Merge remote-tracking branches 'asoc/topic/txx9', 'asoc/topic/wm8750', 'asoc/topic...
[cascardo/linux.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41 #include <linux/bitops.h>
42
43 #include "ext4_jbd2.h"
44 #include "xattr.h"
45 #include "acl.h"
46 #include "truncate.h"
47
48 #include <trace/events/ext4.h>
49
50 #define MPAGE_DA_EXTENT_TAIL 0x01
51
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53                               struct ext4_inode_info *ei)
54 {
55         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56         __u16 csum_lo;
57         __u16 csum_hi = 0;
58         __u32 csum;
59
60         csum_lo = le16_to_cpu(raw->i_checksum_lo);
61         raw->i_checksum_lo = 0;
62         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
63             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
64                 csum_hi = le16_to_cpu(raw->i_checksum_hi);
65                 raw->i_checksum_hi = 0;
66         }
67
68         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
69                            EXT4_INODE_SIZE(inode->i_sb));
70
71         raw->i_checksum_lo = cpu_to_le16(csum_lo);
72         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
73             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
74                 raw->i_checksum_hi = cpu_to_le16(csum_hi);
75
76         return csum;
77 }
78
79 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
80                                   struct ext4_inode_info *ei)
81 {
82         __u32 provided, calculated;
83
84         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
85             cpu_to_le32(EXT4_OS_LINUX) ||
86             !ext4_has_metadata_csum(inode->i_sb))
87                 return 1;
88
89         provided = le16_to_cpu(raw->i_checksum_lo);
90         calculated = ext4_inode_csum(inode, raw, ei);
91         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
92             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
93                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
94         else
95                 calculated &= 0xFFFF;
96
97         return provided == calculated;
98 }
99
100 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
101                                 struct ext4_inode_info *ei)
102 {
103         __u32 csum;
104
105         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
106             cpu_to_le32(EXT4_OS_LINUX) ||
107             !ext4_has_metadata_csum(inode->i_sb))
108                 return;
109
110         csum = ext4_inode_csum(inode, raw, ei);
111         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
112         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
113             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
114                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
115 }
116
117 static inline int ext4_begin_ordered_truncate(struct inode *inode,
118                                               loff_t new_size)
119 {
120         trace_ext4_begin_ordered_truncate(inode, new_size);
121         /*
122          * If jinode is zero, then we never opened the file for
123          * writing, so there's no need to call
124          * jbd2_journal_begin_ordered_truncate() since there's no
125          * outstanding writes we need to flush.
126          */
127         if (!EXT4_I(inode)->jinode)
128                 return 0;
129         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
130                                                    EXT4_I(inode)->jinode,
131                                                    new_size);
132 }
133
134 static void ext4_invalidatepage(struct page *page, unsigned int offset,
135                                 unsigned int length);
136 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
137 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
138 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
139                                   int pextents);
140
141 /*
142  * Test whether an inode is a fast symlink.
143  */
144 static int ext4_inode_is_fast_symlink(struct inode *inode)
145 {
146         int ea_blocks = EXT4_I(inode)->i_file_acl ?
147                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
148
149         if (ext4_has_inline_data(inode))
150                 return 0;
151
152         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
153 }
154
155 /*
156  * Restart the transaction associated with *handle.  This does a commit,
157  * so before we call here everything must be consistently dirtied against
158  * this transaction.
159  */
160 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
161                                  int nblocks)
162 {
163         int ret;
164
165         /*
166          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
167          * moment, get_block can be called only for blocks inside i_size since
168          * page cache has been already dropped and writes are blocked by
169          * i_mutex. So we can safely drop the i_data_sem here.
170          */
171         BUG_ON(EXT4_JOURNAL(inode) == NULL);
172         jbd_debug(2, "restarting handle %p\n", handle);
173         up_write(&EXT4_I(inode)->i_data_sem);
174         ret = ext4_journal_restart(handle, nblocks);
175         down_write(&EXT4_I(inode)->i_data_sem);
176         ext4_discard_preallocations(inode);
177
178         return ret;
179 }
180
181 /*
182  * Called at the last iput() if i_nlink is zero.
183  */
184 void ext4_evict_inode(struct inode *inode)
185 {
186         handle_t *handle;
187         int err;
188
189         trace_ext4_evict_inode(inode);
190
191         if (inode->i_nlink) {
192                 /*
193                  * When journalling data dirty buffers are tracked only in the
194                  * journal. So although mm thinks everything is clean and
195                  * ready for reaping the inode might still have some pages to
196                  * write in the running transaction or waiting to be
197                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
198                  * (via truncate_inode_pages()) to discard these buffers can
199                  * cause data loss. Also even if we did not discard these
200                  * buffers, we would have no way to find them after the inode
201                  * is reaped and thus user could see stale data if he tries to
202                  * read them before the transaction is checkpointed. So be
203                  * careful and force everything to disk here... We use
204                  * ei->i_datasync_tid to store the newest transaction
205                  * containing inode's data.
206                  *
207                  * Note that directories do not have this problem because they
208                  * don't use page cache.
209                  */
210                 if (ext4_should_journal_data(inode) &&
211                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
212                     inode->i_ino != EXT4_JOURNAL_INO) {
213                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
214                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
215
216                         jbd2_complete_transaction(journal, commit_tid);
217                         filemap_write_and_wait(&inode->i_data);
218                 }
219                 truncate_inode_pages_final(&inode->i_data);
220
221                 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
222                 goto no_delete;
223         }
224
225         if (is_bad_inode(inode))
226                 goto no_delete;
227         dquot_initialize(inode);
228
229         if (ext4_should_order_data(inode))
230                 ext4_begin_ordered_truncate(inode, 0);
231         truncate_inode_pages_final(&inode->i_data);
232
233         WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
234
235         /*
236          * Protect us against freezing - iput() caller didn't have to have any
237          * protection against it
238          */
239         sb_start_intwrite(inode->i_sb);
240         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
241                                     ext4_blocks_for_truncate(inode)+3);
242         if (IS_ERR(handle)) {
243                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
244                 /*
245                  * If we're going to skip the normal cleanup, we still need to
246                  * make sure that the in-core orphan linked list is properly
247                  * cleaned up.
248                  */
249                 ext4_orphan_del(NULL, inode);
250                 sb_end_intwrite(inode->i_sb);
251                 goto no_delete;
252         }
253
254         if (IS_SYNC(inode))
255                 ext4_handle_sync(handle);
256         inode->i_size = 0;
257         err = ext4_mark_inode_dirty(handle, inode);
258         if (err) {
259                 ext4_warning(inode->i_sb,
260                              "couldn't mark inode dirty (err %d)", err);
261                 goto stop_handle;
262         }
263         if (inode->i_blocks)
264                 ext4_truncate(inode);
265
266         /*
267          * ext4_ext_truncate() doesn't reserve any slop when it
268          * restarts journal transactions; therefore there may not be
269          * enough credits left in the handle to remove the inode from
270          * the orphan list and set the dtime field.
271          */
272         if (!ext4_handle_has_enough_credits(handle, 3)) {
273                 err = ext4_journal_extend(handle, 3);
274                 if (err > 0)
275                         err = ext4_journal_restart(handle, 3);
276                 if (err != 0) {
277                         ext4_warning(inode->i_sb,
278                                      "couldn't extend journal (err %d)", err);
279                 stop_handle:
280                         ext4_journal_stop(handle);
281                         ext4_orphan_del(NULL, inode);
282                         sb_end_intwrite(inode->i_sb);
283                         goto no_delete;
284                 }
285         }
286
287         /*
288          * Kill off the orphan record which ext4_truncate created.
289          * AKPM: I think this can be inside the above `if'.
290          * Note that ext4_orphan_del() has to be able to cope with the
291          * deletion of a non-existent orphan - this is because we don't
292          * know if ext4_truncate() actually created an orphan record.
293          * (Well, we could do this if we need to, but heck - it works)
294          */
295         ext4_orphan_del(handle, inode);
296         EXT4_I(inode)->i_dtime  = get_seconds();
297
298         /*
299          * One subtle ordering requirement: if anything has gone wrong
300          * (transaction abort, IO errors, whatever), then we can still
301          * do these next steps (the fs will already have been marked as
302          * having errors), but we can't free the inode if the mark_dirty
303          * fails.
304          */
305         if (ext4_mark_inode_dirty(handle, inode))
306                 /* If that failed, just do the required in-core inode clear. */
307                 ext4_clear_inode(inode);
308         else
309                 ext4_free_inode(handle, inode);
310         ext4_journal_stop(handle);
311         sb_end_intwrite(inode->i_sb);
312         return;
313 no_delete:
314         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
315 }
316
317 #ifdef CONFIG_QUOTA
318 qsize_t *ext4_get_reserved_space(struct inode *inode)
319 {
320         return &EXT4_I(inode)->i_reserved_quota;
321 }
322 #endif
323
324 /*
325  * Called with i_data_sem down, which is important since we can call
326  * ext4_discard_preallocations() from here.
327  */
328 void ext4_da_update_reserve_space(struct inode *inode,
329                                         int used, int quota_claim)
330 {
331         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
332         struct ext4_inode_info *ei = EXT4_I(inode);
333
334         spin_lock(&ei->i_block_reservation_lock);
335         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
336         if (unlikely(used > ei->i_reserved_data_blocks)) {
337                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
338                          "with only %d reserved data blocks",
339                          __func__, inode->i_ino, used,
340                          ei->i_reserved_data_blocks);
341                 WARN_ON(1);
342                 used = ei->i_reserved_data_blocks;
343         }
344
345         /* Update per-inode reservations */
346         ei->i_reserved_data_blocks -= used;
347         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
348
349         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
350
351         /* Update quota subsystem for data blocks */
352         if (quota_claim)
353                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
354         else {
355                 /*
356                  * We did fallocate with an offset that is already delayed
357                  * allocated. So on delayed allocated writeback we should
358                  * not re-claim the quota for fallocated blocks.
359                  */
360                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
361         }
362
363         /*
364          * If we have done all the pending block allocations and if
365          * there aren't any writers on the inode, we can discard the
366          * inode's preallocations.
367          */
368         if ((ei->i_reserved_data_blocks == 0) &&
369             (atomic_read(&inode->i_writecount) == 0))
370                 ext4_discard_preallocations(inode);
371 }
372
373 static int __check_block_validity(struct inode *inode, const char *func,
374                                 unsigned int line,
375                                 struct ext4_map_blocks *map)
376 {
377         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
378                                    map->m_len)) {
379                 ext4_error_inode(inode, func, line, map->m_pblk,
380                                  "lblock %lu mapped to illegal pblock "
381                                  "(length %d)", (unsigned long) map->m_lblk,
382                                  map->m_len);
383                 return -EIO;
384         }
385         return 0;
386 }
387
388 #define check_block_validity(inode, map)        \
389         __check_block_validity((inode), __func__, __LINE__, (map))
390
391 #ifdef ES_AGGRESSIVE_TEST
392 static void ext4_map_blocks_es_recheck(handle_t *handle,
393                                        struct inode *inode,
394                                        struct ext4_map_blocks *es_map,
395                                        struct ext4_map_blocks *map,
396                                        int flags)
397 {
398         int retval;
399
400         map->m_flags = 0;
401         /*
402          * There is a race window that the result is not the same.
403          * e.g. xfstests #223 when dioread_nolock enables.  The reason
404          * is that we lookup a block mapping in extent status tree with
405          * out taking i_data_sem.  So at the time the unwritten extent
406          * could be converted.
407          */
408         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
409                 down_read(&EXT4_I(inode)->i_data_sem);
410         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
411                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
412                                              EXT4_GET_BLOCKS_KEEP_SIZE);
413         } else {
414                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
415                                              EXT4_GET_BLOCKS_KEEP_SIZE);
416         }
417         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
418                 up_read((&EXT4_I(inode)->i_data_sem));
419
420         /*
421          * We don't check m_len because extent will be collpased in status
422          * tree.  So the m_len might not equal.
423          */
424         if (es_map->m_lblk != map->m_lblk ||
425             es_map->m_flags != map->m_flags ||
426             es_map->m_pblk != map->m_pblk) {
427                 printk("ES cache assertion failed for inode: %lu "
428                        "es_cached ex [%d/%d/%llu/%x] != "
429                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
430                        inode->i_ino, es_map->m_lblk, es_map->m_len,
431                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
432                        map->m_len, map->m_pblk, map->m_flags,
433                        retval, flags);
434         }
435 }
436 #endif /* ES_AGGRESSIVE_TEST */
437
438 /*
439  * The ext4_map_blocks() function tries to look up the requested blocks,
440  * and returns if the blocks are already mapped.
441  *
442  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
443  * and store the allocated blocks in the result buffer head and mark it
444  * mapped.
445  *
446  * If file type is extents based, it will call ext4_ext_map_blocks(),
447  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
448  * based files
449  *
450  * On success, it returns the number of blocks being mapped or allocated.
451  * if create==0 and the blocks are pre-allocated and unwritten block,
452  * the result buffer head is unmapped. If the create ==1, it will make sure
453  * the buffer head is mapped.
454  *
455  * It returns 0 if plain look up failed (blocks have not been allocated), in
456  * that case, buffer head is unmapped
457  *
458  * It returns the error in case of allocation failure.
459  */
460 int ext4_map_blocks(handle_t *handle, struct inode *inode,
461                     struct ext4_map_blocks *map, int flags)
462 {
463         struct extent_status es;
464         int retval;
465         int ret = 0;
466 #ifdef ES_AGGRESSIVE_TEST
467         struct ext4_map_blocks orig_map;
468
469         memcpy(&orig_map, map, sizeof(*map));
470 #endif
471
472         map->m_flags = 0;
473         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
474                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
475                   (unsigned long) map->m_lblk);
476
477         /*
478          * ext4_map_blocks returns an int, and m_len is an unsigned int
479          */
480         if (unlikely(map->m_len > INT_MAX))
481                 map->m_len = INT_MAX;
482
483         /* We can handle the block number less than EXT_MAX_BLOCKS */
484         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
485                 return -EIO;
486
487         /* Lookup extent status tree firstly */
488         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
489                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
490                         map->m_pblk = ext4_es_pblock(&es) +
491                                         map->m_lblk - es.es_lblk;
492                         map->m_flags |= ext4_es_is_written(&es) ?
493                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
494                         retval = es.es_len - (map->m_lblk - es.es_lblk);
495                         if (retval > map->m_len)
496                                 retval = map->m_len;
497                         map->m_len = retval;
498                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
499                         retval = 0;
500                 } else {
501                         BUG_ON(1);
502                 }
503 #ifdef ES_AGGRESSIVE_TEST
504                 ext4_map_blocks_es_recheck(handle, inode, map,
505                                            &orig_map, flags);
506 #endif
507                 goto found;
508         }
509
510         /*
511          * Try to see if we can get the block without requesting a new
512          * file system block.
513          */
514         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
515                 down_read(&EXT4_I(inode)->i_data_sem);
516         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
517                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
518                                              EXT4_GET_BLOCKS_KEEP_SIZE);
519         } else {
520                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
521                                              EXT4_GET_BLOCKS_KEEP_SIZE);
522         }
523         if (retval > 0) {
524                 unsigned int status;
525
526                 if (unlikely(retval != map->m_len)) {
527                         ext4_warning(inode->i_sb,
528                                      "ES len assertion failed for inode "
529                                      "%lu: retval %d != map->m_len %d",
530                                      inode->i_ino, retval, map->m_len);
531                         WARN_ON(1);
532                 }
533
534                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
535                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
536                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
537                     ext4_find_delalloc_range(inode, map->m_lblk,
538                                              map->m_lblk + map->m_len - 1))
539                         status |= EXTENT_STATUS_DELAYED;
540                 ret = ext4_es_insert_extent(inode, map->m_lblk,
541                                             map->m_len, map->m_pblk, status);
542                 if (ret < 0)
543                         retval = ret;
544         }
545         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
546                 up_read((&EXT4_I(inode)->i_data_sem));
547
548 found:
549         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
550                 ret = check_block_validity(inode, map);
551                 if (ret != 0)
552                         return ret;
553         }
554
555         /* If it is only a block(s) look up */
556         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
557                 return retval;
558
559         /*
560          * Returns if the blocks have already allocated
561          *
562          * Note that if blocks have been preallocated
563          * ext4_ext_get_block() returns the create = 0
564          * with buffer head unmapped.
565          */
566         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
567                 /*
568                  * If we need to convert extent to unwritten
569                  * we continue and do the actual work in
570                  * ext4_ext_map_blocks()
571                  */
572                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
573                         return retval;
574
575         /*
576          * Here we clear m_flags because after allocating an new extent,
577          * it will be set again.
578          */
579         map->m_flags &= ~EXT4_MAP_FLAGS;
580
581         /*
582          * New blocks allocate and/or writing to unwritten extent
583          * will possibly result in updating i_data, so we take
584          * the write lock of i_data_sem, and call get_block()
585          * with create == 1 flag.
586          */
587         down_write(&EXT4_I(inode)->i_data_sem);
588
589         /*
590          * We need to check for EXT4 here because migrate
591          * could have changed the inode type in between
592          */
593         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
594                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
595         } else {
596                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
597
598                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
599                         /*
600                          * We allocated new blocks which will result in
601                          * i_data's format changing.  Force the migrate
602                          * to fail by clearing migrate flags
603                          */
604                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
605                 }
606
607                 /*
608                  * Update reserved blocks/metadata blocks after successful
609                  * block allocation which had been deferred till now. We don't
610                  * support fallocate for non extent files. So we can update
611                  * reserve space here.
612                  */
613                 if ((retval > 0) &&
614                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
615                         ext4_da_update_reserve_space(inode, retval, 1);
616         }
617
618         if (retval > 0) {
619                 unsigned int status;
620
621                 if (unlikely(retval != map->m_len)) {
622                         ext4_warning(inode->i_sb,
623                                      "ES len assertion failed for inode "
624                                      "%lu: retval %d != map->m_len %d",
625                                      inode->i_ino, retval, map->m_len);
626                         WARN_ON(1);
627                 }
628
629                 /*
630                  * If the extent has been zeroed out, we don't need to update
631                  * extent status tree.
632                  */
633                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
634                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
635                         if (ext4_es_is_written(&es))
636                                 goto has_zeroout;
637                 }
638                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
639                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
640                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
641                     ext4_find_delalloc_range(inode, map->m_lblk,
642                                              map->m_lblk + map->m_len - 1))
643                         status |= EXTENT_STATUS_DELAYED;
644                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
645                                             map->m_pblk, status);
646                 if (ret < 0)
647                         retval = ret;
648         }
649
650 has_zeroout:
651         up_write((&EXT4_I(inode)->i_data_sem));
652         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
653                 ret = check_block_validity(inode, map);
654                 if (ret != 0)
655                         return ret;
656         }
657         return retval;
658 }
659
660 /* Maximum number of blocks we map for direct IO at once. */
661 #define DIO_MAX_BLOCKS 4096
662
663 static int _ext4_get_block(struct inode *inode, sector_t iblock,
664                            struct buffer_head *bh, int flags)
665 {
666         handle_t *handle = ext4_journal_current_handle();
667         struct ext4_map_blocks map;
668         int ret = 0, started = 0;
669         int dio_credits;
670
671         if (ext4_has_inline_data(inode))
672                 return -ERANGE;
673
674         map.m_lblk = iblock;
675         map.m_len = bh->b_size >> inode->i_blkbits;
676
677         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
678                 /* Direct IO write... */
679                 if (map.m_len > DIO_MAX_BLOCKS)
680                         map.m_len = DIO_MAX_BLOCKS;
681                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
682                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
683                                             dio_credits);
684                 if (IS_ERR(handle)) {
685                         ret = PTR_ERR(handle);
686                         return ret;
687                 }
688                 started = 1;
689         }
690
691         ret = ext4_map_blocks(handle, inode, &map, flags);
692         if (ret > 0) {
693                 ext4_io_end_t *io_end = ext4_inode_aio(inode);
694
695                 map_bh(bh, inode->i_sb, map.m_pblk);
696                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
697                 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
698                         set_buffer_defer_completion(bh);
699                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
700                 ret = 0;
701         }
702         if (started)
703                 ext4_journal_stop(handle);
704         return ret;
705 }
706
707 int ext4_get_block(struct inode *inode, sector_t iblock,
708                    struct buffer_head *bh, int create)
709 {
710         return _ext4_get_block(inode, iblock, bh,
711                                create ? EXT4_GET_BLOCKS_CREATE : 0);
712 }
713
714 /*
715  * `handle' can be NULL if create is zero
716  */
717 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
718                                 ext4_lblk_t block, int create)
719 {
720         struct ext4_map_blocks map;
721         struct buffer_head *bh;
722         int err;
723
724         J_ASSERT(handle != NULL || create == 0);
725
726         map.m_lblk = block;
727         map.m_len = 1;
728         err = ext4_map_blocks(handle, inode, &map,
729                               create ? EXT4_GET_BLOCKS_CREATE : 0);
730
731         if (err == 0)
732                 return create ? ERR_PTR(-ENOSPC) : NULL;
733         if (err < 0)
734                 return ERR_PTR(err);
735
736         bh = sb_getblk(inode->i_sb, map.m_pblk);
737         if (unlikely(!bh))
738                 return ERR_PTR(-ENOMEM);
739         if (map.m_flags & EXT4_MAP_NEW) {
740                 J_ASSERT(create != 0);
741                 J_ASSERT(handle != NULL);
742
743                 /*
744                  * Now that we do not always journal data, we should
745                  * keep in mind whether this should always journal the
746                  * new buffer as metadata.  For now, regular file
747                  * writes use ext4_get_block instead, so it's not a
748                  * problem.
749                  */
750                 lock_buffer(bh);
751                 BUFFER_TRACE(bh, "call get_create_access");
752                 err = ext4_journal_get_create_access(handle, bh);
753                 if (unlikely(err)) {
754                         unlock_buffer(bh);
755                         goto errout;
756                 }
757                 if (!buffer_uptodate(bh)) {
758                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
759                         set_buffer_uptodate(bh);
760                 }
761                 unlock_buffer(bh);
762                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
763                 err = ext4_handle_dirty_metadata(handle, inode, bh);
764                 if (unlikely(err))
765                         goto errout;
766         } else
767                 BUFFER_TRACE(bh, "not a new buffer");
768         return bh;
769 errout:
770         brelse(bh);
771         return ERR_PTR(err);
772 }
773
774 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
775                                ext4_lblk_t block, int create)
776 {
777         struct buffer_head *bh;
778
779         bh = ext4_getblk(handle, inode, block, create);
780         if (IS_ERR(bh))
781                 return bh;
782         if (!bh || buffer_uptodate(bh))
783                 return bh;
784         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
785         wait_on_buffer(bh);
786         if (buffer_uptodate(bh))
787                 return bh;
788         put_bh(bh);
789         return ERR_PTR(-EIO);
790 }
791
792 int ext4_walk_page_buffers(handle_t *handle,
793                            struct buffer_head *head,
794                            unsigned from,
795                            unsigned to,
796                            int *partial,
797                            int (*fn)(handle_t *handle,
798                                      struct buffer_head *bh))
799 {
800         struct buffer_head *bh;
801         unsigned block_start, block_end;
802         unsigned blocksize = head->b_size;
803         int err, ret = 0;
804         struct buffer_head *next;
805
806         for (bh = head, block_start = 0;
807              ret == 0 && (bh != head || !block_start);
808              block_start = block_end, bh = next) {
809                 next = bh->b_this_page;
810                 block_end = block_start + blocksize;
811                 if (block_end <= from || block_start >= to) {
812                         if (partial && !buffer_uptodate(bh))
813                                 *partial = 1;
814                         continue;
815                 }
816                 err = (*fn)(handle, bh);
817                 if (!ret)
818                         ret = err;
819         }
820         return ret;
821 }
822
823 /*
824  * To preserve ordering, it is essential that the hole instantiation and
825  * the data write be encapsulated in a single transaction.  We cannot
826  * close off a transaction and start a new one between the ext4_get_block()
827  * and the commit_write().  So doing the jbd2_journal_start at the start of
828  * prepare_write() is the right place.
829  *
830  * Also, this function can nest inside ext4_writepage().  In that case, we
831  * *know* that ext4_writepage() has generated enough buffer credits to do the
832  * whole page.  So we won't block on the journal in that case, which is good,
833  * because the caller may be PF_MEMALLOC.
834  *
835  * By accident, ext4 can be reentered when a transaction is open via
836  * quota file writes.  If we were to commit the transaction while thus
837  * reentered, there can be a deadlock - we would be holding a quota
838  * lock, and the commit would never complete if another thread had a
839  * transaction open and was blocking on the quota lock - a ranking
840  * violation.
841  *
842  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
843  * will _not_ run commit under these circumstances because handle->h_ref
844  * is elevated.  We'll still have enough credits for the tiny quotafile
845  * write.
846  */
847 int do_journal_get_write_access(handle_t *handle,
848                                 struct buffer_head *bh)
849 {
850         int dirty = buffer_dirty(bh);
851         int ret;
852
853         if (!buffer_mapped(bh) || buffer_freed(bh))
854                 return 0;
855         /*
856          * __block_write_begin() could have dirtied some buffers. Clean
857          * the dirty bit as jbd2_journal_get_write_access() could complain
858          * otherwise about fs integrity issues. Setting of the dirty bit
859          * by __block_write_begin() isn't a real problem here as we clear
860          * the bit before releasing a page lock and thus writeback cannot
861          * ever write the buffer.
862          */
863         if (dirty)
864                 clear_buffer_dirty(bh);
865         BUFFER_TRACE(bh, "get write access");
866         ret = ext4_journal_get_write_access(handle, bh);
867         if (!ret && dirty)
868                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
869         return ret;
870 }
871
872 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
873                    struct buffer_head *bh_result, int create);
874 static int ext4_write_begin(struct file *file, struct address_space *mapping,
875                             loff_t pos, unsigned len, unsigned flags,
876                             struct page **pagep, void **fsdata)
877 {
878         struct inode *inode = mapping->host;
879         int ret, needed_blocks;
880         handle_t *handle;
881         int retries = 0;
882         struct page *page;
883         pgoff_t index;
884         unsigned from, to;
885
886         trace_ext4_write_begin(inode, pos, len, flags);
887         /*
888          * Reserve one block more for addition to orphan list in case
889          * we allocate blocks but write fails for some reason
890          */
891         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
892         index = pos >> PAGE_CACHE_SHIFT;
893         from = pos & (PAGE_CACHE_SIZE - 1);
894         to = from + len;
895
896         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
897                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
898                                                     flags, pagep);
899                 if (ret < 0)
900                         return ret;
901                 if (ret == 1)
902                         return 0;
903         }
904
905         /*
906          * grab_cache_page_write_begin() can take a long time if the
907          * system is thrashing due to memory pressure, or if the page
908          * is being written back.  So grab it first before we start
909          * the transaction handle.  This also allows us to allocate
910          * the page (if needed) without using GFP_NOFS.
911          */
912 retry_grab:
913         page = grab_cache_page_write_begin(mapping, index, flags);
914         if (!page)
915                 return -ENOMEM;
916         unlock_page(page);
917
918 retry_journal:
919         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
920         if (IS_ERR(handle)) {
921                 page_cache_release(page);
922                 return PTR_ERR(handle);
923         }
924
925         lock_page(page);
926         if (page->mapping != mapping) {
927                 /* The page got truncated from under us */
928                 unlock_page(page);
929                 page_cache_release(page);
930                 ext4_journal_stop(handle);
931                 goto retry_grab;
932         }
933         /* In case writeback began while the page was unlocked */
934         wait_for_stable_page(page);
935
936         if (ext4_should_dioread_nolock(inode))
937                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
938         else
939                 ret = __block_write_begin(page, pos, len, ext4_get_block);
940
941         if (!ret && ext4_should_journal_data(inode)) {
942                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
943                                              from, to, NULL,
944                                              do_journal_get_write_access);
945         }
946
947         if (ret) {
948                 unlock_page(page);
949                 /*
950                  * __block_write_begin may have instantiated a few blocks
951                  * outside i_size.  Trim these off again. Don't need
952                  * i_size_read because we hold i_mutex.
953                  *
954                  * Add inode to orphan list in case we crash before
955                  * truncate finishes
956                  */
957                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
958                         ext4_orphan_add(handle, inode);
959
960                 ext4_journal_stop(handle);
961                 if (pos + len > inode->i_size) {
962                         ext4_truncate_failed_write(inode);
963                         /*
964                          * If truncate failed early the inode might
965                          * still be on the orphan list; we need to
966                          * make sure the inode is removed from the
967                          * orphan list in that case.
968                          */
969                         if (inode->i_nlink)
970                                 ext4_orphan_del(NULL, inode);
971                 }
972
973                 if (ret == -ENOSPC &&
974                     ext4_should_retry_alloc(inode->i_sb, &retries))
975                         goto retry_journal;
976                 page_cache_release(page);
977                 return ret;
978         }
979         *pagep = page;
980         return ret;
981 }
982
983 /* For write_end() in data=journal mode */
984 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
985 {
986         int ret;
987         if (!buffer_mapped(bh) || buffer_freed(bh))
988                 return 0;
989         set_buffer_uptodate(bh);
990         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
991         clear_buffer_meta(bh);
992         clear_buffer_prio(bh);
993         return ret;
994 }
995
996 /*
997  * We need to pick up the new inode size which generic_commit_write gave us
998  * `file' can be NULL - eg, when called from page_symlink().
999  *
1000  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1001  * buffers are managed internally.
1002  */
1003 static int ext4_write_end(struct file *file,
1004                           struct address_space *mapping,
1005                           loff_t pos, unsigned len, unsigned copied,
1006                           struct page *page, void *fsdata)
1007 {
1008         handle_t *handle = ext4_journal_current_handle();
1009         struct inode *inode = mapping->host;
1010         int ret = 0, ret2;
1011         int i_size_changed = 0;
1012
1013         trace_ext4_write_end(inode, pos, len, copied);
1014         if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1015                 ret = ext4_jbd2_file_inode(handle, inode);
1016                 if (ret) {
1017                         unlock_page(page);
1018                         page_cache_release(page);
1019                         goto errout;
1020                 }
1021         }
1022
1023         if (ext4_has_inline_data(inode)) {
1024                 ret = ext4_write_inline_data_end(inode, pos, len,
1025                                                  copied, page);
1026                 if (ret < 0)
1027                         goto errout;
1028                 copied = ret;
1029         } else
1030                 copied = block_write_end(file, mapping, pos,
1031                                          len, copied, page, fsdata);
1032         /*
1033          * it's important to update i_size while still holding page lock:
1034          * page writeout could otherwise come in and zero beyond i_size.
1035          */
1036         i_size_changed = ext4_update_inode_size(inode, pos + copied);
1037         unlock_page(page);
1038         page_cache_release(page);
1039
1040         /*
1041          * Don't mark the inode dirty under page lock. First, it unnecessarily
1042          * makes the holding time of page lock longer. Second, it forces lock
1043          * ordering of page lock and transaction start for journaling
1044          * filesystems.
1045          */
1046         if (i_size_changed)
1047                 ext4_mark_inode_dirty(handle, inode);
1048
1049         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1050                 /* if we have allocated more blocks and copied
1051                  * less. We will have blocks allocated outside
1052                  * inode->i_size. So truncate them
1053                  */
1054                 ext4_orphan_add(handle, inode);
1055 errout:
1056         ret2 = ext4_journal_stop(handle);
1057         if (!ret)
1058                 ret = ret2;
1059
1060         if (pos + len > inode->i_size) {
1061                 ext4_truncate_failed_write(inode);
1062                 /*
1063                  * If truncate failed early the inode might still be
1064                  * on the orphan list; we need to make sure the inode
1065                  * is removed from the orphan list in that case.
1066                  */
1067                 if (inode->i_nlink)
1068                         ext4_orphan_del(NULL, inode);
1069         }
1070
1071         return ret ? ret : copied;
1072 }
1073
1074 static int ext4_journalled_write_end(struct file *file,
1075                                      struct address_space *mapping,
1076                                      loff_t pos, unsigned len, unsigned copied,
1077                                      struct page *page, void *fsdata)
1078 {
1079         handle_t *handle = ext4_journal_current_handle();
1080         struct inode *inode = mapping->host;
1081         int ret = 0, ret2;
1082         int partial = 0;
1083         unsigned from, to;
1084         int size_changed = 0;
1085
1086         trace_ext4_journalled_write_end(inode, pos, len, copied);
1087         from = pos & (PAGE_CACHE_SIZE - 1);
1088         to = from + len;
1089
1090         BUG_ON(!ext4_handle_valid(handle));
1091
1092         if (ext4_has_inline_data(inode))
1093                 copied = ext4_write_inline_data_end(inode, pos, len,
1094                                                     copied, page);
1095         else {
1096                 if (copied < len) {
1097                         if (!PageUptodate(page))
1098                                 copied = 0;
1099                         page_zero_new_buffers(page, from+copied, to);
1100                 }
1101
1102                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1103                                              to, &partial, write_end_fn);
1104                 if (!partial)
1105                         SetPageUptodate(page);
1106         }
1107         size_changed = ext4_update_inode_size(inode, pos + copied);
1108         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1109         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1110         unlock_page(page);
1111         page_cache_release(page);
1112
1113         if (size_changed) {
1114                 ret2 = ext4_mark_inode_dirty(handle, inode);
1115                 if (!ret)
1116                         ret = ret2;
1117         }
1118
1119         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1120                 /* if we have allocated more blocks and copied
1121                  * less. We will have blocks allocated outside
1122                  * inode->i_size. So truncate them
1123                  */
1124                 ext4_orphan_add(handle, inode);
1125
1126         ret2 = ext4_journal_stop(handle);
1127         if (!ret)
1128                 ret = ret2;
1129         if (pos + len > inode->i_size) {
1130                 ext4_truncate_failed_write(inode);
1131                 /*
1132                  * If truncate failed early the inode might still be
1133                  * on the orphan list; we need to make sure the inode
1134                  * is removed from the orphan list in that case.
1135                  */
1136                 if (inode->i_nlink)
1137                         ext4_orphan_del(NULL, inode);
1138         }
1139
1140         return ret ? ret : copied;
1141 }
1142
1143 /*
1144  * Reserve a single cluster located at lblock
1145  */
1146 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1147 {
1148         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1149         struct ext4_inode_info *ei = EXT4_I(inode);
1150         unsigned int md_needed;
1151         int ret;
1152
1153         /*
1154          * We will charge metadata quota at writeout time; this saves
1155          * us from metadata over-estimation, though we may go over by
1156          * a small amount in the end.  Here we just reserve for data.
1157          */
1158         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1159         if (ret)
1160                 return ret;
1161
1162         /*
1163          * recalculate the amount of metadata blocks to reserve
1164          * in order to allocate nrblocks
1165          * worse case is one extent per block
1166          */
1167         spin_lock(&ei->i_block_reservation_lock);
1168         /*
1169          * ext4_calc_metadata_amount() has side effects, which we have
1170          * to be prepared undo if we fail to claim space.
1171          */
1172         md_needed = 0;
1173         trace_ext4_da_reserve_space(inode, 0);
1174
1175         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1176                 spin_unlock(&ei->i_block_reservation_lock);
1177                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1178                 return -ENOSPC;
1179         }
1180         ei->i_reserved_data_blocks++;
1181         spin_unlock(&ei->i_block_reservation_lock);
1182
1183         return 0;       /* success */
1184 }
1185
1186 static void ext4_da_release_space(struct inode *inode, int to_free)
1187 {
1188         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1189         struct ext4_inode_info *ei = EXT4_I(inode);
1190
1191         if (!to_free)
1192                 return;         /* Nothing to release, exit */
1193
1194         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1195
1196         trace_ext4_da_release_space(inode, to_free);
1197         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1198                 /*
1199                  * if there aren't enough reserved blocks, then the
1200                  * counter is messed up somewhere.  Since this
1201                  * function is called from invalidate page, it's
1202                  * harmless to return without any action.
1203                  */
1204                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1205                          "ino %lu, to_free %d with only %d reserved "
1206                          "data blocks", inode->i_ino, to_free,
1207                          ei->i_reserved_data_blocks);
1208                 WARN_ON(1);
1209                 to_free = ei->i_reserved_data_blocks;
1210         }
1211         ei->i_reserved_data_blocks -= to_free;
1212
1213         /* update fs dirty data blocks counter */
1214         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1215
1216         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1217
1218         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1219 }
1220
1221 static void ext4_da_page_release_reservation(struct page *page,
1222                                              unsigned int offset,
1223                                              unsigned int length)
1224 {
1225         int to_release = 0;
1226         struct buffer_head *head, *bh;
1227         unsigned int curr_off = 0;
1228         struct inode *inode = page->mapping->host;
1229         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1230         unsigned int stop = offset + length;
1231         int num_clusters;
1232         ext4_fsblk_t lblk;
1233
1234         BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1235
1236         head = page_buffers(page);
1237         bh = head;
1238         do {
1239                 unsigned int next_off = curr_off + bh->b_size;
1240
1241                 if (next_off > stop)
1242                         break;
1243
1244                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1245                         to_release++;
1246                         clear_buffer_delay(bh);
1247                 }
1248                 curr_off = next_off;
1249         } while ((bh = bh->b_this_page) != head);
1250
1251         if (to_release) {
1252                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1253                 ext4_es_remove_extent(inode, lblk, to_release);
1254         }
1255
1256         /* If we have released all the blocks belonging to a cluster, then we
1257          * need to release the reserved space for that cluster. */
1258         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1259         while (num_clusters > 0) {
1260                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1261                         ((num_clusters - 1) << sbi->s_cluster_bits);
1262                 if (sbi->s_cluster_ratio == 1 ||
1263                     !ext4_find_delalloc_cluster(inode, lblk))
1264                         ext4_da_release_space(inode, 1);
1265
1266                 num_clusters--;
1267         }
1268 }
1269
1270 /*
1271  * Delayed allocation stuff
1272  */
1273
1274 struct mpage_da_data {
1275         struct inode *inode;
1276         struct writeback_control *wbc;
1277
1278         pgoff_t first_page;     /* The first page to write */
1279         pgoff_t next_page;      /* Current page to examine */
1280         pgoff_t last_page;      /* Last page to examine */
1281         /*
1282          * Extent to map - this can be after first_page because that can be
1283          * fully mapped. We somewhat abuse m_flags to store whether the extent
1284          * is delalloc or unwritten.
1285          */
1286         struct ext4_map_blocks map;
1287         struct ext4_io_submit io_submit;        /* IO submission data */
1288 };
1289
1290 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1291                                        bool invalidate)
1292 {
1293         int nr_pages, i;
1294         pgoff_t index, end;
1295         struct pagevec pvec;
1296         struct inode *inode = mpd->inode;
1297         struct address_space *mapping = inode->i_mapping;
1298
1299         /* This is necessary when next_page == 0. */
1300         if (mpd->first_page >= mpd->next_page)
1301                 return;
1302
1303         index = mpd->first_page;
1304         end   = mpd->next_page - 1;
1305         if (invalidate) {
1306                 ext4_lblk_t start, last;
1307                 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1308                 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1309                 ext4_es_remove_extent(inode, start, last - start + 1);
1310         }
1311
1312         pagevec_init(&pvec, 0);
1313         while (index <= end) {
1314                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1315                 if (nr_pages == 0)
1316                         break;
1317                 for (i = 0; i < nr_pages; i++) {
1318                         struct page *page = pvec.pages[i];
1319                         if (page->index > end)
1320                                 break;
1321                         BUG_ON(!PageLocked(page));
1322                         BUG_ON(PageWriteback(page));
1323                         if (invalidate) {
1324                                 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1325                                 ClearPageUptodate(page);
1326                         }
1327                         unlock_page(page);
1328                 }
1329                 index = pvec.pages[nr_pages - 1]->index + 1;
1330                 pagevec_release(&pvec);
1331         }
1332 }
1333
1334 static void ext4_print_free_blocks(struct inode *inode)
1335 {
1336         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1337         struct super_block *sb = inode->i_sb;
1338         struct ext4_inode_info *ei = EXT4_I(inode);
1339
1340         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1341                EXT4_C2B(EXT4_SB(inode->i_sb),
1342                         ext4_count_free_clusters(sb)));
1343         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1344         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1345                (long long) EXT4_C2B(EXT4_SB(sb),
1346                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1347         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1348                (long long) EXT4_C2B(EXT4_SB(sb),
1349                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1350         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1351         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1352                  ei->i_reserved_data_blocks);
1353         return;
1354 }
1355
1356 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1357 {
1358         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1359 }
1360
1361 /*
1362  * This function is grabs code from the very beginning of
1363  * ext4_map_blocks, but assumes that the caller is from delayed write
1364  * time. This function looks up the requested blocks and sets the
1365  * buffer delay bit under the protection of i_data_sem.
1366  */
1367 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1368                               struct ext4_map_blocks *map,
1369                               struct buffer_head *bh)
1370 {
1371         struct extent_status es;
1372         int retval;
1373         sector_t invalid_block = ~((sector_t) 0xffff);
1374 #ifdef ES_AGGRESSIVE_TEST
1375         struct ext4_map_blocks orig_map;
1376
1377         memcpy(&orig_map, map, sizeof(*map));
1378 #endif
1379
1380         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1381                 invalid_block = ~0;
1382
1383         map->m_flags = 0;
1384         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1385                   "logical block %lu\n", inode->i_ino, map->m_len,
1386                   (unsigned long) map->m_lblk);
1387
1388         /* Lookup extent status tree firstly */
1389         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1390                 if (ext4_es_is_hole(&es)) {
1391                         retval = 0;
1392                         down_read(&EXT4_I(inode)->i_data_sem);
1393                         goto add_delayed;
1394                 }
1395
1396                 /*
1397                  * Delayed extent could be allocated by fallocate.
1398                  * So we need to check it.
1399                  */
1400                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1401                         map_bh(bh, inode->i_sb, invalid_block);
1402                         set_buffer_new(bh);
1403                         set_buffer_delay(bh);
1404                         return 0;
1405                 }
1406
1407                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1408                 retval = es.es_len - (iblock - es.es_lblk);
1409                 if (retval > map->m_len)
1410                         retval = map->m_len;
1411                 map->m_len = retval;
1412                 if (ext4_es_is_written(&es))
1413                         map->m_flags |= EXT4_MAP_MAPPED;
1414                 else if (ext4_es_is_unwritten(&es))
1415                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1416                 else
1417                         BUG_ON(1);
1418
1419 #ifdef ES_AGGRESSIVE_TEST
1420                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1421 #endif
1422                 return retval;
1423         }
1424
1425         /*
1426          * Try to see if we can get the block without requesting a new
1427          * file system block.
1428          */
1429         down_read(&EXT4_I(inode)->i_data_sem);
1430         if (ext4_has_inline_data(inode))
1431                 retval = 0;
1432         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1433                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1434         else
1435                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1436
1437 add_delayed:
1438         if (retval == 0) {
1439                 int ret;
1440                 /*
1441                  * XXX: __block_prepare_write() unmaps passed block,
1442                  * is it OK?
1443                  */
1444                 /*
1445                  * If the block was allocated from previously allocated cluster,
1446                  * then we don't need to reserve it again. However we still need
1447                  * to reserve metadata for every block we're going to write.
1448                  */
1449                 if (EXT4_SB(inode->i_sb)->s_cluster_ratio <= 1 ||
1450                     !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1451                         ret = ext4_da_reserve_space(inode, iblock);
1452                         if (ret) {
1453                                 /* not enough space to reserve */
1454                                 retval = ret;
1455                                 goto out_unlock;
1456                         }
1457                 }
1458
1459                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1460                                             ~0, EXTENT_STATUS_DELAYED);
1461                 if (ret) {
1462                         retval = ret;
1463                         goto out_unlock;
1464                 }
1465
1466                 map_bh(bh, inode->i_sb, invalid_block);
1467                 set_buffer_new(bh);
1468                 set_buffer_delay(bh);
1469         } else if (retval > 0) {
1470                 int ret;
1471                 unsigned int status;
1472
1473                 if (unlikely(retval != map->m_len)) {
1474                         ext4_warning(inode->i_sb,
1475                                      "ES len assertion failed for inode "
1476                                      "%lu: retval %d != map->m_len %d",
1477                                      inode->i_ino, retval, map->m_len);
1478                         WARN_ON(1);
1479                 }
1480
1481                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1482                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1483                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1484                                             map->m_pblk, status);
1485                 if (ret != 0)
1486                         retval = ret;
1487         }
1488
1489 out_unlock:
1490         up_read((&EXT4_I(inode)->i_data_sem));
1491
1492         return retval;
1493 }
1494
1495 /*
1496  * This is a special get_block_t callback which is used by
1497  * ext4_da_write_begin().  It will either return mapped block or
1498  * reserve space for a single block.
1499  *
1500  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1501  * We also have b_blocknr = -1 and b_bdev initialized properly
1502  *
1503  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1504  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1505  * initialized properly.
1506  */
1507 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1508                            struct buffer_head *bh, int create)
1509 {
1510         struct ext4_map_blocks map;
1511         int ret = 0;
1512
1513         BUG_ON(create == 0);
1514         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1515
1516         map.m_lblk = iblock;
1517         map.m_len = 1;
1518
1519         /*
1520          * first, we need to know whether the block is allocated already
1521          * preallocated blocks are unmapped but should treated
1522          * the same as allocated blocks.
1523          */
1524         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1525         if (ret <= 0)
1526                 return ret;
1527
1528         map_bh(bh, inode->i_sb, map.m_pblk);
1529         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1530
1531         if (buffer_unwritten(bh)) {
1532                 /* A delayed write to unwritten bh should be marked
1533                  * new and mapped.  Mapped ensures that we don't do
1534                  * get_block multiple times when we write to the same
1535                  * offset and new ensures that we do proper zero out
1536                  * for partial write.
1537                  */
1538                 set_buffer_new(bh);
1539                 set_buffer_mapped(bh);
1540         }
1541         return 0;
1542 }
1543
1544 static int bget_one(handle_t *handle, struct buffer_head *bh)
1545 {
1546         get_bh(bh);
1547         return 0;
1548 }
1549
1550 static int bput_one(handle_t *handle, struct buffer_head *bh)
1551 {
1552         put_bh(bh);
1553         return 0;
1554 }
1555
1556 static int __ext4_journalled_writepage(struct page *page,
1557                                        unsigned int len)
1558 {
1559         struct address_space *mapping = page->mapping;
1560         struct inode *inode = mapping->host;
1561         struct buffer_head *page_bufs = NULL;
1562         handle_t *handle = NULL;
1563         int ret = 0, err = 0;
1564         int inline_data = ext4_has_inline_data(inode);
1565         struct buffer_head *inode_bh = NULL;
1566
1567         ClearPageChecked(page);
1568
1569         if (inline_data) {
1570                 BUG_ON(page->index != 0);
1571                 BUG_ON(len > ext4_get_max_inline_size(inode));
1572                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1573                 if (inode_bh == NULL)
1574                         goto out;
1575         } else {
1576                 page_bufs = page_buffers(page);
1577                 if (!page_bufs) {
1578                         BUG();
1579                         goto out;
1580                 }
1581                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1582                                        NULL, bget_one);
1583         }
1584         /* As soon as we unlock the page, it can go away, but we have
1585          * references to buffers so we are safe */
1586         unlock_page(page);
1587
1588         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1589                                     ext4_writepage_trans_blocks(inode));
1590         if (IS_ERR(handle)) {
1591                 ret = PTR_ERR(handle);
1592                 goto out;
1593         }
1594
1595         BUG_ON(!ext4_handle_valid(handle));
1596
1597         if (inline_data) {
1598                 BUFFER_TRACE(inode_bh, "get write access");
1599                 ret = ext4_journal_get_write_access(handle, inode_bh);
1600
1601                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1602
1603         } else {
1604                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1605                                              do_journal_get_write_access);
1606
1607                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1608                                              write_end_fn);
1609         }
1610         if (ret == 0)
1611                 ret = err;
1612         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1613         err = ext4_journal_stop(handle);
1614         if (!ret)
1615                 ret = err;
1616
1617         if (!ext4_has_inline_data(inode))
1618                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1619                                        NULL, bput_one);
1620         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1621 out:
1622         brelse(inode_bh);
1623         return ret;
1624 }
1625
1626 /*
1627  * Note that we don't need to start a transaction unless we're journaling data
1628  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1629  * need to file the inode to the transaction's list in ordered mode because if
1630  * we are writing back data added by write(), the inode is already there and if
1631  * we are writing back data modified via mmap(), no one guarantees in which
1632  * transaction the data will hit the disk. In case we are journaling data, we
1633  * cannot start transaction directly because transaction start ranks above page
1634  * lock so we have to do some magic.
1635  *
1636  * This function can get called via...
1637  *   - ext4_writepages after taking page lock (have journal handle)
1638  *   - journal_submit_inode_data_buffers (no journal handle)
1639  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1640  *   - grab_page_cache when doing write_begin (have journal handle)
1641  *
1642  * We don't do any block allocation in this function. If we have page with
1643  * multiple blocks we need to write those buffer_heads that are mapped. This
1644  * is important for mmaped based write. So if we do with blocksize 1K
1645  * truncate(f, 1024);
1646  * a = mmap(f, 0, 4096);
1647  * a[0] = 'a';
1648  * truncate(f, 4096);
1649  * we have in the page first buffer_head mapped via page_mkwrite call back
1650  * but other buffer_heads would be unmapped but dirty (dirty done via the
1651  * do_wp_page). So writepage should write the first block. If we modify
1652  * the mmap area beyond 1024 we will again get a page_fault and the
1653  * page_mkwrite callback will do the block allocation and mark the
1654  * buffer_heads mapped.
1655  *
1656  * We redirty the page if we have any buffer_heads that is either delay or
1657  * unwritten in the page.
1658  *
1659  * We can get recursively called as show below.
1660  *
1661  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1662  *              ext4_writepage()
1663  *
1664  * But since we don't do any block allocation we should not deadlock.
1665  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1666  */
1667 static int ext4_writepage(struct page *page,
1668                           struct writeback_control *wbc)
1669 {
1670         int ret = 0;
1671         loff_t size;
1672         unsigned int len;
1673         struct buffer_head *page_bufs = NULL;
1674         struct inode *inode = page->mapping->host;
1675         struct ext4_io_submit io_submit;
1676         bool keep_towrite = false;
1677
1678         trace_ext4_writepage(page);
1679         size = i_size_read(inode);
1680         if (page->index == size >> PAGE_CACHE_SHIFT)
1681                 len = size & ~PAGE_CACHE_MASK;
1682         else
1683                 len = PAGE_CACHE_SIZE;
1684
1685         page_bufs = page_buffers(page);
1686         /*
1687          * We cannot do block allocation or other extent handling in this
1688          * function. If there are buffers needing that, we have to redirty
1689          * the page. But we may reach here when we do a journal commit via
1690          * journal_submit_inode_data_buffers() and in that case we must write
1691          * allocated buffers to achieve data=ordered mode guarantees.
1692          */
1693         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1694                                    ext4_bh_delay_or_unwritten)) {
1695                 redirty_page_for_writepage(wbc, page);
1696                 if (current->flags & PF_MEMALLOC) {
1697                         /*
1698                          * For memory cleaning there's no point in writing only
1699                          * some buffers. So just bail out. Warn if we came here
1700                          * from direct reclaim.
1701                          */
1702                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1703                                                         == PF_MEMALLOC);
1704                         unlock_page(page);
1705                         return 0;
1706                 }
1707                 keep_towrite = true;
1708         }
1709
1710         if (PageChecked(page) && ext4_should_journal_data(inode))
1711                 /*
1712                  * It's mmapped pagecache.  Add buffers and journal it.  There
1713                  * doesn't seem much point in redirtying the page here.
1714                  */
1715                 return __ext4_journalled_writepage(page, len);
1716
1717         ext4_io_submit_init(&io_submit, wbc);
1718         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1719         if (!io_submit.io_end) {
1720                 redirty_page_for_writepage(wbc, page);
1721                 unlock_page(page);
1722                 return -ENOMEM;
1723         }
1724         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
1725         ext4_io_submit(&io_submit);
1726         /* Drop io_end reference we got from init */
1727         ext4_put_io_end_defer(io_submit.io_end);
1728         return ret;
1729 }
1730
1731 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1732 {
1733         int len;
1734         loff_t size = i_size_read(mpd->inode);
1735         int err;
1736
1737         BUG_ON(page->index != mpd->first_page);
1738         if (page->index == size >> PAGE_CACHE_SHIFT)
1739                 len = size & ~PAGE_CACHE_MASK;
1740         else
1741                 len = PAGE_CACHE_SIZE;
1742         clear_page_dirty_for_io(page);
1743         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
1744         if (!err)
1745                 mpd->wbc->nr_to_write--;
1746         mpd->first_page++;
1747
1748         return err;
1749 }
1750
1751 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1752
1753 /*
1754  * mballoc gives us at most this number of blocks...
1755  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1756  * The rest of mballoc seems to handle chunks up to full group size.
1757  */
1758 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1759
1760 /*
1761  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1762  *
1763  * @mpd - extent of blocks
1764  * @lblk - logical number of the block in the file
1765  * @bh - buffer head we want to add to the extent
1766  *
1767  * The function is used to collect contig. blocks in the same state. If the
1768  * buffer doesn't require mapping for writeback and we haven't started the
1769  * extent of buffers to map yet, the function returns 'true' immediately - the
1770  * caller can write the buffer right away. Otherwise the function returns true
1771  * if the block has been added to the extent, false if the block couldn't be
1772  * added.
1773  */
1774 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1775                                    struct buffer_head *bh)
1776 {
1777         struct ext4_map_blocks *map = &mpd->map;
1778
1779         /* Buffer that doesn't need mapping for writeback? */
1780         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1781             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1782                 /* So far no extent to map => we write the buffer right away */
1783                 if (map->m_len == 0)
1784                         return true;
1785                 return false;
1786         }
1787
1788         /* First block in the extent? */
1789         if (map->m_len == 0) {
1790                 map->m_lblk = lblk;
1791                 map->m_len = 1;
1792                 map->m_flags = bh->b_state & BH_FLAGS;
1793                 return true;
1794         }
1795
1796         /* Don't go larger than mballoc is willing to allocate */
1797         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1798                 return false;
1799
1800         /* Can we merge the block to our big extent? */
1801         if (lblk == map->m_lblk + map->m_len &&
1802             (bh->b_state & BH_FLAGS) == map->m_flags) {
1803                 map->m_len++;
1804                 return true;
1805         }
1806         return false;
1807 }
1808
1809 /*
1810  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1811  *
1812  * @mpd - extent of blocks for mapping
1813  * @head - the first buffer in the page
1814  * @bh - buffer we should start processing from
1815  * @lblk - logical number of the block in the file corresponding to @bh
1816  *
1817  * Walk through page buffers from @bh upto @head (exclusive) and either submit
1818  * the page for IO if all buffers in this page were mapped and there's no
1819  * accumulated extent of buffers to map or add buffers in the page to the
1820  * extent of buffers to map. The function returns 1 if the caller can continue
1821  * by processing the next page, 0 if it should stop adding buffers to the
1822  * extent to map because we cannot extend it anymore. It can also return value
1823  * < 0 in case of error during IO submission.
1824  */
1825 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1826                                    struct buffer_head *head,
1827                                    struct buffer_head *bh,
1828                                    ext4_lblk_t lblk)
1829 {
1830         struct inode *inode = mpd->inode;
1831         int err;
1832         ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1833                                                         >> inode->i_blkbits;
1834
1835         do {
1836                 BUG_ON(buffer_locked(bh));
1837
1838                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
1839                         /* Found extent to map? */
1840                         if (mpd->map.m_len)
1841                                 return 0;
1842                         /* Everything mapped so far and we hit EOF */
1843                         break;
1844                 }
1845         } while (lblk++, (bh = bh->b_this_page) != head);
1846         /* So far everything mapped? Submit the page for IO. */
1847         if (mpd->map.m_len == 0) {
1848                 err = mpage_submit_page(mpd, head->b_page);
1849                 if (err < 0)
1850                         return err;
1851         }
1852         return lblk < blocks;
1853 }
1854
1855 /*
1856  * mpage_map_buffers - update buffers corresponding to changed extent and
1857  *                     submit fully mapped pages for IO
1858  *
1859  * @mpd - description of extent to map, on return next extent to map
1860  *
1861  * Scan buffers corresponding to changed extent (we expect corresponding pages
1862  * to be already locked) and update buffer state according to new extent state.
1863  * We map delalloc buffers to their physical location, clear unwritten bits,
1864  * and mark buffers as uninit when we perform writes to unwritten extents
1865  * and do extent conversion after IO is finished. If the last page is not fully
1866  * mapped, we update @map to the next extent in the last page that needs
1867  * mapping. Otherwise we submit the page for IO.
1868  */
1869 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
1870 {
1871         struct pagevec pvec;
1872         int nr_pages, i;
1873         struct inode *inode = mpd->inode;
1874         struct buffer_head *head, *bh;
1875         int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
1876         pgoff_t start, end;
1877         ext4_lblk_t lblk;
1878         sector_t pblock;
1879         int err;
1880
1881         start = mpd->map.m_lblk >> bpp_bits;
1882         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
1883         lblk = start << bpp_bits;
1884         pblock = mpd->map.m_pblk;
1885
1886         pagevec_init(&pvec, 0);
1887         while (start <= end) {
1888                 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
1889                                           PAGEVEC_SIZE);
1890                 if (nr_pages == 0)
1891                         break;
1892                 for (i = 0; i < nr_pages; i++) {
1893                         struct page *page = pvec.pages[i];
1894
1895                         if (page->index > end)
1896                                 break;
1897                         /* Up to 'end' pages must be contiguous */
1898                         BUG_ON(page->index != start);
1899                         bh = head = page_buffers(page);
1900                         do {
1901                                 if (lblk < mpd->map.m_lblk)
1902                                         continue;
1903                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
1904                                         /*
1905                                          * Buffer after end of mapped extent.
1906                                          * Find next buffer in the page to map.
1907                                          */
1908                                         mpd->map.m_len = 0;
1909                                         mpd->map.m_flags = 0;
1910                                         /*
1911                                          * FIXME: If dioread_nolock supports
1912                                          * blocksize < pagesize, we need to make
1913                                          * sure we add size mapped so far to
1914                                          * io_end->size as the following call
1915                                          * can submit the page for IO.
1916                                          */
1917                                         err = mpage_process_page_bufs(mpd, head,
1918                                                                       bh, lblk);
1919                                         pagevec_release(&pvec);
1920                                         if (err > 0)
1921                                                 err = 0;
1922                                         return err;
1923                                 }
1924                                 if (buffer_delay(bh)) {
1925                                         clear_buffer_delay(bh);
1926                                         bh->b_blocknr = pblock++;
1927                                 }
1928                                 clear_buffer_unwritten(bh);
1929                         } while (lblk++, (bh = bh->b_this_page) != head);
1930
1931                         /*
1932                          * FIXME: This is going to break if dioread_nolock
1933                          * supports blocksize < pagesize as we will try to
1934                          * convert potentially unmapped parts of inode.
1935                          */
1936                         mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
1937                         /* Page fully mapped - let IO run! */
1938                         err = mpage_submit_page(mpd, page);
1939                         if (err < 0) {
1940                                 pagevec_release(&pvec);
1941                                 return err;
1942                         }
1943                         start++;
1944                 }
1945                 pagevec_release(&pvec);
1946         }
1947         /* Extent fully mapped and matches with page boundary. We are done. */
1948         mpd->map.m_len = 0;
1949         mpd->map.m_flags = 0;
1950         return 0;
1951 }
1952
1953 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
1954 {
1955         struct inode *inode = mpd->inode;
1956         struct ext4_map_blocks *map = &mpd->map;
1957         int get_blocks_flags;
1958         int err, dioread_nolock;
1959
1960         trace_ext4_da_write_pages_extent(inode, map);
1961         /*
1962          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
1963          * to convert an unwritten extent to be initialized (in the case
1964          * where we have written into one or more preallocated blocks).  It is
1965          * possible that we're going to need more metadata blocks than
1966          * previously reserved. However we must not fail because we're in
1967          * writeback and there is nothing we can do about it so it might result
1968          * in data loss.  So use reserved blocks to allocate metadata if
1969          * possible.
1970          *
1971          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
1972          * the blocks in question are delalloc blocks.  This indicates
1973          * that the blocks and quotas has already been checked when
1974          * the data was copied into the page cache.
1975          */
1976         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
1977                            EXT4_GET_BLOCKS_METADATA_NOFAIL;
1978         dioread_nolock = ext4_should_dioread_nolock(inode);
1979         if (dioread_nolock)
1980                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1981         if (map->m_flags & (1 << BH_Delay))
1982                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1983
1984         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
1985         if (err < 0)
1986                 return err;
1987         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
1988                 if (!mpd->io_submit.io_end->handle &&
1989                     ext4_handle_valid(handle)) {
1990                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
1991                         handle->h_rsv_handle = NULL;
1992                 }
1993                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
1994         }
1995
1996         BUG_ON(map->m_len == 0);
1997         if (map->m_flags & EXT4_MAP_NEW) {
1998                 struct block_device *bdev = inode->i_sb->s_bdev;
1999                 int i;
2000
2001                 for (i = 0; i < map->m_len; i++)
2002                         unmap_underlying_metadata(bdev, map->m_pblk + i);
2003         }
2004         return 0;
2005 }
2006
2007 /*
2008  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2009  *                               mpd->len and submit pages underlying it for IO
2010  *
2011  * @handle - handle for journal operations
2012  * @mpd - extent to map
2013  * @give_up_on_write - we set this to true iff there is a fatal error and there
2014  *                     is no hope of writing the data. The caller should discard
2015  *                     dirty pages to avoid infinite loops.
2016  *
2017  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2018  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2019  * them to initialized or split the described range from larger unwritten
2020  * extent. Note that we need not map all the described range since allocation
2021  * can return less blocks or the range is covered by more unwritten extents. We
2022  * cannot map more because we are limited by reserved transaction credits. On
2023  * the other hand we always make sure that the last touched page is fully
2024  * mapped so that it can be written out (and thus forward progress is
2025  * guaranteed). After mapping we submit all mapped pages for IO.
2026  */
2027 static int mpage_map_and_submit_extent(handle_t *handle,
2028                                        struct mpage_da_data *mpd,
2029                                        bool *give_up_on_write)
2030 {
2031         struct inode *inode = mpd->inode;
2032         struct ext4_map_blocks *map = &mpd->map;
2033         int err;
2034         loff_t disksize;
2035         int progress = 0;
2036
2037         mpd->io_submit.io_end->offset =
2038                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2039         do {
2040                 err = mpage_map_one_extent(handle, mpd);
2041                 if (err < 0) {
2042                         struct super_block *sb = inode->i_sb;
2043
2044                         if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2045                                 goto invalidate_dirty_pages;
2046                         /*
2047                          * Let the uper layers retry transient errors.
2048                          * In the case of ENOSPC, if ext4_count_free_blocks()
2049                          * is non-zero, a commit should free up blocks.
2050                          */
2051                         if ((err == -ENOMEM) ||
2052                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2053                                 if (progress)
2054                                         goto update_disksize;
2055                                 return err;
2056                         }
2057                         ext4_msg(sb, KERN_CRIT,
2058                                  "Delayed block allocation failed for "
2059                                  "inode %lu at logical offset %llu with"
2060                                  " max blocks %u with error %d",
2061                                  inode->i_ino,
2062                                  (unsigned long long)map->m_lblk,
2063                                  (unsigned)map->m_len, -err);
2064                         ext4_msg(sb, KERN_CRIT,
2065                                  "This should not happen!! Data will "
2066                                  "be lost\n");
2067                         if (err == -ENOSPC)
2068                                 ext4_print_free_blocks(inode);
2069                 invalidate_dirty_pages:
2070                         *give_up_on_write = true;
2071                         return err;
2072                 }
2073                 progress = 1;
2074                 /*
2075                  * Update buffer state, submit mapped pages, and get us new
2076                  * extent to map
2077                  */
2078                 err = mpage_map_and_submit_buffers(mpd);
2079                 if (err < 0)
2080                         goto update_disksize;
2081         } while (map->m_len);
2082
2083 update_disksize:
2084         /*
2085          * Update on-disk size after IO is submitted.  Races with
2086          * truncate are avoided by checking i_size under i_data_sem.
2087          */
2088         disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2089         if (disksize > EXT4_I(inode)->i_disksize) {
2090                 int err2;
2091                 loff_t i_size;
2092
2093                 down_write(&EXT4_I(inode)->i_data_sem);
2094                 i_size = i_size_read(inode);
2095                 if (disksize > i_size)
2096                         disksize = i_size;
2097                 if (disksize > EXT4_I(inode)->i_disksize)
2098                         EXT4_I(inode)->i_disksize = disksize;
2099                 err2 = ext4_mark_inode_dirty(handle, inode);
2100                 up_write(&EXT4_I(inode)->i_data_sem);
2101                 if (err2)
2102                         ext4_error(inode->i_sb,
2103                                    "Failed to mark inode %lu dirty",
2104                                    inode->i_ino);
2105                 if (!err)
2106                         err = err2;
2107         }
2108         return err;
2109 }
2110
2111 /*
2112  * Calculate the total number of credits to reserve for one writepages
2113  * iteration. This is called from ext4_writepages(). We map an extent of
2114  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2115  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2116  * bpp - 1 blocks in bpp different extents.
2117  */
2118 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2119 {
2120         int bpp = ext4_journal_blocks_per_page(inode);
2121
2122         return ext4_meta_trans_blocks(inode,
2123                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2124 }
2125
2126 /*
2127  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2128  *                               and underlying extent to map
2129  *
2130  * @mpd - where to look for pages
2131  *
2132  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2133  * IO immediately. When we find a page which isn't mapped we start accumulating
2134  * extent of buffers underlying these pages that needs mapping (formed by
2135  * either delayed or unwritten buffers). We also lock the pages containing
2136  * these buffers. The extent found is returned in @mpd structure (starting at
2137  * mpd->lblk with length mpd->len blocks).
2138  *
2139  * Note that this function can attach bios to one io_end structure which are
2140  * neither logically nor physically contiguous. Although it may seem as an
2141  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2142  * case as we need to track IO to all buffers underlying a page in one io_end.
2143  */
2144 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2145 {
2146         struct address_space *mapping = mpd->inode->i_mapping;
2147         struct pagevec pvec;
2148         unsigned int nr_pages;
2149         long left = mpd->wbc->nr_to_write;
2150         pgoff_t index = mpd->first_page;
2151         pgoff_t end = mpd->last_page;
2152         int tag;
2153         int i, err = 0;
2154         int blkbits = mpd->inode->i_blkbits;
2155         ext4_lblk_t lblk;
2156         struct buffer_head *head;
2157
2158         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2159                 tag = PAGECACHE_TAG_TOWRITE;
2160         else
2161                 tag = PAGECACHE_TAG_DIRTY;
2162
2163         pagevec_init(&pvec, 0);
2164         mpd->map.m_len = 0;
2165         mpd->next_page = index;
2166         while (index <= end) {
2167                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2168                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2169                 if (nr_pages == 0)
2170                         goto out;
2171
2172                 for (i = 0; i < nr_pages; i++) {
2173                         struct page *page = pvec.pages[i];
2174
2175                         /*
2176                          * At this point, the page may be truncated or
2177                          * invalidated (changing page->mapping to NULL), or
2178                          * even swizzled back from swapper_space to tmpfs file
2179                          * mapping. However, page->index will not change
2180                          * because we have a reference on the page.
2181                          */
2182                         if (page->index > end)
2183                                 goto out;
2184
2185                         /*
2186                          * Accumulated enough dirty pages? This doesn't apply
2187                          * to WB_SYNC_ALL mode. For integrity sync we have to
2188                          * keep going because someone may be concurrently
2189                          * dirtying pages, and we might have synced a lot of
2190                          * newly appeared dirty pages, but have not synced all
2191                          * of the old dirty pages.
2192                          */
2193                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2194                                 goto out;
2195
2196                         /* If we can't merge this page, we are done. */
2197                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2198                                 goto out;
2199
2200                         lock_page(page);
2201                         /*
2202                          * If the page is no longer dirty, or its mapping no
2203                          * longer corresponds to inode we are writing (which
2204                          * means it has been truncated or invalidated), or the
2205                          * page is already under writeback and we are not doing
2206                          * a data integrity writeback, skip the page
2207                          */
2208                         if (!PageDirty(page) ||
2209                             (PageWriteback(page) &&
2210                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2211                             unlikely(page->mapping != mapping)) {
2212                                 unlock_page(page);
2213                                 continue;
2214                         }
2215
2216                         wait_on_page_writeback(page);
2217                         BUG_ON(PageWriteback(page));
2218
2219                         if (mpd->map.m_len == 0)
2220                                 mpd->first_page = page->index;
2221                         mpd->next_page = page->index + 1;
2222                         /* Add all dirty buffers to mpd */
2223                         lblk = ((ext4_lblk_t)page->index) <<
2224                                 (PAGE_CACHE_SHIFT - blkbits);
2225                         head = page_buffers(page);
2226                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2227                         if (err <= 0)
2228                                 goto out;
2229                         err = 0;
2230                         left--;
2231                 }
2232                 pagevec_release(&pvec);
2233                 cond_resched();
2234         }
2235         return 0;
2236 out:
2237         pagevec_release(&pvec);
2238         return err;
2239 }
2240
2241 static int __writepage(struct page *page, struct writeback_control *wbc,
2242                        void *data)
2243 {
2244         struct address_space *mapping = data;
2245         int ret = ext4_writepage(page, wbc);
2246         mapping_set_error(mapping, ret);
2247         return ret;
2248 }
2249
2250 static int ext4_writepages(struct address_space *mapping,
2251                            struct writeback_control *wbc)
2252 {
2253         pgoff_t writeback_index = 0;
2254         long nr_to_write = wbc->nr_to_write;
2255         int range_whole = 0;
2256         int cycled = 1;
2257         handle_t *handle = NULL;
2258         struct mpage_da_data mpd;
2259         struct inode *inode = mapping->host;
2260         int needed_blocks, rsv_blocks = 0, ret = 0;
2261         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2262         bool done;
2263         struct blk_plug plug;
2264         bool give_up_on_write = false;
2265
2266         trace_ext4_writepages(inode, wbc);
2267
2268         /*
2269          * No pages to write? This is mainly a kludge to avoid starting
2270          * a transaction for special inodes like journal inode on last iput()
2271          * because that could violate lock ordering on umount
2272          */
2273         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2274                 goto out_writepages;
2275
2276         if (ext4_should_journal_data(inode)) {
2277                 struct blk_plug plug;
2278
2279                 blk_start_plug(&plug);
2280                 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2281                 blk_finish_plug(&plug);
2282                 goto out_writepages;
2283         }
2284
2285         /*
2286          * If the filesystem has aborted, it is read-only, so return
2287          * right away instead of dumping stack traces later on that
2288          * will obscure the real source of the problem.  We test
2289          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2290          * the latter could be true if the filesystem is mounted
2291          * read-only, and in that case, ext4_writepages should
2292          * *never* be called, so if that ever happens, we would want
2293          * the stack trace.
2294          */
2295         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2296                 ret = -EROFS;
2297                 goto out_writepages;
2298         }
2299
2300         if (ext4_should_dioread_nolock(inode)) {
2301                 /*
2302                  * We may need to convert up to one extent per block in
2303                  * the page and we may dirty the inode.
2304                  */
2305                 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2306         }
2307
2308         /*
2309          * If we have inline data and arrive here, it means that
2310          * we will soon create the block for the 1st page, so
2311          * we'd better clear the inline data here.
2312          */
2313         if (ext4_has_inline_data(inode)) {
2314                 /* Just inode will be modified... */
2315                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2316                 if (IS_ERR(handle)) {
2317                         ret = PTR_ERR(handle);
2318                         goto out_writepages;
2319                 }
2320                 BUG_ON(ext4_test_inode_state(inode,
2321                                 EXT4_STATE_MAY_INLINE_DATA));
2322                 ext4_destroy_inline_data(handle, inode);
2323                 ext4_journal_stop(handle);
2324         }
2325
2326         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2327                 range_whole = 1;
2328
2329         if (wbc->range_cyclic) {
2330                 writeback_index = mapping->writeback_index;
2331                 if (writeback_index)
2332                         cycled = 0;
2333                 mpd.first_page = writeback_index;
2334                 mpd.last_page = -1;
2335         } else {
2336                 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2337                 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2338         }
2339
2340         mpd.inode = inode;
2341         mpd.wbc = wbc;
2342         ext4_io_submit_init(&mpd.io_submit, wbc);
2343 retry:
2344         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2345                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2346         done = false;
2347         blk_start_plug(&plug);
2348         while (!done && mpd.first_page <= mpd.last_page) {
2349                 /* For each extent of pages we use new io_end */
2350                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2351                 if (!mpd.io_submit.io_end) {
2352                         ret = -ENOMEM;
2353                         break;
2354                 }
2355
2356                 /*
2357                  * We have two constraints: We find one extent to map and we
2358                  * must always write out whole page (makes a difference when
2359                  * blocksize < pagesize) so that we don't block on IO when we
2360                  * try to write out the rest of the page. Journalled mode is
2361                  * not supported by delalloc.
2362                  */
2363                 BUG_ON(ext4_should_journal_data(inode));
2364                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2365
2366                 /* start a new transaction */
2367                 handle = ext4_journal_start_with_reserve(inode,
2368                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2369                 if (IS_ERR(handle)) {
2370                         ret = PTR_ERR(handle);
2371                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2372                                "%ld pages, ino %lu; err %d", __func__,
2373                                 wbc->nr_to_write, inode->i_ino, ret);
2374                         /* Release allocated io_end */
2375                         ext4_put_io_end(mpd.io_submit.io_end);
2376                         break;
2377                 }
2378
2379                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2380                 ret = mpage_prepare_extent_to_map(&mpd);
2381                 if (!ret) {
2382                         if (mpd.map.m_len)
2383                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2384                                         &give_up_on_write);
2385                         else {
2386                                 /*
2387                                  * We scanned the whole range (or exhausted
2388                                  * nr_to_write), submitted what was mapped and
2389                                  * didn't find anything needing mapping. We are
2390                                  * done.
2391                                  */
2392                                 done = true;
2393                         }
2394                 }
2395                 ext4_journal_stop(handle);
2396                 /* Submit prepared bio */
2397                 ext4_io_submit(&mpd.io_submit);
2398                 /* Unlock pages we didn't use */
2399                 mpage_release_unused_pages(&mpd, give_up_on_write);
2400                 /* Drop our io_end reference we got from init */
2401                 ext4_put_io_end(mpd.io_submit.io_end);
2402
2403                 if (ret == -ENOSPC && sbi->s_journal) {
2404                         /*
2405                          * Commit the transaction which would
2406                          * free blocks released in the transaction
2407                          * and try again
2408                          */
2409                         jbd2_journal_force_commit_nested(sbi->s_journal);
2410                         ret = 0;
2411                         continue;
2412                 }
2413                 /* Fatal error - ENOMEM, EIO... */
2414                 if (ret)
2415                         break;
2416         }
2417         blk_finish_plug(&plug);
2418         if (!ret && !cycled && wbc->nr_to_write > 0) {
2419                 cycled = 1;
2420                 mpd.last_page = writeback_index - 1;
2421                 mpd.first_page = 0;
2422                 goto retry;
2423         }
2424
2425         /* Update index */
2426         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2427                 /*
2428                  * Set the writeback_index so that range_cyclic
2429                  * mode will write it back later
2430                  */
2431                 mapping->writeback_index = mpd.first_page;
2432
2433 out_writepages:
2434         trace_ext4_writepages_result(inode, wbc, ret,
2435                                      nr_to_write - wbc->nr_to_write);
2436         return ret;
2437 }
2438
2439 static int ext4_nonda_switch(struct super_block *sb)
2440 {
2441         s64 free_clusters, dirty_clusters;
2442         struct ext4_sb_info *sbi = EXT4_SB(sb);
2443
2444         /*
2445          * switch to non delalloc mode if we are running low
2446          * on free block. The free block accounting via percpu
2447          * counters can get slightly wrong with percpu_counter_batch getting
2448          * accumulated on each CPU without updating global counters
2449          * Delalloc need an accurate free block accounting. So switch
2450          * to non delalloc when we are near to error range.
2451          */
2452         free_clusters =
2453                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2454         dirty_clusters =
2455                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2456         /*
2457          * Start pushing delalloc when 1/2 of free blocks are dirty.
2458          */
2459         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2460                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2461
2462         if (2 * free_clusters < 3 * dirty_clusters ||
2463             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2464                 /*
2465                  * free block count is less than 150% of dirty blocks
2466                  * or free blocks is less than watermark
2467                  */
2468                 return 1;
2469         }
2470         return 0;
2471 }
2472
2473 /* We always reserve for an inode update; the superblock could be there too */
2474 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2475 {
2476         if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
2477                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE)))
2478                 return 1;
2479
2480         if (pos + len <= 0x7fffffffULL)
2481                 return 1;
2482
2483         /* We might need to update the superblock to set LARGE_FILE */
2484         return 2;
2485 }
2486
2487 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2488                                loff_t pos, unsigned len, unsigned flags,
2489                                struct page **pagep, void **fsdata)
2490 {
2491         int ret, retries = 0;
2492         struct page *page;
2493         pgoff_t index;
2494         struct inode *inode = mapping->host;
2495         handle_t *handle;
2496
2497         index = pos >> PAGE_CACHE_SHIFT;
2498
2499         if (ext4_nonda_switch(inode->i_sb)) {
2500                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2501                 return ext4_write_begin(file, mapping, pos,
2502                                         len, flags, pagep, fsdata);
2503         }
2504         *fsdata = (void *)0;
2505         trace_ext4_da_write_begin(inode, pos, len, flags);
2506
2507         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2508                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2509                                                       pos, len, flags,
2510                                                       pagep, fsdata);
2511                 if (ret < 0)
2512                         return ret;
2513                 if (ret == 1)
2514                         return 0;
2515         }
2516
2517         /*
2518          * grab_cache_page_write_begin() can take a long time if the
2519          * system is thrashing due to memory pressure, or if the page
2520          * is being written back.  So grab it first before we start
2521          * the transaction handle.  This also allows us to allocate
2522          * the page (if needed) without using GFP_NOFS.
2523          */
2524 retry_grab:
2525         page = grab_cache_page_write_begin(mapping, index, flags);
2526         if (!page)
2527                 return -ENOMEM;
2528         unlock_page(page);
2529
2530         /*
2531          * With delayed allocation, we don't log the i_disksize update
2532          * if there is delayed block allocation. But we still need
2533          * to journalling the i_disksize update if writes to the end
2534          * of file which has an already mapped buffer.
2535          */
2536 retry_journal:
2537         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2538                                 ext4_da_write_credits(inode, pos, len));
2539         if (IS_ERR(handle)) {
2540                 page_cache_release(page);
2541                 return PTR_ERR(handle);
2542         }
2543
2544         lock_page(page);
2545         if (page->mapping != mapping) {
2546                 /* The page got truncated from under us */
2547                 unlock_page(page);
2548                 page_cache_release(page);
2549                 ext4_journal_stop(handle);
2550                 goto retry_grab;
2551         }
2552         /* In case writeback began while the page was unlocked */
2553         wait_for_stable_page(page);
2554
2555         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2556         if (ret < 0) {
2557                 unlock_page(page);
2558                 ext4_journal_stop(handle);
2559                 /*
2560                  * block_write_begin may have instantiated a few blocks
2561                  * outside i_size.  Trim these off again. Don't need
2562                  * i_size_read because we hold i_mutex.
2563                  */
2564                 if (pos + len > inode->i_size)
2565                         ext4_truncate_failed_write(inode);
2566
2567                 if (ret == -ENOSPC &&
2568                     ext4_should_retry_alloc(inode->i_sb, &retries))
2569                         goto retry_journal;
2570
2571                 page_cache_release(page);
2572                 return ret;
2573         }
2574
2575         *pagep = page;
2576         return ret;
2577 }
2578
2579 /*
2580  * Check if we should update i_disksize
2581  * when write to the end of file but not require block allocation
2582  */
2583 static int ext4_da_should_update_i_disksize(struct page *page,
2584                                             unsigned long offset)
2585 {
2586         struct buffer_head *bh;
2587         struct inode *inode = page->mapping->host;
2588         unsigned int idx;
2589         int i;
2590
2591         bh = page_buffers(page);
2592         idx = offset >> inode->i_blkbits;
2593
2594         for (i = 0; i < idx; i++)
2595                 bh = bh->b_this_page;
2596
2597         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2598                 return 0;
2599         return 1;
2600 }
2601
2602 static int ext4_da_write_end(struct file *file,
2603                              struct address_space *mapping,
2604                              loff_t pos, unsigned len, unsigned copied,
2605                              struct page *page, void *fsdata)
2606 {
2607         struct inode *inode = mapping->host;
2608         int ret = 0, ret2;
2609         handle_t *handle = ext4_journal_current_handle();
2610         loff_t new_i_size;
2611         unsigned long start, end;
2612         int write_mode = (int)(unsigned long)fsdata;
2613
2614         if (write_mode == FALL_BACK_TO_NONDELALLOC)
2615                 return ext4_write_end(file, mapping, pos,
2616                                       len, copied, page, fsdata);
2617
2618         trace_ext4_da_write_end(inode, pos, len, copied);
2619         start = pos & (PAGE_CACHE_SIZE - 1);
2620         end = start + copied - 1;
2621
2622         /*
2623          * generic_write_end() will run mark_inode_dirty() if i_size
2624          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2625          * into that.
2626          */
2627         new_i_size = pos + copied;
2628         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2629                 if (ext4_has_inline_data(inode) ||
2630                     ext4_da_should_update_i_disksize(page, end)) {
2631                         ext4_update_i_disksize(inode, new_i_size);
2632                         /* We need to mark inode dirty even if
2633                          * new_i_size is less that inode->i_size
2634                          * bu greater than i_disksize.(hint delalloc)
2635                          */
2636                         ext4_mark_inode_dirty(handle, inode);
2637                 }
2638         }
2639
2640         if (write_mode != CONVERT_INLINE_DATA &&
2641             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2642             ext4_has_inline_data(inode))
2643                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2644                                                      page);
2645         else
2646                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2647                                                         page, fsdata);
2648
2649         copied = ret2;
2650         if (ret2 < 0)
2651                 ret = ret2;
2652         ret2 = ext4_journal_stop(handle);
2653         if (!ret)
2654                 ret = ret2;
2655
2656         return ret ? ret : copied;
2657 }
2658
2659 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2660                                    unsigned int length)
2661 {
2662         /*
2663          * Drop reserved blocks
2664          */
2665         BUG_ON(!PageLocked(page));
2666         if (!page_has_buffers(page))
2667                 goto out;
2668
2669         ext4_da_page_release_reservation(page, offset, length);
2670
2671 out:
2672         ext4_invalidatepage(page, offset, length);
2673
2674         return;
2675 }
2676
2677 /*
2678  * Force all delayed allocation blocks to be allocated for a given inode.
2679  */
2680 int ext4_alloc_da_blocks(struct inode *inode)
2681 {
2682         trace_ext4_alloc_da_blocks(inode);
2683
2684         if (!EXT4_I(inode)->i_reserved_data_blocks)
2685                 return 0;
2686
2687         /*
2688          * We do something simple for now.  The filemap_flush() will
2689          * also start triggering a write of the data blocks, which is
2690          * not strictly speaking necessary (and for users of
2691          * laptop_mode, not even desirable).  However, to do otherwise
2692          * would require replicating code paths in:
2693          *
2694          * ext4_writepages() ->
2695          *    write_cache_pages() ---> (via passed in callback function)
2696          *        __mpage_da_writepage() -->
2697          *           mpage_add_bh_to_extent()
2698          *           mpage_da_map_blocks()
2699          *
2700          * The problem is that write_cache_pages(), located in
2701          * mm/page-writeback.c, marks pages clean in preparation for
2702          * doing I/O, which is not desirable if we're not planning on
2703          * doing I/O at all.
2704          *
2705          * We could call write_cache_pages(), and then redirty all of
2706          * the pages by calling redirty_page_for_writepage() but that
2707          * would be ugly in the extreme.  So instead we would need to
2708          * replicate parts of the code in the above functions,
2709          * simplifying them because we wouldn't actually intend to
2710          * write out the pages, but rather only collect contiguous
2711          * logical block extents, call the multi-block allocator, and
2712          * then update the buffer heads with the block allocations.
2713          *
2714          * For now, though, we'll cheat by calling filemap_flush(),
2715          * which will map the blocks, and start the I/O, but not
2716          * actually wait for the I/O to complete.
2717          */
2718         return filemap_flush(inode->i_mapping);
2719 }
2720
2721 /*
2722  * bmap() is special.  It gets used by applications such as lilo and by
2723  * the swapper to find the on-disk block of a specific piece of data.
2724  *
2725  * Naturally, this is dangerous if the block concerned is still in the
2726  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2727  * filesystem and enables swap, then they may get a nasty shock when the
2728  * data getting swapped to that swapfile suddenly gets overwritten by
2729  * the original zero's written out previously to the journal and
2730  * awaiting writeback in the kernel's buffer cache.
2731  *
2732  * So, if we see any bmap calls here on a modified, data-journaled file,
2733  * take extra steps to flush any blocks which might be in the cache.
2734  */
2735 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2736 {
2737         struct inode *inode = mapping->host;
2738         journal_t *journal;
2739         int err;
2740
2741         /*
2742          * We can get here for an inline file via the FIBMAP ioctl
2743          */
2744         if (ext4_has_inline_data(inode))
2745                 return 0;
2746
2747         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2748                         test_opt(inode->i_sb, DELALLOC)) {
2749                 /*
2750                  * With delalloc we want to sync the file
2751                  * so that we can make sure we allocate
2752                  * blocks for file
2753                  */
2754                 filemap_write_and_wait(mapping);
2755         }
2756
2757         if (EXT4_JOURNAL(inode) &&
2758             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2759                 /*
2760                  * This is a REALLY heavyweight approach, but the use of
2761                  * bmap on dirty files is expected to be extremely rare:
2762                  * only if we run lilo or swapon on a freshly made file
2763                  * do we expect this to happen.
2764                  *
2765                  * (bmap requires CAP_SYS_RAWIO so this does not
2766                  * represent an unprivileged user DOS attack --- we'd be
2767                  * in trouble if mortal users could trigger this path at
2768                  * will.)
2769                  *
2770                  * NB. EXT4_STATE_JDATA is not set on files other than
2771                  * regular files.  If somebody wants to bmap a directory
2772                  * or symlink and gets confused because the buffer
2773                  * hasn't yet been flushed to disk, they deserve
2774                  * everything they get.
2775                  */
2776
2777                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2778                 journal = EXT4_JOURNAL(inode);
2779                 jbd2_journal_lock_updates(journal);
2780                 err = jbd2_journal_flush(journal);
2781                 jbd2_journal_unlock_updates(journal);
2782
2783                 if (err)
2784                         return 0;
2785         }
2786
2787         return generic_block_bmap(mapping, block, ext4_get_block);
2788 }
2789
2790 static int ext4_readpage(struct file *file, struct page *page)
2791 {
2792         int ret = -EAGAIN;
2793         struct inode *inode = page->mapping->host;
2794
2795         trace_ext4_readpage(page);
2796
2797         if (ext4_has_inline_data(inode))
2798                 ret = ext4_readpage_inline(inode, page);
2799
2800         if (ret == -EAGAIN)
2801                 return mpage_readpage(page, ext4_get_block);
2802
2803         return ret;
2804 }
2805
2806 static int
2807 ext4_readpages(struct file *file, struct address_space *mapping,
2808                 struct list_head *pages, unsigned nr_pages)
2809 {
2810         struct inode *inode = mapping->host;
2811
2812         /* If the file has inline data, no need to do readpages. */
2813         if (ext4_has_inline_data(inode))
2814                 return 0;
2815
2816         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2817 }
2818
2819 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2820                                 unsigned int length)
2821 {
2822         trace_ext4_invalidatepage(page, offset, length);
2823
2824         /* No journalling happens on data buffers when this function is used */
2825         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2826
2827         block_invalidatepage(page, offset, length);
2828 }
2829
2830 static int __ext4_journalled_invalidatepage(struct page *page,
2831                                             unsigned int offset,
2832                                             unsigned int length)
2833 {
2834         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2835
2836         trace_ext4_journalled_invalidatepage(page, offset, length);
2837
2838         /*
2839          * If it's a full truncate we just forget about the pending dirtying
2840          */
2841         if (offset == 0 && length == PAGE_CACHE_SIZE)
2842                 ClearPageChecked(page);
2843
2844         return jbd2_journal_invalidatepage(journal, page, offset, length);
2845 }
2846
2847 /* Wrapper for aops... */
2848 static void ext4_journalled_invalidatepage(struct page *page,
2849                                            unsigned int offset,
2850                                            unsigned int length)
2851 {
2852         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
2853 }
2854
2855 static int ext4_releasepage(struct page *page, gfp_t wait)
2856 {
2857         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2858
2859         trace_ext4_releasepage(page);
2860
2861         /* Page has dirty journalled data -> cannot release */
2862         if (PageChecked(page))
2863                 return 0;
2864         if (journal)
2865                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2866         else
2867                 return try_to_free_buffers(page);
2868 }
2869
2870 /*
2871  * ext4_get_block used when preparing for a DIO write or buffer write.
2872  * We allocate an uinitialized extent if blocks haven't been allocated.
2873  * The extent will be converted to initialized after the IO is complete.
2874  */
2875 int ext4_get_block_write(struct inode *inode, sector_t iblock,
2876                    struct buffer_head *bh_result, int create)
2877 {
2878         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2879                    inode->i_ino, create);
2880         return _ext4_get_block(inode, iblock, bh_result,
2881                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
2882 }
2883
2884 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2885                    struct buffer_head *bh_result, int create)
2886 {
2887         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2888                    inode->i_ino, create);
2889         return _ext4_get_block(inode, iblock, bh_result,
2890                                EXT4_GET_BLOCKS_NO_LOCK);
2891 }
2892
2893 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2894                             ssize_t size, void *private)
2895 {
2896         ext4_io_end_t *io_end = iocb->private;
2897
2898         /* if not async direct IO just return */
2899         if (!io_end)
2900                 return;
2901
2902         ext_debug("ext4_end_io_dio(): io_end 0x%p "
2903                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2904                   iocb->private, io_end->inode->i_ino, iocb, offset,
2905                   size);
2906
2907         iocb->private = NULL;
2908         io_end->offset = offset;
2909         io_end->size = size;
2910         ext4_put_io_end(io_end);
2911 }
2912
2913 /*
2914  * For ext4 extent files, ext4 will do direct-io write to holes,
2915  * preallocated extents, and those write extend the file, no need to
2916  * fall back to buffered IO.
2917  *
2918  * For holes, we fallocate those blocks, mark them as unwritten
2919  * If those blocks were preallocated, we mark sure they are split, but
2920  * still keep the range to write as unwritten.
2921  *
2922  * The unwritten extents will be converted to written when DIO is completed.
2923  * For async direct IO, since the IO may still pending when return, we
2924  * set up an end_io call back function, which will do the conversion
2925  * when async direct IO completed.
2926  *
2927  * If the O_DIRECT write will extend the file then add this inode to the
2928  * orphan list.  So recovery will truncate it back to the original size
2929  * if the machine crashes during the write.
2930  *
2931  */
2932 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2933                               struct iov_iter *iter, loff_t offset)
2934 {
2935         struct file *file = iocb->ki_filp;
2936         struct inode *inode = file->f_mapping->host;
2937         ssize_t ret;
2938         size_t count = iov_iter_count(iter);
2939         int overwrite = 0;
2940         get_block_t *get_block_func = NULL;
2941         int dio_flags = 0;
2942         loff_t final_size = offset + count;
2943         ext4_io_end_t *io_end = NULL;
2944
2945         /* Use the old path for reads and writes beyond i_size. */
2946         if (rw != WRITE || final_size > inode->i_size)
2947                 return ext4_ind_direct_IO(rw, iocb, iter, offset);
2948
2949         BUG_ON(iocb->private == NULL);
2950
2951         /*
2952          * Make all waiters for direct IO properly wait also for extent
2953          * conversion. This also disallows race between truncate() and
2954          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
2955          */
2956         if (rw == WRITE)
2957                 atomic_inc(&inode->i_dio_count);
2958
2959         /* If we do a overwrite dio, i_mutex locking can be released */
2960         overwrite = *((int *)iocb->private);
2961
2962         if (overwrite) {
2963                 down_read(&EXT4_I(inode)->i_data_sem);
2964                 mutex_unlock(&inode->i_mutex);
2965         }
2966
2967         /*
2968          * We could direct write to holes and fallocate.
2969          *
2970          * Allocated blocks to fill the hole are marked as
2971          * unwritten to prevent parallel buffered read to expose
2972          * the stale data before DIO complete the data IO.
2973          *
2974          * As to previously fallocated extents, ext4 get_block will
2975          * just simply mark the buffer mapped but still keep the
2976          * extents unwritten.
2977          *
2978          * For non AIO case, we will convert those unwritten extents
2979          * to written after return back from blockdev_direct_IO.
2980          *
2981          * For async DIO, the conversion needs to be deferred when the
2982          * IO is completed. The ext4 end_io callback function will be
2983          * called to take care of the conversion work.  Here for async
2984          * case, we allocate an io_end structure to hook to the iocb.
2985          */
2986         iocb->private = NULL;
2987         ext4_inode_aio_set(inode, NULL);
2988         if (!is_sync_kiocb(iocb)) {
2989                 io_end = ext4_init_io_end(inode, GFP_NOFS);
2990                 if (!io_end) {
2991                         ret = -ENOMEM;
2992                         goto retake_lock;
2993                 }
2994                 /*
2995                  * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
2996                  */
2997                 iocb->private = ext4_get_io_end(io_end);
2998                 /*
2999                  * we save the io structure for current async direct
3000                  * IO, so that later ext4_map_blocks() could flag the
3001                  * io structure whether there is a unwritten extents
3002                  * needs to be converted when IO is completed.
3003                  */
3004                 ext4_inode_aio_set(inode, io_end);
3005         }
3006
3007         if (overwrite) {
3008                 get_block_func = ext4_get_block_write_nolock;
3009         } else {
3010                 get_block_func = ext4_get_block_write;
3011                 dio_flags = DIO_LOCKING;
3012         }
3013         ret = __blockdev_direct_IO(rw, iocb, inode,
3014                                    inode->i_sb->s_bdev, iter,
3015                                    offset,
3016                                    get_block_func,
3017                                    ext4_end_io_dio,
3018                                    NULL,
3019                                    dio_flags);
3020
3021         /*
3022          * Put our reference to io_end. This can free the io_end structure e.g.
3023          * in sync IO case or in case of error. It can even perform extent
3024          * conversion if all bios we submitted finished before we got here.
3025          * Note that in that case iocb->private can be already set to NULL
3026          * here.
3027          */
3028         if (io_end) {
3029                 ext4_inode_aio_set(inode, NULL);
3030                 ext4_put_io_end(io_end);
3031                 /*
3032                  * When no IO was submitted ext4_end_io_dio() was not
3033                  * called so we have to put iocb's reference.
3034                  */
3035                 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3036                         WARN_ON(iocb->private != io_end);
3037                         WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3038                         ext4_put_io_end(io_end);
3039                         iocb->private = NULL;
3040                 }
3041         }
3042         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3043                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3044                 int err;
3045                 /*
3046                  * for non AIO case, since the IO is already
3047                  * completed, we could do the conversion right here
3048                  */
3049                 err = ext4_convert_unwritten_extents(NULL, inode,
3050                                                      offset, ret);
3051                 if (err < 0)
3052                         ret = err;
3053                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3054         }
3055
3056 retake_lock:
3057         if (rw == WRITE)
3058                 inode_dio_done(inode);
3059         /* take i_mutex locking again if we do a ovewrite dio */
3060         if (overwrite) {
3061                 up_read(&EXT4_I(inode)->i_data_sem);
3062                 mutex_lock(&inode->i_mutex);
3063         }
3064
3065         return ret;
3066 }
3067
3068 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3069                               struct iov_iter *iter, loff_t offset)
3070 {
3071         struct file *file = iocb->ki_filp;
3072         struct inode *inode = file->f_mapping->host;
3073         size_t count = iov_iter_count(iter);
3074         ssize_t ret;
3075
3076         /*
3077          * If we are doing data journalling we don't support O_DIRECT
3078          */
3079         if (ext4_should_journal_data(inode))
3080                 return 0;
3081
3082         /* Let buffer I/O handle the inline data case. */
3083         if (ext4_has_inline_data(inode))
3084                 return 0;
3085
3086         trace_ext4_direct_IO_enter(inode, offset, count, rw);
3087         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3088                 ret = ext4_ext_direct_IO(rw, iocb, iter, offset);
3089         else
3090                 ret = ext4_ind_direct_IO(rw, iocb, iter, offset);
3091         trace_ext4_direct_IO_exit(inode, offset, count, rw, ret);
3092         return ret;
3093 }
3094
3095 /*
3096  * Pages can be marked dirty completely asynchronously from ext4's journalling
3097  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3098  * much here because ->set_page_dirty is called under VFS locks.  The page is
3099  * not necessarily locked.
3100  *
3101  * We cannot just dirty the page and leave attached buffers clean, because the
3102  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3103  * or jbddirty because all the journalling code will explode.
3104  *
3105  * So what we do is to mark the page "pending dirty" and next time writepage
3106  * is called, propagate that into the buffers appropriately.
3107  */
3108 static int ext4_journalled_set_page_dirty(struct page *page)
3109 {
3110         SetPageChecked(page);
3111         return __set_page_dirty_nobuffers(page);
3112 }
3113
3114 static const struct address_space_operations ext4_aops = {
3115         .readpage               = ext4_readpage,
3116         .readpages              = ext4_readpages,
3117         .writepage              = ext4_writepage,
3118         .writepages             = ext4_writepages,
3119         .write_begin            = ext4_write_begin,
3120         .write_end              = ext4_write_end,
3121         .bmap                   = ext4_bmap,
3122         .invalidatepage         = ext4_invalidatepage,
3123         .releasepage            = ext4_releasepage,
3124         .direct_IO              = ext4_direct_IO,
3125         .migratepage            = buffer_migrate_page,
3126         .is_partially_uptodate  = block_is_partially_uptodate,
3127         .error_remove_page      = generic_error_remove_page,
3128 };
3129
3130 static const struct address_space_operations ext4_journalled_aops = {
3131         .readpage               = ext4_readpage,
3132         .readpages              = ext4_readpages,
3133         .writepage              = ext4_writepage,
3134         .writepages             = ext4_writepages,
3135         .write_begin            = ext4_write_begin,
3136         .write_end              = ext4_journalled_write_end,
3137         .set_page_dirty         = ext4_journalled_set_page_dirty,
3138         .bmap                   = ext4_bmap,
3139         .invalidatepage         = ext4_journalled_invalidatepage,
3140         .releasepage            = ext4_releasepage,
3141         .direct_IO              = ext4_direct_IO,
3142         .is_partially_uptodate  = block_is_partially_uptodate,
3143         .error_remove_page      = generic_error_remove_page,
3144 };
3145
3146 static const struct address_space_operations ext4_da_aops = {
3147         .readpage               = ext4_readpage,
3148         .readpages              = ext4_readpages,
3149         .writepage              = ext4_writepage,
3150         .writepages             = ext4_writepages,
3151         .write_begin            = ext4_da_write_begin,
3152         .write_end              = ext4_da_write_end,
3153         .bmap                   = ext4_bmap,
3154         .invalidatepage         = ext4_da_invalidatepage,
3155         .releasepage            = ext4_releasepage,
3156         .direct_IO              = ext4_direct_IO,
3157         .migratepage            = buffer_migrate_page,
3158         .is_partially_uptodate  = block_is_partially_uptodate,
3159         .error_remove_page      = generic_error_remove_page,
3160 };
3161
3162 void ext4_set_aops(struct inode *inode)
3163 {
3164         switch (ext4_inode_journal_mode(inode)) {
3165         case EXT4_INODE_ORDERED_DATA_MODE:
3166                 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3167                 break;
3168         case EXT4_INODE_WRITEBACK_DATA_MODE:
3169                 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3170                 break;
3171         case EXT4_INODE_JOURNAL_DATA_MODE:
3172                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3173                 return;
3174         default:
3175                 BUG();
3176         }
3177         if (test_opt(inode->i_sb, DELALLOC))
3178                 inode->i_mapping->a_ops = &ext4_da_aops;
3179         else
3180                 inode->i_mapping->a_ops = &ext4_aops;
3181 }
3182
3183 /*
3184  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3185  * starting from file offset 'from'.  The range to be zero'd must
3186  * be contained with in one block.  If the specified range exceeds
3187  * the end of the block it will be shortened to end of the block
3188  * that cooresponds to 'from'
3189  */
3190 static int ext4_block_zero_page_range(handle_t *handle,
3191                 struct address_space *mapping, loff_t from, loff_t length)
3192 {
3193         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3194         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3195         unsigned blocksize, max, pos;
3196         ext4_lblk_t iblock;
3197         struct inode *inode = mapping->host;
3198         struct buffer_head *bh;
3199         struct page *page;
3200         int err = 0;
3201
3202         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3203                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3204         if (!page)
3205                 return -ENOMEM;
3206
3207         blocksize = inode->i_sb->s_blocksize;
3208         max = blocksize - (offset & (blocksize - 1));
3209
3210         /*
3211          * correct length if it does not fall between
3212          * 'from' and the end of the block
3213          */
3214         if (length > max || length < 0)
3215                 length = max;
3216
3217         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3218
3219         if (!page_has_buffers(page))
3220                 create_empty_buffers(page, blocksize, 0);
3221
3222         /* Find the buffer that contains "offset" */
3223         bh = page_buffers(page);
3224         pos = blocksize;
3225         while (offset >= pos) {
3226                 bh = bh->b_this_page;
3227                 iblock++;
3228                 pos += blocksize;
3229         }
3230         if (buffer_freed(bh)) {
3231                 BUFFER_TRACE(bh, "freed: skip");
3232                 goto unlock;
3233         }
3234         if (!buffer_mapped(bh)) {
3235                 BUFFER_TRACE(bh, "unmapped");
3236                 ext4_get_block(inode, iblock, bh, 0);
3237                 /* unmapped? It's a hole - nothing to do */
3238                 if (!buffer_mapped(bh)) {
3239                         BUFFER_TRACE(bh, "still unmapped");
3240                         goto unlock;
3241                 }
3242         }
3243
3244         /* Ok, it's mapped. Make sure it's up-to-date */
3245         if (PageUptodate(page))
3246                 set_buffer_uptodate(bh);
3247
3248         if (!buffer_uptodate(bh)) {
3249                 err = -EIO;
3250                 ll_rw_block(READ, 1, &bh);
3251                 wait_on_buffer(bh);
3252                 /* Uhhuh. Read error. Complain and punt. */
3253                 if (!buffer_uptodate(bh))
3254                         goto unlock;
3255         }
3256         if (ext4_should_journal_data(inode)) {
3257                 BUFFER_TRACE(bh, "get write access");
3258                 err = ext4_journal_get_write_access(handle, bh);
3259                 if (err)
3260                         goto unlock;
3261         }
3262         zero_user(page, offset, length);
3263         BUFFER_TRACE(bh, "zeroed end of block");
3264
3265         if (ext4_should_journal_data(inode)) {
3266                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3267         } else {
3268                 err = 0;
3269                 mark_buffer_dirty(bh);
3270                 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3271                         err = ext4_jbd2_file_inode(handle, inode);
3272         }
3273
3274 unlock:
3275         unlock_page(page);
3276         page_cache_release(page);
3277         return err;
3278 }
3279
3280 /*
3281  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3282  * up to the end of the block which corresponds to `from'.
3283  * This required during truncate. We need to physically zero the tail end
3284  * of that block so it doesn't yield old data if the file is later grown.
3285  */
3286 static int ext4_block_truncate_page(handle_t *handle,
3287                 struct address_space *mapping, loff_t from)
3288 {
3289         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3290         unsigned length;
3291         unsigned blocksize;
3292         struct inode *inode = mapping->host;
3293
3294         blocksize = inode->i_sb->s_blocksize;
3295         length = blocksize - (offset & (blocksize - 1));
3296
3297         return ext4_block_zero_page_range(handle, mapping, from, length);
3298 }
3299
3300 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3301                              loff_t lstart, loff_t length)
3302 {
3303         struct super_block *sb = inode->i_sb;
3304         struct address_space *mapping = inode->i_mapping;
3305         unsigned partial_start, partial_end;
3306         ext4_fsblk_t start, end;
3307         loff_t byte_end = (lstart + length - 1);
3308         int err = 0;
3309
3310         partial_start = lstart & (sb->s_blocksize - 1);
3311         partial_end = byte_end & (sb->s_blocksize - 1);
3312
3313         start = lstart >> sb->s_blocksize_bits;
3314         end = byte_end >> sb->s_blocksize_bits;
3315
3316         /* Handle partial zero within the single block */
3317         if (start == end &&
3318             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3319                 err = ext4_block_zero_page_range(handle, mapping,
3320                                                  lstart, length);
3321                 return err;
3322         }
3323         /* Handle partial zero out on the start of the range */
3324         if (partial_start) {
3325                 err = ext4_block_zero_page_range(handle, mapping,
3326                                                  lstart, sb->s_blocksize);
3327                 if (err)
3328                         return err;
3329         }
3330         /* Handle partial zero out on the end of the range */
3331         if (partial_end != sb->s_blocksize - 1)
3332                 err = ext4_block_zero_page_range(handle, mapping,
3333                                                  byte_end - partial_end,
3334                                                  partial_end + 1);
3335         return err;
3336 }
3337
3338 int ext4_can_truncate(struct inode *inode)
3339 {
3340         if (S_ISREG(inode->i_mode))
3341                 return 1;
3342         if (S_ISDIR(inode->i_mode))
3343                 return 1;
3344         if (S_ISLNK(inode->i_mode))
3345                 return !ext4_inode_is_fast_symlink(inode);
3346         return 0;
3347 }
3348
3349 /*
3350  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3351  * associated with the given offset and length
3352  *
3353  * @inode:  File inode
3354  * @offset: The offset where the hole will begin
3355  * @len:    The length of the hole
3356  *
3357  * Returns: 0 on success or negative on failure
3358  */
3359
3360 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3361 {
3362         struct super_block *sb = inode->i_sb;
3363         ext4_lblk_t first_block, stop_block;
3364         struct address_space *mapping = inode->i_mapping;
3365         loff_t first_block_offset, last_block_offset;
3366         handle_t *handle;
3367         unsigned int credits;
3368         int ret = 0;
3369
3370         if (!S_ISREG(inode->i_mode))
3371                 return -EOPNOTSUPP;
3372
3373         trace_ext4_punch_hole(inode, offset, length, 0);
3374
3375         /*
3376          * Write out all dirty pages to avoid race conditions
3377          * Then release them.
3378          */
3379         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3380                 ret = filemap_write_and_wait_range(mapping, offset,
3381                                                    offset + length - 1);
3382                 if (ret)
3383                         return ret;
3384         }
3385
3386         mutex_lock(&inode->i_mutex);
3387
3388         /* No need to punch hole beyond i_size */
3389         if (offset >= inode->i_size)
3390                 goto out_mutex;
3391
3392         /*
3393          * If the hole extends beyond i_size, set the hole
3394          * to end after the page that contains i_size
3395          */
3396         if (offset + length > inode->i_size) {
3397                 length = inode->i_size +
3398                    PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3399                    offset;
3400         }
3401
3402         if (offset & (sb->s_blocksize - 1) ||
3403             (offset + length) & (sb->s_blocksize - 1)) {
3404                 /*
3405                  * Attach jinode to inode for jbd2 if we do any zeroing of
3406                  * partial block
3407                  */
3408                 ret = ext4_inode_attach_jinode(inode);
3409                 if (ret < 0)
3410                         goto out_mutex;
3411
3412         }
3413
3414         first_block_offset = round_up(offset, sb->s_blocksize);
3415         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3416
3417         /* Now release the pages and zero block aligned part of pages*/
3418         if (last_block_offset > first_block_offset)
3419                 truncate_pagecache_range(inode, first_block_offset,
3420                                          last_block_offset);
3421
3422         /* Wait all existing dio workers, newcomers will block on i_mutex */
3423         ext4_inode_block_unlocked_dio(inode);
3424         inode_dio_wait(inode);
3425
3426         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3427                 credits = ext4_writepage_trans_blocks(inode);
3428         else
3429                 credits = ext4_blocks_for_truncate(inode);
3430         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3431         if (IS_ERR(handle)) {
3432                 ret = PTR_ERR(handle);
3433                 ext4_std_error(sb, ret);
3434                 goto out_dio;
3435         }
3436
3437         ret = ext4_zero_partial_blocks(handle, inode, offset,
3438                                        length);
3439         if (ret)
3440                 goto out_stop;
3441
3442         first_block = (offset + sb->s_blocksize - 1) >>
3443                 EXT4_BLOCK_SIZE_BITS(sb);
3444         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3445
3446         /* If there are no blocks to remove, return now */
3447         if (first_block >= stop_block)
3448                 goto out_stop;
3449
3450         down_write(&EXT4_I(inode)->i_data_sem);
3451         ext4_discard_preallocations(inode);
3452
3453         ret = ext4_es_remove_extent(inode, first_block,
3454                                     stop_block - first_block);
3455         if (ret) {
3456                 up_write(&EXT4_I(inode)->i_data_sem);
3457                 goto out_stop;
3458         }
3459
3460         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3461                 ret = ext4_ext_remove_space(inode, first_block,
3462                                             stop_block - 1);
3463         else
3464                 ret = ext4_ind_remove_space(handle, inode, first_block,
3465                                             stop_block);
3466
3467         up_write(&EXT4_I(inode)->i_data_sem);
3468         if (IS_SYNC(inode))
3469                 ext4_handle_sync(handle);
3470
3471         /* Now release the pages again to reduce race window */
3472         if (last_block_offset > first_block_offset)
3473                 truncate_pagecache_range(inode, first_block_offset,
3474                                          last_block_offset);
3475
3476         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3477         ext4_mark_inode_dirty(handle, inode);
3478 out_stop:
3479         ext4_journal_stop(handle);
3480 out_dio:
3481         ext4_inode_resume_unlocked_dio(inode);
3482 out_mutex:
3483         mutex_unlock(&inode->i_mutex);
3484         return ret;
3485 }
3486
3487 int ext4_inode_attach_jinode(struct inode *inode)
3488 {
3489         struct ext4_inode_info *ei = EXT4_I(inode);
3490         struct jbd2_inode *jinode;
3491
3492         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3493                 return 0;
3494
3495         jinode = jbd2_alloc_inode(GFP_KERNEL);
3496         spin_lock(&inode->i_lock);
3497         if (!ei->jinode) {
3498                 if (!jinode) {
3499                         spin_unlock(&inode->i_lock);
3500                         return -ENOMEM;
3501                 }
3502                 ei->jinode = jinode;
3503                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3504                 jinode = NULL;
3505         }
3506         spin_unlock(&inode->i_lock);
3507         if (unlikely(jinode != NULL))
3508                 jbd2_free_inode(jinode);
3509         return 0;
3510 }
3511
3512 /*
3513  * ext4_truncate()
3514  *
3515  * We block out ext4_get_block() block instantiations across the entire
3516  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3517  * simultaneously on behalf of the same inode.
3518  *
3519  * As we work through the truncate and commit bits of it to the journal there
3520  * is one core, guiding principle: the file's tree must always be consistent on
3521  * disk.  We must be able to restart the truncate after a crash.
3522  *
3523  * The file's tree may be transiently inconsistent in memory (although it
3524  * probably isn't), but whenever we close off and commit a journal transaction,
3525  * the contents of (the filesystem + the journal) must be consistent and
3526  * restartable.  It's pretty simple, really: bottom up, right to left (although
3527  * left-to-right works OK too).
3528  *
3529  * Note that at recovery time, journal replay occurs *before* the restart of
3530  * truncate against the orphan inode list.
3531  *
3532  * The committed inode has the new, desired i_size (which is the same as
3533  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3534  * that this inode's truncate did not complete and it will again call
3535  * ext4_truncate() to have another go.  So there will be instantiated blocks
3536  * to the right of the truncation point in a crashed ext4 filesystem.  But
3537  * that's fine - as long as they are linked from the inode, the post-crash
3538  * ext4_truncate() run will find them and release them.
3539  */
3540 void ext4_truncate(struct inode *inode)
3541 {
3542         struct ext4_inode_info *ei = EXT4_I(inode);
3543         unsigned int credits;
3544         handle_t *handle;
3545         struct address_space *mapping = inode->i_mapping;
3546
3547         /*
3548          * There is a possibility that we're either freeing the inode
3549          * or it's a completely new inode. In those cases we might not
3550          * have i_mutex locked because it's not necessary.
3551          */
3552         if (!(inode->i_state & (I_NEW|I_FREEING)))
3553                 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3554         trace_ext4_truncate_enter(inode);
3555
3556         if (!ext4_can_truncate(inode))
3557                 return;
3558
3559         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3560
3561         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3562                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3563
3564         if (ext4_has_inline_data(inode)) {
3565                 int has_inline = 1;
3566
3567                 ext4_inline_data_truncate(inode, &has_inline);
3568                 if (has_inline)
3569                         return;
3570         }
3571
3572         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3573         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3574                 if (ext4_inode_attach_jinode(inode) < 0)
3575                         return;
3576         }
3577
3578         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3579                 credits = ext4_writepage_trans_blocks(inode);
3580         else
3581                 credits = ext4_blocks_for_truncate(inode);
3582
3583         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3584         if (IS_ERR(handle)) {
3585                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3586                 return;
3587         }
3588
3589         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3590                 ext4_block_truncate_page(handle, mapping, inode->i_size);
3591
3592         /*
3593          * We add the inode to the orphan list, so that if this
3594          * truncate spans multiple transactions, and we crash, we will
3595          * resume the truncate when the filesystem recovers.  It also
3596          * marks the inode dirty, to catch the new size.
3597          *
3598          * Implication: the file must always be in a sane, consistent
3599          * truncatable state while each transaction commits.
3600          */
3601         if (ext4_orphan_add(handle, inode))
3602                 goto out_stop;
3603
3604         down_write(&EXT4_I(inode)->i_data_sem);
3605
3606         ext4_discard_preallocations(inode);
3607
3608         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3609                 ext4_ext_truncate(handle, inode);
3610         else
3611                 ext4_ind_truncate(handle, inode);
3612
3613         up_write(&ei->i_data_sem);
3614
3615         if (IS_SYNC(inode))
3616                 ext4_handle_sync(handle);
3617
3618 out_stop:
3619         /*
3620          * If this was a simple ftruncate() and the file will remain alive,
3621          * then we need to clear up the orphan record which we created above.
3622          * However, if this was a real unlink then we were called by
3623          * ext4_evict_inode(), and we allow that function to clean up the
3624          * orphan info for us.
3625          */
3626         if (inode->i_nlink)
3627                 ext4_orphan_del(handle, inode);
3628
3629         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3630         ext4_mark_inode_dirty(handle, inode);
3631         ext4_journal_stop(handle);
3632
3633         trace_ext4_truncate_exit(inode);
3634 }
3635
3636 /*
3637  * ext4_get_inode_loc returns with an extra refcount against the inode's
3638  * underlying buffer_head on success. If 'in_mem' is true, we have all
3639  * data in memory that is needed to recreate the on-disk version of this
3640  * inode.
3641  */
3642 static int __ext4_get_inode_loc(struct inode *inode,
3643                                 struct ext4_iloc *iloc, int in_mem)
3644 {
3645         struct ext4_group_desc  *gdp;
3646         struct buffer_head      *bh;
3647         struct super_block      *sb = inode->i_sb;
3648         ext4_fsblk_t            block;
3649         int                     inodes_per_block, inode_offset;
3650
3651         iloc->bh = NULL;
3652         if (!ext4_valid_inum(sb, inode->i_ino))
3653                 return -EIO;
3654
3655         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3656         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3657         if (!gdp)
3658                 return -EIO;
3659
3660         /*
3661          * Figure out the offset within the block group inode table
3662          */
3663         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3664         inode_offset = ((inode->i_ino - 1) %
3665                         EXT4_INODES_PER_GROUP(sb));
3666         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3667         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3668
3669         bh = sb_getblk(sb, block);
3670         if (unlikely(!bh))
3671                 return -ENOMEM;
3672         if (!buffer_uptodate(bh)) {
3673                 lock_buffer(bh);
3674
3675                 /*
3676                  * If the buffer has the write error flag, we have failed
3677                  * to write out another inode in the same block.  In this
3678                  * case, we don't have to read the block because we may
3679                  * read the old inode data successfully.
3680                  */
3681                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3682                         set_buffer_uptodate(bh);
3683
3684                 if (buffer_uptodate(bh)) {
3685                         /* someone brought it uptodate while we waited */
3686                         unlock_buffer(bh);
3687                         goto has_buffer;
3688                 }
3689
3690                 /*
3691                  * If we have all information of the inode in memory and this
3692                  * is the only valid inode in the block, we need not read the
3693                  * block.
3694                  */
3695                 if (in_mem) {
3696                         struct buffer_head *bitmap_bh;
3697                         int i, start;
3698
3699                         start = inode_offset & ~(inodes_per_block - 1);
3700
3701                         /* Is the inode bitmap in cache? */
3702                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3703                         if (unlikely(!bitmap_bh))
3704                                 goto make_io;
3705
3706                         /*
3707                          * If the inode bitmap isn't in cache then the
3708                          * optimisation may end up performing two reads instead
3709                          * of one, so skip it.
3710                          */
3711                         if (!buffer_uptodate(bitmap_bh)) {
3712                                 brelse(bitmap_bh);
3713                                 goto make_io;
3714                         }
3715                         for (i = start; i < start + inodes_per_block; i++) {
3716                                 if (i == inode_offset)
3717                                         continue;
3718                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3719                                         break;
3720                         }
3721                         brelse(bitmap_bh);
3722                         if (i == start + inodes_per_block) {
3723                                 /* all other inodes are free, so skip I/O */
3724                                 memset(bh->b_data, 0, bh->b_size);
3725                                 set_buffer_uptodate(bh);
3726                                 unlock_buffer(bh);
3727                                 goto has_buffer;
3728                         }
3729                 }
3730
3731 make_io:
3732                 /*
3733                  * If we need to do any I/O, try to pre-readahead extra
3734                  * blocks from the inode table.
3735                  */
3736                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3737                         ext4_fsblk_t b, end, table;
3738                         unsigned num;
3739                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3740
3741                         table = ext4_inode_table(sb, gdp);
3742                         /* s_inode_readahead_blks is always a power of 2 */
3743                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
3744                         if (table > b)
3745                                 b = table;
3746                         end = b + ra_blks;
3747                         num = EXT4_INODES_PER_GROUP(sb);
3748                         if (ext4_has_group_desc_csum(sb))
3749                                 num -= ext4_itable_unused_count(sb, gdp);
3750                         table += num / inodes_per_block;
3751                         if (end > table)
3752                                 end = table;
3753                         while (b <= end)
3754                                 sb_breadahead(sb, b++);
3755                 }
3756
3757                 /*
3758                  * There are other valid inodes in the buffer, this inode
3759                  * has in-inode xattrs, or we don't have this inode in memory.
3760                  * Read the block from disk.
3761                  */
3762                 trace_ext4_load_inode(inode);
3763                 get_bh(bh);
3764                 bh->b_end_io = end_buffer_read_sync;
3765                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3766                 wait_on_buffer(bh);
3767                 if (!buffer_uptodate(bh)) {
3768                         EXT4_ERROR_INODE_BLOCK(inode, block,
3769                                                "unable to read itable block");
3770                         brelse(bh);
3771                         return -EIO;
3772                 }
3773         }
3774 has_buffer:
3775         iloc->bh = bh;
3776         return 0;
3777 }
3778
3779 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3780 {
3781         /* We have all inode data except xattrs in memory here. */
3782         return __ext4_get_inode_loc(inode, iloc,
3783                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3784 }
3785
3786 void ext4_set_inode_flags(struct inode *inode)
3787 {
3788         unsigned int flags = EXT4_I(inode)->i_flags;
3789         unsigned int new_fl = 0;
3790
3791         if (flags & EXT4_SYNC_FL)
3792                 new_fl |= S_SYNC;
3793         if (flags & EXT4_APPEND_FL)
3794                 new_fl |= S_APPEND;
3795         if (flags & EXT4_IMMUTABLE_FL)
3796                 new_fl |= S_IMMUTABLE;
3797         if (flags & EXT4_NOATIME_FL)
3798                 new_fl |= S_NOATIME;
3799         if (flags & EXT4_DIRSYNC_FL)
3800                 new_fl |= S_DIRSYNC;
3801         inode_set_flags(inode, new_fl,
3802                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3803 }
3804
3805 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3806 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3807 {
3808         unsigned int vfs_fl;
3809         unsigned long old_fl, new_fl;
3810
3811         do {
3812                 vfs_fl = ei->vfs_inode.i_flags;
3813                 old_fl = ei->i_flags;
3814                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3815                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3816                                 EXT4_DIRSYNC_FL);
3817                 if (vfs_fl & S_SYNC)
3818                         new_fl |= EXT4_SYNC_FL;
3819                 if (vfs_fl & S_APPEND)
3820                         new_fl |= EXT4_APPEND_FL;
3821                 if (vfs_fl & S_IMMUTABLE)
3822                         new_fl |= EXT4_IMMUTABLE_FL;
3823                 if (vfs_fl & S_NOATIME)
3824                         new_fl |= EXT4_NOATIME_FL;
3825                 if (vfs_fl & S_DIRSYNC)
3826                         new_fl |= EXT4_DIRSYNC_FL;
3827         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3828 }
3829
3830 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3831                                   struct ext4_inode_info *ei)
3832 {
3833         blkcnt_t i_blocks ;
3834         struct inode *inode = &(ei->vfs_inode);
3835         struct super_block *sb = inode->i_sb;
3836
3837         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3838                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3839                 /* we are using combined 48 bit field */
3840                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3841                                         le32_to_cpu(raw_inode->i_blocks_lo);
3842                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3843                         /* i_blocks represent file system block size */
3844                         return i_blocks  << (inode->i_blkbits - 9);
3845                 } else {
3846                         return i_blocks;
3847                 }
3848         } else {
3849                 return le32_to_cpu(raw_inode->i_blocks_lo);
3850         }
3851 }
3852
3853 static inline void ext4_iget_extra_inode(struct inode *inode,
3854                                          struct ext4_inode *raw_inode,
3855                                          struct ext4_inode_info *ei)
3856 {
3857         __le32 *magic = (void *)raw_inode +
3858                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3859         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3860                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3861                 ext4_find_inline_data_nolock(inode);
3862         } else
3863                 EXT4_I(inode)->i_inline_off = 0;
3864 }
3865
3866 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3867 {
3868         struct ext4_iloc iloc;
3869         struct ext4_inode *raw_inode;
3870         struct ext4_inode_info *ei;
3871         struct inode *inode;
3872         journal_t *journal = EXT4_SB(sb)->s_journal;
3873         long ret;
3874         int block;
3875         uid_t i_uid;
3876         gid_t i_gid;
3877
3878         inode = iget_locked(sb, ino);
3879         if (!inode)
3880                 return ERR_PTR(-ENOMEM);
3881         if (!(inode->i_state & I_NEW))
3882                 return inode;
3883
3884         ei = EXT4_I(inode);
3885         iloc.bh = NULL;
3886
3887         ret = __ext4_get_inode_loc(inode, &iloc, 0);
3888         if (ret < 0)
3889                 goto bad_inode;
3890         raw_inode = ext4_raw_inode(&iloc);
3891
3892         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3893                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3894                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3895                     EXT4_INODE_SIZE(inode->i_sb)) {
3896                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3897                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3898                                 EXT4_INODE_SIZE(inode->i_sb));
3899                         ret = -EIO;
3900                         goto bad_inode;
3901                 }
3902         } else
3903                 ei->i_extra_isize = 0;
3904
3905         /* Precompute checksum seed for inode metadata */
3906         if (ext4_has_metadata_csum(sb)) {
3907                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3908                 __u32 csum;
3909                 __le32 inum = cpu_to_le32(inode->i_ino);
3910                 __le32 gen = raw_inode->i_generation;
3911                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3912                                    sizeof(inum));
3913                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3914                                               sizeof(gen));
3915         }
3916
3917         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3918                 EXT4_ERROR_INODE(inode, "checksum invalid");
3919                 ret = -EIO;
3920                 goto bad_inode;
3921         }
3922
3923         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3924         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3925         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3926         if (!(test_opt(inode->i_sb, NO_UID32))) {
3927                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3928                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3929         }
3930         i_uid_write(inode, i_uid);
3931         i_gid_write(inode, i_gid);
3932         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3933
3934         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
3935         ei->i_inline_off = 0;
3936         ei->i_dir_start_lookup = 0;
3937         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3938         /* We now have enough fields to check if the inode was active or not.
3939          * This is needed because nfsd might try to access dead inodes
3940          * the test is that same one that e2fsck uses
3941          * NeilBrown 1999oct15
3942          */
3943         if (inode->i_nlink == 0) {
3944                 if ((inode->i_mode == 0 ||
3945                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
3946                     ino != EXT4_BOOT_LOADER_INO) {
3947                         /* this inode is deleted */
3948                         ret = -ESTALE;
3949                         goto bad_inode;
3950                 }
3951                 /* The only unlinked inodes we let through here have
3952                  * valid i_mode and are being read by the orphan
3953                  * recovery code: that's fine, we're about to complete
3954                  * the process of deleting those.
3955                  * OR it is the EXT4_BOOT_LOADER_INO which is
3956                  * not initialized on a new filesystem. */
3957         }
3958         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3959         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3960         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3961         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3962                 ei->i_file_acl |=
3963                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3964         inode->i_size = ext4_isize(raw_inode);
3965         ei->i_disksize = inode->i_size;
3966 #ifdef CONFIG_QUOTA
3967         ei->i_reserved_quota = 0;
3968 #endif
3969         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3970         ei->i_block_group = iloc.block_group;
3971         ei->i_last_alloc_group = ~0;
3972         /*
3973          * NOTE! The in-memory inode i_data array is in little-endian order
3974          * even on big-endian machines: we do NOT byteswap the block numbers!
3975          */
3976         for (block = 0; block < EXT4_N_BLOCKS; block++)
3977                 ei->i_data[block] = raw_inode->i_block[block];
3978         INIT_LIST_HEAD(&ei->i_orphan);
3979
3980         /*
3981          * Set transaction id's of transactions that have to be committed
3982          * to finish f[data]sync. We set them to currently running transaction
3983          * as we cannot be sure that the inode or some of its metadata isn't
3984          * part of the transaction - the inode could have been reclaimed and
3985          * now it is reread from disk.
3986          */
3987         if (journal) {
3988                 transaction_t *transaction;
3989                 tid_t tid;
3990
3991                 read_lock(&journal->j_state_lock);
3992                 if (journal->j_running_transaction)
3993                         transaction = journal->j_running_transaction;
3994                 else
3995                         transaction = journal->j_committing_transaction;
3996                 if (transaction)
3997                         tid = transaction->t_tid;
3998                 else
3999                         tid = journal->j_commit_sequence;
4000                 read_unlock(&journal->j_state_lock);
4001                 ei->i_sync_tid = tid;
4002                 ei->i_datasync_tid = tid;
4003         }
4004
4005         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4006                 if (ei->i_extra_isize == 0) {
4007                         /* The extra space is currently unused. Use it. */
4008                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4009                                             EXT4_GOOD_OLD_INODE_SIZE;
4010                 } else {
4011                         ext4_iget_extra_inode(inode, raw_inode, ei);
4012                 }
4013         }
4014
4015         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4016         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4017         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4018         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4019
4020         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4021                 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4022                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4023                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4024                                 inode->i_version |=
4025                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4026                 }
4027         }
4028
4029         ret = 0;
4030         if (ei->i_file_acl &&
4031             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4032                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4033                                  ei->i_file_acl);
4034                 ret = -EIO;
4035                 goto bad_inode;
4036         } else if (!ext4_has_inline_data(inode)) {
4037                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4038                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4039                             (S_ISLNK(inode->i_mode) &&
4040                              !ext4_inode_is_fast_symlink(inode))))
4041                                 /* Validate extent which is part of inode */
4042                                 ret = ext4_ext_check_inode(inode);
4043                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4044                            (S_ISLNK(inode->i_mode) &&
4045                             !ext4_inode_is_fast_symlink(inode))) {
4046                         /* Validate block references which are part of inode */
4047                         ret = ext4_ind_check_inode(inode);
4048                 }
4049         }
4050         if (ret)
4051                 goto bad_inode;
4052
4053         if (S_ISREG(inode->i_mode)) {
4054                 inode->i_op = &ext4_file_inode_operations;
4055                 inode->i_fop = &ext4_file_operations;
4056                 ext4_set_aops(inode);
4057         } else if (S_ISDIR(inode->i_mode)) {
4058                 inode->i_op = &ext4_dir_inode_operations;
4059                 inode->i_fop = &ext4_dir_operations;
4060         } else if (S_ISLNK(inode->i_mode)) {
4061                 if (ext4_inode_is_fast_symlink(inode)) {
4062                         inode->i_op = &ext4_fast_symlink_inode_operations;
4063                         nd_terminate_link(ei->i_data, inode->i_size,
4064                                 sizeof(ei->i_data) - 1);
4065                 } else {
4066                         inode->i_op = &ext4_symlink_inode_operations;
4067                         ext4_set_aops(inode);
4068                 }
4069         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4070               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4071                 inode->i_op = &ext4_special_inode_operations;
4072                 if (raw_inode->i_block[0])
4073                         init_special_inode(inode, inode->i_mode,
4074                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4075                 else
4076                         init_special_inode(inode, inode->i_mode,
4077                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4078         } else if (ino == EXT4_BOOT_LOADER_INO) {
4079                 make_bad_inode(inode);
4080         } else {
4081                 ret = -EIO;
4082                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4083                 goto bad_inode;
4084         }
4085         brelse(iloc.bh);
4086         ext4_set_inode_flags(inode);
4087         unlock_new_inode(inode);
4088         return inode;
4089
4090 bad_inode:
4091         brelse(iloc.bh);
4092         iget_failed(inode);
4093         return ERR_PTR(ret);
4094 }
4095
4096 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4097 {
4098         if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4099                 return ERR_PTR(-EIO);
4100         return ext4_iget(sb, ino);
4101 }
4102
4103 static int ext4_inode_blocks_set(handle_t *handle,
4104                                 struct ext4_inode *raw_inode,
4105                                 struct ext4_inode_info *ei)
4106 {
4107         struct inode *inode = &(ei->vfs_inode);
4108         u64 i_blocks = inode->i_blocks;
4109         struct super_block *sb = inode->i_sb;
4110
4111         if (i_blocks <= ~0U) {
4112                 /*
4113                  * i_blocks can be represented in a 32 bit variable
4114                  * as multiple of 512 bytes
4115                  */
4116                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4117                 raw_inode->i_blocks_high = 0;
4118                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4119                 return 0;
4120         }
4121         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4122                 return -EFBIG;
4123
4124         if (i_blocks <= 0xffffffffffffULL) {
4125                 /*
4126                  * i_blocks can be represented in a 48 bit variable
4127                  * as multiple of 512 bytes
4128                  */
4129                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4130                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4131                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4132         } else {
4133                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4134                 /* i_block is stored in file system block size */
4135                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4136                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4137                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4138         }
4139         return 0;
4140 }
4141
4142 /*
4143  * Post the struct inode info into an on-disk inode location in the
4144  * buffer-cache.  This gobbles the caller's reference to the
4145  * buffer_head in the inode location struct.
4146  *
4147  * The caller must have write access to iloc->bh.
4148  */
4149 static int ext4_do_update_inode(handle_t *handle,
4150                                 struct inode *inode,
4151                                 struct ext4_iloc *iloc)
4152 {
4153         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4154         struct ext4_inode_info *ei = EXT4_I(inode);
4155         struct buffer_head *bh = iloc->bh;
4156         struct super_block *sb = inode->i_sb;
4157         int err = 0, rc, block;
4158         int need_datasync = 0, set_large_file = 0;
4159         uid_t i_uid;
4160         gid_t i_gid;
4161
4162         spin_lock(&ei->i_raw_lock);
4163
4164         /* For fields not tracked in the in-memory inode,
4165          * initialise them to zero for new inodes. */
4166         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4167                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4168
4169         ext4_get_inode_flags(ei);
4170         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4171         i_uid = i_uid_read(inode);
4172         i_gid = i_gid_read(inode);
4173         if (!(test_opt(inode->i_sb, NO_UID32))) {
4174                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4175                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4176 /*
4177  * Fix up interoperability with old kernels. Otherwise, old inodes get
4178  * re-used with the upper 16 bits of the uid/gid intact
4179  */
4180                 if (!ei->i_dtime) {
4181                         raw_inode->i_uid_high =
4182                                 cpu_to_le16(high_16_bits(i_uid));
4183                         raw_inode->i_gid_high =
4184                                 cpu_to_le16(high_16_bits(i_gid));
4185                 } else {
4186                         raw_inode->i_uid_high = 0;
4187                         raw_inode->i_gid_high = 0;
4188                 }
4189         } else {
4190                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4191                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4192                 raw_inode->i_uid_high = 0;
4193                 raw_inode->i_gid_high = 0;
4194         }
4195         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4196
4197         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4198         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4199         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4200         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4201
4202         err = ext4_inode_blocks_set(handle, raw_inode, ei);
4203         if (err) {
4204                 spin_unlock(&ei->i_raw_lock);
4205                 goto out_brelse;
4206         }
4207         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4208         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4209         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4210                 raw_inode->i_file_acl_high =
4211                         cpu_to_le16(ei->i_file_acl >> 32);
4212         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4213         if (ei->i_disksize != ext4_isize(raw_inode)) {
4214                 ext4_isize_set(raw_inode, ei->i_disksize);
4215                 need_datasync = 1;
4216         }
4217         if (ei->i_disksize > 0x7fffffffULL) {
4218                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4219                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4220                                 EXT4_SB(sb)->s_es->s_rev_level ==
4221                     cpu_to_le32(EXT4_GOOD_OLD_REV))
4222                         set_large_file = 1;
4223         }
4224         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4225         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4226                 if (old_valid_dev(inode->i_rdev)) {
4227                         raw_inode->i_block[0] =
4228                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4229                         raw_inode->i_block[1] = 0;
4230                 } else {
4231                         raw_inode->i_block[0] = 0;
4232                         raw_inode->i_block[1] =
4233                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4234                         raw_inode->i_block[2] = 0;
4235                 }
4236         } else if (!ext4_has_inline_data(inode)) {
4237                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4238                         raw_inode->i_block[block] = ei->i_data[block];
4239         }
4240
4241         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4242                 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4243                 if (ei->i_extra_isize) {
4244                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4245                                 raw_inode->i_version_hi =
4246                                         cpu_to_le32(inode->i_version >> 32);
4247                         raw_inode->i_extra_isize =
4248                                 cpu_to_le16(ei->i_extra_isize);
4249                 }
4250         }
4251
4252         ext4_inode_csum_set(inode, raw_inode, ei);
4253
4254         spin_unlock(&ei->i_raw_lock);
4255
4256         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4257         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4258         if (!err)
4259                 err = rc;
4260         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4261         if (set_large_file) {
4262                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4263                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4264                 if (err)
4265                         goto out_brelse;
4266                 ext4_update_dynamic_rev(sb);
4267                 EXT4_SET_RO_COMPAT_FEATURE(sb,
4268                                            EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4269                 ext4_handle_sync(handle);
4270                 err = ext4_handle_dirty_super(handle, sb);
4271         }
4272         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4273 out_brelse:
4274         brelse(bh);
4275         ext4_std_error(inode->i_sb, err);
4276         return err;
4277 }
4278
4279 /*
4280  * ext4_write_inode()
4281  *
4282  * We are called from a few places:
4283  *
4284  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4285  *   Here, there will be no transaction running. We wait for any running
4286  *   transaction to commit.
4287  *
4288  * - Within flush work (sys_sync(), kupdate and such).
4289  *   We wait on commit, if told to.
4290  *
4291  * - Within iput_final() -> write_inode_now()
4292  *   We wait on commit, if told to.
4293  *
4294  * In all cases it is actually safe for us to return without doing anything,
4295  * because the inode has been copied into a raw inode buffer in
4296  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
4297  * writeback.
4298  *
4299  * Note that we are absolutely dependent upon all inode dirtiers doing the
4300  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4301  * which we are interested.
4302  *
4303  * It would be a bug for them to not do this.  The code:
4304  *
4305  *      mark_inode_dirty(inode)
4306  *      stuff();
4307  *      inode->i_size = expr;
4308  *
4309  * is in error because write_inode() could occur while `stuff()' is running,
4310  * and the new i_size will be lost.  Plus the inode will no longer be on the
4311  * superblock's dirty inode list.
4312  */
4313 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4314 {
4315         int err;
4316
4317         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4318                 return 0;
4319
4320         if (EXT4_SB(inode->i_sb)->s_journal) {
4321                 if (ext4_journal_current_handle()) {
4322                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4323                         dump_stack();
4324                         return -EIO;
4325                 }
4326
4327                 /*
4328                  * No need to force transaction in WB_SYNC_NONE mode. Also
4329                  * ext4_sync_fs() will force the commit after everything is
4330                  * written.
4331                  */
4332                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4333                         return 0;
4334
4335                 err = ext4_force_commit(inode->i_sb);
4336         } else {
4337                 struct ext4_iloc iloc;
4338
4339                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4340                 if (err)
4341                         return err;
4342                 /*
4343                  * sync(2) will flush the whole buffer cache. No need to do
4344                  * it here separately for each inode.
4345                  */
4346                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4347                         sync_dirty_buffer(iloc.bh);
4348                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4349                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4350                                          "IO error syncing inode");
4351                         err = -EIO;
4352                 }
4353                 brelse(iloc.bh);
4354         }
4355         return err;
4356 }
4357
4358 /*
4359  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4360  * buffers that are attached to a page stradding i_size and are undergoing
4361  * commit. In that case we have to wait for commit to finish and try again.
4362  */
4363 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4364 {
4365         struct page *page;
4366         unsigned offset;
4367         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4368         tid_t commit_tid = 0;
4369         int ret;
4370
4371         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4372         /*
4373          * All buffers in the last page remain valid? Then there's nothing to
4374          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4375          * blocksize case
4376          */
4377         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4378                 return;
4379         while (1) {
4380                 page = find_lock_page(inode->i_mapping,
4381                                       inode->i_size >> PAGE_CACHE_SHIFT);
4382                 if (!page)
4383                         return;
4384                 ret = __ext4_journalled_invalidatepage(page, offset,
4385                                                 PAGE_CACHE_SIZE - offset);
4386                 unlock_page(page);
4387                 page_cache_release(page);
4388                 if (ret != -EBUSY)
4389                         return;
4390                 commit_tid = 0;
4391                 read_lock(&journal->j_state_lock);
4392                 if (journal->j_committing_transaction)
4393                         commit_tid = journal->j_committing_transaction->t_tid;
4394                 read_unlock(&journal->j_state_lock);
4395                 if (commit_tid)
4396                         jbd2_log_wait_commit(journal, commit_tid);
4397         }
4398 }
4399
4400 /*
4401  * ext4_setattr()
4402  *
4403  * Called from notify_change.
4404  *
4405  * We want to trap VFS attempts to truncate the file as soon as
4406  * possible.  In particular, we want to make sure that when the VFS
4407  * shrinks i_size, we put the inode on the orphan list and modify
4408  * i_disksize immediately, so that during the subsequent flushing of
4409  * dirty pages and freeing of disk blocks, we can guarantee that any
4410  * commit will leave the blocks being flushed in an unused state on
4411  * disk.  (On recovery, the inode will get truncated and the blocks will
4412  * be freed, so we have a strong guarantee that no future commit will
4413  * leave these blocks visible to the user.)
4414  *
4415  * Another thing we have to assure is that if we are in ordered mode
4416  * and inode is still attached to the committing transaction, we must
4417  * we start writeout of all the dirty pages which are being truncated.
4418  * This way we are sure that all the data written in the previous
4419  * transaction are already on disk (truncate waits for pages under
4420  * writeback).
4421  *
4422  * Called with inode->i_mutex down.
4423  */
4424 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4425 {
4426         struct inode *inode = dentry->d_inode;
4427         int error, rc = 0;
4428         int orphan = 0;
4429         const unsigned int ia_valid = attr->ia_valid;
4430
4431         error = inode_change_ok(inode, attr);
4432         if (error)
4433                 return error;
4434
4435         if (is_quota_modification(inode, attr))
4436                 dquot_initialize(inode);
4437         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4438             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4439                 handle_t *handle;
4440
4441                 /* (user+group)*(old+new) structure, inode write (sb,
4442                  * inode block, ? - but truncate inode update has it) */
4443                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4444                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4445                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4446                 if (IS_ERR(handle)) {
4447                         error = PTR_ERR(handle);
4448                         goto err_out;
4449                 }
4450                 error = dquot_transfer(inode, attr);
4451                 if (error) {
4452                         ext4_journal_stop(handle);
4453                         return error;
4454                 }
4455                 /* Update corresponding info in inode so that everything is in
4456                  * one transaction */
4457                 if (attr->ia_valid & ATTR_UID)
4458                         inode->i_uid = attr->ia_uid;
4459                 if (attr->ia_valid & ATTR_GID)
4460                         inode->i_gid = attr->ia_gid;
4461                 error = ext4_mark_inode_dirty(handle, inode);
4462                 ext4_journal_stop(handle);
4463         }
4464
4465         if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4466                 handle_t *handle;
4467
4468                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4469                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4470
4471                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4472                                 return -EFBIG;
4473                 }
4474
4475                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4476                         inode_inc_iversion(inode);
4477
4478                 if (S_ISREG(inode->i_mode) &&
4479                     (attr->ia_size < inode->i_size)) {
4480                         if (ext4_should_order_data(inode)) {
4481                                 error = ext4_begin_ordered_truncate(inode,
4482                                                             attr->ia_size);
4483                                 if (error)
4484                                         goto err_out;
4485                         }
4486                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4487                         if (IS_ERR(handle)) {
4488                                 error = PTR_ERR(handle);
4489                                 goto err_out;
4490                         }
4491                         if (ext4_handle_valid(handle)) {
4492                                 error = ext4_orphan_add(handle, inode);
4493                                 orphan = 1;
4494                         }
4495                         down_write(&EXT4_I(inode)->i_data_sem);
4496                         EXT4_I(inode)->i_disksize = attr->ia_size;
4497                         rc = ext4_mark_inode_dirty(handle, inode);
4498                         if (!error)
4499                                 error = rc;
4500                         /*
4501                          * We have to update i_size under i_data_sem together
4502                          * with i_disksize to avoid races with writeback code
4503                          * running ext4_wb_update_i_disksize().
4504                          */
4505                         if (!error)
4506                                 i_size_write(inode, attr->ia_size);
4507                         up_write(&EXT4_I(inode)->i_data_sem);
4508                         ext4_journal_stop(handle);
4509                         if (error) {
4510                                 ext4_orphan_del(NULL, inode);
4511                                 goto err_out;
4512                         }
4513                 } else {
4514                         loff_t oldsize = inode->i_size;
4515
4516                         i_size_write(inode, attr->ia_size);
4517                         pagecache_isize_extended(inode, oldsize, inode->i_size);
4518                 }
4519
4520                 /*
4521                  * Blocks are going to be removed from the inode. Wait
4522                  * for dio in flight.  Temporarily disable
4523                  * dioread_nolock to prevent livelock.
4524                  */
4525                 if (orphan) {
4526                         if (!ext4_should_journal_data(inode)) {
4527                                 ext4_inode_block_unlocked_dio(inode);
4528                                 inode_dio_wait(inode);
4529                                 ext4_inode_resume_unlocked_dio(inode);
4530                         } else
4531                                 ext4_wait_for_tail_page_commit(inode);
4532                 }
4533                 /*
4534                  * Truncate pagecache after we've waited for commit
4535                  * in data=journal mode to make pages freeable.
4536                  */
4537                         truncate_pagecache(inode, inode->i_size);
4538         }
4539         /*
4540          * We want to call ext4_truncate() even if attr->ia_size ==
4541          * inode->i_size for cases like truncation of fallocated space
4542          */
4543         if (attr->ia_valid & ATTR_SIZE)
4544                 ext4_truncate(inode);
4545
4546         if (!rc) {
4547                 setattr_copy(inode, attr);
4548                 mark_inode_dirty(inode);
4549         }
4550
4551         /*
4552          * If the call to ext4_truncate failed to get a transaction handle at
4553          * all, we need to clean up the in-core orphan list manually.
4554          */
4555         if (orphan && inode->i_nlink)
4556                 ext4_orphan_del(NULL, inode);
4557
4558         if (!rc && (ia_valid & ATTR_MODE))
4559                 rc = posix_acl_chmod(inode, inode->i_mode);
4560
4561 err_out:
4562         ext4_std_error(inode->i_sb, error);
4563         if (!error)
4564                 error = rc;
4565         return error;
4566 }
4567
4568 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4569                  struct kstat *stat)
4570 {
4571         struct inode *inode;
4572         unsigned long long delalloc_blocks;
4573
4574         inode = dentry->d_inode;
4575         generic_fillattr(inode, stat);
4576
4577         /*
4578          * If there is inline data in the inode, the inode will normally not
4579          * have data blocks allocated (it may have an external xattr block).
4580          * Report at least one sector for such files, so tools like tar, rsync,
4581          * others doen't incorrectly think the file is completely sparse.
4582          */
4583         if (unlikely(ext4_has_inline_data(inode)))
4584                 stat->blocks += (stat->size + 511) >> 9;
4585
4586         /*
4587          * We can't update i_blocks if the block allocation is delayed
4588          * otherwise in the case of system crash before the real block
4589          * allocation is done, we will have i_blocks inconsistent with
4590          * on-disk file blocks.
4591          * We always keep i_blocks updated together with real
4592          * allocation. But to not confuse with user, stat
4593          * will return the blocks that include the delayed allocation
4594          * blocks for this file.
4595          */
4596         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4597                                    EXT4_I(inode)->i_reserved_data_blocks);
4598         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
4599         return 0;
4600 }
4601
4602 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4603                                    int pextents)
4604 {
4605         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4606                 return ext4_ind_trans_blocks(inode, lblocks);
4607         return ext4_ext_index_trans_blocks(inode, pextents);
4608 }
4609
4610 /*
4611  * Account for index blocks, block groups bitmaps and block group
4612  * descriptor blocks if modify datablocks and index blocks
4613  * worse case, the indexs blocks spread over different block groups
4614  *
4615  * If datablocks are discontiguous, they are possible to spread over
4616  * different block groups too. If they are contiguous, with flexbg,
4617  * they could still across block group boundary.
4618  *
4619  * Also account for superblock, inode, quota and xattr blocks
4620  */
4621 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4622                                   int pextents)
4623 {
4624         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4625         int gdpblocks;
4626         int idxblocks;
4627         int ret = 0;
4628
4629         /*
4630          * How many index blocks need to touch to map @lblocks logical blocks
4631          * to @pextents physical extents?
4632          */
4633         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4634
4635         ret = idxblocks;
4636
4637         /*
4638          * Now let's see how many group bitmaps and group descriptors need
4639          * to account
4640          */
4641         groups = idxblocks + pextents;
4642         gdpblocks = groups;
4643         if (groups > ngroups)
4644                 groups = ngroups;
4645         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4646                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4647
4648         /* bitmaps and block group descriptor blocks */
4649         ret += groups + gdpblocks;
4650
4651         /* Blocks for super block, inode, quota and xattr blocks */
4652         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4653
4654         return ret;
4655 }
4656
4657 /*
4658  * Calculate the total number of credits to reserve to fit
4659  * the modification of a single pages into a single transaction,
4660  * which may include multiple chunks of block allocations.
4661  *
4662  * This could be called via ext4_write_begin()
4663  *
4664  * We need to consider the worse case, when
4665  * one new block per extent.
4666  */
4667 int ext4_writepage_trans_blocks(struct inode *inode)
4668 {
4669         int bpp = ext4_journal_blocks_per_page(inode);
4670         int ret;
4671
4672         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4673
4674         /* Account for data blocks for journalled mode */
4675         if (ext4_should_journal_data(inode))
4676                 ret += bpp;
4677         return ret;
4678 }
4679
4680 /*
4681  * Calculate the journal credits for a chunk of data modification.
4682  *
4683  * This is called from DIO, fallocate or whoever calling
4684  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4685  *
4686  * journal buffers for data blocks are not included here, as DIO
4687  * and fallocate do no need to journal data buffers.
4688  */
4689 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4690 {
4691         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4692 }
4693
4694 /*
4695  * The caller must have previously called ext4_reserve_inode_write().
4696  * Give this, we know that the caller already has write access to iloc->bh.
4697  */
4698 int ext4_mark_iloc_dirty(handle_t *handle,
4699                          struct inode *inode, struct ext4_iloc *iloc)
4700 {
4701         int err = 0;
4702
4703         if (IS_I_VERSION(inode))
4704                 inode_inc_iversion(inode);
4705
4706         /* the do_update_inode consumes one bh->b_count */
4707         get_bh(iloc->bh);
4708
4709         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4710         err = ext4_do_update_inode(handle, inode, iloc);
4711         put_bh(iloc->bh);
4712         return err;
4713 }
4714
4715 /*
4716  * On success, We end up with an outstanding reference count against
4717  * iloc->bh.  This _must_ be cleaned up later.
4718  */
4719
4720 int
4721 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4722                          struct ext4_iloc *iloc)
4723 {
4724         int err;
4725
4726         err = ext4_get_inode_loc(inode, iloc);
4727         if (!err) {
4728                 BUFFER_TRACE(iloc->bh, "get_write_access");
4729                 err = ext4_journal_get_write_access(handle, iloc->bh);
4730                 if (err) {
4731                         brelse(iloc->bh);
4732                         iloc->bh = NULL;
4733                 }
4734         }
4735         ext4_std_error(inode->i_sb, err);
4736         return err;
4737 }
4738
4739 /*
4740  * Expand an inode by new_extra_isize bytes.
4741  * Returns 0 on success or negative error number on failure.
4742  */
4743 static int ext4_expand_extra_isize(struct inode *inode,
4744                                    unsigned int new_extra_isize,
4745                                    struct ext4_iloc iloc,
4746                                    handle_t *handle)
4747 {
4748         struct ext4_inode *raw_inode;
4749         struct ext4_xattr_ibody_header *header;
4750
4751         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4752                 return 0;
4753
4754         raw_inode = ext4_raw_inode(&iloc);
4755
4756         header = IHDR(inode, raw_inode);
4757
4758         /* No extended attributes present */
4759         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4760             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4761                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4762                         new_extra_isize);
4763                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4764                 return 0;
4765         }
4766
4767         /* try to expand with EAs present */
4768         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4769                                           raw_inode, handle);
4770 }
4771
4772 /*
4773  * What we do here is to mark the in-core inode as clean with respect to inode
4774  * dirtiness (it may still be data-dirty).
4775  * This means that the in-core inode may be reaped by prune_icache
4776  * without having to perform any I/O.  This is a very good thing,
4777  * because *any* task may call prune_icache - even ones which
4778  * have a transaction open against a different journal.
4779  *
4780  * Is this cheating?  Not really.  Sure, we haven't written the
4781  * inode out, but prune_icache isn't a user-visible syncing function.
4782  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4783  * we start and wait on commits.
4784  */
4785 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4786 {
4787         struct ext4_iloc iloc;
4788         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4789         static unsigned int mnt_count;
4790         int err, ret;
4791
4792         might_sleep();
4793         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4794         err = ext4_reserve_inode_write(handle, inode, &iloc);
4795         if (ext4_handle_valid(handle) &&
4796             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4797             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4798                 /*
4799                  * We need extra buffer credits since we may write into EA block
4800                  * with this same handle. If journal_extend fails, then it will
4801                  * only result in a minor loss of functionality for that inode.
4802                  * If this is felt to be critical, then e2fsck should be run to
4803                  * force a large enough s_min_extra_isize.
4804                  */
4805                 if ((jbd2_journal_extend(handle,
4806                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4807                         ret = ext4_expand_extra_isize(inode,
4808                                                       sbi->s_want_extra_isize,
4809                                                       iloc, handle);
4810                         if (ret) {
4811                                 ext4_set_inode_state(inode,
4812                                                      EXT4_STATE_NO_EXPAND);
4813                                 if (mnt_count !=
4814                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4815                                         ext4_warning(inode->i_sb,
4816                                         "Unable to expand inode %lu. Delete"
4817                                         " some EAs or run e2fsck.",
4818                                         inode->i_ino);
4819                                         mnt_count =
4820                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4821                                 }
4822                         }
4823                 }
4824         }
4825         if (!err)
4826                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4827         return err;
4828 }
4829
4830 /*
4831  * ext4_dirty_inode() is called from __mark_inode_dirty()
4832  *
4833  * We're really interested in the case where a file is being extended.
4834  * i_size has been changed by generic_commit_write() and we thus need
4835  * to include the updated inode in the current transaction.
4836  *
4837  * Also, dquot_alloc_block() will always dirty the inode when blocks
4838  * are allocated to the file.
4839  *
4840  * If the inode is marked synchronous, we don't honour that here - doing
4841  * so would cause a commit on atime updates, which we don't bother doing.
4842  * We handle synchronous inodes at the highest possible level.
4843  */
4844 void ext4_dirty_inode(struct inode *inode, int flags)
4845 {
4846         handle_t *handle;
4847
4848         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4849         if (IS_ERR(handle))
4850                 goto out;
4851
4852         ext4_mark_inode_dirty(handle, inode);
4853
4854         ext4_journal_stop(handle);
4855 out:
4856         return;
4857 }
4858
4859 #if 0
4860 /*
4861  * Bind an inode's backing buffer_head into this transaction, to prevent
4862  * it from being flushed to disk early.  Unlike
4863  * ext4_reserve_inode_write, this leaves behind no bh reference and
4864  * returns no iloc structure, so the caller needs to repeat the iloc
4865  * lookup to mark the inode dirty later.
4866  */
4867 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4868 {
4869         struct ext4_iloc iloc;
4870
4871         int err = 0;
4872         if (handle) {
4873                 err = ext4_get_inode_loc(inode, &iloc);
4874                 if (!err) {
4875                         BUFFER_TRACE(iloc.bh, "get_write_access");
4876                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4877                         if (!err)
4878                                 err = ext4_handle_dirty_metadata(handle,
4879                                                                  NULL,
4880                                                                  iloc.bh);
4881                         brelse(iloc.bh);
4882                 }
4883         }
4884         ext4_std_error(inode->i_sb, err);
4885         return err;
4886 }
4887 #endif
4888
4889 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4890 {
4891         journal_t *journal;
4892         handle_t *handle;
4893         int err;
4894
4895         /*
4896          * We have to be very careful here: changing a data block's
4897          * journaling status dynamically is dangerous.  If we write a
4898          * data block to the journal, change the status and then delete
4899          * that block, we risk forgetting to revoke the old log record
4900          * from the journal and so a subsequent replay can corrupt data.
4901          * So, first we make sure that the journal is empty and that
4902          * nobody is changing anything.
4903          */
4904
4905         journal = EXT4_JOURNAL(inode);
4906         if (!journal)
4907                 return 0;
4908         if (is_journal_aborted(journal))
4909                 return -EROFS;
4910         /* We have to allocate physical blocks for delalloc blocks
4911          * before flushing journal. otherwise delalloc blocks can not
4912          * be allocated any more. even more truncate on delalloc blocks
4913          * could trigger BUG by flushing delalloc blocks in journal.
4914          * There is no delalloc block in non-journal data mode.
4915          */
4916         if (val && test_opt(inode->i_sb, DELALLOC)) {
4917                 err = ext4_alloc_da_blocks(inode);
4918                 if (err < 0)
4919                         return err;
4920         }
4921
4922         /* Wait for all existing dio workers */
4923         ext4_inode_block_unlocked_dio(inode);
4924         inode_dio_wait(inode);
4925
4926         jbd2_journal_lock_updates(journal);
4927
4928         /*
4929          * OK, there are no updates running now, and all cached data is
4930          * synced to disk.  We are now in a completely consistent state
4931          * which doesn't have anything in the journal, and we know that
4932          * no filesystem updates are running, so it is safe to modify
4933          * the inode's in-core data-journaling state flag now.
4934          */
4935
4936         if (val)
4937                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4938         else {
4939                 err = jbd2_journal_flush(journal);
4940                 if (err < 0) {
4941                         jbd2_journal_unlock_updates(journal);
4942                         ext4_inode_resume_unlocked_dio(inode);
4943                         return err;
4944                 }
4945                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4946         }
4947         ext4_set_aops(inode);
4948
4949         jbd2_journal_unlock_updates(journal);
4950         ext4_inode_resume_unlocked_dio(inode);
4951
4952         /* Finally we can mark the inode as dirty. */
4953
4954         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
4955         if (IS_ERR(handle))
4956                 return PTR_ERR(handle);
4957
4958         err = ext4_mark_inode_dirty(handle, inode);
4959         ext4_handle_sync(handle);
4960         ext4_journal_stop(handle);
4961         ext4_std_error(inode->i_sb, err);
4962
4963         return err;
4964 }
4965
4966 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4967 {
4968         return !buffer_mapped(bh);
4969 }
4970
4971 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4972 {
4973         struct page *page = vmf->page;
4974         loff_t size;
4975         unsigned long len;
4976         int ret;
4977         struct file *file = vma->vm_file;
4978         struct inode *inode = file_inode(file);
4979         struct address_space *mapping = inode->i_mapping;
4980         handle_t *handle;
4981         get_block_t *get_block;
4982         int retries = 0;
4983
4984         sb_start_pagefault(inode->i_sb);
4985         file_update_time(vma->vm_file);
4986         /* Delalloc case is easy... */
4987         if (test_opt(inode->i_sb, DELALLOC) &&
4988             !ext4_should_journal_data(inode) &&
4989             !ext4_nonda_switch(inode->i_sb)) {
4990                 do {
4991                         ret = __block_page_mkwrite(vma, vmf,
4992                                                    ext4_da_get_block_prep);
4993                 } while (ret == -ENOSPC &&
4994                        ext4_should_retry_alloc(inode->i_sb, &retries));
4995                 goto out_ret;
4996         }
4997
4998         lock_page(page);
4999         size = i_size_read(inode);
5000         /* Page got truncated from under us? */
5001         if (page->mapping != mapping || page_offset(page) > size) {
5002                 unlock_page(page);
5003                 ret = VM_FAULT_NOPAGE;
5004                 goto out;
5005         }
5006
5007         if (page->index == size >> PAGE_CACHE_SHIFT)
5008                 len = size & ~PAGE_CACHE_MASK;
5009         else
5010                 len = PAGE_CACHE_SIZE;
5011         /*
5012          * Return if we have all the buffers mapped. This avoids the need to do
5013          * journal_start/journal_stop which can block and take a long time
5014          */
5015         if (page_has_buffers(page)) {
5016                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5017                                             0, len, NULL,
5018                                             ext4_bh_unmapped)) {
5019                         /* Wait so that we don't change page under IO */
5020                         wait_for_stable_page(page);
5021                         ret = VM_FAULT_LOCKED;
5022                         goto out;
5023                 }
5024         }
5025         unlock_page(page);
5026         /* OK, we need to fill the hole... */
5027         if (ext4_should_dioread_nolock(inode))
5028                 get_block = ext4_get_block_write;
5029         else
5030                 get_block = ext4_get_block;
5031 retry_alloc:
5032         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5033                                     ext4_writepage_trans_blocks(inode));
5034         if (IS_ERR(handle)) {
5035                 ret = VM_FAULT_SIGBUS;
5036                 goto out;
5037         }
5038         ret = __block_page_mkwrite(vma, vmf, get_block);
5039         if (!ret && ext4_should_journal_data(inode)) {
5040                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5041                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5042                         unlock_page(page);
5043                         ret = VM_FAULT_SIGBUS;
5044                         ext4_journal_stop(handle);
5045                         goto out;
5046                 }
5047                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5048         }
5049         ext4_journal_stop(handle);
5050         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5051                 goto retry_alloc;
5052 out_ret:
5053         ret = block_page_mkwrite_return(ret);
5054 out:
5055         sb_end_pagefault(inode->i_sb);
5056         return ret;
5057 }