mm: /proc/pid/smaps:: show proportional swap share of the mapping
[cascardo/linux.git] / fs / proc / task_mmu.c
1 #include <linux/mm.h>
2 #include <linux/vmacache.h>
3 #include <linux/hugetlb.h>
4 #include <linux/huge_mm.h>
5 #include <linux/mount.h>
6 #include <linux/seq_file.h>
7 #include <linux/highmem.h>
8 #include <linux/ptrace.h>
9 #include <linux/slab.h>
10 #include <linux/pagemap.h>
11 #include <linux/mempolicy.h>
12 #include <linux/rmap.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/mmu_notifier.h>
16
17 #include <asm/elf.h>
18 #include <asm/uaccess.h>
19 #include <asm/tlbflush.h>
20 #include "internal.h"
21
22 void task_mem(struct seq_file *m, struct mm_struct *mm)
23 {
24         unsigned long data, text, lib, swap, ptes, pmds;
25         unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
26
27         /*
28          * Note: to minimize their overhead, mm maintains hiwater_vm and
29          * hiwater_rss only when about to *lower* total_vm or rss.  Any
30          * collector of these hiwater stats must therefore get total_vm
31          * and rss too, which will usually be the higher.  Barriers? not
32          * worth the effort, such snapshots can always be inconsistent.
33          */
34         hiwater_vm = total_vm = mm->total_vm;
35         if (hiwater_vm < mm->hiwater_vm)
36                 hiwater_vm = mm->hiwater_vm;
37         hiwater_rss = total_rss = get_mm_rss(mm);
38         if (hiwater_rss < mm->hiwater_rss)
39                 hiwater_rss = mm->hiwater_rss;
40
41         data = mm->total_vm - mm->shared_vm - mm->stack_vm;
42         text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
43         lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
44         swap = get_mm_counter(mm, MM_SWAPENTS);
45         ptes = PTRS_PER_PTE * sizeof(pte_t) * atomic_long_read(&mm->nr_ptes);
46         pmds = PTRS_PER_PMD * sizeof(pmd_t) * mm_nr_pmds(mm);
47         seq_printf(m,
48                 "VmPeak:\t%8lu kB\n"
49                 "VmSize:\t%8lu kB\n"
50                 "VmLck:\t%8lu kB\n"
51                 "VmPin:\t%8lu kB\n"
52                 "VmHWM:\t%8lu kB\n"
53                 "VmRSS:\t%8lu kB\n"
54                 "VmData:\t%8lu kB\n"
55                 "VmStk:\t%8lu kB\n"
56                 "VmExe:\t%8lu kB\n"
57                 "VmLib:\t%8lu kB\n"
58                 "VmPTE:\t%8lu kB\n"
59                 "VmPMD:\t%8lu kB\n"
60                 "VmSwap:\t%8lu kB\n",
61                 hiwater_vm << (PAGE_SHIFT-10),
62                 total_vm << (PAGE_SHIFT-10),
63                 mm->locked_vm << (PAGE_SHIFT-10),
64                 mm->pinned_vm << (PAGE_SHIFT-10),
65                 hiwater_rss << (PAGE_SHIFT-10),
66                 total_rss << (PAGE_SHIFT-10),
67                 data << (PAGE_SHIFT-10),
68                 mm->stack_vm << (PAGE_SHIFT-10), text, lib,
69                 ptes >> 10,
70                 pmds >> 10,
71                 swap << (PAGE_SHIFT-10));
72 }
73
74 unsigned long task_vsize(struct mm_struct *mm)
75 {
76         return PAGE_SIZE * mm->total_vm;
77 }
78
79 unsigned long task_statm(struct mm_struct *mm,
80                          unsigned long *shared, unsigned long *text,
81                          unsigned long *data, unsigned long *resident)
82 {
83         *shared = get_mm_counter(mm, MM_FILEPAGES);
84         *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
85                                                                 >> PAGE_SHIFT;
86         *data = mm->total_vm - mm->shared_vm;
87         *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
88         return mm->total_vm;
89 }
90
91 #ifdef CONFIG_NUMA
92 /*
93  * Save get_task_policy() for show_numa_map().
94  */
95 static void hold_task_mempolicy(struct proc_maps_private *priv)
96 {
97         struct task_struct *task = priv->task;
98
99         task_lock(task);
100         priv->task_mempolicy = get_task_policy(task);
101         mpol_get(priv->task_mempolicy);
102         task_unlock(task);
103 }
104 static void release_task_mempolicy(struct proc_maps_private *priv)
105 {
106         mpol_put(priv->task_mempolicy);
107 }
108 #else
109 static void hold_task_mempolicy(struct proc_maps_private *priv)
110 {
111 }
112 static void release_task_mempolicy(struct proc_maps_private *priv)
113 {
114 }
115 #endif
116
117 static void vma_stop(struct proc_maps_private *priv)
118 {
119         struct mm_struct *mm = priv->mm;
120
121         release_task_mempolicy(priv);
122         up_read(&mm->mmap_sem);
123         mmput(mm);
124 }
125
126 static struct vm_area_struct *
127 m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
128 {
129         if (vma == priv->tail_vma)
130                 return NULL;
131         return vma->vm_next ?: priv->tail_vma;
132 }
133
134 static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
135 {
136         if (m->count < m->size) /* vma is copied successfully */
137                 m->version = m_next_vma(m->private, vma) ? vma->vm_start : -1UL;
138 }
139
140 static void *m_start(struct seq_file *m, loff_t *ppos)
141 {
142         struct proc_maps_private *priv = m->private;
143         unsigned long last_addr = m->version;
144         struct mm_struct *mm;
145         struct vm_area_struct *vma;
146         unsigned int pos = *ppos;
147
148         /* See m_cache_vma(). Zero at the start or after lseek. */
149         if (last_addr == -1UL)
150                 return NULL;
151
152         priv->task = get_proc_task(priv->inode);
153         if (!priv->task)
154                 return ERR_PTR(-ESRCH);
155
156         mm = priv->mm;
157         if (!mm || !atomic_inc_not_zero(&mm->mm_users))
158                 return NULL;
159
160         down_read(&mm->mmap_sem);
161         hold_task_mempolicy(priv);
162         priv->tail_vma = get_gate_vma(mm);
163
164         if (last_addr) {
165                 vma = find_vma(mm, last_addr);
166                 if (vma && (vma = m_next_vma(priv, vma)))
167                         return vma;
168         }
169
170         m->version = 0;
171         if (pos < mm->map_count) {
172                 for (vma = mm->mmap; pos; pos--) {
173                         m->version = vma->vm_start;
174                         vma = vma->vm_next;
175                 }
176                 return vma;
177         }
178
179         /* we do not bother to update m->version in this case */
180         if (pos == mm->map_count && priv->tail_vma)
181                 return priv->tail_vma;
182
183         vma_stop(priv);
184         return NULL;
185 }
186
187 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
188 {
189         struct proc_maps_private *priv = m->private;
190         struct vm_area_struct *next;
191
192         (*pos)++;
193         next = m_next_vma(priv, v);
194         if (!next)
195                 vma_stop(priv);
196         return next;
197 }
198
199 static void m_stop(struct seq_file *m, void *v)
200 {
201         struct proc_maps_private *priv = m->private;
202
203         if (!IS_ERR_OR_NULL(v))
204                 vma_stop(priv);
205         if (priv->task) {
206                 put_task_struct(priv->task);
207                 priv->task = NULL;
208         }
209 }
210
211 static int proc_maps_open(struct inode *inode, struct file *file,
212                         const struct seq_operations *ops, int psize)
213 {
214         struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
215
216         if (!priv)
217                 return -ENOMEM;
218
219         priv->inode = inode;
220         priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
221         if (IS_ERR(priv->mm)) {
222                 int err = PTR_ERR(priv->mm);
223
224                 seq_release_private(inode, file);
225                 return err;
226         }
227
228         return 0;
229 }
230
231 static int proc_map_release(struct inode *inode, struct file *file)
232 {
233         struct seq_file *seq = file->private_data;
234         struct proc_maps_private *priv = seq->private;
235
236         if (priv->mm)
237                 mmdrop(priv->mm);
238
239         return seq_release_private(inode, file);
240 }
241
242 static int do_maps_open(struct inode *inode, struct file *file,
243                         const struct seq_operations *ops)
244 {
245         return proc_maps_open(inode, file, ops,
246                                 sizeof(struct proc_maps_private));
247 }
248
249 static pid_t pid_of_stack(struct proc_maps_private *priv,
250                                 struct vm_area_struct *vma, bool is_pid)
251 {
252         struct inode *inode = priv->inode;
253         struct task_struct *task;
254         pid_t ret = 0;
255
256         rcu_read_lock();
257         task = pid_task(proc_pid(inode), PIDTYPE_PID);
258         if (task) {
259                 task = task_of_stack(task, vma, is_pid);
260                 if (task)
261                         ret = task_pid_nr_ns(task, inode->i_sb->s_fs_info);
262         }
263         rcu_read_unlock();
264
265         return ret;
266 }
267
268 static void
269 show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
270 {
271         struct mm_struct *mm = vma->vm_mm;
272         struct file *file = vma->vm_file;
273         struct proc_maps_private *priv = m->private;
274         vm_flags_t flags = vma->vm_flags;
275         unsigned long ino = 0;
276         unsigned long long pgoff = 0;
277         unsigned long start, end;
278         dev_t dev = 0;
279         const char *name = NULL;
280
281         if (file) {
282                 struct inode *inode = file_inode(vma->vm_file);
283                 dev = inode->i_sb->s_dev;
284                 ino = inode->i_ino;
285                 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
286         }
287
288         /* We don't show the stack guard page in /proc/maps */
289         start = vma->vm_start;
290         if (stack_guard_page_start(vma, start))
291                 start += PAGE_SIZE;
292         end = vma->vm_end;
293         if (stack_guard_page_end(vma, end))
294                 end -= PAGE_SIZE;
295
296         seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
297         seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
298                         start,
299                         end,
300                         flags & VM_READ ? 'r' : '-',
301                         flags & VM_WRITE ? 'w' : '-',
302                         flags & VM_EXEC ? 'x' : '-',
303                         flags & VM_MAYSHARE ? 's' : 'p',
304                         pgoff,
305                         MAJOR(dev), MINOR(dev), ino);
306
307         /*
308          * Print the dentry name for named mappings, and a
309          * special [heap] marker for the heap:
310          */
311         if (file) {
312                 seq_pad(m, ' ');
313                 seq_file_path(m, file, "\n");
314                 goto done;
315         }
316
317         if (vma->vm_ops && vma->vm_ops->name) {
318                 name = vma->vm_ops->name(vma);
319                 if (name)
320                         goto done;
321         }
322
323         name = arch_vma_name(vma);
324         if (!name) {
325                 pid_t tid;
326
327                 if (!mm) {
328                         name = "[vdso]";
329                         goto done;
330                 }
331
332                 if (vma->vm_start <= mm->brk &&
333                     vma->vm_end >= mm->start_brk) {
334                         name = "[heap]";
335                         goto done;
336                 }
337
338                 tid = pid_of_stack(priv, vma, is_pid);
339                 if (tid != 0) {
340                         /*
341                          * Thread stack in /proc/PID/task/TID/maps or
342                          * the main process stack.
343                          */
344                         if (!is_pid || (vma->vm_start <= mm->start_stack &&
345                             vma->vm_end >= mm->start_stack)) {
346                                 name = "[stack]";
347                         } else {
348                                 /* Thread stack in /proc/PID/maps */
349                                 seq_pad(m, ' ');
350                                 seq_printf(m, "[stack:%d]", tid);
351                         }
352                 }
353         }
354
355 done:
356         if (name) {
357                 seq_pad(m, ' ');
358                 seq_puts(m, name);
359         }
360         seq_putc(m, '\n');
361 }
362
363 static int show_map(struct seq_file *m, void *v, int is_pid)
364 {
365         show_map_vma(m, v, is_pid);
366         m_cache_vma(m, v);
367         return 0;
368 }
369
370 static int show_pid_map(struct seq_file *m, void *v)
371 {
372         return show_map(m, v, 1);
373 }
374
375 static int show_tid_map(struct seq_file *m, void *v)
376 {
377         return show_map(m, v, 0);
378 }
379
380 static const struct seq_operations proc_pid_maps_op = {
381         .start  = m_start,
382         .next   = m_next,
383         .stop   = m_stop,
384         .show   = show_pid_map
385 };
386
387 static const struct seq_operations proc_tid_maps_op = {
388         .start  = m_start,
389         .next   = m_next,
390         .stop   = m_stop,
391         .show   = show_tid_map
392 };
393
394 static int pid_maps_open(struct inode *inode, struct file *file)
395 {
396         return do_maps_open(inode, file, &proc_pid_maps_op);
397 }
398
399 static int tid_maps_open(struct inode *inode, struct file *file)
400 {
401         return do_maps_open(inode, file, &proc_tid_maps_op);
402 }
403
404 const struct file_operations proc_pid_maps_operations = {
405         .open           = pid_maps_open,
406         .read           = seq_read,
407         .llseek         = seq_lseek,
408         .release        = proc_map_release,
409 };
410
411 const struct file_operations proc_tid_maps_operations = {
412         .open           = tid_maps_open,
413         .read           = seq_read,
414         .llseek         = seq_lseek,
415         .release        = proc_map_release,
416 };
417
418 /*
419  * Proportional Set Size(PSS): my share of RSS.
420  *
421  * PSS of a process is the count of pages it has in memory, where each
422  * page is divided by the number of processes sharing it.  So if a
423  * process has 1000 pages all to itself, and 1000 shared with one other
424  * process, its PSS will be 1500.
425  *
426  * To keep (accumulated) division errors low, we adopt a 64bit
427  * fixed-point pss counter to minimize division errors. So (pss >>
428  * PSS_SHIFT) would be the real byte count.
429  *
430  * A shift of 12 before division means (assuming 4K page size):
431  *      - 1M 3-user-pages add up to 8KB errors;
432  *      - supports mapcount up to 2^24, or 16M;
433  *      - supports PSS up to 2^52 bytes, or 4PB.
434  */
435 #define PSS_SHIFT 12
436
437 #ifdef CONFIG_PROC_PAGE_MONITOR
438 struct mem_size_stats {
439         unsigned long resident;
440         unsigned long shared_clean;
441         unsigned long shared_dirty;
442         unsigned long private_clean;
443         unsigned long private_dirty;
444         unsigned long referenced;
445         unsigned long anonymous;
446         unsigned long anonymous_thp;
447         unsigned long swap;
448         u64 pss;
449         u64 swap_pss;
450 };
451
452 static void smaps_account(struct mem_size_stats *mss, struct page *page,
453                 unsigned long size, bool young, bool dirty)
454 {
455         int mapcount;
456
457         if (PageAnon(page))
458                 mss->anonymous += size;
459
460         mss->resident += size;
461         /* Accumulate the size in pages that have been accessed. */
462         if (young || PageReferenced(page))
463                 mss->referenced += size;
464         mapcount = page_mapcount(page);
465         if (mapcount >= 2) {
466                 u64 pss_delta;
467
468                 if (dirty || PageDirty(page))
469                         mss->shared_dirty += size;
470                 else
471                         mss->shared_clean += size;
472                 pss_delta = (u64)size << PSS_SHIFT;
473                 do_div(pss_delta, mapcount);
474                 mss->pss += pss_delta;
475         } else {
476                 if (dirty || PageDirty(page))
477                         mss->private_dirty += size;
478                 else
479                         mss->private_clean += size;
480                 mss->pss += (u64)size << PSS_SHIFT;
481         }
482 }
483
484 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
485                 struct mm_walk *walk)
486 {
487         struct mem_size_stats *mss = walk->private;
488         struct vm_area_struct *vma = walk->vma;
489         struct page *page = NULL;
490
491         if (pte_present(*pte)) {
492                 page = vm_normal_page(vma, addr, *pte);
493         } else if (is_swap_pte(*pte)) {
494                 swp_entry_t swpent = pte_to_swp_entry(*pte);
495
496                 if (!non_swap_entry(swpent)) {
497                         int mapcount;
498
499                         mss->swap += PAGE_SIZE;
500                         mapcount = swp_swapcount(swpent);
501                         if (mapcount >= 2) {
502                                 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
503
504                                 do_div(pss_delta, mapcount);
505                                 mss->swap_pss += pss_delta;
506                         } else {
507                                 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
508                         }
509                 } else if (is_migration_entry(swpent))
510                         page = migration_entry_to_page(swpent);
511         }
512
513         if (!page)
514                 return;
515         smaps_account(mss, page, PAGE_SIZE, pte_young(*pte), pte_dirty(*pte));
516 }
517
518 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
519 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
520                 struct mm_walk *walk)
521 {
522         struct mem_size_stats *mss = walk->private;
523         struct vm_area_struct *vma = walk->vma;
524         struct page *page;
525
526         /* FOLL_DUMP will return -EFAULT on huge zero page */
527         page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
528         if (IS_ERR_OR_NULL(page))
529                 return;
530         mss->anonymous_thp += HPAGE_PMD_SIZE;
531         smaps_account(mss, page, HPAGE_PMD_SIZE,
532                         pmd_young(*pmd), pmd_dirty(*pmd));
533 }
534 #else
535 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
536                 struct mm_walk *walk)
537 {
538 }
539 #endif
540
541 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
542                            struct mm_walk *walk)
543 {
544         struct vm_area_struct *vma = walk->vma;
545         pte_t *pte;
546         spinlock_t *ptl;
547
548         if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
549                 smaps_pmd_entry(pmd, addr, walk);
550                 spin_unlock(ptl);
551                 return 0;
552         }
553
554         if (pmd_trans_unstable(pmd))
555                 return 0;
556         /*
557          * The mmap_sem held all the way back in m_start() is what
558          * keeps khugepaged out of here and from collapsing things
559          * in here.
560          */
561         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
562         for (; addr != end; pte++, addr += PAGE_SIZE)
563                 smaps_pte_entry(pte, addr, walk);
564         pte_unmap_unlock(pte - 1, ptl);
565         cond_resched();
566         return 0;
567 }
568
569 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
570 {
571         /*
572          * Don't forget to update Documentation/ on changes.
573          */
574         static const char mnemonics[BITS_PER_LONG][2] = {
575                 /*
576                  * In case if we meet a flag we don't know about.
577                  */
578                 [0 ... (BITS_PER_LONG-1)] = "??",
579
580                 [ilog2(VM_READ)]        = "rd",
581                 [ilog2(VM_WRITE)]       = "wr",
582                 [ilog2(VM_EXEC)]        = "ex",
583                 [ilog2(VM_SHARED)]      = "sh",
584                 [ilog2(VM_MAYREAD)]     = "mr",
585                 [ilog2(VM_MAYWRITE)]    = "mw",
586                 [ilog2(VM_MAYEXEC)]     = "me",
587                 [ilog2(VM_MAYSHARE)]    = "ms",
588                 [ilog2(VM_GROWSDOWN)]   = "gd",
589                 [ilog2(VM_PFNMAP)]      = "pf",
590                 [ilog2(VM_DENYWRITE)]   = "dw",
591 #ifdef CONFIG_X86_INTEL_MPX
592                 [ilog2(VM_MPX)]         = "mp",
593 #endif
594                 [ilog2(VM_LOCKED)]      = "lo",
595                 [ilog2(VM_IO)]          = "io",
596                 [ilog2(VM_SEQ_READ)]    = "sr",
597                 [ilog2(VM_RAND_READ)]   = "rr",
598                 [ilog2(VM_DONTCOPY)]    = "dc",
599                 [ilog2(VM_DONTEXPAND)]  = "de",
600                 [ilog2(VM_ACCOUNT)]     = "ac",
601                 [ilog2(VM_NORESERVE)]   = "nr",
602                 [ilog2(VM_HUGETLB)]     = "ht",
603                 [ilog2(VM_ARCH_1)]      = "ar",
604                 [ilog2(VM_DONTDUMP)]    = "dd",
605 #ifdef CONFIG_MEM_SOFT_DIRTY
606                 [ilog2(VM_SOFTDIRTY)]   = "sd",
607 #endif
608                 [ilog2(VM_MIXEDMAP)]    = "mm",
609                 [ilog2(VM_HUGEPAGE)]    = "hg",
610                 [ilog2(VM_NOHUGEPAGE)]  = "nh",
611                 [ilog2(VM_MERGEABLE)]   = "mg",
612                 [ilog2(VM_UFFD_MISSING)]= "um",
613                 [ilog2(VM_UFFD_WP)]     = "uw",
614         };
615         size_t i;
616
617         seq_puts(m, "VmFlags: ");
618         for (i = 0; i < BITS_PER_LONG; i++) {
619                 if (vma->vm_flags & (1UL << i)) {
620                         seq_printf(m, "%c%c ",
621                                    mnemonics[i][0], mnemonics[i][1]);
622                 }
623         }
624         seq_putc(m, '\n');
625 }
626
627 static int show_smap(struct seq_file *m, void *v, int is_pid)
628 {
629         struct vm_area_struct *vma = v;
630         struct mem_size_stats mss;
631         struct mm_walk smaps_walk = {
632                 .pmd_entry = smaps_pte_range,
633                 .mm = vma->vm_mm,
634                 .private = &mss,
635         };
636
637         memset(&mss, 0, sizeof mss);
638         /* mmap_sem is held in m_start */
639         walk_page_vma(vma, &smaps_walk);
640
641         show_map_vma(m, vma, is_pid);
642
643         seq_printf(m,
644                    "Size:           %8lu kB\n"
645                    "Rss:            %8lu kB\n"
646                    "Pss:            %8lu kB\n"
647                    "Shared_Clean:   %8lu kB\n"
648                    "Shared_Dirty:   %8lu kB\n"
649                    "Private_Clean:  %8lu kB\n"
650                    "Private_Dirty:  %8lu kB\n"
651                    "Referenced:     %8lu kB\n"
652                    "Anonymous:      %8lu kB\n"
653                    "AnonHugePages:  %8lu kB\n"
654                    "Swap:           %8lu kB\n"
655                    "SwapPss:        %8lu kB\n"
656                    "KernelPageSize: %8lu kB\n"
657                    "MMUPageSize:    %8lu kB\n"
658                    "Locked:         %8lu kB\n",
659                    (vma->vm_end - vma->vm_start) >> 10,
660                    mss.resident >> 10,
661                    (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
662                    mss.shared_clean  >> 10,
663                    mss.shared_dirty  >> 10,
664                    mss.private_clean >> 10,
665                    mss.private_dirty >> 10,
666                    mss.referenced >> 10,
667                    mss.anonymous >> 10,
668                    mss.anonymous_thp >> 10,
669                    mss.swap >> 10,
670                    (unsigned long)(mss.swap_pss >> (10 + PSS_SHIFT)),
671                    vma_kernel_pagesize(vma) >> 10,
672                    vma_mmu_pagesize(vma) >> 10,
673                    (vma->vm_flags & VM_LOCKED) ?
674                         (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
675
676         show_smap_vma_flags(m, vma);
677         m_cache_vma(m, vma);
678         return 0;
679 }
680
681 static int show_pid_smap(struct seq_file *m, void *v)
682 {
683         return show_smap(m, v, 1);
684 }
685
686 static int show_tid_smap(struct seq_file *m, void *v)
687 {
688         return show_smap(m, v, 0);
689 }
690
691 static const struct seq_operations proc_pid_smaps_op = {
692         .start  = m_start,
693         .next   = m_next,
694         .stop   = m_stop,
695         .show   = show_pid_smap
696 };
697
698 static const struct seq_operations proc_tid_smaps_op = {
699         .start  = m_start,
700         .next   = m_next,
701         .stop   = m_stop,
702         .show   = show_tid_smap
703 };
704
705 static int pid_smaps_open(struct inode *inode, struct file *file)
706 {
707         return do_maps_open(inode, file, &proc_pid_smaps_op);
708 }
709
710 static int tid_smaps_open(struct inode *inode, struct file *file)
711 {
712         return do_maps_open(inode, file, &proc_tid_smaps_op);
713 }
714
715 const struct file_operations proc_pid_smaps_operations = {
716         .open           = pid_smaps_open,
717         .read           = seq_read,
718         .llseek         = seq_lseek,
719         .release        = proc_map_release,
720 };
721
722 const struct file_operations proc_tid_smaps_operations = {
723         .open           = tid_smaps_open,
724         .read           = seq_read,
725         .llseek         = seq_lseek,
726         .release        = proc_map_release,
727 };
728
729 enum clear_refs_types {
730         CLEAR_REFS_ALL = 1,
731         CLEAR_REFS_ANON,
732         CLEAR_REFS_MAPPED,
733         CLEAR_REFS_SOFT_DIRTY,
734         CLEAR_REFS_MM_HIWATER_RSS,
735         CLEAR_REFS_LAST,
736 };
737
738 struct clear_refs_private {
739         enum clear_refs_types type;
740 };
741
742 #ifdef CONFIG_MEM_SOFT_DIRTY
743 static inline void clear_soft_dirty(struct vm_area_struct *vma,
744                 unsigned long addr, pte_t *pte)
745 {
746         /*
747          * The soft-dirty tracker uses #PF-s to catch writes
748          * to pages, so write-protect the pte as well. See the
749          * Documentation/vm/soft-dirty.txt for full description
750          * of how soft-dirty works.
751          */
752         pte_t ptent = *pte;
753
754         if (pte_present(ptent)) {
755                 ptent = pte_wrprotect(ptent);
756                 ptent = pte_clear_flags(ptent, _PAGE_SOFT_DIRTY);
757         } else if (is_swap_pte(ptent)) {
758                 ptent = pte_swp_clear_soft_dirty(ptent);
759         }
760
761         set_pte_at(vma->vm_mm, addr, pte, ptent);
762 }
763
764 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
765                 unsigned long addr, pmd_t *pmdp)
766 {
767         pmd_t pmd = *pmdp;
768
769         pmd = pmd_wrprotect(pmd);
770         pmd = pmd_clear_flags(pmd, _PAGE_SOFT_DIRTY);
771
772         if (vma->vm_flags & VM_SOFTDIRTY)
773                 vma->vm_flags &= ~VM_SOFTDIRTY;
774
775         set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
776 }
777
778 #else
779
780 static inline void clear_soft_dirty(struct vm_area_struct *vma,
781                 unsigned long addr, pte_t *pte)
782 {
783 }
784
785 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
786                 unsigned long addr, pmd_t *pmdp)
787 {
788 }
789 #endif
790
791 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
792                                 unsigned long end, struct mm_walk *walk)
793 {
794         struct clear_refs_private *cp = walk->private;
795         struct vm_area_struct *vma = walk->vma;
796         pte_t *pte, ptent;
797         spinlock_t *ptl;
798         struct page *page;
799
800         if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
801                 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
802                         clear_soft_dirty_pmd(vma, addr, pmd);
803                         goto out;
804                 }
805
806                 page = pmd_page(*pmd);
807
808                 /* Clear accessed and referenced bits. */
809                 pmdp_test_and_clear_young(vma, addr, pmd);
810                 ClearPageReferenced(page);
811 out:
812                 spin_unlock(ptl);
813                 return 0;
814         }
815
816         if (pmd_trans_unstable(pmd))
817                 return 0;
818
819         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
820         for (; addr != end; pte++, addr += PAGE_SIZE) {
821                 ptent = *pte;
822
823                 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
824                         clear_soft_dirty(vma, addr, pte);
825                         continue;
826                 }
827
828                 if (!pte_present(ptent))
829                         continue;
830
831                 page = vm_normal_page(vma, addr, ptent);
832                 if (!page)
833                         continue;
834
835                 /* Clear accessed and referenced bits. */
836                 ptep_test_and_clear_young(vma, addr, pte);
837                 ClearPageReferenced(page);
838         }
839         pte_unmap_unlock(pte - 1, ptl);
840         cond_resched();
841         return 0;
842 }
843
844 static int clear_refs_test_walk(unsigned long start, unsigned long end,
845                                 struct mm_walk *walk)
846 {
847         struct clear_refs_private *cp = walk->private;
848         struct vm_area_struct *vma = walk->vma;
849
850         if (vma->vm_flags & VM_PFNMAP)
851                 return 1;
852
853         /*
854          * Writing 1 to /proc/pid/clear_refs affects all pages.
855          * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
856          * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
857          * Writing 4 to /proc/pid/clear_refs affects all pages.
858          */
859         if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
860                 return 1;
861         if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
862                 return 1;
863         return 0;
864 }
865
866 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
867                                 size_t count, loff_t *ppos)
868 {
869         struct task_struct *task;
870         char buffer[PROC_NUMBUF];
871         struct mm_struct *mm;
872         struct vm_area_struct *vma;
873         enum clear_refs_types type;
874         int itype;
875         int rv;
876
877         memset(buffer, 0, sizeof(buffer));
878         if (count > sizeof(buffer) - 1)
879                 count = sizeof(buffer) - 1;
880         if (copy_from_user(buffer, buf, count))
881                 return -EFAULT;
882         rv = kstrtoint(strstrip(buffer), 10, &itype);
883         if (rv < 0)
884                 return rv;
885         type = (enum clear_refs_types)itype;
886         if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
887                 return -EINVAL;
888
889         task = get_proc_task(file_inode(file));
890         if (!task)
891                 return -ESRCH;
892         mm = get_task_mm(task);
893         if (mm) {
894                 struct clear_refs_private cp = {
895                         .type = type,
896                 };
897                 struct mm_walk clear_refs_walk = {
898                         .pmd_entry = clear_refs_pte_range,
899                         .test_walk = clear_refs_test_walk,
900                         .mm = mm,
901                         .private = &cp,
902                 };
903
904                 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
905                         /*
906                          * Writing 5 to /proc/pid/clear_refs resets the peak
907                          * resident set size to this mm's current rss value.
908                          */
909                         down_write(&mm->mmap_sem);
910                         reset_mm_hiwater_rss(mm);
911                         up_write(&mm->mmap_sem);
912                         goto out_mm;
913                 }
914
915                 down_read(&mm->mmap_sem);
916                 if (type == CLEAR_REFS_SOFT_DIRTY) {
917                         for (vma = mm->mmap; vma; vma = vma->vm_next) {
918                                 if (!(vma->vm_flags & VM_SOFTDIRTY))
919                                         continue;
920                                 up_read(&mm->mmap_sem);
921                                 down_write(&mm->mmap_sem);
922                                 for (vma = mm->mmap; vma; vma = vma->vm_next) {
923                                         vma->vm_flags &= ~VM_SOFTDIRTY;
924                                         vma_set_page_prot(vma);
925                                 }
926                                 downgrade_write(&mm->mmap_sem);
927                                 break;
928                         }
929                         mmu_notifier_invalidate_range_start(mm, 0, -1);
930                 }
931                 walk_page_range(0, ~0UL, &clear_refs_walk);
932                 if (type == CLEAR_REFS_SOFT_DIRTY)
933                         mmu_notifier_invalidate_range_end(mm, 0, -1);
934                 flush_tlb_mm(mm);
935                 up_read(&mm->mmap_sem);
936 out_mm:
937                 mmput(mm);
938         }
939         put_task_struct(task);
940
941         return count;
942 }
943
944 const struct file_operations proc_clear_refs_operations = {
945         .write          = clear_refs_write,
946         .llseek         = noop_llseek,
947 };
948
949 typedef struct {
950         u64 pme;
951 } pagemap_entry_t;
952
953 struct pagemapread {
954         int pos, len;           /* units: PM_ENTRY_BYTES, not bytes */
955         pagemap_entry_t *buffer;
956         bool show_pfn;
957 };
958
959 #define PAGEMAP_WALK_SIZE       (PMD_SIZE)
960 #define PAGEMAP_WALK_MASK       (PMD_MASK)
961
962 #define PM_ENTRY_BYTES          sizeof(pagemap_entry_t)
963 #define PM_PFRAME_BITS          55
964 #define PM_PFRAME_MASK          GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
965 #define PM_SOFT_DIRTY           BIT_ULL(55)
966 #define PM_MMAP_EXCLUSIVE       BIT_ULL(56)
967 #define PM_FILE                 BIT_ULL(61)
968 #define PM_SWAP                 BIT_ULL(62)
969 #define PM_PRESENT              BIT_ULL(63)
970
971 #define PM_END_OF_BUFFER    1
972
973 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
974 {
975         return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
976 }
977
978 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
979                           struct pagemapread *pm)
980 {
981         pm->buffer[pm->pos++] = *pme;
982         if (pm->pos >= pm->len)
983                 return PM_END_OF_BUFFER;
984         return 0;
985 }
986
987 static int pagemap_pte_hole(unsigned long start, unsigned long end,
988                                 struct mm_walk *walk)
989 {
990         struct pagemapread *pm = walk->private;
991         unsigned long addr = start;
992         int err = 0;
993
994         while (addr < end) {
995                 struct vm_area_struct *vma = find_vma(walk->mm, addr);
996                 pagemap_entry_t pme = make_pme(0, 0);
997                 /* End of address space hole, which we mark as non-present. */
998                 unsigned long hole_end;
999
1000                 if (vma)
1001                         hole_end = min(end, vma->vm_start);
1002                 else
1003                         hole_end = end;
1004
1005                 for (; addr < hole_end; addr += PAGE_SIZE) {
1006                         err = add_to_pagemap(addr, &pme, pm);
1007                         if (err)
1008                                 goto out;
1009                 }
1010
1011                 if (!vma)
1012                         break;
1013
1014                 /* Addresses in the VMA. */
1015                 if (vma->vm_flags & VM_SOFTDIRTY)
1016                         pme = make_pme(0, PM_SOFT_DIRTY);
1017                 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1018                         err = add_to_pagemap(addr, &pme, pm);
1019                         if (err)
1020                                 goto out;
1021                 }
1022         }
1023 out:
1024         return err;
1025 }
1026
1027 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1028                 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1029 {
1030         u64 frame = 0, flags = 0;
1031         struct page *page = NULL;
1032
1033         if (pte_present(pte)) {
1034                 if (pm->show_pfn)
1035                         frame = pte_pfn(pte);
1036                 flags |= PM_PRESENT;
1037                 page = vm_normal_page(vma, addr, pte);
1038                 if (pte_soft_dirty(pte))
1039                         flags |= PM_SOFT_DIRTY;
1040         } else if (is_swap_pte(pte)) {
1041                 swp_entry_t entry;
1042                 if (pte_swp_soft_dirty(pte))
1043                         flags |= PM_SOFT_DIRTY;
1044                 entry = pte_to_swp_entry(pte);
1045                 frame = swp_type(entry) |
1046                         (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1047                 flags |= PM_SWAP;
1048                 if (is_migration_entry(entry))
1049                         page = migration_entry_to_page(entry);
1050         }
1051
1052         if (page && !PageAnon(page))
1053                 flags |= PM_FILE;
1054         if (page && page_mapcount(page) == 1)
1055                 flags |= PM_MMAP_EXCLUSIVE;
1056         if (vma->vm_flags & VM_SOFTDIRTY)
1057                 flags |= PM_SOFT_DIRTY;
1058
1059         return make_pme(frame, flags);
1060 }
1061
1062 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1063                              struct mm_walk *walk)
1064 {
1065         struct vm_area_struct *vma = walk->vma;
1066         struct pagemapread *pm = walk->private;
1067         spinlock_t *ptl;
1068         pte_t *pte, *orig_pte;
1069         int err = 0;
1070
1071 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1072         if (pmd_trans_huge_lock(pmdp, vma, &ptl) == 1) {
1073                 u64 flags = 0, frame = 0;
1074                 pmd_t pmd = *pmdp;
1075
1076                 if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(pmd))
1077                         flags |= PM_SOFT_DIRTY;
1078
1079                 /*
1080                  * Currently pmd for thp is always present because thp
1081                  * can not be swapped-out, migrated, or HWPOISONed
1082                  * (split in such cases instead.)
1083                  * This if-check is just to prepare for future implementation.
1084                  */
1085                 if (pmd_present(pmd)) {
1086                         struct page *page = pmd_page(pmd);
1087
1088                         if (page_mapcount(page) == 1)
1089                                 flags |= PM_MMAP_EXCLUSIVE;
1090
1091                         flags |= PM_PRESENT;
1092                         if (pm->show_pfn)
1093                                 frame = pmd_pfn(pmd) +
1094                                         ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1095                 }
1096
1097                 for (; addr != end; addr += PAGE_SIZE) {
1098                         pagemap_entry_t pme = make_pme(frame, flags);
1099
1100                         err = add_to_pagemap(addr, &pme, pm);
1101                         if (err)
1102                                 break;
1103                         if (pm->show_pfn && (flags & PM_PRESENT))
1104                                 frame++;
1105                 }
1106                 spin_unlock(ptl);
1107                 return err;
1108         }
1109
1110         if (pmd_trans_unstable(pmdp))
1111                 return 0;
1112 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1113
1114         /*
1115          * We can assume that @vma always points to a valid one and @end never
1116          * goes beyond vma->vm_end.
1117          */
1118         orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1119         for (; addr < end; pte++, addr += PAGE_SIZE) {
1120                 pagemap_entry_t pme;
1121
1122                 pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1123                 err = add_to_pagemap(addr, &pme, pm);
1124                 if (err)
1125                         break;
1126         }
1127         pte_unmap_unlock(orig_pte, ptl);
1128
1129         cond_resched();
1130
1131         return err;
1132 }
1133
1134 #ifdef CONFIG_HUGETLB_PAGE
1135 /* This function walks within one hugetlb entry in the single call */
1136 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1137                                  unsigned long addr, unsigned long end,
1138                                  struct mm_walk *walk)
1139 {
1140         struct pagemapread *pm = walk->private;
1141         struct vm_area_struct *vma = walk->vma;
1142         u64 flags = 0, frame = 0;
1143         int err = 0;
1144         pte_t pte;
1145
1146         if (vma->vm_flags & VM_SOFTDIRTY)
1147                 flags |= PM_SOFT_DIRTY;
1148
1149         pte = huge_ptep_get(ptep);
1150         if (pte_present(pte)) {
1151                 struct page *page = pte_page(pte);
1152
1153                 if (!PageAnon(page))
1154                         flags |= PM_FILE;
1155
1156                 if (page_mapcount(page) == 1)
1157                         flags |= PM_MMAP_EXCLUSIVE;
1158
1159                 flags |= PM_PRESENT;
1160                 if (pm->show_pfn)
1161                         frame = pte_pfn(pte) +
1162                                 ((addr & ~hmask) >> PAGE_SHIFT);
1163         }
1164
1165         for (; addr != end; addr += PAGE_SIZE) {
1166                 pagemap_entry_t pme = make_pme(frame, flags);
1167
1168                 err = add_to_pagemap(addr, &pme, pm);
1169                 if (err)
1170                         return err;
1171                 if (pm->show_pfn && (flags & PM_PRESENT))
1172                         frame++;
1173         }
1174
1175         cond_resched();
1176
1177         return err;
1178 }
1179 #endif /* HUGETLB_PAGE */
1180
1181 /*
1182  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1183  *
1184  * For each page in the address space, this file contains one 64-bit entry
1185  * consisting of the following:
1186  *
1187  * Bits 0-54  page frame number (PFN) if present
1188  * Bits 0-4   swap type if swapped
1189  * Bits 5-54  swap offset if swapped
1190  * Bit  55    pte is soft-dirty (see Documentation/vm/soft-dirty.txt)
1191  * Bit  56    page exclusively mapped
1192  * Bits 57-60 zero
1193  * Bit  61    page is file-page or shared-anon
1194  * Bit  62    page swapped
1195  * Bit  63    page present
1196  *
1197  * If the page is not present but in swap, then the PFN contains an
1198  * encoding of the swap file number and the page's offset into the
1199  * swap. Unmapped pages return a null PFN. This allows determining
1200  * precisely which pages are mapped (or in swap) and comparing mapped
1201  * pages between processes.
1202  *
1203  * Efficient users of this interface will use /proc/pid/maps to
1204  * determine which areas of memory are actually mapped and llseek to
1205  * skip over unmapped regions.
1206  */
1207 static ssize_t pagemap_read(struct file *file, char __user *buf,
1208                             size_t count, loff_t *ppos)
1209 {
1210         struct mm_struct *mm = file->private_data;
1211         struct pagemapread pm;
1212         struct mm_walk pagemap_walk = {};
1213         unsigned long src;
1214         unsigned long svpfn;
1215         unsigned long start_vaddr;
1216         unsigned long end_vaddr;
1217         int ret = 0, copied = 0;
1218
1219         if (!mm || !atomic_inc_not_zero(&mm->mm_users))
1220                 goto out;
1221
1222         ret = -EINVAL;
1223         /* file position must be aligned */
1224         if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1225                 goto out_mm;
1226
1227         ret = 0;
1228         if (!count)
1229                 goto out_mm;
1230
1231         /* do not disclose physical addresses: attack vector */
1232         pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1233
1234         pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1235         pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY);
1236         ret = -ENOMEM;
1237         if (!pm.buffer)
1238                 goto out_mm;
1239
1240         pagemap_walk.pmd_entry = pagemap_pmd_range;
1241         pagemap_walk.pte_hole = pagemap_pte_hole;
1242 #ifdef CONFIG_HUGETLB_PAGE
1243         pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1244 #endif
1245         pagemap_walk.mm = mm;
1246         pagemap_walk.private = &pm;
1247
1248         src = *ppos;
1249         svpfn = src / PM_ENTRY_BYTES;
1250         start_vaddr = svpfn << PAGE_SHIFT;
1251         end_vaddr = mm->task_size;
1252
1253         /* watch out for wraparound */
1254         if (svpfn > mm->task_size >> PAGE_SHIFT)
1255                 start_vaddr = end_vaddr;
1256
1257         /*
1258          * The odds are that this will stop walking way
1259          * before end_vaddr, because the length of the
1260          * user buffer is tracked in "pm", and the walk
1261          * will stop when we hit the end of the buffer.
1262          */
1263         ret = 0;
1264         while (count && (start_vaddr < end_vaddr)) {
1265                 int len;
1266                 unsigned long end;
1267
1268                 pm.pos = 0;
1269                 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1270                 /* overflow ? */
1271                 if (end < start_vaddr || end > end_vaddr)
1272                         end = end_vaddr;
1273                 down_read(&mm->mmap_sem);
1274                 ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1275                 up_read(&mm->mmap_sem);
1276                 start_vaddr = end;
1277
1278                 len = min(count, PM_ENTRY_BYTES * pm.pos);
1279                 if (copy_to_user(buf, pm.buffer, len)) {
1280                         ret = -EFAULT;
1281                         goto out_free;
1282                 }
1283                 copied += len;
1284                 buf += len;
1285                 count -= len;
1286         }
1287         *ppos += copied;
1288         if (!ret || ret == PM_END_OF_BUFFER)
1289                 ret = copied;
1290
1291 out_free:
1292         kfree(pm.buffer);
1293 out_mm:
1294         mmput(mm);
1295 out:
1296         return ret;
1297 }
1298
1299 static int pagemap_open(struct inode *inode, struct file *file)
1300 {
1301         struct mm_struct *mm;
1302
1303         mm = proc_mem_open(inode, PTRACE_MODE_READ);
1304         if (IS_ERR(mm))
1305                 return PTR_ERR(mm);
1306         file->private_data = mm;
1307         return 0;
1308 }
1309
1310 static int pagemap_release(struct inode *inode, struct file *file)
1311 {
1312         struct mm_struct *mm = file->private_data;
1313
1314         if (mm)
1315                 mmdrop(mm);
1316         return 0;
1317 }
1318
1319 const struct file_operations proc_pagemap_operations = {
1320         .llseek         = mem_lseek, /* borrow this */
1321         .read           = pagemap_read,
1322         .open           = pagemap_open,
1323         .release        = pagemap_release,
1324 };
1325 #endif /* CONFIG_PROC_PAGE_MONITOR */
1326
1327 #ifdef CONFIG_NUMA
1328
1329 struct numa_maps {
1330         unsigned long pages;
1331         unsigned long anon;
1332         unsigned long active;
1333         unsigned long writeback;
1334         unsigned long mapcount_max;
1335         unsigned long dirty;
1336         unsigned long swapcache;
1337         unsigned long node[MAX_NUMNODES];
1338 };
1339
1340 struct numa_maps_private {
1341         struct proc_maps_private proc_maps;
1342         struct numa_maps md;
1343 };
1344
1345 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1346                         unsigned long nr_pages)
1347 {
1348         int count = page_mapcount(page);
1349
1350         md->pages += nr_pages;
1351         if (pte_dirty || PageDirty(page))
1352                 md->dirty += nr_pages;
1353
1354         if (PageSwapCache(page))
1355                 md->swapcache += nr_pages;
1356
1357         if (PageActive(page) || PageUnevictable(page))
1358                 md->active += nr_pages;
1359
1360         if (PageWriteback(page))
1361                 md->writeback += nr_pages;
1362
1363         if (PageAnon(page))
1364                 md->anon += nr_pages;
1365
1366         if (count > md->mapcount_max)
1367                 md->mapcount_max = count;
1368
1369         md->node[page_to_nid(page)] += nr_pages;
1370 }
1371
1372 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1373                 unsigned long addr)
1374 {
1375         struct page *page;
1376         int nid;
1377
1378         if (!pte_present(pte))
1379                 return NULL;
1380
1381         page = vm_normal_page(vma, addr, pte);
1382         if (!page)
1383                 return NULL;
1384
1385         if (PageReserved(page))
1386                 return NULL;
1387
1388         nid = page_to_nid(page);
1389         if (!node_isset(nid, node_states[N_MEMORY]))
1390                 return NULL;
1391
1392         return page;
1393 }
1394
1395 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1396                 unsigned long end, struct mm_walk *walk)
1397 {
1398         struct numa_maps *md = walk->private;
1399         struct vm_area_struct *vma = walk->vma;
1400         spinlock_t *ptl;
1401         pte_t *orig_pte;
1402         pte_t *pte;
1403
1404         if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1405                 pte_t huge_pte = *(pte_t *)pmd;
1406                 struct page *page;
1407
1408                 page = can_gather_numa_stats(huge_pte, vma, addr);
1409                 if (page)
1410                         gather_stats(page, md, pte_dirty(huge_pte),
1411                                      HPAGE_PMD_SIZE/PAGE_SIZE);
1412                 spin_unlock(ptl);
1413                 return 0;
1414         }
1415
1416         if (pmd_trans_unstable(pmd))
1417                 return 0;
1418         orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1419         do {
1420                 struct page *page = can_gather_numa_stats(*pte, vma, addr);
1421                 if (!page)
1422                         continue;
1423                 gather_stats(page, md, pte_dirty(*pte), 1);
1424
1425         } while (pte++, addr += PAGE_SIZE, addr != end);
1426         pte_unmap_unlock(orig_pte, ptl);
1427         return 0;
1428 }
1429 #ifdef CONFIG_HUGETLB_PAGE
1430 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1431                 unsigned long addr, unsigned long end, struct mm_walk *walk)
1432 {
1433         struct numa_maps *md;
1434         struct page *page;
1435
1436         if (!pte_present(*pte))
1437                 return 0;
1438
1439         page = pte_page(*pte);
1440         if (!page)
1441                 return 0;
1442
1443         md = walk->private;
1444         gather_stats(page, md, pte_dirty(*pte), 1);
1445         return 0;
1446 }
1447
1448 #else
1449 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1450                 unsigned long addr, unsigned long end, struct mm_walk *walk)
1451 {
1452         return 0;
1453 }
1454 #endif
1455
1456 /*
1457  * Display pages allocated per node and memory policy via /proc.
1458  */
1459 static int show_numa_map(struct seq_file *m, void *v, int is_pid)
1460 {
1461         struct numa_maps_private *numa_priv = m->private;
1462         struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1463         struct vm_area_struct *vma = v;
1464         struct numa_maps *md = &numa_priv->md;
1465         struct file *file = vma->vm_file;
1466         struct mm_struct *mm = vma->vm_mm;
1467         struct mm_walk walk = {
1468                 .hugetlb_entry = gather_hugetlb_stats,
1469                 .pmd_entry = gather_pte_stats,
1470                 .private = md,
1471                 .mm = mm,
1472         };
1473         struct mempolicy *pol;
1474         char buffer[64];
1475         int nid;
1476
1477         if (!mm)
1478                 return 0;
1479
1480         /* Ensure we start with an empty set of numa_maps statistics. */
1481         memset(md, 0, sizeof(*md));
1482
1483         pol = __get_vma_policy(vma, vma->vm_start);
1484         if (pol) {
1485                 mpol_to_str(buffer, sizeof(buffer), pol);
1486                 mpol_cond_put(pol);
1487         } else {
1488                 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1489         }
1490
1491         seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1492
1493         if (file) {
1494                 seq_puts(m, " file=");
1495                 seq_file_path(m, file, "\n\t= ");
1496         } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1497                 seq_puts(m, " heap");
1498         } else {
1499                 pid_t tid = pid_of_stack(proc_priv, vma, is_pid);
1500                 if (tid != 0) {
1501                         /*
1502                          * Thread stack in /proc/PID/task/TID/maps or
1503                          * the main process stack.
1504                          */
1505                         if (!is_pid || (vma->vm_start <= mm->start_stack &&
1506                             vma->vm_end >= mm->start_stack))
1507                                 seq_puts(m, " stack");
1508                         else
1509                                 seq_printf(m, " stack:%d", tid);
1510                 }
1511         }
1512
1513         if (is_vm_hugetlb_page(vma))
1514                 seq_puts(m, " huge");
1515
1516         /* mmap_sem is held by m_start */
1517         walk_page_vma(vma, &walk);
1518
1519         if (!md->pages)
1520                 goto out;
1521
1522         if (md->anon)
1523                 seq_printf(m, " anon=%lu", md->anon);
1524
1525         if (md->dirty)
1526                 seq_printf(m, " dirty=%lu", md->dirty);
1527
1528         if (md->pages != md->anon && md->pages != md->dirty)
1529                 seq_printf(m, " mapped=%lu", md->pages);
1530
1531         if (md->mapcount_max > 1)
1532                 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1533
1534         if (md->swapcache)
1535                 seq_printf(m, " swapcache=%lu", md->swapcache);
1536
1537         if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1538                 seq_printf(m, " active=%lu", md->active);
1539
1540         if (md->writeback)
1541                 seq_printf(m, " writeback=%lu", md->writeback);
1542
1543         for_each_node_state(nid, N_MEMORY)
1544                 if (md->node[nid])
1545                         seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1546
1547         seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1548 out:
1549         seq_putc(m, '\n');
1550         m_cache_vma(m, vma);
1551         return 0;
1552 }
1553
1554 static int show_pid_numa_map(struct seq_file *m, void *v)
1555 {
1556         return show_numa_map(m, v, 1);
1557 }
1558
1559 static int show_tid_numa_map(struct seq_file *m, void *v)
1560 {
1561         return show_numa_map(m, v, 0);
1562 }
1563
1564 static const struct seq_operations proc_pid_numa_maps_op = {
1565         .start  = m_start,
1566         .next   = m_next,
1567         .stop   = m_stop,
1568         .show   = show_pid_numa_map,
1569 };
1570
1571 static const struct seq_operations proc_tid_numa_maps_op = {
1572         .start  = m_start,
1573         .next   = m_next,
1574         .stop   = m_stop,
1575         .show   = show_tid_numa_map,
1576 };
1577
1578 static int numa_maps_open(struct inode *inode, struct file *file,
1579                           const struct seq_operations *ops)
1580 {
1581         return proc_maps_open(inode, file, ops,
1582                                 sizeof(struct numa_maps_private));
1583 }
1584
1585 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1586 {
1587         return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
1588 }
1589
1590 static int tid_numa_maps_open(struct inode *inode, struct file *file)
1591 {
1592         return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
1593 }
1594
1595 const struct file_operations proc_pid_numa_maps_operations = {
1596         .open           = pid_numa_maps_open,
1597         .read           = seq_read,
1598         .llseek         = seq_lseek,
1599         .release        = proc_map_release,
1600 };
1601
1602 const struct file_operations proc_tid_numa_maps_operations = {
1603         .open           = tid_numa_maps_open,
1604         .read           = seq_read,
1605         .llseek         = seq_lseek,
1606         .release        = proc_map_release,
1607 };
1608 #endif /* CONFIG_NUMA */