f2fs: remove redundant value definition
[cascardo/linux.git] / fs / f2fs / segment.c
1 /*
2  * fs/f2fs/segment.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/kthread.h>
17 #include <linux/swap.h>
18 #include <linux/timer.h>
19
20 #include "f2fs.h"
21 #include "segment.h"
22 #include "node.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 #define __reverse_ffz(x) __reverse_ffs(~(x))
27
28 static struct kmem_cache *discard_entry_slab;
29 static struct kmem_cache *bio_entry_slab;
30 static struct kmem_cache *sit_entry_set_slab;
31 static struct kmem_cache *inmem_entry_slab;
32
33 static unsigned long __reverse_ulong(unsigned char *str)
34 {
35         unsigned long tmp = 0;
36         int shift = 24, idx = 0;
37
38 #if BITS_PER_LONG == 64
39         shift = 56;
40 #endif
41         while (shift >= 0) {
42                 tmp |= (unsigned long)str[idx++] << shift;
43                 shift -= BITS_PER_BYTE;
44         }
45         return tmp;
46 }
47
48 /*
49  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
50  * MSB and LSB are reversed in a byte by f2fs_set_bit.
51  */
52 static inline unsigned long __reverse_ffs(unsigned long word)
53 {
54         int num = 0;
55
56 #if BITS_PER_LONG == 64
57         if ((word & 0xffffffff00000000UL) == 0)
58                 num += 32;
59         else
60                 word >>= 32;
61 #endif
62         if ((word & 0xffff0000) == 0)
63                 num += 16;
64         else
65                 word >>= 16;
66
67         if ((word & 0xff00) == 0)
68                 num += 8;
69         else
70                 word >>= 8;
71
72         if ((word & 0xf0) == 0)
73                 num += 4;
74         else
75                 word >>= 4;
76
77         if ((word & 0xc) == 0)
78                 num += 2;
79         else
80                 word >>= 2;
81
82         if ((word & 0x2) == 0)
83                 num += 1;
84         return num;
85 }
86
87 /*
88  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
89  * f2fs_set_bit makes MSB and LSB reversed in a byte.
90  * @size must be integral times of unsigned long.
91  * Example:
92  *                             MSB <--> LSB
93  *   f2fs_set_bit(0, bitmap) => 1000 0000
94  *   f2fs_set_bit(7, bitmap) => 0000 0001
95  */
96 static unsigned long __find_rev_next_bit(const unsigned long *addr,
97                         unsigned long size, unsigned long offset)
98 {
99         const unsigned long *p = addr + BIT_WORD(offset);
100         unsigned long result = size;
101         unsigned long tmp;
102
103         if (offset >= size)
104                 return size;
105
106         size -= (offset & ~(BITS_PER_LONG - 1));
107         offset %= BITS_PER_LONG;
108
109         while (1) {
110                 if (*p == 0)
111                         goto pass;
112
113                 tmp = __reverse_ulong((unsigned char *)p);
114
115                 tmp &= ~0UL >> offset;
116                 if (size < BITS_PER_LONG)
117                         tmp &= (~0UL << (BITS_PER_LONG - size));
118                 if (tmp)
119                         goto found;
120 pass:
121                 if (size <= BITS_PER_LONG)
122                         break;
123                 size -= BITS_PER_LONG;
124                 offset = 0;
125                 p++;
126         }
127         return result;
128 found:
129         return result - size + __reverse_ffs(tmp);
130 }
131
132 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
133                         unsigned long size, unsigned long offset)
134 {
135         const unsigned long *p = addr + BIT_WORD(offset);
136         unsigned long result = size;
137         unsigned long tmp;
138
139         if (offset >= size)
140                 return size;
141
142         size -= (offset & ~(BITS_PER_LONG - 1));
143         offset %= BITS_PER_LONG;
144
145         while (1) {
146                 if (*p == ~0UL)
147                         goto pass;
148
149                 tmp = __reverse_ulong((unsigned char *)p);
150
151                 if (offset)
152                         tmp |= ~0UL << (BITS_PER_LONG - offset);
153                 if (size < BITS_PER_LONG)
154                         tmp |= ~0UL >> size;
155                 if (tmp != ~0UL)
156                         goto found;
157 pass:
158                 if (size <= BITS_PER_LONG)
159                         break;
160                 size -= BITS_PER_LONG;
161                 offset = 0;
162                 p++;
163         }
164         return result;
165 found:
166         return result - size + __reverse_ffz(tmp);
167 }
168
169 void register_inmem_page(struct inode *inode, struct page *page)
170 {
171         struct f2fs_inode_info *fi = F2FS_I(inode);
172         struct inmem_pages *new;
173
174         f2fs_trace_pid(page);
175
176         set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
177         SetPagePrivate(page);
178
179         new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
180
181         /* add atomic page indices to the list */
182         new->page = page;
183         INIT_LIST_HEAD(&new->list);
184
185         /* increase reference count with clean state */
186         mutex_lock(&fi->inmem_lock);
187         get_page(page);
188         list_add_tail(&new->list, &fi->inmem_pages);
189         inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
190         mutex_unlock(&fi->inmem_lock);
191
192         trace_f2fs_register_inmem_page(page, INMEM);
193 }
194
195 static int __revoke_inmem_pages(struct inode *inode,
196                                 struct list_head *head, bool drop, bool recover)
197 {
198         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
199         struct inmem_pages *cur, *tmp;
200         int err = 0;
201
202         list_for_each_entry_safe(cur, tmp, head, list) {
203                 struct page *page = cur->page;
204
205                 if (drop)
206                         trace_f2fs_commit_inmem_page(page, INMEM_DROP);
207
208                 lock_page(page);
209
210                 if (recover) {
211                         struct dnode_of_data dn;
212                         struct node_info ni;
213
214                         trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
215
216                         set_new_dnode(&dn, inode, NULL, NULL, 0);
217                         if (get_dnode_of_data(&dn, page->index, LOOKUP_NODE)) {
218                                 err = -EAGAIN;
219                                 goto next;
220                         }
221                         get_node_info(sbi, dn.nid, &ni);
222                         f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
223                                         cur->old_addr, ni.version, true, true);
224                         f2fs_put_dnode(&dn);
225                 }
226 next:
227                 /* we don't need to invalidate this in the sccessful status */
228                 if (drop || recover)
229                         ClearPageUptodate(page);
230                 set_page_private(page, 0);
231                 ClearPagePrivate(page);
232                 f2fs_put_page(page, 1);
233
234                 list_del(&cur->list);
235                 kmem_cache_free(inmem_entry_slab, cur);
236                 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
237         }
238         return err;
239 }
240
241 void drop_inmem_pages(struct inode *inode)
242 {
243         struct f2fs_inode_info *fi = F2FS_I(inode);
244
245         clear_inode_flag(inode, FI_ATOMIC_FILE);
246
247         mutex_lock(&fi->inmem_lock);
248         __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
249         mutex_unlock(&fi->inmem_lock);
250 }
251
252 static int __commit_inmem_pages(struct inode *inode,
253                                         struct list_head *revoke_list)
254 {
255         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
256         struct f2fs_inode_info *fi = F2FS_I(inode);
257         struct inmem_pages *cur, *tmp;
258         struct f2fs_io_info fio = {
259                 .sbi = sbi,
260                 .type = DATA,
261                 .op = REQ_OP_WRITE,
262                 .op_flags = WRITE_SYNC | REQ_PRIO,
263                 .encrypted_page = NULL,
264         };
265         bool submit_bio = false;
266         int err = 0;
267
268         list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
269                 struct page *page = cur->page;
270
271                 lock_page(page);
272                 if (page->mapping == inode->i_mapping) {
273                         trace_f2fs_commit_inmem_page(page, INMEM);
274
275                         set_page_dirty(page);
276                         f2fs_wait_on_page_writeback(page, DATA, true);
277                         if (clear_page_dirty_for_io(page))
278                                 inode_dec_dirty_pages(inode);
279
280                         fio.page = page;
281                         err = do_write_data_page(&fio);
282                         if (err) {
283                                 unlock_page(page);
284                                 break;
285                         }
286
287                         /* record old blkaddr for revoking */
288                         cur->old_addr = fio.old_blkaddr;
289
290                         clear_cold_data(page);
291                         submit_bio = true;
292                 }
293                 unlock_page(page);
294                 list_move_tail(&cur->list, revoke_list);
295         }
296
297         if (submit_bio)
298                 f2fs_submit_merged_bio_cond(sbi, inode, NULL, 0, DATA, WRITE);
299
300         if (!err)
301                 __revoke_inmem_pages(inode, revoke_list, false, false);
302
303         return err;
304 }
305
306 int commit_inmem_pages(struct inode *inode)
307 {
308         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
309         struct f2fs_inode_info *fi = F2FS_I(inode);
310         struct list_head revoke_list;
311         int err;
312
313         INIT_LIST_HEAD(&revoke_list);
314         f2fs_balance_fs(sbi, true);
315         f2fs_lock_op(sbi);
316
317         mutex_lock(&fi->inmem_lock);
318         err = __commit_inmem_pages(inode, &revoke_list);
319         if (err) {
320                 int ret;
321                 /*
322                  * try to revoke all committed pages, but still we could fail
323                  * due to no memory or other reason, if that happened, EAGAIN
324                  * will be returned, which means in such case, transaction is
325                  * already not integrity, caller should use journal to do the
326                  * recovery or rewrite & commit last transaction. For other
327                  * error number, revoking was done by filesystem itself.
328                  */
329                 ret = __revoke_inmem_pages(inode, &revoke_list, false, true);
330                 if (ret)
331                         err = ret;
332
333                 /* drop all uncommitted pages */
334                 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
335         }
336         mutex_unlock(&fi->inmem_lock);
337
338         f2fs_unlock_op(sbi);
339         return err;
340 }
341
342 /*
343  * This function balances dirty node and dentry pages.
344  * In addition, it controls garbage collection.
345  */
346 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
347 {
348         if (!need)
349                 return;
350
351         /* balance_fs_bg is able to be pending */
352         if (excess_cached_nats(sbi))
353                 f2fs_balance_fs_bg(sbi);
354
355         /*
356          * We should do GC or end up with checkpoint, if there are so many dirty
357          * dir/node pages without enough free segments.
358          */
359         if (has_not_enough_free_secs(sbi, 0, 0)) {
360                 mutex_lock(&sbi->gc_mutex);
361                 f2fs_gc(sbi, false);
362         }
363 }
364
365 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
366 {
367         /* try to shrink extent cache when there is no enough memory */
368         if (!available_free_memory(sbi, EXTENT_CACHE))
369                 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
370
371         /* check the # of cached NAT entries */
372         if (!available_free_memory(sbi, NAT_ENTRIES))
373                 try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
374
375         if (!available_free_memory(sbi, FREE_NIDS))
376                 try_to_free_nids(sbi, MAX_FREE_NIDS);
377         else
378                 build_free_nids(sbi);
379
380         /* checkpoint is the only way to shrink partial cached entries */
381         if (!available_free_memory(sbi, NAT_ENTRIES) ||
382                         !available_free_memory(sbi, INO_ENTRIES) ||
383                         excess_prefree_segs(sbi) ||
384                         excess_dirty_nats(sbi) ||
385                         (is_idle(sbi) && f2fs_time_over(sbi, CP_TIME))) {
386                 if (test_opt(sbi, DATA_FLUSH)) {
387                         struct blk_plug plug;
388
389                         blk_start_plug(&plug);
390                         sync_dirty_inodes(sbi, FILE_INODE);
391                         blk_finish_plug(&plug);
392                 }
393                 f2fs_sync_fs(sbi->sb, true);
394                 stat_inc_bg_cp_count(sbi->stat_info);
395         }
396 }
397
398 static int issue_flush_thread(void *data)
399 {
400         struct f2fs_sb_info *sbi = data;
401         struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
402         wait_queue_head_t *q = &fcc->flush_wait_queue;
403 repeat:
404         if (kthread_should_stop())
405                 return 0;
406
407         if (!llist_empty(&fcc->issue_list)) {
408                 struct bio *bio;
409                 struct flush_cmd *cmd, *next;
410                 int ret;
411
412                 bio = f2fs_bio_alloc(0);
413
414                 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
415                 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
416
417                 bio->bi_bdev = sbi->sb->s_bdev;
418                 bio_set_op_attrs(bio, REQ_OP_WRITE, WRITE_FLUSH);
419                 ret = submit_bio_wait(bio);
420
421                 llist_for_each_entry_safe(cmd, next,
422                                           fcc->dispatch_list, llnode) {
423                         cmd->ret = ret;
424                         complete(&cmd->wait);
425                 }
426                 bio_put(bio);
427                 fcc->dispatch_list = NULL;
428         }
429
430         wait_event_interruptible(*q,
431                 kthread_should_stop() || !llist_empty(&fcc->issue_list));
432         goto repeat;
433 }
434
435 int f2fs_issue_flush(struct f2fs_sb_info *sbi)
436 {
437         struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
438         struct flush_cmd cmd;
439
440         trace_f2fs_issue_flush(sbi->sb, test_opt(sbi, NOBARRIER),
441                                         test_opt(sbi, FLUSH_MERGE));
442
443         if (test_opt(sbi, NOBARRIER))
444                 return 0;
445
446         if (!test_opt(sbi, FLUSH_MERGE) || !atomic_read(&fcc->submit_flush)) {
447                 struct bio *bio = f2fs_bio_alloc(0);
448                 int ret;
449
450                 atomic_inc(&fcc->submit_flush);
451                 bio->bi_bdev = sbi->sb->s_bdev;
452                 bio_set_op_attrs(bio, REQ_OP_WRITE, WRITE_FLUSH);
453                 ret = submit_bio_wait(bio);
454                 atomic_dec(&fcc->submit_flush);
455                 bio_put(bio);
456                 return ret;
457         }
458
459         init_completion(&cmd.wait);
460
461         atomic_inc(&fcc->submit_flush);
462         llist_add(&cmd.llnode, &fcc->issue_list);
463
464         if (!fcc->dispatch_list)
465                 wake_up(&fcc->flush_wait_queue);
466
467         wait_for_completion(&cmd.wait);
468         atomic_dec(&fcc->submit_flush);
469
470         return cmd.ret;
471 }
472
473 int create_flush_cmd_control(struct f2fs_sb_info *sbi)
474 {
475         dev_t dev = sbi->sb->s_bdev->bd_dev;
476         struct flush_cmd_control *fcc;
477         int err = 0;
478
479         fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL);
480         if (!fcc)
481                 return -ENOMEM;
482         atomic_set(&fcc->submit_flush, 0);
483         init_waitqueue_head(&fcc->flush_wait_queue);
484         init_llist_head(&fcc->issue_list);
485         SM_I(sbi)->cmd_control_info = fcc;
486         fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
487                                 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
488         if (IS_ERR(fcc->f2fs_issue_flush)) {
489                 err = PTR_ERR(fcc->f2fs_issue_flush);
490                 kfree(fcc);
491                 SM_I(sbi)->cmd_control_info = NULL;
492                 return err;
493         }
494
495         return err;
496 }
497
498 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi)
499 {
500         struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
501
502         if (fcc && fcc->f2fs_issue_flush)
503                 kthread_stop(fcc->f2fs_issue_flush);
504         kfree(fcc);
505         SM_I(sbi)->cmd_control_info = NULL;
506 }
507
508 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
509                 enum dirty_type dirty_type)
510 {
511         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
512
513         /* need not be added */
514         if (IS_CURSEG(sbi, segno))
515                 return;
516
517         if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
518                 dirty_i->nr_dirty[dirty_type]++;
519
520         if (dirty_type == DIRTY) {
521                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
522                 enum dirty_type t = sentry->type;
523
524                 if (unlikely(t >= DIRTY)) {
525                         f2fs_bug_on(sbi, 1);
526                         return;
527                 }
528                 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
529                         dirty_i->nr_dirty[t]++;
530         }
531 }
532
533 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
534                 enum dirty_type dirty_type)
535 {
536         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
537
538         if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
539                 dirty_i->nr_dirty[dirty_type]--;
540
541         if (dirty_type == DIRTY) {
542                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
543                 enum dirty_type t = sentry->type;
544
545                 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
546                         dirty_i->nr_dirty[t]--;
547
548                 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
549                         clear_bit(GET_SECNO(sbi, segno),
550                                                 dirty_i->victim_secmap);
551         }
552 }
553
554 /*
555  * Should not occur error such as -ENOMEM.
556  * Adding dirty entry into seglist is not critical operation.
557  * If a given segment is one of current working segments, it won't be added.
558  */
559 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
560 {
561         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
562         unsigned short valid_blocks;
563
564         if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
565                 return;
566
567         mutex_lock(&dirty_i->seglist_lock);
568
569         valid_blocks = get_valid_blocks(sbi, segno, 0);
570
571         if (valid_blocks == 0) {
572                 __locate_dirty_segment(sbi, segno, PRE);
573                 __remove_dirty_segment(sbi, segno, DIRTY);
574         } else if (valid_blocks < sbi->blocks_per_seg) {
575                 __locate_dirty_segment(sbi, segno, DIRTY);
576         } else {
577                 /* Recovery routine with SSR needs this */
578                 __remove_dirty_segment(sbi, segno, DIRTY);
579         }
580
581         mutex_unlock(&dirty_i->seglist_lock);
582 }
583
584 static struct bio_entry *__add_bio_entry(struct f2fs_sb_info *sbi,
585                                                         struct bio *bio)
586 {
587         struct list_head *wait_list = &(SM_I(sbi)->wait_list);
588         struct bio_entry *be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS);
589
590         INIT_LIST_HEAD(&be->list);
591         be->bio = bio;
592         init_completion(&be->event);
593         list_add_tail(&be->list, wait_list);
594
595         return be;
596 }
597
598 void f2fs_wait_all_discard_bio(struct f2fs_sb_info *sbi)
599 {
600         struct list_head *wait_list = &(SM_I(sbi)->wait_list);
601         struct bio_entry *be, *tmp;
602
603         list_for_each_entry_safe(be, tmp, wait_list, list) {
604                 struct bio *bio = be->bio;
605                 int err;
606
607                 wait_for_completion_io(&be->event);
608                 err = be->error;
609                 if (err == -EOPNOTSUPP)
610                         err = 0;
611
612                 if (err)
613                         f2fs_msg(sbi->sb, KERN_INFO,
614                                 "Issue discard failed, ret: %d", err);
615
616                 bio_put(bio);
617                 list_del(&be->list);
618                 kmem_cache_free(bio_entry_slab, be);
619         }
620 }
621
622 static void f2fs_submit_bio_wait_endio(struct bio *bio)
623 {
624         struct bio_entry *be = (struct bio_entry *)bio->bi_private;
625
626         be->error = bio->bi_error;
627         complete(&be->event);
628 }
629
630 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
631 int __f2fs_issue_discard_async(struct f2fs_sb_info *sbi, sector_t sector,
632                 sector_t nr_sects, gfp_t gfp_mask, unsigned long flags)
633 {
634         struct block_device *bdev = sbi->sb->s_bdev;
635         struct bio *bio = NULL;
636         int err;
637
638         err = __blkdev_issue_discard(bdev, sector, nr_sects, gfp_mask, flags,
639                         &bio);
640         if (!err && bio) {
641                 struct bio_entry *be = __add_bio_entry(sbi, bio);
642
643                 bio->bi_private = be;
644                 bio->bi_end_io = f2fs_submit_bio_wait_endio;
645                 bio->bi_opf |= REQ_SYNC;
646                 submit_bio(bio);
647         }
648
649         return err;
650 }
651
652 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
653                                 block_t blkstart, block_t blklen)
654 {
655         sector_t start = SECTOR_FROM_BLOCK(blkstart);
656         sector_t len = SECTOR_FROM_BLOCK(blklen);
657         struct seg_entry *se;
658         unsigned int offset;
659         block_t i;
660
661         for (i = blkstart; i < blkstart + blklen; i++) {
662                 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
663                 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
664
665                 if (!f2fs_test_and_set_bit(offset, se->discard_map))
666                         sbi->discard_blks--;
667         }
668         trace_f2fs_issue_discard(sbi->sb, blkstart, blklen);
669         return __f2fs_issue_discard_async(sbi, start, len, GFP_NOFS, 0);
670 }
671
672 static void __add_discard_entry(struct f2fs_sb_info *sbi,
673                 struct cp_control *cpc, struct seg_entry *se,
674                 unsigned int start, unsigned int end)
675 {
676         struct list_head *head = &SM_I(sbi)->discard_list;
677         struct discard_entry *new, *last;
678
679         if (!list_empty(head)) {
680                 last = list_last_entry(head, struct discard_entry, list);
681                 if (START_BLOCK(sbi, cpc->trim_start) + start ==
682                                                 last->blkaddr + last->len) {
683                         last->len += end - start;
684                         goto done;
685                 }
686         }
687
688         new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS);
689         INIT_LIST_HEAD(&new->list);
690         new->blkaddr = START_BLOCK(sbi, cpc->trim_start) + start;
691         new->len = end - start;
692         list_add_tail(&new->list, head);
693 done:
694         SM_I(sbi)->nr_discards += end - start;
695 }
696
697 static void add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc)
698 {
699         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
700         int max_blocks = sbi->blocks_per_seg;
701         struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
702         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
703         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
704         unsigned long *discard_map = (unsigned long *)se->discard_map;
705         unsigned long *dmap = SIT_I(sbi)->tmp_map;
706         unsigned int start = 0, end = -1;
707         bool force = (cpc->reason == CP_DISCARD);
708         int i;
709
710         if (se->valid_blocks == max_blocks || !f2fs_discard_en(sbi))
711                 return;
712
713         if (!force) {
714                 if (!test_opt(sbi, DISCARD) || !se->valid_blocks ||
715                     SM_I(sbi)->nr_discards >= SM_I(sbi)->max_discards)
716                         return;
717         }
718
719         /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
720         for (i = 0; i < entries; i++)
721                 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
722                                 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
723
724         while (force || SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) {
725                 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
726                 if (start >= max_blocks)
727                         break;
728
729                 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
730                 if (force && start && end != max_blocks
731                                         && (end - start) < cpc->trim_minlen)
732                         continue;
733
734                 __add_discard_entry(sbi, cpc, se, start, end);
735         }
736 }
737
738 void release_discard_addrs(struct f2fs_sb_info *sbi)
739 {
740         struct list_head *head = &(SM_I(sbi)->discard_list);
741         struct discard_entry *entry, *this;
742
743         /* drop caches */
744         list_for_each_entry_safe(entry, this, head, list) {
745                 list_del(&entry->list);
746                 kmem_cache_free(discard_entry_slab, entry);
747         }
748 }
749
750 /*
751  * Should call clear_prefree_segments after checkpoint is done.
752  */
753 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
754 {
755         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
756         unsigned int segno;
757
758         mutex_lock(&dirty_i->seglist_lock);
759         for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
760                 __set_test_and_free(sbi, segno);
761         mutex_unlock(&dirty_i->seglist_lock);
762 }
763
764 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc)
765 {
766         struct list_head *head = &(SM_I(sbi)->discard_list);
767         struct discard_entry *entry, *this;
768         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
769         struct blk_plug plug;
770         unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
771         unsigned int start = 0, end = -1;
772         unsigned int secno, start_segno;
773         bool force = (cpc->reason == CP_DISCARD);
774
775         blk_start_plug(&plug);
776
777         mutex_lock(&dirty_i->seglist_lock);
778
779         while (1) {
780                 int i;
781                 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
782                 if (start >= MAIN_SEGS(sbi))
783                         break;
784                 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
785                                                                 start + 1);
786
787                 for (i = start; i < end; i++)
788                         clear_bit(i, prefree_map);
789
790                 dirty_i->nr_dirty[PRE] -= end - start;
791
792                 if (force || !test_opt(sbi, DISCARD))
793                         continue;
794
795                 if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) {
796                         f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
797                                 (end - start) << sbi->log_blocks_per_seg);
798                         continue;
799                 }
800 next:
801                 secno = GET_SECNO(sbi, start);
802                 start_segno = secno * sbi->segs_per_sec;
803                 if (!IS_CURSEC(sbi, secno) &&
804                         !get_valid_blocks(sbi, start, sbi->segs_per_sec))
805                         f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
806                                 sbi->segs_per_sec << sbi->log_blocks_per_seg);
807
808                 start = start_segno + sbi->segs_per_sec;
809                 if (start < end)
810                         goto next;
811         }
812         mutex_unlock(&dirty_i->seglist_lock);
813
814         /* send small discards */
815         list_for_each_entry_safe(entry, this, head, list) {
816                 if (force && entry->len < cpc->trim_minlen)
817                         goto skip;
818                 f2fs_issue_discard(sbi, entry->blkaddr, entry->len);
819                 cpc->trimmed += entry->len;
820 skip:
821                 list_del(&entry->list);
822                 SM_I(sbi)->nr_discards -= entry->len;
823                 kmem_cache_free(discard_entry_slab, entry);
824         }
825
826         blk_finish_plug(&plug);
827 }
828
829 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
830 {
831         struct sit_info *sit_i = SIT_I(sbi);
832
833         if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
834                 sit_i->dirty_sentries++;
835                 return false;
836         }
837
838         return true;
839 }
840
841 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
842                                         unsigned int segno, int modified)
843 {
844         struct seg_entry *se = get_seg_entry(sbi, segno);
845         se->type = type;
846         if (modified)
847                 __mark_sit_entry_dirty(sbi, segno);
848 }
849
850 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
851 {
852         struct seg_entry *se;
853         unsigned int segno, offset;
854         long int new_vblocks;
855
856         segno = GET_SEGNO(sbi, blkaddr);
857
858         se = get_seg_entry(sbi, segno);
859         new_vblocks = se->valid_blocks + del;
860         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
861
862         f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
863                                 (new_vblocks > sbi->blocks_per_seg)));
864
865         se->valid_blocks = new_vblocks;
866         se->mtime = get_mtime(sbi);
867         SIT_I(sbi)->max_mtime = se->mtime;
868
869         /* Update valid block bitmap */
870         if (del > 0) {
871                 if (f2fs_test_and_set_bit(offset, se->cur_valid_map))
872                         f2fs_bug_on(sbi, 1);
873                 if (f2fs_discard_en(sbi) &&
874                         !f2fs_test_and_set_bit(offset, se->discard_map))
875                         sbi->discard_blks--;
876         } else {
877                 if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map))
878                         f2fs_bug_on(sbi, 1);
879                 if (f2fs_discard_en(sbi) &&
880                         f2fs_test_and_clear_bit(offset, se->discard_map))
881                         sbi->discard_blks++;
882         }
883         if (!f2fs_test_bit(offset, se->ckpt_valid_map))
884                 se->ckpt_valid_blocks += del;
885
886         __mark_sit_entry_dirty(sbi, segno);
887
888         /* update total number of valid blocks to be written in ckpt area */
889         SIT_I(sbi)->written_valid_blocks += del;
890
891         if (sbi->segs_per_sec > 1)
892                 get_sec_entry(sbi, segno)->valid_blocks += del;
893 }
894
895 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new)
896 {
897         update_sit_entry(sbi, new, 1);
898         if (GET_SEGNO(sbi, old) != NULL_SEGNO)
899                 update_sit_entry(sbi, old, -1);
900
901         locate_dirty_segment(sbi, GET_SEGNO(sbi, old));
902         locate_dirty_segment(sbi, GET_SEGNO(sbi, new));
903 }
904
905 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
906 {
907         unsigned int segno = GET_SEGNO(sbi, addr);
908         struct sit_info *sit_i = SIT_I(sbi);
909
910         f2fs_bug_on(sbi, addr == NULL_ADDR);
911         if (addr == NEW_ADDR)
912                 return;
913
914         /* add it into sit main buffer */
915         mutex_lock(&sit_i->sentry_lock);
916
917         update_sit_entry(sbi, addr, -1);
918
919         /* add it into dirty seglist */
920         locate_dirty_segment(sbi, segno);
921
922         mutex_unlock(&sit_i->sentry_lock);
923 }
924
925 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
926 {
927         struct sit_info *sit_i = SIT_I(sbi);
928         unsigned int segno, offset;
929         struct seg_entry *se;
930         bool is_cp = false;
931
932         if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
933                 return true;
934
935         mutex_lock(&sit_i->sentry_lock);
936
937         segno = GET_SEGNO(sbi, blkaddr);
938         se = get_seg_entry(sbi, segno);
939         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
940
941         if (f2fs_test_bit(offset, se->ckpt_valid_map))
942                 is_cp = true;
943
944         mutex_unlock(&sit_i->sentry_lock);
945
946         return is_cp;
947 }
948
949 /*
950  * This function should be resided under the curseg_mutex lock
951  */
952 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
953                                         struct f2fs_summary *sum)
954 {
955         struct curseg_info *curseg = CURSEG_I(sbi, type);
956         void *addr = curseg->sum_blk;
957         addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
958         memcpy(addr, sum, sizeof(struct f2fs_summary));
959 }
960
961 /*
962  * Calculate the number of current summary pages for writing
963  */
964 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
965 {
966         int valid_sum_count = 0;
967         int i, sum_in_page;
968
969         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
970                 if (sbi->ckpt->alloc_type[i] == SSR)
971                         valid_sum_count += sbi->blocks_per_seg;
972                 else {
973                         if (for_ra)
974                                 valid_sum_count += le16_to_cpu(
975                                         F2FS_CKPT(sbi)->cur_data_blkoff[i]);
976                         else
977                                 valid_sum_count += curseg_blkoff(sbi, i);
978                 }
979         }
980
981         sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
982                         SUM_FOOTER_SIZE) / SUMMARY_SIZE;
983         if (valid_sum_count <= sum_in_page)
984                 return 1;
985         else if ((valid_sum_count - sum_in_page) <=
986                 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
987                 return 2;
988         return 3;
989 }
990
991 /*
992  * Caller should put this summary page
993  */
994 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
995 {
996         return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
997 }
998
999 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr)
1000 {
1001         struct page *page = grab_meta_page(sbi, blk_addr);
1002         void *dst = page_address(page);
1003
1004         if (src)
1005                 memcpy(dst, src, PAGE_SIZE);
1006         else
1007                 memset(dst, 0, PAGE_SIZE);
1008         set_page_dirty(page);
1009         f2fs_put_page(page, 1);
1010 }
1011
1012 static void write_sum_page(struct f2fs_sb_info *sbi,
1013                         struct f2fs_summary_block *sum_blk, block_t blk_addr)
1014 {
1015         update_meta_page(sbi, (void *)sum_blk, blk_addr);
1016 }
1017
1018 static void write_current_sum_page(struct f2fs_sb_info *sbi,
1019                                                 int type, block_t blk_addr)
1020 {
1021         struct curseg_info *curseg = CURSEG_I(sbi, type);
1022         struct page *page = grab_meta_page(sbi, blk_addr);
1023         struct f2fs_summary_block *src = curseg->sum_blk;
1024         struct f2fs_summary_block *dst;
1025
1026         dst = (struct f2fs_summary_block *)page_address(page);
1027
1028         mutex_lock(&curseg->curseg_mutex);
1029
1030         down_read(&curseg->journal_rwsem);
1031         memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
1032         up_read(&curseg->journal_rwsem);
1033
1034         memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
1035         memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
1036
1037         mutex_unlock(&curseg->curseg_mutex);
1038
1039         set_page_dirty(page);
1040         f2fs_put_page(page, 1);
1041 }
1042
1043 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
1044 {
1045         struct curseg_info *curseg = CURSEG_I(sbi, type);
1046         unsigned int segno = curseg->segno + 1;
1047         struct free_segmap_info *free_i = FREE_I(sbi);
1048
1049         if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
1050                 return !test_bit(segno, free_i->free_segmap);
1051         return 0;
1052 }
1053
1054 /*
1055  * Find a new segment from the free segments bitmap to right order
1056  * This function should be returned with success, otherwise BUG
1057  */
1058 static void get_new_segment(struct f2fs_sb_info *sbi,
1059                         unsigned int *newseg, bool new_sec, int dir)
1060 {
1061         struct free_segmap_info *free_i = FREE_I(sbi);
1062         unsigned int segno, secno, zoneno;
1063         unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
1064         unsigned int hint = *newseg / sbi->segs_per_sec;
1065         unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
1066         unsigned int left_start = hint;
1067         bool init = true;
1068         int go_left = 0;
1069         int i;
1070
1071         spin_lock(&free_i->segmap_lock);
1072
1073         if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
1074                 segno = find_next_zero_bit(free_i->free_segmap,
1075                                 (hint + 1) * sbi->segs_per_sec, *newseg + 1);
1076                 if (segno < (hint + 1) * sbi->segs_per_sec)
1077                         goto got_it;
1078         }
1079 find_other_zone:
1080         secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
1081         if (secno >= MAIN_SECS(sbi)) {
1082                 if (dir == ALLOC_RIGHT) {
1083                         secno = find_next_zero_bit(free_i->free_secmap,
1084                                                         MAIN_SECS(sbi), 0);
1085                         f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
1086                 } else {
1087                         go_left = 1;
1088                         left_start = hint - 1;
1089                 }
1090         }
1091         if (go_left == 0)
1092                 goto skip_left;
1093
1094         while (test_bit(left_start, free_i->free_secmap)) {
1095                 if (left_start > 0) {
1096                         left_start--;
1097                         continue;
1098                 }
1099                 left_start = find_next_zero_bit(free_i->free_secmap,
1100                                                         MAIN_SECS(sbi), 0);
1101                 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
1102                 break;
1103         }
1104         secno = left_start;
1105 skip_left:
1106         hint = secno;
1107         segno = secno * sbi->segs_per_sec;
1108         zoneno = secno / sbi->secs_per_zone;
1109
1110         /* give up on finding another zone */
1111         if (!init)
1112                 goto got_it;
1113         if (sbi->secs_per_zone == 1)
1114                 goto got_it;
1115         if (zoneno == old_zoneno)
1116                 goto got_it;
1117         if (dir == ALLOC_LEFT) {
1118                 if (!go_left && zoneno + 1 >= total_zones)
1119                         goto got_it;
1120                 if (go_left && zoneno == 0)
1121                         goto got_it;
1122         }
1123         for (i = 0; i < NR_CURSEG_TYPE; i++)
1124                 if (CURSEG_I(sbi, i)->zone == zoneno)
1125                         break;
1126
1127         if (i < NR_CURSEG_TYPE) {
1128                 /* zone is in user, try another */
1129                 if (go_left)
1130                         hint = zoneno * sbi->secs_per_zone - 1;
1131                 else if (zoneno + 1 >= total_zones)
1132                         hint = 0;
1133                 else
1134                         hint = (zoneno + 1) * sbi->secs_per_zone;
1135                 init = false;
1136                 goto find_other_zone;
1137         }
1138 got_it:
1139         /* set it as dirty segment in free segmap */
1140         f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
1141         __set_inuse(sbi, segno);
1142         *newseg = segno;
1143         spin_unlock(&free_i->segmap_lock);
1144 }
1145
1146 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
1147 {
1148         struct curseg_info *curseg = CURSEG_I(sbi, type);
1149         struct summary_footer *sum_footer;
1150
1151         curseg->segno = curseg->next_segno;
1152         curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
1153         curseg->next_blkoff = 0;
1154         curseg->next_segno = NULL_SEGNO;
1155
1156         sum_footer = &(curseg->sum_blk->footer);
1157         memset(sum_footer, 0, sizeof(struct summary_footer));
1158         if (IS_DATASEG(type))
1159                 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
1160         if (IS_NODESEG(type))
1161                 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
1162         __set_sit_entry_type(sbi, type, curseg->segno, modified);
1163 }
1164
1165 /*
1166  * Allocate a current working segment.
1167  * This function always allocates a free segment in LFS manner.
1168  */
1169 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
1170 {
1171         struct curseg_info *curseg = CURSEG_I(sbi, type);
1172         unsigned int segno = curseg->segno;
1173         int dir = ALLOC_LEFT;
1174
1175         write_sum_page(sbi, curseg->sum_blk,
1176                                 GET_SUM_BLOCK(sbi, segno));
1177         if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
1178                 dir = ALLOC_RIGHT;
1179
1180         if (test_opt(sbi, NOHEAP))
1181                 dir = ALLOC_RIGHT;
1182
1183         get_new_segment(sbi, &segno, new_sec, dir);
1184         curseg->next_segno = segno;
1185         reset_curseg(sbi, type, 1);
1186         curseg->alloc_type = LFS;
1187 }
1188
1189 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
1190                         struct curseg_info *seg, block_t start)
1191 {
1192         struct seg_entry *se = get_seg_entry(sbi, seg->segno);
1193         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1194         unsigned long *target_map = SIT_I(sbi)->tmp_map;
1195         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1196         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1197         int i, pos;
1198
1199         for (i = 0; i < entries; i++)
1200                 target_map[i] = ckpt_map[i] | cur_map[i];
1201
1202         pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
1203
1204         seg->next_blkoff = pos;
1205 }
1206
1207 /*
1208  * If a segment is written by LFS manner, next block offset is just obtained
1209  * by increasing the current block offset. However, if a segment is written by
1210  * SSR manner, next block offset obtained by calling __next_free_blkoff
1211  */
1212 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
1213                                 struct curseg_info *seg)
1214 {
1215         if (seg->alloc_type == SSR)
1216                 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
1217         else
1218                 seg->next_blkoff++;
1219 }
1220
1221 /*
1222  * This function always allocates a used segment(from dirty seglist) by SSR
1223  * manner, so it should recover the existing segment information of valid blocks
1224  */
1225 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
1226 {
1227         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1228         struct curseg_info *curseg = CURSEG_I(sbi, type);
1229         unsigned int new_segno = curseg->next_segno;
1230         struct f2fs_summary_block *sum_node;
1231         struct page *sum_page;
1232
1233         write_sum_page(sbi, curseg->sum_blk,
1234                                 GET_SUM_BLOCK(sbi, curseg->segno));
1235         __set_test_and_inuse(sbi, new_segno);
1236
1237         mutex_lock(&dirty_i->seglist_lock);
1238         __remove_dirty_segment(sbi, new_segno, PRE);
1239         __remove_dirty_segment(sbi, new_segno, DIRTY);
1240         mutex_unlock(&dirty_i->seglist_lock);
1241
1242         reset_curseg(sbi, type, 1);
1243         curseg->alloc_type = SSR;
1244         __next_free_blkoff(sbi, curseg, 0);
1245
1246         if (reuse) {
1247                 sum_page = get_sum_page(sbi, new_segno);
1248                 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
1249                 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
1250                 f2fs_put_page(sum_page, 1);
1251         }
1252 }
1253
1254 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
1255 {
1256         struct curseg_info *curseg = CURSEG_I(sbi, type);
1257         const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
1258
1259         if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0, 0))
1260                 return v_ops->get_victim(sbi,
1261                                 &(curseg)->next_segno, BG_GC, type, SSR);
1262
1263         /* For data segments, let's do SSR more intensively */
1264         for (; type >= CURSEG_HOT_DATA; type--)
1265                 if (v_ops->get_victim(sbi, &(curseg)->next_segno,
1266                                                 BG_GC, type, SSR))
1267                         return 1;
1268         return 0;
1269 }
1270
1271 /*
1272  * flush out current segment and replace it with new segment
1273  * This function should be returned with success, otherwise BUG
1274  */
1275 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
1276                                                 int type, bool force)
1277 {
1278         struct curseg_info *curseg = CURSEG_I(sbi, type);
1279
1280         if (force)
1281                 new_curseg(sbi, type, true);
1282         else if (type == CURSEG_WARM_NODE)
1283                 new_curseg(sbi, type, false);
1284         else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
1285                 new_curseg(sbi, type, false);
1286         else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
1287                 change_curseg(sbi, type, true);
1288         else
1289                 new_curseg(sbi, type, false);
1290
1291         stat_inc_seg_type(sbi, curseg);
1292 }
1293
1294 static void __allocate_new_segments(struct f2fs_sb_info *sbi, int type)
1295 {
1296         struct curseg_info *curseg = CURSEG_I(sbi, type);
1297         unsigned int old_segno;
1298
1299         old_segno = curseg->segno;
1300         SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true);
1301         locate_dirty_segment(sbi, old_segno);
1302 }
1303
1304 void allocate_new_segments(struct f2fs_sb_info *sbi)
1305 {
1306         int i;
1307
1308         if (test_opt(sbi, LFS))
1309                 return;
1310
1311         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
1312                 __allocate_new_segments(sbi, i);
1313 }
1314
1315 static const struct segment_allocation default_salloc_ops = {
1316         .allocate_segment = allocate_segment_by_default,
1317 };
1318
1319 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
1320 {
1321         __u64 start = F2FS_BYTES_TO_BLK(range->start);
1322         __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
1323         unsigned int start_segno, end_segno;
1324         struct cp_control cpc;
1325         int err = 0;
1326
1327         if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
1328                 return -EINVAL;
1329
1330         cpc.trimmed = 0;
1331         if (end <= MAIN_BLKADDR(sbi))
1332                 goto out;
1333
1334         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1335                 f2fs_msg(sbi->sb, KERN_WARNING,
1336                         "Found FS corruption, run fsck to fix.");
1337                 goto out;
1338         }
1339
1340         /* start/end segment number in main_area */
1341         start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
1342         end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
1343                                                 GET_SEGNO(sbi, end);
1344         cpc.reason = CP_DISCARD;
1345         cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
1346
1347         /* do checkpoint to issue discard commands safely */
1348         for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) {
1349                 cpc.trim_start = start_segno;
1350
1351                 if (sbi->discard_blks == 0)
1352                         break;
1353                 else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi))
1354                         cpc.trim_end = end_segno;
1355                 else
1356                         cpc.trim_end = min_t(unsigned int,
1357                                 rounddown(start_segno +
1358                                 BATCHED_TRIM_SEGMENTS(sbi),
1359                                 sbi->segs_per_sec) - 1, end_segno);
1360
1361                 mutex_lock(&sbi->gc_mutex);
1362                 err = write_checkpoint(sbi, &cpc);
1363                 mutex_unlock(&sbi->gc_mutex);
1364                 if (err)
1365                         break;
1366
1367                 schedule();
1368         }
1369 out:
1370         range->len = F2FS_BLK_TO_BYTES(cpc.trimmed);
1371         return err;
1372 }
1373
1374 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
1375 {
1376         struct curseg_info *curseg = CURSEG_I(sbi, type);
1377         if (curseg->next_blkoff < sbi->blocks_per_seg)
1378                 return true;
1379         return false;
1380 }
1381
1382 static int __get_segment_type_2(struct page *page, enum page_type p_type)
1383 {
1384         if (p_type == DATA)
1385                 return CURSEG_HOT_DATA;
1386         else
1387                 return CURSEG_HOT_NODE;
1388 }
1389
1390 static int __get_segment_type_4(struct page *page, enum page_type p_type)
1391 {
1392         if (p_type == DATA) {
1393                 struct inode *inode = page->mapping->host;
1394
1395                 if (S_ISDIR(inode->i_mode))
1396                         return CURSEG_HOT_DATA;
1397                 else
1398                         return CURSEG_COLD_DATA;
1399         } else {
1400                 if (IS_DNODE(page) && is_cold_node(page))
1401                         return CURSEG_WARM_NODE;
1402                 else
1403                         return CURSEG_COLD_NODE;
1404         }
1405 }
1406
1407 static int __get_segment_type_6(struct page *page, enum page_type p_type)
1408 {
1409         if (p_type == DATA) {
1410                 struct inode *inode = page->mapping->host;
1411
1412                 if (S_ISDIR(inode->i_mode))
1413                         return CURSEG_HOT_DATA;
1414                 else if (is_cold_data(page) || file_is_cold(inode))
1415                         return CURSEG_COLD_DATA;
1416                 else
1417                         return CURSEG_WARM_DATA;
1418         } else {
1419                 if (IS_DNODE(page))
1420                         return is_cold_node(page) ? CURSEG_WARM_NODE :
1421                                                 CURSEG_HOT_NODE;
1422                 else
1423                         return CURSEG_COLD_NODE;
1424         }
1425 }
1426
1427 static int __get_segment_type(struct page *page, enum page_type p_type)
1428 {
1429         switch (F2FS_P_SB(page)->active_logs) {
1430         case 2:
1431                 return __get_segment_type_2(page, p_type);
1432         case 4:
1433                 return __get_segment_type_4(page, p_type);
1434         }
1435         /* NR_CURSEG_TYPE(6) logs by default */
1436         f2fs_bug_on(F2FS_P_SB(page),
1437                 F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE);
1438         return __get_segment_type_6(page, p_type);
1439 }
1440
1441 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
1442                 block_t old_blkaddr, block_t *new_blkaddr,
1443                 struct f2fs_summary *sum, int type)
1444 {
1445         struct sit_info *sit_i = SIT_I(sbi);
1446         struct curseg_info *curseg;
1447         bool direct_io = (type == CURSEG_DIRECT_IO);
1448
1449         type = direct_io ? CURSEG_WARM_DATA : type;
1450
1451         curseg = CURSEG_I(sbi, type);
1452
1453         mutex_lock(&curseg->curseg_mutex);
1454         mutex_lock(&sit_i->sentry_lock);
1455
1456         /* direct_io'ed data is aligned to the segment for better performance */
1457         if (direct_io && curseg->next_blkoff &&
1458                                 !has_not_enough_free_secs(sbi, 0, 0))
1459                 __allocate_new_segments(sbi, type);
1460
1461         *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
1462
1463         /*
1464          * __add_sum_entry should be resided under the curseg_mutex
1465          * because, this function updates a summary entry in the
1466          * current summary block.
1467          */
1468         __add_sum_entry(sbi, type, sum);
1469
1470         __refresh_next_blkoff(sbi, curseg);
1471
1472         stat_inc_block_count(sbi, curseg);
1473
1474         if (!__has_curseg_space(sbi, type))
1475                 sit_i->s_ops->allocate_segment(sbi, type, false);
1476         /*
1477          * SIT information should be updated before segment allocation,
1478          * since SSR needs latest valid block information.
1479          */
1480         refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
1481
1482         mutex_unlock(&sit_i->sentry_lock);
1483
1484         if (page && IS_NODESEG(type))
1485                 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
1486
1487         mutex_unlock(&curseg->curseg_mutex);
1488 }
1489
1490 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
1491 {
1492         int type = __get_segment_type(fio->page, fio->type);
1493
1494         if (fio->type == NODE || fio->type == DATA)
1495                 mutex_lock(&fio->sbi->wio_mutex[fio->type]);
1496
1497         allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
1498                                         &fio->new_blkaddr, sum, type);
1499
1500         /* writeout dirty page into bdev */
1501         f2fs_submit_page_mbio(fio);
1502
1503         if (fio->type == NODE || fio->type == DATA)
1504                 mutex_unlock(&fio->sbi->wio_mutex[fio->type]);
1505 }
1506
1507 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
1508 {
1509         struct f2fs_io_info fio = {
1510                 .sbi = sbi,
1511                 .type = META,
1512                 .op = REQ_OP_WRITE,
1513                 .op_flags = WRITE_SYNC | REQ_META | REQ_PRIO,
1514                 .old_blkaddr = page->index,
1515                 .new_blkaddr = page->index,
1516                 .page = page,
1517                 .encrypted_page = NULL,
1518         };
1519
1520         if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
1521                 fio.op_flags &= ~REQ_META;
1522
1523         set_page_writeback(page);
1524         f2fs_submit_page_mbio(&fio);
1525 }
1526
1527 void write_node_page(unsigned int nid, struct f2fs_io_info *fio)
1528 {
1529         struct f2fs_summary sum;
1530
1531         set_summary(&sum, nid, 0, 0);
1532         do_write_page(&sum, fio);
1533 }
1534
1535 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio)
1536 {
1537         struct f2fs_sb_info *sbi = fio->sbi;
1538         struct f2fs_summary sum;
1539         struct node_info ni;
1540
1541         f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
1542         get_node_info(sbi, dn->nid, &ni);
1543         set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1544         do_write_page(&sum, fio);
1545         f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
1546 }
1547
1548 void rewrite_data_page(struct f2fs_io_info *fio)
1549 {
1550         fio->new_blkaddr = fio->old_blkaddr;
1551         stat_inc_inplace_blocks(fio->sbi);
1552         f2fs_submit_page_mbio(fio);
1553 }
1554
1555 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
1556                                 block_t old_blkaddr, block_t new_blkaddr,
1557                                 bool recover_curseg, bool recover_newaddr)
1558 {
1559         struct sit_info *sit_i = SIT_I(sbi);
1560         struct curseg_info *curseg;
1561         unsigned int segno, old_cursegno;
1562         struct seg_entry *se;
1563         int type;
1564         unsigned short old_blkoff;
1565
1566         segno = GET_SEGNO(sbi, new_blkaddr);
1567         se = get_seg_entry(sbi, segno);
1568         type = se->type;
1569
1570         if (!recover_curseg) {
1571                 /* for recovery flow */
1572                 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
1573                         if (old_blkaddr == NULL_ADDR)
1574                                 type = CURSEG_COLD_DATA;
1575                         else
1576                                 type = CURSEG_WARM_DATA;
1577                 }
1578         } else {
1579                 if (!IS_CURSEG(sbi, segno))
1580                         type = CURSEG_WARM_DATA;
1581         }
1582
1583         curseg = CURSEG_I(sbi, type);
1584
1585         mutex_lock(&curseg->curseg_mutex);
1586         mutex_lock(&sit_i->sentry_lock);
1587
1588         old_cursegno = curseg->segno;
1589         old_blkoff = curseg->next_blkoff;
1590
1591         /* change the current segment */
1592         if (segno != curseg->segno) {
1593                 curseg->next_segno = segno;
1594                 change_curseg(sbi, type, true);
1595         }
1596
1597         curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
1598         __add_sum_entry(sbi, type, sum);
1599
1600         if (!recover_curseg || recover_newaddr)
1601                 update_sit_entry(sbi, new_blkaddr, 1);
1602         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1603                 update_sit_entry(sbi, old_blkaddr, -1);
1604
1605         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
1606         locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
1607
1608         locate_dirty_segment(sbi, old_cursegno);
1609
1610         if (recover_curseg) {
1611                 if (old_cursegno != curseg->segno) {
1612                         curseg->next_segno = old_cursegno;
1613                         change_curseg(sbi, type, true);
1614                 }
1615                 curseg->next_blkoff = old_blkoff;
1616         }
1617
1618         mutex_unlock(&sit_i->sentry_lock);
1619         mutex_unlock(&curseg->curseg_mutex);
1620 }
1621
1622 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
1623                                 block_t old_addr, block_t new_addr,
1624                                 unsigned char version, bool recover_curseg,
1625                                 bool recover_newaddr)
1626 {
1627         struct f2fs_summary sum;
1628
1629         set_summary(&sum, dn->nid, dn->ofs_in_node, version);
1630
1631         __f2fs_replace_block(sbi, &sum, old_addr, new_addr,
1632                                         recover_curseg, recover_newaddr);
1633
1634         f2fs_update_data_blkaddr(dn, new_addr);
1635 }
1636
1637 void f2fs_wait_on_page_writeback(struct page *page,
1638                                 enum page_type type, bool ordered)
1639 {
1640         if (PageWriteback(page)) {
1641                 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1642
1643                 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, type, WRITE);
1644                 if (ordered)
1645                         wait_on_page_writeback(page);
1646                 else
1647                         wait_for_stable_page(page);
1648         }
1649 }
1650
1651 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi,
1652                                                         block_t blkaddr)
1653 {
1654         struct page *cpage;
1655
1656         if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
1657                 return;
1658
1659         cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
1660         if (cpage) {
1661                 f2fs_wait_on_page_writeback(cpage, DATA, true);
1662                 f2fs_put_page(cpage, 1);
1663         }
1664 }
1665
1666 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
1667 {
1668         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1669         struct curseg_info *seg_i;
1670         unsigned char *kaddr;
1671         struct page *page;
1672         block_t start;
1673         int i, j, offset;
1674
1675         start = start_sum_block(sbi);
1676
1677         page = get_meta_page(sbi, start++);
1678         kaddr = (unsigned char *)page_address(page);
1679
1680         /* Step 1: restore nat cache */
1681         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1682         memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
1683
1684         /* Step 2: restore sit cache */
1685         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1686         memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
1687         offset = 2 * SUM_JOURNAL_SIZE;
1688
1689         /* Step 3: restore summary entries */
1690         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1691                 unsigned short blk_off;
1692                 unsigned int segno;
1693
1694                 seg_i = CURSEG_I(sbi, i);
1695                 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
1696                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
1697                 seg_i->next_segno = segno;
1698                 reset_curseg(sbi, i, 0);
1699                 seg_i->alloc_type = ckpt->alloc_type[i];
1700                 seg_i->next_blkoff = blk_off;
1701
1702                 if (seg_i->alloc_type == SSR)
1703                         blk_off = sbi->blocks_per_seg;
1704
1705                 for (j = 0; j < blk_off; j++) {
1706                         struct f2fs_summary *s;
1707                         s = (struct f2fs_summary *)(kaddr + offset);
1708                         seg_i->sum_blk->entries[j] = *s;
1709                         offset += SUMMARY_SIZE;
1710                         if (offset + SUMMARY_SIZE <= PAGE_SIZE -
1711                                                 SUM_FOOTER_SIZE)
1712                                 continue;
1713
1714                         f2fs_put_page(page, 1);
1715                         page = NULL;
1716
1717                         page = get_meta_page(sbi, start++);
1718                         kaddr = (unsigned char *)page_address(page);
1719                         offset = 0;
1720                 }
1721         }
1722         f2fs_put_page(page, 1);
1723         return 0;
1724 }
1725
1726 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1727 {
1728         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1729         struct f2fs_summary_block *sum;
1730         struct curseg_info *curseg;
1731         struct page *new;
1732         unsigned short blk_off;
1733         unsigned int segno = 0;
1734         block_t blk_addr = 0;
1735
1736         /* get segment number and block addr */
1737         if (IS_DATASEG(type)) {
1738                 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1739                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1740                                                         CURSEG_HOT_DATA]);
1741                 if (__exist_node_summaries(sbi))
1742                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1743                 else
1744                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1745         } else {
1746                 segno = le32_to_cpu(ckpt->cur_node_segno[type -
1747                                                         CURSEG_HOT_NODE]);
1748                 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1749                                                         CURSEG_HOT_NODE]);
1750                 if (__exist_node_summaries(sbi))
1751                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1752                                                         type - CURSEG_HOT_NODE);
1753                 else
1754                         blk_addr = GET_SUM_BLOCK(sbi, segno);
1755         }
1756
1757         new = get_meta_page(sbi, blk_addr);
1758         sum = (struct f2fs_summary_block *)page_address(new);
1759
1760         if (IS_NODESEG(type)) {
1761                 if (__exist_node_summaries(sbi)) {
1762                         struct f2fs_summary *ns = &sum->entries[0];
1763                         int i;
1764                         for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1765                                 ns->version = 0;
1766                                 ns->ofs_in_node = 0;
1767                         }
1768                 } else {
1769                         int err;
1770
1771                         err = restore_node_summary(sbi, segno, sum);
1772                         if (err) {
1773                                 f2fs_put_page(new, 1);
1774                                 return err;
1775                         }
1776                 }
1777         }
1778
1779         /* set uncompleted segment to curseg */
1780         curseg = CURSEG_I(sbi, type);
1781         mutex_lock(&curseg->curseg_mutex);
1782
1783         /* update journal info */
1784         down_write(&curseg->journal_rwsem);
1785         memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
1786         up_write(&curseg->journal_rwsem);
1787
1788         memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
1789         memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
1790         curseg->next_segno = segno;
1791         reset_curseg(sbi, type, 0);
1792         curseg->alloc_type = ckpt->alloc_type[type];
1793         curseg->next_blkoff = blk_off;
1794         mutex_unlock(&curseg->curseg_mutex);
1795         f2fs_put_page(new, 1);
1796         return 0;
1797 }
1798
1799 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1800 {
1801         int type = CURSEG_HOT_DATA;
1802         int err;
1803
1804         if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
1805                 int npages = npages_for_summary_flush(sbi, true);
1806
1807                 if (npages >= 2)
1808                         ra_meta_pages(sbi, start_sum_block(sbi), npages,
1809                                                         META_CP, true);
1810
1811                 /* restore for compacted data summary */
1812                 if (read_compacted_summaries(sbi))
1813                         return -EINVAL;
1814                 type = CURSEG_HOT_NODE;
1815         }
1816
1817         if (__exist_node_summaries(sbi))
1818                 ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
1819                                         NR_CURSEG_TYPE - type, META_CP, true);
1820
1821         for (; type <= CURSEG_COLD_NODE; type++) {
1822                 err = read_normal_summaries(sbi, type);
1823                 if (err)
1824                         return err;
1825         }
1826
1827         return 0;
1828 }
1829
1830 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1831 {
1832         struct page *page;
1833         unsigned char *kaddr;
1834         struct f2fs_summary *summary;
1835         struct curseg_info *seg_i;
1836         int written_size = 0;
1837         int i, j;
1838
1839         page = grab_meta_page(sbi, blkaddr++);
1840         kaddr = (unsigned char *)page_address(page);
1841
1842         /* Step 1: write nat cache */
1843         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1844         memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
1845         written_size += SUM_JOURNAL_SIZE;
1846
1847         /* Step 2: write sit cache */
1848         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1849         memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
1850         written_size += SUM_JOURNAL_SIZE;
1851
1852         /* Step 3: write summary entries */
1853         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1854                 unsigned short blkoff;
1855                 seg_i = CURSEG_I(sbi, i);
1856                 if (sbi->ckpt->alloc_type[i] == SSR)
1857                         blkoff = sbi->blocks_per_seg;
1858                 else
1859                         blkoff = curseg_blkoff(sbi, i);
1860
1861                 for (j = 0; j < blkoff; j++) {
1862                         if (!page) {
1863                                 page = grab_meta_page(sbi, blkaddr++);
1864                                 kaddr = (unsigned char *)page_address(page);
1865                                 written_size = 0;
1866                         }
1867                         summary = (struct f2fs_summary *)(kaddr + written_size);
1868                         *summary = seg_i->sum_blk->entries[j];
1869                         written_size += SUMMARY_SIZE;
1870
1871                         if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
1872                                                         SUM_FOOTER_SIZE)
1873                                 continue;
1874
1875                         set_page_dirty(page);
1876                         f2fs_put_page(page, 1);
1877                         page = NULL;
1878                 }
1879         }
1880         if (page) {
1881                 set_page_dirty(page);
1882                 f2fs_put_page(page, 1);
1883         }
1884 }
1885
1886 static void write_normal_summaries(struct f2fs_sb_info *sbi,
1887                                         block_t blkaddr, int type)
1888 {
1889         int i, end;
1890         if (IS_DATASEG(type))
1891                 end = type + NR_CURSEG_DATA_TYPE;
1892         else
1893                 end = type + NR_CURSEG_NODE_TYPE;
1894
1895         for (i = type; i < end; i++)
1896                 write_current_sum_page(sbi, i, blkaddr + (i - type));
1897 }
1898
1899 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1900 {
1901         if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
1902                 write_compacted_summaries(sbi, start_blk);
1903         else
1904                 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1905 }
1906
1907 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1908 {
1909         write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
1910 }
1911
1912 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
1913                                         unsigned int val, int alloc)
1914 {
1915         int i;
1916
1917         if (type == NAT_JOURNAL) {
1918                 for (i = 0; i < nats_in_cursum(journal); i++) {
1919                         if (le32_to_cpu(nid_in_journal(journal, i)) == val)
1920                                 return i;
1921                 }
1922                 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
1923                         return update_nats_in_cursum(journal, 1);
1924         } else if (type == SIT_JOURNAL) {
1925                 for (i = 0; i < sits_in_cursum(journal); i++)
1926                         if (le32_to_cpu(segno_in_journal(journal, i)) == val)
1927                                 return i;
1928                 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
1929                         return update_sits_in_cursum(journal, 1);
1930         }
1931         return -1;
1932 }
1933
1934 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1935                                         unsigned int segno)
1936 {
1937         return get_meta_page(sbi, current_sit_addr(sbi, segno));
1938 }
1939
1940 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1941                                         unsigned int start)
1942 {
1943         struct sit_info *sit_i = SIT_I(sbi);
1944         struct page *src_page, *dst_page;
1945         pgoff_t src_off, dst_off;
1946         void *src_addr, *dst_addr;
1947
1948         src_off = current_sit_addr(sbi, start);
1949         dst_off = next_sit_addr(sbi, src_off);
1950
1951         /* get current sit block page without lock */
1952         src_page = get_meta_page(sbi, src_off);
1953         dst_page = grab_meta_page(sbi, dst_off);
1954         f2fs_bug_on(sbi, PageDirty(src_page));
1955
1956         src_addr = page_address(src_page);
1957         dst_addr = page_address(dst_page);
1958         memcpy(dst_addr, src_addr, PAGE_SIZE);
1959
1960         set_page_dirty(dst_page);
1961         f2fs_put_page(src_page, 1);
1962
1963         set_to_next_sit(sit_i, start);
1964
1965         return dst_page;
1966 }
1967
1968 static struct sit_entry_set *grab_sit_entry_set(void)
1969 {
1970         struct sit_entry_set *ses =
1971                         f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
1972
1973         ses->entry_cnt = 0;
1974         INIT_LIST_HEAD(&ses->set_list);
1975         return ses;
1976 }
1977
1978 static void release_sit_entry_set(struct sit_entry_set *ses)
1979 {
1980         list_del(&ses->set_list);
1981         kmem_cache_free(sit_entry_set_slab, ses);
1982 }
1983
1984 static void adjust_sit_entry_set(struct sit_entry_set *ses,
1985                                                 struct list_head *head)
1986 {
1987         struct sit_entry_set *next = ses;
1988
1989         if (list_is_last(&ses->set_list, head))
1990                 return;
1991
1992         list_for_each_entry_continue(next, head, set_list)
1993                 if (ses->entry_cnt <= next->entry_cnt)
1994                         break;
1995
1996         list_move_tail(&ses->set_list, &next->set_list);
1997 }
1998
1999 static void add_sit_entry(unsigned int segno, struct list_head *head)
2000 {
2001         struct sit_entry_set *ses;
2002         unsigned int start_segno = START_SEGNO(segno);
2003
2004         list_for_each_entry(ses, head, set_list) {
2005                 if (ses->start_segno == start_segno) {
2006                         ses->entry_cnt++;
2007                         adjust_sit_entry_set(ses, head);
2008                         return;
2009                 }
2010         }
2011
2012         ses = grab_sit_entry_set();
2013
2014         ses->start_segno = start_segno;
2015         ses->entry_cnt++;
2016         list_add(&ses->set_list, head);
2017 }
2018
2019 static void add_sits_in_set(struct f2fs_sb_info *sbi)
2020 {
2021         struct f2fs_sm_info *sm_info = SM_I(sbi);
2022         struct list_head *set_list = &sm_info->sit_entry_set;
2023         unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
2024         unsigned int segno;
2025
2026         for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
2027                 add_sit_entry(segno, set_list);
2028 }
2029
2030 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
2031 {
2032         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2033         struct f2fs_journal *journal = curseg->journal;
2034         int i;
2035
2036         down_write(&curseg->journal_rwsem);
2037         for (i = 0; i < sits_in_cursum(journal); i++) {
2038                 unsigned int segno;
2039                 bool dirtied;
2040
2041                 segno = le32_to_cpu(segno_in_journal(journal, i));
2042                 dirtied = __mark_sit_entry_dirty(sbi, segno);
2043
2044                 if (!dirtied)
2045                         add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
2046         }
2047         update_sits_in_cursum(journal, -i);
2048         up_write(&curseg->journal_rwsem);
2049 }
2050
2051 /*
2052  * CP calls this function, which flushes SIT entries including sit_journal,
2053  * and moves prefree segs to free segs.
2054  */
2055 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2056 {
2057         struct sit_info *sit_i = SIT_I(sbi);
2058         unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
2059         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2060         struct f2fs_journal *journal = curseg->journal;
2061         struct sit_entry_set *ses, *tmp;
2062         struct list_head *head = &SM_I(sbi)->sit_entry_set;
2063         bool to_journal = true;
2064         struct seg_entry *se;
2065
2066         mutex_lock(&sit_i->sentry_lock);
2067
2068         if (!sit_i->dirty_sentries)
2069                 goto out;
2070
2071         /*
2072          * add and account sit entries of dirty bitmap in sit entry
2073          * set temporarily
2074          */
2075         add_sits_in_set(sbi);
2076
2077         /*
2078          * if there are no enough space in journal to store dirty sit
2079          * entries, remove all entries from journal and add and account
2080          * them in sit entry set.
2081          */
2082         if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
2083                 remove_sits_in_journal(sbi);
2084
2085         /*
2086          * there are two steps to flush sit entries:
2087          * #1, flush sit entries to journal in current cold data summary block.
2088          * #2, flush sit entries to sit page.
2089          */
2090         list_for_each_entry_safe(ses, tmp, head, set_list) {
2091                 struct page *page = NULL;
2092                 struct f2fs_sit_block *raw_sit = NULL;
2093                 unsigned int start_segno = ses->start_segno;
2094                 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
2095                                                 (unsigned long)MAIN_SEGS(sbi));
2096                 unsigned int segno = start_segno;
2097
2098                 if (to_journal &&
2099                         !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
2100                         to_journal = false;
2101
2102                 if (to_journal) {
2103                         down_write(&curseg->journal_rwsem);
2104                 } else {
2105                         page = get_next_sit_page(sbi, start_segno);
2106                         raw_sit = page_address(page);
2107                 }
2108
2109                 /* flush dirty sit entries in region of current sit set */
2110                 for_each_set_bit_from(segno, bitmap, end) {
2111                         int offset, sit_offset;
2112
2113                         se = get_seg_entry(sbi, segno);
2114
2115                         /* add discard candidates */
2116                         if (cpc->reason != CP_DISCARD) {
2117                                 cpc->trim_start = segno;
2118                                 add_discard_addrs(sbi, cpc);
2119                         }
2120
2121                         if (to_journal) {
2122                                 offset = lookup_journal_in_cursum(journal,
2123                                                         SIT_JOURNAL, segno, 1);
2124                                 f2fs_bug_on(sbi, offset < 0);
2125                                 segno_in_journal(journal, offset) =
2126                                                         cpu_to_le32(segno);
2127                                 seg_info_to_raw_sit(se,
2128                                         &sit_in_journal(journal, offset));
2129                         } else {
2130                                 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
2131                                 seg_info_to_raw_sit(se,
2132                                                 &raw_sit->entries[sit_offset]);
2133                         }
2134
2135                         __clear_bit(segno, bitmap);
2136                         sit_i->dirty_sentries--;
2137                         ses->entry_cnt--;
2138                 }
2139
2140                 if (to_journal)
2141                         up_write(&curseg->journal_rwsem);
2142                 else
2143                         f2fs_put_page(page, 1);
2144
2145                 f2fs_bug_on(sbi, ses->entry_cnt);
2146                 release_sit_entry_set(ses);
2147         }
2148
2149         f2fs_bug_on(sbi, !list_empty(head));
2150         f2fs_bug_on(sbi, sit_i->dirty_sentries);
2151 out:
2152         if (cpc->reason == CP_DISCARD) {
2153                 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
2154                         add_discard_addrs(sbi, cpc);
2155         }
2156         mutex_unlock(&sit_i->sentry_lock);
2157
2158         set_prefree_as_free_segments(sbi);
2159 }
2160
2161 static int build_sit_info(struct f2fs_sb_info *sbi)
2162 {
2163         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2164         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2165         struct sit_info *sit_i;
2166         unsigned int sit_segs, start;
2167         char *src_bitmap, *dst_bitmap;
2168         unsigned int bitmap_size;
2169
2170         /* allocate memory for SIT information */
2171         sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
2172         if (!sit_i)
2173                 return -ENOMEM;
2174
2175         SM_I(sbi)->sit_info = sit_i;
2176
2177         sit_i->sentries = f2fs_kvzalloc(MAIN_SEGS(sbi) *
2178                                         sizeof(struct seg_entry), GFP_KERNEL);
2179         if (!sit_i->sentries)
2180                 return -ENOMEM;
2181
2182         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2183         sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2184         if (!sit_i->dirty_sentries_bitmap)
2185                 return -ENOMEM;
2186
2187         for (start = 0; start < MAIN_SEGS(sbi); start++) {
2188                 sit_i->sentries[start].cur_valid_map
2189                         = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2190                 sit_i->sentries[start].ckpt_valid_map
2191                         = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2192                 if (!sit_i->sentries[start].cur_valid_map ||
2193                                 !sit_i->sentries[start].ckpt_valid_map)
2194                         return -ENOMEM;
2195
2196                 if (f2fs_discard_en(sbi)) {
2197                         sit_i->sentries[start].discard_map
2198                                 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2199                         if (!sit_i->sentries[start].discard_map)
2200                                 return -ENOMEM;
2201                 }
2202         }
2203
2204         sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2205         if (!sit_i->tmp_map)
2206                 return -ENOMEM;
2207
2208         if (sbi->segs_per_sec > 1) {
2209                 sit_i->sec_entries = f2fs_kvzalloc(MAIN_SECS(sbi) *
2210                                         sizeof(struct sec_entry), GFP_KERNEL);
2211                 if (!sit_i->sec_entries)
2212                         return -ENOMEM;
2213         }
2214
2215         /* get information related with SIT */
2216         sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
2217
2218         /* setup SIT bitmap from ckeckpoint pack */
2219         bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
2220         src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
2221
2222         dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
2223         if (!dst_bitmap)
2224                 return -ENOMEM;
2225
2226         /* init SIT information */
2227         sit_i->s_ops = &default_salloc_ops;
2228
2229         sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
2230         sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
2231         sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
2232         sit_i->sit_bitmap = dst_bitmap;
2233         sit_i->bitmap_size = bitmap_size;
2234         sit_i->dirty_sentries = 0;
2235         sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
2236         sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
2237         sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
2238         mutex_init(&sit_i->sentry_lock);
2239         return 0;
2240 }
2241
2242 static int build_free_segmap(struct f2fs_sb_info *sbi)
2243 {
2244         struct free_segmap_info *free_i;
2245         unsigned int bitmap_size, sec_bitmap_size;
2246
2247         /* allocate memory for free segmap information */
2248         free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
2249         if (!free_i)
2250                 return -ENOMEM;
2251
2252         SM_I(sbi)->free_info = free_i;
2253
2254         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2255         free_i->free_segmap = f2fs_kvmalloc(bitmap_size, GFP_KERNEL);
2256         if (!free_i->free_segmap)
2257                 return -ENOMEM;
2258
2259         sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2260         free_i->free_secmap = f2fs_kvmalloc(sec_bitmap_size, GFP_KERNEL);
2261         if (!free_i->free_secmap)
2262                 return -ENOMEM;
2263
2264         /* set all segments as dirty temporarily */
2265         memset(free_i->free_segmap, 0xff, bitmap_size);
2266         memset(free_i->free_secmap, 0xff, sec_bitmap_size);
2267
2268         /* init free segmap information */
2269         free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
2270         free_i->free_segments = 0;
2271         free_i->free_sections = 0;
2272         spin_lock_init(&free_i->segmap_lock);
2273         return 0;
2274 }
2275
2276 static int build_curseg(struct f2fs_sb_info *sbi)
2277 {
2278         struct curseg_info *array;
2279         int i;
2280
2281         array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL);
2282         if (!array)
2283                 return -ENOMEM;
2284
2285         SM_I(sbi)->curseg_array = array;
2286
2287         for (i = 0; i < NR_CURSEG_TYPE; i++) {
2288                 mutex_init(&array[i].curseg_mutex);
2289                 array[i].sum_blk = kzalloc(PAGE_SIZE, GFP_KERNEL);
2290                 if (!array[i].sum_blk)
2291                         return -ENOMEM;
2292                 init_rwsem(&array[i].journal_rwsem);
2293                 array[i].journal = kzalloc(sizeof(struct f2fs_journal),
2294                                                         GFP_KERNEL);
2295                 if (!array[i].journal)
2296                         return -ENOMEM;
2297                 array[i].segno = NULL_SEGNO;
2298                 array[i].next_blkoff = 0;
2299         }
2300         return restore_curseg_summaries(sbi);
2301 }
2302
2303 static void build_sit_entries(struct f2fs_sb_info *sbi)
2304 {
2305         struct sit_info *sit_i = SIT_I(sbi);
2306         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2307         struct f2fs_journal *journal = curseg->journal;
2308         struct seg_entry *se;
2309         struct f2fs_sit_entry sit;
2310         int sit_blk_cnt = SIT_BLK_CNT(sbi);
2311         unsigned int i, start, end;
2312         unsigned int readed, start_blk = 0;
2313         int nrpages = MAX_BIO_BLOCKS(sbi) * 8;
2314
2315         do {
2316                 readed = ra_meta_pages(sbi, start_blk, nrpages, META_SIT, true);
2317
2318                 start = start_blk * sit_i->sents_per_block;
2319                 end = (start_blk + readed) * sit_i->sents_per_block;
2320
2321                 for (; start < end && start < MAIN_SEGS(sbi); start++) {
2322                         struct f2fs_sit_block *sit_blk;
2323                         struct page *page;
2324
2325                         se = &sit_i->sentries[start];
2326                         page = get_current_sit_page(sbi, start);
2327                         sit_blk = (struct f2fs_sit_block *)page_address(page);
2328                         sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
2329                         f2fs_put_page(page, 1);
2330
2331                         check_block_count(sbi, start, &sit);
2332                         seg_info_from_raw_sit(se, &sit);
2333
2334                         /* build discard map only one time */
2335                         if (f2fs_discard_en(sbi)) {
2336                                 memcpy(se->discard_map, se->cur_valid_map,
2337                                                         SIT_VBLOCK_MAP_SIZE);
2338                                 sbi->discard_blks += sbi->blocks_per_seg -
2339                                                         se->valid_blocks;
2340                         }
2341
2342                         if (sbi->segs_per_sec > 1)
2343                                 get_sec_entry(sbi, start)->valid_blocks +=
2344                                                         se->valid_blocks;
2345                 }
2346                 start_blk += readed;
2347         } while (start_blk < sit_blk_cnt);
2348
2349         down_read(&curseg->journal_rwsem);
2350         for (i = 0; i < sits_in_cursum(journal); i++) {
2351                 unsigned int old_valid_blocks;
2352
2353                 start = le32_to_cpu(segno_in_journal(journal, i));
2354                 se = &sit_i->sentries[start];
2355                 sit = sit_in_journal(journal, i);
2356
2357                 old_valid_blocks = se->valid_blocks;
2358
2359                 check_block_count(sbi, start, &sit);
2360                 seg_info_from_raw_sit(se, &sit);
2361
2362                 if (f2fs_discard_en(sbi)) {
2363                         memcpy(se->discard_map, se->cur_valid_map,
2364                                                 SIT_VBLOCK_MAP_SIZE);
2365                         sbi->discard_blks += old_valid_blocks -
2366                                                 se->valid_blocks;
2367                 }
2368
2369                 if (sbi->segs_per_sec > 1)
2370                         get_sec_entry(sbi, start)->valid_blocks +=
2371                                 se->valid_blocks - old_valid_blocks;
2372         }
2373         up_read(&curseg->journal_rwsem);
2374 }
2375
2376 static void init_free_segmap(struct f2fs_sb_info *sbi)
2377 {
2378         unsigned int start;
2379         int type;
2380
2381         for (start = 0; start < MAIN_SEGS(sbi); start++) {
2382                 struct seg_entry *sentry = get_seg_entry(sbi, start);
2383                 if (!sentry->valid_blocks)
2384                         __set_free(sbi, start);
2385         }
2386
2387         /* set use the current segments */
2388         for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
2389                 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
2390                 __set_test_and_inuse(sbi, curseg_t->segno);
2391         }
2392 }
2393
2394 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
2395 {
2396         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2397         struct free_segmap_info *free_i = FREE_I(sbi);
2398         unsigned int segno = 0, offset = 0;
2399         unsigned short valid_blocks;
2400
2401         while (1) {
2402                 /* find dirty segment based on free segmap */
2403                 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
2404                 if (segno >= MAIN_SEGS(sbi))
2405                         break;
2406                 offset = segno + 1;
2407                 valid_blocks = get_valid_blocks(sbi, segno, 0);
2408                 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
2409                         continue;
2410                 if (valid_blocks > sbi->blocks_per_seg) {
2411                         f2fs_bug_on(sbi, 1);
2412                         continue;
2413                 }
2414                 mutex_lock(&dirty_i->seglist_lock);
2415                 __locate_dirty_segment(sbi, segno, DIRTY);
2416                 mutex_unlock(&dirty_i->seglist_lock);
2417         }
2418 }
2419
2420 static int init_victim_secmap(struct f2fs_sb_info *sbi)
2421 {
2422         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2423         unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2424
2425         dirty_i->victim_secmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2426         if (!dirty_i->victim_secmap)
2427                 return -ENOMEM;
2428         return 0;
2429 }
2430
2431 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
2432 {
2433         struct dirty_seglist_info *dirty_i;
2434         unsigned int bitmap_size, i;
2435
2436         /* allocate memory for dirty segments list information */
2437         dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
2438         if (!dirty_i)
2439                 return -ENOMEM;
2440
2441         SM_I(sbi)->dirty_info = dirty_i;
2442         mutex_init(&dirty_i->seglist_lock);
2443
2444         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2445
2446         for (i = 0; i < NR_DIRTY_TYPE; i++) {
2447                 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2448                 if (!dirty_i->dirty_segmap[i])
2449                         return -ENOMEM;
2450         }
2451
2452         init_dirty_segmap(sbi);
2453         return init_victim_secmap(sbi);
2454 }
2455
2456 /*
2457  * Update min, max modified time for cost-benefit GC algorithm
2458  */
2459 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
2460 {
2461         struct sit_info *sit_i = SIT_I(sbi);
2462         unsigned int segno;
2463
2464         mutex_lock(&sit_i->sentry_lock);
2465
2466         sit_i->min_mtime = LLONG_MAX;
2467
2468         for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
2469                 unsigned int i;
2470                 unsigned long long mtime = 0;
2471
2472                 for (i = 0; i < sbi->segs_per_sec; i++)
2473                         mtime += get_seg_entry(sbi, segno + i)->mtime;
2474
2475                 mtime = div_u64(mtime, sbi->segs_per_sec);
2476
2477                 if (sit_i->min_mtime > mtime)
2478                         sit_i->min_mtime = mtime;
2479         }
2480         sit_i->max_mtime = get_mtime(sbi);
2481         mutex_unlock(&sit_i->sentry_lock);
2482 }
2483
2484 int build_segment_manager(struct f2fs_sb_info *sbi)
2485 {
2486         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2487         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2488         struct f2fs_sm_info *sm_info;
2489         int err;
2490
2491         sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
2492         if (!sm_info)
2493                 return -ENOMEM;
2494
2495         /* init sm info */
2496         sbi->sm_info = sm_info;
2497         sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2498         sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2499         sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
2500         sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2501         sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2502         sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
2503         sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2504         sm_info->rec_prefree_segments = sm_info->main_segments *
2505                                         DEF_RECLAIM_PREFREE_SEGMENTS / 100;
2506         if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
2507                 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
2508
2509         if (!test_opt(sbi, LFS))
2510                 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
2511         sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
2512         sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
2513
2514         INIT_LIST_HEAD(&sm_info->discard_list);
2515         INIT_LIST_HEAD(&sm_info->wait_list);
2516         sm_info->nr_discards = 0;
2517         sm_info->max_discards = 0;
2518
2519         sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS;
2520
2521         INIT_LIST_HEAD(&sm_info->sit_entry_set);
2522
2523         if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) {
2524                 err = create_flush_cmd_control(sbi);
2525                 if (err)
2526                         return err;
2527         }
2528
2529         err = build_sit_info(sbi);
2530         if (err)
2531                 return err;
2532         err = build_free_segmap(sbi);
2533         if (err)
2534                 return err;
2535         err = build_curseg(sbi);
2536         if (err)
2537                 return err;
2538
2539         /* reinit free segmap based on SIT */
2540         build_sit_entries(sbi);
2541
2542         init_free_segmap(sbi);
2543         err = build_dirty_segmap(sbi);
2544         if (err)
2545                 return err;
2546
2547         init_min_max_mtime(sbi);
2548         return 0;
2549 }
2550
2551 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
2552                 enum dirty_type dirty_type)
2553 {
2554         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2555
2556         mutex_lock(&dirty_i->seglist_lock);
2557         kvfree(dirty_i->dirty_segmap[dirty_type]);
2558         dirty_i->nr_dirty[dirty_type] = 0;
2559         mutex_unlock(&dirty_i->seglist_lock);
2560 }
2561
2562 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
2563 {
2564         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2565         kvfree(dirty_i->victim_secmap);
2566 }
2567
2568 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
2569 {
2570         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2571         int i;
2572
2573         if (!dirty_i)
2574                 return;
2575
2576         /* discard pre-free/dirty segments list */
2577         for (i = 0; i < NR_DIRTY_TYPE; i++)
2578                 discard_dirty_segmap(sbi, i);
2579
2580         destroy_victim_secmap(sbi);
2581         SM_I(sbi)->dirty_info = NULL;
2582         kfree(dirty_i);
2583 }
2584
2585 static void destroy_curseg(struct f2fs_sb_info *sbi)
2586 {
2587         struct curseg_info *array = SM_I(sbi)->curseg_array;
2588         int i;
2589
2590         if (!array)
2591                 return;
2592         SM_I(sbi)->curseg_array = NULL;
2593         for (i = 0; i < NR_CURSEG_TYPE; i++) {
2594                 kfree(array[i].sum_blk);
2595                 kfree(array[i].journal);
2596         }
2597         kfree(array);
2598 }
2599
2600 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
2601 {
2602         struct free_segmap_info *free_i = SM_I(sbi)->free_info;
2603         if (!free_i)
2604                 return;
2605         SM_I(sbi)->free_info = NULL;
2606         kvfree(free_i->free_segmap);
2607         kvfree(free_i->free_secmap);
2608         kfree(free_i);
2609 }
2610
2611 static void destroy_sit_info(struct f2fs_sb_info *sbi)
2612 {
2613         struct sit_info *sit_i = SIT_I(sbi);
2614         unsigned int start;
2615
2616         if (!sit_i)
2617                 return;
2618
2619         if (sit_i->sentries) {
2620                 for (start = 0; start < MAIN_SEGS(sbi); start++) {
2621                         kfree(sit_i->sentries[start].cur_valid_map);
2622                         kfree(sit_i->sentries[start].ckpt_valid_map);
2623                         kfree(sit_i->sentries[start].discard_map);
2624                 }
2625         }
2626         kfree(sit_i->tmp_map);
2627
2628         kvfree(sit_i->sentries);
2629         kvfree(sit_i->sec_entries);
2630         kvfree(sit_i->dirty_sentries_bitmap);
2631
2632         SM_I(sbi)->sit_info = NULL;
2633         kfree(sit_i->sit_bitmap);
2634         kfree(sit_i);
2635 }
2636
2637 void destroy_segment_manager(struct f2fs_sb_info *sbi)
2638 {
2639         struct f2fs_sm_info *sm_info = SM_I(sbi);
2640
2641         if (!sm_info)
2642                 return;
2643         destroy_flush_cmd_control(sbi);
2644         destroy_dirty_segmap(sbi);
2645         destroy_curseg(sbi);
2646         destroy_free_segmap(sbi);
2647         destroy_sit_info(sbi);
2648         sbi->sm_info = NULL;
2649         kfree(sm_info);
2650 }
2651
2652 int __init create_segment_manager_caches(void)
2653 {
2654         discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
2655                         sizeof(struct discard_entry));
2656         if (!discard_entry_slab)
2657                 goto fail;
2658
2659         bio_entry_slab = f2fs_kmem_cache_create("bio_entry",
2660                         sizeof(struct bio_entry));
2661         if (!bio_entry_slab)
2662                 goto destroy_discard_entry;
2663
2664         sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
2665                         sizeof(struct sit_entry_set));
2666         if (!sit_entry_set_slab)
2667                 goto destroy_bio_entry;
2668
2669         inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
2670                         sizeof(struct inmem_pages));
2671         if (!inmem_entry_slab)
2672                 goto destroy_sit_entry_set;
2673         return 0;
2674
2675 destroy_sit_entry_set:
2676         kmem_cache_destroy(sit_entry_set_slab);
2677 destroy_bio_entry:
2678         kmem_cache_destroy(bio_entry_slab);
2679 destroy_discard_entry:
2680         kmem_cache_destroy(discard_entry_slab);
2681 fail:
2682         return -ENOMEM;
2683 }
2684
2685 void destroy_segment_manager_caches(void)
2686 {
2687         kmem_cache_destroy(sit_entry_set_slab);
2688         kmem_cache_destroy(bio_entry_slab);
2689         kmem_cache_destroy(discard_entry_slab);
2690         kmem_cache_destroy(inmem_entry_slab);
2691 }