4a231a166cf88d6f76495ab9420e7406ba10307a
[cascardo/linux.git] / fs / ocfs2 / aops.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public
17  * License along with this program; if not, write to the
18  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19  * Boston, MA 021110-1307, USA.
20  */
21
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
31
32 #include <cluster/masklog.h>
33
34 #include "ocfs2.h"
35
36 #include "alloc.h"
37 #include "aops.h"
38 #include "dlmglue.h"
39 #include "extent_map.h"
40 #include "file.h"
41 #include "inode.h"
42 #include "journal.h"
43 #include "suballoc.h"
44 #include "super.h"
45 #include "symlink.h"
46 #include "refcounttree.h"
47 #include "ocfs2_trace.h"
48
49 #include "buffer_head_io.h"
50
51 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
52                                    struct buffer_head *bh_result, int create)
53 {
54         int err = -EIO;
55         int status;
56         struct ocfs2_dinode *fe = NULL;
57         struct buffer_head *bh = NULL;
58         struct buffer_head *buffer_cache_bh = NULL;
59         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
60         void *kaddr;
61
62         trace_ocfs2_symlink_get_block(
63                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
64                         (unsigned long long)iblock, bh_result, create);
65
66         BUG_ON(ocfs2_inode_is_fast_symlink(inode));
67
68         if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
69                 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
70                      (unsigned long long)iblock);
71                 goto bail;
72         }
73
74         status = ocfs2_read_inode_block(inode, &bh);
75         if (status < 0) {
76                 mlog_errno(status);
77                 goto bail;
78         }
79         fe = (struct ocfs2_dinode *) bh->b_data;
80
81         if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
82                                                     le32_to_cpu(fe->i_clusters))) {
83                 err = -ENOMEM;
84                 mlog(ML_ERROR, "block offset is outside the allocated size: "
85                      "%llu\n", (unsigned long long)iblock);
86                 goto bail;
87         }
88
89         /* We don't use the page cache to create symlink data, so if
90          * need be, copy it over from the buffer cache. */
91         if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
92                 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
93                             iblock;
94                 buffer_cache_bh = sb_getblk(osb->sb, blkno);
95                 if (!buffer_cache_bh) {
96                         err = -ENOMEM;
97                         mlog(ML_ERROR, "couldn't getblock for symlink!\n");
98                         goto bail;
99                 }
100
101                 /* we haven't locked out transactions, so a commit
102                  * could've happened. Since we've got a reference on
103                  * the bh, even if it commits while we're doing the
104                  * copy, the data is still good. */
105                 if (buffer_jbd(buffer_cache_bh)
106                     && ocfs2_inode_is_new(inode)) {
107                         kaddr = kmap_atomic(bh_result->b_page);
108                         if (!kaddr) {
109                                 mlog(ML_ERROR, "couldn't kmap!\n");
110                                 goto bail;
111                         }
112                         memcpy(kaddr + (bh_result->b_size * iblock),
113                                buffer_cache_bh->b_data,
114                                bh_result->b_size);
115                         kunmap_atomic(kaddr);
116                         set_buffer_uptodate(bh_result);
117                 }
118                 brelse(buffer_cache_bh);
119         }
120
121         map_bh(bh_result, inode->i_sb,
122                le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
123
124         err = 0;
125
126 bail:
127         brelse(bh);
128
129         return err;
130 }
131
132 int ocfs2_get_block(struct inode *inode, sector_t iblock,
133                     struct buffer_head *bh_result, int create)
134 {
135         int err = 0;
136         unsigned int ext_flags;
137         u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
138         u64 p_blkno, count, past_eof;
139         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
140
141         trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
142                               (unsigned long long)iblock, bh_result, create);
143
144         if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
145                 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
146                      inode, inode->i_ino);
147
148         if (S_ISLNK(inode->i_mode)) {
149                 /* this always does I/O for some reason. */
150                 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
151                 goto bail;
152         }
153
154         err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
155                                           &ext_flags);
156         if (err) {
157                 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
158                      "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
159                      (unsigned long long)p_blkno);
160                 goto bail;
161         }
162
163         if (max_blocks < count)
164                 count = max_blocks;
165
166         /*
167          * ocfs2 never allocates in this function - the only time we
168          * need to use BH_New is when we're extending i_size on a file
169          * system which doesn't support holes, in which case BH_New
170          * allows __block_write_begin() to zero.
171          *
172          * If we see this on a sparse file system, then a truncate has
173          * raced us and removed the cluster. In this case, we clear
174          * the buffers dirty and uptodate bits and let the buffer code
175          * ignore it as a hole.
176          */
177         if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
178                 clear_buffer_dirty(bh_result);
179                 clear_buffer_uptodate(bh_result);
180                 goto bail;
181         }
182
183         /* Treat the unwritten extent as a hole for zeroing purposes. */
184         if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
185                 map_bh(bh_result, inode->i_sb, p_blkno);
186
187         bh_result->b_size = count << inode->i_blkbits;
188
189         if (!ocfs2_sparse_alloc(osb)) {
190                 if (p_blkno == 0) {
191                         err = -EIO;
192                         mlog(ML_ERROR,
193                              "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
194                              (unsigned long long)iblock,
195                              (unsigned long long)p_blkno,
196                              (unsigned long long)OCFS2_I(inode)->ip_blkno);
197                         mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
198                         dump_stack();
199                         goto bail;
200                 }
201         }
202
203         past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
204
205         trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
206                                   (unsigned long long)past_eof);
207         if (create && (iblock >= past_eof))
208                 set_buffer_new(bh_result);
209
210 bail:
211         if (err < 0)
212                 err = -EIO;
213
214         return err;
215 }
216
217 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
218                            struct buffer_head *di_bh)
219 {
220         void *kaddr;
221         loff_t size;
222         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
223
224         if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
225                 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
226                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
227                 return -EROFS;
228         }
229
230         size = i_size_read(inode);
231
232         if (size > PAGE_CACHE_SIZE ||
233             size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
234                 ocfs2_error(inode->i_sb,
235                             "Inode %llu has with inline data has bad size: %Lu",
236                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
237                             (unsigned long long)size);
238                 return -EROFS;
239         }
240
241         kaddr = kmap_atomic(page);
242         if (size)
243                 memcpy(kaddr, di->id2.i_data.id_data, size);
244         /* Clear the remaining part of the page */
245         memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
246         flush_dcache_page(page);
247         kunmap_atomic(kaddr);
248
249         SetPageUptodate(page);
250
251         return 0;
252 }
253
254 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
255 {
256         int ret;
257         struct buffer_head *di_bh = NULL;
258
259         BUG_ON(!PageLocked(page));
260         BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
261
262         ret = ocfs2_read_inode_block(inode, &di_bh);
263         if (ret) {
264                 mlog_errno(ret);
265                 goto out;
266         }
267
268         ret = ocfs2_read_inline_data(inode, page, di_bh);
269 out:
270         unlock_page(page);
271
272         brelse(di_bh);
273         return ret;
274 }
275
276 static int ocfs2_readpage(struct file *file, struct page *page)
277 {
278         struct inode *inode = page->mapping->host;
279         struct ocfs2_inode_info *oi = OCFS2_I(inode);
280         loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
281         int ret, unlock = 1;
282
283         trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
284                              (page ? page->index : 0));
285
286         ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
287         if (ret != 0) {
288                 if (ret == AOP_TRUNCATED_PAGE)
289                         unlock = 0;
290                 mlog_errno(ret);
291                 goto out;
292         }
293
294         if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
295                 /*
296                  * Unlock the page and cycle ip_alloc_sem so that we don't
297                  * busyloop waiting for ip_alloc_sem to unlock
298                  */
299                 ret = AOP_TRUNCATED_PAGE;
300                 unlock_page(page);
301                 unlock = 0;
302                 down_read(&oi->ip_alloc_sem);
303                 up_read(&oi->ip_alloc_sem);
304                 goto out_inode_unlock;
305         }
306
307         /*
308          * i_size might have just been updated as we grabed the meta lock.  We
309          * might now be discovering a truncate that hit on another node.
310          * block_read_full_page->get_block freaks out if it is asked to read
311          * beyond the end of a file, so we check here.  Callers
312          * (generic_file_read, vm_ops->fault) are clever enough to check i_size
313          * and notice that the page they just read isn't needed.
314          *
315          * XXX sys_readahead() seems to get that wrong?
316          */
317         if (start >= i_size_read(inode)) {
318                 zero_user(page, 0, PAGE_SIZE);
319                 SetPageUptodate(page);
320                 ret = 0;
321                 goto out_alloc;
322         }
323
324         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
325                 ret = ocfs2_readpage_inline(inode, page);
326         else
327                 ret = block_read_full_page(page, ocfs2_get_block);
328         unlock = 0;
329
330 out_alloc:
331         up_read(&OCFS2_I(inode)->ip_alloc_sem);
332 out_inode_unlock:
333         ocfs2_inode_unlock(inode, 0);
334 out:
335         if (unlock)
336                 unlock_page(page);
337         return ret;
338 }
339
340 /*
341  * This is used only for read-ahead. Failures or difficult to handle
342  * situations are safe to ignore.
343  *
344  * Right now, we don't bother with BH_Boundary - in-inode extent lists
345  * are quite large (243 extents on 4k blocks), so most inodes don't
346  * grow out to a tree. If need be, detecting boundary extents could
347  * trivially be added in a future version of ocfs2_get_block().
348  */
349 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
350                            struct list_head *pages, unsigned nr_pages)
351 {
352         int ret, err = -EIO;
353         struct inode *inode = mapping->host;
354         struct ocfs2_inode_info *oi = OCFS2_I(inode);
355         loff_t start;
356         struct page *last;
357
358         /*
359          * Use the nonblocking flag for the dlm code to avoid page
360          * lock inversion, but don't bother with retrying.
361          */
362         ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
363         if (ret)
364                 return err;
365
366         if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
367                 ocfs2_inode_unlock(inode, 0);
368                 return err;
369         }
370
371         /*
372          * Don't bother with inline-data. There isn't anything
373          * to read-ahead in that case anyway...
374          */
375         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
376                 goto out_unlock;
377
378         /*
379          * Check whether a remote node truncated this file - we just
380          * drop out in that case as it's not worth handling here.
381          */
382         last = list_entry(pages->prev, struct page, lru);
383         start = (loff_t)last->index << PAGE_CACHE_SHIFT;
384         if (start >= i_size_read(inode))
385                 goto out_unlock;
386
387         err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
388
389 out_unlock:
390         up_read(&oi->ip_alloc_sem);
391         ocfs2_inode_unlock(inode, 0);
392
393         return err;
394 }
395
396 /* Note: Because we don't support holes, our allocation has
397  * already happened (allocation writes zeros to the file data)
398  * so we don't have to worry about ordered writes in
399  * ocfs2_writepage.
400  *
401  * ->writepage is called during the process of invalidating the page cache
402  * during blocked lock processing.  It can't block on any cluster locks
403  * to during block mapping.  It's relying on the fact that the block
404  * mapping can't have disappeared under the dirty pages that it is
405  * being asked to write back.
406  */
407 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
408 {
409         trace_ocfs2_writepage(
410                 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
411                 page->index);
412
413         return block_write_full_page(page, ocfs2_get_block, wbc);
414 }
415
416 /* Taken from ext3. We don't necessarily need the full blown
417  * functionality yet, but IMHO it's better to cut and paste the whole
418  * thing so we can avoid introducing our own bugs (and easily pick up
419  * their fixes when they happen) --Mark */
420 int walk_page_buffers(  handle_t *handle,
421                         struct buffer_head *head,
422                         unsigned from,
423                         unsigned to,
424                         int *partial,
425                         int (*fn)(      handle_t *handle,
426                                         struct buffer_head *bh))
427 {
428         struct buffer_head *bh;
429         unsigned block_start, block_end;
430         unsigned blocksize = head->b_size;
431         int err, ret = 0;
432         struct buffer_head *next;
433
434         for (   bh = head, block_start = 0;
435                 ret == 0 && (bh != head || !block_start);
436                 block_start = block_end, bh = next)
437         {
438                 next = bh->b_this_page;
439                 block_end = block_start + blocksize;
440                 if (block_end <= from || block_start >= to) {
441                         if (partial && !buffer_uptodate(bh))
442                                 *partial = 1;
443                         continue;
444                 }
445                 err = (*fn)(handle, bh);
446                 if (!ret)
447                         ret = err;
448         }
449         return ret;
450 }
451
452 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
453 {
454         sector_t status;
455         u64 p_blkno = 0;
456         int err = 0;
457         struct inode *inode = mapping->host;
458
459         trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
460                          (unsigned long long)block);
461
462         /* We don't need to lock journal system files, since they aren't
463          * accessed concurrently from multiple nodes.
464          */
465         if (!INODE_JOURNAL(inode)) {
466                 err = ocfs2_inode_lock(inode, NULL, 0);
467                 if (err) {
468                         if (err != -ENOENT)
469                                 mlog_errno(err);
470                         goto bail;
471                 }
472                 down_read(&OCFS2_I(inode)->ip_alloc_sem);
473         }
474
475         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
476                 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
477                                                   NULL);
478
479         if (!INODE_JOURNAL(inode)) {
480                 up_read(&OCFS2_I(inode)->ip_alloc_sem);
481                 ocfs2_inode_unlock(inode, 0);
482         }
483
484         if (err) {
485                 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
486                      (unsigned long long)block);
487                 mlog_errno(err);
488                 goto bail;
489         }
490
491 bail:
492         status = err ? 0 : p_blkno;
493
494         return status;
495 }
496
497 /*
498  * TODO: Make this into a generic get_blocks function.
499  *
500  * From do_direct_io in direct-io.c:
501  *  "So what we do is to permit the ->get_blocks function to populate
502  *   bh.b_size with the size of IO which is permitted at this offset and
503  *   this i_blkbits."
504  *
505  * This function is called directly from get_more_blocks in direct-io.c.
506  *
507  * called like this: dio->get_blocks(dio->inode, fs_startblk,
508  *                                      fs_count, map_bh, dio->rw == WRITE);
509  *
510  * Note that we never bother to allocate blocks here, and thus ignore the
511  * create argument.
512  */
513 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
514                                      struct buffer_head *bh_result, int create)
515 {
516         int ret;
517         u64 p_blkno, inode_blocks, contig_blocks;
518         unsigned int ext_flags;
519         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
520         unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
521
522         /* This function won't even be called if the request isn't all
523          * nicely aligned and of the right size, so there's no need
524          * for us to check any of that. */
525
526         inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
527
528         /* This figures out the size of the next contiguous block, and
529          * our logical offset */
530         ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
531                                           &contig_blocks, &ext_flags);
532         if (ret) {
533                 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
534                      (unsigned long long)iblock);
535                 ret = -EIO;
536                 goto bail;
537         }
538
539         /* We should already CoW the refcounted extent in case of create. */
540         BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
541
542         /*
543          * get_more_blocks() expects us to describe a hole by clearing
544          * the mapped bit on bh_result().
545          *
546          * Consider an unwritten extent as a hole.
547          */
548         if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
549                 map_bh(bh_result, inode->i_sb, p_blkno);
550         else
551                 clear_buffer_mapped(bh_result);
552
553         /* make sure we don't map more than max_blocks blocks here as
554            that's all the kernel will handle at this point. */
555         if (max_blocks < contig_blocks)
556                 contig_blocks = max_blocks;
557         bh_result->b_size = contig_blocks << blocksize_bits;
558 bail:
559         return ret;
560 }
561
562 /*
563  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
564  * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
565  * to protect io on one node from truncation on another.
566  */
567 static void ocfs2_dio_end_io(struct kiocb *iocb,
568                              loff_t offset,
569                              ssize_t bytes,
570                              void *private)
571 {
572         struct inode *inode = file_inode(iocb->ki_filp);
573         int level;
574
575         /* this io's submitter should not have unlocked this before we could */
576         BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
577
578         if (ocfs2_iocb_is_sem_locked(iocb))
579                 ocfs2_iocb_clear_sem_locked(iocb);
580
581         if (ocfs2_iocb_is_unaligned_aio(iocb)) {
582                 ocfs2_iocb_clear_unaligned_aio(iocb);
583
584                 mutex_unlock(&OCFS2_I(inode)->ip_unaligned_aio);
585         }
586
587         ocfs2_iocb_clear_rw_locked(iocb);
588
589         level = ocfs2_iocb_rw_locked_level(iocb);
590         ocfs2_rw_unlock(inode, level);
591 }
592
593 static int ocfs2_releasepage(struct page *page, gfp_t wait)
594 {
595         if (!page_has_buffers(page))
596                 return 0;
597         return try_to_free_buffers(page);
598 }
599
600 static ssize_t ocfs2_direct_IO(int rw,
601                                struct kiocb *iocb,
602                                struct iov_iter *iter,
603                                loff_t offset)
604 {
605         struct file *file = iocb->ki_filp;
606         struct inode *inode = file_inode(file)->i_mapping->host;
607
608         /*
609          * Fallback to buffered I/O if we see an inode without
610          * extents.
611          */
612         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
613                 return 0;
614
615         /* Fallback to buffered I/O if we are appending. */
616         if (i_size_read(inode) <= offset)
617                 return 0;
618
619         return __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev,
620                                     iter, offset,
621                                     ocfs2_direct_IO_get_blocks,
622                                     ocfs2_dio_end_io, NULL, 0);
623 }
624
625 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
626                                             u32 cpos,
627                                             unsigned int *start,
628                                             unsigned int *end)
629 {
630         unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
631
632         if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
633                 unsigned int cpp;
634
635                 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
636
637                 cluster_start = cpos % cpp;
638                 cluster_start = cluster_start << osb->s_clustersize_bits;
639
640                 cluster_end = cluster_start + osb->s_clustersize;
641         }
642
643         BUG_ON(cluster_start > PAGE_SIZE);
644         BUG_ON(cluster_end > PAGE_SIZE);
645
646         if (start)
647                 *start = cluster_start;
648         if (end)
649                 *end = cluster_end;
650 }
651
652 /*
653  * 'from' and 'to' are the region in the page to avoid zeroing.
654  *
655  * If pagesize > clustersize, this function will avoid zeroing outside
656  * of the cluster boundary.
657  *
658  * from == to == 0 is code for "zero the entire cluster region"
659  */
660 static void ocfs2_clear_page_regions(struct page *page,
661                                      struct ocfs2_super *osb, u32 cpos,
662                                      unsigned from, unsigned to)
663 {
664         void *kaddr;
665         unsigned int cluster_start, cluster_end;
666
667         ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
668
669         kaddr = kmap_atomic(page);
670
671         if (from || to) {
672                 if (from > cluster_start)
673                         memset(kaddr + cluster_start, 0, from - cluster_start);
674                 if (to < cluster_end)
675                         memset(kaddr + to, 0, cluster_end - to);
676         } else {
677                 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
678         }
679
680         kunmap_atomic(kaddr);
681 }
682
683 /*
684  * Nonsparse file systems fully allocate before we get to the write
685  * code. This prevents ocfs2_write() from tagging the write as an
686  * allocating one, which means ocfs2_map_page_blocks() might try to
687  * read-in the blocks at the tail of our file. Avoid reading them by
688  * testing i_size against each block offset.
689  */
690 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
691                                  unsigned int block_start)
692 {
693         u64 offset = page_offset(page) + block_start;
694
695         if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
696                 return 1;
697
698         if (i_size_read(inode) > offset)
699                 return 1;
700
701         return 0;
702 }
703
704 /*
705  * Some of this taken from __block_write_begin(). We already have our
706  * mapping by now though, and the entire write will be allocating or
707  * it won't, so not much need to use BH_New.
708  *
709  * This will also skip zeroing, which is handled externally.
710  */
711 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
712                           struct inode *inode, unsigned int from,
713                           unsigned int to, int new)
714 {
715         int ret = 0;
716         struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
717         unsigned int block_end, block_start;
718         unsigned int bsize = 1 << inode->i_blkbits;
719
720         if (!page_has_buffers(page))
721                 create_empty_buffers(page, bsize, 0);
722
723         head = page_buffers(page);
724         for (bh = head, block_start = 0; bh != head || !block_start;
725              bh = bh->b_this_page, block_start += bsize) {
726                 block_end = block_start + bsize;
727
728                 clear_buffer_new(bh);
729
730                 /*
731                  * Ignore blocks outside of our i/o range -
732                  * they may belong to unallocated clusters.
733                  */
734                 if (block_start >= to || block_end <= from) {
735                         if (PageUptodate(page))
736                                 set_buffer_uptodate(bh);
737                         continue;
738                 }
739
740                 /*
741                  * For an allocating write with cluster size >= page
742                  * size, we always write the entire page.
743                  */
744                 if (new)
745                         set_buffer_new(bh);
746
747                 if (!buffer_mapped(bh)) {
748                         map_bh(bh, inode->i_sb, *p_blkno);
749                         unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
750                 }
751
752                 if (PageUptodate(page)) {
753                         if (!buffer_uptodate(bh))
754                                 set_buffer_uptodate(bh);
755                 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
756                            !buffer_new(bh) &&
757                            ocfs2_should_read_blk(inode, page, block_start) &&
758                            (block_start < from || block_end > to)) {
759                         ll_rw_block(READ, 1, &bh);
760                         *wait_bh++=bh;
761                 }
762
763                 *p_blkno = *p_blkno + 1;
764         }
765
766         /*
767          * If we issued read requests - let them complete.
768          */
769         while(wait_bh > wait) {
770                 wait_on_buffer(*--wait_bh);
771                 if (!buffer_uptodate(*wait_bh))
772                         ret = -EIO;
773         }
774
775         if (ret == 0 || !new)
776                 return ret;
777
778         /*
779          * If we get -EIO above, zero out any newly allocated blocks
780          * to avoid exposing stale data.
781          */
782         bh = head;
783         block_start = 0;
784         do {
785                 block_end = block_start + bsize;
786                 if (block_end <= from)
787                         goto next_bh;
788                 if (block_start >= to)
789                         break;
790
791                 zero_user(page, block_start, bh->b_size);
792                 set_buffer_uptodate(bh);
793                 mark_buffer_dirty(bh);
794
795 next_bh:
796                 block_start = block_end;
797                 bh = bh->b_this_page;
798         } while (bh != head);
799
800         return ret;
801 }
802
803 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
804 #define OCFS2_MAX_CTXT_PAGES    1
805 #else
806 #define OCFS2_MAX_CTXT_PAGES    (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
807 #endif
808
809 #define OCFS2_MAX_CLUSTERS_PER_PAGE     (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
810
811 /*
812  * Describe the state of a single cluster to be written to.
813  */
814 struct ocfs2_write_cluster_desc {
815         u32             c_cpos;
816         u32             c_phys;
817         /*
818          * Give this a unique field because c_phys eventually gets
819          * filled.
820          */
821         unsigned        c_new;
822         unsigned        c_unwritten;
823         unsigned        c_needs_zero;
824 };
825
826 struct ocfs2_write_ctxt {
827         /* Logical cluster position / len of write */
828         u32                             w_cpos;
829         u32                             w_clen;
830
831         /* First cluster allocated in a nonsparse extend */
832         u32                             w_first_new_cpos;
833
834         struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
835
836         /*
837          * This is true if page_size > cluster_size.
838          *
839          * It triggers a set of special cases during write which might
840          * have to deal with allocating writes to partial pages.
841          */
842         unsigned int                    w_large_pages;
843
844         /*
845          * Pages involved in this write.
846          *
847          * w_target_page is the page being written to by the user.
848          *
849          * w_pages is an array of pages which always contains
850          * w_target_page, and in the case of an allocating write with
851          * page_size < cluster size, it will contain zero'd and mapped
852          * pages adjacent to w_target_page which need to be written
853          * out in so that future reads from that region will get
854          * zero's.
855          */
856         unsigned int                    w_num_pages;
857         struct page                     *w_pages[OCFS2_MAX_CTXT_PAGES];
858         struct page                     *w_target_page;
859
860         /*
861          * w_target_locked is used for page_mkwrite path indicating no unlocking
862          * against w_target_page in ocfs2_write_end_nolock.
863          */
864         unsigned int                    w_target_locked:1;
865
866         /*
867          * ocfs2_write_end() uses this to know what the real range to
868          * write in the target should be.
869          */
870         unsigned int                    w_target_from;
871         unsigned int                    w_target_to;
872
873         /*
874          * We could use journal_current_handle() but this is cleaner,
875          * IMHO -Mark
876          */
877         handle_t                        *w_handle;
878
879         struct buffer_head              *w_di_bh;
880
881         struct ocfs2_cached_dealloc_ctxt w_dealloc;
882 };
883
884 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
885 {
886         int i;
887
888         for(i = 0; i < num_pages; i++) {
889                 if (pages[i]) {
890                         unlock_page(pages[i]);
891                         mark_page_accessed(pages[i]);
892                         page_cache_release(pages[i]);
893                 }
894         }
895 }
896
897 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
898 {
899         int i;
900
901         /*
902          * w_target_locked is only set to true in the page_mkwrite() case.
903          * The intent is to allow us to lock the target page from write_begin()
904          * to write_end(). The caller must hold a ref on w_target_page.
905          */
906         if (wc->w_target_locked) {
907                 BUG_ON(!wc->w_target_page);
908                 for (i = 0; i < wc->w_num_pages; i++) {
909                         if (wc->w_target_page == wc->w_pages[i]) {
910                                 wc->w_pages[i] = NULL;
911                                 break;
912                         }
913                 }
914                 mark_page_accessed(wc->w_target_page);
915                 page_cache_release(wc->w_target_page);
916         }
917         ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
918
919         brelse(wc->w_di_bh);
920         kfree(wc);
921 }
922
923 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
924                                   struct ocfs2_super *osb, loff_t pos,
925                                   unsigned len, struct buffer_head *di_bh)
926 {
927         u32 cend;
928         struct ocfs2_write_ctxt *wc;
929
930         wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
931         if (!wc)
932                 return -ENOMEM;
933
934         wc->w_cpos = pos >> osb->s_clustersize_bits;
935         wc->w_first_new_cpos = UINT_MAX;
936         cend = (pos + len - 1) >> osb->s_clustersize_bits;
937         wc->w_clen = cend - wc->w_cpos + 1;
938         get_bh(di_bh);
939         wc->w_di_bh = di_bh;
940
941         if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
942                 wc->w_large_pages = 1;
943         else
944                 wc->w_large_pages = 0;
945
946         ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
947
948         *wcp = wc;
949
950         return 0;
951 }
952
953 /*
954  * If a page has any new buffers, zero them out here, and mark them uptodate
955  * and dirty so they'll be written out (in order to prevent uninitialised
956  * block data from leaking). And clear the new bit.
957  */
958 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
959 {
960         unsigned int block_start, block_end;
961         struct buffer_head *head, *bh;
962
963         BUG_ON(!PageLocked(page));
964         if (!page_has_buffers(page))
965                 return;
966
967         bh = head = page_buffers(page);
968         block_start = 0;
969         do {
970                 block_end = block_start + bh->b_size;
971
972                 if (buffer_new(bh)) {
973                         if (block_end > from && block_start < to) {
974                                 if (!PageUptodate(page)) {
975                                         unsigned start, end;
976
977                                         start = max(from, block_start);
978                                         end = min(to, block_end);
979
980                                         zero_user_segment(page, start, end);
981                                         set_buffer_uptodate(bh);
982                                 }
983
984                                 clear_buffer_new(bh);
985                                 mark_buffer_dirty(bh);
986                         }
987                 }
988
989                 block_start = block_end;
990                 bh = bh->b_this_page;
991         } while (bh != head);
992 }
993
994 /*
995  * Only called when we have a failure during allocating write to write
996  * zero's to the newly allocated region.
997  */
998 static void ocfs2_write_failure(struct inode *inode,
999                                 struct ocfs2_write_ctxt *wc,
1000                                 loff_t user_pos, unsigned user_len)
1001 {
1002         int i;
1003         unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1004                 to = user_pos + user_len;
1005         struct page *tmppage;
1006
1007         ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1008
1009         for(i = 0; i < wc->w_num_pages; i++) {
1010                 tmppage = wc->w_pages[i];
1011
1012                 if (page_has_buffers(tmppage)) {
1013                         if (ocfs2_should_order_data(inode))
1014                                 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1015
1016                         block_commit_write(tmppage, from, to);
1017                 }
1018         }
1019 }
1020
1021 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1022                                         struct ocfs2_write_ctxt *wc,
1023                                         struct page *page, u32 cpos,
1024                                         loff_t user_pos, unsigned user_len,
1025                                         int new)
1026 {
1027         int ret;
1028         unsigned int map_from = 0, map_to = 0;
1029         unsigned int cluster_start, cluster_end;
1030         unsigned int user_data_from = 0, user_data_to = 0;
1031
1032         ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1033                                         &cluster_start, &cluster_end);
1034
1035         /* treat the write as new if the a hole/lseek spanned across
1036          * the page boundary.
1037          */
1038         new = new | ((i_size_read(inode) <= page_offset(page)) &&
1039                         (page_offset(page) <= user_pos));
1040
1041         if (page == wc->w_target_page) {
1042                 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1043                 map_to = map_from + user_len;
1044
1045                 if (new)
1046                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1047                                                     cluster_start, cluster_end,
1048                                                     new);
1049                 else
1050                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1051                                                     map_from, map_to, new);
1052                 if (ret) {
1053                         mlog_errno(ret);
1054                         goto out;
1055                 }
1056
1057                 user_data_from = map_from;
1058                 user_data_to = map_to;
1059                 if (new) {
1060                         map_from = cluster_start;
1061                         map_to = cluster_end;
1062                 }
1063         } else {
1064                 /*
1065                  * If we haven't allocated the new page yet, we
1066                  * shouldn't be writing it out without copying user
1067                  * data. This is likely a math error from the caller.
1068                  */
1069                 BUG_ON(!new);
1070
1071                 map_from = cluster_start;
1072                 map_to = cluster_end;
1073
1074                 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1075                                             cluster_start, cluster_end, new);
1076                 if (ret) {
1077                         mlog_errno(ret);
1078                         goto out;
1079                 }
1080         }
1081
1082         /*
1083          * Parts of newly allocated pages need to be zero'd.
1084          *
1085          * Above, we have also rewritten 'to' and 'from' - as far as
1086          * the rest of the function is concerned, the entire cluster
1087          * range inside of a page needs to be written.
1088          *
1089          * We can skip this if the page is up to date - it's already
1090          * been zero'd from being read in as a hole.
1091          */
1092         if (new && !PageUptodate(page))
1093                 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1094                                          cpos, user_data_from, user_data_to);
1095
1096         flush_dcache_page(page);
1097
1098 out:
1099         return ret;
1100 }
1101
1102 /*
1103  * This function will only grab one clusters worth of pages.
1104  */
1105 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1106                                       struct ocfs2_write_ctxt *wc,
1107                                       u32 cpos, loff_t user_pos,
1108                                       unsigned user_len, int new,
1109                                       struct page *mmap_page)
1110 {
1111         int ret = 0, i;
1112         unsigned long start, target_index, end_index, index;
1113         struct inode *inode = mapping->host;
1114         loff_t last_byte;
1115
1116         target_index = user_pos >> PAGE_CACHE_SHIFT;
1117
1118         /*
1119          * Figure out how many pages we'll be manipulating here. For
1120          * non allocating write, we just change the one
1121          * page. Otherwise, we'll need a whole clusters worth.  If we're
1122          * writing past i_size, we only need enough pages to cover the
1123          * last page of the write.
1124          */
1125         if (new) {
1126                 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1127                 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1128                 /*
1129                  * We need the index *past* the last page we could possibly
1130                  * touch.  This is the page past the end of the write or
1131                  * i_size, whichever is greater.
1132                  */
1133                 last_byte = max(user_pos + user_len, i_size_read(inode));
1134                 BUG_ON(last_byte < 1);
1135                 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1136                 if ((start + wc->w_num_pages) > end_index)
1137                         wc->w_num_pages = end_index - start;
1138         } else {
1139                 wc->w_num_pages = 1;
1140                 start = target_index;
1141         }
1142
1143         for(i = 0; i < wc->w_num_pages; i++) {
1144                 index = start + i;
1145
1146                 if (index == target_index && mmap_page) {
1147                         /*
1148                          * ocfs2_pagemkwrite() is a little different
1149                          * and wants us to directly use the page
1150                          * passed in.
1151                          */
1152                         lock_page(mmap_page);
1153
1154                         /* Exit and let the caller retry */
1155                         if (mmap_page->mapping != mapping) {
1156                                 WARN_ON(mmap_page->mapping);
1157                                 unlock_page(mmap_page);
1158                                 ret = -EAGAIN;
1159                                 goto out;
1160                         }
1161
1162                         page_cache_get(mmap_page);
1163                         wc->w_pages[i] = mmap_page;
1164                         wc->w_target_locked = true;
1165                 } else {
1166                         wc->w_pages[i] = find_or_create_page(mapping, index,
1167                                                              GFP_NOFS);
1168                         if (!wc->w_pages[i]) {
1169                                 ret = -ENOMEM;
1170                                 mlog_errno(ret);
1171                                 goto out;
1172                         }
1173                 }
1174                 wait_for_stable_page(wc->w_pages[i]);
1175
1176                 if (index == target_index)
1177                         wc->w_target_page = wc->w_pages[i];
1178         }
1179 out:
1180         if (ret)
1181                 wc->w_target_locked = false;
1182         return ret;
1183 }
1184
1185 /*
1186  * Prepare a single cluster for write one cluster into the file.
1187  */
1188 static int ocfs2_write_cluster(struct address_space *mapping,
1189                                u32 phys, unsigned int unwritten,
1190                                unsigned int should_zero,
1191                                struct ocfs2_alloc_context *data_ac,
1192                                struct ocfs2_alloc_context *meta_ac,
1193                                struct ocfs2_write_ctxt *wc, u32 cpos,
1194                                loff_t user_pos, unsigned user_len)
1195 {
1196         int ret, i, new;
1197         u64 v_blkno, p_blkno;
1198         struct inode *inode = mapping->host;
1199         struct ocfs2_extent_tree et;
1200
1201         new = phys == 0 ? 1 : 0;
1202         if (new) {
1203                 u32 tmp_pos;
1204
1205                 /*
1206                  * This is safe to call with the page locks - it won't take
1207                  * any additional semaphores or cluster locks.
1208                  */
1209                 tmp_pos = cpos;
1210                 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1211                                            &tmp_pos, 1, 0, wc->w_di_bh,
1212                                            wc->w_handle, data_ac,
1213                                            meta_ac, NULL);
1214                 /*
1215                  * This shouldn't happen because we must have already
1216                  * calculated the correct meta data allocation required. The
1217                  * internal tree allocation code should know how to increase
1218                  * transaction credits itself.
1219                  *
1220                  * If need be, we could handle -EAGAIN for a
1221                  * RESTART_TRANS here.
1222                  */
1223                 mlog_bug_on_msg(ret == -EAGAIN,
1224                                 "Inode %llu: EAGAIN return during allocation.\n",
1225                                 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1226                 if (ret < 0) {
1227                         mlog_errno(ret);
1228                         goto out;
1229                 }
1230         } else if (unwritten) {
1231                 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1232                                               wc->w_di_bh);
1233                 ret = ocfs2_mark_extent_written(inode, &et,
1234                                                 wc->w_handle, cpos, 1, phys,
1235                                                 meta_ac, &wc->w_dealloc);
1236                 if (ret < 0) {
1237                         mlog_errno(ret);
1238                         goto out;
1239                 }
1240         }
1241
1242         if (should_zero)
1243                 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1244         else
1245                 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1246
1247         /*
1248          * The only reason this should fail is due to an inability to
1249          * find the extent added.
1250          */
1251         ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1252                                           NULL);
1253         if (ret < 0) {
1254                 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1255                             "at logical block %llu",
1256                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
1257                             (unsigned long long)v_blkno);
1258                 goto out;
1259         }
1260
1261         BUG_ON(p_blkno == 0);
1262
1263         for(i = 0; i < wc->w_num_pages; i++) {
1264                 int tmpret;
1265
1266                 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1267                                                       wc->w_pages[i], cpos,
1268                                                       user_pos, user_len,
1269                                                       should_zero);
1270                 if (tmpret) {
1271                         mlog_errno(tmpret);
1272                         if (ret == 0)
1273                                 ret = tmpret;
1274                 }
1275         }
1276
1277         /*
1278          * We only have cleanup to do in case of allocating write.
1279          */
1280         if (ret && new)
1281                 ocfs2_write_failure(inode, wc, user_pos, user_len);
1282
1283 out:
1284
1285         return ret;
1286 }
1287
1288 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1289                                        struct ocfs2_alloc_context *data_ac,
1290                                        struct ocfs2_alloc_context *meta_ac,
1291                                        struct ocfs2_write_ctxt *wc,
1292                                        loff_t pos, unsigned len)
1293 {
1294         int ret, i;
1295         loff_t cluster_off;
1296         unsigned int local_len = len;
1297         struct ocfs2_write_cluster_desc *desc;
1298         struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1299
1300         for (i = 0; i < wc->w_clen; i++) {
1301                 desc = &wc->w_desc[i];
1302
1303                 /*
1304                  * We have to make sure that the total write passed in
1305                  * doesn't extend past a single cluster.
1306                  */
1307                 local_len = len;
1308                 cluster_off = pos & (osb->s_clustersize - 1);
1309                 if ((cluster_off + local_len) > osb->s_clustersize)
1310                         local_len = osb->s_clustersize - cluster_off;
1311
1312                 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1313                                           desc->c_unwritten,
1314                                           desc->c_needs_zero,
1315                                           data_ac, meta_ac,
1316                                           wc, desc->c_cpos, pos, local_len);
1317                 if (ret) {
1318                         mlog_errno(ret);
1319                         goto out;
1320                 }
1321
1322                 len -= local_len;
1323                 pos += local_len;
1324         }
1325
1326         ret = 0;
1327 out:
1328         return ret;
1329 }
1330
1331 /*
1332  * ocfs2_write_end() wants to know which parts of the target page it
1333  * should complete the write on. It's easiest to compute them ahead of
1334  * time when a more complete view of the write is available.
1335  */
1336 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1337                                         struct ocfs2_write_ctxt *wc,
1338                                         loff_t pos, unsigned len, int alloc)
1339 {
1340         struct ocfs2_write_cluster_desc *desc;
1341
1342         wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1343         wc->w_target_to = wc->w_target_from + len;
1344
1345         if (alloc == 0)
1346                 return;
1347
1348         /*
1349          * Allocating write - we may have different boundaries based
1350          * on page size and cluster size.
1351          *
1352          * NOTE: We can no longer compute one value from the other as
1353          * the actual write length and user provided length may be
1354          * different.
1355          */
1356
1357         if (wc->w_large_pages) {
1358                 /*
1359                  * We only care about the 1st and last cluster within
1360                  * our range and whether they should be zero'd or not. Either
1361                  * value may be extended out to the start/end of a
1362                  * newly allocated cluster.
1363                  */
1364                 desc = &wc->w_desc[0];
1365                 if (desc->c_needs_zero)
1366                         ocfs2_figure_cluster_boundaries(osb,
1367                                                         desc->c_cpos,
1368                                                         &wc->w_target_from,
1369                                                         NULL);
1370
1371                 desc = &wc->w_desc[wc->w_clen - 1];
1372                 if (desc->c_needs_zero)
1373                         ocfs2_figure_cluster_boundaries(osb,
1374                                                         desc->c_cpos,
1375                                                         NULL,
1376                                                         &wc->w_target_to);
1377         } else {
1378                 wc->w_target_from = 0;
1379                 wc->w_target_to = PAGE_CACHE_SIZE;
1380         }
1381 }
1382
1383 /*
1384  * Populate each single-cluster write descriptor in the write context
1385  * with information about the i/o to be done.
1386  *
1387  * Returns the number of clusters that will have to be allocated, as
1388  * well as a worst case estimate of the number of extent records that
1389  * would have to be created during a write to an unwritten region.
1390  */
1391 static int ocfs2_populate_write_desc(struct inode *inode,
1392                                      struct ocfs2_write_ctxt *wc,
1393                                      unsigned int *clusters_to_alloc,
1394                                      unsigned int *extents_to_split)
1395 {
1396         int ret;
1397         struct ocfs2_write_cluster_desc *desc;
1398         unsigned int num_clusters = 0;
1399         unsigned int ext_flags = 0;
1400         u32 phys = 0;
1401         int i;
1402
1403         *clusters_to_alloc = 0;
1404         *extents_to_split = 0;
1405
1406         for (i = 0; i < wc->w_clen; i++) {
1407                 desc = &wc->w_desc[i];
1408                 desc->c_cpos = wc->w_cpos + i;
1409
1410                 if (num_clusters == 0) {
1411                         /*
1412                          * Need to look up the next extent record.
1413                          */
1414                         ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1415                                                  &num_clusters, &ext_flags);
1416                         if (ret) {
1417                                 mlog_errno(ret);
1418                                 goto out;
1419                         }
1420
1421                         /* We should already CoW the refcountd extent. */
1422                         BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1423
1424                         /*
1425                          * Assume worst case - that we're writing in
1426                          * the middle of the extent.
1427                          *
1428                          * We can assume that the write proceeds from
1429                          * left to right, in which case the extent
1430                          * insert code is smart enough to coalesce the
1431                          * next splits into the previous records created.
1432                          */
1433                         if (ext_flags & OCFS2_EXT_UNWRITTEN)
1434                                 *extents_to_split = *extents_to_split + 2;
1435                 } else if (phys) {
1436                         /*
1437                          * Only increment phys if it doesn't describe
1438                          * a hole.
1439                          */
1440                         phys++;
1441                 }
1442
1443                 /*
1444                  * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1445                  * file that got extended.  w_first_new_cpos tells us
1446                  * where the newly allocated clusters are so we can
1447                  * zero them.
1448                  */
1449                 if (desc->c_cpos >= wc->w_first_new_cpos) {
1450                         BUG_ON(phys == 0);
1451                         desc->c_needs_zero = 1;
1452                 }
1453
1454                 desc->c_phys = phys;
1455                 if (phys == 0) {
1456                         desc->c_new = 1;
1457                         desc->c_needs_zero = 1;
1458                         *clusters_to_alloc = *clusters_to_alloc + 1;
1459                 }
1460
1461                 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1462                         desc->c_unwritten = 1;
1463                         desc->c_needs_zero = 1;
1464                 }
1465
1466                 num_clusters--;
1467         }
1468
1469         ret = 0;
1470 out:
1471         return ret;
1472 }
1473
1474 static int ocfs2_write_begin_inline(struct address_space *mapping,
1475                                     struct inode *inode,
1476                                     struct ocfs2_write_ctxt *wc)
1477 {
1478         int ret;
1479         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1480         struct page *page;
1481         handle_t *handle;
1482         struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1483
1484         page = find_or_create_page(mapping, 0, GFP_NOFS);
1485         if (!page) {
1486                 ret = -ENOMEM;
1487                 mlog_errno(ret);
1488                 goto out;
1489         }
1490         /*
1491          * If we don't set w_num_pages then this page won't get unlocked
1492          * and freed on cleanup of the write context.
1493          */
1494         wc->w_pages[0] = wc->w_target_page = page;
1495         wc->w_num_pages = 1;
1496
1497         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1498         if (IS_ERR(handle)) {
1499                 ret = PTR_ERR(handle);
1500                 mlog_errno(ret);
1501                 goto out;
1502         }
1503
1504         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1505                                       OCFS2_JOURNAL_ACCESS_WRITE);
1506         if (ret) {
1507                 ocfs2_commit_trans(osb, handle);
1508
1509                 mlog_errno(ret);
1510                 goto out;
1511         }
1512
1513         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1514                 ocfs2_set_inode_data_inline(inode, di);
1515
1516         if (!PageUptodate(page)) {
1517                 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1518                 if (ret) {
1519                         ocfs2_commit_trans(osb, handle);
1520
1521                         goto out;
1522                 }
1523         }
1524
1525         wc->w_handle = handle;
1526 out:
1527         return ret;
1528 }
1529
1530 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1531 {
1532         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1533
1534         if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1535                 return 1;
1536         return 0;
1537 }
1538
1539 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1540                                           struct inode *inode, loff_t pos,
1541                                           unsigned len, struct page *mmap_page,
1542                                           struct ocfs2_write_ctxt *wc)
1543 {
1544         int ret, written = 0;
1545         loff_t end = pos + len;
1546         struct ocfs2_inode_info *oi = OCFS2_I(inode);
1547         struct ocfs2_dinode *di = NULL;
1548
1549         trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1550                                              len, (unsigned long long)pos,
1551                                              oi->ip_dyn_features);
1552
1553         /*
1554          * Handle inodes which already have inline data 1st.
1555          */
1556         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1557                 if (mmap_page == NULL &&
1558                     ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1559                         goto do_inline_write;
1560
1561                 /*
1562                  * The write won't fit - we have to give this inode an
1563                  * inline extent list now.
1564                  */
1565                 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1566                 if (ret)
1567                         mlog_errno(ret);
1568                 goto out;
1569         }
1570
1571         /*
1572          * Check whether the inode can accept inline data.
1573          */
1574         if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1575                 return 0;
1576
1577         /*
1578          * Check whether the write can fit.
1579          */
1580         di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1581         if (mmap_page ||
1582             end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1583                 return 0;
1584
1585 do_inline_write:
1586         ret = ocfs2_write_begin_inline(mapping, inode, wc);
1587         if (ret) {
1588                 mlog_errno(ret);
1589                 goto out;
1590         }
1591
1592         /*
1593          * This signals to the caller that the data can be written
1594          * inline.
1595          */
1596         written = 1;
1597 out:
1598         return written ? written : ret;
1599 }
1600
1601 /*
1602  * This function only does anything for file systems which can't
1603  * handle sparse files.
1604  *
1605  * What we want to do here is fill in any hole between the current end
1606  * of allocation and the end of our write. That way the rest of the
1607  * write path can treat it as an non-allocating write, which has no
1608  * special case code for sparse/nonsparse files.
1609  */
1610 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1611                                         struct buffer_head *di_bh,
1612                                         loff_t pos, unsigned len,
1613                                         struct ocfs2_write_ctxt *wc)
1614 {
1615         int ret;
1616         loff_t newsize = pos + len;
1617
1618         BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1619
1620         if (newsize <= i_size_read(inode))
1621                 return 0;
1622
1623         ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1624         if (ret)
1625                 mlog_errno(ret);
1626
1627         wc->w_first_new_cpos =
1628                 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1629
1630         return ret;
1631 }
1632
1633 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1634                            loff_t pos)
1635 {
1636         int ret = 0;
1637
1638         BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1639         if (pos > i_size_read(inode))
1640                 ret = ocfs2_zero_extend(inode, di_bh, pos);
1641
1642         return ret;
1643 }
1644
1645 /*
1646  * Try to flush truncate logs if we can free enough clusters from it.
1647  * As for return value, "< 0" means error, "0" no space and "1" means
1648  * we have freed enough spaces and let the caller try to allocate again.
1649  */
1650 static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
1651                                           unsigned int needed)
1652 {
1653         tid_t target;
1654         int ret = 0;
1655         unsigned int truncated_clusters;
1656
1657         mutex_lock(&osb->osb_tl_inode->i_mutex);
1658         truncated_clusters = osb->truncated_clusters;
1659         mutex_unlock(&osb->osb_tl_inode->i_mutex);
1660
1661         /*
1662          * Check whether we can succeed in allocating if we free
1663          * the truncate log.
1664          */
1665         if (truncated_clusters < needed)
1666                 goto out;
1667
1668         ret = ocfs2_flush_truncate_log(osb);
1669         if (ret) {
1670                 mlog_errno(ret);
1671                 goto out;
1672         }
1673
1674         if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
1675                 jbd2_log_wait_commit(osb->journal->j_journal, target);
1676                 ret = 1;
1677         }
1678 out:
1679         return ret;
1680 }
1681
1682 int ocfs2_write_begin_nolock(struct file *filp,
1683                              struct address_space *mapping,
1684                              loff_t pos, unsigned len, unsigned flags,
1685                              struct page **pagep, void **fsdata,
1686                              struct buffer_head *di_bh, struct page *mmap_page)
1687 {
1688         int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1689         unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1690         struct ocfs2_write_ctxt *wc;
1691         struct inode *inode = mapping->host;
1692         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1693         struct ocfs2_dinode *di;
1694         struct ocfs2_alloc_context *data_ac = NULL;
1695         struct ocfs2_alloc_context *meta_ac = NULL;
1696         handle_t *handle;
1697         struct ocfs2_extent_tree et;
1698         int try_free = 1, ret1;
1699
1700 try_again:
1701         ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1702         if (ret) {
1703                 mlog_errno(ret);
1704                 return ret;
1705         }
1706
1707         if (ocfs2_supports_inline_data(osb)) {
1708                 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1709                                                      mmap_page, wc);
1710                 if (ret == 1) {
1711                         ret = 0;
1712                         goto success;
1713                 }
1714                 if (ret < 0) {
1715                         mlog_errno(ret);
1716                         goto out;
1717                 }
1718         }
1719
1720         if (ocfs2_sparse_alloc(osb))
1721                 ret = ocfs2_zero_tail(inode, di_bh, pos);
1722         else
1723                 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
1724                                                    wc);
1725         if (ret) {
1726                 mlog_errno(ret);
1727                 goto out;
1728         }
1729
1730         ret = ocfs2_check_range_for_refcount(inode, pos, len);
1731         if (ret < 0) {
1732                 mlog_errno(ret);
1733                 goto out;
1734         } else if (ret == 1) {
1735                 clusters_need = wc->w_clen;
1736                 ret = ocfs2_refcount_cow(inode, di_bh,
1737                                          wc->w_cpos, wc->w_clen, UINT_MAX);
1738                 if (ret) {
1739                         mlog_errno(ret);
1740                         goto out;
1741                 }
1742         }
1743
1744         ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1745                                         &extents_to_split);
1746         if (ret) {
1747                 mlog_errno(ret);
1748                 goto out;
1749         }
1750         clusters_need += clusters_to_alloc;
1751
1752         di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1753
1754         trace_ocfs2_write_begin_nolock(
1755                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
1756                         (long long)i_size_read(inode),
1757                         le32_to_cpu(di->i_clusters),
1758                         pos, len, flags, mmap_page,
1759                         clusters_to_alloc, extents_to_split);
1760
1761         /*
1762          * We set w_target_from, w_target_to here so that
1763          * ocfs2_write_end() knows which range in the target page to
1764          * write out. An allocation requires that we write the entire
1765          * cluster range.
1766          */
1767         if (clusters_to_alloc || extents_to_split) {
1768                 /*
1769                  * XXX: We are stretching the limits of
1770                  * ocfs2_lock_allocators(). It greatly over-estimates
1771                  * the work to be done.
1772                  */
1773                 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1774                                               wc->w_di_bh);
1775                 ret = ocfs2_lock_allocators(inode, &et,
1776                                             clusters_to_alloc, extents_to_split,
1777                                             &data_ac, &meta_ac);
1778                 if (ret) {
1779                         mlog_errno(ret);
1780                         goto out;
1781                 }
1782
1783                 if (data_ac)
1784                         data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1785
1786                 credits = ocfs2_calc_extend_credits(inode->i_sb,
1787                                                     &di->id2.i_list);
1788
1789         }
1790
1791         /*
1792          * We have to zero sparse allocated clusters, unwritten extent clusters,
1793          * and non-sparse clusters we just extended.  For non-sparse writes,
1794          * we know zeros will only be needed in the first and/or last cluster.
1795          */
1796         if (clusters_to_alloc || extents_to_split ||
1797             (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1798                             wc->w_desc[wc->w_clen - 1].c_needs_zero)))
1799                 cluster_of_pages = 1;
1800         else
1801                 cluster_of_pages = 0;
1802
1803         ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1804
1805         handle = ocfs2_start_trans(osb, credits);
1806         if (IS_ERR(handle)) {
1807                 ret = PTR_ERR(handle);
1808                 mlog_errno(ret);
1809                 goto out;
1810         }
1811
1812         wc->w_handle = handle;
1813
1814         if (clusters_to_alloc) {
1815                 ret = dquot_alloc_space_nodirty(inode,
1816                         ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1817                 if (ret)
1818                         goto out_commit;
1819         }
1820         /*
1821          * We don't want this to fail in ocfs2_write_end(), so do it
1822          * here.
1823          */
1824         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1825                                       OCFS2_JOURNAL_ACCESS_WRITE);
1826         if (ret) {
1827                 mlog_errno(ret);
1828                 goto out_quota;
1829         }
1830
1831         /*
1832          * Fill our page array first. That way we've grabbed enough so
1833          * that we can zero and flush if we error after adding the
1834          * extent.
1835          */
1836         ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1837                                          cluster_of_pages, mmap_page);
1838         if (ret && ret != -EAGAIN) {
1839                 mlog_errno(ret);
1840                 goto out_quota;
1841         }
1842
1843         /*
1844          * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1845          * the target page. In this case, we exit with no error and no target
1846          * page. This will trigger the caller, page_mkwrite(), to re-try
1847          * the operation.
1848          */
1849         if (ret == -EAGAIN) {
1850                 BUG_ON(wc->w_target_page);
1851                 ret = 0;
1852                 goto out_quota;
1853         }
1854
1855         ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1856                                           len);
1857         if (ret) {
1858                 mlog_errno(ret);
1859                 goto out_quota;
1860         }
1861
1862         if (data_ac)
1863                 ocfs2_free_alloc_context(data_ac);
1864         if (meta_ac)
1865                 ocfs2_free_alloc_context(meta_ac);
1866
1867 success:
1868         *pagep = wc->w_target_page;
1869         *fsdata = wc;
1870         return 0;
1871 out_quota:
1872         if (clusters_to_alloc)
1873                 dquot_free_space(inode,
1874                           ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1875 out_commit:
1876         ocfs2_commit_trans(osb, handle);
1877
1878 out:
1879         ocfs2_free_write_ctxt(wc);
1880
1881         if (data_ac) {
1882                 ocfs2_free_alloc_context(data_ac);
1883                 data_ac = NULL;
1884         }
1885         if (meta_ac) {
1886                 ocfs2_free_alloc_context(meta_ac);
1887                 meta_ac = NULL;
1888         }
1889
1890         if (ret == -ENOSPC && try_free) {
1891                 /*
1892                  * Try to free some truncate log so that we can have enough
1893                  * clusters to allocate.
1894                  */
1895                 try_free = 0;
1896
1897                 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1898                 if (ret1 == 1)
1899                         goto try_again;
1900
1901                 if (ret1 < 0)
1902                         mlog_errno(ret1);
1903         }
1904
1905         return ret;
1906 }
1907
1908 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1909                              loff_t pos, unsigned len, unsigned flags,
1910                              struct page **pagep, void **fsdata)
1911 {
1912         int ret;
1913         struct buffer_head *di_bh = NULL;
1914         struct inode *inode = mapping->host;
1915
1916         ret = ocfs2_inode_lock(inode, &di_bh, 1);
1917         if (ret) {
1918                 mlog_errno(ret);
1919                 return ret;
1920         }
1921
1922         /*
1923          * Take alloc sem here to prevent concurrent lookups. That way
1924          * the mapping, zeroing and tree manipulation within
1925          * ocfs2_write() will be safe against ->readpage(). This
1926          * should also serve to lock out allocation from a shared
1927          * writeable region.
1928          */
1929         down_write(&OCFS2_I(inode)->ip_alloc_sem);
1930
1931         ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
1932                                        fsdata, di_bh, NULL);
1933         if (ret) {
1934                 mlog_errno(ret);
1935                 goto out_fail;
1936         }
1937
1938         brelse(di_bh);
1939
1940         return 0;
1941
1942 out_fail:
1943         up_write(&OCFS2_I(inode)->ip_alloc_sem);
1944
1945         brelse(di_bh);
1946         ocfs2_inode_unlock(inode, 1);
1947
1948         return ret;
1949 }
1950
1951 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1952                                    unsigned len, unsigned *copied,
1953                                    struct ocfs2_dinode *di,
1954                                    struct ocfs2_write_ctxt *wc)
1955 {
1956         void *kaddr;
1957
1958         if (unlikely(*copied < len)) {
1959                 if (!PageUptodate(wc->w_target_page)) {
1960                         *copied = 0;
1961                         return;
1962                 }
1963         }
1964
1965         kaddr = kmap_atomic(wc->w_target_page);
1966         memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1967         kunmap_atomic(kaddr);
1968
1969         trace_ocfs2_write_end_inline(
1970              (unsigned long long)OCFS2_I(inode)->ip_blkno,
1971              (unsigned long long)pos, *copied,
1972              le16_to_cpu(di->id2.i_data.id_count),
1973              le16_to_cpu(di->i_dyn_features));
1974 }
1975
1976 int ocfs2_write_end_nolock(struct address_space *mapping,
1977                            loff_t pos, unsigned len, unsigned copied,
1978                            struct page *page, void *fsdata)
1979 {
1980         int i;
1981         unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1982         struct inode *inode = mapping->host;
1983         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1984         struct ocfs2_write_ctxt *wc = fsdata;
1985         struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1986         handle_t *handle = wc->w_handle;
1987         struct page *tmppage;
1988
1989         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1990                 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1991                 goto out_write_size;
1992         }
1993
1994         if (unlikely(copied < len)) {
1995                 if (!PageUptodate(wc->w_target_page))
1996                         copied = 0;
1997
1998                 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1999                                        start+len);
2000         }
2001         flush_dcache_page(wc->w_target_page);
2002
2003         for(i = 0; i < wc->w_num_pages; i++) {
2004                 tmppage = wc->w_pages[i];
2005
2006                 if (tmppage == wc->w_target_page) {
2007                         from = wc->w_target_from;
2008                         to = wc->w_target_to;
2009
2010                         BUG_ON(from > PAGE_CACHE_SIZE ||
2011                                to > PAGE_CACHE_SIZE ||
2012                                to < from);
2013                 } else {
2014                         /*
2015                          * Pages adjacent to the target (if any) imply
2016                          * a hole-filling write in which case we want
2017                          * to flush their entire range.
2018                          */
2019                         from = 0;
2020                         to = PAGE_CACHE_SIZE;
2021                 }
2022
2023                 if (page_has_buffers(tmppage)) {
2024                         if (ocfs2_should_order_data(inode))
2025                                 ocfs2_jbd2_file_inode(wc->w_handle, inode);
2026                         block_commit_write(tmppage, from, to);
2027                 }
2028         }
2029
2030 out_write_size:
2031         pos += copied;
2032         if (pos > i_size_read(inode)) {
2033                 i_size_write(inode, pos);
2034                 mark_inode_dirty(inode);
2035         }
2036         inode->i_blocks = ocfs2_inode_sector_count(inode);
2037         di->i_size = cpu_to_le64((u64)i_size_read(inode));
2038         inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2039         di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2040         di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2041         ocfs2_update_inode_fsync_trans(handle, inode, 1);
2042         ocfs2_journal_dirty(handle, wc->w_di_bh);
2043
2044         ocfs2_commit_trans(osb, handle);
2045
2046         ocfs2_run_deallocs(osb, &wc->w_dealloc);
2047
2048         ocfs2_free_write_ctxt(wc);
2049
2050         return copied;
2051 }
2052
2053 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2054                            loff_t pos, unsigned len, unsigned copied,
2055                            struct page *page, void *fsdata)
2056 {
2057         int ret;
2058         struct inode *inode = mapping->host;
2059
2060         ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2061
2062         up_write(&OCFS2_I(inode)->ip_alloc_sem);
2063         ocfs2_inode_unlock(inode, 1);
2064
2065         return ret;
2066 }
2067
2068 const struct address_space_operations ocfs2_aops = {
2069         .readpage               = ocfs2_readpage,
2070         .readpages              = ocfs2_readpages,
2071         .writepage              = ocfs2_writepage,
2072         .write_begin            = ocfs2_write_begin,
2073         .write_end              = ocfs2_write_end,
2074         .bmap                   = ocfs2_bmap,
2075         .direct_IO              = ocfs2_direct_IO,
2076         .invalidatepage         = block_invalidatepage,
2077         .releasepage            = ocfs2_releasepage,
2078         .migratepage            = buffer_migrate_page,
2079         .is_partially_uptodate  = block_is_partially_uptodate,
2080         .error_remove_page      = generic_error_remove_page,
2081 };