__d_move(): fold manipulations with ->d_child/->d_subdirs
[cascardo/linux.git] / fs / f2fs / node.c
1 /*
2  * fs/f2fs/node.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
18
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include <trace/events/f2fs.h>
23
24 #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
25
26 static struct kmem_cache *nat_entry_slab;
27 static struct kmem_cache *free_nid_slab;
28 static struct kmem_cache *nat_entry_set_slab;
29
30 bool available_free_memory(struct f2fs_sb_info *sbi, int type)
31 {
32         struct f2fs_nm_info *nm_i = NM_I(sbi);
33         struct sysinfo val;
34         unsigned long mem_size = 0;
35         bool res = false;
36
37         si_meminfo(&val);
38         /* give 25%, 25%, 50% memory for each components respectively */
39         if (type == FREE_NIDS) {
40                 mem_size = (nm_i->fcnt * sizeof(struct free_nid)) >> 12;
41                 res = mem_size < ((val.totalram * nm_i->ram_thresh / 100) >> 2);
42         } else if (type == NAT_ENTRIES) {
43                 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >> 12;
44                 res = mem_size < ((val.totalram * nm_i->ram_thresh / 100) >> 2);
45         } else if (type == DIRTY_DENTS) {
46                 if (sbi->sb->s_bdi->dirty_exceeded)
47                         return false;
48                 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
49                 res = mem_size < ((val.totalram * nm_i->ram_thresh / 100) >> 1);
50         }
51         return res;
52 }
53
54 static void clear_node_page_dirty(struct page *page)
55 {
56         struct address_space *mapping = page->mapping;
57         struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
58         unsigned int long flags;
59
60         if (PageDirty(page)) {
61                 spin_lock_irqsave(&mapping->tree_lock, flags);
62                 radix_tree_tag_clear(&mapping->page_tree,
63                                 page_index(page),
64                                 PAGECACHE_TAG_DIRTY);
65                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
66
67                 clear_page_dirty_for_io(page);
68                 dec_page_count(sbi, F2FS_DIRTY_NODES);
69         }
70         ClearPageUptodate(page);
71 }
72
73 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
74 {
75         pgoff_t index = current_nat_addr(sbi, nid);
76         return get_meta_page(sbi, index);
77 }
78
79 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
80 {
81         struct page *src_page;
82         struct page *dst_page;
83         pgoff_t src_off;
84         pgoff_t dst_off;
85         void *src_addr;
86         void *dst_addr;
87         struct f2fs_nm_info *nm_i = NM_I(sbi);
88
89         src_off = current_nat_addr(sbi, nid);
90         dst_off = next_nat_addr(sbi, src_off);
91
92         /* get current nat block page with lock */
93         src_page = get_meta_page(sbi, src_off);
94         dst_page = grab_meta_page(sbi, dst_off);
95         f2fs_bug_on(PageDirty(src_page));
96
97         src_addr = page_address(src_page);
98         dst_addr = page_address(dst_page);
99         memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
100         set_page_dirty(dst_page);
101         f2fs_put_page(src_page, 1);
102
103         set_to_next_nat(nm_i, nid);
104
105         return dst_page;
106 }
107
108 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
109 {
110         return radix_tree_lookup(&nm_i->nat_root, n);
111 }
112
113 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
114                 nid_t start, unsigned int nr, struct nat_entry **ep)
115 {
116         return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
117 }
118
119 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
120 {
121         list_del(&e->list);
122         radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
123         nm_i->nat_cnt--;
124         kmem_cache_free(nat_entry_slab, e);
125 }
126
127 int is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
128 {
129         struct f2fs_nm_info *nm_i = NM_I(sbi);
130         struct nat_entry *e;
131         int is_cp = 1;
132
133         read_lock(&nm_i->nat_tree_lock);
134         e = __lookup_nat_cache(nm_i, nid);
135         if (e && !e->checkpointed)
136                 is_cp = 0;
137         read_unlock(&nm_i->nat_tree_lock);
138         return is_cp;
139 }
140
141 bool fsync_mark_done(struct f2fs_sb_info *sbi, nid_t nid)
142 {
143         struct f2fs_nm_info *nm_i = NM_I(sbi);
144         struct nat_entry *e;
145         bool fsync_done = false;
146
147         read_lock(&nm_i->nat_tree_lock);
148         e = __lookup_nat_cache(nm_i, nid);
149         if (e)
150                 fsync_done = e->fsync_done;
151         read_unlock(&nm_i->nat_tree_lock);
152         return fsync_done;
153 }
154
155 void fsync_mark_clear(struct f2fs_sb_info *sbi, nid_t nid)
156 {
157         struct f2fs_nm_info *nm_i = NM_I(sbi);
158         struct nat_entry *e;
159
160         write_lock(&nm_i->nat_tree_lock);
161         e = __lookup_nat_cache(nm_i, nid);
162         if (e)
163                 e->fsync_done = false;
164         write_unlock(&nm_i->nat_tree_lock);
165 }
166
167 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
168 {
169         struct nat_entry *new;
170
171         new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC);
172         if (!new)
173                 return NULL;
174         if (radix_tree_insert(&nm_i->nat_root, nid, new)) {
175                 kmem_cache_free(nat_entry_slab, new);
176                 return NULL;
177         }
178         memset(new, 0, sizeof(struct nat_entry));
179         nat_set_nid(new, nid);
180         new->checkpointed = true;
181         list_add_tail(&new->list, &nm_i->nat_entries);
182         nm_i->nat_cnt++;
183         return new;
184 }
185
186 static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
187                                                 struct f2fs_nat_entry *ne)
188 {
189         struct nat_entry *e;
190 retry:
191         write_lock(&nm_i->nat_tree_lock);
192         e = __lookup_nat_cache(nm_i, nid);
193         if (!e) {
194                 e = grab_nat_entry(nm_i, nid);
195                 if (!e) {
196                         write_unlock(&nm_i->nat_tree_lock);
197                         goto retry;
198                 }
199                 node_info_from_raw_nat(&e->ni, ne);
200         }
201         write_unlock(&nm_i->nat_tree_lock);
202 }
203
204 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
205                         block_t new_blkaddr, bool fsync_done)
206 {
207         struct f2fs_nm_info *nm_i = NM_I(sbi);
208         struct nat_entry *e;
209 retry:
210         write_lock(&nm_i->nat_tree_lock);
211         e = __lookup_nat_cache(nm_i, ni->nid);
212         if (!e) {
213                 e = grab_nat_entry(nm_i, ni->nid);
214                 if (!e) {
215                         write_unlock(&nm_i->nat_tree_lock);
216                         goto retry;
217                 }
218                 e->ni = *ni;
219                 f2fs_bug_on(ni->blk_addr == NEW_ADDR);
220         } else if (new_blkaddr == NEW_ADDR) {
221                 /*
222                  * when nid is reallocated,
223                  * previous nat entry can be remained in nat cache.
224                  * So, reinitialize it with new information.
225                  */
226                 e->ni = *ni;
227                 f2fs_bug_on(ni->blk_addr != NULL_ADDR);
228         }
229
230         /* sanity check */
231         f2fs_bug_on(nat_get_blkaddr(e) != ni->blk_addr);
232         f2fs_bug_on(nat_get_blkaddr(e) == NULL_ADDR &&
233                         new_blkaddr == NULL_ADDR);
234         f2fs_bug_on(nat_get_blkaddr(e) == NEW_ADDR &&
235                         new_blkaddr == NEW_ADDR);
236         f2fs_bug_on(nat_get_blkaddr(e) != NEW_ADDR &&
237                         nat_get_blkaddr(e) != NULL_ADDR &&
238                         new_blkaddr == NEW_ADDR);
239
240         /* increment version no as node is removed */
241         if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
242                 unsigned char version = nat_get_version(e);
243                 nat_set_version(e, inc_node_version(version));
244         }
245
246         /* change address */
247         nat_set_blkaddr(e, new_blkaddr);
248         __set_nat_cache_dirty(nm_i, e);
249
250         /* update fsync_mark if its inode nat entry is still alive */
251         e = __lookup_nat_cache(nm_i, ni->ino);
252         if (e)
253                 e->fsync_done = fsync_done;
254         write_unlock(&nm_i->nat_tree_lock);
255 }
256
257 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
258 {
259         struct f2fs_nm_info *nm_i = NM_I(sbi);
260
261         if (available_free_memory(sbi, NAT_ENTRIES))
262                 return 0;
263
264         write_lock(&nm_i->nat_tree_lock);
265         while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
266                 struct nat_entry *ne;
267                 ne = list_first_entry(&nm_i->nat_entries,
268                                         struct nat_entry, list);
269                 __del_from_nat_cache(nm_i, ne);
270                 nr_shrink--;
271         }
272         write_unlock(&nm_i->nat_tree_lock);
273         return nr_shrink;
274 }
275
276 /*
277  * This function always returns success
278  */
279 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
280 {
281         struct f2fs_nm_info *nm_i = NM_I(sbi);
282         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
283         struct f2fs_summary_block *sum = curseg->sum_blk;
284         nid_t start_nid = START_NID(nid);
285         struct f2fs_nat_block *nat_blk;
286         struct page *page = NULL;
287         struct f2fs_nat_entry ne;
288         struct nat_entry *e;
289         int i;
290
291         memset(&ne, 0, sizeof(struct f2fs_nat_entry));
292         ni->nid = nid;
293
294         /* Check nat cache */
295         read_lock(&nm_i->nat_tree_lock);
296         e = __lookup_nat_cache(nm_i, nid);
297         if (e) {
298                 ni->ino = nat_get_ino(e);
299                 ni->blk_addr = nat_get_blkaddr(e);
300                 ni->version = nat_get_version(e);
301         }
302         read_unlock(&nm_i->nat_tree_lock);
303         if (e)
304                 return;
305
306         /* Check current segment summary */
307         mutex_lock(&curseg->curseg_mutex);
308         i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
309         if (i >= 0) {
310                 ne = nat_in_journal(sum, i);
311                 node_info_from_raw_nat(ni, &ne);
312         }
313         mutex_unlock(&curseg->curseg_mutex);
314         if (i >= 0)
315                 goto cache;
316
317         /* Fill node_info from nat page */
318         page = get_current_nat_page(sbi, start_nid);
319         nat_blk = (struct f2fs_nat_block *)page_address(page);
320         ne = nat_blk->entries[nid - start_nid];
321         node_info_from_raw_nat(ni, &ne);
322         f2fs_put_page(page, 1);
323 cache:
324         /* cache nat entry */
325         cache_nat_entry(NM_I(sbi), nid, &ne);
326 }
327
328 /*
329  * The maximum depth is four.
330  * Offset[0] will have raw inode offset.
331  */
332 static int get_node_path(struct f2fs_inode_info *fi, long block,
333                                 int offset[4], unsigned int noffset[4])
334 {
335         const long direct_index = ADDRS_PER_INODE(fi);
336         const long direct_blks = ADDRS_PER_BLOCK;
337         const long dptrs_per_blk = NIDS_PER_BLOCK;
338         const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
339         const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
340         int n = 0;
341         int level = 0;
342
343         noffset[0] = 0;
344
345         if (block < direct_index) {
346                 offset[n] = block;
347                 goto got;
348         }
349         block -= direct_index;
350         if (block < direct_blks) {
351                 offset[n++] = NODE_DIR1_BLOCK;
352                 noffset[n] = 1;
353                 offset[n] = block;
354                 level = 1;
355                 goto got;
356         }
357         block -= direct_blks;
358         if (block < direct_blks) {
359                 offset[n++] = NODE_DIR2_BLOCK;
360                 noffset[n] = 2;
361                 offset[n] = block;
362                 level = 1;
363                 goto got;
364         }
365         block -= direct_blks;
366         if (block < indirect_blks) {
367                 offset[n++] = NODE_IND1_BLOCK;
368                 noffset[n] = 3;
369                 offset[n++] = block / direct_blks;
370                 noffset[n] = 4 + offset[n - 1];
371                 offset[n] = block % direct_blks;
372                 level = 2;
373                 goto got;
374         }
375         block -= indirect_blks;
376         if (block < indirect_blks) {
377                 offset[n++] = NODE_IND2_BLOCK;
378                 noffset[n] = 4 + dptrs_per_blk;
379                 offset[n++] = block / direct_blks;
380                 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
381                 offset[n] = block % direct_blks;
382                 level = 2;
383                 goto got;
384         }
385         block -= indirect_blks;
386         if (block < dindirect_blks) {
387                 offset[n++] = NODE_DIND_BLOCK;
388                 noffset[n] = 5 + (dptrs_per_blk * 2);
389                 offset[n++] = block / indirect_blks;
390                 noffset[n] = 6 + (dptrs_per_blk * 2) +
391                               offset[n - 1] * (dptrs_per_blk + 1);
392                 offset[n++] = (block / direct_blks) % dptrs_per_blk;
393                 noffset[n] = 7 + (dptrs_per_blk * 2) +
394                               offset[n - 2] * (dptrs_per_blk + 1) +
395                               offset[n - 1];
396                 offset[n] = block % direct_blks;
397                 level = 3;
398                 goto got;
399         } else {
400                 BUG();
401         }
402 got:
403         return level;
404 }
405
406 /*
407  * Caller should call f2fs_put_dnode(dn).
408  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
409  * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
410  * In the case of RDONLY_NODE, we don't need to care about mutex.
411  */
412 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
413 {
414         struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
415         struct page *npage[4];
416         struct page *parent;
417         int offset[4];
418         unsigned int noffset[4];
419         nid_t nids[4];
420         int level, i;
421         int err = 0;
422
423         level = get_node_path(F2FS_I(dn->inode), index, offset, noffset);
424
425         nids[0] = dn->inode->i_ino;
426         npage[0] = dn->inode_page;
427
428         if (!npage[0]) {
429                 npage[0] = get_node_page(sbi, nids[0]);
430                 if (IS_ERR(npage[0]))
431                         return PTR_ERR(npage[0]);
432         }
433         parent = npage[0];
434         if (level != 0)
435                 nids[1] = get_nid(parent, offset[0], true);
436         dn->inode_page = npage[0];
437         dn->inode_page_locked = true;
438
439         /* get indirect or direct nodes */
440         for (i = 1; i <= level; i++) {
441                 bool done = false;
442
443                 if (!nids[i] && mode == ALLOC_NODE) {
444                         /* alloc new node */
445                         if (!alloc_nid(sbi, &(nids[i]))) {
446                                 err = -ENOSPC;
447                                 goto release_pages;
448                         }
449
450                         dn->nid = nids[i];
451                         npage[i] = new_node_page(dn, noffset[i], NULL);
452                         if (IS_ERR(npage[i])) {
453                                 alloc_nid_failed(sbi, nids[i]);
454                                 err = PTR_ERR(npage[i]);
455                                 goto release_pages;
456                         }
457
458                         set_nid(parent, offset[i - 1], nids[i], i == 1);
459                         alloc_nid_done(sbi, nids[i]);
460                         done = true;
461                 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
462                         npage[i] = get_node_page_ra(parent, offset[i - 1]);
463                         if (IS_ERR(npage[i])) {
464                                 err = PTR_ERR(npage[i]);
465                                 goto release_pages;
466                         }
467                         done = true;
468                 }
469                 if (i == 1) {
470                         dn->inode_page_locked = false;
471                         unlock_page(parent);
472                 } else {
473                         f2fs_put_page(parent, 1);
474                 }
475
476                 if (!done) {
477                         npage[i] = get_node_page(sbi, nids[i]);
478                         if (IS_ERR(npage[i])) {
479                                 err = PTR_ERR(npage[i]);
480                                 f2fs_put_page(npage[0], 0);
481                                 goto release_out;
482                         }
483                 }
484                 if (i < level) {
485                         parent = npage[i];
486                         nids[i + 1] = get_nid(parent, offset[i], false);
487                 }
488         }
489         dn->nid = nids[level];
490         dn->ofs_in_node = offset[level];
491         dn->node_page = npage[level];
492         dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
493         return 0;
494
495 release_pages:
496         f2fs_put_page(parent, 1);
497         if (i > 1)
498                 f2fs_put_page(npage[0], 0);
499 release_out:
500         dn->inode_page = NULL;
501         dn->node_page = NULL;
502         return err;
503 }
504
505 static void truncate_node(struct dnode_of_data *dn)
506 {
507         struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
508         struct node_info ni;
509
510         get_node_info(sbi, dn->nid, &ni);
511         if (dn->inode->i_blocks == 0) {
512                 f2fs_bug_on(ni.blk_addr != NULL_ADDR);
513                 goto invalidate;
514         }
515         f2fs_bug_on(ni.blk_addr == NULL_ADDR);
516
517         /* Deallocate node address */
518         invalidate_blocks(sbi, ni.blk_addr);
519         dec_valid_node_count(sbi, dn->inode);
520         set_node_addr(sbi, &ni, NULL_ADDR, false);
521
522         if (dn->nid == dn->inode->i_ino) {
523                 remove_orphan_inode(sbi, dn->nid);
524                 dec_valid_inode_count(sbi);
525         } else {
526                 sync_inode_page(dn);
527         }
528 invalidate:
529         clear_node_page_dirty(dn->node_page);
530         F2FS_SET_SB_DIRT(sbi);
531
532         f2fs_put_page(dn->node_page, 1);
533
534         invalidate_mapping_pages(NODE_MAPPING(sbi),
535                         dn->node_page->index, dn->node_page->index);
536
537         dn->node_page = NULL;
538         trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
539 }
540
541 static int truncate_dnode(struct dnode_of_data *dn)
542 {
543         struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
544         struct page *page;
545
546         if (dn->nid == 0)
547                 return 1;
548
549         /* get direct node */
550         page = get_node_page(sbi, dn->nid);
551         if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
552                 return 1;
553         else if (IS_ERR(page))
554                 return PTR_ERR(page);
555
556         /* Make dnode_of_data for parameter */
557         dn->node_page = page;
558         dn->ofs_in_node = 0;
559         truncate_data_blocks(dn);
560         truncate_node(dn);
561         return 1;
562 }
563
564 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
565                                                 int ofs, int depth)
566 {
567         struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
568         struct dnode_of_data rdn = *dn;
569         struct page *page;
570         struct f2fs_node *rn;
571         nid_t child_nid;
572         unsigned int child_nofs;
573         int freed = 0;
574         int i, ret;
575
576         if (dn->nid == 0)
577                 return NIDS_PER_BLOCK + 1;
578
579         trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
580
581         page = get_node_page(sbi, dn->nid);
582         if (IS_ERR(page)) {
583                 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
584                 return PTR_ERR(page);
585         }
586
587         rn = F2FS_NODE(page);
588         if (depth < 3) {
589                 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
590                         child_nid = le32_to_cpu(rn->in.nid[i]);
591                         if (child_nid == 0)
592                                 continue;
593                         rdn.nid = child_nid;
594                         ret = truncate_dnode(&rdn);
595                         if (ret < 0)
596                                 goto out_err;
597                         set_nid(page, i, 0, false);
598                 }
599         } else {
600                 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
601                 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
602                         child_nid = le32_to_cpu(rn->in.nid[i]);
603                         if (child_nid == 0) {
604                                 child_nofs += NIDS_PER_BLOCK + 1;
605                                 continue;
606                         }
607                         rdn.nid = child_nid;
608                         ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
609                         if (ret == (NIDS_PER_BLOCK + 1)) {
610                                 set_nid(page, i, 0, false);
611                                 child_nofs += ret;
612                         } else if (ret < 0 && ret != -ENOENT) {
613                                 goto out_err;
614                         }
615                 }
616                 freed = child_nofs;
617         }
618
619         if (!ofs) {
620                 /* remove current indirect node */
621                 dn->node_page = page;
622                 truncate_node(dn);
623                 freed++;
624         } else {
625                 f2fs_put_page(page, 1);
626         }
627         trace_f2fs_truncate_nodes_exit(dn->inode, freed);
628         return freed;
629
630 out_err:
631         f2fs_put_page(page, 1);
632         trace_f2fs_truncate_nodes_exit(dn->inode, ret);
633         return ret;
634 }
635
636 static int truncate_partial_nodes(struct dnode_of_data *dn,
637                         struct f2fs_inode *ri, int *offset, int depth)
638 {
639         struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
640         struct page *pages[2];
641         nid_t nid[3];
642         nid_t child_nid;
643         int err = 0;
644         int i;
645         int idx = depth - 2;
646
647         nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
648         if (!nid[0])
649                 return 0;
650
651         /* get indirect nodes in the path */
652         for (i = 0; i < idx + 1; i++) {
653                 /* reference count'll be increased */
654                 pages[i] = get_node_page(sbi, nid[i]);
655                 if (IS_ERR(pages[i])) {
656                         err = PTR_ERR(pages[i]);
657                         idx = i - 1;
658                         goto fail;
659                 }
660                 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
661         }
662
663         /* free direct nodes linked to a partial indirect node */
664         for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
665                 child_nid = get_nid(pages[idx], i, false);
666                 if (!child_nid)
667                         continue;
668                 dn->nid = child_nid;
669                 err = truncate_dnode(dn);
670                 if (err < 0)
671                         goto fail;
672                 set_nid(pages[idx], i, 0, false);
673         }
674
675         if (offset[idx + 1] == 0) {
676                 dn->node_page = pages[idx];
677                 dn->nid = nid[idx];
678                 truncate_node(dn);
679         } else {
680                 f2fs_put_page(pages[idx], 1);
681         }
682         offset[idx]++;
683         offset[idx + 1] = 0;
684         idx--;
685 fail:
686         for (i = idx; i >= 0; i--)
687                 f2fs_put_page(pages[i], 1);
688
689         trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
690
691         return err;
692 }
693
694 /*
695  * All the block addresses of data and nodes should be nullified.
696  */
697 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
698 {
699         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
700         int err = 0, cont = 1;
701         int level, offset[4], noffset[4];
702         unsigned int nofs = 0;
703         struct f2fs_inode *ri;
704         struct dnode_of_data dn;
705         struct page *page;
706
707         trace_f2fs_truncate_inode_blocks_enter(inode, from);
708
709         level = get_node_path(F2FS_I(inode), from, offset, noffset);
710 restart:
711         page = get_node_page(sbi, inode->i_ino);
712         if (IS_ERR(page)) {
713                 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
714                 return PTR_ERR(page);
715         }
716
717         set_new_dnode(&dn, inode, page, NULL, 0);
718         unlock_page(page);
719
720         ri = F2FS_INODE(page);
721         switch (level) {
722         case 0:
723         case 1:
724                 nofs = noffset[1];
725                 break;
726         case 2:
727                 nofs = noffset[1];
728                 if (!offset[level - 1])
729                         goto skip_partial;
730                 err = truncate_partial_nodes(&dn, ri, offset, level);
731                 if (err < 0 && err != -ENOENT)
732                         goto fail;
733                 nofs += 1 + NIDS_PER_BLOCK;
734                 break;
735         case 3:
736                 nofs = 5 + 2 * NIDS_PER_BLOCK;
737                 if (!offset[level - 1])
738                         goto skip_partial;
739                 err = truncate_partial_nodes(&dn, ri, offset, level);
740                 if (err < 0 && err != -ENOENT)
741                         goto fail;
742                 break;
743         default:
744                 BUG();
745         }
746
747 skip_partial:
748         while (cont) {
749                 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
750                 switch (offset[0]) {
751                 case NODE_DIR1_BLOCK:
752                 case NODE_DIR2_BLOCK:
753                         err = truncate_dnode(&dn);
754                         break;
755
756                 case NODE_IND1_BLOCK:
757                 case NODE_IND2_BLOCK:
758                         err = truncate_nodes(&dn, nofs, offset[1], 2);
759                         break;
760
761                 case NODE_DIND_BLOCK:
762                         err = truncate_nodes(&dn, nofs, offset[1], 3);
763                         cont = 0;
764                         break;
765
766                 default:
767                         BUG();
768                 }
769                 if (err < 0 && err != -ENOENT)
770                         goto fail;
771                 if (offset[1] == 0 &&
772                                 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
773                         lock_page(page);
774                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
775                                 f2fs_put_page(page, 1);
776                                 goto restart;
777                         }
778                         f2fs_wait_on_page_writeback(page, NODE);
779                         ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
780                         set_page_dirty(page);
781                         unlock_page(page);
782                 }
783                 offset[1] = 0;
784                 offset[0]++;
785                 nofs += err;
786         }
787 fail:
788         f2fs_put_page(page, 0);
789         trace_f2fs_truncate_inode_blocks_exit(inode, err);
790         return err > 0 ? 0 : err;
791 }
792
793 int truncate_xattr_node(struct inode *inode, struct page *page)
794 {
795         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
796         nid_t nid = F2FS_I(inode)->i_xattr_nid;
797         struct dnode_of_data dn;
798         struct page *npage;
799
800         if (!nid)
801                 return 0;
802
803         npage = get_node_page(sbi, nid);
804         if (IS_ERR(npage))
805                 return PTR_ERR(npage);
806
807         F2FS_I(inode)->i_xattr_nid = 0;
808
809         /* need to do checkpoint during fsync */
810         F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
811
812         set_new_dnode(&dn, inode, page, npage, nid);
813
814         if (page)
815                 dn.inode_page_locked = true;
816         truncate_node(&dn);
817         return 0;
818 }
819
820 /*
821  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
822  * f2fs_unlock_op().
823  */
824 void remove_inode_page(struct inode *inode)
825 {
826         struct dnode_of_data dn;
827
828         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
829         if (get_dnode_of_data(&dn, 0, LOOKUP_NODE))
830                 return;
831
832         if (truncate_xattr_node(inode, dn.inode_page)) {
833                 f2fs_put_dnode(&dn);
834                 return;
835         }
836
837         /* remove potential inline_data blocks */
838         if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
839                                 S_ISLNK(inode->i_mode))
840                 truncate_data_blocks_range(&dn, 1);
841
842         /* 0 is possible, after f2fs_new_inode() has failed */
843         f2fs_bug_on(inode->i_blocks != 0 && inode->i_blocks != 1);
844
845         /* will put inode & node pages */
846         truncate_node(&dn);
847 }
848
849 struct page *new_inode_page(struct inode *inode)
850 {
851         struct dnode_of_data dn;
852
853         /* allocate inode page for new inode */
854         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
855
856         /* caller should f2fs_put_page(page, 1); */
857         return new_node_page(&dn, 0, NULL);
858 }
859
860 struct page *new_node_page(struct dnode_of_data *dn,
861                                 unsigned int ofs, struct page *ipage)
862 {
863         struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
864         struct node_info old_ni, new_ni;
865         struct page *page;
866         int err;
867
868         if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
869                 return ERR_PTR(-EPERM);
870
871         page = grab_cache_page(NODE_MAPPING(sbi), dn->nid);
872         if (!page)
873                 return ERR_PTR(-ENOMEM);
874
875         if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
876                 err = -ENOSPC;
877                 goto fail;
878         }
879
880         get_node_info(sbi, dn->nid, &old_ni);
881
882         /* Reinitialize old_ni with new node page */
883         f2fs_bug_on(old_ni.blk_addr != NULL_ADDR);
884         new_ni = old_ni;
885         new_ni.ino = dn->inode->i_ino;
886         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
887
888         f2fs_wait_on_page_writeback(page, NODE);
889         fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
890         set_cold_node(dn->inode, page);
891         SetPageUptodate(page);
892         set_page_dirty(page);
893
894         if (f2fs_has_xattr_block(ofs))
895                 F2FS_I(dn->inode)->i_xattr_nid = dn->nid;
896
897         dn->node_page = page;
898         if (ipage)
899                 update_inode(dn->inode, ipage);
900         else
901                 sync_inode_page(dn);
902         if (ofs == 0)
903                 inc_valid_inode_count(sbi);
904
905         return page;
906
907 fail:
908         clear_node_page_dirty(page);
909         f2fs_put_page(page, 1);
910         return ERR_PTR(err);
911 }
912
913 /*
914  * Caller should do after getting the following values.
915  * 0: f2fs_put_page(page, 0)
916  * LOCKED_PAGE: f2fs_put_page(page, 1)
917  * error: nothing
918  */
919 static int read_node_page(struct page *page, int rw)
920 {
921         struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
922         struct node_info ni;
923
924         get_node_info(sbi, page->index, &ni);
925
926         if (unlikely(ni.blk_addr == NULL_ADDR)) {
927                 f2fs_put_page(page, 1);
928                 return -ENOENT;
929         }
930
931         if (PageUptodate(page))
932                 return LOCKED_PAGE;
933
934         return f2fs_submit_page_bio(sbi, page, ni.blk_addr, rw);
935 }
936
937 /*
938  * Readahead a node page
939  */
940 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
941 {
942         struct page *apage;
943         int err;
944
945         apage = find_get_page(NODE_MAPPING(sbi), nid);
946         if (apage && PageUptodate(apage)) {
947                 f2fs_put_page(apage, 0);
948                 return;
949         }
950         f2fs_put_page(apage, 0);
951
952         apage = grab_cache_page(NODE_MAPPING(sbi), nid);
953         if (!apage)
954                 return;
955
956         err = read_node_page(apage, READA);
957         if (err == 0)
958                 f2fs_put_page(apage, 0);
959         else if (err == LOCKED_PAGE)
960                 f2fs_put_page(apage, 1);
961 }
962
963 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
964 {
965         struct page *page;
966         int err;
967 repeat:
968         page = grab_cache_page(NODE_MAPPING(sbi), nid);
969         if (!page)
970                 return ERR_PTR(-ENOMEM);
971
972         err = read_node_page(page, READ_SYNC);
973         if (err < 0)
974                 return ERR_PTR(err);
975         else if (err == LOCKED_PAGE)
976                 goto got_it;
977
978         lock_page(page);
979         if (unlikely(!PageUptodate(page) || nid != nid_of_node(page))) {
980                 f2fs_put_page(page, 1);
981                 return ERR_PTR(-EIO);
982         }
983         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
984                 f2fs_put_page(page, 1);
985                 goto repeat;
986         }
987 got_it:
988         return page;
989 }
990
991 /*
992  * Return a locked page for the desired node page.
993  * And, readahead MAX_RA_NODE number of node pages.
994  */
995 struct page *get_node_page_ra(struct page *parent, int start)
996 {
997         struct f2fs_sb_info *sbi = F2FS_SB(parent->mapping->host->i_sb);
998         struct blk_plug plug;
999         struct page *page;
1000         int err, i, end;
1001         nid_t nid;
1002
1003         /* First, try getting the desired direct node. */
1004         nid = get_nid(parent, start, false);
1005         if (!nid)
1006                 return ERR_PTR(-ENOENT);
1007 repeat:
1008         page = grab_cache_page(NODE_MAPPING(sbi), nid);
1009         if (!page)
1010                 return ERR_PTR(-ENOMEM);
1011
1012         err = read_node_page(page, READ_SYNC);
1013         if (err < 0)
1014                 return ERR_PTR(err);
1015         else if (err == LOCKED_PAGE)
1016                 goto page_hit;
1017
1018         blk_start_plug(&plug);
1019
1020         /* Then, try readahead for siblings of the desired node */
1021         end = start + MAX_RA_NODE;
1022         end = min(end, NIDS_PER_BLOCK);
1023         for (i = start + 1; i < end; i++) {
1024                 nid = get_nid(parent, i, false);
1025                 if (!nid)
1026                         continue;
1027                 ra_node_page(sbi, nid);
1028         }
1029
1030         blk_finish_plug(&plug);
1031
1032         lock_page(page);
1033         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1034                 f2fs_put_page(page, 1);
1035                 goto repeat;
1036         }
1037 page_hit:
1038         if (unlikely(!PageUptodate(page))) {
1039                 f2fs_put_page(page, 1);
1040                 return ERR_PTR(-EIO);
1041         }
1042         return page;
1043 }
1044
1045 void sync_inode_page(struct dnode_of_data *dn)
1046 {
1047         if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
1048                 update_inode(dn->inode, dn->node_page);
1049         } else if (dn->inode_page) {
1050                 if (!dn->inode_page_locked)
1051                         lock_page(dn->inode_page);
1052                 update_inode(dn->inode, dn->inode_page);
1053                 if (!dn->inode_page_locked)
1054                         unlock_page(dn->inode_page);
1055         } else {
1056                 update_inode_page(dn->inode);
1057         }
1058 }
1059
1060 int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
1061                                         struct writeback_control *wbc)
1062 {
1063         pgoff_t index, end;
1064         struct pagevec pvec;
1065         int step = ino ? 2 : 0;
1066         int nwritten = 0, wrote = 0;
1067
1068         pagevec_init(&pvec, 0);
1069
1070 next_step:
1071         index = 0;
1072         end = LONG_MAX;
1073
1074         while (index <= end) {
1075                 int i, nr_pages;
1076                 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1077                                 PAGECACHE_TAG_DIRTY,
1078                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1079                 if (nr_pages == 0)
1080                         break;
1081
1082                 for (i = 0; i < nr_pages; i++) {
1083                         struct page *page = pvec.pages[i];
1084
1085                         /*
1086                          * flushing sequence with step:
1087                          * 0. indirect nodes
1088                          * 1. dentry dnodes
1089                          * 2. file dnodes
1090                          */
1091                         if (step == 0 && IS_DNODE(page))
1092                                 continue;
1093                         if (step == 1 && (!IS_DNODE(page) ||
1094                                                 is_cold_node(page)))
1095                                 continue;
1096                         if (step == 2 && (!IS_DNODE(page) ||
1097                                                 !is_cold_node(page)))
1098                                 continue;
1099
1100                         /*
1101                          * If an fsync mode,
1102                          * we should not skip writing node pages.
1103                          */
1104                         if (ino && ino_of_node(page) == ino)
1105                                 lock_page(page);
1106                         else if (!trylock_page(page))
1107                                 continue;
1108
1109                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1110 continue_unlock:
1111                                 unlock_page(page);
1112                                 continue;
1113                         }
1114                         if (ino && ino_of_node(page) != ino)
1115                                 goto continue_unlock;
1116
1117                         if (!PageDirty(page)) {
1118                                 /* someone wrote it for us */
1119                                 goto continue_unlock;
1120                         }
1121
1122                         if (!clear_page_dirty_for_io(page))
1123                                 goto continue_unlock;
1124
1125                         /* called by fsync() */
1126                         if (ino && IS_DNODE(page)) {
1127                                 int mark = !is_checkpointed_node(sbi, ino);
1128                                 set_fsync_mark(page, 1);
1129                                 if (IS_INODE(page))
1130                                         set_dentry_mark(page, mark);
1131                                 nwritten++;
1132                         } else {
1133                                 set_fsync_mark(page, 0);
1134                                 set_dentry_mark(page, 0);
1135                         }
1136
1137                         if (NODE_MAPPING(sbi)->a_ops->writepage(page, wbc))
1138                                 unlock_page(page);
1139                         else
1140                                 wrote++;
1141
1142                         if (--wbc->nr_to_write == 0)
1143                                 break;
1144                 }
1145                 pagevec_release(&pvec);
1146                 cond_resched();
1147
1148                 if (wbc->nr_to_write == 0) {
1149                         step = 2;
1150                         break;
1151                 }
1152         }
1153
1154         if (step < 2) {
1155                 step++;
1156                 goto next_step;
1157         }
1158
1159         if (wrote)
1160                 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1161         return nwritten;
1162 }
1163
1164 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1165 {
1166         pgoff_t index = 0, end = LONG_MAX;
1167         struct pagevec pvec;
1168         int ret2 = 0, ret = 0;
1169
1170         pagevec_init(&pvec, 0);
1171
1172         while (index <= end) {
1173                 int i, nr_pages;
1174                 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1175                                 PAGECACHE_TAG_WRITEBACK,
1176                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1177                 if (nr_pages == 0)
1178                         break;
1179
1180                 for (i = 0; i < nr_pages; i++) {
1181                         struct page *page = pvec.pages[i];
1182
1183                         /* until radix tree lookup accepts end_index */
1184                         if (unlikely(page->index > end))
1185                                 continue;
1186
1187                         if (ino && ino_of_node(page) == ino) {
1188                                 f2fs_wait_on_page_writeback(page, NODE);
1189                                 if (TestClearPageError(page))
1190                                         ret = -EIO;
1191                         }
1192                 }
1193                 pagevec_release(&pvec);
1194                 cond_resched();
1195         }
1196
1197         if (unlikely(test_and_clear_bit(AS_ENOSPC, &NODE_MAPPING(sbi)->flags)))
1198                 ret2 = -ENOSPC;
1199         if (unlikely(test_and_clear_bit(AS_EIO, &NODE_MAPPING(sbi)->flags)))
1200                 ret2 = -EIO;
1201         if (!ret)
1202                 ret = ret2;
1203         return ret;
1204 }
1205
1206 static int f2fs_write_node_page(struct page *page,
1207                                 struct writeback_control *wbc)
1208 {
1209         struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
1210         nid_t nid;
1211         block_t new_addr;
1212         struct node_info ni;
1213         struct f2fs_io_info fio = {
1214                 .type = NODE,
1215                 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
1216         };
1217
1218         trace_f2fs_writepage(page, NODE);
1219
1220         if (unlikely(sbi->por_doing))
1221                 goto redirty_out;
1222         if (unlikely(f2fs_cp_error(sbi)))
1223                 goto redirty_out;
1224
1225         f2fs_wait_on_page_writeback(page, NODE);
1226
1227         /* get old block addr of this node page */
1228         nid = nid_of_node(page);
1229         f2fs_bug_on(page->index != nid);
1230
1231         get_node_info(sbi, nid, &ni);
1232
1233         /* This page is already truncated */
1234         if (unlikely(ni.blk_addr == NULL_ADDR)) {
1235                 dec_page_count(sbi, F2FS_DIRTY_NODES);
1236                 unlock_page(page);
1237                 return 0;
1238         }
1239
1240         if (wbc->for_reclaim)
1241                 goto redirty_out;
1242
1243         down_read(&sbi->node_write);
1244         set_page_writeback(page);
1245         write_node_page(sbi, page, &fio, nid, ni.blk_addr, &new_addr);
1246         set_node_addr(sbi, &ni, new_addr, is_fsync_dnode(page));
1247         dec_page_count(sbi, F2FS_DIRTY_NODES);
1248         up_read(&sbi->node_write);
1249         unlock_page(page);
1250         return 0;
1251
1252 redirty_out:
1253         redirty_page_for_writepage(wbc, page);
1254         return AOP_WRITEPAGE_ACTIVATE;
1255 }
1256
1257 static int f2fs_write_node_pages(struct address_space *mapping,
1258                             struct writeback_control *wbc)
1259 {
1260         struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1261         long diff;
1262
1263         trace_f2fs_writepages(mapping->host, wbc, NODE);
1264
1265         /* balancing f2fs's metadata in background */
1266         f2fs_balance_fs_bg(sbi);
1267
1268         /* collect a number of dirty node pages and write together */
1269         if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1270                 goto skip_write;
1271
1272         diff = nr_pages_to_write(sbi, NODE, wbc);
1273         wbc->sync_mode = WB_SYNC_NONE;
1274         sync_node_pages(sbi, 0, wbc);
1275         wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1276         return 0;
1277
1278 skip_write:
1279         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1280         return 0;
1281 }
1282
1283 static int f2fs_set_node_page_dirty(struct page *page)
1284 {
1285         struct address_space *mapping = page->mapping;
1286         struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1287
1288         trace_f2fs_set_page_dirty(page, NODE);
1289
1290         SetPageUptodate(page);
1291         if (!PageDirty(page)) {
1292                 __set_page_dirty_nobuffers(page);
1293                 inc_page_count(sbi, F2FS_DIRTY_NODES);
1294                 SetPagePrivate(page);
1295                 return 1;
1296         }
1297         return 0;
1298 }
1299
1300 static void f2fs_invalidate_node_page(struct page *page, unsigned int offset,
1301                                       unsigned int length)
1302 {
1303         struct inode *inode = page->mapping->host;
1304         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1305         if (PageDirty(page))
1306                 dec_page_count(sbi, F2FS_DIRTY_NODES);
1307         ClearPagePrivate(page);
1308 }
1309
1310 static int f2fs_release_node_page(struct page *page, gfp_t wait)
1311 {
1312         ClearPagePrivate(page);
1313         return 1;
1314 }
1315
1316 /*
1317  * Structure of the f2fs node operations
1318  */
1319 const struct address_space_operations f2fs_node_aops = {
1320         .writepage      = f2fs_write_node_page,
1321         .writepages     = f2fs_write_node_pages,
1322         .set_page_dirty = f2fs_set_node_page_dirty,
1323         .invalidatepage = f2fs_invalidate_node_page,
1324         .releasepage    = f2fs_release_node_page,
1325 };
1326
1327 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1328                                                 nid_t n)
1329 {
1330         return radix_tree_lookup(&nm_i->free_nid_root, n);
1331 }
1332
1333 static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i,
1334                                                 struct free_nid *i)
1335 {
1336         list_del(&i->list);
1337         radix_tree_delete(&nm_i->free_nid_root, i->nid);
1338 }
1339
1340 static int add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
1341 {
1342         struct f2fs_nm_info *nm_i = NM_I(sbi);
1343         struct free_nid *i;
1344         struct nat_entry *ne;
1345         bool allocated = false;
1346
1347         if (!available_free_memory(sbi, FREE_NIDS))
1348                 return -1;
1349
1350         /* 0 nid should not be used */
1351         if (unlikely(nid == 0))
1352                 return 0;
1353
1354         if (build) {
1355                 /* do not add allocated nids */
1356                 read_lock(&nm_i->nat_tree_lock);
1357                 ne = __lookup_nat_cache(nm_i, nid);
1358                 if (ne &&
1359                         (!ne->checkpointed || nat_get_blkaddr(ne) != NULL_ADDR))
1360                         allocated = true;
1361                 read_unlock(&nm_i->nat_tree_lock);
1362                 if (allocated)
1363                         return 0;
1364         }
1365
1366         i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1367         i->nid = nid;
1368         i->state = NID_NEW;
1369
1370         spin_lock(&nm_i->free_nid_list_lock);
1371         if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i)) {
1372                 spin_unlock(&nm_i->free_nid_list_lock);
1373                 kmem_cache_free(free_nid_slab, i);
1374                 return 0;
1375         }
1376         list_add_tail(&i->list, &nm_i->free_nid_list);
1377         nm_i->fcnt++;
1378         spin_unlock(&nm_i->free_nid_list_lock);
1379         return 1;
1380 }
1381
1382 static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1383 {
1384         struct free_nid *i;
1385         bool need_free = false;
1386
1387         spin_lock(&nm_i->free_nid_list_lock);
1388         i = __lookup_free_nid_list(nm_i, nid);
1389         if (i && i->state == NID_NEW) {
1390                 __del_from_free_nid_list(nm_i, i);
1391                 nm_i->fcnt--;
1392                 need_free = true;
1393         }
1394         spin_unlock(&nm_i->free_nid_list_lock);
1395
1396         if (need_free)
1397                 kmem_cache_free(free_nid_slab, i);
1398 }
1399
1400 static void scan_nat_page(struct f2fs_sb_info *sbi,
1401                         struct page *nat_page, nid_t start_nid)
1402 {
1403         struct f2fs_nm_info *nm_i = NM_I(sbi);
1404         struct f2fs_nat_block *nat_blk = page_address(nat_page);
1405         block_t blk_addr;
1406         int i;
1407
1408         i = start_nid % NAT_ENTRY_PER_BLOCK;
1409
1410         for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1411
1412                 if (unlikely(start_nid >= nm_i->max_nid))
1413                         break;
1414
1415                 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1416                 f2fs_bug_on(blk_addr == NEW_ADDR);
1417                 if (blk_addr == NULL_ADDR) {
1418                         if (add_free_nid(sbi, start_nid, true) < 0)
1419                                 break;
1420                 }
1421         }
1422 }
1423
1424 static void build_free_nids(struct f2fs_sb_info *sbi)
1425 {
1426         struct f2fs_nm_info *nm_i = NM_I(sbi);
1427         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1428         struct f2fs_summary_block *sum = curseg->sum_blk;
1429         int i = 0;
1430         nid_t nid = nm_i->next_scan_nid;
1431
1432         /* Enough entries */
1433         if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
1434                 return;
1435
1436         /* readahead nat pages to be scanned */
1437         ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, META_NAT);
1438
1439         while (1) {
1440                 struct page *page = get_current_nat_page(sbi, nid);
1441
1442                 scan_nat_page(sbi, page, nid);
1443                 f2fs_put_page(page, 1);
1444
1445                 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1446                 if (unlikely(nid >= nm_i->max_nid))
1447                         nid = 0;
1448
1449                 if (i++ == FREE_NID_PAGES)
1450                         break;
1451         }
1452
1453         /* go to the next free nat pages to find free nids abundantly */
1454         nm_i->next_scan_nid = nid;
1455
1456         /* find free nids from current sum_pages */
1457         mutex_lock(&curseg->curseg_mutex);
1458         for (i = 0; i < nats_in_cursum(sum); i++) {
1459                 block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
1460                 nid = le32_to_cpu(nid_in_journal(sum, i));
1461                 if (addr == NULL_ADDR)
1462                         add_free_nid(sbi, nid, true);
1463                 else
1464                         remove_free_nid(nm_i, nid);
1465         }
1466         mutex_unlock(&curseg->curseg_mutex);
1467 }
1468
1469 /*
1470  * If this function returns success, caller can obtain a new nid
1471  * from second parameter of this function.
1472  * The returned nid could be used ino as well as nid when inode is created.
1473  */
1474 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1475 {
1476         struct f2fs_nm_info *nm_i = NM_I(sbi);
1477         struct free_nid *i = NULL;
1478 retry:
1479         if (unlikely(sbi->total_valid_node_count + 1 > nm_i->available_nids))
1480                 return false;
1481
1482         spin_lock(&nm_i->free_nid_list_lock);
1483
1484         /* We should not use stale free nids created by build_free_nids */
1485         if (nm_i->fcnt && !on_build_free_nids(nm_i)) {
1486                 f2fs_bug_on(list_empty(&nm_i->free_nid_list));
1487                 list_for_each_entry(i, &nm_i->free_nid_list, list)
1488                         if (i->state == NID_NEW)
1489                                 break;
1490
1491                 f2fs_bug_on(i->state != NID_NEW);
1492                 *nid = i->nid;
1493                 i->state = NID_ALLOC;
1494                 nm_i->fcnt--;
1495                 spin_unlock(&nm_i->free_nid_list_lock);
1496                 return true;
1497         }
1498         spin_unlock(&nm_i->free_nid_list_lock);
1499
1500         /* Let's scan nat pages and its caches to get free nids */
1501         mutex_lock(&nm_i->build_lock);
1502         build_free_nids(sbi);
1503         mutex_unlock(&nm_i->build_lock);
1504         goto retry;
1505 }
1506
1507 /*
1508  * alloc_nid() should be called prior to this function.
1509  */
1510 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1511 {
1512         struct f2fs_nm_info *nm_i = NM_I(sbi);
1513         struct free_nid *i;
1514
1515         spin_lock(&nm_i->free_nid_list_lock);
1516         i = __lookup_free_nid_list(nm_i, nid);
1517         f2fs_bug_on(!i || i->state != NID_ALLOC);
1518         __del_from_free_nid_list(nm_i, i);
1519         spin_unlock(&nm_i->free_nid_list_lock);
1520
1521         kmem_cache_free(free_nid_slab, i);
1522 }
1523
1524 /*
1525  * alloc_nid() should be called prior to this function.
1526  */
1527 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1528 {
1529         struct f2fs_nm_info *nm_i = NM_I(sbi);
1530         struct free_nid *i;
1531         bool need_free = false;
1532
1533         if (!nid)
1534                 return;
1535
1536         spin_lock(&nm_i->free_nid_list_lock);
1537         i = __lookup_free_nid_list(nm_i, nid);
1538         f2fs_bug_on(!i || i->state != NID_ALLOC);
1539         if (!available_free_memory(sbi, FREE_NIDS)) {
1540                 __del_from_free_nid_list(nm_i, i);
1541                 need_free = true;
1542         } else {
1543                 i->state = NID_NEW;
1544                 nm_i->fcnt++;
1545         }
1546         spin_unlock(&nm_i->free_nid_list_lock);
1547
1548         if (need_free)
1549                 kmem_cache_free(free_nid_slab, i);
1550 }
1551
1552 void recover_inline_xattr(struct inode *inode, struct page *page)
1553 {
1554         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1555         void *src_addr, *dst_addr;
1556         size_t inline_size;
1557         struct page *ipage;
1558         struct f2fs_inode *ri;
1559
1560         ipage = get_node_page(sbi, inode->i_ino);
1561         f2fs_bug_on(IS_ERR(ipage));
1562
1563         ri = F2FS_INODE(page);
1564         if (!(ri->i_inline & F2FS_INLINE_XATTR)) {
1565                 clear_inode_flag(F2FS_I(inode), FI_INLINE_XATTR);
1566                 goto update_inode;
1567         }
1568
1569         dst_addr = inline_xattr_addr(ipage);
1570         src_addr = inline_xattr_addr(page);
1571         inline_size = inline_xattr_size(inode);
1572
1573         f2fs_wait_on_page_writeback(ipage, NODE);
1574         memcpy(dst_addr, src_addr, inline_size);
1575 update_inode:
1576         update_inode(inode, ipage);
1577         f2fs_put_page(ipage, 1);
1578 }
1579
1580 void recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
1581 {
1582         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1583         nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
1584         nid_t new_xnid = nid_of_node(page);
1585         struct node_info ni;
1586
1587         /* 1: invalidate the previous xattr nid */
1588         if (!prev_xnid)
1589                 goto recover_xnid;
1590
1591         /* Deallocate node address */
1592         get_node_info(sbi, prev_xnid, &ni);
1593         f2fs_bug_on(ni.blk_addr == NULL_ADDR);
1594         invalidate_blocks(sbi, ni.blk_addr);
1595         dec_valid_node_count(sbi, inode);
1596         set_node_addr(sbi, &ni, NULL_ADDR, false);
1597
1598 recover_xnid:
1599         /* 2: allocate new xattr nid */
1600         if (unlikely(!inc_valid_node_count(sbi, inode)))
1601                 f2fs_bug_on(1);
1602
1603         remove_free_nid(NM_I(sbi), new_xnid);
1604         get_node_info(sbi, new_xnid, &ni);
1605         ni.ino = inode->i_ino;
1606         set_node_addr(sbi, &ni, NEW_ADDR, false);
1607         F2FS_I(inode)->i_xattr_nid = new_xnid;
1608
1609         /* 3: update xattr blkaddr */
1610         refresh_sit_entry(sbi, NEW_ADDR, blkaddr);
1611         set_node_addr(sbi, &ni, blkaddr, false);
1612
1613         update_inode_page(inode);
1614 }
1615
1616 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
1617 {
1618         struct f2fs_inode *src, *dst;
1619         nid_t ino = ino_of_node(page);
1620         struct node_info old_ni, new_ni;
1621         struct page *ipage;
1622
1623         get_node_info(sbi, ino, &old_ni);
1624
1625         if (unlikely(old_ni.blk_addr != NULL_ADDR))
1626                 return -EINVAL;
1627
1628         ipage = grab_cache_page(NODE_MAPPING(sbi), ino);
1629         if (!ipage)
1630                 return -ENOMEM;
1631
1632         /* Should not use this inode from free nid list */
1633         remove_free_nid(NM_I(sbi), ino);
1634
1635         SetPageUptodate(ipage);
1636         fill_node_footer(ipage, ino, ino, 0, true);
1637
1638         src = F2FS_INODE(page);
1639         dst = F2FS_INODE(ipage);
1640
1641         memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
1642         dst->i_size = 0;
1643         dst->i_blocks = cpu_to_le64(1);
1644         dst->i_links = cpu_to_le32(1);
1645         dst->i_xattr_nid = 0;
1646         dst->i_inline = src->i_inline & F2FS_INLINE_XATTR;
1647
1648         new_ni = old_ni;
1649         new_ni.ino = ino;
1650
1651         if (unlikely(!inc_valid_node_count(sbi, NULL)))
1652                 WARN_ON(1);
1653         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1654         inc_valid_inode_count(sbi);
1655         set_page_dirty(ipage);
1656         f2fs_put_page(ipage, 1);
1657         return 0;
1658 }
1659
1660 /*
1661  * ra_sum_pages() merge contiguous pages into one bio and submit.
1662  * these pre-read pages are allocated in bd_inode's mapping tree.
1663  */
1664 static int ra_sum_pages(struct f2fs_sb_info *sbi, struct page **pages,
1665                                 int start, int nrpages)
1666 {
1667         struct inode *inode = sbi->sb->s_bdev->bd_inode;
1668         struct address_space *mapping = inode->i_mapping;
1669         int i, page_idx = start;
1670         struct f2fs_io_info fio = {
1671                 .type = META,
1672                 .rw = READ_SYNC | REQ_META | REQ_PRIO
1673         };
1674
1675         for (i = 0; page_idx < start + nrpages; page_idx++, i++) {
1676                 /* alloc page in bd_inode for reading node summary info */
1677                 pages[i] = grab_cache_page(mapping, page_idx);
1678                 if (!pages[i])
1679                         break;
1680                 f2fs_submit_page_mbio(sbi, pages[i], page_idx, &fio);
1681         }
1682
1683         f2fs_submit_merged_bio(sbi, META, READ);
1684         return i;
1685 }
1686
1687 int restore_node_summary(struct f2fs_sb_info *sbi,
1688                         unsigned int segno, struct f2fs_summary_block *sum)
1689 {
1690         struct f2fs_node *rn;
1691         struct f2fs_summary *sum_entry;
1692         struct inode *inode = sbi->sb->s_bdev->bd_inode;
1693         block_t addr;
1694         int bio_blocks = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
1695         struct page *pages[bio_blocks];
1696         int i, idx, last_offset, nrpages, err = 0;
1697
1698         /* scan the node segment */
1699         last_offset = sbi->blocks_per_seg;
1700         addr = START_BLOCK(sbi, segno);
1701         sum_entry = &sum->entries[0];
1702
1703         for (i = 0; !err && i < last_offset; i += nrpages, addr += nrpages) {
1704                 nrpages = min(last_offset - i, bio_blocks);
1705
1706                 /* readahead node pages */
1707                 nrpages = ra_sum_pages(sbi, pages, addr, nrpages);
1708                 if (!nrpages)
1709                         return -ENOMEM;
1710
1711                 for (idx = 0; idx < nrpages; idx++) {
1712                         if (err)
1713                                 goto skip;
1714
1715                         lock_page(pages[idx]);
1716                         if (unlikely(!PageUptodate(pages[idx]))) {
1717                                 err = -EIO;
1718                         } else {
1719                                 rn = F2FS_NODE(pages[idx]);
1720                                 sum_entry->nid = rn->footer.nid;
1721                                 sum_entry->version = 0;
1722                                 sum_entry->ofs_in_node = 0;
1723                                 sum_entry++;
1724                         }
1725                         unlock_page(pages[idx]);
1726 skip:
1727                         page_cache_release(pages[idx]);
1728                 }
1729
1730                 invalidate_mapping_pages(inode->i_mapping, addr,
1731                                                         addr + nrpages);
1732         }
1733         return err;
1734 }
1735
1736 static struct nat_entry_set *grab_nat_entry_set(void)
1737 {
1738         struct nat_entry_set *nes =
1739                         f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_ATOMIC);
1740
1741         nes->entry_cnt = 0;
1742         INIT_LIST_HEAD(&nes->set_list);
1743         INIT_LIST_HEAD(&nes->entry_list);
1744         return nes;
1745 }
1746
1747 static void release_nat_entry_set(struct nat_entry_set *nes,
1748                                                 struct f2fs_nm_info *nm_i)
1749 {
1750         f2fs_bug_on(!list_empty(&nes->entry_list));
1751
1752         nm_i->dirty_nat_cnt -= nes->entry_cnt;
1753         list_del(&nes->set_list);
1754         kmem_cache_free(nat_entry_set_slab, nes);
1755 }
1756
1757 static void adjust_nat_entry_set(struct nat_entry_set *nes,
1758                                                 struct list_head *head)
1759 {
1760         struct nat_entry_set *next = nes;
1761
1762         if (list_is_last(&nes->set_list, head))
1763                 return;
1764
1765         list_for_each_entry_continue(next, head, set_list)
1766                 if (nes->entry_cnt <= next->entry_cnt)
1767                         break;
1768
1769         list_move_tail(&nes->set_list, &next->set_list);
1770 }
1771
1772 static void add_nat_entry(struct nat_entry *ne, struct list_head *head)
1773 {
1774         struct nat_entry_set *nes;
1775         nid_t start_nid = START_NID(ne->ni.nid);
1776
1777         list_for_each_entry(nes, head, set_list) {
1778                 if (nes->start_nid == start_nid) {
1779                         list_move_tail(&ne->list, &nes->entry_list);
1780                         nes->entry_cnt++;
1781                         adjust_nat_entry_set(nes, head);
1782                         return;
1783                 }
1784         }
1785
1786         nes = grab_nat_entry_set();
1787
1788         nes->start_nid = start_nid;
1789         list_move_tail(&ne->list, &nes->entry_list);
1790         nes->entry_cnt++;
1791         list_add(&nes->set_list, head);
1792 }
1793
1794 static void merge_nats_in_set(struct f2fs_sb_info *sbi)
1795 {
1796         struct f2fs_nm_info *nm_i = NM_I(sbi);
1797         struct list_head *dirty_list = &nm_i->dirty_nat_entries;
1798         struct list_head *set_list = &nm_i->nat_entry_set;
1799         struct nat_entry *ne, *tmp;
1800
1801         write_lock(&nm_i->nat_tree_lock);
1802         list_for_each_entry_safe(ne, tmp, dirty_list, list) {
1803                 if (nat_get_blkaddr(ne) == NEW_ADDR)
1804                         continue;
1805                 add_nat_entry(ne, set_list);
1806                 nm_i->dirty_nat_cnt++;
1807         }
1808         write_unlock(&nm_i->nat_tree_lock);
1809 }
1810
1811 static bool __has_cursum_space(struct f2fs_summary_block *sum, int size)
1812 {
1813         if (nats_in_cursum(sum) + size <= NAT_JOURNAL_ENTRIES)
1814                 return true;
1815         else
1816                 return false;
1817 }
1818
1819 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
1820 {
1821         struct f2fs_nm_info *nm_i = NM_I(sbi);
1822         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1823         struct f2fs_summary_block *sum = curseg->sum_blk;
1824         int i;
1825
1826         mutex_lock(&curseg->curseg_mutex);
1827         for (i = 0; i < nats_in_cursum(sum); i++) {
1828                 struct nat_entry *ne;
1829                 struct f2fs_nat_entry raw_ne;
1830                 nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
1831
1832                 raw_ne = nat_in_journal(sum, i);
1833 retry:
1834                 write_lock(&nm_i->nat_tree_lock);
1835                 ne = __lookup_nat_cache(nm_i, nid);
1836                 if (ne)
1837                         goto found;
1838
1839                 ne = grab_nat_entry(nm_i, nid);
1840                 if (!ne) {
1841                         write_unlock(&nm_i->nat_tree_lock);
1842                         goto retry;
1843                 }
1844                 node_info_from_raw_nat(&ne->ni, &raw_ne);
1845 found:
1846                 __set_nat_cache_dirty(nm_i, ne);
1847                 write_unlock(&nm_i->nat_tree_lock);
1848         }
1849         update_nats_in_cursum(sum, -i);
1850         mutex_unlock(&curseg->curseg_mutex);
1851 }
1852
1853 /*
1854  * This function is called during the checkpointing process.
1855  */
1856 void flush_nat_entries(struct f2fs_sb_info *sbi)
1857 {
1858         struct f2fs_nm_info *nm_i = NM_I(sbi);
1859         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1860         struct f2fs_summary_block *sum = curseg->sum_blk;
1861         struct nat_entry_set *nes, *tmp;
1862         struct list_head *head = &nm_i->nat_entry_set;
1863         bool to_journal = true;
1864
1865         /* merge nat entries of dirty list to nat entry set temporarily */
1866         merge_nats_in_set(sbi);
1867
1868         /*
1869          * if there are no enough space in journal to store dirty nat
1870          * entries, remove all entries from journal and merge them
1871          * into nat entry set.
1872          */
1873         if (!__has_cursum_space(sum, nm_i->dirty_nat_cnt)) {
1874                 remove_nats_in_journal(sbi);
1875
1876                 /*
1877                  * merge nat entries of dirty list to nat entry set temporarily
1878                  */
1879                 merge_nats_in_set(sbi);
1880         }
1881
1882         if (!nm_i->dirty_nat_cnt)
1883                 return;
1884
1885         /*
1886          * there are two steps to flush nat entries:
1887          * #1, flush nat entries to journal in current hot data summary block.
1888          * #2, flush nat entries to nat page.
1889          */
1890         list_for_each_entry_safe(nes, tmp, head, set_list) {
1891                 struct f2fs_nat_block *nat_blk;
1892                 struct nat_entry *ne, *cur;
1893                 struct page *page;
1894                 nid_t start_nid = nes->start_nid;
1895
1896                 if (to_journal && !__has_cursum_space(sum, nes->entry_cnt))
1897                         to_journal = false;
1898
1899                 if (to_journal) {
1900                         mutex_lock(&curseg->curseg_mutex);
1901                 } else {
1902                         page = get_next_nat_page(sbi, start_nid);
1903                         nat_blk = page_address(page);
1904                         f2fs_bug_on(!nat_blk);
1905                 }
1906
1907                 /* flush dirty nats in nat entry set */
1908                 list_for_each_entry_safe(ne, cur, &nes->entry_list, list) {
1909                         struct f2fs_nat_entry *raw_ne;
1910                         nid_t nid = nat_get_nid(ne);
1911                         int offset;
1912
1913                         if (to_journal) {
1914                                 offset = lookup_journal_in_cursum(sum,
1915                                                         NAT_JOURNAL, nid, 1);
1916                                 f2fs_bug_on(offset < 0);
1917                                 raw_ne = &nat_in_journal(sum, offset);
1918                                 nid_in_journal(sum, offset) = cpu_to_le32(nid);
1919                         } else {
1920                                 raw_ne = &nat_blk->entries[nid - start_nid];
1921                         }
1922                         raw_nat_from_node_info(raw_ne, &ne->ni);
1923
1924                         if (nat_get_blkaddr(ne) == NULL_ADDR &&
1925                                 add_free_nid(sbi, nid, false) <= 0) {
1926                                 write_lock(&nm_i->nat_tree_lock);
1927                                 __del_from_nat_cache(nm_i, ne);
1928                                 write_unlock(&nm_i->nat_tree_lock);
1929                         } else {
1930                                 write_lock(&nm_i->nat_tree_lock);
1931                                 __clear_nat_cache_dirty(nm_i, ne);
1932                                 write_unlock(&nm_i->nat_tree_lock);
1933                         }
1934                 }
1935
1936                 if (to_journal)
1937                         mutex_unlock(&curseg->curseg_mutex);
1938                 else
1939                         f2fs_put_page(page, 1);
1940
1941                 release_nat_entry_set(nes, nm_i);
1942         }
1943
1944         f2fs_bug_on(!list_empty(head));
1945         f2fs_bug_on(nm_i->dirty_nat_cnt);
1946 }
1947
1948 static int init_node_manager(struct f2fs_sb_info *sbi)
1949 {
1950         struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
1951         struct f2fs_nm_info *nm_i = NM_I(sbi);
1952         unsigned char *version_bitmap;
1953         unsigned int nat_segs, nat_blocks;
1954
1955         nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
1956
1957         /* segment_count_nat includes pair segment so divide to 2. */
1958         nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
1959         nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
1960
1961         nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
1962
1963         /* not used nids: 0, node, meta, (and root counted as valid node) */
1964         nm_i->available_nids = nm_i->max_nid - F2FS_RESERVED_NODE_NUM;
1965         nm_i->fcnt = 0;
1966         nm_i->nat_cnt = 0;
1967         nm_i->ram_thresh = DEF_RAM_THRESHOLD;
1968
1969         INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
1970         INIT_LIST_HEAD(&nm_i->free_nid_list);
1971         INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC);
1972         INIT_LIST_HEAD(&nm_i->nat_entries);
1973         INIT_LIST_HEAD(&nm_i->dirty_nat_entries);
1974         INIT_LIST_HEAD(&nm_i->nat_entry_set);
1975
1976         mutex_init(&nm_i->build_lock);
1977         spin_lock_init(&nm_i->free_nid_list_lock);
1978         rwlock_init(&nm_i->nat_tree_lock);
1979
1980         nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
1981         nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
1982         version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
1983         if (!version_bitmap)
1984                 return -EFAULT;
1985
1986         nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
1987                                         GFP_KERNEL);
1988         if (!nm_i->nat_bitmap)
1989                 return -ENOMEM;
1990         return 0;
1991 }
1992
1993 int build_node_manager(struct f2fs_sb_info *sbi)
1994 {
1995         int err;
1996
1997         sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
1998         if (!sbi->nm_info)
1999                 return -ENOMEM;
2000
2001         err = init_node_manager(sbi);
2002         if (err)
2003                 return err;
2004
2005         build_free_nids(sbi);
2006         return 0;
2007 }
2008
2009 void destroy_node_manager(struct f2fs_sb_info *sbi)
2010 {
2011         struct f2fs_nm_info *nm_i = NM_I(sbi);
2012         struct free_nid *i, *next_i;
2013         struct nat_entry *natvec[NATVEC_SIZE];
2014         nid_t nid = 0;
2015         unsigned int found;
2016
2017         if (!nm_i)
2018                 return;
2019
2020         /* destroy free nid list */
2021         spin_lock(&nm_i->free_nid_list_lock);
2022         list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
2023                 f2fs_bug_on(i->state == NID_ALLOC);
2024                 __del_from_free_nid_list(nm_i, i);
2025                 nm_i->fcnt--;
2026                 spin_unlock(&nm_i->free_nid_list_lock);
2027                 kmem_cache_free(free_nid_slab, i);
2028                 spin_lock(&nm_i->free_nid_list_lock);
2029         }
2030         f2fs_bug_on(nm_i->fcnt);
2031         spin_unlock(&nm_i->free_nid_list_lock);
2032
2033         /* destroy nat cache */
2034         write_lock(&nm_i->nat_tree_lock);
2035         while ((found = __gang_lookup_nat_cache(nm_i,
2036                                         nid, NATVEC_SIZE, natvec))) {
2037                 unsigned idx;
2038                 nid = nat_get_nid(natvec[found - 1]) + 1;
2039                 for (idx = 0; idx < found; idx++)
2040                         __del_from_nat_cache(nm_i, natvec[idx]);
2041         }
2042         f2fs_bug_on(nm_i->nat_cnt);
2043         write_unlock(&nm_i->nat_tree_lock);
2044
2045         kfree(nm_i->nat_bitmap);
2046         sbi->nm_info = NULL;
2047         kfree(nm_i);
2048 }
2049
2050 int __init create_node_manager_caches(void)
2051 {
2052         nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
2053                         sizeof(struct nat_entry));
2054         if (!nat_entry_slab)
2055                 goto fail;
2056
2057         free_nid_slab = f2fs_kmem_cache_create("free_nid",
2058                         sizeof(struct free_nid));
2059         if (!free_nid_slab)
2060                 goto destory_nat_entry;
2061
2062         nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
2063                         sizeof(struct nat_entry_set));
2064         if (!nat_entry_set_slab)
2065                 goto destory_free_nid;
2066         return 0;
2067
2068 destory_free_nid:
2069         kmem_cache_destroy(free_nid_slab);
2070 destory_nat_entry:
2071         kmem_cache_destroy(nat_entry_slab);
2072 fail:
2073         return -ENOMEM;
2074 }
2075
2076 void destroy_node_manager_caches(void)
2077 {
2078         kmem_cache_destroy(nat_entry_set_slab);
2079         kmem_cache_destroy(free_nid_slab);
2080         kmem_cache_destroy(nat_entry_slab);
2081 }