Merge branch 'for-linus-4.2' of git://git.kernel.org/pub/scm/linux/kernel/git/mason...
[cascardo/linux.git] / fs / f2fs / checkpoint.c
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *inode_entry_slab;
28
29 /*
30  * We guarantee no failure on the returned page.
31  */
32 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
33 {
34         struct address_space *mapping = META_MAPPING(sbi);
35         struct page *page = NULL;
36 repeat:
37         page = grab_cache_page(mapping, index);
38         if (!page) {
39                 cond_resched();
40                 goto repeat;
41         }
42         f2fs_wait_on_page_writeback(page, META);
43         SetPageUptodate(page);
44         return page;
45 }
46
47 /*
48  * We guarantee no failure on the returned page.
49  */
50 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
51 {
52         struct address_space *mapping = META_MAPPING(sbi);
53         struct page *page;
54         struct f2fs_io_info fio = {
55                 .sbi = sbi,
56                 .type = META,
57                 .rw = READ_SYNC | REQ_META | REQ_PRIO,
58                 .blk_addr = index,
59                 .encrypted_page = NULL,
60         };
61 repeat:
62         page = grab_cache_page(mapping, index);
63         if (!page) {
64                 cond_resched();
65                 goto repeat;
66         }
67         if (PageUptodate(page))
68                 goto out;
69
70         fio.page = page;
71
72         if (f2fs_submit_page_bio(&fio))
73                 goto repeat;
74
75         lock_page(page);
76         if (unlikely(page->mapping != mapping)) {
77                 f2fs_put_page(page, 1);
78                 goto repeat;
79         }
80 out:
81         return page;
82 }
83
84 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type)
85 {
86         switch (type) {
87         case META_NAT:
88                 break;
89         case META_SIT:
90                 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
91                         return false;
92                 break;
93         case META_SSA:
94                 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
95                         blkaddr < SM_I(sbi)->ssa_blkaddr))
96                         return false;
97                 break;
98         case META_CP:
99                 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
100                         blkaddr < __start_cp_addr(sbi)))
101                         return false;
102                 break;
103         case META_POR:
104                 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
105                         blkaddr < MAIN_BLKADDR(sbi)))
106                         return false;
107                 break;
108         default:
109                 BUG();
110         }
111
112         return true;
113 }
114
115 /*
116  * Readahead CP/NAT/SIT/SSA pages
117  */
118 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, int type)
119 {
120         block_t prev_blk_addr = 0;
121         struct page *page;
122         block_t blkno = start;
123         struct f2fs_io_info fio = {
124                 .sbi = sbi,
125                 .type = META,
126                 .rw = READ_SYNC | REQ_META | REQ_PRIO,
127                 .encrypted_page = NULL,
128         };
129
130         for (; nrpages-- > 0; blkno++) {
131
132                 if (!is_valid_blkaddr(sbi, blkno, type))
133                         goto out;
134
135                 switch (type) {
136                 case META_NAT:
137                         if (unlikely(blkno >=
138                                         NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
139                                 blkno = 0;
140                         /* get nat block addr */
141                         fio.blk_addr = current_nat_addr(sbi,
142                                         blkno * NAT_ENTRY_PER_BLOCK);
143                         break;
144                 case META_SIT:
145                         /* get sit block addr */
146                         fio.blk_addr = current_sit_addr(sbi,
147                                         blkno * SIT_ENTRY_PER_BLOCK);
148                         if (blkno != start && prev_blk_addr + 1 != fio.blk_addr)
149                                 goto out;
150                         prev_blk_addr = fio.blk_addr;
151                         break;
152                 case META_SSA:
153                 case META_CP:
154                 case META_POR:
155                         fio.blk_addr = blkno;
156                         break;
157                 default:
158                         BUG();
159                 }
160
161                 page = grab_cache_page(META_MAPPING(sbi), fio.blk_addr);
162                 if (!page)
163                         continue;
164                 if (PageUptodate(page)) {
165                         f2fs_put_page(page, 1);
166                         continue;
167                 }
168
169                 fio.page = page;
170                 f2fs_submit_page_mbio(&fio);
171                 f2fs_put_page(page, 0);
172         }
173 out:
174         f2fs_submit_merged_bio(sbi, META, READ);
175         return blkno - start;
176 }
177
178 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
179 {
180         struct page *page;
181         bool readahead = false;
182
183         page = find_get_page(META_MAPPING(sbi), index);
184         if (!page || (page && !PageUptodate(page)))
185                 readahead = true;
186         f2fs_put_page(page, 0);
187
188         if (readahead)
189                 ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR);
190 }
191
192 static int f2fs_write_meta_page(struct page *page,
193                                 struct writeback_control *wbc)
194 {
195         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
196
197         trace_f2fs_writepage(page, META);
198
199         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
200                 goto redirty_out;
201         if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
202                 goto redirty_out;
203         if (unlikely(f2fs_cp_error(sbi)))
204                 goto redirty_out;
205
206         f2fs_wait_on_page_writeback(page, META);
207         write_meta_page(sbi, page);
208         dec_page_count(sbi, F2FS_DIRTY_META);
209         unlock_page(page);
210
211         if (wbc->for_reclaim)
212                 f2fs_submit_merged_bio(sbi, META, WRITE);
213         return 0;
214
215 redirty_out:
216         redirty_page_for_writepage(wbc, page);
217         return AOP_WRITEPAGE_ACTIVATE;
218 }
219
220 static int f2fs_write_meta_pages(struct address_space *mapping,
221                                 struct writeback_control *wbc)
222 {
223         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
224         long diff, written;
225
226         trace_f2fs_writepages(mapping->host, wbc, META);
227
228         /* collect a number of dirty meta pages and write together */
229         if (wbc->for_kupdate ||
230                 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
231                 goto skip_write;
232
233         /* if mounting is failed, skip writing node pages */
234         mutex_lock(&sbi->cp_mutex);
235         diff = nr_pages_to_write(sbi, META, wbc);
236         written = sync_meta_pages(sbi, META, wbc->nr_to_write);
237         mutex_unlock(&sbi->cp_mutex);
238         wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
239         return 0;
240
241 skip_write:
242         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
243         return 0;
244 }
245
246 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
247                                                 long nr_to_write)
248 {
249         struct address_space *mapping = META_MAPPING(sbi);
250         pgoff_t index = 0, end = LONG_MAX;
251         struct pagevec pvec;
252         long nwritten = 0;
253         struct writeback_control wbc = {
254                 .for_reclaim = 0,
255         };
256
257         pagevec_init(&pvec, 0);
258
259         while (index <= end) {
260                 int i, nr_pages;
261                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
262                                 PAGECACHE_TAG_DIRTY,
263                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
264                 if (unlikely(nr_pages == 0))
265                         break;
266
267                 for (i = 0; i < nr_pages; i++) {
268                         struct page *page = pvec.pages[i];
269
270                         lock_page(page);
271
272                         if (unlikely(page->mapping != mapping)) {
273 continue_unlock:
274                                 unlock_page(page);
275                                 continue;
276                         }
277                         if (!PageDirty(page)) {
278                                 /* someone wrote it for us */
279                                 goto continue_unlock;
280                         }
281
282                         if (!clear_page_dirty_for_io(page))
283                                 goto continue_unlock;
284
285                         if (mapping->a_ops->writepage(page, &wbc)) {
286                                 unlock_page(page);
287                                 break;
288                         }
289                         nwritten++;
290                         if (unlikely(nwritten >= nr_to_write))
291                                 break;
292                 }
293                 pagevec_release(&pvec);
294                 cond_resched();
295         }
296
297         if (nwritten)
298                 f2fs_submit_merged_bio(sbi, type, WRITE);
299
300         return nwritten;
301 }
302
303 static int f2fs_set_meta_page_dirty(struct page *page)
304 {
305         trace_f2fs_set_page_dirty(page, META);
306
307         SetPageUptodate(page);
308         if (!PageDirty(page)) {
309                 __set_page_dirty_nobuffers(page);
310                 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
311                 SetPagePrivate(page);
312                 f2fs_trace_pid(page);
313                 return 1;
314         }
315         return 0;
316 }
317
318 const struct address_space_operations f2fs_meta_aops = {
319         .writepage      = f2fs_write_meta_page,
320         .writepages     = f2fs_write_meta_pages,
321         .set_page_dirty = f2fs_set_meta_page_dirty,
322         .invalidatepage = f2fs_invalidate_page,
323         .releasepage    = f2fs_release_page,
324 };
325
326 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
327 {
328         struct inode_management *im = &sbi->im[type];
329         struct ino_entry *e;
330 retry:
331         if (radix_tree_preload(GFP_NOFS)) {
332                 cond_resched();
333                 goto retry;
334         }
335
336         spin_lock(&im->ino_lock);
337
338         e = radix_tree_lookup(&im->ino_root, ino);
339         if (!e) {
340                 e = kmem_cache_alloc(ino_entry_slab, GFP_ATOMIC);
341                 if (!e) {
342                         spin_unlock(&im->ino_lock);
343                         radix_tree_preload_end();
344                         goto retry;
345                 }
346                 if (radix_tree_insert(&im->ino_root, ino, e)) {
347                         spin_unlock(&im->ino_lock);
348                         kmem_cache_free(ino_entry_slab, e);
349                         radix_tree_preload_end();
350                         goto retry;
351                 }
352                 memset(e, 0, sizeof(struct ino_entry));
353                 e->ino = ino;
354
355                 list_add_tail(&e->list, &im->ino_list);
356                 if (type != ORPHAN_INO)
357                         im->ino_num++;
358         }
359         spin_unlock(&im->ino_lock);
360         radix_tree_preload_end();
361 }
362
363 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
364 {
365         struct inode_management *im = &sbi->im[type];
366         struct ino_entry *e;
367
368         spin_lock(&im->ino_lock);
369         e = radix_tree_lookup(&im->ino_root, ino);
370         if (e) {
371                 list_del(&e->list);
372                 radix_tree_delete(&im->ino_root, ino);
373                 im->ino_num--;
374                 spin_unlock(&im->ino_lock);
375                 kmem_cache_free(ino_entry_slab, e);
376                 return;
377         }
378         spin_unlock(&im->ino_lock);
379 }
380
381 void add_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
382 {
383         /* add new dirty ino entry into list */
384         __add_ino_entry(sbi, ino, type);
385 }
386
387 void remove_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
388 {
389         /* remove dirty ino entry from list */
390         __remove_ino_entry(sbi, ino, type);
391 }
392
393 /* mode should be APPEND_INO or UPDATE_INO */
394 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
395 {
396         struct inode_management *im = &sbi->im[mode];
397         struct ino_entry *e;
398
399         spin_lock(&im->ino_lock);
400         e = radix_tree_lookup(&im->ino_root, ino);
401         spin_unlock(&im->ino_lock);
402         return e ? true : false;
403 }
404
405 void release_dirty_inode(struct f2fs_sb_info *sbi)
406 {
407         struct ino_entry *e, *tmp;
408         int i;
409
410         for (i = APPEND_INO; i <= UPDATE_INO; i++) {
411                 struct inode_management *im = &sbi->im[i];
412
413                 spin_lock(&im->ino_lock);
414                 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
415                         list_del(&e->list);
416                         radix_tree_delete(&im->ino_root, e->ino);
417                         kmem_cache_free(ino_entry_slab, e);
418                         im->ino_num--;
419                 }
420                 spin_unlock(&im->ino_lock);
421         }
422 }
423
424 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
425 {
426         struct inode_management *im = &sbi->im[ORPHAN_INO];
427         int err = 0;
428
429         spin_lock(&im->ino_lock);
430         if (unlikely(im->ino_num >= sbi->max_orphans))
431                 err = -ENOSPC;
432         else
433                 im->ino_num++;
434         spin_unlock(&im->ino_lock);
435
436         return err;
437 }
438
439 void release_orphan_inode(struct f2fs_sb_info *sbi)
440 {
441         struct inode_management *im = &sbi->im[ORPHAN_INO];
442
443         spin_lock(&im->ino_lock);
444         f2fs_bug_on(sbi, im->ino_num == 0);
445         im->ino_num--;
446         spin_unlock(&im->ino_lock);
447 }
448
449 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
450 {
451         /* add new orphan ino entry into list */
452         __add_ino_entry(sbi, ino, ORPHAN_INO);
453 }
454
455 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
456 {
457         /* remove orphan entry from orphan list */
458         __remove_ino_entry(sbi, ino, ORPHAN_INO);
459 }
460
461 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
462 {
463         struct inode *inode = f2fs_iget(sbi->sb, ino);
464         f2fs_bug_on(sbi, IS_ERR(inode));
465         clear_nlink(inode);
466
467         /* truncate all the data during iput */
468         iput(inode);
469 }
470
471 void recover_orphan_inodes(struct f2fs_sb_info *sbi)
472 {
473         block_t start_blk, orphan_blocks, i, j;
474
475         if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
476                 return;
477
478         set_sbi_flag(sbi, SBI_POR_DOING);
479
480         start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
481         orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
482
483         ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP);
484
485         for (i = 0; i < orphan_blocks; i++) {
486                 struct page *page = get_meta_page(sbi, start_blk + i);
487                 struct f2fs_orphan_block *orphan_blk;
488
489                 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
490                 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
491                         nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
492                         recover_orphan_inode(sbi, ino);
493                 }
494                 f2fs_put_page(page, 1);
495         }
496         /* clear Orphan Flag */
497         clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
498         clear_sbi_flag(sbi, SBI_POR_DOING);
499         return;
500 }
501
502 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
503 {
504         struct list_head *head;
505         struct f2fs_orphan_block *orphan_blk = NULL;
506         unsigned int nentries = 0;
507         unsigned short index;
508         unsigned short orphan_blocks;
509         struct page *page = NULL;
510         struct ino_entry *orphan = NULL;
511         struct inode_management *im = &sbi->im[ORPHAN_INO];
512
513         orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
514
515         for (index = 0; index < orphan_blocks; index++)
516                 grab_meta_page(sbi, start_blk + index);
517
518         index = 1;
519
520         /*
521          * we don't need to do spin_lock(&im->ino_lock) here, since all the
522          * orphan inode operations are covered under f2fs_lock_op().
523          * And, spin_lock should be avoided due to page operations below.
524          */
525         head = &im->ino_list;
526
527         /* loop for each orphan inode entry and write them in Jornal block */
528         list_for_each_entry(orphan, head, list) {
529                 if (!page) {
530                         page = find_get_page(META_MAPPING(sbi), start_blk++);
531                         f2fs_bug_on(sbi, !page);
532                         orphan_blk =
533                                 (struct f2fs_orphan_block *)page_address(page);
534                         memset(orphan_blk, 0, sizeof(*orphan_blk));
535                         f2fs_put_page(page, 0);
536                 }
537
538                 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
539
540                 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
541                         /*
542                          * an orphan block is full of 1020 entries,
543                          * then we need to flush current orphan blocks
544                          * and bring another one in memory
545                          */
546                         orphan_blk->blk_addr = cpu_to_le16(index);
547                         orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
548                         orphan_blk->entry_count = cpu_to_le32(nentries);
549                         set_page_dirty(page);
550                         f2fs_put_page(page, 1);
551                         index++;
552                         nentries = 0;
553                         page = NULL;
554                 }
555         }
556
557         if (page) {
558                 orphan_blk->blk_addr = cpu_to_le16(index);
559                 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
560                 orphan_blk->entry_count = cpu_to_le32(nentries);
561                 set_page_dirty(page);
562                 f2fs_put_page(page, 1);
563         }
564 }
565
566 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
567                                 block_t cp_addr, unsigned long long *version)
568 {
569         struct page *cp_page_1, *cp_page_2 = NULL;
570         unsigned long blk_size = sbi->blocksize;
571         struct f2fs_checkpoint *cp_block;
572         unsigned long long cur_version = 0, pre_version = 0;
573         size_t crc_offset;
574         __u32 crc = 0;
575
576         /* Read the 1st cp block in this CP pack */
577         cp_page_1 = get_meta_page(sbi, cp_addr);
578
579         /* get the version number */
580         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
581         crc_offset = le32_to_cpu(cp_block->checksum_offset);
582         if (crc_offset >= blk_size)
583                 goto invalid_cp1;
584
585         crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
586         if (!f2fs_crc_valid(crc, cp_block, crc_offset))
587                 goto invalid_cp1;
588
589         pre_version = cur_cp_version(cp_block);
590
591         /* Read the 2nd cp block in this CP pack */
592         cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
593         cp_page_2 = get_meta_page(sbi, cp_addr);
594
595         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
596         crc_offset = le32_to_cpu(cp_block->checksum_offset);
597         if (crc_offset >= blk_size)
598                 goto invalid_cp2;
599
600         crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
601         if (!f2fs_crc_valid(crc, cp_block, crc_offset))
602                 goto invalid_cp2;
603
604         cur_version = cur_cp_version(cp_block);
605
606         if (cur_version == pre_version) {
607                 *version = cur_version;
608                 f2fs_put_page(cp_page_2, 1);
609                 return cp_page_1;
610         }
611 invalid_cp2:
612         f2fs_put_page(cp_page_2, 1);
613 invalid_cp1:
614         f2fs_put_page(cp_page_1, 1);
615         return NULL;
616 }
617
618 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
619 {
620         struct f2fs_checkpoint *cp_block;
621         struct f2fs_super_block *fsb = sbi->raw_super;
622         struct page *cp1, *cp2, *cur_page;
623         unsigned long blk_size = sbi->blocksize;
624         unsigned long long cp1_version = 0, cp2_version = 0;
625         unsigned long long cp_start_blk_no;
626         unsigned int cp_blks = 1 + __cp_payload(sbi);
627         block_t cp_blk_no;
628         int i;
629
630         sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
631         if (!sbi->ckpt)
632                 return -ENOMEM;
633         /*
634          * Finding out valid cp block involves read both
635          * sets( cp pack1 and cp pack 2)
636          */
637         cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
638         cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
639
640         /* The second checkpoint pack should start at the next segment */
641         cp_start_blk_no += ((unsigned long long)1) <<
642                                 le32_to_cpu(fsb->log_blocks_per_seg);
643         cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
644
645         if (cp1 && cp2) {
646                 if (ver_after(cp2_version, cp1_version))
647                         cur_page = cp2;
648                 else
649                         cur_page = cp1;
650         } else if (cp1) {
651                 cur_page = cp1;
652         } else if (cp2) {
653                 cur_page = cp2;
654         } else {
655                 goto fail_no_cp;
656         }
657
658         cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
659         memcpy(sbi->ckpt, cp_block, blk_size);
660
661         if (cp_blks <= 1)
662                 goto done;
663
664         cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
665         if (cur_page == cp2)
666                 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
667
668         for (i = 1; i < cp_blks; i++) {
669                 void *sit_bitmap_ptr;
670                 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
671
672                 cur_page = get_meta_page(sbi, cp_blk_no + i);
673                 sit_bitmap_ptr = page_address(cur_page);
674                 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
675                 f2fs_put_page(cur_page, 1);
676         }
677 done:
678         f2fs_put_page(cp1, 1);
679         f2fs_put_page(cp2, 1);
680         return 0;
681
682 fail_no_cp:
683         kfree(sbi->ckpt);
684         return -EINVAL;
685 }
686
687 static int __add_dirty_inode(struct inode *inode, struct inode_entry *new)
688 {
689         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
690
691         if (is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR))
692                 return -EEXIST;
693
694         set_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
695         F2FS_I(inode)->dirty_dir = new;
696         list_add_tail(&new->list, &sbi->dir_inode_list);
697         stat_inc_dirty_dir(sbi);
698         return 0;
699 }
700
701 void update_dirty_page(struct inode *inode, struct page *page)
702 {
703         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
704         struct inode_entry *new;
705         int ret = 0;
706
707         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode))
708                 return;
709
710         if (!S_ISDIR(inode->i_mode)) {
711                 inode_inc_dirty_pages(inode);
712                 goto out;
713         }
714
715         new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
716         new->inode = inode;
717         INIT_LIST_HEAD(&new->list);
718
719         spin_lock(&sbi->dir_inode_lock);
720         ret = __add_dirty_inode(inode, new);
721         inode_inc_dirty_pages(inode);
722         spin_unlock(&sbi->dir_inode_lock);
723
724         if (ret)
725                 kmem_cache_free(inode_entry_slab, new);
726 out:
727         SetPagePrivate(page);
728         f2fs_trace_pid(page);
729 }
730
731 void add_dirty_dir_inode(struct inode *inode)
732 {
733         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
734         struct inode_entry *new =
735                         f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
736         int ret = 0;
737
738         new->inode = inode;
739         INIT_LIST_HEAD(&new->list);
740
741         spin_lock(&sbi->dir_inode_lock);
742         ret = __add_dirty_inode(inode, new);
743         spin_unlock(&sbi->dir_inode_lock);
744
745         if (ret)
746                 kmem_cache_free(inode_entry_slab, new);
747 }
748
749 void remove_dirty_dir_inode(struct inode *inode)
750 {
751         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
752         struct inode_entry *entry;
753
754         if (!S_ISDIR(inode->i_mode))
755                 return;
756
757         spin_lock(&sbi->dir_inode_lock);
758         if (get_dirty_pages(inode) ||
759                         !is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR)) {
760                 spin_unlock(&sbi->dir_inode_lock);
761                 return;
762         }
763
764         entry = F2FS_I(inode)->dirty_dir;
765         list_del(&entry->list);
766         F2FS_I(inode)->dirty_dir = NULL;
767         clear_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
768         stat_dec_dirty_dir(sbi);
769         spin_unlock(&sbi->dir_inode_lock);
770         kmem_cache_free(inode_entry_slab, entry);
771
772         /* Only from the recovery routine */
773         if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
774                 clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
775                 iput(inode);
776         }
777 }
778
779 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
780 {
781         struct list_head *head;
782         struct inode_entry *entry;
783         struct inode *inode;
784 retry:
785         if (unlikely(f2fs_cp_error(sbi)))
786                 return;
787
788         spin_lock(&sbi->dir_inode_lock);
789
790         head = &sbi->dir_inode_list;
791         if (list_empty(head)) {
792                 spin_unlock(&sbi->dir_inode_lock);
793                 return;
794         }
795         entry = list_entry(head->next, struct inode_entry, list);
796         inode = igrab(entry->inode);
797         spin_unlock(&sbi->dir_inode_lock);
798         if (inode) {
799                 filemap_fdatawrite(inode->i_mapping);
800                 iput(inode);
801         } else {
802                 /*
803                  * We should submit bio, since it exists several
804                  * wribacking dentry pages in the freeing inode.
805                  */
806                 f2fs_submit_merged_bio(sbi, DATA, WRITE);
807                 cond_resched();
808         }
809         goto retry;
810 }
811
812 /*
813  * Freeze all the FS-operations for checkpoint.
814  */
815 static int block_operations(struct f2fs_sb_info *sbi)
816 {
817         struct writeback_control wbc = {
818                 .sync_mode = WB_SYNC_ALL,
819                 .nr_to_write = LONG_MAX,
820                 .for_reclaim = 0,
821         };
822         struct blk_plug plug;
823         int err = 0;
824
825         blk_start_plug(&plug);
826
827 retry_flush_dents:
828         f2fs_lock_all(sbi);
829         /* write all the dirty dentry pages */
830         if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
831                 f2fs_unlock_all(sbi);
832                 sync_dirty_dir_inodes(sbi);
833                 if (unlikely(f2fs_cp_error(sbi))) {
834                         err = -EIO;
835                         goto out;
836                 }
837                 goto retry_flush_dents;
838         }
839
840         /*
841          * POR: we should ensure that there are no dirty node pages
842          * until finishing nat/sit flush.
843          */
844 retry_flush_nodes:
845         down_write(&sbi->node_write);
846
847         if (get_pages(sbi, F2FS_DIRTY_NODES)) {
848                 up_write(&sbi->node_write);
849                 sync_node_pages(sbi, 0, &wbc);
850                 if (unlikely(f2fs_cp_error(sbi))) {
851                         f2fs_unlock_all(sbi);
852                         err = -EIO;
853                         goto out;
854                 }
855                 goto retry_flush_nodes;
856         }
857 out:
858         blk_finish_plug(&plug);
859         return err;
860 }
861
862 static void unblock_operations(struct f2fs_sb_info *sbi)
863 {
864         up_write(&sbi->node_write);
865         f2fs_unlock_all(sbi);
866 }
867
868 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
869 {
870         DEFINE_WAIT(wait);
871
872         for (;;) {
873                 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
874
875                 if (!get_pages(sbi, F2FS_WRITEBACK))
876                         break;
877
878                 io_schedule();
879         }
880         finish_wait(&sbi->cp_wait, &wait);
881 }
882
883 static void do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
884 {
885         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
886         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
887         struct f2fs_nm_info *nm_i = NM_I(sbi);
888         unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
889         nid_t last_nid = nm_i->next_scan_nid;
890         block_t start_blk;
891         unsigned int data_sum_blocks, orphan_blocks;
892         __u32 crc32 = 0;
893         int i;
894         int cp_payload_blks = __cp_payload(sbi);
895
896         /*
897          * This avoids to conduct wrong roll-forward operations and uses
898          * metapages, so should be called prior to sync_meta_pages below.
899          */
900         discard_next_dnode(sbi, NEXT_FREE_BLKADDR(sbi, curseg));
901
902         /* Flush all the NAT/SIT pages */
903         while (get_pages(sbi, F2FS_DIRTY_META)) {
904                 sync_meta_pages(sbi, META, LONG_MAX);
905                 if (unlikely(f2fs_cp_error(sbi)))
906                         return;
907         }
908
909         next_free_nid(sbi, &last_nid);
910
911         /*
912          * modify checkpoint
913          * version number is already updated
914          */
915         ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
916         ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
917         ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
918         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
919                 ckpt->cur_node_segno[i] =
920                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
921                 ckpt->cur_node_blkoff[i] =
922                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
923                 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
924                                 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
925         }
926         for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
927                 ckpt->cur_data_segno[i] =
928                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
929                 ckpt->cur_data_blkoff[i] =
930                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
931                 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
932                                 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
933         }
934
935         ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
936         ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
937         ckpt->next_free_nid = cpu_to_le32(last_nid);
938
939         /* 2 cp  + n data seg summary + orphan inode blocks */
940         data_sum_blocks = npages_for_summary_flush(sbi, false);
941         if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
942                 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
943         else
944                 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
945
946         orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
947         ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
948                         orphan_blocks);
949
950         if (__remain_node_summaries(cpc->reason))
951                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
952                                 cp_payload_blks + data_sum_blocks +
953                                 orphan_blocks + NR_CURSEG_NODE_TYPE);
954         else
955                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
956                                 cp_payload_blks + data_sum_blocks +
957                                 orphan_blocks);
958
959         if (cpc->reason == CP_UMOUNT)
960                 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
961         else
962                 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
963
964         if (cpc->reason == CP_FASTBOOT)
965                 set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
966         else
967                 clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
968
969         if (orphan_num)
970                 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
971         else
972                 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
973
974         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
975                 set_ckpt_flags(ckpt, CP_FSCK_FLAG);
976
977         /* update SIT/NAT bitmap */
978         get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
979         get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
980
981         crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
982         *((__le32 *)((unsigned char *)ckpt +
983                                 le32_to_cpu(ckpt->checksum_offset)))
984                                 = cpu_to_le32(crc32);
985
986         start_blk = __start_cp_addr(sbi);
987
988         /* write out checkpoint buffer at block 0 */
989         update_meta_page(sbi, ckpt, start_blk++);
990
991         for (i = 1; i < 1 + cp_payload_blks; i++)
992                 update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
993                                                         start_blk++);
994
995         if (orphan_num) {
996                 write_orphan_inodes(sbi, start_blk);
997                 start_blk += orphan_blocks;
998         }
999
1000         write_data_summaries(sbi, start_blk);
1001         start_blk += data_sum_blocks;
1002         if (__remain_node_summaries(cpc->reason)) {
1003                 write_node_summaries(sbi, start_blk);
1004                 start_blk += NR_CURSEG_NODE_TYPE;
1005         }
1006
1007         /* writeout checkpoint block */
1008         update_meta_page(sbi, ckpt, start_blk);
1009
1010         /* wait for previous submitted node/meta pages writeback */
1011         wait_on_all_pages_writeback(sbi);
1012
1013         if (unlikely(f2fs_cp_error(sbi)))
1014                 return;
1015
1016         filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX);
1017         filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX);
1018
1019         /* update user_block_counts */
1020         sbi->last_valid_block_count = sbi->total_valid_block_count;
1021         sbi->alloc_valid_block_count = 0;
1022
1023         /* Here, we only have one bio having CP pack */
1024         sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
1025
1026         /* wait for previous submitted meta pages writeback */
1027         wait_on_all_pages_writeback(sbi);
1028
1029         release_dirty_inode(sbi);
1030
1031         if (unlikely(f2fs_cp_error(sbi)))
1032                 return;
1033
1034         clear_prefree_segments(sbi, cpc);
1035         clear_sbi_flag(sbi, SBI_IS_DIRTY);
1036 }
1037
1038 /*
1039  * We guarantee that this checkpoint procedure will not fail.
1040  */
1041 void write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1042 {
1043         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1044         unsigned long long ckpt_ver;
1045
1046         mutex_lock(&sbi->cp_mutex);
1047
1048         if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1049                 (cpc->reason == CP_FASTBOOT || cpc->reason == CP_SYNC ||
1050                 (cpc->reason == CP_DISCARD && !sbi->discard_blks)))
1051                 goto out;
1052         if (unlikely(f2fs_cp_error(sbi)))
1053                 goto out;
1054         if (f2fs_readonly(sbi->sb))
1055                 goto out;
1056
1057         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1058
1059         if (block_operations(sbi))
1060                 goto out;
1061
1062         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1063
1064         f2fs_submit_merged_bio(sbi, DATA, WRITE);
1065         f2fs_submit_merged_bio(sbi, NODE, WRITE);
1066         f2fs_submit_merged_bio(sbi, META, WRITE);
1067
1068         /*
1069          * update checkpoint pack index
1070          * Increase the version number so that
1071          * SIT entries and seg summaries are written at correct place
1072          */
1073         ckpt_ver = cur_cp_version(ckpt);
1074         ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1075
1076         /* write cached NAT/SIT entries to NAT/SIT area */
1077         flush_nat_entries(sbi);
1078         flush_sit_entries(sbi, cpc);
1079
1080         /* unlock all the fs_lock[] in do_checkpoint() */
1081         do_checkpoint(sbi, cpc);
1082
1083         unblock_operations(sbi);
1084         stat_inc_cp_count(sbi->stat_info);
1085
1086         if (cpc->reason == CP_RECOVERY)
1087                 f2fs_msg(sbi->sb, KERN_NOTICE,
1088                         "checkpoint: version = %llx", ckpt_ver);
1089 out:
1090         mutex_unlock(&sbi->cp_mutex);
1091         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1092 }
1093
1094 void init_ino_entry_info(struct f2fs_sb_info *sbi)
1095 {
1096         int i;
1097
1098         for (i = 0; i < MAX_INO_ENTRY; i++) {
1099                 struct inode_management *im = &sbi->im[i];
1100
1101                 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1102                 spin_lock_init(&im->ino_lock);
1103                 INIT_LIST_HEAD(&im->ino_list);
1104                 im->ino_num = 0;
1105         }
1106
1107         sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1108                         NR_CURSEG_TYPE - __cp_payload(sbi)) *
1109                                 F2FS_ORPHANS_PER_BLOCK;
1110 }
1111
1112 int __init create_checkpoint_caches(void)
1113 {
1114         ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1115                         sizeof(struct ino_entry));
1116         if (!ino_entry_slab)
1117                 return -ENOMEM;
1118         inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1119                         sizeof(struct inode_entry));
1120         if (!inode_entry_slab) {
1121                 kmem_cache_destroy(ino_entry_slab);
1122                 return -ENOMEM;
1123         }
1124         return 0;
1125 }
1126
1127 void destroy_checkpoint_caches(void)
1128 {
1129         kmem_cache_destroy(ino_entry_slab);
1130         kmem_cache_destroy(inode_entry_slab);
1131 }