081dff087fc07c171f6ef052b860029c6a7fe2f4
[cascardo/linux.git] / fs / jbd2 / transaction.c
1 /*
2  * linux/fs/jbd2/transaction.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem transaction handling code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages transactions (compound commits managed by the
16  * journaling code) and handles (individual atomic operations by the
17  * filesystem).
18  */
19
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd2.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29 #include <linux/backing-dev.h>
30 #include <linux/bug.h>
31 #include <linux/module.h>
32
33 #include <trace/events/jbd2.h>
34
35 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
36 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
37
38 static struct kmem_cache *transaction_cache;
39 int __init jbd2_journal_init_transaction_cache(void)
40 {
41         J_ASSERT(!transaction_cache);
42         transaction_cache = kmem_cache_create("jbd2_transaction_s",
43                                         sizeof(transaction_t),
44                                         0,
45                                         SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
46                                         NULL);
47         if (transaction_cache)
48                 return 0;
49         return -ENOMEM;
50 }
51
52 void jbd2_journal_destroy_transaction_cache(void)
53 {
54         if (transaction_cache) {
55                 kmem_cache_destroy(transaction_cache);
56                 transaction_cache = NULL;
57         }
58 }
59
60 void jbd2_journal_free_transaction(transaction_t *transaction)
61 {
62         if (unlikely(ZERO_OR_NULL_PTR(transaction)))
63                 return;
64         kmem_cache_free(transaction_cache, transaction);
65 }
66
67 /*
68  * jbd2_get_transaction: obtain a new transaction_t object.
69  *
70  * Simply allocate and initialise a new transaction.  Create it in
71  * RUNNING state and add it to the current journal (which should not
72  * have an existing running transaction: we only make a new transaction
73  * once we have started to commit the old one).
74  *
75  * Preconditions:
76  *      The journal MUST be locked.  We don't perform atomic mallocs on the
77  *      new transaction and we can't block without protecting against other
78  *      processes trying to touch the journal while it is in transition.
79  *
80  */
81
82 static transaction_t *
83 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
84 {
85         transaction->t_journal = journal;
86         transaction->t_state = T_RUNNING;
87         transaction->t_start_time = ktime_get();
88         transaction->t_tid = journal->j_transaction_sequence++;
89         transaction->t_expires = jiffies + journal->j_commit_interval;
90         spin_lock_init(&transaction->t_handle_lock);
91         atomic_set(&transaction->t_updates, 0);
92         atomic_set(&transaction->t_outstanding_credits,
93                    atomic_read(&journal->j_reserved_credits));
94         atomic_set(&transaction->t_handle_count, 0);
95         INIT_LIST_HEAD(&transaction->t_inode_list);
96         INIT_LIST_HEAD(&transaction->t_private_list);
97
98         /* Set up the commit timer for the new transaction. */
99         journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
100         add_timer(&journal->j_commit_timer);
101
102         J_ASSERT(journal->j_running_transaction == NULL);
103         journal->j_running_transaction = transaction;
104         transaction->t_max_wait = 0;
105         transaction->t_start = jiffies;
106         transaction->t_requested = 0;
107
108         return transaction;
109 }
110
111 /*
112  * Handle management.
113  *
114  * A handle_t is an object which represents a single atomic update to a
115  * filesystem, and which tracks all of the modifications which form part
116  * of that one update.
117  */
118
119 /*
120  * Update transaction's maximum wait time, if debugging is enabled.
121  *
122  * In order for t_max_wait to be reliable, it must be protected by a
123  * lock.  But doing so will mean that start_this_handle() can not be
124  * run in parallel on SMP systems, which limits our scalability.  So
125  * unless debugging is enabled, we no longer update t_max_wait, which
126  * means that maximum wait time reported by the jbd2_run_stats
127  * tracepoint will always be zero.
128  */
129 static inline void update_t_max_wait(transaction_t *transaction,
130                                      unsigned long ts)
131 {
132 #ifdef CONFIG_JBD2_DEBUG
133         if (jbd2_journal_enable_debug &&
134             time_after(transaction->t_start, ts)) {
135                 ts = jbd2_time_diff(ts, transaction->t_start);
136                 spin_lock(&transaction->t_handle_lock);
137                 if (ts > transaction->t_max_wait)
138                         transaction->t_max_wait = ts;
139                 spin_unlock(&transaction->t_handle_lock);
140         }
141 #endif
142 }
143
144 /*
145  * Wait until running transaction passes T_LOCKED state. Also starts the commit
146  * if needed. The function expects running transaction to exist and releases
147  * j_state_lock.
148  */
149 static void wait_transaction_locked(journal_t *journal)
150         __releases(journal->j_state_lock)
151 {
152         DEFINE_WAIT(wait);
153         int need_to_start;
154         tid_t tid = journal->j_running_transaction->t_tid;
155
156         prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
157                         TASK_UNINTERRUPTIBLE);
158         need_to_start = !tid_geq(journal->j_commit_request, tid);
159         read_unlock(&journal->j_state_lock);
160         if (need_to_start)
161                 jbd2_log_start_commit(journal, tid);
162         schedule();
163         finish_wait(&journal->j_wait_transaction_locked, &wait);
164 }
165
166 static void sub_reserved_credits(journal_t *journal, int blocks)
167 {
168         atomic_sub(blocks, &journal->j_reserved_credits);
169         wake_up(&journal->j_wait_reserved);
170 }
171
172 /*
173  * Wait until we can add credits for handle to the running transaction.  Called
174  * with j_state_lock held for reading. Returns 0 if handle joined the running
175  * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
176  * caller must retry.
177  */
178 static int add_transaction_credits(journal_t *journal, int blocks,
179                                    int rsv_blocks)
180 {
181         transaction_t *t = journal->j_running_transaction;
182         int needed;
183         int total = blocks + rsv_blocks;
184
185         /*
186          * If the current transaction is locked down for commit, wait
187          * for the lock to be released.
188          */
189         if (t->t_state == T_LOCKED) {
190                 wait_transaction_locked(journal);
191                 return 1;
192         }
193
194         /*
195          * If there is not enough space left in the log to write all
196          * potential buffers requested by this operation, we need to
197          * stall pending a log checkpoint to free some more log space.
198          */
199         needed = atomic_add_return(total, &t->t_outstanding_credits);
200         if (needed > journal->j_max_transaction_buffers) {
201                 /*
202                  * If the current transaction is already too large,
203                  * then start to commit it: we can then go back and
204                  * attach this handle to a new transaction.
205                  */
206                 atomic_sub(total, &t->t_outstanding_credits);
207
208                 /*
209                  * Is the number of reserved credits in the current transaction too
210                  * big to fit this handle? Wait until reserved credits are freed.
211                  */
212                 if (atomic_read(&journal->j_reserved_credits) + total >
213                     journal->j_max_transaction_buffers) {
214                         read_unlock(&journal->j_state_lock);
215                         wait_event(journal->j_wait_reserved,
216                                    atomic_read(&journal->j_reserved_credits) + total <=
217                                    journal->j_max_transaction_buffers);
218                         return 1;
219                 }
220
221                 wait_transaction_locked(journal);
222                 return 1;
223         }
224
225         /*
226          * The commit code assumes that it can get enough log space
227          * without forcing a checkpoint.  This is *critical* for
228          * correctness: a checkpoint of a buffer which is also
229          * associated with a committing transaction creates a deadlock,
230          * so commit simply cannot force through checkpoints.
231          *
232          * We must therefore ensure the necessary space in the journal
233          * *before* starting to dirty potentially checkpointed buffers
234          * in the new transaction.
235          */
236         if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) {
237                 atomic_sub(total, &t->t_outstanding_credits);
238                 read_unlock(&journal->j_state_lock);
239                 write_lock(&journal->j_state_lock);
240                 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal))
241                         __jbd2_log_wait_for_space(journal);
242                 write_unlock(&journal->j_state_lock);
243                 return 1;
244         }
245
246         /* No reservation? We are done... */
247         if (!rsv_blocks)
248                 return 0;
249
250         needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
251         /* We allow at most half of a transaction to be reserved */
252         if (needed > journal->j_max_transaction_buffers / 2) {
253                 sub_reserved_credits(journal, rsv_blocks);
254                 atomic_sub(total, &t->t_outstanding_credits);
255                 read_unlock(&journal->j_state_lock);
256                 wait_event(journal->j_wait_reserved,
257                          atomic_read(&journal->j_reserved_credits) + rsv_blocks
258                          <= journal->j_max_transaction_buffers / 2);
259                 return 1;
260         }
261         return 0;
262 }
263
264 /*
265  * start_this_handle: Given a handle, deal with any locking or stalling
266  * needed to make sure that there is enough journal space for the handle
267  * to begin.  Attach the handle to a transaction and set up the
268  * transaction's buffer credits.
269  */
270
271 static int start_this_handle(journal_t *journal, handle_t *handle,
272                              gfp_t gfp_mask)
273 {
274         transaction_t   *transaction, *new_transaction = NULL;
275         int             blocks = handle->h_buffer_credits;
276         int             rsv_blocks = 0;
277         unsigned long ts = jiffies;
278
279         if (handle->h_rsv_handle)
280                 rsv_blocks = handle->h_rsv_handle->h_buffer_credits;
281
282         /*
283          * Limit the number of reserved credits to 1/2 of maximum transaction
284          * size and limit the number of total credits to not exceed maximum
285          * transaction size per operation.
286          */
287         if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
288             (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
289                 printk(KERN_ERR "JBD2: %s wants too many credits "
290                        "credits:%d rsv_credits:%d max:%d\n",
291                        current->comm, blocks, rsv_blocks,
292                        journal->j_max_transaction_buffers);
293                 WARN_ON(1);
294                 return -ENOSPC;
295         }
296
297 alloc_transaction:
298         if (!journal->j_running_transaction) {
299                 /*
300                  * If __GFP_FS is not present, then we may be being called from
301                  * inside the fs writeback layer, so we MUST NOT fail.
302                  */
303                 if ((gfp_mask & __GFP_FS) == 0)
304                         gfp_mask |= __GFP_NOFAIL;
305                 new_transaction = kmem_cache_zalloc(transaction_cache,
306                                                     gfp_mask);
307                 if (!new_transaction)
308                         return -ENOMEM;
309         }
310
311         jbd_debug(3, "New handle %p going live.\n", handle);
312
313         /*
314          * We need to hold j_state_lock until t_updates has been incremented,
315          * for proper journal barrier handling
316          */
317 repeat:
318         read_lock(&journal->j_state_lock);
319         BUG_ON(journal->j_flags & JBD2_UNMOUNT);
320         if (is_journal_aborted(journal) ||
321             (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
322                 read_unlock(&journal->j_state_lock);
323                 jbd2_journal_free_transaction(new_transaction);
324                 return -EROFS;
325         }
326
327         /*
328          * Wait on the journal's transaction barrier if necessary. Specifically
329          * we allow reserved handles to proceed because otherwise commit could
330          * deadlock on page writeback not being able to complete.
331          */
332         if (!handle->h_reserved && journal->j_barrier_count) {
333                 read_unlock(&journal->j_state_lock);
334                 wait_event(journal->j_wait_transaction_locked,
335                                 journal->j_barrier_count == 0);
336                 goto repeat;
337         }
338
339         if (!journal->j_running_transaction) {
340                 read_unlock(&journal->j_state_lock);
341                 if (!new_transaction)
342                         goto alloc_transaction;
343                 write_lock(&journal->j_state_lock);
344                 if (!journal->j_running_transaction &&
345                     (handle->h_reserved || !journal->j_barrier_count)) {
346                         jbd2_get_transaction(journal, new_transaction);
347                         new_transaction = NULL;
348                 }
349                 write_unlock(&journal->j_state_lock);
350                 goto repeat;
351         }
352
353         transaction = journal->j_running_transaction;
354
355         if (!handle->h_reserved) {
356                 /* We may have dropped j_state_lock - restart in that case */
357                 if (add_transaction_credits(journal, blocks, rsv_blocks))
358                         goto repeat;
359         } else {
360                 /*
361                  * We have handle reserved so we are allowed to join T_LOCKED
362                  * transaction and we don't have to check for transaction size
363                  * and journal space.
364                  */
365                 sub_reserved_credits(journal, blocks);
366                 handle->h_reserved = 0;
367         }
368
369         /* OK, account for the buffers that this operation expects to
370          * use and add the handle to the running transaction. 
371          */
372         update_t_max_wait(transaction, ts);
373         handle->h_transaction = transaction;
374         handle->h_requested_credits = blocks;
375         handle->h_start_jiffies = jiffies;
376         atomic_inc(&transaction->t_updates);
377         atomic_inc(&transaction->t_handle_count);
378         jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
379                   handle, blocks,
380                   atomic_read(&transaction->t_outstanding_credits),
381                   jbd2_log_space_left(journal));
382         read_unlock(&journal->j_state_lock);
383         current->journal_info = handle;
384
385         lock_map_acquire(&handle->h_lockdep_map);
386         jbd2_journal_free_transaction(new_transaction);
387         return 0;
388 }
389
390 static struct lock_class_key jbd2_handle_key;
391
392 /* Allocate a new handle.  This should probably be in a slab... */
393 static handle_t *new_handle(int nblocks)
394 {
395         handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
396         if (!handle)
397                 return NULL;
398         handle->h_buffer_credits = nblocks;
399         handle->h_ref = 1;
400
401         lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle",
402                                                 &jbd2_handle_key, 0);
403
404         return handle;
405 }
406
407 /**
408  * handle_t *jbd2_journal_start() - Obtain a new handle.
409  * @journal: Journal to start transaction on.
410  * @nblocks: number of block buffer we might modify
411  *
412  * We make sure that the transaction can guarantee at least nblocks of
413  * modified buffers in the log.  We block until the log can guarantee
414  * that much space. Additionally, if rsv_blocks > 0, we also create another
415  * handle with rsv_blocks reserved blocks in the journal. This handle is
416  * is stored in h_rsv_handle. It is not attached to any particular transaction
417  * and thus doesn't block transaction commit. If the caller uses this reserved
418  * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
419  * on the parent handle will dispose the reserved one. Reserved handle has to
420  * be converted to a normal handle using jbd2_journal_start_reserved() before
421  * it can be used.
422  *
423  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
424  * on failure.
425  */
426 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
427                               gfp_t gfp_mask, unsigned int type,
428                               unsigned int line_no)
429 {
430         handle_t *handle = journal_current_handle();
431         int err;
432
433         if (!journal)
434                 return ERR_PTR(-EROFS);
435
436         if (handle) {
437                 J_ASSERT(handle->h_transaction->t_journal == journal);
438                 handle->h_ref++;
439                 return handle;
440         }
441
442         handle = new_handle(nblocks);
443         if (!handle)
444                 return ERR_PTR(-ENOMEM);
445         if (rsv_blocks) {
446                 handle_t *rsv_handle;
447
448                 rsv_handle = new_handle(rsv_blocks);
449                 if (!rsv_handle) {
450                         jbd2_free_handle(handle);
451                         return ERR_PTR(-ENOMEM);
452                 }
453                 rsv_handle->h_reserved = 1;
454                 rsv_handle->h_journal = journal;
455                 handle->h_rsv_handle = rsv_handle;
456         }
457
458         err = start_this_handle(journal, handle, gfp_mask);
459         if (err < 0) {
460                 if (handle->h_rsv_handle)
461                         jbd2_free_handle(handle->h_rsv_handle);
462                 jbd2_free_handle(handle);
463                 return ERR_PTR(err);
464         }
465         handle->h_type = type;
466         handle->h_line_no = line_no;
467         trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
468                                 handle->h_transaction->t_tid, type,
469                                 line_no, nblocks);
470         return handle;
471 }
472 EXPORT_SYMBOL(jbd2__journal_start);
473
474
475 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
476 {
477         return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0);
478 }
479 EXPORT_SYMBOL(jbd2_journal_start);
480
481 void jbd2_journal_free_reserved(handle_t *handle)
482 {
483         journal_t *journal = handle->h_journal;
484
485         WARN_ON(!handle->h_reserved);
486         sub_reserved_credits(journal, handle->h_buffer_credits);
487         jbd2_free_handle(handle);
488 }
489 EXPORT_SYMBOL(jbd2_journal_free_reserved);
490
491 /**
492  * int jbd2_journal_start_reserved(handle_t *handle) - start reserved handle
493  * @handle: handle to start
494  *
495  * Start handle that has been previously reserved with jbd2_journal_reserve().
496  * This attaches @handle to the running transaction (or creates one if there's
497  * not transaction running). Unlike jbd2_journal_start() this function cannot
498  * block on journal commit, checkpointing, or similar stuff. It can block on
499  * memory allocation or frozen journal though.
500  *
501  * Return 0 on success, non-zero on error - handle is freed in that case.
502  */
503 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
504                                 unsigned int line_no)
505 {
506         journal_t *journal = handle->h_journal;
507         int ret = -EIO;
508
509         if (WARN_ON(!handle->h_reserved)) {
510                 /* Someone passed in normal handle? Just stop it. */
511                 jbd2_journal_stop(handle);
512                 return ret;
513         }
514         /*
515          * Usefulness of mixing of reserved and unreserved handles is
516          * questionable. So far nobody seems to need it so just error out.
517          */
518         if (WARN_ON(current->journal_info)) {
519                 jbd2_journal_free_reserved(handle);
520                 return ret;
521         }
522
523         handle->h_journal = NULL;
524         /*
525          * GFP_NOFS is here because callers are likely from writeback or
526          * similarly constrained call sites
527          */
528         ret = start_this_handle(journal, handle, GFP_NOFS);
529         if (ret < 0) {
530                 jbd2_journal_free_reserved(handle);
531                 return ret;
532         }
533         handle->h_type = type;
534         handle->h_line_no = line_no;
535         return 0;
536 }
537 EXPORT_SYMBOL(jbd2_journal_start_reserved);
538
539 /**
540  * int jbd2_journal_extend() - extend buffer credits.
541  * @handle:  handle to 'extend'
542  * @nblocks: nr blocks to try to extend by.
543  *
544  * Some transactions, such as large extends and truncates, can be done
545  * atomically all at once or in several stages.  The operation requests
546  * a credit for a number of buffer modications in advance, but can
547  * extend its credit if it needs more.
548  *
549  * jbd2_journal_extend tries to give the running handle more buffer credits.
550  * It does not guarantee that allocation - this is a best-effort only.
551  * The calling process MUST be able to deal cleanly with a failure to
552  * extend here.
553  *
554  * Return 0 on success, non-zero on failure.
555  *
556  * return code < 0 implies an error
557  * return code > 0 implies normal transaction-full status.
558  */
559 int jbd2_journal_extend(handle_t *handle, int nblocks)
560 {
561         transaction_t *transaction = handle->h_transaction;
562         journal_t *journal;
563         int result;
564         int wanted;
565
566         if (is_handle_aborted(handle))
567                 return -EROFS;
568         journal = transaction->t_journal;
569
570         result = 1;
571
572         read_lock(&journal->j_state_lock);
573
574         /* Don't extend a locked-down transaction! */
575         if (transaction->t_state != T_RUNNING) {
576                 jbd_debug(3, "denied handle %p %d blocks: "
577                           "transaction not running\n", handle, nblocks);
578                 goto error_out;
579         }
580
581         spin_lock(&transaction->t_handle_lock);
582         wanted = atomic_add_return(nblocks,
583                                    &transaction->t_outstanding_credits);
584
585         if (wanted > journal->j_max_transaction_buffers) {
586                 jbd_debug(3, "denied handle %p %d blocks: "
587                           "transaction too large\n", handle, nblocks);
588                 atomic_sub(nblocks, &transaction->t_outstanding_credits);
589                 goto unlock;
590         }
591
592         if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) >
593             jbd2_log_space_left(journal)) {
594                 jbd_debug(3, "denied handle %p %d blocks: "
595                           "insufficient log space\n", handle, nblocks);
596                 atomic_sub(nblocks, &transaction->t_outstanding_credits);
597                 goto unlock;
598         }
599
600         trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
601                                  transaction->t_tid,
602                                  handle->h_type, handle->h_line_no,
603                                  handle->h_buffer_credits,
604                                  nblocks);
605
606         handle->h_buffer_credits += nblocks;
607         handle->h_requested_credits += nblocks;
608         result = 0;
609
610         jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
611 unlock:
612         spin_unlock(&transaction->t_handle_lock);
613 error_out:
614         read_unlock(&journal->j_state_lock);
615         return result;
616 }
617
618
619 /**
620  * int jbd2_journal_restart() - restart a handle .
621  * @handle:  handle to restart
622  * @nblocks: nr credits requested
623  *
624  * Restart a handle for a multi-transaction filesystem
625  * operation.
626  *
627  * If the jbd2_journal_extend() call above fails to grant new buffer credits
628  * to a running handle, a call to jbd2_journal_restart will commit the
629  * handle's transaction so far and reattach the handle to a new
630  * transaction capabable of guaranteeing the requested number of
631  * credits. We preserve reserved handle if there's any attached to the
632  * passed in handle.
633  */
634 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
635 {
636         transaction_t *transaction = handle->h_transaction;
637         journal_t *journal;
638         tid_t           tid;
639         int             need_to_start, ret;
640
641         /* If we've had an abort of any type, don't even think about
642          * actually doing the restart! */
643         if (is_handle_aborted(handle))
644                 return 0;
645         journal = transaction->t_journal;
646
647         /*
648          * First unlink the handle from its current transaction, and start the
649          * commit on that.
650          */
651         J_ASSERT(atomic_read(&transaction->t_updates) > 0);
652         J_ASSERT(journal_current_handle() == handle);
653
654         read_lock(&journal->j_state_lock);
655         spin_lock(&transaction->t_handle_lock);
656         atomic_sub(handle->h_buffer_credits,
657                    &transaction->t_outstanding_credits);
658         if (handle->h_rsv_handle) {
659                 sub_reserved_credits(journal,
660                                      handle->h_rsv_handle->h_buffer_credits);
661         }
662         if (atomic_dec_and_test(&transaction->t_updates))
663                 wake_up(&journal->j_wait_updates);
664         tid = transaction->t_tid;
665         spin_unlock(&transaction->t_handle_lock);
666         handle->h_transaction = NULL;
667         current->journal_info = NULL;
668
669         jbd_debug(2, "restarting handle %p\n", handle);
670         need_to_start = !tid_geq(journal->j_commit_request, tid);
671         read_unlock(&journal->j_state_lock);
672         if (need_to_start)
673                 jbd2_log_start_commit(journal, tid);
674
675         lock_map_release(&handle->h_lockdep_map);
676         handle->h_buffer_credits = nblocks;
677         ret = start_this_handle(journal, handle, gfp_mask);
678         return ret;
679 }
680 EXPORT_SYMBOL(jbd2__journal_restart);
681
682
683 int jbd2_journal_restart(handle_t *handle, int nblocks)
684 {
685         return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
686 }
687 EXPORT_SYMBOL(jbd2_journal_restart);
688
689 /**
690  * void jbd2_journal_lock_updates () - establish a transaction barrier.
691  * @journal:  Journal to establish a barrier on.
692  *
693  * This locks out any further updates from being started, and blocks
694  * until all existing updates have completed, returning only once the
695  * journal is in a quiescent state with no updates running.
696  *
697  * The journal lock should not be held on entry.
698  */
699 void jbd2_journal_lock_updates(journal_t *journal)
700 {
701         DEFINE_WAIT(wait);
702
703         write_lock(&journal->j_state_lock);
704         ++journal->j_barrier_count;
705
706         /* Wait until there are no reserved handles */
707         if (atomic_read(&journal->j_reserved_credits)) {
708                 write_unlock(&journal->j_state_lock);
709                 wait_event(journal->j_wait_reserved,
710                            atomic_read(&journal->j_reserved_credits) == 0);
711                 write_lock(&journal->j_state_lock);
712         }
713
714         /* Wait until there are no running updates */
715         while (1) {
716                 transaction_t *transaction = journal->j_running_transaction;
717
718                 if (!transaction)
719                         break;
720
721                 spin_lock(&transaction->t_handle_lock);
722                 prepare_to_wait(&journal->j_wait_updates, &wait,
723                                 TASK_UNINTERRUPTIBLE);
724                 if (!atomic_read(&transaction->t_updates)) {
725                         spin_unlock(&transaction->t_handle_lock);
726                         finish_wait(&journal->j_wait_updates, &wait);
727                         break;
728                 }
729                 spin_unlock(&transaction->t_handle_lock);
730                 write_unlock(&journal->j_state_lock);
731                 schedule();
732                 finish_wait(&journal->j_wait_updates, &wait);
733                 write_lock(&journal->j_state_lock);
734         }
735         write_unlock(&journal->j_state_lock);
736
737         /*
738          * We have now established a barrier against other normal updates, but
739          * we also need to barrier against other jbd2_journal_lock_updates() calls
740          * to make sure that we serialise special journal-locked operations
741          * too.
742          */
743         mutex_lock(&journal->j_barrier);
744 }
745
746 /**
747  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
748  * @journal:  Journal to release the barrier on.
749  *
750  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
751  *
752  * Should be called without the journal lock held.
753  */
754 void jbd2_journal_unlock_updates (journal_t *journal)
755 {
756         J_ASSERT(journal->j_barrier_count != 0);
757
758         mutex_unlock(&journal->j_barrier);
759         write_lock(&journal->j_state_lock);
760         --journal->j_barrier_count;
761         write_unlock(&journal->j_state_lock);
762         wake_up(&journal->j_wait_transaction_locked);
763 }
764
765 static void warn_dirty_buffer(struct buffer_head *bh)
766 {
767         printk(KERN_WARNING
768                "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
769                "There's a risk of filesystem corruption in case of system "
770                "crash.\n",
771                bh->b_bdev, (unsigned long long)bh->b_blocknr);
772 }
773
774 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
775 static void jbd2_freeze_jh_data(struct journal_head *jh)
776 {
777         struct page *page;
778         int offset;
779         char *source;
780         struct buffer_head *bh = jh2bh(jh);
781
782         J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
783         page = bh->b_page;
784         offset = offset_in_page(bh->b_data);
785         source = kmap_atomic(page);
786         /* Fire data frozen trigger just before we copy the data */
787         jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
788         memcpy(jh->b_frozen_data, source + offset, bh->b_size);
789         kunmap_atomic(source);
790
791         /*
792          * Now that the frozen data is saved off, we need to store any matching
793          * triggers.
794          */
795         jh->b_frozen_triggers = jh->b_triggers;
796 }
797
798 /*
799  * If the buffer is already part of the current transaction, then there
800  * is nothing we need to do.  If it is already part of a prior
801  * transaction which we are still committing to disk, then we need to
802  * make sure that we do not overwrite the old copy: we do copy-out to
803  * preserve the copy going to disk.  We also account the buffer against
804  * the handle's metadata buffer credits (unless the buffer is already
805  * part of the transaction, that is).
806  *
807  */
808 static int
809 do_get_write_access(handle_t *handle, struct journal_head *jh,
810                         int force_copy)
811 {
812         struct buffer_head *bh;
813         transaction_t *transaction = handle->h_transaction;
814         journal_t *journal;
815         int error;
816         char *frozen_buffer = NULL;
817         unsigned long start_lock, time_lock;
818
819         if (is_handle_aborted(handle))
820                 return -EROFS;
821         journal = transaction->t_journal;
822
823         jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
824
825         JBUFFER_TRACE(jh, "entry");
826 repeat:
827         bh = jh2bh(jh);
828
829         /* @@@ Need to check for errors here at some point. */
830
831         start_lock = jiffies;
832         lock_buffer(bh);
833         jbd_lock_bh_state(bh);
834
835         /* If it takes too long to lock the buffer, trace it */
836         time_lock = jbd2_time_diff(start_lock, jiffies);
837         if (time_lock > HZ/10)
838                 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
839                         jiffies_to_msecs(time_lock));
840
841         /* We now hold the buffer lock so it is safe to query the buffer
842          * state.  Is the buffer dirty?
843          *
844          * If so, there are two possibilities.  The buffer may be
845          * non-journaled, and undergoing a quite legitimate writeback.
846          * Otherwise, it is journaled, and we don't expect dirty buffers
847          * in that state (the buffers should be marked JBD_Dirty
848          * instead.)  So either the IO is being done under our own
849          * control and this is a bug, or it's a third party IO such as
850          * dump(8) (which may leave the buffer scheduled for read ---
851          * ie. locked but not dirty) or tune2fs (which may actually have
852          * the buffer dirtied, ugh.)  */
853
854         if (buffer_dirty(bh)) {
855                 /*
856                  * First question: is this buffer already part of the current
857                  * transaction or the existing committing transaction?
858                  */
859                 if (jh->b_transaction) {
860                         J_ASSERT_JH(jh,
861                                 jh->b_transaction == transaction ||
862                                 jh->b_transaction ==
863                                         journal->j_committing_transaction);
864                         if (jh->b_next_transaction)
865                                 J_ASSERT_JH(jh, jh->b_next_transaction ==
866                                                         transaction);
867                         warn_dirty_buffer(bh);
868                 }
869                 /*
870                  * In any case we need to clean the dirty flag and we must
871                  * do it under the buffer lock to be sure we don't race
872                  * with running write-out.
873                  */
874                 JBUFFER_TRACE(jh, "Journalling dirty buffer");
875                 clear_buffer_dirty(bh);
876                 set_buffer_jbddirty(bh);
877         }
878
879         unlock_buffer(bh);
880
881         error = -EROFS;
882         if (is_handle_aborted(handle)) {
883                 jbd_unlock_bh_state(bh);
884                 goto out;
885         }
886         error = 0;
887
888         /*
889          * The buffer is already part of this transaction if b_transaction or
890          * b_next_transaction points to it
891          */
892         if (jh->b_transaction == transaction ||
893             jh->b_next_transaction == transaction)
894                 goto done;
895
896         /*
897          * this is the first time this transaction is touching this buffer,
898          * reset the modified flag
899          */
900        jh->b_modified = 0;
901
902         /*
903          * If the buffer is not journaled right now, we need to make sure it
904          * doesn't get written to disk before the caller actually commits the
905          * new data
906          */
907         if (!jh->b_transaction) {
908                 JBUFFER_TRACE(jh, "no transaction");
909                 J_ASSERT_JH(jh, !jh->b_next_transaction);
910                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
911                 /*
912                  * Make sure all stores to jh (b_modified, b_frozen_data) are
913                  * visible before attaching it to the running transaction.
914                  * Paired with barrier in jbd2_write_access_granted()
915                  */
916                 smp_wmb();
917                 spin_lock(&journal->j_list_lock);
918                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
919                 spin_unlock(&journal->j_list_lock);
920                 goto done;
921         }
922         /*
923          * If there is already a copy-out version of this buffer, then we don't
924          * need to make another one
925          */
926         if (jh->b_frozen_data) {
927                 JBUFFER_TRACE(jh, "has frozen data");
928                 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
929                 goto attach_next;
930         }
931
932         JBUFFER_TRACE(jh, "owned by older transaction");
933         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
934         J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
935
936         /*
937          * There is one case we have to be very careful about.  If the
938          * committing transaction is currently writing this buffer out to disk
939          * and has NOT made a copy-out, then we cannot modify the buffer
940          * contents at all right now.  The essence of copy-out is that it is
941          * the extra copy, not the primary copy, which gets journaled.  If the
942          * primary copy is already going to disk then we cannot do copy-out
943          * here.
944          */
945         if (buffer_shadow(bh)) {
946                 JBUFFER_TRACE(jh, "on shadow: sleep");
947                 jbd_unlock_bh_state(bh);
948                 wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
949                 goto repeat;
950         }
951
952         /*
953          * Only do the copy if the currently-owning transaction still needs it.
954          * If buffer isn't on BJ_Metadata list, the committing transaction is
955          * past that stage (here we use the fact that BH_Shadow is set under
956          * bh_state lock together with refiling to BJ_Shadow list and at this
957          * point we know the buffer doesn't have BH_Shadow set).
958          *
959          * Subtle point, though: if this is a get_undo_access, then we will be
960          * relying on the frozen_data to contain the new value of the
961          * committed_data record after the transaction, so we HAVE to force the
962          * frozen_data copy in that case.
963          */
964         if (jh->b_jlist == BJ_Metadata || force_copy) {
965                 JBUFFER_TRACE(jh, "generate frozen data");
966                 if (!frozen_buffer) {
967                         JBUFFER_TRACE(jh, "allocate memory for buffer");
968                         jbd_unlock_bh_state(bh);
969                         frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
970                         if (!frozen_buffer) {
971                                 printk(KERN_ERR "%s: OOM for frozen_buffer\n",
972                                        __func__);
973                                 JBUFFER_TRACE(jh, "oom!");
974                                 error = -ENOMEM;
975                                 goto out;
976                         }
977                         goto repeat;
978                 }
979                 jh->b_frozen_data = frozen_buffer;
980                 frozen_buffer = NULL;
981                 jbd2_freeze_jh_data(jh);
982         }
983 attach_next:
984         /*
985          * Make sure all stores to jh (b_modified, b_frozen_data) are visible
986          * before attaching it to the running transaction. Paired with barrier
987          * in jbd2_write_access_granted()
988          */
989         smp_wmb();
990         jh->b_next_transaction = transaction;
991
992 done:
993         jbd_unlock_bh_state(bh);
994
995         /*
996          * If we are about to journal a buffer, then any revoke pending on it is
997          * no longer valid
998          */
999         jbd2_journal_cancel_revoke(handle, jh);
1000
1001 out:
1002         if (unlikely(frozen_buffer))    /* It's usually NULL */
1003                 jbd2_free(frozen_buffer, bh->b_size);
1004
1005         JBUFFER_TRACE(jh, "exit");
1006         return error;
1007 }
1008
1009 /* Fast check whether buffer is already attached to the required transaction */
1010 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1011                                                         bool undo)
1012 {
1013         struct journal_head *jh;
1014         bool ret = false;
1015
1016         /* Dirty buffers require special handling... */
1017         if (buffer_dirty(bh))
1018                 return false;
1019
1020         /*
1021          * RCU protects us from dereferencing freed pages. So the checks we do
1022          * are guaranteed not to oops. However the jh slab object can get freed
1023          * & reallocated while we work with it. So we have to be careful. When
1024          * we see jh attached to the running transaction, we know it must stay
1025          * so until the transaction is committed. Thus jh won't be freed and
1026          * will be attached to the same bh while we run.  However it can
1027          * happen jh gets freed, reallocated, and attached to the transaction
1028          * just after we get pointer to it from bh. So we have to be careful
1029          * and recheck jh still belongs to our bh before we return success.
1030          */
1031         rcu_read_lock();
1032         if (!buffer_jbd(bh))
1033                 goto out;
1034         /* This should be bh2jh() but that doesn't work with inline functions */
1035         jh = READ_ONCE(bh->b_private);
1036         if (!jh)
1037                 goto out;
1038         /* For undo access buffer must have data copied */
1039         if (undo && !jh->b_committed_data)
1040                 goto out;
1041         if (jh->b_transaction != handle->h_transaction &&
1042             jh->b_next_transaction != handle->h_transaction)
1043                 goto out;
1044         /*
1045          * There are two reasons for the barrier here:
1046          * 1) Make sure to fetch b_bh after we did previous checks so that we
1047          * detect when jh went through free, realloc, attach to transaction
1048          * while we were checking. Paired with implicit barrier in that path.
1049          * 2) So that access to bh done after jbd2_write_access_granted()
1050          * doesn't get reordered and see inconsistent state of concurrent
1051          * do_get_write_access().
1052          */
1053         smp_mb();
1054         if (unlikely(jh->b_bh != bh))
1055                 goto out;
1056         ret = true;
1057 out:
1058         rcu_read_unlock();
1059         return ret;
1060 }
1061
1062 /**
1063  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
1064  * @handle: transaction to add buffer modifications to
1065  * @bh:     bh to be used for metadata writes
1066  *
1067  * Returns an error code or 0 on success.
1068  *
1069  * In full data journalling mode the buffer may be of type BJ_AsyncData,
1070  * because we're write()ing a buffer which is also part of a shared mapping.
1071  */
1072
1073 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1074 {
1075         struct journal_head *jh;
1076         int rc;
1077
1078         if (jbd2_write_access_granted(handle, bh, false))
1079                 return 0;
1080
1081         jh = jbd2_journal_add_journal_head(bh);
1082         /* We do not want to get caught playing with fields which the
1083          * log thread also manipulates.  Make sure that the buffer
1084          * completes any outstanding IO before proceeding. */
1085         rc = do_get_write_access(handle, jh, 0);
1086         jbd2_journal_put_journal_head(jh);
1087         return rc;
1088 }
1089
1090
1091 /*
1092  * When the user wants to journal a newly created buffer_head
1093  * (ie. getblk() returned a new buffer and we are going to populate it
1094  * manually rather than reading off disk), then we need to keep the
1095  * buffer_head locked until it has been completely filled with new
1096  * data.  In this case, we should be able to make the assertion that
1097  * the bh is not already part of an existing transaction.
1098  *
1099  * The buffer should already be locked by the caller by this point.
1100  * There is no lock ranking violation: it was a newly created,
1101  * unlocked buffer beforehand. */
1102
1103 /**
1104  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
1105  * @handle: transaction to new buffer to
1106  * @bh: new buffer.
1107  *
1108  * Call this if you create a new bh.
1109  */
1110 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1111 {
1112         transaction_t *transaction = handle->h_transaction;
1113         journal_t *journal;
1114         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1115         int err;
1116
1117         jbd_debug(5, "journal_head %p\n", jh);
1118         err = -EROFS;
1119         if (is_handle_aborted(handle))
1120                 goto out;
1121         journal = transaction->t_journal;
1122         err = 0;
1123
1124         JBUFFER_TRACE(jh, "entry");
1125         /*
1126          * The buffer may already belong to this transaction due to pre-zeroing
1127          * in the filesystem's new_block code.  It may also be on the previous,
1128          * committing transaction's lists, but it HAS to be in Forget state in
1129          * that case: the transaction must have deleted the buffer for it to be
1130          * reused here.
1131          */
1132         jbd_lock_bh_state(bh);
1133         J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1134                 jh->b_transaction == NULL ||
1135                 (jh->b_transaction == journal->j_committing_transaction &&
1136                           jh->b_jlist == BJ_Forget)));
1137
1138         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1139         J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1140
1141         if (jh->b_transaction == NULL) {
1142                 /*
1143                  * Previous jbd2_journal_forget() could have left the buffer
1144                  * with jbddirty bit set because it was being committed. When
1145                  * the commit finished, we've filed the buffer for
1146                  * checkpointing and marked it dirty. Now we are reallocating
1147                  * the buffer so the transaction freeing it must have
1148                  * committed and so it's safe to clear the dirty bit.
1149                  */
1150                 clear_buffer_dirty(jh2bh(jh));
1151                 /* first access by this transaction */
1152                 jh->b_modified = 0;
1153
1154                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
1155                 spin_lock(&journal->j_list_lock);
1156                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1157         } else if (jh->b_transaction == journal->j_committing_transaction) {
1158                 /* first access by this transaction */
1159                 jh->b_modified = 0;
1160
1161                 JBUFFER_TRACE(jh, "set next transaction");
1162                 spin_lock(&journal->j_list_lock);
1163                 jh->b_next_transaction = transaction;
1164         }
1165         spin_unlock(&journal->j_list_lock);
1166         jbd_unlock_bh_state(bh);
1167
1168         /*
1169          * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1170          * blocks which contain freed but then revoked metadata.  We need
1171          * to cancel the revoke in case we end up freeing it yet again
1172          * and the reallocating as data - this would cause a second revoke,
1173          * which hits an assertion error.
1174          */
1175         JBUFFER_TRACE(jh, "cancelling revoke");
1176         jbd2_journal_cancel_revoke(handle, jh);
1177 out:
1178         jbd2_journal_put_journal_head(jh);
1179         return err;
1180 }
1181
1182 /**
1183  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1184  *     non-rewindable consequences
1185  * @handle: transaction
1186  * @bh: buffer to undo
1187  *
1188  * Sometimes there is a need to distinguish between metadata which has
1189  * been committed to disk and that which has not.  The ext3fs code uses
1190  * this for freeing and allocating space, we have to make sure that we
1191  * do not reuse freed space until the deallocation has been committed,
1192  * since if we overwrote that space we would make the delete
1193  * un-rewindable in case of a crash.
1194  *
1195  * To deal with that, jbd2_journal_get_undo_access requests write access to a
1196  * buffer for parts of non-rewindable operations such as delete
1197  * operations on the bitmaps.  The journaling code must keep a copy of
1198  * the buffer's contents prior to the undo_access call until such time
1199  * as we know that the buffer has definitely been committed to disk.
1200  *
1201  * We never need to know which transaction the committed data is part
1202  * of, buffers touched here are guaranteed to be dirtied later and so
1203  * will be committed to a new transaction in due course, at which point
1204  * we can discard the old committed data pointer.
1205  *
1206  * Returns error number or 0 on success.
1207  */
1208 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1209 {
1210         int err;
1211         struct journal_head *jh;
1212         char *committed_data = NULL;
1213
1214         JBUFFER_TRACE(jh, "entry");
1215         if (jbd2_write_access_granted(handle, bh, true))
1216                 return 0;
1217
1218         jh = jbd2_journal_add_journal_head(bh);
1219         /*
1220          * Do this first --- it can drop the journal lock, so we want to
1221          * make sure that obtaining the committed_data is done
1222          * atomically wrt. completion of any outstanding commits.
1223          */
1224         err = do_get_write_access(handle, jh, 1);
1225         if (err)
1226                 goto out;
1227
1228 repeat:
1229         if (!jh->b_committed_data) {
1230                 committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
1231                 if (!committed_data) {
1232                         printk(KERN_ERR "%s: No memory for committed data\n",
1233                                 __func__);
1234                         err = -ENOMEM;
1235                         goto out;
1236                 }
1237         }
1238
1239         jbd_lock_bh_state(bh);
1240         if (!jh->b_committed_data) {
1241                 /* Copy out the current buffer contents into the
1242                  * preserved, committed copy. */
1243                 JBUFFER_TRACE(jh, "generate b_committed data");
1244                 if (!committed_data) {
1245                         jbd_unlock_bh_state(bh);
1246                         goto repeat;
1247                 }
1248
1249                 jh->b_committed_data = committed_data;
1250                 committed_data = NULL;
1251                 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1252         }
1253         jbd_unlock_bh_state(bh);
1254 out:
1255         jbd2_journal_put_journal_head(jh);
1256         if (unlikely(committed_data))
1257                 jbd2_free(committed_data, bh->b_size);
1258         return err;
1259 }
1260
1261 /**
1262  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1263  * @bh: buffer to trigger on
1264  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1265  *
1266  * Set any triggers on this journal_head.  This is always safe, because
1267  * triggers for a committing buffer will be saved off, and triggers for
1268  * a running transaction will match the buffer in that transaction.
1269  *
1270  * Call with NULL to clear the triggers.
1271  */
1272 void jbd2_journal_set_triggers(struct buffer_head *bh,
1273                                struct jbd2_buffer_trigger_type *type)
1274 {
1275         struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1276
1277         if (WARN_ON(!jh))
1278                 return;
1279         jh->b_triggers = type;
1280         jbd2_journal_put_journal_head(jh);
1281 }
1282
1283 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1284                                 struct jbd2_buffer_trigger_type *triggers)
1285 {
1286         struct buffer_head *bh = jh2bh(jh);
1287
1288         if (!triggers || !triggers->t_frozen)
1289                 return;
1290
1291         triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1292 }
1293
1294 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1295                                struct jbd2_buffer_trigger_type *triggers)
1296 {
1297         if (!triggers || !triggers->t_abort)
1298                 return;
1299
1300         triggers->t_abort(triggers, jh2bh(jh));
1301 }
1302
1303 /**
1304  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1305  * @handle: transaction to add buffer to.
1306  * @bh: buffer to mark
1307  *
1308  * mark dirty metadata which needs to be journaled as part of the current
1309  * transaction.
1310  *
1311  * The buffer must have previously had jbd2_journal_get_write_access()
1312  * called so that it has a valid journal_head attached to the buffer
1313  * head.
1314  *
1315  * The buffer is placed on the transaction's metadata list and is marked
1316  * as belonging to the transaction.
1317  *
1318  * Returns error number or 0 on success.
1319  *
1320  * Special care needs to be taken if the buffer already belongs to the
1321  * current committing transaction (in which case we should have frozen
1322  * data present for that commit).  In that case, we don't relink the
1323  * buffer: that only gets done when the old transaction finally
1324  * completes its commit.
1325  */
1326 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1327 {
1328         transaction_t *transaction = handle->h_transaction;
1329         journal_t *journal;
1330         struct journal_head *jh;
1331         int ret = 0;
1332
1333         if (is_handle_aborted(handle))
1334                 return -EROFS;
1335         if (!buffer_jbd(bh)) {
1336                 ret = -EUCLEAN;
1337                 goto out;
1338         }
1339         /*
1340          * We don't grab jh reference here since the buffer must be part
1341          * of the running transaction.
1342          */
1343         jh = bh2jh(bh);
1344         /*
1345          * This and the following assertions are unreliable since we may see jh
1346          * in inconsistent state unless we grab bh_state lock. But this is
1347          * crucial to catch bugs so let's do a reliable check until the
1348          * lockless handling is fully proven.
1349          */
1350         if (jh->b_transaction != transaction &&
1351             jh->b_next_transaction != transaction) {
1352                 jbd_lock_bh_state(bh);
1353                 J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1354                                 jh->b_next_transaction == transaction);
1355                 jbd_unlock_bh_state(bh);
1356         }
1357         if (jh->b_modified == 1) {
1358                 /* If it's in our transaction it must be in BJ_Metadata list. */
1359                 if (jh->b_transaction == transaction &&
1360                     jh->b_jlist != BJ_Metadata) {
1361                         jbd_lock_bh_state(bh);
1362                         J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1363                                         jh->b_jlist == BJ_Metadata);
1364                         jbd_unlock_bh_state(bh);
1365                 }
1366                 goto out;
1367         }
1368
1369         journal = transaction->t_journal;
1370         jbd_debug(5, "journal_head %p\n", jh);
1371         JBUFFER_TRACE(jh, "entry");
1372
1373         jbd_lock_bh_state(bh);
1374
1375         if (jh->b_modified == 0) {
1376                 /*
1377                  * This buffer's got modified and becoming part
1378                  * of the transaction. This needs to be done
1379                  * once a transaction -bzzz
1380                  */
1381                 jh->b_modified = 1;
1382                 if (handle->h_buffer_credits <= 0) {
1383                         ret = -ENOSPC;
1384                         goto out_unlock_bh;
1385                 }
1386                 handle->h_buffer_credits--;
1387         }
1388
1389         /*
1390          * fastpath, to avoid expensive locking.  If this buffer is already
1391          * on the running transaction's metadata list there is nothing to do.
1392          * Nobody can take it off again because there is a handle open.
1393          * I _think_ we're OK here with SMP barriers - a mistaken decision will
1394          * result in this test being false, so we go in and take the locks.
1395          */
1396         if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1397                 JBUFFER_TRACE(jh, "fastpath");
1398                 if (unlikely(jh->b_transaction !=
1399                              journal->j_running_transaction)) {
1400                         printk(KERN_ERR "JBD2: %s: "
1401                                "jh->b_transaction (%llu, %p, %u) != "
1402                                "journal->j_running_transaction (%p, %u)\n",
1403                                journal->j_devname,
1404                                (unsigned long long) bh->b_blocknr,
1405                                jh->b_transaction,
1406                                jh->b_transaction ? jh->b_transaction->t_tid : 0,
1407                                journal->j_running_transaction,
1408                                journal->j_running_transaction ?
1409                                journal->j_running_transaction->t_tid : 0);
1410                         ret = -EINVAL;
1411                 }
1412                 goto out_unlock_bh;
1413         }
1414
1415         set_buffer_jbddirty(bh);
1416
1417         /*
1418          * Metadata already on the current transaction list doesn't
1419          * need to be filed.  Metadata on another transaction's list must
1420          * be committing, and will be refiled once the commit completes:
1421          * leave it alone for now.
1422          */
1423         if (jh->b_transaction != transaction) {
1424                 JBUFFER_TRACE(jh, "already on other transaction");
1425                 if (unlikely(((jh->b_transaction !=
1426                                journal->j_committing_transaction)) ||
1427                              (jh->b_next_transaction != transaction))) {
1428                         printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1429                                "bad jh for block %llu: "
1430                                "transaction (%p, %u), "
1431                                "jh->b_transaction (%p, %u), "
1432                                "jh->b_next_transaction (%p, %u), jlist %u\n",
1433                                journal->j_devname,
1434                                (unsigned long long) bh->b_blocknr,
1435                                transaction, transaction->t_tid,
1436                                jh->b_transaction,
1437                                jh->b_transaction ?
1438                                jh->b_transaction->t_tid : 0,
1439                                jh->b_next_transaction,
1440                                jh->b_next_transaction ?
1441                                jh->b_next_transaction->t_tid : 0,
1442                                jh->b_jlist);
1443                         WARN_ON(1);
1444                         ret = -EINVAL;
1445                 }
1446                 /* And this case is illegal: we can't reuse another
1447                  * transaction's data buffer, ever. */
1448                 goto out_unlock_bh;
1449         }
1450
1451         /* That test should have eliminated the following case: */
1452         J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1453
1454         JBUFFER_TRACE(jh, "file as BJ_Metadata");
1455         spin_lock(&journal->j_list_lock);
1456         __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1457         spin_unlock(&journal->j_list_lock);
1458 out_unlock_bh:
1459         jbd_unlock_bh_state(bh);
1460 out:
1461         JBUFFER_TRACE(jh, "exit");
1462         return ret;
1463 }
1464
1465 /**
1466  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1467  * @handle: transaction handle
1468  * @bh:     bh to 'forget'
1469  *
1470  * We can only do the bforget if there are no commits pending against the
1471  * buffer.  If the buffer is dirty in the current running transaction we
1472  * can safely unlink it.
1473  *
1474  * bh may not be a journalled buffer at all - it may be a non-JBD
1475  * buffer which came off the hashtable.  Check for this.
1476  *
1477  * Decrements bh->b_count by one.
1478  *
1479  * Allow this call even if the handle has aborted --- it may be part of
1480  * the caller's cleanup after an abort.
1481  */
1482 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1483 {
1484         transaction_t *transaction = handle->h_transaction;
1485         journal_t *journal;
1486         struct journal_head *jh;
1487         int drop_reserve = 0;
1488         int err = 0;
1489         int was_modified = 0;
1490
1491         if (is_handle_aborted(handle))
1492                 return -EROFS;
1493         journal = transaction->t_journal;
1494
1495         BUFFER_TRACE(bh, "entry");
1496
1497         jbd_lock_bh_state(bh);
1498
1499         if (!buffer_jbd(bh))
1500                 goto not_jbd;
1501         jh = bh2jh(bh);
1502
1503         /* Critical error: attempting to delete a bitmap buffer, maybe?
1504          * Don't do any jbd operations, and return an error. */
1505         if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1506                          "inconsistent data on disk")) {
1507                 err = -EIO;
1508                 goto not_jbd;
1509         }
1510
1511         /* keep track of whether or not this transaction modified us */
1512         was_modified = jh->b_modified;
1513
1514         /*
1515          * The buffer's going from the transaction, we must drop
1516          * all references -bzzz
1517          */
1518         jh->b_modified = 0;
1519
1520         if (jh->b_transaction == transaction) {
1521                 J_ASSERT_JH(jh, !jh->b_frozen_data);
1522
1523                 /* If we are forgetting a buffer which is already part
1524                  * of this transaction, then we can just drop it from
1525                  * the transaction immediately. */
1526                 clear_buffer_dirty(bh);
1527                 clear_buffer_jbddirty(bh);
1528
1529                 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1530
1531                 /*
1532                  * we only want to drop a reference if this transaction
1533                  * modified the buffer
1534                  */
1535                 if (was_modified)
1536                         drop_reserve = 1;
1537
1538                 /*
1539                  * We are no longer going to journal this buffer.
1540                  * However, the commit of this transaction is still
1541                  * important to the buffer: the delete that we are now
1542                  * processing might obsolete an old log entry, so by
1543                  * committing, we can satisfy the buffer's checkpoint.
1544                  *
1545                  * So, if we have a checkpoint on the buffer, we should
1546                  * now refile the buffer on our BJ_Forget list so that
1547                  * we know to remove the checkpoint after we commit.
1548                  */
1549
1550                 spin_lock(&journal->j_list_lock);
1551                 if (jh->b_cp_transaction) {
1552                         __jbd2_journal_temp_unlink_buffer(jh);
1553                         __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1554                 } else {
1555                         __jbd2_journal_unfile_buffer(jh);
1556                         if (!buffer_jbd(bh)) {
1557                                 spin_unlock(&journal->j_list_lock);
1558                                 jbd_unlock_bh_state(bh);
1559                                 __bforget(bh);
1560                                 goto drop;
1561                         }
1562                 }
1563                 spin_unlock(&journal->j_list_lock);
1564         } else if (jh->b_transaction) {
1565                 J_ASSERT_JH(jh, (jh->b_transaction ==
1566                                  journal->j_committing_transaction));
1567                 /* However, if the buffer is still owned by a prior
1568                  * (committing) transaction, we can't drop it yet... */
1569                 JBUFFER_TRACE(jh, "belongs to older transaction");
1570                 /* ... but we CAN drop it from the new transaction if we
1571                  * have also modified it since the original commit. */
1572
1573                 if (jh->b_next_transaction) {
1574                         J_ASSERT(jh->b_next_transaction == transaction);
1575                         spin_lock(&journal->j_list_lock);
1576                         jh->b_next_transaction = NULL;
1577                         spin_unlock(&journal->j_list_lock);
1578
1579                         /*
1580                          * only drop a reference if this transaction modified
1581                          * the buffer
1582                          */
1583                         if (was_modified)
1584                                 drop_reserve = 1;
1585                 }
1586         }
1587
1588 not_jbd:
1589         jbd_unlock_bh_state(bh);
1590         __brelse(bh);
1591 drop:
1592         if (drop_reserve) {
1593                 /* no need to reserve log space for this block -bzzz */
1594                 handle->h_buffer_credits++;
1595         }
1596         return err;
1597 }
1598
1599 /**
1600  * int jbd2_journal_stop() - complete a transaction
1601  * @handle: tranaction to complete.
1602  *
1603  * All done for a particular handle.
1604  *
1605  * There is not much action needed here.  We just return any remaining
1606  * buffer credits to the transaction and remove the handle.  The only
1607  * complication is that we need to start a commit operation if the
1608  * filesystem is marked for synchronous update.
1609  *
1610  * jbd2_journal_stop itself will not usually return an error, but it may
1611  * do so in unusual circumstances.  In particular, expect it to
1612  * return -EIO if a jbd2_journal_abort has been executed since the
1613  * transaction began.
1614  */
1615 int jbd2_journal_stop(handle_t *handle)
1616 {
1617         transaction_t *transaction = handle->h_transaction;
1618         journal_t *journal;
1619         int err = 0, wait_for_commit = 0;
1620         tid_t tid;
1621         pid_t pid;
1622
1623         if (!transaction) {
1624                 /*
1625                  * Handle is already detached from the transaction so
1626                  * there is nothing to do other than decrease a refcount,
1627                  * or free the handle if refcount drops to zero
1628                  */
1629                 if (--handle->h_ref > 0) {
1630                         jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1631                                                          handle->h_ref);
1632                         return err;
1633                 } else {
1634                         if (handle->h_rsv_handle)
1635                                 jbd2_free_handle(handle->h_rsv_handle);
1636                         goto free_and_exit;
1637                 }
1638         }
1639         journal = transaction->t_journal;
1640
1641         J_ASSERT(journal_current_handle() == handle);
1642
1643         if (is_handle_aborted(handle))
1644                 err = -EIO;
1645         else
1646                 J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1647
1648         if (--handle->h_ref > 0) {
1649                 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1650                           handle->h_ref);
1651                 return err;
1652         }
1653
1654         jbd_debug(4, "Handle %p going down\n", handle);
1655         trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1656                                 transaction->t_tid,
1657                                 handle->h_type, handle->h_line_no,
1658                                 jiffies - handle->h_start_jiffies,
1659                                 handle->h_sync, handle->h_requested_credits,
1660                                 (handle->h_requested_credits -
1661                                  handle->h_buffer_credits));
1662
1663         /*
1664          * Implement synchronous transaction batching.  If the handle
1665          * was synchronous, don't force a commit immediately.  Let's
1666          * yield and let another thread piggyback onto this
1667          * transaction.  Keep doing that while new threads continue to
1668          * arrive.  It doesn't cost much - we're about to run a commit
1669          * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1670          * operations by 30x or more...
1671          *
1672          * We try and optimize the sleep time against what the
1673          * underlying disk can do, instead of having a static sleep
1674          * time.  This is useful for the case where our storage is so
1675          * fast that it is more optimal to go ahead and force a flush
1676          * and wait for the transaction to be committed than it is to
1677          * wait for an arbitrary amount of time for new writers to
1678          * join the transaction.  We achieve this by measuring how
1679          * long it takes to commit a transaction, and compare it with
1680          * how long this transaction has been running, and if run time
1681          * < commit time then we sleep for the delta and commit.  This
1682          * greatly helps super fast disks that would see slowdowns as
1683          * more threads started doing fsyncs.
1684          *
1685          * But don't do this if this process was the most recent one
1686          * to perform a synchronous write.  We do this to detect the
1687          * case where a single process is doing a stream of sync
1688          * writes.  No point in waiting for joiners in that case.
1689          *
1690          * Setting max_batch_time to 0 disables this completely.
1691          */
1692         pid = current->pid;
1693         if (handle->h_sync && journal->j_last_sync_writer != pid &&
1694             journal->j_max_batch_time) {
1695                 u64 commit_time, trans_time;
1696
1697                 journal->j_last_sync_writer = pid;
1698
1699                 read_lock(&journal->j_state_lock);
1700                 commit_time = journal->j_average_commit_time;
1701                 read_unlock(&journal->j_state_lock);
1702
1703                 trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1704                                                    transaction->t_start_time));
1705
1706                 commit_time = max_t(u64, commit_time,
1707                                     1000*journal->j_min_batch_time);
1708                 commit_time = min_t(u64, commit_time,
1709                                     1000*journal->j_max_batch_time);
1710
1711                 if (trans_time < commit_time) {
1712                         ktime_t expires = ktime_add_ns(ktime_get(),
1713                                                        commit_time);
1714                         set_current_state(TASK_UNINTERRUPTIBLE);
1715                         schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1716                 }
1717         }
1718
1719         if (handle->h_sync)
1720                 transaction->t_synchronous_commit = 1;
1721         current->journal_info = NULL;
1722         atomic_sub(handle->h_buffer_credits,
1723                    &transaction->t_outstanding_credits);
1724
1725         /*
1726          * If the handle is marked SYNC, we need to set another commit
1727          * going!  We also want to force a commit if the current
1728          * transaction is occupying too much of the log, or if the
1729          * transaction is too old now.
1730          */
1731         if (handle->h_sync ||
1732             (atomic_read(&transaction->t_outstanding_credits) >
1733              journal->j_max_transaction_buffers) ||
1734             time_after_eq(jiffies, transaction->t_expires)) {
1735                 /* Do this even for aborted journals: an abort still
1736                  * completes the commit thread, it just doesn't write
1737                  * anything to disk. */
1738
1739                 jbd_debug(2, "transaction too old, requesting commit for "
1740                                         "handle %p\n", handle);
1741                 /* This is non-blocking */
1742                 jbd2_log_start_commit(journal, transaction->t_tid);
1743
1744                 /*
1745                  * Special case: JBD2_SYNC synchronous updates require us
1746                  * to wait for the commit to complete.
1747                  */
1748                 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1749                         wait_for_commit = 1;
1750         }
1751
1752         /*
1753          * Once we drop t_updates, if it goes to zero the transaction
1754          * could start committing on us and eventually disappear.  So
1755          * once we do this, we must not dereference transaction
1756          * pointer again.
1757          */
1758         tid = transaction->t_tid;
1759         if (atomic_dec_and_test(&transaction->t_updates)) {
1760                 wake_up(&journal->j_wait_updates);
1761                 if (journal->j_barrier_count)
1762                         wake_up(&journal->j_wait_transaction_locked);
1763         }
1764
1765         if (wait_for_commit)
1766                 err = jbd2_log_wait_commit(journal, tid);
1767
1768         lock_map_release(&handle->h_lockdep_map);
1769
1770         if (handle->h_rsv_handle)
1771                 jbd2_journal_free_reserved(handle->h_rsv_handle);
1772 free_and_exit:
1773         jbd2_free_handle(handle);
1774         return err;
1775 }
1776
1777 /*
1778  *
1779  * List management code snippets: various functions for manipulating the
1780  * transaction buffer lists.
1781  *
1782  */
1783
1784 /*
1785  * Append a buffer to a transaction list, given the transaction's list head
1786  * pointer.
1787  *
1788  * j_list_lock is held.
1789  *
1790  * jbd_lock_bh_state(jh2bh(jh)) is held.
1791  */
1792
1793 static inline void
1794 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1795 {
1796         if (!*list) {
1797                 jh->b_tnext = jh->b_tprev = jh;
1798                 *list = jh;
1799         } else {
1800                 /* Insert at the tail of the list to preserve order */
1801                 struct journal_head *first = *list, *last = first->b_tprev;
1802                 jh->b_tprev = last;
1803                 jh->b_tnext = first;
1804                 last->b_tnext = first->b_tprev = jh;
1805         }
1806 }
1807
1808 /*
1809  * Remove a buffer from a transaction list, given the transaction's list
1810  * head pointer.
1811  *
1812  * Called with j_list_lock held, and the journal may not be locked.
1813  *
1814  * jbd_lock_bh_state(jh2bh(jh)) is held.
1815  */
1816
1817 static inline void
1818 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1819 {
1820         if (*list == jh) {
1821                 *list = jh->b_tnext;
1822                 if (*list == jh)
1823                         *list = NULL;
1824         }
1825         jh->b_tprev->b_tnext = jh->b_tnext;
1826         jh->b_tnext->b_tprev = jh->b_tprev;
1827 }
1828
1829 /*
1830  * Remove a buffer from the appropriate transaction list.
1831  *
1832  * Note that this function can *change* the value of
1833  * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1834  * t_reserved_list.  If the caller is holding onto a copy of one of these
1835  * pointers, it could go bad.  Generally the caller needs to re-read the
1836  * pointer from the transaction_t.
1837  *
1838  * Called under j_list_lock.
1839  */
1840 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1841 {
1842         struct journal_head **list = NULL;
1843         transaction_t *transaction;
1844         struct buffer_head *bh = jh2bh(jh);
1845
1846         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1847         transaction = jh->b_transaction;
1848         if (transaction)
1849                 assert_spin_locked(&transaction->t_journal->j_list_lock);
1850
1851         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1852         if (jh->b_jlist != BJ_None)
1853                 J_ASSERT_JH(jh, transaction != NULL);
1854
1855         switch (jh->b_jlist) {
1856         case BJ_None:
1857                 return;
1858         case BJ_Metadata:
1859                 transaction->t_nr_buffers--;
1860                 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1861                 list = &transaction->t_buffers;
1862                 break;
1863         case BJ_Forget:
1864                 list = &transaction->t_forget;
1865                 break;
1866         case BJ_Shadow:
1867                 list = &transaction->t_shadow_list;
1868                 break;
1869         case BJ_Reserved:
1870                 list = &transaction->t_reserved_list;
1871                 break;
1872         }
1873
1874         __blist_del_buffer(list, jh);
1875         jh->b_jlist = BJ_None;
1876         if (test_clear_buffer_jbddirty(bh))
1877                 mark_buffer_dirty(bh);  /* Expose it to the VM */
1878 }
1879
1880 /*
1881  * Remove buffer from all transactions.
1882  *
1883  * Called with bh_state lock and j_list_lock
1884  *
1885  * jh and bh may be already freed when this function returns.
1886  */
1887 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1888 {
1889         __jbd2_journal_temp_unlink_buffer(jh);
1890         jh->b_transaction = NULL;
1891         jbd2_journal_put_journal_head(jh);
1892 }
1893
1894 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1895 {
1896         struct buffer_head *bh = jh2bh(jh);
1897
1898         /* Get reference so that buffer cannot be freed before we unlock it */
1899         get_bh(bh);
1900         jbd_lock_bh_state(bh);
1901         spin_lock(&journal->j_list_lock);
1902         __jbd2_journal_unfile_buffer(jh);
1903         spin_unlock(&journal->j_list_lock);
1904         jbd_unlock_bh_state(bh);
1905         __brelse(bh);
1906 }
1907
1908 /*
1909  * Called from jbd2_journal_try_to_free_buffers().
1910  *
1911  * Called under jbd_lock_bh_state(bh)
1912  */
1913 static void
1914 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1915 {
1916         struct journal_head *jh;
1917
1918         jh = bh2jh(bh);
1919
1920         if (buffer_locked(bh) || buffer_dirty(bh))
1921                 goto out;
1922
1923         if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
1924                 goto out;
1925
1926         spin_lock(&journal->j_list_lock);
1927         if (jh->b_cp_transaction != NULL) {
1928                 /* written-back checkpointed metadata buffer */
1929                 JBUFFER_TRACE(jh, "remove from checkpoint list");
1930                 __jbd2_journal_remove_checkpoint(jh);
1931         }
1932         spin_unlock(&journal->j_list_lock);
1933 out:
1934         return;
1935 }
1936
1937 /**
1938  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1939  * @journal: journal for operation
1940  * @page: to try and free
1941  * @gfp_mask: we use the mask to detect how hard should we try to release
1942  * buffers. If __GFP_DIRECT_RECLAIM and __GFP_FS is set, we wait for commit
1943  * code to release the buffers.
1944  *
1945  *
1946  * For all the buffers on this page,
1947  * if they are fully written out ordered data, move them onto BUF_CLEAN
1948  * so try_to_free_buffers() can reap them.
1949  *
1950  * This function returns non-zero if we wish try_to_free_buffers()
1951  * to be called. We do this if the page is releasable by try_to_free_buffers().
1952  * We also do it if the page has locked or dirty buffers and the caller wants
1953  * us to perform sync or async writeout.
1954  *
1955  * This complicates JBD locking somewhat.  We aren't protected by the
1956  * BKL here.  We wish to remove the buffer from its committing or
1957  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1958  *
1959  * This may *change* the value of transaction_t->t_datalist, so anyone
1960  * who looks at t_datalist needs to lock against this function.
1961  *
1962  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1963  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1964  * will come out of the lock with the buffer dirty, which makes it
1965  * ineligible for release here.
1966  *
1967  * Who else is affected by this?  hmm...  Really the only contender
1968  * is do_get_write_access() - it could be looking at the buffer while
1969  * journal_try_to_free_buffer() is changing its state.  But that
1970  * cannot happen because we never reallocate freed data as metadata
1971  * while the data is part of a transaction.  Yes?
1972  *
1973  * Return 0 on failure, 1 on success
1974  */
1975 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1976                                 struct page *page, gfp_t gfp_mask)
1977 {
1978         struct buffer_head *head;
1979         struct buffer_head *bh;
1980         int ret = 0;
1981
1982         J_ASSERT(PageLocked(page));
1983
1984         head = page_buffers(page);
1985         bh = head;
1986         do {
1987                 struct journal_head *jh;
1988
1989                 /*
1990                  * We take our own ref against the journal_head here to avoid
1991                  * having to add tons of locking around each instance of
1992                  * jbd2_journal_put_journal_head().
1993                  */
1994                 jh = jbd2_journal_grab_journal_head(bh);
1995                 if (!jh)
1996                         continue;
1997
1998                 jbd_lock_bh_state(bh);
1999                 __journal_try_to_free_buffer(journal, bh);
2000                 jbd2_journal_put_journal_head(jh);
2001                 jbd_unlock_bh_state(bh);
2002                 if (buffer_jbd(bh))
2003                         goto busy;
2004         } while ((bh = bh->b_this_page) != head);
2005
2006         ret = try_to_free_buffers(page);
2007
2008 busy:
2009         return ret;
2010 }
2011
2012 /*
2013  * This buffer is no longer needed.  If it is on an older transaction's
2014  * checkpoint list we need to record it on this transaction's forget list
2015  * to pin this buffer (and hence its checkpointing transaction) down until
2016  * this transaction commits.  If the buffer isn't on a checkpoint list, we
2017  * release it.
2018  * Returns non-zero if JBD no longer has an interest in the buffer.
2019  *
2020  * Called under j_list_lock.
2021  *
2022  * Called under jbd_lock_bh_state(bh).
2023  */
2024 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2025 {
2026         int may_free = 1;
2027         struct buffer_head *bh = jh2bh(jh);
2028
2029         if (jh->b_cp_transaction) {
2030                 JBUFFER_TRACE(jh, "on running+cp transaction");
2031                 __jbd2_journal_temp_unlink_buffer(jh);
2032                 /*
2033                  * We don't want to write the buffer anymore, clear the
2034                  * bit so that we don't confuse checks in
2035                  * __journal_file_buffer
2036                  */
2037                 clear_buffer_dirty(bh);
2038                 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2039                 may_free = 0;
2040         } else {
2041                 JBUFFER_TRACE(jh, "on running transaction");
2042                 __jbd2_journal_unfile_buffer(jh);
2043         }
2044         return may_free;
2045 }
2046
2047 /*
2048  * jbd2_journal_invalidatepage
2049  *
2050  * This code is tricky.  It has a number of cases to deal with.
2051  *
2052  * There are two invariants which this code relies on:
2053  *
2054  * i_size must be updated on disk before we start calling invalidatepage on the
2055  * data.
2056  *
2057  *  This is done in ext3 by defining an ext3_setattr method which
2058  *  updates i_size before truncate gets going.  By maintaining this
2059  *  invariant, we can be sure that it is safe to throw away any buffers
2060  *  attached to the current transaction: once the transaction commits,
2061  *  we know that the data will not be needed.
2062  *
2063  *  Note however that we can *not* throw away data belonging to the
2064  *  previous, committing transaction!
2065  *
2066  * Any disk blocks which *are* part of the previous, committing
2067  * transaction (and which therefore cannot be discarded immediately) are
2068  * not going to be reused in the new running transaction
2069  *
2070  *  The bitmap committed_data images guarantee this: any block which is
2071  *  allocated in one transaction and removed in the next will be marked
2072  *  as in-use in the committed_data bitmap, so cannot be reused until
2073  *  the next transaction to delete the block commits.  This means that
2074  *  leaving committing buffers dirty is quite safe: the disk blocks
2075  *  cannot be reallocated to a different file and so buffer aliasing is
2076  *  not possible.
2077  *
2078  *
2079  * The above applies mainly to ordered data mode.  In writeback mode we
2080  * don't make guarantees about the order in which data hits disk --- in
2081  * particular we don't guarantee that new dirty data is flushed before
2082  * transaction commit --- so it is always safe just to discard data
2083  * immediately in that mode.  --sct
2084  */
2085
2086 /*
2087  * The journal_unmap_buffer helper function returns zero if the buffer
2088  * concerned remains pinned as an anonymous buffer belonging to an older
2089  * transaction.
2090  *
2091  * We're outside-transaction here.  Either or both of j_running_transaction
2092  * and j_committing_transaction may be NULL.
2093  */
2094 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2095                                 int partial_page)
2096 {
2097         transaction_t *transaction;
2098         struct journal_head *jh;
2099         int may_free = 1;
2100
2101         BUFFER_TRACE(bh, "entry");
2102
2103         /*
2104          * It is safe to proceed here without the j_list_lock because the
2105          * buffers cannot be stolen by try_to_free_buffers as long as we are
2106          * holding the page lock. --sct
2107          */
2108
2109         if (!buffer_jbd(bh))
2110                 goto zap_buffer_unlocked;
2111
2112         /* OK, we have data buffer in journaled mode */
2113         write_lock(&journal->j_state_lock);
2114         jbd_lock_bh_state(bh);
2115         spin_lock(&journal->j_list_lock);
2116
2117         jh = jbd2_journal_grab_journal_head(bh);
2118         if (!jh)
2119                 goto zap_buffer_no_jh;
2120
2121         /*
2122          * We cannot remove the buffer from checkpoint lists until the
2123          * transaction adding inode to orphan list (let's call it T)
2124          * is committed.  Otherwise if the transaction changing the
2125          * buffer would be cleaned from the journal before T is
2126          * committed, a crash will cause that the correct contents of
2127          * the buffer will be lost.  On the other hand we have to
2128          * clear the buffer dirty bit at latest at the moment when the
2129          * transaction marking the buffer as freed in the filesystem
2130          * structures is committed because from that moment on the
2131          * block can be reallocated and used by a different page.
2132          * Since the block hasn't been freed yet but the inode has
2133          * already been added to orphan list, it is safe for us to add
2134          * the buffer to BJ_Forget list of the newest transaction.
2135          *
2136          * Also we have to clear buffer_mapped flag of a truncated buffer
2137          * because the buffer_head may be attached to the page straddling
2138          * i_size (can happen only when blocksize < pagesize) and thus the
2139          * buffer_head can be reused when the file is extended again. So we end
2140          * up keeping around invalidated buffers attached to transactions'
2141          * BJ_Forget list just to stop checkpointing code from cleaning up
2142          * the transaction this buffer was modified in.
2143          */
2144         transaction = jh->b_transaction;
2145         if (transaction == NULL) {
2146                 /* First case: not on any transaction.  If it
2147                  * has no checkpoint link, then we can zap it:
2148                  * it's a writeback-mode buffer so we don't care
2149                  * if it hits disk safely. */
2150                 if (!jh->b_cp_transaction) {
2151                         JBUFFER_TRACE(jh, "not on any transaction: zap");
2152                         goto zap_buffer;
2153                 }
2154
2155                 if (!buffer_dirty(bh)) {
2156                         /* bdflush has written it.  We can drop it now */
2157                         __jbd2_journal_remove_checkpoint(jh);
2158                         goto zap_buffer;
2159                 }
2160
2161                 /* OK, it must be in the journal but still not
2162                  * written fully to disk: it's metadata or
2163                  * journaled data... */
2164
2165                 if (journal->j_running_transaction) {
2166                         /* ... and once the current transaction has
2167                          * committed, the buffer won't be needed any
2168                          * longer. */
2169                         JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2170                         may_free = __dispose_buffer(jh,
2171                                         journal->j_running_transaction);
2172                         goto zap_buffer;
2173                 } else {
2174                         /* There is no currently-running transaction. So the
2175                          * orphan record which we wrote for this file must have
2176                          * passed into commit.  We must attach this buffer to
2177                          * the committing transaction, if it exists. */
2178                         if (journal->j_committing_transaction) {
2179                                 JBUFFER_TRACE(jh, "give to committing trans");
2180                                 may_free = __dispose_buffer(jh,
2181                                         journal->j_committing_transaction);
2182                                 goto zap_buffer;
2183                         } else {
2184                                 /* The orphan record's transaction has
2185                                  * committed.  We can cleanse this buffer */
2186                                 clear_buffer_jbddirty(bh);
2187                                 __jbd2_journal_remove_checkpoint(jh);
2188                                 goto zap_buffer;
2189                         }
2190                 }
2191         } else if (transaction == journal->j_committing_transaction) {
2192                 JBUFFER_TRACE(jh, "on committing transaction");
2193                 /*
2194                  * The buffer is committing, we simply cannot touch
2195                  * it. If the page is straddling i_size we have to wait
2196                  * for commit and try again.
2197                  */
2198                 if (partial_page) {
2199                         jbd2_journal_put_journal_head(jh);
2200                         spin_unlock(&journal->j_list_lock);
2201                         jbd_unlock_bh_state(bh);
2202                         write_unlock(&journal->j_state_lock);
2203                         return -EBUSY;
2204                 }
2205                 /*
2206                  * OK, buffer won't be reachable after truncate. We just set
2207                  * j_next_transaction to the running transaction (if there is
2208                  * one) and mark buffer as freed so that commit code knows it
2209                  * should clear dirty bits when it is done with the buffer.
2210                  */
2211                 set_buffer_freed(bh);
2212                 if (journal->j_running_transaction && buffer_jbddirty(bh))
2213                         jh->b_next_transaction = journal->j_running_transaction;
2214                 jbd2_journal_put_journal_head(jh);
2215                 spin_unlock(&journal->j_list_lock);
2216                 jbd_unlock_bh_state(bh);
2217                 write_unlock(&journal->j_state_lock);
2218                 return 0;
2219         } else {
2220                 /* Good, the buffer belongs to the running transaction.
2221                  * We are writing our own transaction's data, not any
2222                  * previous one's, so it is safe to throw it away
2223                  * (remember that we expect the filesystem to have set
2224                  * i_size already for this truncate so recovery will not
2225                  * expose the disk blocks we are discarding here.) */
2226                 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2227                 JBUFFER_TRACE(jh, "on running transaction");
2228                 may_free = __dispose_buffer(jh, transaction);
2229         }
2230
2231 zap_buffer:
2232         /*
2233          * This is tricky. Although the buffer is truncated, it may be reused
2234          * if blocksize < pagesize and it is attached to the page straddling
2235          * EOF. Since the buffer might have been added to BJ_Forget list of the
2236          * running transaction, journal_get_write_access() won't clear
2237          * b_modified and credit accounting gets confused. So clear b_modified
2238          * here.
2239          */
2240         jh->b_modified = 0;
2241         jbd2_journal_put_journal_head(jh);
2242 zap_buffer_no_jh:
2243         spin_unlock(&journal->j_list_lock);
2244         jbd_unlock_bh_state(bh);
2245         write_unlock(&journal->j_state_lock);
2246 zap_buffer_unlocked:
2247         clear_buffer_dirty(bh);
2248         J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2249         clear_buffer_mapped(bh);
2250         clear_buffer_req(bh);
2251         clear_buffer_new(bh);
2252         clear_buffer_delay(bh);
2253         clear_buffer_unwritten(bh);
2254         bh->b_bdev = NULL;
2255         return may_free;
2256 }
2257
2258 /**
2259  * void jbd2_journal_invalidatepage()
2260  * @journal: journal to use for flush...
2261  * @page:    page to flush
2262  * @offset:  start of the range to invalidate
2263  * @length:  length of the range to invalidate
2264  *
2265  * Reap page buffers containing data after in the specified range in page.
2266  * Can return -EBUSY if buffers are part of the committing transaction and
2267  * the page is straddling i_size. Caller then has to wait for current commit
2268  * and try again.
2269  */
2270 int jbd2_journal_invalidatepage(journal_t *journal,
2271                                 struct page *page,
2272                                 unsigned int offset,
2273                                 unsigned int length)
2274 {
2275         struct buffer_head *head, *bh, *next;
2276         unsigned int stop = offset + length;
2277         unsigned int curr_off = 0;
2278         int partial_page = (offset || length < PAGE_CACHE_SIZE);
2279         int may_free = 1;
2280         int ret = 0;
2281
2282         if (!PageLocked(page))
2283                 BUG();
2284         if (!page_has_buffers(page))
2285                 return 0;
2286
2287         BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
2288
2289         /* We will potentially be playing with lists other than just the
2290          * data lists (especially for journaled data mode), so be
2291          * cautious in our locking. */
2292
2293         head = bh = page_buffers(page);
2294         do {
2295                 unsigned int next_off = curr_off + bh->b_size;
2296                 next = bh->b_this_page;
2297
2298                 if (next_off > stop)
2299                         return 0;
2300
2301                 if (offset <= curr_off) {
2302                         /* This block is wholly outside the truncation point */
2303                         lock_buffer(bh);
2304                         ret = journal_unmap_buffer(journal, bh, partial_page);
2305                         unlock_buffer(bh);
2306                         if (ret < 0)
2307                                 return ret;
2308                         may_free &= ret;
2309                 }
2310                 curr_off = next_off;
2311                 bh = next;
2312
2313         } while (bh != head);
2314
2315         if (!partial_page) {
2316                 if (may_free && try_to_free_buffers(page))
2317                         J_ASSERT(!page_has_buffers(page));
2318         }
2319         return 0;
2320 }
2321
2322 /*
2323  * File a buffer on the given transaction list.
2324  */
2325 void __jbd2_journal_file_buffer(struct journal_head *jh,
2326                         transaction_t *transaction, int jlist)
2327 {
2328         struct journal_head **list = NULL;
2329         int was_dirty = 0;
2330         struct buffer_head *bh = jh2bh(jh);
2331
2332         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2333         assert_spin_locked(&transaction->t_journal->j_list_lock);
2334
2335         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2336         J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2337                                 jh->b_transaction == NULL);
2338
2339         if (jh->b_transaction && jh->b_jlist == jlist)
2340                 return;
2341
2342         if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2343             jlist == BJ_Shadow || jlist == BJ_Forget) {
2344                 /*
2345                  * For metadata buffers, we track dirty bit in buffer_jbddirty
2346                  * instead of buffer_dirty. We should not see a dirty bit set
2347                  * here because we clear it in do_get_write_access but e.g.
2348                  * tune2fs can modify the sb and set the dirty bit at any time
2349                  * so we try to gracefully handle that.
2350                  */
2351                 if (buffer_dirty(bh))
2352                         warn_dirty_buffer(bh);
2353                 if (test_clear_buffer_dirty(bh) ||
2354                     test_clear_buffer_jbddirty(bh))
2355                         was_dirty = 1;
2356         }
2357
2358         if (jh->b_transaction)
2359                 __jbd2_journal_temp_unlink_buffer(jh);
2360         else
2361                 jbd2_journal_grab_journal_head(bh);
2362         jh->b_transaction = transaction;
2363
2364         switch (jlist) {
2365         case BJ_None:
2366                 J_ASSERT_JH(jh, !jh->b_committed_data);
2367                 J_ASSERT_JH(jh, !jh->b_frozen_data);
2368                 return;
2369         case BJ_Metadata:
2370                 transaction->t_nr_buffers++;
2371                 list = &transaction->t_buffers;
2372                 break;
2373         case BJ_Forget:
2374                 list = &transaction->t_forget;
2375                 break;
2376         case BJ_Shadow:
2377                 list = &transaction->t_shadow_list;
2378                 break;
2379         case BJ_Reserved:
2380                 list = &transaction->t_reserved_list;
2381                 break;
2382         }
2383
2384         __blist_add_buffer(list, jh);
2385         jh->b_jlist = jlist;
2386
2387         if (was_dirty)
2388                 set_buffer_jbddirty(bh);
2389 }
2390
2391 void jbd2_journal_file_buffer(struct journal_head *jh,
2392                                 transaction_t *transaction, int jlist)
2393 {
2394         jbd_lock_bh_state(jh2bh(jh));
2395         spin_lock(&transaction->t_journal->j_list_lock);
2396         __jbd2_journal_file_buffer(jh, transaction, jlist);
2397         spin_unlock(&transaction->t_journal->j_list_lock);
2398         jbd_unlock_bh_state(jh2bh(jh));
2399 }
2400
2401 /*
2402  * Remove a buffer from its current buffer list in preparation for
2403  * dropping it from its current transaction entirely.  If the buffer has
2404  * already started to be used by a subsequent transaction, refile the
2405  * buffer on that transaction's metadata list.
2406  *
2407  * Called under j_list_lock
2408  * Called under jbd_lock_bh_state(jh2bh(jh))
2409  *
2410  * jh and bh may be already free when this function returns
2411  */
2412 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2413 {
2414         int was_dirty, jlist;
2415         struct buffer_head *bh = jh2bh(jh);
2416
2417         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2418         if (jh->b_transaction)
2419                 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2420
2421         /* If the buffer is now unused, just drop it. */
2422         if (jh->b_next_transaction == NULL) {
2423                 __jbd2_journal_unfile_buffer(jh);
2424                 return;
2425         }
2426
2427         /*
2428          * It has been modified by a later transaction: add it to the new
2429          * transaction's metadata list.
2430          */
2431
2432         was_dirty = test_clear_buffer_jbddirty(bh);
2433         __jbd2_journal_temp_unlink_buffer(jh);
2434         /*
2435          * We set b_transaction here because b_next_transaction will inherit
2436          * our jh reference and thus __jbd2_journal_file_buffer() must not
2437          * take a new one.
2438          */
2439         jh->b_transaction = jh->b_next_transaction;
2440         jh->b_next_transaction = NULL;
2441         if (buffer_freed(bh))
2442                 jlist = BJ_Forget;
2443         else if (jh->b_modified)
2444                 jlist = BJ_Metadata;
2445         else
2446                 jlist = BJ_Reserved;
2447         __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2448         J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2449
2450         if (was_dirty)
2451                 set_buffer_jbddirty(bh);
2452 }
2453
2454 /*
2455  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2456  * bh reference so that we can safely unlock bh.
2457  *
2458  * The jh and bh may be freed by this call.
2459  */
2460 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2461 {
2462         struct buffer_head *bh = jh2bh(jh);
2463
2464         /* Get reference so that buffer cannot be freed before we unlock it */
2465         get_bh(bh);
2466         jbd_lock_bh_state(bh);
2467         spin_lock(&journal->j_list_lock);
2468         __jbd2_journal_refile_buffer(jh);
2469         jbd_unlock_bh_state(bh);
2470         spin_unlock(&journal->j_list_lock);
2471         __brelse(bh);
2472 }
2473
2474 /*
2475  * File inode in the inode list of the handle's transaction
2476  */
2477 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode)
2478 {
2479         transaction_t *transaction = handle->h_transaction;
2480         journal_t *journal;
2481
2482         if (is_handle_aborted(handle))
2483                 return -EROFS;
2484         journal = transaction->t_journal;
2485
2486         jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2487                         transaction->t_tid);
2488
2489         /*
2490          * First check whether inode isn't already on the transaction's
2491          * lists without taking the lock. Note that this check is safe
2492          * without the lock as we cannot race with somebody removing inode
2493          * from the transaction. The reason is that we remove inode from the
2494          * transaction only in journal_release_jbd_inode() and when we commit
2495          * the transaction. We are guarded from the first case by holding
2496          * a reference to the inode. We are safe against the second case
2497          * because if jinode->i_transaction == transaction, commit code
2498          * cannot touch the transaction because we hold reference to it,
2499          * and if jinode->i_next_transaction == transaction, commit code
2500          * will only file the inode where we want it.
2501          */
2502         if (jinode->i_transaction == transaction ||
2503             jinode->i_next_transaction == transaction)
2504                 return 0;
2505
2506         spin_lock(&journal->j_list_lock);
2507
2508         if (jinode->i_transaction == transaction ||
2509             jinode->i_next_transaction == transaction)
2510                 goto done;
2511
2512         /*
2513          * We only ever set this variable to 1 so the test is safe. Since
2514          * t_need_data_flush is likely to be set, we do the test to save some
2515          * cacheline bouncing
2516          */
2517         if (!transaction->t_need_data_flush)
2518                 transaction->t_need_data_flush = 1;
2519         /* On some different transaction's list - should be
2520          * the committing one */
2521         if (jinode->i_transaction) {
2522                 J_ASSERT(jinode->i_next_transaction == NULL);
2523                 J_ASSERT(jinode->i_transaction ==
2524                                         journal->j_committing_transaction);
2525                 jinode->i_next_transaction = transaction;
2526                 goto done;
2527         }
2528         /* Not on any transaction list... */
2529         J_ASSERT(!jinode->i_next_transaction);
2530         jinode->i_transaction = transaction;
2531         list_add(&jinode->i_list, &transaction->t_inode_list);
2532 done:
2533         spin_unlock(&journal->j_list_lock);
2534
2535         return 0;
2536 }
2537
2538 /*
2539  * File truncate and transaction commit interact with each other in a
2540  * non-trivial way.  If a transaction writing data block A is
2541  * committing, we cannot discard the data by truncate until we have
2542  * written them.  Otherwise if we crashed after the transaction with
2543  * write has committed but before the transaction with truncate has
2544  * committed, we could see stale data in block A.  This function is a
2545  * helper to solve this problem.  It starts writeout of the truncated
2546  * part in case it is in the committing transaction.
2547  *
2548  * Filesystem code must call this function when inode is journaled in
2549  * ordered mode before truncation happens and after the inode has been
2550  * placed on orphan list with the new inode size. The second condition
2551  * avoids the race that someone writes new data and we start
2552  * committing the transaction after this function has been called but
2553  * before a transaction for truncate is started (and furthermore it
2554  * allows us to optimize the case where the addition to orphan list
2555  * happens in the same transaction as write --- we don't have to write
2556  * any data in such case).
2557  */
2558 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2559                                         struct jbd2_inode *jinode,
2560                                         loff_t new_size)
2561 {
2562         transaction_t *inode_trans, *commit_trans;
2563         int ret = 0;
2564
2565         /* This is a quick check to avoid locking if not necessary */
2566         if (!jinode->i_transaction)
2567                 goto out;
2568         /* Locks are here just to force reading of recent values, it is
2569          * enough that the transaction was not committing before we started
2570          * a transaction adding the inode to orphan list */
2571         read_lock(&journal->j_state_lock);
2572         commit_trans = journal->j_committing_transaction;
2573         read_unlock(&journal->j_state_lock);
2574         spin_lock(&journal->j_list_lock);
2575         inode_trans = jinode->i_transaction;
2576         spin_unlock(&journal->j_list_lock);
2577         if (inode_trans == commit_trans) {
2578                 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2579                         new_size, LLONG_MAX);
2580                 if (ret)
2581                         jbd2_journal_abort(journal, ret);
2582         }
2583 out:
2584         return ret;
2585 }