4376         brelse(bh);
4377         ext4_std_error(inode->i_sb, err);
4378         return err;
4379 }
4380
4381 /*
4382  * ext4_write_inode()
4383  *
4384  * We are called from a few places:
4385  *
4386  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4387  *   Here, there will be no transaction running. We wait for any running
4388  *   transaction to commit.
4389  *
4390  * - Within flush work (sys_sync(), kupdate and such).
4391  *   We wait on commit, if told to.
4392  *
4393  * - Within iput_final() -> write_inode_now()
4394  *   We wait on commit, if told to.
4395  *
4396  * In all cases it is actually safe for us to return without doing anything,
4397  * because the inode has been copied into a raw inode buffer in
4398  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
4399  * writeback.
4400  *
4401  * Note that we are absolutely dependent upon all inode dirtiers doing the
4402  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4403  * which we are interested.
4404  *
4405  * It would be a bug for them to not do this.  The code:
4406  *
4407  *      mark_inode_dirty(inode)
4408  *      stuff();
4409  *      inode->i_size = expr;
4410  *
4411  * is in error because write_inode() could occur while `stuff()' is running,
4412  * and the new i_size will be lost.  Plus the inode will no longer be on the
4413  * superblock's dirty inode list.
4414  */
4415 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4416 {
4417         int err;
4418
4419         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4420                 return 0;
4421
4422         if (EXT4_SB(inode->i_sb)->s_journal) {
4423                 if (ext4_journal_current_handle()) {
4424                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4425                         dump_stack();
4426                         return -EIO;
4427                 }
4428
4429                 /*
4430                  * No need to force transaction in WB_SYNC_NONE mode. Also
4431                  * ext4_sync_fs() will force the commit after everything is
4432                  * written.
4433                  */
4434                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4435                         return 0;
4436
4437                 err = ext4_force_commit(inode->i_sb);
4438         } else {
4439                 struct ext4_iloc iloc;
4440
4441                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4442                 if (err)
4443                         return err;
4444                 /*
4445                  * sync(2) will flush the whole buffer cache. No need to do
4446                  * it here separately for each inode.
4447                  */
4448                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4449                         sync_dirty_buffer(iloc.bh);
4450                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4451                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4452                                          "IO error syncing inode");
4453                         err = -EIO;
4454                 }
4455                 brelse(iloc.bh);
4456         }
4457         return err;
4458 }
4459
4460 /*
4461  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4462  * buffers that are attached to a page stradding i_size and are undergoing
4463  * commit. In that case we have to wait for commit to finish and try again.
4464  */
4465 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4466 {
4467         struct page *page;
4468         unsigned offset;
4469         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4470         tid_t commit_tid = 0;
4471         int ret;
4472
4473         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4474         /*
4475          * All buffers in the last page remain valid? Then there's nothing to
4476          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4477          * blocksize case
4478          */
4479         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4480                 return;
4481         while (1) {
4482                 page = find_lock_page(inode->i_mapping,
4483                                       inode->i_size >> PAGE_CACHE_SHIFT);
4484                 if (!page)
4485                         return;
4486                 ret = __ext4_journalled_invalidatepage(page, offset,
4487                                                 PAGE_CACHE_SIZE - offset);
4488                 unlock_page(page);
4489                 page_cache_release(page);
4490                 if (ret != -EBUSY)
4491                         return;
4492                 commit_tid = 0;
4493                 read_lock(&journal->j_state_lock);
4494                 if (journal->j_committing_transaction)
4495                         commit_tid = journal->j_committing_transaction->t_tid;
4496                 read_unlock(&journal->j_state_lock);
4497                 if (commit_tid)
4498                         jbd2_log_wait_commit(journal, commit_tid);
4499         }
4500 }
4501
4502 /*
4503  * ext4_setattr()
4504  *
4505  * Called from notify_change.
4506  *
4507  * We want to trap VFS attempts to truncate the file as soon as
4508  * possible.  In particular, we want to make sure that when the VFS
4509  * shrinks i_size, we put the inode on the orphan list and modify
4510  * i_disksize immediately, so that during the subsequent flushing of
4511  * dirty pages and freeing of disk blocks, we can guarantee that any
4512  * commit will leave the blocks being flushed in an unused state on
4513  * disk.  (On recovery, the inode will get truncated and the blocks will
4514  * be freed, so we have a strong guarantee that no future commit will
4515  * leave these blocks visible to the user.)
4516  *
4517  * Another thing we have to assure is that if we are in ordered mode
4518  * and inode is still attached to the committing transaction, we must
4519  * we start writeout of all the dirty pages which are being truncated.
4520  * This way we are sure that all the data written in the previous
4521  * transaction are already on disk (truncate waits for pages under
4522  * writeback).
4523  *
4524  * Called with inode->i_mutex down.
4525  */
4526 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4527 {
4528         struct inode *inode = dentry->d_inode;
4529         int error, rc = 0;
4530         int orphan = 0;
4531         const unsigned int ia_valid = attr->ia_valid;
4532
4533         error = inode_change_ok(inode, attr);
4534         if (error)
4535                 return error;
4536
4537         if (is_quota_modification(inode, attr))
4538                 dquot_initialize(inode);
4539         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4540             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4541                 handle_t *handle;
4542
4543                 /* (user+group)*(old+new) structure, inode write (sb,
4544                  * inode block, ? - but truncate inode update has it) */
4545                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4546                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4547                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4548                 if (IS_ERR(handle)) {
4549                         error = PTR_ERR(handle);
4550                         goto err_out;
4551                 }
4552                 error = dquot_transfer(inode, attr);
4553                 if (error) {
4554                         ext4_journal_stop(handle);
4555                         return error;
4556                 }
4557                 /* Update corresponding info in inode so that everything is in
4558                  * one transaction */
4559                 if (attr->ia_valid & ATTR_UID)
4560                         inode->i_uid = attr->ia_uid;
4561                 if (attr->ia_valid & ATTR_GID)
4562                         inode->i_gid = attr->ia_gid;
4563                 error = ext4_mark_inode_dirty(handle, inode);
4564                 ext4_journal_stop(handle);
4565         }
4566
4567         if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4568                 handle_t *handle;
4569
4570                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4571                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4572
4573                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4574                                 return -EFBIG;
4575                 }
4576
4577                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4578                         inode_inc_iversion(inode);
4579
4580                 if (S_ISREG(inode->i_mode) &&
4581                     (attr->ia_size < inode->i_size)) {
4582                         if (ext4_should_order_data(inode)) {
4583                                 error = ext4_begin_ordered_truncate(inode,
4584                                                             attr->ia_size);
4585                                 if (error)
4586                                         goto err_out;
4587                         }
4588                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4589                         if (IS_ERR(handle)) {
4590                                 error = PTR_ERR(handle);
4591                                 goto err_out;
4592                         }
4593                         if (ext4_handle_valid(handle)) {
4594                                 error = ext4_orphan_add(handle, inode);
4595                                 orphan = 1;
4596                         }
4597                         down_write(&EXT4_I(inode)->i_data_sem);
4598                         EXT4_I(inode)->i_disksize = attr->ia_size;
4599                         rc = ext4_mark_inode_dirty(handle, inode);
4600                         if (!error)
4601                                 error = rc;
4602                         /*
4603                          * We have to update i_size under i_data_sem together
4604                          * with i_disksize to avoid races with writeback code
4605                          * running ext4_wb_update_i_disksize().
4606                          */
4607                         if (!error)
4608                                 i_size_write(inode, attr->ia_size);
4609                         up_write(&EXT4_I(inode)->i_data_sem);
4610                         ext4_journal_stop(handle);
4611                         if (error) {
4612                                 ext4_orphan_del(NULL, inode);
4613                                 goto err_out;
4614                         }
4615                 } else {
4616                         loff_t oldsize = inode->i_size;
4617
4618                         i_size_write(inode, attr->ia_size);
4619                         pagecache_isize_extended(inode, oldsize, inode->i_size);
4620                 }
4621
4622                 /*
4623                  * Blocks are going to be removed from the inode. Wait
4624                  * for dio in flight.  Temporarily disable
4625                  * dioread_nolock to prevent livelock.
4626                  */
4627                 if (orphan) {
4628                         if (!ext4_should_journal_data(inode)) {
4629                                 ext4_inode_block_unlocked_dio(inode);
4630                                 inode_dio_wait(inode);
4631                                 ext4_inode_resume_unlocked_dio(inode);
4632                         } else
4633                                 ext4_wait_for_tail_page_commit(inode);
4634                 }
4635                 /*
4636                  * Truncate pagecache after we've waited for commit
4637                  * in data=journal mode to make pages freeable.
4638                  */
4639                 truncate_pagecache(inode, inode->i_size);
4640         }
4641         /*
4642          * We want to call ext4_truncate() even if attr->ia_size ==
4643          * inode->i_size for cases like truncation of fallocated space
4644          */
4645         if (attr->ia_valid & ATTR_SIZE)
4646                 ext4_truncate(inode);
4647
4648         if (!rc) {
4649                 setattr_copy(inode, attr);
4650                 mark_inode_dirty(inode);
4651         }
4652
4653         /*
4654          * If the call to ext4_truncate failed to get a transaction handle at
4655          * all, we need to clean up the in-core orphan list manually.
4656          */
4657         if (orphan && inode->i_nlink)
4658                 ext4_orphan_del(NULL, inode);
4659
4660         if (!rc && (ia_valid & ATTR_MODE))
4661                 rc = posix_acl_chmod(inode, inode->i_mode);
4662
4663 err_out:
4664         ext4_std_error(inode->i_sb, error);
4665         if (!error)
4666                 error = rc;
4667         return error;
4668 }
4669
4670 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4671                  struct kstat *stat)
4672 {
4673         struct inode *inode;
4674         unsigned long long delalloc_blocks;
4675
4676         inode = dentry->d_inode;
4677         generic_fillattr(inode, stat);
4678
4679         /*
4680          * If there is inline data in the inode, the inode will normally not
4681          * have data blocks allocated (it may have an external xattr block).
4682          * Report at least one sector for such files, so tools like tar, rsync,
4683          * others doen't incorrectly think the file is completely sparse.
4684          */
4685         if (unlikely(ext4_has_inline_data(inode)))
4686                 stat->blocks += (stat->size + 511) >> 9;
4687
4688         /*
4689          * We can't update i_blocks if the block allocation is delayed
4690          * otherwise in the case of system crash before the real block
4691          * allocation is done, we will have i_blocks inconsistent with
4692          * on-disk file blocks.
4693          * We always keep i_blocks updated together with real
4694          * allocation. But to not confuse with user, stat
4695          * will return the blocks that include the delayed allocation
4696          * blocks for this file.
4697          */
4698         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4699                                    EXT4_I(inode)->i_reserved_data_blocks);
4700         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
4701         return 0;
4702 }
4703
4704 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4705                                    int pextents)
4706 {
4707         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4708                 return ext4_ind_trans_blocks(inode, lblocks);
4709         return ext4_ext_index_trans_blocks(inode, pextents);
4710 }
4711
4712 /*
4713  * Account for index blocks, block groups bitmaps and block group
4714  * descriptor blocks if modify datablocks and index blocks
4715  * worse case, the indexs blocks spread over different block groups
4716  *
4717  * If datablocks are discontiguous, they are possible to spread over
4718  * different block groups too. If they are contiguous, with flexbg,
4719  * they could still across block group boundary.
4720  *
4721  * Also account for superblock, inode, quota and xattr blocks
4722  */
4723 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4724                                   int pextents)
4725 {
4726         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4727         int gdpblocks;
4728         int idxblocks;
4729         int ret = 0;
4730
4731         /*
4732          * How many index blocks need to touch to map @lblocks logical blocks
4733          * to @pextents physical extents?
4734          */
4735         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4736
4737         ret = idxblocks;
4738
4739         /*
4740          * Now let's see how many group bitmaps and group descriptors need
4741          * to account
4742          */
4743         groups = idxblocks + pextents;
4744         gdpblocks = groups;
4745         if (groups > ngroups)
4746                 groups = ngroups;
4747         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4748                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4749
4750         /* bitmaps and block group descriptor blocks */
4751         ret += groups + gdpblocks;
4752
4753         /* Blocks for super block, inode, quota and xattr blocks */
4754         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4755
4756         return ret;
4757 }
4758
4759 /*
4760  * Calculate the total number of credits to reserve to fit
4761  * the modification of a single pages into a single transaction,
4762  * which may include multiple chunks of block allocations.
4763  *
4764  * This could be called via ext4_write_begin()
4765  *
4766  * We need to consider the worse case, when
4767  * one new block per extent.
4768  */
4769 int ext4_writepage_trans_blocks(struct inode *inode)
4770 {
4771         int bpp = ext4_journal_blocks_per_page(inode);
4772         int ret;
4773
4774         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4775
4776         /* Account for data blocks for journalled mode */
4777         if (ext4_should_journal_data(inode))
4778                 ret += bpp;
4779         return ret;
4780 }
4781
4782 /*
4783  * Calculate the journal credits for a chunk of data modification.
4784  *
4785  * This is called from DIO, fallocate or whoever calling
4786  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4787  *
4788  * journal buffers for data blocks are not included here, as DIO
4789  * and fallocate do no need to journal data buffers.
4790  */
4791 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4792 {
4793         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4794 }
4795
4796 /*
4797  * The caller must have previously called ext4_reserve_inode_write().
4798  * Give this, we know that the caller already has write access to iloc->bh.
4799  */
4800 int ext4_mark_iloc_dirty(handle_t *handle,
4801                          struct inode *inode, struct ext4_iloc *iloc)
4802 {
4803         int err = 0;
4804
4805         if (IS_I_VERSION(inode))
4806                 inode_inc_iversion(inode);
4807
4808         /* the do_update_inode consumes one bh->b_count */
4809         get_bh(iloc->bh);
4810
4811         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4812         err = ext4_do_update_inode(handle, inode, iloc);
4813         put_bh(iloc->bh);
4814         return err;
4815 }
4816
4817 /*
4818  * On success, We end up with an outstanding reference count against
4819  * iloc->bh.  This _must_ be cleaned up later.
4820  */
4821
4822 int
4823 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4824                          struct ext4_iloc *iloc)
4825 {
4826         int err;
4827
4828         err = ext4_get_inode_loc(inode, iloc);
4829         if (!err) {
4830                 BUFFER_TRACE(iloc->bh, "get_write_access");
4831                 err = ext4_journal_get_write_access(handle, iloc->bh);
4832                 if (err) {
4833                         brelse(iloc->bh);
4834                         iloc->bh = NULL;
4835                 }
4836         }
4837         ext4_std_error(inode->i_sb, err);
4838         return err;
4839 }
4840
4841 /*
4842  * Expand an inode by new_extra_isize bytes.
4843  * Returns 0 on success or negative error number on failure.
4844  */
4845 static int ext4_expand_extra_isize(struct inode *inode,
4846                                    unsigned int new_extra_isize,
4847                                    struct ext4_iloc iloc,
4848                                    handle_t *handle)
4849 {
4850         struct ext4_inode *raw_inode;
4851         struct ext4_xattr_ibody_header *header;
4852
4853         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4854                 return 0;
4855
4856         raw_inode = ext4_raw_inode(&iloc);
4857
4858         header = IHDR(inode, raw_inode);
4859
4860         /* No extended attributes present */
4861         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4862             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4863                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4864                         new_extra_isize);
4865                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4866                 return 0;
4867         }
4868
4869         /* try to expand with EAs present */
4870         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4871                                           raw_inode, handle);
4872 }
4873
4874 /*
4875  * What we do here is to mark the in-core inode as clean with respect to inode
4876  * dirtiness (it may still be data-dirty).
4877  * This means that the in-core inode may be reaped by prune_icache
4878  * without having to perform any I/O.  This is a very good thing,
4879  * because *any* task may call prune_icache - even ones which
4880  * have a transaction open against a different journal.
4881  *
4882  * Is this cheating?  Not really.  Sure, we haven't written the
4883  * inode out, but prune_icache isn't a user-visible syncing function.
4884  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4885  * we start and wait on commits.
4886  */
4887 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4888 {
4889         struct ext4_iloc iloc;
4890         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4891         static unsigned int mnt_count;
4892         int err, ret;
4893
4894         might_sleep();
4895         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4896         err = ext4_reserve_inode_write(handle, inode, &iloc);
4897         if (ext4_handle_valid(handle) &&
4898             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4899             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4900                 /*
4901                  * We need extra buffer credits since we may write into EA block
4902                  * with this same handle. If journal_extend fails, then it will
4903                  * only result in a minor loss of functionality for that inode.
4904                  * If this is felt to be critical, then e2fsck should be run to
4905                  * force a large enough s_min_extra_isize.
4906                  */
4907                 if ((jbd2_journal_extend(handle,
4908                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4909                         ret = ext4_expand_extra_isize(inode,
4910                                                       sbi->s_want_extra_isize,
4911                                                       iloc, handle);
4912                         if (ret) {
4913                                 ext4_set_inode_state(inode,
4914                                                      EXT4_STATE_NO_EXPAND);
4915                                 if (mnt_count !=
4916                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4917                                         ext4_warning(inode->i_sb,
4918                                         "Unable to expand inode %lu. Delete"
4919                                         " some EAs or run e2fsck.",
4920                                         inode->i_ino);
4921                                         mnt_count =
4922                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4923                                 }
4924                         }
4925                 }
4926         }
4927         if (!err)
4928                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4929         return err;
4930 }
4931
4932 /*
4933  * ext4_dirty_inode() is called from __mark_inode_dirty()
4934  *
4935  * We're really interested in the case where a file is being extended.
4936  * i_size has been changed by generic_commit_write() and we thus need
4937  * to include the updated inode in the current transaction.
4938  *
4939  * Also, dquot_alloc_block() will always dirty the inode when blocks
4940  * are allocated to the file.
4941  *
4942  * If the inode is marked synchronous, we don't honour that here - doing
4943  * so would cause a commit on atime updates, which we don't bother doing.
4944  * We handle synchronous inodes at the highest possible level.
4945  *
4946  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
4947  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
4948  * to copy into the on-disk inode structure are the timestamp files.
4949  */
4950 void ext4_dirty_inode(struct inode *inode, int flags)
4951 {
4952         handle_t *handle;
4953
4954         if (flags == I_DIRTY_TIME)
4955                 return;
4956         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4957         if (IS_ERR(handle))
4958                 goto out;
4959
4960         ext4_mark_inode_dirty(handle, inode);
4961
4962         ext4_journal_stop(handle);
4963 out:
4964         return;
4965 }
4966
4967 #if 0
4968 /*
4969  * Bind an inode's backing buffer_head into this transaction, to prevent
4970  * it from being flushed to disk early.  Unlike
4971  * ext4_reserve_inode_write, this leaves behind no bh reference and
4972  * returns no iloc structure, so the caller needs to repeat the iloc
4973  * lookup to mark the inode dirty later.
4974  */
4975 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4976 {
4977         struct ext4_iloc iloc;
4978
4979         int err = 0;
4980         if (handle) {
4981                 err = ext4_get_inode_loc(inode, &iloc);
4982                 if (!err) {
4983                         BUFFER_TRACE(iloc.bh, "get_write_access");
4984                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4985                         if (!err)
4986                                 err = ext4_handle_dirty_metadata(handle,
4987                                                                  NULL,
4988                                                                  iloc.bh);
4989                         brelse(iloc.bh);
4990                 }
4991         }
4992         ext4_std_error(inode->i_sb, err);
4993         return err;
4994 }
4995 #endif
4996
4997 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4998 {
4999         journal_t *journal;
5000         handle_t *handle;
5001         int err;
5002
5003         /*
5004          * We have to be very careful here: changing a data block's
5005          * journaling status dynamically is dangerous.  If we write a
5006          * data block to the journal, change the status and then delete
5007          * that block, we risk forgetting to revoke the old log record
5008          * from the journal and so a subsequent replay can corrupt data.
5009          * So, first we make sure that the journal is empty and that
5010          * nobody is changing anything.
5011          */
5012
5013         journal = EXT4_JOURNAL(inode);
5014         if (!journal)
5015                 return 0;
5016         if (is_journal_aborted(journal))
5017                 return -EROFS;
5018         /* We have to allocate physical blocks for delalloc blocks
5019          * before flushing journal. otherwise delalloc blocks can not
5020          * be allocated any more. even more truncate on delalloc blocks
5021          * could trigger BUG by flushing delalloc blocks in journal.
5022          * There is no delalloc block in non-journal data mode.
5023          */
5024         if (val && test_opt(inode->i_sb, DELALLOC)) {
5025                 err = ext4_alloc_da_blocks(inode);
5026                 if (err < 0)
5027                         return err;
5028         }
5029
5030         /* Wait for all existing dio workers */
5031         ext4_inode_block_unlocked_dio(inode);
5032         inode_dio_wait(inode);
5033
5034         jbd2_journal_lock_updates(journal);
5035
5036         /*
5037          * OK, there are no updates running now, and all cached data is
5038          * synced to disk.  We are now in a completely consistent state
5039          * which doesn't have anything in the journal, and we know that
5040          * no filesystem updates are running, so it is safe to modify
5041          * the inode's in-core data-journaling state flag now.
5042          */
5043
5044         if (val)
5045                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5046         else {
5047                 err = jbd2_journal_flush(journal);
5048                 if (err < 0) {
5049                         jbd2_journal_unlock_updates(journal);
5050                         ext4_inode_resume_unlocked_dio(inode);
5051                         return err;
5052                 }
5053                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5054         }
5055         ext4_set_aops(inode);
5056
5057         jbd2_journal_unlock_updates(journal);
5058         ext4_inode_resume_unlocked_dio(inode);
5059
5060         /* Finally we can mark the inode as dirty. */
5061
5062         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5063         if (IS_ERR(handle))
5064                 return PTR_ERR(handle);
5065
5066         err = ext4_mark_inode_dirty(handle, inode);
5067         ext4_handle_sync(handle);
5068         ext4_journal_stop(handle);
5069         ext4_std_error(inode->i_sb, err);
5070
5071         return err;
5072 }
5073
5074 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5075 {
5076         return !buffer_mapped(bh);
5077 }
5078
5079 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5080 {
5081         struct page *page = vmf->page;
5082         loff_t size;
5083         unsigned long len;
5084         int ret;
5085         struct file *file = vma->vm_file;
5086         struct inode *inode = file_inode(file);
5087         struct address_space *mapping = inode->i_mapping;
5088         handle_t *handle;
5089         get_block_t *get_block;
5090         int retries = 0;
5091
5092         sb_start_pagefault(inode->i_sb);
5093         file_update_time(vma->vm_file);
5094         /* Delalloc case is easy... */
5095         if (test_opt(inode->i_sb, DELALLOC) &&
5096             !ext4_should_journal_data(inode) &&
5097             !ext4_nonda_switch(inode->i_sb)) {
5098                 do {
5099                         ret = __block_page_mkwrite(vma, vmf,
5100                                                    ext4_da_get_block_prep);
5101                 } while (ret == -ENOSPC &&
5102                        ext4_should_retry_alloc(inode->i_sb, &retries));
5103                 goto out_ret;
5104         }
5105
5106         lock_page(page);
5107         size = i_size_read(inode);
5108         /* Page got truncated from under us? */
5109         if (page->mapping != mapping || page_offset(page) > size) {
5110                 unlock_page(page);
5111                 ret = VM_FAULT_NOPAGE;
5112                 goto out;
5113         }
5114
5115         if (page->index == size >> PAGE_CACHE_SHIFT)
5116                 len = size & ~PAGE_CACHE_MASK;
5117         else
5118                 len = PAGE_CACHE_SIZE;
5119         /*
5120          * Return if we have all the buffers mapped. This avoids the need to do
5121          * journal_start/journal_stop which can block and take a long time
5122          */
5123         if (page_has_buffers(page)) {
5124                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5125                                             0, len, NULL,
5126                                             ext4_bh_unmapped)) {
5127                         /* Wait so that we don't change page under IO */
5128                         wait_for_stable_page(page);
5129                         ret = VM_FAULT_LOCKED;
5130                         goto out;
5131                 }
5132         }
5133         unlock_page(page);
5134         /* OK, we need to fill the hole... */
5135         if (ext4_should_dioread_nolock(inode))
5136                 get_block = ext4_get_block_write;
5137         else
5138                 get_block = ext4_get_block;
5139 retry_alloc:
5140         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5141                                     ext4_writepage_trans_blocks(inode));
5142         if (IS_ERR(handle)) {
5143                 ret = VM_FAULT_SIGBUS;
5144                 goto out;
5145         }
5146         ret = __block_page_mkwrite(vma, vmf, get_block);
5147         if (!ret && ext4_should_journal_data(inode)) {
5148                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5149                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5150                         unlock_page(page);
5151                         ret = VM_FAULT_SIGBUS;
5152                         ext4_journal_stop(handle);
5153                         goto out;
5154                 }
5155                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5156         }
5157         ext4_journal_stop(handle);
5158         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5159                 goto retry_alloc;
5160 out_ret:
5161         ret = block_page_mkwrite_return(ret);
5162 out:
5163         sb_end_pagefault(inode->i_sb);
5164         return ret;
5165 }