f2fs: avoid to use a NULL point in destroy_segment_manager
[cascardo/linux.git] / fs / f2fs / segment.c
1 /*
2  * fs/f2fs/segment.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/vmalloc.h>
17
18 #include "f2fs.h"
19 #include "segment.h"
20 #include "node.h"
21 #include <trace/events/f2fs.h>
22
23 /*
24  * This function balances dirty node and dentry pages.
25  * In addition, it controls garbage collection.
26  */
27 void f2fs_balance_fs(struct f2fs_sb_info *sbi)
28 {
29         /*
30          * We should do GC or end up with checkpoint, if there are so many dirty
31          * dir/node pages without enough free segments.
32          */
33         if (has_not_enough_free_secs(sbi, 0)) {
34                 mutex_lock(&sbi->gc_mutex);
35                 f2fs_gc(sbi);
36         }
37 }
38
39 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
40 {
41         /* check the # of cached NAT entries and prefree segments */
42         if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK) ||
43                                 excess_prefree_segs(sbi))
44                 f2fs_sync_fs(sbi->sb, true);
45 }
46
47 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
48                 enum dirty_type dirty_type)
49 {
50         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
51
52         /* need not be added */
53         if (IS_CURSEG(sbi, segno))
54                 return;
55
56         if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
57                 dirty_i->nr_dirty[dirty_type]++;
58
59         if (dirty_type == DIRTY) {
60                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
61                 enum dirty_type t = sentry->type;
62
63                 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
64                         dirty_i->nr_dirty[t]++;
65         }
66 }
67
68 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
69                 enum dirty_type dirty_type)
70 {
71         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
72
73         if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
74                 dirty_i->nr_dirty[dirty_type]--;
75
76         if (dirty_type == DIRTY) {
77                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
78                 enum dirty_type t = sentry->type;
79
80                 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
81                         dirty_i->nr_dirty[t]--;
82
83                 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
84                         clear_bit(GET_SECNO(sbi, segno),
85                                                 dirty_i->victim_secmap);
86         }
87 }
88
89 /*
90  * Should not occur error such as -ENOMEM.
91  * Adding dirty entry into seglist is not critical operation.
92  * If a given segment is one of current working segments, it won't be added.
93  */
94 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
95 {
96         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
97         unsigned short valid_blocks;
98
99         if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
100                 return;
101
102         mutex_lock(&dirty_i->seglist_lock);
103
104         valid_blocks = get_valid_blocks(sbi, segno, 0);
105
106         if (valid_blocks == 0) {
107                 __locate_dirty_segment(sbi, segno, PRE);
108                 __remove_dirty_segment(sbi, segno, DIRTY);
109         } else if (valid_blocks < sbi->blocks_per_seg) {
110                 __locate_dirty_segment(sbi, segno, DIRTY);
111         } else {
112                 /* Recovery routine with SSR needs this */
113                 __remove_dirty_segment(sbi, segno, DIRTY);
114         }
115
116         mutex_unlock(&dirty_i->seglist_lock);
117 }
118
119 /*
120  * Should call clear_prefree_segments after checkpoint is done.
121  */
122 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
123 {
124         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
125         unsigned int segno = -1;
126         unsigned int total_segs = TOTAL_SEGS(sbi);
127
128         mutex_lock(&dirty_i->seglist_lock);
129         while (1) {
130                 segno = find_next_bit(dirty_i->dirty_segmap[PRE], total_segs,
131                                 segno + 1);
132                 if (segno >= total_segs)
133                         break;
134                 __set_test_and_free(sbi, segno);
135         }
136         mutex_unlock(&dirty_i->seglist_lock);
137 }
138
139 void clear_prefree_segments(struct f2fs_sb_info *sbi)
140 {
141         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
142         unsigned int segno = -1;
143         unsigned int total_segs = TOTAL_SEGS(sbi);
144
145         mutex_lock(&dirty_i->seglist_lock);
146         while (1) {
147                 segno = find_next_bit(dirty_i->dirty_segmap[PRE], total_segs,
148                                 segno + 1);
149                 if (segno >= total_segs)
150                         break;
151
152                 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[PRE]))
153                         dirty_i->nr_dirty[PRE]--;
154
155                 /* Let's use trim */
156                 if (test_opt(sbi, DISCARD))
157                         blkdev_issue_discard(sbi->sb->s_bdev,
158                                         START_BLOCK(sbi, segno) <<
159                                         sbi->log_sectors_per_block,
160                                         1 << (sbi->log_sectors_per_block +
161                                                 sbi->log_blocks_per_seg),
162                                         GFP_NOFS, 0);
163         }
164         mutex_unlock(&dirty_i->seglist_lock);
165 }
166
167 static void __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
168 {
169         struct sit_info *sit_i = SIT_I(sbi);
170         if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap))
171                 sit_i->dirty_sentries++;
172 }
173
174 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
175                                         unsigned int segno, int modified)
176 {
177         struct seg_entry *se = get_seg_entry(sbi, segno);
178         se->type = type;
179         if (modified)
180                 __mark_sit_entry_dirty(sbi, segno);
181 }
182
183 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
184 {
185         struct seg_entry *se;
186         unsigned int segno, offset;
187         long int new_vblocks;
188
189         segno = GET_SEGNO(sbi, blkaddr);
190
191         se = get_seg_entry(sbi, segno);
192         new_vblocks = se->valid_blocks + del;
193         offset = GET_SEGOFF_FROM_SEG0(sbi, blkaddr) & (sbi->blocks_per_seg - 1);
194
195         f2fs_bug_on((new_vblocks >> (sizeof(unsigned short) << 3) ||
196                                 (new_vblocks > sbi->blocks_per_seg)));
197
198         se->valid_blocks = new_vblocks;
199         se->mtime = get_mtime(sbi);
200         SIT_I(sbi)->max_mtime = se->mtime;
201
202         /* Update valid block bitmap */
203         if (del > 0) {
204                 if (f2fs_set_bit(offset, se->cur_valid_map))
205                         BUG();
206         } else {
207                 if (!f2fs_clear_bit(offset, se->cur_valid_map))
208                         BUG();
209         }
210         if (!f2fs_test_bit(offset, se->ckpt_valid_map))
211                 se->ckpt_valid_blocks += del;
212
213         __mark_sit_entry_dirty(sbi, segno);
214
215         /* update total number of valid blocks to be written in ckpt area */
216         SIT_I(sbi)->written_valid_blocks += del;
217
218         if (sbi->segs_per_sec > 1)
219                 get_sec_entry(sbi, segno)->valid_blocks += del;
220 }
221
222 static void refresh_sit_entry(struct f2fs_sb_info *sbi,
223                         block_t old_blkaddr, block_t new_blkaddr)
224 {
225         update_sit_entry(sbi, new_blkaddr, 1);
226         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
227                 update_sit_entry(sbi, old_blkaddr, -1);
228 }
229
230 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
231 {
232         unsigned int segno = GET_SEGNO(sbi, addr);
233         struct sit_info *sit_i = SIT_I(sbi);
234
235         f2fs_bug_on(addr == NULL_ADDR);
236         if (addr == NEW_ADDR)
237                 return;
238
239         /* add it into sit main buffer */
240         mutex_lock(&sit_i->sentry_lock);
241
242         update_sit_entry(sbi, addr, -1);
243
244         /* add it into dirty seglist */
245         locate_dirty_segment(sbi, segno);
246
247         mutex_unlock(&sit_i->sentry_lock);
248 }
249
250 /*
251  * This function should be resided under the curseg_mutex lock
252  */
253 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
254                                         struct f2fs_summary *sum)
255 {
256         struct curseg_info *curseg = CURSEG_I(sbi, type);
257         void *addr = curseg->sum_blk;
258         addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
259         memcpy(addr, sum, sizeof(struct f2fs_summary));
260 }
261
262 /*
263  * Calculate the number of current summary pages for writing
264  */
265 int npages_for_summary_flush(struct f2fs_sb_info *sbi)
266 {
267         int valid_sum_count = 0;
268         int i, sum_in_page;
269
270         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
271                 if (sbi->ckpt->alloc_type[i] == SSR)
272                         valid_sum_count += sbi->blocks_per_seg;
273                 else
274                         valid_sum_count += curseg_blkoff(sbi, i);
275         }
276
277         sum_in_page = (PAGE_CACHE_SIZE - 2 * SUM_JOURNAL_SIZE -
278                         SUM_FOOTER_SIZE) / SUMMARY_SIZE;
279         if (valid_sum_count <= sum_in_page)
280                 return 1;
281         else if ((valid_sum_count - sum_in_page) <=
282                 (PAGE_CACHE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
283                 return 2;
284         return 3;
285 }
286
287 /*
288  * Caller should put this summary page
289  */
290 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
291 {
292         return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
293 }
294
295 static void write_sum_page(struct f2fs_sb_info *sbi,
296                         struct f2fs_summary_block *sum_blk, block_t blk_addr)
297 {
298         struct page *page = grab_meta_page(sbi, blk_addr);
299         void *kaddr = page_address(page);
300         memcpy(kaddr, sum_blk, PAGE_CACHE_SIZE);
301         set_page_dirty(page);
302         f2fs_put_page(page, 1);
303 }
304
305 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
306 {
307         struct curseg_info *curseg = CURSEG_I(sbi, type);
308         unsigned int segno = curseg->segno + 1;
309         struct free_segmap_info *free_i = FREE_I(sbi);
310
311         if (segno < TOTAL_SEGS(sbi) && segno % sbi->segs_per_sec)
312                 return !test_bit(segno, free_i->free_segmap);
313         return 0;
314 }
315
316 /*
317  * Find a new segment from the free segments bitmap to right order
318  * This function should be returned with success, otherwise BUG
319  */
320 static void get_new_segment(struct f2fs_sb_info *sbi,
321                         unsigned int *newseg, bool new_sec, int dir)
322 {
323         struct free_segmap_info *free_i = FREE_I(sbi);
324         unsigned int segno, secno, zoneno;
325         unsigned int total_zones = TOTAL_SECS(sbi) / sbi->secs_per_zone;
326         unsigned int hint = *newseg / sbi->segs_per_sec;
327         unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
328         unsigned int left_start = hint;
329         bool init = true;
330         int go_left = 0;
331         int i;
332
333         write_lock(&free_i->segmap_lock);
334
335         if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
336                 segno = find_next_zero_bit(free_i->free_segmap,
337                                         TOTAL_SEGS(sbi), *newseg + 1);
338                 if (segno - *newseg < sbi->segs_per_sec -
339                                         (*newseg % sbi->segs_per_sec))
340                         goto got_it;
341         }
342 find_other_zone:
343         secno = find_next_zero_bit(free_i->free_secmap, TOTAL_SECS(sbi), hint);
344         if (secno >= TOTAL_SECS(sbi)) {
345                 if (dir == ALLOC_RIGHT) {
346                         secno = find_next_zero_bit(free_i->free_secmap,
347                                                         TOTAL_SECS(sbi), 0);
348                         f2fs_bug_on(secno >= TOTAL_SECS(sbi));
349                 } else {
350                         go_left = 1;
351                         left_start = hint - 1;
352                 }
353         }
354         if (go_left == 0)
355                 goto skip_left;
356
357         while (test_bit(left_start, free_i->free_secmap)) {
358                 if (left_start > 0) {
359                         left_start--;
360                         continue;
361                 }
362                 left_start = find_next_zero_bit(free_i->free_secmap,
363                                                         TOTAL_SECS(sbi), 0);
364                 f2fs_bug_on(left_start >= TOTAL_SECS(sbi));
365                 break;
366         }
367         secno = left_start;
368 skip_left:
369         hint = secno;
370         segno = secno * sbi->segs_per_sec;
371         zoneno = secno / sbi->secs_per_zone;
372
373         /* give up on finding another zone */
374         if (!init)
375                 goto got_it;
376         if (sbi->secs_per_zone == 1)
377                 goto got_it;
378         if (zoneno == old_zoneno)
379                 goto got_it;
380         if (dir == ALLOC_LEFT) {
381                 if (!go_left && zoneno + 1 >= total_zones)
382                         goto got_it;
383                 if (go_left && zoneno == 0)
384                         goto got_it;
385         }
386         for (i = 0; i < NR_CURSEG_TYPE; i++)
387                 if (CURSEG_I(sbi, i)->zone == zoneno)
388                         break;
389
390         if (i < NR_CURSEG_TYPE) {
391                 /* zone is in user, try another */
392                 if (go_left)
393                         hint = zoneno * sbi->secs_per_zone - 1;
394                 else if (zoneno + 1 >= total_zones)
395                         hint = 0;
396                 else
397                         hint = (zoneno + 1) * sbi->secs_per_zone;
398                 init = false;
399                 goto find_other_zone;
400         }
401 got_it:
402         /* set it as dirty segment in free segmap */
403         f2fs_bug_on(test_bit(segno, free_i->free_segmap));
404         __set_inuse(sbi, segno);
405         *newseg = segno;
406         write_unlock(&free_i->segmap_lock);
407 }
408
409 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
410 {
411         struct curseg_info *curseg = CURSEG_I(sbi, type);
412         struct summary_footer *sum_footer;
413
414         curseg->segno = curseg->next_segno;
415         curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
416         curseg->next_blkoff = 0;
417         curseg->next_segno = NULL_SEGNO;
418
419         sum_footer = &(curseg->sum_blk->footer);
420         memset(sum_footer, 0, sizeof(struct summary_footer));
421         if (IS_DATASEG(type))
422                 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
423         if (IS_NODESEG(type))
424                 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
425         __set_sit_entry_type(sbi, type, curseg->segno, modified);
426 }
427
428 /*
429  * Allocate a current working segment.
430  * This function always allocates a free segment in LFS manner.
431  */
432 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
433 {
434         struct curseg_info *curseg = CURSEG_I(sbi, type);
435         unsigned int segno = curseg->segno;
436         int dir = ALLOC_LEFT;
437
438         write_sum_page(sbi, curseg->sum_blk,
439                                 GET_SUM_BLOCK(sbi, segno));
440         if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
441                 dir = ALLOC_RIGHT;
442
443         if (test_opt(sbi, NOHEAP))
444                 dir = ALLOC_RIGHT;
445
446         get_new_segment(sbi, &segno, new_sec, dir);
447         curseg->next_segno = segno;
448         reset_curseg(sbi, type, 1);
449         curseg->alloc_type = LFS;
450 }
451
452 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
453                         struct curseg_info *seg, block_t start)
454 {
455         struct seg_entry *se = get_seg_entry(sbi, seg->segno);
456         block_t ofs;
457         for (ofs = start; ofs < sbi->blocks_per_seg; ofs++) {
458                 if (!f2fs_test_bit(ofs, se->ckpt_valid_map)
459                         && !f2fs_test_bit(ofs, se->cur_valid_map))
460                         break;
461         }
462         seg->next_blkoff = ofs;
463 }
464
465 /*
466  * If a segment is written by LFS manner, next block offset is just obtained
467  * by increasing the current block offset. However, if a segment is written by
468  * SSR manner, next block offset obtained by calling __next_free_blkoff
469  */
470 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
471                                 struct curseg_info *seg)
472 {
473         if (seg->alloc_type == SSR)
474                 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
475         else
476                 seg->next_blkoff++;
477 }
478
479 /*
480  * This function always allocates a used segment (from dirty seglist) by SSR
481  * manner, so it should recover the existing segment information of valid blocks
482  */
483 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
484 {
485         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
486         struct curseg_info *curseg = CURSEG_I(sbi, type);
487         unsigned int new_segno = curseg->next_segno;
488         struct f2fs_summary_block *sum_node;
489         struct page *sum_page;
490
491         write_sum_page(sbi, curseg->sum_blk,
492                                 GET_SUM_BLOCK(sbi, curseg->segno));
493         __set_test_and_inuse(sbi, new_segno);
494
495         mutex_lock(&dirty_i->seglist_lock);
496         __remove_dirty_segment(sbi, new_segno, PRE);
497         __remove_dirty_segment(sbi, new_segno, DIRTY);
498         mutex_unlock(&dirty_i->seglist_lock);
499
500         reset_curseg(sbi, type, 1);
501         curseg->alloc_type = SSR;
502         __next_free_blkoff(sbi, curseg, 0);
503
504         if (reuse) {
505                 sum_page = get_sum_page(sbi, new_segno);
506                 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
507                 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
508                 f2fs_put_page(sum_page, 1);
509         }
510 }
511
512 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
513 {
514         struct curseg_info *curseg = CURSEG_I(sbi, type);
515         const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
516
517         if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0))
518                 return v_ops->get_victim(sbi,
519                                 &(curseg)->next_segno, BG_GC, type, SSR);
520
521         /* For data segments, let's do SSR more intensively */
522         for (; type >= CURSEG_HOT_DATA; type--)
523                 if (v_ops->get_victim(sbi, &(curseg)->next_segno,
524                                                 BG_GC, type, SSR))
525                         return 1;
526         return 0;
527 }
528
529 /*
530  * flush out current segment and replace it with new segment
531  * This function should be returned with success, otherwise BUG
532  */
533 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
534                                                 int type, bool force)
535 {
536         struct curseg_info *curseg = CURSEG_I(sbi, type);
537
538         if (force)
539                 new_curseg(sbi, type, true);
540         else if (type == CURSEG_WARM_NODE)
541                 new_curseg(sbi, type, false);
542         else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
543                 new_curseg(sbi, type, false);
544         else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
545                 change_curseg(sbi, type, true);
546         else
547                 new_curseg(sbi, type, false);
548
549         stat_inc_seg_type(sbi, curseg);
550 }
551
552 void allocate_new_segments(struct f2fs_sb_info *sbi)
553 {
554         struct curseg_info *curseg;
555         unsigned int old_curseg;
556         int i;
557
558         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
559                 curseg = CURSEG_I(sbi, i);
560                 old_curseg = curseg->segno;
561                 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
562                 locate_dirty_segment(sbi, old_curseg);
563         }
564 }
565
566 static const struct segment_allocation default_salloc_ops = {
567         .allocate_segment = allocate_segment_by_default,
568 };
569
570 static void f2fs_end_io_write(struct bio *bio, int err)
571 {
572         const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
573         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
574         struct bio_private *p = bio->bi_private;
575
576         do {
577                 struct page *page = bvec->bv_page;
578
579                 if (--bvec >= bio->bi_io_vec)
580                         prefetchw(&bvec->bv_page->flags);
581                 if (!uptodate) {
582                         SetPageError(page);
583                         if (page->mapping)
584                                 set_bit(AS_EIO, &page->mapping->flags);
585                         set_ckpt_flags(p->sbi->ckpt, CP_ERROR_FLAG);
586                         p->sbi->sb->s_flags |= MS_RDONLY;
587                 }
588                 end_page_writeback(page);
589                 dec_page_count(p->sbi, F2FS_WRITEBACK);
590         } while (bvec >= bio->bi_io_vec);
591
592         if (p->is_sync)
593                 complete(p->wait);
594
595         if (!get_pages(p->sbi, F2FS_WRITEBACK) && p->sbi->cp_task)
596                 wake_up_process(p->sbi->cp_task);
597
598         kfree(p);
599         bio_put(bio);
600 }
601
602 struct bio *f2fs_bio_alloc(struct block_device *bdev, int npages)
603 {
604         struct bio *bio;
605
606         /* No failure on bio allocation */
607         bio = bio_alloc(GFP_NOIO, npages);
608         bio->bi_bdev = bdev;
609         bio->bi_private = NULL;
610
611         return bio;
612 }
613
614 static void do_submit_bio(struct f2fs_sb_info *sbi,
615                                 enum page_type type, bool sync)
616 {
617         int rw = sync ? WRITE_SYNC : WRITE;
618         enum page_type btype = type > META ? META : type;
619
620         if (type >= META_FLUSH)
621                 rw = WRITE_FLUSH_FUA;
622
623         if (btype == META)
624                 rw |= REQ_META;
625
626         if (sbi->bio[btype]) {
627                 struct bio_private *p = sbi->bio[btype]->bi_private;
628                 p->sbi = sbi;
629                 sbi->bio[btype]->bi_end_io = f2fs_end_io_write;
630
631                 trace_f2fs_do_submit_bio(sbi->sb, btype, sync, sbi->bio[btype]);
632
633                 if (type == META_FLUSH) {
634                         DECLARE_COMPLETION_ONSTACK(wait);
635                         p->is_sync = true;
636                         p->wait = &wait;
637                         submit_bio(rw, sbi->bio[btype]);
638                         wait_for_completion(&wait);
639                 } else {
640                         p->is_sync = false;
641                         submit_bio(rw, sbi->bio[btype]);
642                 }
643                 sbi->bio[btype] = NULL;
644         }
645 }
646
647 void f2fs_submit_bio(struct f2fs_sb_info *sbi, enum page_type type, bool sync)
648 {
649         down_write(&sbi->bio_sem);
650         do_submit_bio(sbi, type, sync);
651         up_write(&sbi->bio_sem);
652 }
653
654 static void submit_write_page(struct f2fs_sb_info *sbi, struct page *page,
655                                 block_t blk_addr, enum page_type type)
656 {
657         struct block_device *bdev = sbi->sb->s_bdev;
658         int bio_blocks;
659
660         verify_block_addr(sbi, blk_addr);
661
662         down_write(&sbi->bio_sem);
663
664         inc_page_count(sbi, F2FS_WRITEBACK);
665
666         if (sbi->bio[type] && sbi->last_block_in_bio[type] != blk_addr - 1)
667                 do_submit_bio(sbi, type, false);
668 alloc_new:
669         if (sbi->bio[type] == NULL) {
670                 struct bio_private *priv;
671 retry:
672                 priv = kmalloc(sizeof(struct bio_private), GFP_NOFS);
673                 if (!priv) {
674                         cond_resched();
675                         goto retry;
676                 }
677
678                 bio_blocks = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
679                 sbi->bio[type] = f2fs_bio_alloc(bdev, bio_blocks);
680                 sbi->bio[type]->bi_sector = SECTOR_FROM_BLOCK(sbi, blk_addr);
681                 sbi->bio[type]->bi_private = priv;
682                 /*
683                  * The end_io will be assigned at the sumbission phase.
684                  * Until then, let bio_add_page() merge consecutive IOs as much
685                  * as possible.
686                  */
687         }
688
689         if (bio_add_page(sbi->bio[type], page, PAGE_CACHE_SIZE, 0) <
690                                                         PAGE_CACHE_SIZE) {
691                 do_submit_bio(sbi, type, false);
692                 goto alloc_new;
693         }
694
695         sbi->last_block_in_bio[type] = blk_addr;
696
697         up_write(&sbi->bio_sem);
698         trace_f2fs_submit_write_page(page, blk_addr, type);
699 }
700
701 void f2fs_wait_on_page_writeback(struct page *page,
702                                 enum page_type type, bool sync)
703 {
704         struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
705         if (PageWriteback(page)) {
706                 f2fs_submit_bio(sbi, type, sync);
707                 wait_on_page_writeback(page);
708         }
709 }
710
711 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
712 {
713         struct curseg_info *curseg = CURSEG_I(sbi, type);
714         if (curseg->next_blkoff < sbi->blocks_per_seg)
715                 return true;
716         return false;
717 }
718
719 static int __get_segment_type_2(struct page *page, enum page_type p_type)
720 {
721         if (p_type == DATA)
722                 return CURSEG_HOT_DATA;
723         else
724                 return CURSEG_HOT_NODE;
725 }
726
727 static int __get_segment_type_4(struct page *page, enum page_type p_type)
728 {
729         if (p_type == DATA) {
730                 struct inode *inode = page->mapping->host;
731
732                 if (S_ISDIR(inode->i_mode))
733                         return CURSEG_HOT_DATA;
734                 else
735                         return CURSEG_COLD_DATA;
736         } else {
737                 if (IS_DNODE(page) && !is_cold_node(page))
738                         return CURSEG_HOT_NODE;
739                 else
740                         return CURSEG_COLD_NODE;
741         }
742 }
743
744 static int __get_segment_type_6(struct page *page, enum page_type p_type)
745 {
746         if (p_type == DATA) {
747                 struct inode *inode = page->mapping->host;
748
749                 if (S_ISDIR(inode->i_mode))
750                         return CURSEG_HOT_DATA;
751                 else if (is_cold_data(page) || file_is_cold(inode))
752                         return CURSEG_COLD_DATA;
753                 else
754                         return CURSEG_WARM_DATA;
755         } else {
756                 if (IS_DNODE(page))
757                         return is_cold_node(page) ? CURSEG_WARM_NODE :
758                                                 CURSEG_HOT_NODE;
759                 else
760                         return CURSEG_COLD_NODE;
761         }
762 }
763
764 static int __get_segment_type(struct page *page, enum page_type p_type)
765 {
766         struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
767         switch (sbi->active_logs) {
768         case 2:
769                 return __get_segment_type_2(page, p_type);
770         case 4:
771                 return __get_segment_type_4(page, p_type);
772         }
773         /* NR_CURSEG_TYPE(6) logs by default */
774         f2fs_bug_on(sbi->active_logs != NR_CURSEG_TYPE);
775         return __get_segment_type_6(page, p_type);
776 }
777
778 static void do_write_page(struct f2fs_sb_info *sbi, struct page *page,
779                         block_t old_blkaddr, block_t *new_blkaddr,
780                         struct f2fs_summary *sum, enum page_type p_type)
781 {
782         struct sit_info *sit_i = SIT_I(sbi);
783         struct curseg_info *curseg;
784         unsigned int old_cursegno;
785         int type;
786
787         type = __get_segment_type(page, p_type);
788         curseg = CURSEG_I(sbi, type);
789
790         mutex_lock(&curseg->curseg_mutex);
791
792         *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
793         old_cursegno = curseg->segno;
794
795         /*
796          * __add_sum_entry should be resided under the curseg_mutex
797          * because, this function updates a summary entry in the
798          * current summary block.
799          */
800         __add_sum_entry(sbi, type, sum);
801
802         mutex_lock(&sit_i->sentry_lock);
803         __refresh_next_blkoff(sbi, curseg);
804
805         stat_inc_block_count(sbi, curseg);
806
807         /*
808          * SIT information should be updated before segment allocation,
809          * since SSR needs latest valid block information.
810          */
811         refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
812
813         if (!__has_curseg_space(sbi, type))
814                 sit_i->s_ops->allocate_segment(sbi, type, false);
815
816         locate_dirty_segment(sbi, old_cursegno);
817         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
818         mutex_unlock(&sit_i->sentry_lock);
819
820         if (p_type == NODE)
821                 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
822
823         /* writeout dirty page into bdev */
824         submit_write_page(sbi, page, *new_blkaddr, p_type);
825
826         mutex_unlock(&curseg->curseg_mutex);
827 }
828
829 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
830 {
831         set_page_writeback(page);
832         submit_write_page(sbi, page, page->index, META);
833 }
834
835 void write_node_page(struct f2fs_sb_info *sbi, struct page *page,
836                 unsigned int nid, block_t old_blkaddr, block_t *new_blkaddr)
837 {
838         struct f2fs_summary sum;
839         set_summary(&sum, nid, 0, 0);
840         do_write_page(sbi, page, old_blkaddr, new_blkaddr, &sum, NODE);
841 }
842
843 void write_data_page(struct inode *inode, struct page *page,
844                 struct dnode_of_data *dn, block_t old_blkaddr,
845                 block_t *new_blkaddr)
846 {
847         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
848         struct f2fs_summary sum;
849         struct node_info ni;
850
851         f2fs_bug_on(old_blkaddr == NULL_ADDR);
852         get_node_info(sbi, dn->nid, &ni);
853         set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
854
855         do_write_page(sbi, page, old_blkaddr,
856                         new_blkaddr, &sum, DATA);
857 }
858
859 void rewrite_data_page(struct f2fs_sb_info *sbi, struct page *page,
860                                         block_t old_blk_addr)
861 {
862         submit_write_page(sbi, page, old_blk_addr, DATA);
863 }
864
865 void recover_data_page(struct f2fs_sb_info *sbi,
866                         struct page *page, struct f2fs_summary *sum,
867                         block_t old_blkaddr, block_t new_blkaddr)
868 {
869         struct sit_info *sit_i = SIT_I(sbi);
870         struct curseg_info *curseg;
871         unsigned int segno, old_cursegno;
872         struct seg_entry *se;
873         int type;
874
875         segno = GET_SEGNO(sbi, new_blkaddr);
876         se = get_seg_entry(sbi, segno);
877         type = se->type;
878
879         if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
880                 if (old_blkaddr == NULL_ADDR)
881                         type = CURSEG_COLD_DATA;
882                 else
883                         type = CURSEG_WARM_DATA;
884         }
885         curseg = CURSEG_I(sbi, type);
886
887         mutex_lock(&curseg->curseg_mutex);
888         mutex_lock(&sit_i->sentry_lock);
889
890         old_cursegno = curseg->segno;
891
892         /* change the current segment */
893         if (segno != curseg->segno) {
894                 curseg->next_segno = segno;
895                 change_curseg(sbi, type, true);
896         }
897
898         curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, new_blkaddr) &
899                                         (sbi->blocks_per_seg - 1);
900         __add_sum_entry(sbi, type, sum);
901
902         refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
903
904         locate_dirty_segment(sbi, old_cursegno);
905         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
906
907         mutex_unlock(&sit_i->sentry_lock);
908         mutex_unlock(&curseg->curseg_mutex);
909 }
910
911 void rewrite_node_page(struct f2fs_sb_info *sbi,
912                         struct page *page, struct f2fs_summary *sum,
913                         block_t old_blkaddr, block_t new_blkaddr)
914 {
915         struct sit_info *sit_i = SIT_I(sbi);
916         int type = CURSEG_WARM_NODE;
917         struct curseg_info *curseg;
918         unsigned int segno, old_cursegno;
919         block_t next_blkaddr = next_blkaddr_of_node(page);
920         unsigned int next_segno = GET_SEGNO(sbi, next_blkaddr);
921
922         curseg = CURSEG_I(sbi, type);
923
924         mutex_lock(&curseg->curseg_mutex);
925         mutex_lock(&sit_i->sentry_lock);
926
927         segno = GET_SEGNO(sbi, new_blkaddr);
928         old_cursegno = curseg->segno;
929
930         /* change the current segment */
931         if (segno != curseg->segno) {
932                 curseg->next_segno = segno;
933                 change_curseg(sbi, type, true);
934         }
935         curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, new_blkaddr) &
936                                         (sbi->blocks_per_seg - 1);
937         __add_sum_entry(sbi, type, sum);
938
939         /* change the current log to the next block addr in advance */
940         if (next_segno != segno) {
941                 curseg->next_segno = next_segno;
942                 change_curseg(sbi, type, true);
943         }
944         curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, next_blkaddr) &
945                                         (sbi->blocks_per_seg - 1);
946
947         /* rewrite node page */
948         set_page_writeback(page);
949         submit_write_page(sbi, page, new_blkaddr, NODE);
950         f2fs_submit_bio(sbi, NODE, true);
951         refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
952
953         locate_dirty_segment(sbi, old_cursegno);
954         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
955
956         mutex_unlock(&sit_i->sentry_lock);
957         mutex_unlock(&curseg->curseg_mutex);
958 }
959
960 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
961 {
962         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
963         struct curseg_info *seg_i;
964         unsigned char *kaddr;
965         struct page *page;
966         block_t start;
967         int i, j, offset;
968
969         start = start_sum_block(sbi);
970
971         page = get_meta_page(sbi, start++);
972         kaddr = (unsigned char *)page_address(page);
973
974         /* Step 1: restore nat cache */
975         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
976         memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE);
977
978         /* Step 2: restore sit cache */
979         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
980         memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE,
981                                                 SUM_JOURNAL_SIZE);
982         offset = 2 * SUM_JOURNAL_SIZE;
983
984         /* Step 3: restore summary entries */
985         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
986                 unsigned short blk_off;
987                 unsigned int segno;
988
989                 seg_i = CURSEG_I(sbi, i);
990                 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
991                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
992                 seg_i->next_segno = segno;
993                 reset_curseg(sbi, i, 0);
994                 seg_i->alloc_type = ckpt->alloc_type[i];
995                 seg_i->next_blkoff = blk_off;
996
997                 if (seg_i->alloc_type == SSR)
998                         blk_off = sbi->blocks_per_seg;
999
1000                 for (j = 0; j < blk_off; j++) {
1001                         struct f2fs_summary *s;
1002                         s = (struct f2fs_summary *)(kaddr + offset);
1003                         seg_i->sum_blk->entries[j] = *s;
1004                         offset += SUMMARY_SIZE;
1005                         if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1006                                                 SUM_FOOTER_SIZE)
1007                                 continue;
1008
1009                         f2fs_put_page(page, 1);
1010                         page = NULL;
1011
1012                         page = get_meta_page(sbi, start++);
1013                         kaddr = (unsigned char *)page_address(page);
1014                         offset = 0;
1015                 }
1016         }
1017         f2fs_put_page(page, 1);
1018         return 0;
1019 }
1020
1021 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1022 {
1023         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1024         struct f2fs_summary_block *sum;
1025         struct curseg_info *curseg;
1026         struct page *new;
1027         unsigned short blk_off;
1028         unsigned int segno = 0;
1029         block_t blk_addr = 0;
1030
1031         /* get segment number and block addr */
1032         if (IS_DATASEG(type)) {
1033                 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1034                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1035                                                         CURSEG_HOT_DATA]);
1036                 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1037                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1038                 else
1039                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1040         } else {
1041                 segno = le32_to_cpu(ckpt->cur_node_segno[type -
1042                                                         CURSEG_HOT_NODE]);
1043                 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1044                                                         CURSEG_HOT_NODE]);
1045                 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1046                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1047                                                         type - CURSEG_HOT_NODE);
1048                 else
1049                         blk_addr = GET_SUM_BLOCK(sbi, segno);
1050         }
1051
1052         new = get_meta_page(sbi, blk_addr);
1053         sum = (struct f2fs_summary_block *)page_address(new);
1054
1055         if (IS_NODESEG(type)) {
1056                 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) {
1057                         struct f2fs_summary *ns = &sum->entries[0];
1058                         int i;
1059                         for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1060                                 ns->version = 0;
1061                                 ns->ofs_in_node = 0;
1062                         }
1063                 } else {
1064                         if (restore_node_summary(sbi, segno, sum)) {
1065                                 f2fs_put_page(new, 1);
1066                                 return -EINVAL;
1067                         }
1068                 }
1069         }
1070
1071         /* set uncompleted segment to curseg */
1072         curseg = CURSEG_I(sbi, type);
1073         mutex_lock(&curseg->curseg_mutex);
1074         memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE);
1075         curseg->next_segno = segno;
1076         reset_curseg(sbi, type, 0);
1077         curseg->alloc_type = ckpt->alloc_type[type];
1078         curseg->next_blkoff = blk_off;
1079         mutex_unlock(&curseg->curseg_mutex);
1080         f2fs_put_page(new, 1);
1081         return 0;
1082 }
1083
1084 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1085 {
1086         int type = CURSEG_HOT_DATA;
1087
1088         if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
1089                 /* restore for compacted data summary */
1090                 if (read_compacted_summaries(sbi))
1091                         return -EINVAL;
1092                 type = CURSEG_HOT_NODE;
1093         }
1094
1095         for (; type <= CURSEG_COLD_NODE; type++)
1096                 if (read_normal_summaries(sbi, type))
1097                         return -EINVAL;
1098         return 0;
1099 }
1100
1101 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1102 {
1103         struct page *page;
1104         unsigned char *kaddr;
1105         struct f2fs_summary *summary;
1106         struct curseg_info *seg_i;
1107         int written_size = 0;
1108         int i, j;
1109
1110         page = grab_meta_page(sbi, blkaddr++);
1111         kaddr = (unsigned char *)page_address(page);
1112
1113         /* Step 1: write nat cache */
1114         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1115         memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE);
1116         written_size += SUM_JOURNAL_SIZE;
1117
1118         /* Step 2: write sit cache */
1119         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1120         memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits,
1121                                                 SUM_JOURNAL_SIZE);
1122         written_size += SUM_JOURNAL_SIZE;
1123
1124         /* Step 3: write summary entries */
1125         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1126                 unsigned short blkoff;
1127                 seg_i = CURSEG_I(sbi, i);
1128                 if (sbi->ckpt->alloc_type[i] == SSR)
1129                         blkoff = sbi->blocks_per_seg;
1130                 else
1131                         blkoff = curseg_blkoff(sbi, i);
1132
1133                 for (j = 0; j < blkoff; j++) {
1134                         if (!page) {
1135                                 page = grab_meta_page(sbi, blkaddr++);
1136                                 kaddr = (unsigned char *)page_address(page);
1137                                 written_size = 0;
1138                         }
1139                         summary = (struct f2fs_summary *)(kaddr + written_size);
1140                         *summary = seg_i->sum_blk->entries[j];
1141                         written_size += SUMMARY_SIZE;
1142
1143                         if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1144                                                         SUM_FOOTER_SIZE)
1145                                 continue;
1146
1147                         set_page_dirty(page);
1148                         f2fs_put_page(page, 1);
1149                         page = NULL;
1150                 }
1151         }
1152         if (page) {
1153                 set_page_dirty(page);
1154                 f2fs_put_page(page, 1);
1155         }
1156 }
1157
1158 static void write_normal_summaries(struct f2fs_sb_info *sbi,
1159                                         block_t blkaddr, int type)
1160 {
1161         int i, end;
1162         if (IS_DATASEG(type))
1163                 end = type + NR_CURSEG_DATA_TYPE;
1164         else
1165                 end = type + NR_CURSEG_NODE_TYPE;
1166
1167         for (i = type; i < end; i++) {
1168                 struct curseg_info *sum = CURSEG_I(sbi, i);
1169                 mutex_lock(&sum->curseg_mutex);
1170                 write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type));
1171                 mutex_unlock(&sum->curseg_mutex);
1172         }
1173 }
1174
1175 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1176 {
1177         if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG))
1178                 write_compacted_summaries(sbi, start_blk);
1179         else
1180                 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1181 }
1182
1183 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1184 {
1185         if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG))
1186                 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
1187 }
1188
1189 int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type,
1190                                         unsigned int val, int alloc)
1191 {
1192         int i;
1193
1194         if (type == NAT_JOURNAL) {
1195                 for (i = 0; i < nats_in_cursum(sum); i++) {
1196                         if (le32_to_cpu(nid_in_journal(sum, i)) == val)
1197                                 return i;
1198                 }
1199                 if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES)
1200                         return update_nats_in_cursum(sum, 1);
1201         } else if (type == SIT_JOURNAL) {
1202                 for (i = 0; i < sits_in_cursum(sum); i++)
1203                         if (le32_to_cpu(segno_in_journal(sum, i)) == val)
1204                                 return i;
1205                 if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES)
1206                         return update_sits_in_cursum(sum, 1);
1207         }
1208         return -1;
1209 }
1210
1211 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1212                                         unsigned int segno)
1213 {
1214         struct sit_info *sit_i = SIT_I(sbi);
1215         unsigned int offset = SIT_BLOCK_OFFSET(sit_i, segno);
1216         block_t blk_addr = sit_i->sit_base_addr + offset;
1217
1218         check_seg_range(sbi, segno);
1219
1220         /* calculate sit block address */
1221         if (f2fs_test_bit(offset, sit_i->sit_bitmap))
1222                 blk_addr += sit_i->sit_blocks;
1223
1224         return get_meta_page(sbi, blk_addr);
1225 }
1226
1227 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1228                                         unsigned int start)
1229 {
1230         struct sit_info *sit_i = SIT_I(sbi);
1231         struct page *src_page, *dst_page;
1232         pgoff_t src_off, dst_off;
1233         void *src_addr, *dst_addr;
1234
1235         src_off = current_sit_addr(sbi, start);
1236         dst_off = next_sit_addr(sbi, src_off);
1237
1238         /* get current sit block page without lock */
1239         src_page = get_meta_page(sbi, src_off);
1240         dst_page = grab_meta_page(sbi, dst_off);
1241         f2fs_bug_on(PageDirty(src_page));
1242
1243         src_addr = page_address(src_page);
1244         dst_addr = page_address(dst_page);
1245         memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
1246
1247         set_page_dirty(dst_page);
1248         f2fs_put_page(src_page, 1);
1249
1250         set_to_next_sit(sit_i, start);
1251
1252         return dst_page;
1253 }
1254
1255 static bool flush_sits_in_journal(struct f2fs_sb_info *sbi)
1256 {
1257         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1258         struct f2fs_summary_block *sum = curseg->sum_blk;
1259         int i;
1260
1261         /*
1262          * If the journal area in the current summary is full of sit entries,
1263          * all the sit entries will be flushed. Otherwise the sit entries
1264          * are not able to replace with newly hot sit entries.
1265          */
1266         if (sits_in_cursum(sum) >= SIT_JOURNAL_ENTRIES) {
1267                 for (i = sits_in_cursum(sum) - 1; i >= 0; i--) {
1268                         unsigned int segno;
1269                         segno = le32_to_cpu(segno_in_journal(sum, i));
1270                         __mark_sit_entry_dirty(sbi, segno);
1271                 }
1272                 update_sits_in_cursum(sum, -sits_in_cursum(sum));
1273                 return true;
1274         }
1275         return false;
1276 }
1277
1278 /*
1279  * CP calls this function, which flushes SIT entries including sit_journal,
1280  * and moves prefree segs to free segs.
1281  */
1282 void flush_sit_entries(struct f2fs_sb_info *sbi)
1283 {
1284         struct sit_info *sit_i = SIT_I(sbi);
1285         unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
1286         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1287         struct f2fs_summary_block *sum = curseg->sum_blk;
1288         unsigned long nsegs = TOTAL_SEGS(sbi);
1289         struct page *page = NULL;
1290         struct f2fs_sit_block *raw_sit = NULL;
1291         unsigned int start = 0, end = 0;
1292         unsigned int segno = -1;
1293         bool flushed;
1294
1295         mutex_lock(&curseg->curseg_mutex);
1296         mutex_lock(&sit_i->sentry_lock);
1297
1298         /*
1299          * "flushed" indicates whether sit entries in journal are flushed
1300          * to the SIT area or not.
1301          */
1302         flushed = flush_sits_in_journal(sbi);
1303
1304         while ((segno = find_next_bit(bitmap, nsegs, segno + 1)) < nsegs) {
1305                 struct seg_entry *se = get_seg_entry(sbi, segno);
1306                 int sit_offset, offset;
1307
1308                 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
1309
1310                 if (flushed)
1311                         goto to_sit_page;
1312
1313                 offset = lookup_journal_in_cursum(sum, SIT_JOURNAL, segno, 1);
1314                 if (offset >= 0) {
1315                         segno_in_journal(sum, offset) = cpu_to_le32(segno);
1316                         seg_info_to_raw_sit(se, &sit_in_journal(sum, offset));
1317                         goto flush_done;
1318                 }
1319 to_sit_page:
1320                 if (!page || (start > segno) || (segno > end)) {
1321                         if (page) {
1322                                 f2fs_put_page(page, 1);
1323                                 page = NULL;
1324                         }
1325
1326                         start = START_SEGNO(sit_i, segno);
1327                         end = start + SIT_ENTRY_PER_BLOCK - 1;
1328
1329                         /* read sit block that will be updated */
1330                         page = get_next_sit_page(sbi, start);
1331                         raw_sit = page_address(page);
1332                 }
1333
1334                 /* udpate entry in SIT block */
1335                 seg_info_to_raw_sit(se, &raw_sit->entries[sit_offset]);
1336 flush_done:
1337                 __clear_bit(segno, bitmap);
1338                 sit_i->dirty_sentries--;
1339         }
1340         mutex_unlock(&sit_i->sentry_lock);
1341         mutex_unlock(&curseg->curseg_mutex);
1342
1343         /* writeout last modified SIT block */
1344         f2fs_put_page(page, 1);
1345
1346         set_prefree_as_free_segments(sbi);
1347 }
1348
1349 static int build_sit_info(struct f2fs_sb_info *sbi)
1350 {
1351         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1352         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1353         struct sit_info *sit_i;
1354         unsigned int sit_segs, start;
1355         char *src_bitmap, *dst_bitmap;
1356         unsigned int bitmap_size;
1357
1358         /* allocate memory for SIT information */
1359         sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
1360         if (!sit_i)
1361                 return -ENOMEM;
1362
1363         SM_I(sbi)->sit_info = sit_i;
1364
1365         sit_i->sentries = vzalloc(TOTAL_SEGS(sbi) * sizeof(struct seg_entry));
1366         if (!sit_i->sentries)
1367                 return -ENOMEM;
1368
1369         bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1370         sit_i->dirty_sentries_bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1371         if (!sit_i->dirty_sentries_bitmap)
1372                 return -ENOMEM;
1373
1374         for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1375                 sit_i->sentries[start].cur_valid_map
1376                         = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1377                 sit_i->sentries[start].ckpt_valid_map
1378                         = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1379                 if (!sit_i->sentries[start].cur_valid_map
1380                                 || !sit_i->sentries[start].ckpt_valid_map)
1381                         return -ENOMEM;
1382         }
1383
1384         if (sbi->segs_per_sec > 1) {
1385                 sit_i->sec_entries = vzalloc(TOTAL_SECS(sbi) *
1386                                         sizeof(struct sec_entry));
1387                 if (!sit_i->sec_entries)
1388                         return -ENOMEM;
1389         }
1390
1391         /* get information related with SIT */
1392         sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
1393
1394         /* setup SIT bitmap from ckeckpoint pack */
1395         bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
1396         src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
1397
1398         dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
1399         if (!dst_bitmap)
1400                 return -ENOMEM;
1401
1402         /* init SIT information */
1403         sit_i->s_ops = &default_salloc_ops;
1404
1405         sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
1406         sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
1407         sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
1408         sit_i->sit_bitmap = dst_bitmap;
1409         sit_i->bitmap_size = bitmap_size;
1410         sit_i->dirty_sentries = 0;
1411         sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
1412         sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
1413         sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
1414         mutex_init(&sit_i->sentry_lock);
1415         return 0;
1416 }
1417
1418 static int build_free_segmap(struct f2fs_sb_info *sbi)
1419 {
1420         struct f2fs_sm_info *sm_info = SM_I(sbi);
1421         struct free_segmap_info *free_i;
1422         unsigned int bitmap_size, sec_bitmap_size;
1423
1424         /* allocate memory for free segmap information */
1425         free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
1426         if (!free_i)
1427                 return -ENOMEM;
1428
1429         SM_I(sbi)->free_info = free_i;
1430
1431         bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1432         free_i->free_segmap = kmalloc(bitmap_size, GFP_KERNEL);
1433         if (!free_i->free_segmap)
1434                 return -ENOMEM;
1435
1436         sec_bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
1437         free_i->free_secmap = kmalloc(sec_bitmap_size, GFP_KERNEL);
1438         if (!free_i->free_secmap)
1439                 return -ENOMEM;
1440
1441         /* set all segments as dirty temporarily */
1442         memset(free_i->free_segmap, 0xff, bitmap_size);
1443         memset(free_i->free_secmap, 0xff, sec_bitmap_size);
1444
1445         /* init free segmap information */
1446         free_i->start_segno =
1447                 (unsigned int) GET_SEGNO_FROM_SEG0(sbi, sm_info->main_blkaddr);
1448         free_i->free_segments = 0;
1449         free_i->free_sections = 0;
1450         rwlock_init(&free_i->segmap_lock);
1451         return 0;
1452 }
1453
1454 static int build_curseg(struct f2fs_sb_info *sbi)
1455 {
1456         struct curseg_info *array;
1457         int i;
1458
1459         array = kzalloc(sizeof(*array) * NR_CURSEG_TYPE, GFP_KERNEL);
1460         if (!array)
1461                 return -ENOMEM;
1462
1463         SM_I(sbi)->curseg_array = array;
1464
1465         for (i = 0; i < NR_CURSEG_TYPE; i++) {
1466                 mutex_init(&array[i].curseg_mutex);
1467                 array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL);
1468                 if (!array[i].sum_blk)
1469                         return -ENOMEM;
1470                 array[i].segno = NULL_SEGNO;
1471                 array[i].next_blkoff = 0;
1472         }
1473         return restore_curseg_summaries(sbi);
1474 }
1475
1476 static void build_sit_entries(struct f2fs_sb_info *sbi)
1477 {
1478         struct sit_info *sit_i = SIT_I(sbi);
1479         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1480         struct f2fs_summary_block *sum = curseg->sum_blk;
1481         unsigned int start;
1482
1483         for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1484                 struct seg_entry *se = &sit_i->sentries[start];
1485                 struct f2fs_sit_block *sit_blk;
1486                 struct f2fs_sit_entry sit;
1487                 struct page *page;
1488                 int i;
1489
1490                 mutex_lock(&curseg->curseg_mutex);
1491                 for (i = 0; i < sits_in_cursum(sum); i++) {
1492                         if (le32_to_cpu(segno_in_journal(sum, i)) == start) {
1493                                 sit = sit_in_journal(sum, i);
1494                                 mutex_unlock(&curseg->curseg_mutex);
1495                                 goto got_it;
1496                         }
1497                 }
1498                 mutex_unlock(&curseg->curseg_mutex);
1499                 page = get_current_sit_page(sbi, start);
1500                 sit_blk = (struct f2fs_sit_block *)page_address(page);
1501                 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
1502                 f2fs_put_page(page, 1);
1503 got_it:
1504                 check_block_count(sbi, start, &sit);
1505                 seg_info_from_raw_sit(se, &sit);
1506                 if (sbi->segs_per_sec > 1) {
1507                         struct sec_entry *e = get_sec_entry(sbi, start);
1508                         e->valid_blocks += se->valid_blocks;
1509                 }
1510         }
1511 }
1512
1513 static void init_free_segmap(struct f2fs_sb_info *sbi)
1514 {
1515         unsigned int start;
1516         int type;
1517
1518         for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1519                 struct seg_entry *sentry = get_seg_entry(sbi, start);
1520                 if (!sentry->valid_blocks)
1521                         __set_free(sbi, start);
1522         }
1523
1524         /* set use the current segments */
1525         for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
1526                 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
1527                 __set_test_and_inuse(sbi, curseg_t->segno);
1528         }
1529 }
1530
1531 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
1532 {
1533         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1534         struct free_segmap_info *free_i = FREE_I(sbi);
1535         unsigned int segno = 0, offset = 0, total_segs = TOTAL_SEGS(sbi);
1536         unsigned short valid_blocks;
1537
1538         while (1) {
1539                 /* find dirty segment based on free segmap */
1540                 segno = find_next_inuse(free_i, total_segs, offset);
1541                 if (segno >= total_segs)
1542                         break;
1543                 offset = segno + 1;
1544                 valid_blocks = get_valid_blocks(sbi, segno, 0);
1545                 if (valid_blocks >= sbi->blocks_per_seg || !valid_blocks)
1546                         continue;
1547                 mutex_lock(&dirty_i->seglist_lock);
1548                 __locate_dirty_segment(sbi, segno, DIRTY);
1549                 mutex_unlock(&dirty_i->seglist_lock);
1550         }
1551 }
1552
1553 static int init_victim_secmap(struct f2fs_sb_info *sbi)
1554 {
1555         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1556         unsigned int bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
1557
1558         dirty_i->victim_secmap = kzalloc(bitmap_size, GFP_KERNEL);
1559         if (!dirty_i->victim_secmap)
1560                 return -ENOMEM;
1561         return 0;
1562 }
1563
1564 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
1565 {
1566         struct dirty_seglist_info *dirty_i;
1567         unsigned int bitmap_size, i;
1568
1569         /* allocate memory for dirty segments list information */
1570         dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
1571         if (!dirty_i)
1572                 return -ENOMEM;
1573
1574         SM_I(sbi)->dirty_info = dirty_i;
1575         mutex_init(&dirty_i->seglist_lock);
1576
1577         bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1578
1579         for (i = 0; i < NR_DIRTY_TYPE; i++) {
1580                 dirty_i->dirty_segmap[i] = kzalloc(bitmap_size, GFP_KERNEL);
1581                 if (!dirty_i->dirty_segmap[i])
1582                         return -ENOMEM;
1583         }
1584
1585         init_dirty_segmap(sbi);
1586         return init_victim_secmap(sbi);
1587 }
1588
1589 /*
1590  * Update min, max modified time for cost-benefit GC algorithm
1591  */
1592 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
1593 {
1594         struct sit_info *sit_i = SIT_I(sbi);
1595         unsigned int segno;
1596
1597         mutex_lock(&sit_i->sentry_lock);
1598
1599         sit_i->min_mtime = LLONG_MAX;
1600
1601         for (segno = 0; segno < TOTAL_SEGS(sbi); segno += sbi->segs_per_sec) {
1602                 unsigned int i;
1603                 unsigned long long mtime = 0;
1604
1605                 for (i = 0; i < sbi->segs_per_sec; i++)
1606                         mtime += get_seg_entry(sbi, segno + i)->mtime;
1607
1608                 mtime = div_u64(mtime, sbi->segs_per_sec);
1609
1610                 if (sit_i->min_mtime > mtime)
1611                         sit_i->min_mtime = mtime;
1612         }
1613         sit_i->max_mtime = get_mtime(sbi);
1614         mutex_unlock(&sit_i->sentry_lock);
1615 }
1616
1617 int build_segment_manager(struct f2fs_sb_info *sbi)
1618 {
1619         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1620         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1621         struct f2fs_sm_info *sm_info;
1622         int err;
1623
1624         sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
1625         if (!sm_info)
1626                 return -ENOMEM;
1627
1628         /* init sm info */
1629         sbi->sm_info = sm_info;
1630         INIT_LIST_HEAD(&sm_info->wblist_head);
1631         spin_lock_init(&sm_info->wblist_lock);
1632         sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1633         sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1634         sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
1635         sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
1636         sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
1637         sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
1638         sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1639         sm_info->rec_prefree_segments = DEF_RECLAIM_PREFREE_SEGMENTS;
1640
1641         err = build_sit_info(sbi);
1642         if (err)
1643                 return err;
1644         err = build_free_segmap(sbi);
1645         if (err)
1646                 return err;
1647         err = build_curseg(sbi);
1648         if (err)
1649                 return err;
1650
1651         /* reinit free segmap based on SIT */
1652         build_sit_entries(sbi);
1653
1654         init_free_segmap(sbi);
1655         err = build_dirty_segmap(sbi);
1656         if (err)
1657                 return err;
1658
1659         init_min_max_mtime(sbi);
1660         return 0;
1661 }
1662
1663 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
1664                 enum dirty_type dirty_type)
1665 {
1666         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1667
1668         mutex_lock(&dirty_i->seglist_lock);
1669         kfree(dirty_i->dirty_segmap[dirty_type]);
1670         dirty_i->nr_dirty[dirty_type] = 0;
1671         mutex_unlock(&dirty_i->seglist_lock);
1672 }
1673
1674 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
1675 {
1676         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1677         kfree(dirty_i->victim_secmap);
1678 }
1679
1680 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
1681 {
1682         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1683         int i;
1684
1685         if (!dirty_i)
1686                 return;
1687
1688         /* discard pre-free/dirty segments list */
1689         for (i = 0; i < NR_DIRTY_TYPE; i++)
1690                 discard_dirty_segmap(sbi, i);
1691
1692         destroy_victim_secmap(sbi);
1693         SM_I(sbi)->dirty_info = NULL;
1694         kfree(dirty_i);
1695 }
1696
1697 static void destroy_curseg(struct f2fs_sb_info *sbi)
1698 {
1699         struct curseg_info *array = SM_I(sbi)->curseg_array;
1700         int i;
1701
1702         if (!array)
1703                 return;
1704         SM_I(sbi)->curseg_array = NULL;
1705         for (i = 0; i < NR_CURSEG_TYPE; i++)
1706                 kfree(array[i].sum_blk);
1707         kfree(array);
1708 }
1709
1710 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
1711 {
1712         struct free_segmap_info *free_i = SM_I(sbi)->free_info;
1713         if (!free_i)
1714                 return;
1715         SM_I(sbi)->free_info = NULL;
1716         kfree(free_i->free_segmap);
1717         kfree(free_i->free_secmap);
1718         kfree(free_i);
1719 }
1720
1721 static void destroy_sit_info(struct f2fs_sb_info *sbi)
1722 {
1723         struct sit_info *sit_i = SIT_I(sbi);
1724         unsigned int start;
1725
1726         if (!sit_i)
1727                 return;
1728
1729         if (sit_i->sentries) {
1730                 for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1731                         kfree(sit_i->sentries[start].cur_valid_map);
1732                         kfree(sit_i->sentries[start].ckpt_valid_map);
1733                 }
1734         }
1735         vfree(sit_i->sentries);
1736         vfree(sit_i->sec_entries);
1737         kfree(sit_i->dirty_sentries_bitmap);
1738
1739         SM_I(sbi)->sit_info = NULL;
1740         kfree(sit_i->sit_bitmap);
1741         kfree(sit_i);
1742 }
1743
1744 void destroy_segment_manager(struct f2fs_sb_info *sbi)
1745 {
1746         struct f2fs_sm_info *sm_info = SM_I(sbi);
1747         if (!sm_info)
1748                 return;
1749         destroy_dirty_segmap(sbi);
1750         destroy_curseg(sbi);
1751         destroy_free_segmap(sbi);
1752         destroy_sit_info(sbi);
1753         sbi->sm_info = NULL;
1754         kfree(sm_info);
1755 }