direct_IO: remove rw from a_ops->direct_IO()
[cascardo/linux.git] / fs / ocfs2 / aops.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public
17  * License along with this program; if not, write to the
18  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19  * Boston, MA 021110-1307, USA.
20  */
21
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
31 #include <linux/blkdev.h>
32 #include <linux/uio.h>
33
34 #include <cluster/masklog.h>
35
36 #include "ocfs2.h"
37
38 #include "alloc.h"
39 #include "aops.h"
40 #include "dlmglue.h"
41 #include "extent_map.h"
42 #include "file.h"
43 #include "inode.h"
44 #include "journal.h"
45 #include "suballoc.h"
46 #include "super.h"
47 #include "symlink.h"
48 #include "refcounttree.h"
49 #include "ocfs2_trace.h"
50
51 #include "buffer_head_io.h"
52 #include "dir.h"
53 #include "namei.h"
54 #include "sysfile.h"
55
56 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
57                                    struct buffer_head *bh_result, int create)
58 {
59         int err = -EIO;
60         int status;
61         struct ocfs2_dinode *fe = NULL;
62         struct buffer_head *bh = NULL;
63         struct buffer_head *buffer_cache_bh = NULL;
64         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
65         void *kaddr;
66
67         trace_ocfs2_symlink_get_block(
68                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
69                         (unsigned long long)iblock, bh_result, create);
70
71         BUG_ON(ocfs2_inode_is_fast_symlink(inode));
72
73         if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
74                 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
75                      (unsigned long long)iblock);
76                 goto bail;
77         }
78
79         status = ocfs2_read_inode_block(inode, &bh);
80         if (status < 0) {
81                 mlog_errno(status);
82                 goto bail;
83         }
84         fe = (struct ocfs2_dinode *) bh->b_data;
85
86         if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
87                                                     le32_to_cpu(fe->i_clusters))) {
88                 err = -ENOMEM;
89                 mlog(ML_ERROR, "block offset is outside the allocated size: "
90                      "%llu\n", (unsigned long long)iblock);
91                 goto bail;
92         }
93
94         /* We don't use the page cache to create symlink data, so if
95          * need be, copy it over from the buffer cache. */
96         if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
97                 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
98                             iblock;
99                 buffer_cache_bh = sb_getblk(osb->sb, blkno);
100                 if (!buffer_cache_bh) {
101                         err = -ENOMEM;
102                         mlog(ML_ERROR, "couldn't getblock for symlink!\n");
103                         goto bail;
104                 }
105
106                 /* we haven't locked out transactions, so a commit
107                  * could've happened. Since we've got a reference on
108                  * the bh, even if it commits while we're doing the
109                  * copy, the data is still good. */
110                 if (buffer_jbd(buffer_cache_bh)
111                     && ocfs2_inode_is_new(inode)) {
112                         kaddr = kmap_atomic(bh_result->b_page);
113                         if (!kaddr) {
114                                 mlog(ML_ERROR, "couldn't kmap!\n");
115                                 goto bail;
116                         }
117                         memcpy(kaddr + (bh_result->b_size * iblock),
118                                buffer_cache_bh->b_data,
119                                bh_result->b_size);
120                         kunmap_atomic(kaddr);
121                         set_buffer_uptodate(bh_result);
122                 }
123                 brelse(buffer_cache_bh);
124         }
125
126         map_bh(bh_result, inode->i_sb,
127                le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
128
129         err = 0;
130
131 bail:
132         brelse(bh);
133
134         return err;
135 }
136
137 int ocfs2_get_block(struct inode *inode, sector_t iblock,
138                     struct buffer_head *bh_result, int create)
139 {
140         int err = 0;
141         unsigned int ext_flags;
142         u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
143         u64 p_blkno, count, past_eof;
144         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
145
146         trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
147                               (unsigned long long)iblock, bh_result, create);
148
149         if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
150                 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
151                      inode, inode->i_ino);
152
153         if (S_ISLNK(inode->i_mode)) {
154                 /* this always does I/O for some reason. */
155                 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
156                 goto bail;
157         }
158
159         err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
160                                           &ext_flags);
161         if (err) {
162                 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
163                      "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
164                      (unsigned long long)p_blkno);
165                 goto bail;
166         }
167
168         if (max_blocks < count)
169                 count = max_blocks;
170
171         /*
172          * ocfs2 never allocates in this function - the only time we
173          * need to use BH_New is when we're extending i_size on a file
174          * system which doesn't support holes, in which case BH_New
175          * allows __block_write_begin() to zero.
176          *
177          * If we see this on a sparse file system, then a truncate has
178          * raced us and removed the cluster. In this case, we clear
179          * the buffers dirty and uptodate bits and let the buffer code
180          * ignore it as a hole.
181          */
182         if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
183                 clear_buffer_dirty(bh_result);
184                 clear_buffer_uptodate(bh_result);
185                 goto bail;
186         }
187
188         /* Treat the unwritten extent as a hole for zeroing purposes. */
189         if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
190                 map_bh(bh_result, inode->i_sb, p_blkno);
191
192         bh_result->b_size = count << inode->i_blkbits;
193
194         if (!ocfs2_sparse_alloc(osb)) {
195                 if (p_blkno == 0) {
196                         err = -EIO;
197                         mlog(ML_ERROR,
198                              "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
199                              (unsigned long long)iblock,
200                              (unsigned long long)p_blkno,
201                              (unsigned long long)OCFS2_I(inode)->ip_blkno);
202                         mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
203                         dump_stack();
204                         goto bail;
205                 }
206         }
207
208         past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
209
210         trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
211                                   (unsigned long long)past_eof);
212         if (create && (iblock >= past_eof))
213                 set_buffer_new(bh_result);
214
215 bail:
216         if (err < 0)
217                 err = -EIO;
218
219         return err;
220 }
221
222 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
223                            struct buffer_head *di_bh)
224 {
225         void *kaddr;
226         loff_t size;
227         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
228
229         if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
230                 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
231                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
232                 return -EROFS;
233         }
234
235         size = i_size_read(inode);
236
237         if (size > PAGE_CACHE_SIZE ||
238             size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
239                 ocfs2_error(inode->i_sb,
240                             "Inode %llu has with inline data has bad size: %Lu",
241                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
242                             (unsigned long long)size);
243                 return -EROFS;
244         }
245
246         kaddr = kmap_atomic(page);
247         if (size)
248                 memcpy(kaddr, di->id2.i_data.id_data, size);
249         /* Clear the remaining part of the page */
250         memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
251         flush_dcache_page(page);
252         kunmap_atomic(kaddr);
253
254         SetPageUptodate(page);
255
256         return 0;
257 }
258
259 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
260 {
261         int ret;
262         struct buffer_head *di_bh = NULL;
263
264         BUG_ON(!PageLocked(page));
265         BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
266
267         ret = ocfs2_read_inode_block(inode, &di_bh);
268         if (ret) {
269                 mlog_errno(ret);
270                 goto out;
271         }
272
273         ret = ocfs2_read_inline_data(inode, page, di_bh);
274 out:
275         unlock_page(page);
276
277         brelse(di_bh);
278         return ret;
279 }
280
281 static int ocfs2_readpage(struct file *file, struct page *page)
282 {
283         struct inode *inode = page->mapping->host;
284         struct ocfs2_inode_info *oi = OCFS2_I(inode);
285         loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
286         int ret, unlock = 1;
287
288         trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
289                              (page ? page->index : 0));
290
291         ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
292         if (ret != 0) {
293                 if (ret == AOP_TRUNCATED_PAGE)
294                         unlock = 0;
295                 mlog_errno(ret);
296                 goto out;
297         }
298
299         if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
300                 /*
301                  * Unlock the page and cycle ip_alloc_sem so that we don't
302                  * busyloop waiting for ip_alloc_sem to unlock
303                  */
304                 ret = AOP_TRUNCATED_PAGE;
305                 unlock_page(page);
306                 unlock = 0;
307                 down_read(&oi->ip_alloc_sem);
308                 up_read(&oi->ip_alloc_sem);
309                 goto out_inode_unlock;
310         }
311
312         /*
313          * i_size might have just been updated as we grabed the meta lock.  We
314          * might now be discovering a truncate that hit on another node.
315          * block_read_full_page->get_block freaks out if it is asked to read
316          * beyond the end of a file, so we check here.  Callers
317          * (generic_file_read, vm_ops->fault) are clever enough to check i_size
318          * and notice that the page they just read isn't needed.
319          *
320          * XXX sys_readahead() seems to get that wrong?
321          */
322         if (start >= i_size_read(inode)) {
323                 zero_user(page, 0, PAGE_SIZE);
324                 SetPageUptodate(page);
325                 ret = 0;
326                 goto out_alloc;
327         }
328
329         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
330                 ret = ocfs2_readpage_inline(inode, page);
331         else
332                 ret = block_read_full_page(page, ocfs2_get_block);
333         unlock = 0;
334
335 out_alloc:
336         up_read(&OCFS2_I(inode)->ip_alloc_sem);
337 out_inode_unlock:
338         ocfs2_inode_unlock(inode, 0);
339 out:
340         if (unlock)
341                 unlock_page(page);
342         return ret;
343 }
344
345 /*
346  * This is used only for read-ahead. Failures or difficult to handle
347  * situations are safe to ignore.
348  *
349  * Right now, we don't bother with BH_Boundary - in-inode extent lists
350  * are quite large (243 extents on 4k blocks), so most inodes don't
351  * grow out to a tree. If need be, detecting boundary extents could
352  * trivially be added in a future version of ocfs2_get_block().
353  */
354 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
355                            struct list_head *pages, unsigned nr_pages)
356 {
357         int ret, err = -EIO;
358         struct inode *inode = mapping->host;
359         struct ocfs2_inode_info *oi = OCFS2_I(inode);
360         loff_t start;
361         struct page *last;
362
363         /*
364          * Use the nonblocking flag for the dlm code to avoid page
365          * lock inversion, but don't bother with retrying.
366          */
367         ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
368         if (ret)
369                 return err;
370
371         if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
372                 ocfs2_inode_unlock(inode, 0);
373                 return err;
374         }
375
376         /*
377          * Don't bother with inline-data. There isn't anything
378          * to read-ahead in that case anyway...
379          */
380         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
381                 goto out_unlock;
382
383         /*
384          * Check whether a remote node truncated this file - we just
385          * drop out in that case as it's not worth handling here.
386          */
387         last = list_entry(pages->prev, struct page, lru);
388         start = (loff_t)last->index << PAGE_CACHE_SHIFT;
389         if (start >= i_size_read(inode))
390                 goto out_unlock;
391
392         err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
393
394 out_unlock:
395         up_read(&oi->ip_alloc_sem);
396         ocfs2_inode_unlock(inode, 0);
397
398         return err;
399 }
400
401 /* Note: Because we don't support holes, our allocation has
402  * already happened (allocation writes zeros to the file data)
403  * so we don't have to worry about ordered writes in
404  * ocfs2_writepage.
405  *
406  * ->writepage is called during the process of invalidating the page cache
407  * during blocked lock processing.  It can't block on any cluster locks
408  * to during block mapping.  It's relying on the fact that the block
409  * mapping can't have disappeared under the dirty pages that it is
410  * being asked to write back.
411  */
412 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
413 {
414         trace_ocfs2_writepage(
415                 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
416                 page->index);
417
418         return block_write_full_page(page, ocfs2_get_block, wbc);
419 }
420
421 /* Taken from ext3. We don't necessarily need the full blown
422  * functionality yet, but IMHO it's better to cut and paste the whole
423  * thing so we can avoid introducing our own bugs (and easily pick up
424  * their fixes when they happen) --Mark */
425 int walk_page_buffers(  handle_t *handle,
426                         struct buffer_head *head,
427                         unsigned from,
428                         unsigned to,
429                         int *partial,
430                         int (*fn)(      handle_t *handle,
431                                         struct buffer_head *bh))
432 {
433         struct buffer_head *bh;
434         unsigned block_start, block_end;
435         unsigned blocksize = head->b_size;
436         int err, ret = 0;
437         struct buffer_head *next;
438
439         for (   bh = head, block_start = 0;
440                 ret == 0 && (bh != head || !block_start);
441                 block_start = block_end, bh = next)
442         {
443                 next = bh->b_this_page;
444                 block_end = block_start + blocksize;
445                 if (block_end <= from || block_start >= to) {
446                         if (partial && !buffer_uptodate(bh))
447                                 *partial = 1;
448                         continue;
449                 }
450                 err = (*fn)(handle, bh);
451                 if (!ret)
452                         ret = err;
453         }
454         return ret;
455 }
456
457 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
458 {
459         sector_t status;
460         u64 p_blkno = 0;
461         int err = 0;
462         struct inode *inode = mapping->host;
463
464         trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
465                          (unsigned long long)block);
466
467         /* We don't need to lock journal system files, since they aren't
468          * accessed concurrently from multiple nodes.
469          */
470         if (!INODE_JOURNAL(inode)) {
471                 err = ocfs2_inode_lock(inode, NULL, 0);
472                 if (err) {
473                         if (err != -ENOENT)
474                                 mlog_errno(err);
475                         goto bail;
476                 }
477                 down_read(&OCFS2_I(inode)->ip_alloc_sem);
478         }
479
480         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
481                 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
482                                                   NULL);
483
484         if (!INODE_JOURNAL(inode)) {
485                 up_read(&OCFS2_I(inode)->ip_alloc_sem);
486                 ocfs2_inode_unlock(inode, 0);
487         }
488
489         if (err) {
490                 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
491                      (unsigned long long)block);
492                 mlog_errno(err);
493                 goto bail;
494         }
495
496 bail:
497         status = err ? 0 : p_blkno;
498
499         return status;
500 }
501
502 /*
503  * TODO: Make this into a generic get_blocks function.
504  *
505  * From do_direct_io in direct-io.c:
506  *  "So what we do is to permit the ->get_blocks function to populate
507  *   bh.b_size with the size of IO which is permitted at this offset and
508  *   this i_blkbits."
509  *
510  * This function is called directly from get_more_blocks in direct-io.c.
511  *
512  * called like this: dio->get_blocks(dio->inode, fs_startblk,
513  *                                      fs_count, map_bh, dio->rw == WRITE);
514  */
515 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
516                                      struct buffer_head *bh_result, int create)
517 {
518         int ret;
519         u32 cpos = 0;
520         int alloc_locked = 0;
521         u64 p_blkno, inode_blocks, contig_blocks;
522         unsigned int ext_flags;
523         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
524         unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
525         unsigned long len = bh_result->b_size;
526         unsigned int clusters_to_alloc = 0;
527
528         cpos = ocfs2_blocks_to_clusters(inode->i_sb, iblock);
529
530         /* This function won't even be called if the request isn't all
531          * nicely aligned and of the right size, so there's no need
532          * for us to check any of that. */
533
534         inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
535
536         /* This figures out the size of the next contiguous block, and
537          * our logical offset */
538         ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
539                                           &contig_blocks, &ext_flags);
540         if (ret) {
541                 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
542                      (unsigned long long)iblock);
543                 ret = -EIO;
544                 goto bail;
545         }
546
547         /* We should already CoW the refcounted extent in case of create. */
548         BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
549
550         /* allocate blocks if no p_blkno is found, and create == 1 */
551         if (!p_blkno && create) {
552                 ret = ocfs2_inode_lock(inode, NULL, 1);
553                 if (ret < 0) {
554                         mlog_errno(ret);
555                         goto bail;
556                 }
557
558                 alloc_locked = 1;
559
560                 /* fill hole, allocate blocks can't be larger than the size
561                  * of the hole */
562                 clusters_to_alloc = ocfs2_clusters_for_bytes(inode->i_sb, len);
563                 if (clusters_to_alloc > contig_blocks)
564                         clusters_to_alloc = contig_blocks;
565
566                 /* allocate extent and insert them into the extent tree */
567                 ret = ocfs2_extend_allocation(inode, cpos,
568                                 clusters_to_alloc, 0);
569                 if (ret < 0) {
570                         mlog_errno(ret);
571                         goto bail;
572                 }
573
574                 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
575                                 &contig_blocks, &ext_flags);
576                 if (ret < 0) {
577                         mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
578                                         (unsigned long long)iblock);
579                         ret = -EIO;
580                         goto bail;
581                 }
582         }
583
584         /*
585          * get_more_blocks() expects us to describe a hole by clearing
586          * the mapped bit on bh_result().
587          *
588          * Consider an unwritten extent as a hole.
589          */
590         if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
591                 map_bh(bh_result, inode->i_sb, p_blkno);
592         else
593                 clear_buffer_mapped(bh_result);
594
595         /* make sure we don't map more than max_blocks blocks here as
596            that's all the kernel will handle at this point. */
597         if (max_blocks < contig_blocks)
598                 contig_blocks = max_blocks;
599         bh_result->b_size = contig_blocks << blocksize_bits;
600 bail:
601         if (alloc_locked)
602                 ocfs2_inode_unlock(inode, 1);
603         return ret;
604 }
605
606 /*
607  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
608  * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
609  * to protect io on one node from truncation on another.
610  */
611 static void ocfs2_dio_end_io(struct kiocb *iocb,
612                              loff_t offset,
613                              ssize_t bytes,
614                              void *private)
615 {
616         struct inode *inode = file_inode(iocb->ki_filp);
617         int level;
618
619         /* this io's submitter should not have unlocked this before we could */
620         BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
621
622         if (ocfs2_iocb_is_sem_locked(iocb))
623                 ocfs2_iocb_clear_sem_locked(iocb);
624
625         if (ocfs2_iocb_is_unaligned_aio(iocb)) {
626                 ocfs2_iocb_clear_unaligned_aio(iocb);
627
628                 mutex_unlock(&OCFS2_I(inode)->ip_unaligned_aio);
629         }
630
631         ocfs2_iocb_clear_rw_locked(iocb);
632
633         level = ocfs2_iocb_rw_locked_level(iocb);
634         ocfs2_rw_unlock(inode, level);
635 }
636
637 static int ocfs2_releasepage(struct page *page, gfp_t wait)
638 {
639         if (!page_has_buffers(page))
640                 return 0;
641         return try_to_free_buffers(page);
642 }
643
644 static int ocfs2_is_overwrite(struct ocfs2_super *osb,
645                 struct inode *inode, loff_t offset)
646 {
647         int ret = 0;
648         u32 v_cpos = 0;
649         u32 p_cpos = 0;
650         unsigned int num_clusters = 0;
651         unsigned int ext_flags = 0;
652
653         v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
654         ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
655                         &num_clusters, &ext_flags);
656         if (ret < 0) {
657                 mlog_errno(ret);
658                 return ret;
659         }
660
661         if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN))
662                 return 1;
663
664         return 0;
665 }
666
667 static ssize_t ocfs2_direct_IO_write(struct kiocb *iocb,
668                 struct iov_iter *iter,
669                 loff_t offset)
670 {
671         ssize_t ret = 0;
672         ssize_t written = 0;
673         bool orphaned = false;
674         int is_overwrite = 0;
675         struct file *file = iocb->ki_filp;
676         struct inode *inode = file_inode(file)->i_mapping->host;
677         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
678         struct buffer_head *di_bh = NULL;
679         size_t count = iter->count;
680         journal_t *journal = osb->journal->j_journal;
681         u32 zero_len;
682         int cluster_align;
683         loff_t final_size = offset + count;
684         int append_write = offset >= i_size_read(inode) ? 1 : 0;
685         unsigned int num_clusters = 0;
686         unsigned int ext_flags = 0;
687
688         {
689                 u64 o = offset;
690
691                 zero_len = do_div(o, 1 << osb->s_clustersize_bits);
692                 cluster_align = !zero_len;
693         }
694
695         /*
696          * when final_size > inode->i_size, inode->i_size will be
697          * updated after direct write, so add the inode to orphan
698          * dir first.
699          */
700         if (final_size > i_size_read(inode)) {
701                 ret = ocfs2_add_inode_to_orphan(osb, inode);
702                 if (ret < 0) {
703                         mlog_errno(ret);
704                         goto out;
705                 }
706                 orphaned = true;
707         }
708
709         if (append_write) {
710                 ret = ocfs2_inode_lock(inode, &di_bh, 1);
711                 if (ret < 0) {
712                         mlog_errno(ret);
713                         goto clean_orphan;
714                 }
715
716                 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
717                         ret = ocfs2_zero_extend(inode, di_bh, offset);
718                 else
719                         ret = ocfs2_extend_no_holes(inode, di_bh, offset,
720                                         offset);
721                 if (ret < 0) {
722                         mlog_errno(ret);
723                         ocfs2_inode_unlock(inode, 1);
724                         brelse(di_bh);
725                         goto clean_orphan;
726                 }
727
728                 is_overwrite = ocfs2_is_overwrite(osb, inode, offset);
729                 if (is_overwrite < 0) {
730                         mlog_errno(is_overwrite);
731                         ocfs2_inode_unlock(inode, 1);
732                         brelse(di_bh);
733                         goto clean_orphan;
734                 }
735
736                 ocfs2_inode_unlock(inode, 1);
737                 brelse(di_bh);
738                 di_bh = NULL;
739         }
740
741         written = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
742                                        offset, ocfs2_direct_IO_get_blocks,
743                                        ocfs2_dio_end_io, NULL, 0);
744         if (unlikely(written < 0)) {
745                 loff_t i_size = i_size_read(inode);
746
747                 if (offset + count > i_size) {
748                         ret = ocfs2_inode_lock(inode, &di_bh, 1);
749                         if (ret < 0) {
750                                 mlog_errno(ret);
751                                 goto clean_orphan;
752                         }
753
754                         if (i_size == i_size_read(inode)) {
755                                 ret = ocfs2_truncate_file(inode, di_bh,
756                                                 i_size);
757                                 if (ret < 0) {
758                                         if (ret != -ENOSPC)
759                                                 mlog_errno(ret);
760
761                                         ocfs2_inode_unlock(inode, 1);
762                                         brelse(di_bh);
763                                         goto clean_orphan;
764                                 }
765                         }
766
767                         ocfs2_inode_unlock(inode, 1);
768                         brelse(di_bh);
769
770                         ret = jbd2_journal_force_commit(journal);
771                         if (ret < 0)
772                                 mlog_errno(ret);
773                 }
774         } else if (written < 0 && append_write && !is_overwrite &&
775                         !cluster_align) {
776                 u32 p_cpos = 0;
777                 u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
778
779                 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
780                                 &num_clusters, &ext_flags);
781                 if (ret < 0) {
782                         mlog_errno(ret);
783                         goto clean_orphan;
784                 }
785
786                 BUG_ON(!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN));
787
788                 ret = blkdev_issue_zeroout(osb->sb->s_bdev,
789                                 p_cpos << (osb->s_clustersize_bits - 9),
790                                 zero_len >> 9, GFP_KERNEL, false);
791                 if (ret < 0)
792                         mlog_errno(ret);
793         }
794
795 clean_orphan:
796         if (orphaned) {
797                 int tmp_ret;
798                 int update_isize = written > 0 ? 1 : 0;
799                 loff_t end = update_isize ? offset + written : 0;
800
801                 tmp_ret = ocfs2_del_inode_from_orphan(osb, inode,
802                                 update_isize, end);
803                 if (tmp_ret < 0) {
804                         ret = tmp_ret;
805                         goto out;
806                 }
807
808                 tmp_ret = jbd2_journal_force_commit(journal);
809                 if (tmp_ret < 0) {
810                         ret = tmp_ret;
811                         mlog_errno(tmp_ret);
812                 }
813         }
814
815 out:
816         if (ret >= 0)
817                 ret = written;
818         return ret;
819 }
820
821 static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
822                                loff_t offset)
823 {
824         struct file *file = iocb->ki_filp;
825         struct inode *inode = file_inode(file)->i_mapping->host;
826         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
827         int full_coherency = !(osb->s_mount_opt &
828                         OCFS2_MOUNT_COHERENCY_BUFFERED);
829
830         /*
831          * Fallback to buffered I/O if we see an inode without
832          * extents.
833          */
834         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
835                 return 0;
836
837         /* Fallback to buffered I/O if we are appending and
838          * concurrent O_DIRECT writes are allowed.
839          */
840         if (i_size_read(inode) <= offset && !full_coherency)
841                 return 0;
842
843         if (iov_iter_rw(iter) == READ)
844                 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
845                                             iter, offset,
846                                             ocfs2_direct_IO_get_blocks,
847                                             ocfs2_dio_end_io, NULL, 0);
848         else
849                 return ocfs2_direct_IO_write(iocb, iter, offset);
850 }
851
852 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
853                                             u32 cpos,
854                                             unsigned int *start,
855                                             unsigned int *end)
856 {
857         unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
858
859         if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
860                 unsigned int cpp;
861
862                 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
863
864                 cluster_start = cpos % cpp;
865                 cluster_start = cluster_start << osb->s_clustersize_bits;
866
867                 cluster_end = cluster_start + osb->s_clustersize;
868         }
869
870         BUG_ON(cluster_start > PAGE_SIZE);
871         BUG_ON(cluster_end > PAGE_SIZE);
872
873         if (start)
874                 *start = cluster_start;
875         if (end)
876                 *end = cluster_end;
877 }
878
879 /*
880  * 'from' and 'to' are the region in the page to avoid zeroing.
881  *
882  * If pagesize > clustersize, this function will avoid zeroing outside
883  * of the cluster boundary.
884  *
885  * from == to == 0 is code for "zero the entire cluster region"
886  */
887 static void ocfs2_clear_page_regions(struct page *page,
888                                      struct ocfs2_super *osb, u32 cpos,
889                                      unsigned from, unsigned to)
890 {
891         void *kaddr;
892         unsigned int cluster_start, cluster_end;
893
894         ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
895
896         kaddr = kmap_atomic(page);
897
898         if (from || to) {
899                 if (from > cluster_start)
900                         memset(kaddr + cluster_start, 0, from - cluster_start);
901                 if (to < cluster_end)
902                         memset(kaddr + to, 0, cluster_end - to);
903         } else {
904                 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
905         }
906
907         kunmap_atomic(kaddr);
908 }
909
910 /*
911  * Nonsparse file systems fully allocate before we get to the write
912  * code. This prevents ocfs2_write() from tagging the write as an
913  * allocating one, which means ocfs2_map_page_blocks() might try to
914  * read-in the blocks at the tail of our file. Avoid reading them by
915  * testing i_size against each block offset.
916  */
917 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
918                                  unsigned int block_start)
919 {
920         u64 offset = page_offset(page) + block_start;
921
922         if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
923                 return 1;
924
925         if (i_size_read(inode) > offset)
926                 return 1;
927
928         return 0;
929 }
930
931 /*
932  * Some of this taken from __block_write_begin(). We already have our
933  * mapping by now though, and the entire write will be allocating or
934  * it won't, so not much need to use BH_New.
935  *
936  * This will also skip zeroing, which is handled externally.
937  */
938 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
939                           struct inode *inode, unsigned int from,
940                           unsigned int to, int new)
941 {
942         int ret = 0;
943         struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
944         unsigned int block_end, block_start;
945         unsigned int bsize = 1 << inode->i_blkbits;
946
947         if (!page_has_buffers(page))
948                 create_empty_buffers(page, bsize, 0);
949
950         head = page_buffers(page);
951         for (bh = head, block_start = 0; bh != head || !block_start;
952              bh = bh->b_this_page, block_start += bsize) {
953                 block_end = block_start + bsize;
954
955                 clear_buffer_new(bh);
956
957                 /*
958                  * Ignore blocks outside of our i/o range -
959                  * they may belong to unallocated clusters.
960                  */
961                 if (block_start >= to || block_end <= from) {
962                         if (PageUptodate(page))
963                                 set_buffer_uptodate(bh);
964                         continue;
965                 }
966
967                 /*
968                  * For an allocating write with cluster size >= page
969                  * size, we always write the entire page.
970                  */
971                 if (new)
972                         set_buffer_new(bh);
973
974                 if (!buffer_mapped(bh)) {
975                         map_bh(bh, inode->i_sb, *p_blkno);
976                         unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
977                 }
978
979                 if (PageUptodate(page)) {
980                         if (!buffer_uptodate(bh))
981                                 set_buffer_uptodate(bh);
982                 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
983                            !buffer_new(bh) &&
984                            ocfs2_should_read_blk(inode, page, block_start) &&
985                            (block_start < from || block_end > to)) {
986                         ll_rw_block(READ, 1, &bh);
987                         *wait_bh++=bh;
988                 }
989
990                 *p_blkno = *p_blkno + 1;
991         }
992
993         /*
994          * If we issued read requests - let them complete.
995          */
996         while(wait_bh > wait) {
997                 wait_on_buffer(*--wait_bh);
998                 if (!buffer_uptodate(*wait_bh))
999                         ret = -EIO;
1000         }
1001
1002         if (ret == 0 || !new)
1003                 return ret;
1004
1005         /*
1006          * If we get -EIO above, zero out any newly allocated blocks
1007          * to avoid exposing stale data.
1008          */
1009         bh = head;
1010         block_start = 0;
1011         do {
1012                 block_end = block_start + bsize;
1013                 if (block_end <= from)
1014                         goto next_bh;
1015                 if (block_start >= to)
1016                         break;
1017
1018                 zero_user(page, block_start, bh->b_size);
1019                 set_buffer_uptodate(bh);
1020                 mark_buffer_dirty(bh);
1021
1022 next_bh:
1023                 block_start = block_end;
1024                 bh = bh->b_this_page;
1025         } while (bh != head);
1026
1027         return ret;
1028 }
1029
1030 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
1031 #define OCFS2_MAX_CTXT_PAGES    1
1032 #else
1033 #define OCFS2_MAX_CTXT_PAGES    (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
1034 #endif
1035
1036 #define OCFS2_MAX_CLUSTERS_PER_PAGE     (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
1037
1038 /*
1039  * Describe the state of a single cluster to be written to.
1040  */
1041 struct ocfs2_write_cluster_desc {
1042         u32             c_cpos;
1043         u32             c_phys;
1044         /*
1045          * Give this a unique field because c_phys eventually gets
1046          * filled.
1047          */
1048         unsigned        c_new;
1049         unsigned        c_unwritten;
1050         unsigned        c_needs_zero;
1051 };
1052
1053 struct ocfs2_write_ctxt {
1054         /* Logical cluster position / len of write */
1055         u32                             w_cpos;
1056         u32                             w_clen;
1057
1058         /* First cluster allocated in a nonsparse extend */
1059         u32                             w_first_new_cpos;
1060
1061         struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
1062
1063         /*
1064          * This is true if page_size > cluster_size.
1065          *
1066          * It triggers a set of special cases during write which might
1067          * have to deal with allocating writes to partial pages.
1068          */
1069         unsigned int                    w_large_pages;
1070
1071         /*
1072          * Pages involved in this write.
1073          *
1074          * w_target_page is the page being written to by the user.
1075          *
1076          * w_pages is an array of pages which always contains
1077          * w_target_page, and in the case of an allocating write with
1078          * page_size < cluster size, it will contain zero'd and mapped
1079          * pages adjacent to w_target_page which need to be written
1080          * out in so that future reads from that region will get
1081          * zero's.
1082          */
1083         unsigned int                    w_num_pages;
1084         struct page                     *w_pages[OCFS2_MAX_CTXT_PAGES];
1085         struct page                     *w_target_page;
1086
1087         /*
1088          * w_target_locked is used for page_mkwrite path indicating no unlocking
1089          * against w_target_page in ocfs2_write_end_nolock.
1090          */
1091         unsigned int                    w_target_locked:1;
1092
1093         /*
1094          * ocfs2_write_end() uses this to know what the real range to
1095          * write in the target should be.
1096          */
1097         unsigned int                    w_target_from;
1098         unsigned int                    w_target_to;
1099
1100         /*
1101          * We could use journal_current_handle() but this is cleaner,
1102          * IMHO -Mark
1103          */
1104         handle_t                        *w_handle;
1105
1106         struct buffer_head              *w_di_bh;
1107
1108         struct ocfs2_cached_dealloc_ctxt w_dealloc;
1109 };
1110
1111 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
1112 {
1113         int i;
1114
1115         for(i = 0; i < num_pages; i++) {
1116                 if (pages[i]) {
1117                         unlock_page(pages[i]);
1118                         mark_page_accessed(pages[i]);
1119                         page_cache_release(pages[i]);
1120                 }
1121         }
1122 }
1123
1124 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
1125 {
1126         int i;
1127
1128         /*
1129          * w_target_locked is only set to true in the page_mkwrite() case.
1130          * The intent is to allow us to lock the target page from write_begin()
1131          * to write_end(). The caller must hold a ref on w_target_page.
1132          */
1133         if (wc->w_target_locked) {
1134                 BUG_ON(!wc->w_target_page);
1135                 for (i = 0; i < wc->w_num_pages; i++) {
1136                         if (wc->w_target_page == wc->w_pages[i]) {
1137                                 wc->w_pages[i] = NULL;
1138                                 break;
1139                         }
1140                 }
1141                 mark_page_accessed(wc->w_target_page);
1142                 page_cache_release(wc->w_target_page);
1143         }
1144         ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
1145 }
1146
1147 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
1148 {
1149         ocfs2_unlock_pages(wc);
1150         brelse(wc->w_di_bh);
1151         kfree(wc);
1152 }
1153
1154 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
1155                                   struct ocfs2_super *osb, loff_t pos,
1156                                   unsigned len, struct buffer_head *di_bh)
1157 {
1158         u32 cend;
1159         struct ocfs2_write_ctxt *wc;
1160
1161         wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
1162         if (!wc)
1163                 return -ENOMEM;
1164
1165         wc->w_cpos = pos >> osb->s_clustersize_bits;
1166         wc->w_first_new_cpos = UINT_MAX;
1167         cend = (pos + len - 1) >> osb->s_clustersize_bits;
1168         wc->w_clen = cend - wc->w_cpos + 1;
1169         get_bh(di_bh);
1170         wc->w_di_bh = di_bh;
1171
1172         if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
1173                 wc->w_large_pages = 1;
1174         else
1175                 wc->w_large_pages = 0;
1176
1177         ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
1178
1179         *wcp = wc;
1180
1181         return 0;
1182 }
1183
1184 /*
1185  * If a page has any new buffers, zero them out here, and mark them uptodate
1186  * and dirty so they'll be written out (in order to prevent uninitialised
1187  * block data from leaking). And clear the new bit.
1188  */
1189 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1190 {
1191         unsigned int block_start, block_end;
1192         struct buffer_head *head, *bh;
1193
1194         BUG_ON(!PageLocked(page));
1195         if (!page_has_buffers(page))
1196                 return;
1197
1198         bh = head = page_buffers(page);
1199         block_start = 0;
1200         do {
1201                 block_end = block_start + bh->b_size;
1202
1203                 if (buffer_new(bh)) {
1204                         if (block_end > from && block_start < to) {
1205                                 if (!PageUptodate(page)) {
1206                                         unsigned start, end;
1207
1208                                         start = max(from, block_start);
1209                                         end = min(to, block_end);
1210
1211                                         zero_user_segment(page, start, end);
1212                                         set_buffer_uptodate(bh);
1213                                 }
1214
1215                                 clear_buffer_new(bh);
1216                                 mark_buffer_dirty(bh);
1217                         }
1218                 }
1219
1220                 block_start = block_end;
1221                 bh = bh->b_this_page;
1222         } while (bh != head);
1223 }
1224
1225 /*
1226  * Only called when we have a failure during allocating write to write
1227  * zero's to the newly allocated region.
1228  */
1229 static void ocfs2_write_failure(struct inode *inode,
1230                                 struct ocfs2_write_ctxt *wc,
1231                                 loff_t user_pos, unsigned user_len)
1232 {
1233         int i;
1234         unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1235                 to = user_pos + user_len;
1236         struct page *tmppage;
1237
1238         ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1239
1240         for(i = 0; i < wc->w_num_pages; i++) {
1241                 tmppage = wc->w_pages[i];
1242
1243                 if (page_has_buffers(tmppage)) {
1244                         if (ocfs2_should_order_data(inode))
1245                                 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1246
1247                         block_commit_write(tmppage, from, to);
1248                 }
1249         }
1250 }
1251
1252 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1253                                         struct ocfs2_write_ctxt *wc,
1254                                         struct page *page, u32 cpos,
1255                                         loff_t user_pos, unsigned user_len,
1256                                         int new)
1257 {
1258         int ret;
1259         unsigned int map_from = 0, map_to = 0;
1260         unsigned int cluster_start, cluster_end;
1261         unsigned int user_data_from = 0, user_data_to = 0;
1262
1263         ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1264                                         &cluster_start, &cluster_end);
1265
1266         /* treat the write as new if the a hole/lseek spanned across
1267          * the page boundary.
1268          */
1269         new = new | ((i_size_read(inode) <= page_offset(page)) &&
1270                         (page_offset(page) <= user_pos));
1271
1272         if (page == wc->w_target_page) {
1273                 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1274                 map_to = map_from + user_len;
1275
1276                 if (new)
1277                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1278                                                     cluster_start, cluster_end,
1279                                                     new);
1280                 else
1281                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1282                                                     map_from, map_to, new);
1283                 if (ret) {
1284                         mlog_errno(ret);
1285                         goto out;
1286                 }
1287
1288                 user_data_from = map_from;
1289                 user_data_to = map_to;
1290                 if (new) {
1291                         map_from = cluster_start;
1292                         map_to = cluster_end;
1293                 }
1294         } else {
1295                 /*
1296                  * If we haven't allocated the new page yet, we
1297                  * shouldn't be writing it out without copying user
1298                  * data. This is likely a math error from the caller.
1299                  */
1300                 BUG_ON(!new);
1301
1302                 map_from = cluster_start;
1303                 map_to = cluster_end;
1304
1305                 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1306                                             cluster_start, cluster_end, new);
1307                 if (ret) {
1308                         mlog_errno(ret);
1309                         goto out;
1310                 }
1311         }
1312
1313         /*
1314          * Parts of newly allocated pages need to be zero'd.
1315          *
1316          * Above, we have also rewritten 'to' and 'from' - as far as
1317          * the rest of the function is concerned, the entire cluster
1318          * range inside of a page needs to be written.
1319          *
1320          * We can skip this if the page is up to date - it's already
1321          * been zero'd from being read in as a hole.
1322          */
1323         if (new && !PageUptodate(page))
1324                 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1325                                          cpos, user_data_from, user_data_to);
1326
1327         flush_dcache_page(page);
1328
1329 out:
1330         return ret;
1331 }
1332
1333 /*
1334  * This function will only grab one clusters worth of pages.
1335  */
1336 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1337                                       struct ocfs2_write_ctxt *wc,
1338                                       u32 cpos, loff_t user_pos,
1339                                       unsigned user_len, int new,
1340                                       struct page *mmap_page)
1341 {
1342         int ret = 0, i;
1343         unsigned long start, target_index, end_index, index;
1344         struct inode *inode = mapping->host;
1345         loff_t last_byte;
1346
1347         target_index = user_pos >> PAGE_CACHE_SHIFT;
1348
1349         /*
1350          * Figure out how many pages we'll be manipulating here. For
1351          * non allocating write, we just change the one
1352          * page. Otherwise, we'll need a whole clusters worth.  If we're
1353          * writing past i_size, we only need enough pages to cover the
1354          * last page of the write.
1355          */
1356         if (new) {
1357                 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1358                 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1359                 /*
1360                  * We need the index *past* the last page we could possibly
1361                  * touch.  This is the page past the end of the write or
1362                  * i_size, whichever is greater.
1363                  */
1364                 last_byte = max(user_pos + user_len, i_size_read(inode));
1365                 BUG_ON(last_byte < 1);
1366                 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1367                 if ((start + wc->w_num_pages) > end_index)
1368                         wc->w_num_pages = end_index - start;
1369         } else {
1370                 wc->w_num_pages = 1;
1371                 start = target_index;
1372         }
1373
1374         for(i = 0; i < wc->w_num_pages; i++) {
1375                 index = start + i;
1376
1377                 if (index == target_index && mmap_page) {
1378                         /*
1379                          * ocfs2_pagemkwrite() is a little different
1380                          * and wants us to directly use the page
1381                          * passed in.
1382                          */
1383                         lock_page(mmap_page);
1384
1385                         /* Exit and let the caller retry */
1386                         if (mmap_page->mapping != mapping) {
1387                                 WARN_ON(mmap_page->mapping);
1388                                 unlock_page(mmap_page);
1389                                 ret = -EAGAIN;
1390                                 goto out;
1391                         }
1392
1393                         page_cache_get(mmap_page);
1394                         wc->w_pages[i] = mmap_page;
1395                         wc->w_target_locked = true;
1396                 } else {
1397                         wc->w_pages[i] = find_or_create_page(mapping, index,
1398                                                              GFP_NOFS);
1399                         if (!wc->w_pages[i]) {
1400                                 ret = -ENOMEM;
1401                                 mlog_errno(ret);
1402                                 goto out;
1403                         }
1404                 }
1405                 wait_for_stable_page(wc->w_pages[i]);
1406
1407                 if (index == target_index)
1408                         wc->w_target_page = wc->w_pages[i];
1409         }
1410 out:
1411         if (ret)
1412                 wc->w_target_locked = false;
1413         return ret;
1414 }
1415
1416 /*
1417  * Prepare a single cluster for write one cluster into the file.
1418  */
1419 static int ocfs2_write_cluster(struct address_space *mapping,
1420                                u32 phys, unsigned int unwritten,
1421                                unsigned int should_zero,
1422                                struct ocfs2_alloc_context *data_ac,
1423                                struct ocfs2_alloc_context *meta_ac,
1424                                struct ocfs2_write_ctxt *wc, u32 cpos,
1425                                loff_t user_pos, unsigned user_len)
1426 {
1427         int ret, i, new;
1428         u64 v_blkno, p_blkno;
1429         struct inode *inode = mapping->host;
1430         struct ocfs2_extent_tree et;
1431
1432         new = phys == 0 ? 1 : 0;
1433         if (new) {
1434                 u32 tmp_pos;
1435
1436                 /*
1437                  * This is safe to call with the page locks - it won't take
1438                  * any additional semaphores or cluster locks.
1439                  */
1440                 tmp_pos = cpos;
1441                 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1442                                            &tmp_pos, 1, 0, wc->w_di_bh,
1443                                            wc->w_handle, data_ac,
1444                                            meta_ac, NULL);
1445                 /*
1446                  * This shouldn't happen because we must have already
1447                  * calculated the correct meta data allocation required. The
1448                  * internal tree allocation code should know how to increase
1449                  * transaction credits itself.
1450                  *
1451                  * If need be, we could handle -EAGAIN for a
1452                  * RESTART_TRANS here.
1453                  */
1454                 mlog_bug_on_msg(ret == -EAGAIN,
1455                                 "Inode %llu: EAGAIN return during allocation.\n",
1456                                 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1457                 if (ret < 0) {
1458                         mlog_errno(ret);
1459                         goto out;
1460                 }
1461         } else if (unwritten) {
1462                 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1463                                               wc->w_di_bh);
1464                 ret = ocfs2_mark_extent_written(inode, &et,
1465                                                 wc->w_handle, cpos, 1, phys,
1466                                                 meta_ac, &wc->w_dealloc);
1467                 if (ret < 0) {
1468                         mlog_errno(ret);
1469                         goto out;
1470                 }
1471         }
1472
1473         if (should_zero)
1474                 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1475         else
1476                 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1477
1478         /*
1479          * The only reason this should fail is due to an inability to
1480          * find the extent added.
1481          */
1482         ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1483                                           NULL);
1484         if (ret < 0) {
1485                 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1486                             "at logical block %llu",
1487                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
1488                             (unsigned long long)v_blkno);
1489                 goto out;
1490         }
1491
1492         BUG_ON(p_blkno == 0);
1493
1494         for(i = 0; i < wc->w_num_pages; i++) {
1495                 int tmpret;
1496
1497                 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1498                                                       wc->w_pages[i], cpos,
1499                                                       user_pos, user_len,
1500                                                       should_zero);
1501                 if (tmpret) {
1502                         mlog_errno(tmpret);
1503                         if (ret == 0)
1504                                 ret = tmpret;
1505                 }
1506         }
1507
1508         /*
1509          * We only have cleanup to do in case of allocating write.
1510          */
1511         if (ret && new)
1512                 ocfs2_write_failure(inode, wc, user_pos, user_len);
1513
1514 out:
1515
1516         return ret;
1517 }
1518
1519 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1520                                        struct ocfs2_alloc_context *data_ac,
1521                                        struct ocfs2_alloc_context *meta_ac,
1522                                        struct ocfs2_write_ctxt *wc,
1523                                        loff_t pos, unsigned len)
1524 {
1525         int ret, i;
1526         loff_t cluster_off;
1527         unsigned int local_len = len;
1528         struct ocfs2_write_cluster_desc *desc;
1529         struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1530
1531         for (i = 0; i < wc->w_clen; i++) {
1532                 desc = &wc->w_desc[i];
1533
1534                 /*
1535                  * We have to make sure that the total write passed in
1536                  * doesn't extend past a single cluster.
1537                  */
1538                 local_len = len;
1539                 cluster_off = pos & (osb->s_clustersize - 1);
1540                 if ((cluster_off + local_len) > osb->s_clustersize)
1541                         local_len = osb->s_clustersize - cluster_off;
1542
1543                 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1544                                           desc->c_unwritten,
1545                                           desc->c_needs_zero,
1546                                           data_ac, meta_ac,
1547                                           wc, desc->c_cpos, pos, local_len);
1548                 if (ret) {
1549                         mlog_errno(ret);
1550                         goto out;
1551                 }
1552
1553                 len -= local_len;
1554                 pos += local_len;
1555         }
1556
1557         ret = 0;
1558 out:
1559         return ret;
1560 }
1561
1562 /*
1563  * ocfs2_write_end() wants to know which parts of the target page it
1564  * should complete the write on. It's easiest to compute them ahead of
1565  * time when a more complete view of the write is available.
1566  */
1567 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1568                                         struct ocfs2_write_ctxt *wc,
1569                                         loff_t pos, unsigned len, int alloc)
1570 {
1571         struct ocfs2_write_cluster_desc *desc;
1572
1573         wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1574         wc->w_target_to = wc->w_target_from + len;
1575
1576         if (alloc == 0)
1577                 return;
1578
1579         /*
1580          * Allocating write - we may have different boundaries based
1581          * on page size and cluster size.
1582          *
1583          * NOTE: We can no longer compute one value from the other as
1584          * the actual write length and user provided length may be
1585          * different.
1586          */
1587
1588         if (wc->w_large_pages) {
1589                 /*
1590                  * We only care about the 1st and last cluster within
1591                  * our range and whether they should be zero'd or not. Either
1592                  * value may be extended out to the start/end of a
1593                  * newly allocated cluster.
1594                  */
1595                 desc = &wc->w_desc[0];
1596                 if (desc->c_needs_zero)
1597                         ocfs2_figure_cluster_boundaries(osb,
1598                                                         desc->c_cpos,
1599                                                         &wc->w_target_from,
1600                                                         NULL);
1601
1602                 desc = &wc->w_desc[wc->w_clen - 1];
1603                 if (desc->c_needs_zero)
1604                         ocfs2_figure_cluster_boundaries(osb,
1605                                                         desc->c_cpos,
1606                                                         NULL,
1607                                                         &wc->w_target_to);
1608         } else {
1609                 wc->w_target_from = 0;
1610                 wc->w_target_to = PAGE_CACHE_SIZE;
1611         }
1612 }
1613
1614 /*
1615  * Populate each single-cluster write descriptor in the write context
1616  * with information about the i/o to be done.
1617  *
1618  * Returns the number of clusters that will have to be allocated, as
1619  * well as a worst case estimate of the number of extent records that
1620  * would have to be created during a write to an unwritten region.
1621  */
1622 static int ocfs2_populate_write_desc(struct inode *inode,
1623                                      struct ocfs2_write_ctxt *wc,
1624                                      unsigned int *clusters_to_alloc,
1625                                      unsigned int *extents_to_split)
1626 {
1627         int ret;
1628         struct ocfs2_write_cluster_desc *desc;
1629         unsigned int num_clusters = 0;
1630         unsigned int ext_flags = 0;
1631         u32 phys = 0;
1632         int i;
1633
1634         *clusters_to_alloc = 0;
1635         *extents_to_split = 0;
1636
1637         for (i = 0; i < wc->w_clen; i++) {
1638                 desc = &wc->w_desc[i];
1639                 desc->c_cpos = wc->w_cpos + i;
1640
1641                 if (num_clusters == 0) {
1642                         /*
1643                          * Need to look up the next extent record.
1644                          */
1645                         ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1646                                                  &num_clusters, &ext_flags);
1647                         if (ret) {
1648                                 mlog_errno(ret);
1649                                 goto out;
1650                         }
1651
1652                         /* We should already CoW the refcountd extent. */
1653                         BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1654
1655                         /*
1656                          * Assume worst case - that we're writing in
1657                          * the middle of the extent.
1658                          *
1659                          * We can assume that the write proceeds from
1660                          * left to right, in which case the extent
1661                          * insert code is smart enough to coalesce the
1662                          * next splits into the previous records created.
1663                          */
1664                         if (ext_flags & OCFS2_EXT_UNWRITTEN)
1665                                 *extents_to_split = *extents_to_split + 2;
1666                 } else if (phys) {
1667                         /*
1668                          * Only increment phys if it doesn't describe
1669                          * a hole.
1670                          */
1671                         phys++;
1672                 }
1673
1674                 /*
1675                  * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1676                  * file that got extended.  w_first_new_cpos tells us
1677                  * where the newly allocated clusters are so we can
1678                  * zero them.
1679                  */
1680                 if (desc->c_cpos >= wc->w_first_new_cpos) {
1681                         BUG_ON(phys == 0);
1682                         desc->c_needs_zero = 1;
1683                 }
1684
1685                 desc->c_phys = phys;
1686                 if (phys == 0) {
1687                         desc->c_new = 1;
1688                         desc->c_needs_zero = 1;
1689                         *clusters_to_alloc = *clusters_to_alloc + 1;
1690                 }
1691
1692                 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1693                         desc->c_unwritten = 1;
1694                         desc->c_needs_zero = 1;
1695                 }
1696
1697                 num_clusters--;
1698         }
1699
1700         ret = 0;
1701 out:
1702         return ret;
1703 }
1704
1705 static int ocfs2_write_begin_inline(struct address_space *mapping,
1706                                     struct inode *inode,
1707                                     struct ocfs2_write_ctxt *wc)
1708 {
1709         int ret;
1710         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1711         struct page *page;
1712         handle_t *handle;
1713         struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1714
1715         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1716         if (IS_ERR(handle)) {
1717                 ret = PTR_ERR(handle);
1718                 mlog_errno(ret);
1719                 goto out;
1720         }
1721
1722         page = find_or_create_page(mapping, 0, GFP_NOFS);
1723         if (!page) {
1724                 ocfs2_commit_trans(osb, handle);
1725                 ret = -ENOMEM;
1726                 mlog_errno(ret);
1727                 goto out;
1728         }
1729         /*
1730          * If we don't set w_num_pages then this page won't get unlocked
1731          * and freed on cleanup of the write context.
1732          */
1733         wc->w_pages[0] = wc->w_target_page = page;
1734         wc->w_num_pages = 1;
1735
1736         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1737                                       OCFS2_JOURNAL_ACCESS_WRITE);
1738         if (ret) {
1739                 ocfs2_commit_trans(osb, handle);
1740
1741                 mlog_errno(ret);
1742                 goto out;
1743         }
1744
1745         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1746                 ocfs2_set_inode_data_inline(inode, di);
1747
1748         if (!PageUptodate(page)) {
1749                 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1750                 if (ret) {
1751                         ocfs2_commit_trans(osb, handle);
1752
1753                         goto out;
1754                 }
1755         }
1756
1757         wc->w_handle = handle;
1758 out:
1759         return ret;
1760 }
1761
1762 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1763 {
1764         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1765
1766         if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1767                 return 1;
1768         return 0;
1769 }
1770
1771 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1772                                           struct inode *inode, loff_t pos,
1773                                           unsigned len, struct page *mmap_page,
1774                                           struct ocfs2_write_ctxt *wc)
1775 {
1776         int ret, written = 0;
1777         loff_t end = pos + len;
1778         struct ocfs2_inode_info *oi = OCFS2_I(inode);
1779         struct ocfs2_dinode *di = NULL;
1780
1781         trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1782                                              len, (unsigned long long)pos,
1783                                              oi->ip_dyn_features);
1784
1785         /*
1786          * Handle inodes which already have inline data 1st.
1787          */
1788         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1789                 if (mmap_page == NULL &&
1790                     ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1791                         goto do_inline_write;
1792
1793                 /*
1794                  * The write won't fit - we have to give this inode an
1795                  * inline extent list now.
1796                  */
1797                 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1798                 if (ret)
1799                         mlog_errno(ret);
1800                 goto out;
1801         }
1802
1803         /*
1804          * Check whether the inode can accept inline data.
1805          */
1806         if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1807                 return 0;
1808
1809         /*
1810          * Check whether the write can fit.
1811          */
1812         di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1813         if (mmap_page ||
1814             end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1815                 return 0;
1816
1817 do_inline_write:
1818         ret = ocfs2_write_begin_inline(mapping, inode, wc);
1819         if (ret) {
1820                 mlog_errno(ret);
1821                 goto out;
1822         }
1823
1824         /*
1825          * This signals to the caller that the data can be written
1826          * inline.
1827          */
1828         written = 1;
1829 out:
1830         return written ? written : ret;
1831 }
1832
1833 /*
1834  * This function only does anything for file systems which can't
1835  * handle sparse files.
1836  *
1837  * What we want to do here is fill in any hole between the current end
1838  * of allocation and the end of our write. That way the rest of the
1839  * write path can treat it as an non-allocating write, which has no
1840  * special case code for sparse/nonsparse files.
1841  */
1842 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1843                                         struct buffer_head *di_bh,
1844                                         loff_t pos, unsigned len,
1845                                         struct ocfs2_write_ctxt *wc)
1846 {
1847         int ret;
1848         loff_t newsize = pos + len;
1849
1850         BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1851
1852         if (newsize <= i_size_read(inode))
1853                 return 0;
1854
1855         ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1856         if (ret)
1857                 mlog_errno(ret);
1858
1859         wc->w_first_new_cpos =
1860                 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1861
1862         return ret;
1863 }
1864
1865 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1866                            loff_t pos)
1867 {
1868         int ret = 0;
1869
1870         BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1871         if (pos > i_size_read(inode))
1872                 ret = ocfs2_zero_extend(inode, di_bh, pos);
1873
1874         return ret;
1875 }
1876
1877 /*
1878  * Try to flush truncate logs if we can free enough clusters from it.
1879  * As for return value, "< 0" means error, "0" no space and "1" means
1880  * we have freed enough spaces and let the caller try to allocate again.
1881  */
1882 static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
1883                                           unsigned int needed)
1884 {
1885         tid_t target;
1886         int ret = 0;
1887         unsigned int truncated_clusters;
1888
1889         mutex_lock(&osb->osb_tl_inode->i_mutex);
1890         truncated_clusters = osb->truncated_clusters;
1891         mutex_unlock(&osb->osb_tl_inode->i_mutex);
1892
1893         /*
1894          * Check whether we can succeed in allocating if we free
1895          * the truncate log.
1896          */
1897         if (truncated_clusters < needed)
1898                 goto out;
1899
1900         ret = ocfs2_flush_truncate_log(osb);
1901         if (ret) {
1902                 mlog_errno(ret);
1903                 goto out;
1904         }
1905
1906         if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
1907                 jbd2_log_wait_commit(osb->journal->j_journal, target);
1908                 ret = 1;
1909         }
1910 out:
1911         return ret;
1912 }
1913
1914 int ocfs2_write_begin_nolock(struct file *filp,
1915                              struct address_space *mapping,
1916                              loff_t pos, unsigned len, unsigned flags,
1917                              struct page **pagep, void **fsdata,
1918                              struct buffer_head *di_bh, struct page *mmap_page)
1919 {
1920         int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1921         unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1922         struct ocfs2_write_ctxt *wc;
1923         struct inode *inode = mapping->host;
1924         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1925         struct ocfs2_dinode *di;
1926         struct ocfs2_alloc_context *data_ac = NULL;
1927         struct ocfs2_alloc_context *meta_ac = NULL;
1928         handle_t *handle;
1929         struct ocfs2_extent_tree et;
1930         int try_free = 1, ret1;
1931
1932 try_again:
1933         ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1934         if (ret) {
1935                 mlog_errno(ret);
1936                 return ret;
1937         }
1938
1939         if (ocfs2_supports_inline_data(osb)) {
1940                 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1941                                                      mmap_page, wc);
1942                 if (ret == 1) {
1943                         ret = 0;
1944                         goto success;
1945                 }
1946                 if (ret < 0) {
1947                         mlog_errno(ret);
1948                         goto out;
1949                 }
1950         }
1951
1952         if (ocfs2_sparse_alloc(osb))
1953                 ret = ocfs2_zero_tail(inode, di_bh, pos);
1954         else
1955                 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
1956                                                    wc);
1957         if (ret) {
1958                 mlog_errno(ret);
1959                 goto out;
1960         }
1961
1962         ret = ocfs2_check_range_for_refcount(inode, pos, len);
1963         if (ret < 0) {
1964                 mlog_errno(ret);
1965                 goto out;
1966         } else if (ret == 1) {
1967                 clusters_need = wc->w_clen;
1968                 ret = ocfs2_refcount_cow(inode, di_bh,
1969                                          wc->w_cpos, wc->w_clen, UINT_MAX);
1970                 if (ret) {
1971                         mlog_errno(ret);
1972                         goto out;
1973                 }
1974         }
1975
1976         ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1977                                         &extents_to_split);
1978         if (ret) {
1979                 mlog_errno(ret);
1980                 goto out;
1981         }
1982         clusters_need += clusters_to_alloc;
1983
1984         di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1985
1986         trace_ocfs2_write_begin_nolock(
1987                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
1988                         (long long)i_size_read(inode),
1989                         le32_to_cpu(di->i_clusters),
1990                         pos, len, flags, mmap_page,
1991                         clusters_to_alloc, extents_to_split);
1992
1993         /*
1994          * We set w_target_from, w_target_to here so that
1995          * ocfs2_write_end() knows which range in the target page to
1996          * write out. An allocation requires that we write the entire
1997          * cluster range.
1998          */
1999         if (clusters_to_alloc || extents_to_split) {
2000                 /*
2001                  * XXX: We are stretching the limits of
2002                  * ocfs2_lock_allocators(). It greatly over-estimates
2003                  * the work to be done.
2004                  */
2005                 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
2006                                               wc->w_di_bh);
2007                 ret = ocfs2_lock_allocators(inode, &et,
2008                                             clusters_to_alloc, extents_to_split,
2009                                             &data_ac, &meta_ac);
2010                 if (ret) {
2011                         mlog_errno(ret);
2012                         goto out;
2013                 }
2014
2015                 if (data_ac)
2016                         data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
2017
2018                 credits = ocfs2_calc_extend_credits(inode->i_sb,
2019                                                     &di->id2.i_list);
2020
2021         }
2022
2023         /*
2024          * We have to zero sparse allocated clusters, unwritten extent clusters,
2025          * and non-sparse clusters we just extended.  For non-sparse writes,
2026          * we know zeros will only be needed in the first and/or last cluster.
2027          */
2028         if (clusters_to_alloc || extents_to_split ||
2029             (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
2030                             wc->w_desc[wc->w_clen - 1].c_needs_zero)))
2031                 cluster_of_pages = 1;
2032         else
2033                 cluster_of_pages = 0;
2034
2035         ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
2036
2037         handle = ocfs2_start_trans(osb, credits);
2038         if (IS_ERR(handle)) {
2039                 ret = PTR_ERR(handle);
2040                 mlog_errno(ret);
2041                 goto out;
2042         }
2043
2044         wc->w_handle = handle;
2045
2046         if (clusters_to_alloc) {
2047                 ret = dquot_alloc_space_nodirty(inode,
2048                         ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2049                 if (ret)
2050                         goto out_commit;
2051         }
2052         /*
2053          * We don't want this to fail in ocfs2_write_end(), so do it
2054          * here.
2055          */
2056         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
2057                                       OCFS2_JOURNAL_ACCESS_WRITE);
2058         if (ret) {
2059                 mlog_errno(ret);
2060                 goto out_quota;
2061         }
2062
2063         /*
2064          * Fill our page array first. That way we've grabbed enough so
2065          * that we can zero and flush if we error after adding the
2066          * extent.
2067          */
2068         ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
2069                                          cluster_of_pages, mmap_page);
2070         if (ret && ret != -EAGAIN) {
2071                 mlog_errno(ret);
2072                 goto out_quota;
2073         }
2074
2075         /*
2076          * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
2077          * the target page. In this case, we exit with no error and no target
2078          * page. This will trigger the caller, page_mkwrite(), to re-try
2079          * the operation.
2080          */
2081         if (ret == -EAGAIN) {
2082                 BUG_ON(wc->w_target_page);
2083                 ret = 0;
2084                 goto out_quota;
2085         }
2086
2087         ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
2088                                           len);
2089         if (ret) {
2090                 mlog_errno(ret);
2091                 goto out_quota;
2092         }
2093
2094         if (data_ac)
2095                 ocfs2_free_alloc_context(data_ac);
2096         if (meta_ac)
2097                 ocfs2_free_alloc_context(meta_ac);
2098
2099 success:
2100         *pagep = wc->w_target_page;
2101         *fsdata = wc;
2102         return 0;
2103 out_quota:
2104         if (clusters_to_alloc)
2105                 dquot_free_space(inode,
2106                           ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2107 out_commit:
2108         ocfs2_commit_trans(osb, handle);
2109
2110 out:
2111         ocfs2_free_write_ctxt(wc);
2112
2113         if (data_ac) {
2114                 ocfs2_free_alloc_context(data_ac);
2115                 data_ac = NULL;
2116         }
2117         if (meta_ac) {
2118                 ocfs2_free_alloc_context(meta_ac);
2119                 meta_ac = NULL;
2120         }
2121
2122         if (ret == -ENOSPC && try_free) {
2123                 /*
2124                  * Try to free some truncate log so that we can have enough
2125                  * clusters to allocate.
2126                  */
2127                 try_free = 0;
2128
2129                 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
2130                 if (ret1 == 1)
2131                         goto try_again;
2132
2133                 if (ret1 < 0)
2134                         mlog_errno(ret1);
2135         }
2136
2137         return ret;
2138 }
2139
2140 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
2141                              loff_t pos, unsigned len, unsigned flags,
2142                              struct page **pagep, void **fsdata)
2143 {
2144         int ret;
2145         struct buffer_head *di_bh = NULL;
2146         struct inode *inode = mapping->host;
2147
2148         ret = ocfs2_inode_lock(inode, &di_bh, 1);
2149         if (ret) {
2150                 mlog_errno(ret);
2151                 return ret;
2152         }
2153
2154         /*
2155          * Take alloc sem here to prevent concurrent lookups. That way
2156          * the mapping, zeroing and tree manipulation within
2157          * ocfs2_write() will be safe against ->readpage(). This
2158          * should also serve to lock out allocation from a shared
2159          * writeable region.
2160          */
2161         down_write(&OCFS2_I(inode)->ip_alloc_sem);
2162
2163         ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
2164                                        fsdata, di_bh, NULL);
2165         if (ret) {
2166                 mlog_errno(ret);
2167                 goto out_fail;
2168         }
2169
2170         brelse(di_bh);
2171
2172         return 0;
2173
2174 out_fail:
2175         up_write(&OCFS2_I(inode)->ip_alloc_sem);
2176
2177         brelse(di_bh);
2178         ocfs2_inode_unlock(inode, 1);
2179
2180         return ret;
2181 }
2182
2183 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
2184                                    unsigned len, unsigned *copied,
2185                                    struct ocfs2_dinode *di,
2186                                    struct ocfs2_write_ctxt *wc)
2187 {
2188         void *kaddr;
2189
2190         if (unlikely(*copied < len)) {
2191                 if (!PageUptodate(wc->w_target_page)) {
2192                         *copied = 0;
2193                         return;
2194                 }
2195         }
2196
2197         kaddr = kmap_atomic(wc->w_target_page);
2198         memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
2199         kunmap_atomic(kaddr);
2200
2201         trace_ocfs2_write_end_inline(
2202              (unsigned long long)OCFS2_I(inode)->ip_blkno,
2203              (unsigned long long)pos, *copied,
2204              le16_to_cpu(di->id2.i_data.id_count),
2205              le16_to_cpu(di->i_dyn_features));
2206 }
2207
2208 int ocfs2_write_end_nolock(struct address_space *mapping,
2209                            loff_t pos, unsigned len, unsigned copied,
2210                            struct page *page, void *fsdata)
2211 {
2212         int i;
2213         unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
2214         struct inode *inode = mapping->host;
2215         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2216         struct ocfs2_write_ctxt *wc = fsdata;
2217         struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2218         handle_t *handle = wc->w_handle;
2219         struct page *tmppage;
2220
2221         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2222                 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2223                 goto out_write_size;
2224         }
2225
2226         if (unlikely(copied < len)) {
2227                 if (!PageUptodate(wc->w_target_page))
2228                         copied = 0;
2229
2230                 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2231                                        start+len);
2232         }
2233         flush_dcache_page(wc->w_target_page);
2234
2235         for(i = 0; i < wc->w_num_pages; i++) {
2236                 tmppage = wc->w_pages[i];
2237
2238                 if (tmppage == wc->w_target_page) {
2239                         from = wc->w_target_from;
2240                         to = wc->w_target_to;
2241
2242                         BUG_ON(from > PAGE_CACHE_SIZE ||
2243                                to > PAGE_CACHE_SIZE ||
2244                                to < from);
2245                 } else {
2246                         /*
2247                          * Pages adjacent to the target (if any) imply
2248                          * a hole-filling write in which case we want
2249                          * to flush their entire range.
2250                          */
2251                         from = 0;
2252                         to = PAGE_CACHE_SIZE;
2253                 }
2254
2255                 if (page_has_buffers(tmppage)) {
2256                         if (ocfs2_should_order_data(inode))
2257                                 ocfs2_jbd2_file_inode(wc->w_handle, inode);
2258                         block_commit_write(tmppage, from, to);
2259                 }
2260         }
2261
2262 out_write_size:
2263         pos += copied;
2264         if (pos > i_size_read(inode)) {
2265                 i_size_write(inode, pos);
2266                 mark_inode_dirty(inode);
2267         }
2268         inode->i_blocks = ocfs2_inode_sector_count(inode);
2269         di->i_size = cpu_to_le64((u64)i_size_read(inode));
2270         inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2271         di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2272         di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2273         ocfs2_update_inode_fsync_trans(handle, inode, 1);
2274         ocfs2_journal_dirty(handle, wc->w_di_bh);
2275
2276         /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2277          * lock, or it will cause a deadlock since journal commit threads holds
2278          * this lock and will ask for the page lock when flushing the data.
2279          * put it here to preserve the unlock order.
2280          */
2281         ocfs2_unlock_pages(wc);
2282
2283         ocfs2_commit_trans(osb, handle);
2284
2285         ocfs2_run_deallocs(osb, &wc->w_dealloc);
2286
2287         brelse(wc->w_di_bh);
2288         kfree(wc);
2289
2290         return copied;
2291 }
2292
2293 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2294                            loff_t pos, unsigned len, unsigned copied,
2295                            struct page *page, void *fsdata)
2296 {
2297         int ret;
2298         struct inode *inode = mapping->host;
2299
2300         ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2301
2302         up_write(&OCFS2_I(inode)->ip_alloc_sem);
2303         ocfs2_inode_unlock(inode, 1);
2304
2305         return ret;
2306 }
2307
2308 const struct address_space_operations ocfs2_aops = {
2309         .readpage               = ocfs2_readpage,
2310         .readpages              = ocfs2_readpages,
2311         .writepage              = ocfs2_writepage,
2312         .write_begin            = ocfs2_write_begin,
2313         .write_end              = ocfs2_write_end,
2314         .bmap                   = ocfs2_bmap,
2315         .direct_IO              = ocfs2_direct_IO,
2316         .invalidatepage         = block_invalidatepage,
2317         .releasepage            = ocfs2_releasepage,
2318         .migratepage            = buffer_migrate_page,
2319         .is_partially_uptodate  = block_is_partially_uptodate,
2320         .error_remove_page      = generic_error_remove_page,
2321 };