reiserfs: cleanup, remove sb argument from journal_mark_dirty
[cascardo/linux.git] / fs / reiserfs / fix_node.c
1 /*
2  * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3  */
4
5 #include <linux/time.h>
6 #include <linux/slab.h>
7 #include <linux/string.h>
8 #include "reiserfs.h"
9 #include <linux/buffer_head.h>
10
11 /*
12  * To make any changes in the tree we find a node that contains item
13  * to be changed/deleted or position in the node we insert a new item
14  * to. We call this node S. To do balancing we need to decide what we
15  * will shift to left/right neighbor, or to a new node, where new item
16  * will be etc. To make this analysis simpler we build virtual
17  * node. Virtual node is an array of items, that will replace items of
18  * node S. (For instance if we are going to delete an item, virtual
19  * node does not contain it). Virtual node keeps information about
20  * item sizes and types, mergeability of first and last items, sizes
21  * of all entries in directory item. We use this array of items when
22  * calculating what we can shift to neighbors and how many nodes we
23  * have to have if we do not any shiftings, if we shift to left/right
24  * neighbor or to both.
25  */
26
27 /*
28  * Takes item number in virtual node, returns number of item
29  * that it has in source buffer
30  */
31 static inline int old_item_num(int new_num, int affected_item_num, int mode)
32 {
33         if (mode == M_PASTE || mode == M_CUT || new_num < affected_item_num)
34                 return new_num;
35
36         if (mode == M_INSERT) {
37
38                 RFALSE(new_num == 0,
39                        "vs-8005: for INSERT mode and item number of inserted item");
40
41                 return new_num - 1;
42         }
43
44         RFALSE(mode != M_DELETE,
45                "vs-8010: old_item_num: mode must be M_DELETE (mode = \'%c\'",
46                mode);
47         /* delete mode */
48         return new_num + 1;
49 }
50
51 static void create_virtual_node(struct tree_balance *tb, int h)
52 {
53         struct item_head *ih;
54         struct virtual_node *vn = tb->tb_vn;
55         int new_num;
56         struct buffer_head *Sh; /* this comes from tb->S[h] */
57
58         Sh = PATH_H_PBUFFER(tb->tb_path, h);
59
60         /* size of changed node */
61         vn->vn_size =
62             MAX_CHILD_SIZE(Sh) - B_FREE_SPACE(Sh) + tb->insert_size[h];
63
64         /* for internal nodes array if virtual items is not created */
65         if (h) {
66                 vn->vn_nr_item = (vn->vn_size - DC_SIZE) / (DC_SIZE + KEY_SIZE);
67                 return;
68         }
69
70         /* number of items in virtual node  */
71         vn->vn_nr_item =
72             B_NR_ITEMS(Sh) + ((vn->vn_mode == M_INSERT) ? 1 : 0) -
73             ((vn->vn_mode == M_DELETE) ? 1 : 0);
74
75         /* first virtual item */
76         vn->vn_vi = (struct virtual_item *)(tb->tb_vn + 1);
77         memset(vn->vn_vi, 0, vn->vn_nr_item * sizeof(struct virtual_item));
78         vn->vn_free_ptr += vn->vn_nr_item * sizeof(struct virtual_item);
79
80         /* first item in the node */
81         ih = item_head(Sh, 0);
82
83         /* define the mergeability for 0-th item (if it is not being deleted) */
84         if (op_is_left_mergeable(&(ih->ih_key), Sh->b_size)
85             && (vn->vn_mode != M_DELETE || vn->vn_affected_item_num))
86                 vn->vn_vi[0].vi_type |= VI_TYPE_LEFT_MERGEABLE;
87
88         /*
89          * go through all items that remain in the virtual
90          * node (except for the new (inserted) one)
91          */
92         for (new_num = 0; new_num < vn->vn_nr_item; new_num++) {
93                 int j;
94                 struct virtual_item *vi = vn->vn_vi + new_num;
95                 int is_affected =
96                     ((new_num != vn->vn_affected_item_num) ? 0 : 1);
97
98                 if (is_affected && vn->vn_mode == M_INSERT)
99                         continue;
100
101                 /* get item number in source node */
102                 j = old_item_num(new_num, vn->vn_affected_item_num,
103                                  vn->vn_mode);
104
105                 vi->vi_item_len += ih_item_len(ih + j) + IH_SIZE;
106                 vi->vi_ih = ih + j;
107                 vi->vi_item = ih_item_body(Sh, ih + j);
108                 vi->vi_uarea = vn->vn_free_ptr;
109
110                 /*
111                  * FIXME: there is no check that item operation did not
112                  * consume too much memory
113                  */
114                 vn->vn_free_ptr +=
115                     op_create_vi(vn, vi, is_affected, tb->insert_size[0]);
116                 if (tb->vn_buf + tb->vn_buf_size < vn->vn_free_ptr)
117                         reiserfs_panic(tb->tb_sb, "vs-8030",
118                                        "virtual node space consumed");
119
120                 if (!is_affected)
121                         /* this is not being changed */
122                         continue;
123
124                 if (vn->vn_mode == M_PASTE || vn->vn_mode == M_CUT) {
125                         vn->vn_vi[new_num].vi_item_len += tb->insert_size[0];
126                         /* pointer to data which is going to be pasted */
127                         vi->vi_new_data = vn->vn_data;
128                 }
129         }
130
131         /* virtual inserted item is not defined yet */
132         if (vn->vn_mode == M_INSERT) {
133                 struct virtual_item *vi = vn->vn_vi + vn->vn_affected_item_num;
134
135                 RFALSE(vn->vn_ins_ih == NULL,
136                        "vs-8040: item header of inserted item is not specified");
137                 vi->vi_item_len = tb->insert_size[0];
138                 vi->vi_ih = vn->vn_ins_ih;
139                 vi->vi_item = vn->vn_data;
140                 vi->vi_uarea = vn->vn_free_ptr;
141
142                 op_create_vi(vn, vi, 0 /*not pasted or cut */ ,
143                              tb->insert_size[0]);
144         }
145
146         /*
147          * set right merge flag we take right delimiting key and
148          * check whether it is a mergeable item
149          */
150         if (tb->CFR[0]) {
151                 struct reiserfs_key *key;
152
153                 key = internal_key(tb->CFR[0], tb->rkey[0]);
154                 if (op_is_left_mergeable(key, Sh->b_size)
155                     && (vn->vn_mode != M_DELETE
156                         || vn->vn_affected_item_num != B_NR_ITEMS(Sh) - 1))
157                         vn->vn_vi[vn->vn_nr_item - 1].vi_type |=
158                             VI_TYPE_RIGHT_MERGEABLE;
159
160 #ifdef CONFIG_REISERFS_CHECK
161                 if (op_is_left_mergeable(key, Sh->b_size) &&
162                     !(vn->vn_mode != M_DELETE
163                       || vn->vn_affected_item_num != B_NR_ITEMS(Sh) - 1)) {
164                         /*
165                          * we delete last item and it could be merged
166                          * with right neighbor's first item
167                          */
168                         if (!
169                             (B_NR_ITEMS(Sh) == 1
170                              && is_direntry_le_ih(item_head(Sh, 0))
171                              && ih_entry_count(item_head(Sh, 0)) == 1)) {
172                                 /*
173                                  * node contains more than 1 item, or item
174                                  * is not directory item, or this item
175                                  * contains more than 1 entry
176                                  */
177                                 print_block(Sh, 0, -1, -1);
178                                 reiserfs_panic(tb->tb_sb, "vs-8045",
179                                                "rdkey %k, affected item==%d "
180                                                "(mode==%c) Must be %c",
181                                                key, vn->vn_affected_item_num,
182                                                vn->vn_mode, M_DELETE);
183                         }
184                 }
185 #endif
186
187         }
188 }
189
190 /*
191  * Using virtual node check, how many items can be
192  * shifted to left neighbor
193  */
194 static void check_left(struct tree_balance *tb, int h, int cur_free)
195 {
196         int i;
197         struct virtual_node *vn = tb->tb_vn;
198         struct virtual_item *vi;
199         int d_size, ih_size;
200
201         RFALSE(cur_free < 0, "vs-8050: cur_free (%d) < 0", cur_free);
202
203         /* internal level */
204         if (h > 0) {
205                 tb->lnum[h] = cur_free / (DC_SIZE + KEY_SIZE);
206                 return;
207         }
208
209         /* leaf level */
210
211         if (!cur_free || !vn->vn_nr_item) {
212                 /* no free space or nothing to move */
213                 tb->lnum[h] = 0;
214                 tb->lbytes = -1;
215                 return;
216         }
217
218         RFALSE(!PATH_H_PPARENT(tb->tb_path, 0),
219                "vs-8055: parent does not exist or invalid");
220
221         vi = vn->vn_vi;
222         if ((unsigned int)cur_free >=
223             (vn->vn_size -
224              ((vi->vi_type & VI_TYPE_LEFT_MERGEABLE) ? IH_SIZE : 0))) {
225                 /* all contents of S[0] fits into L[0] */
226
227                 RFALSE(vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE,
228                        "vs-8055: invalid mode or balance condition failed");
229
230                 tb->lnum[0] = vn->vn_nr_item;
231                 tb->lbytes = -1;
232                 return;
233         }
234
235         d_size = 0, ih_size = IH_SIZE;
236
237         /* first item may be merge with last item in left neighbor */
238         if (vi->vi_type & VI_TYPE_LEFT_MERGEABLE)
239                 d_size = -((int)IH_SIZE), ih_size = 0;
240
241         tb->lnum[0] = 0;
242         for (i = 0; i < vn->vn_nr_item;
243              i++, ih_size = IH_SIZE, d_size = 0, vi++) {
244                 d_size += vi->vi_item_len;
245                 if (cur_free >= d_size) {
246                         /* the item can be shifted entirely */
247                         cur_free -= d_size;
248                         tb->lnum[0]++;
249                         continue;
250                 }
251
252                 /* the item cannot be shifted entirely, try to split it */
253                 /*
254                  * check whether L[0] can hold ih and at least one byte
255                  * of the item body
256                  */
257
258                 /* cannot shift even a part of the current item */
259                 if (cur_free <= ih_size) {
260                         tb->lbytes = -1;
261                         return;
262                 }
263                 cur_free -= ih_size;
264
265                 tb->lbytes = op_check_left(vi, cur_free, 0, 0);
266                 if (tb->lbytes != -1)
267                         /* count partially shifted item */
268                         tb->lnum[0]++;
269
270                 break;
271         }
272
273         return;
274 }
275
276 /*
277  * Using virtual node check, how many items can be
278  * shifted to right neighbor
279  */
280 static void check_right(struct tree_balance *tb, int h, int cur_free)
281 {
282         int i;
283         struct virtual_node *vn = tb->tb_vn;
284         struct virtual_item *vi;
285         int d_size, ih_size;
286
287         RFALSE(cur_free < 0, "vs-8070: cur_free < 0");
288
289         /* internal level */
290         if (h > 0) {
291                 tb->rnum[h] = cur_free / (DC_SIZE + KEY_SIZE);
292                 return;
293         }
294
295         /* leaf level */
296
297         if (!cur_free || !vn->vn_nr_item) {
298                 /* no free space  */
299                 tb->rnum[h] = 0;
300                 tb->rbytes = -1;
301                 return;
302         }
303
304         RFALSE(!PATH_H_PPARENT(tb->tb_path, 0),
305                "vs-8075: parent does not exist or invalid");
306
307         vi = vn->vn_vi + vn->vn_nr_item - 1;
308         if ((unsigned int)cur_free >=
309             (vn->vn_size -
310              ((vi->vi_type & VI_TYPE_RIGHT_MERGEABLE) ? IH_SIZE : 0))) {
311                 /* all contents of S[0] fits into R[0] */
312
313                 RFALSE(vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE,
314                        "vs-8080: invalid mode or balance condition failed");
315
316                 tb->rnum[h] = vn->vn_nr_item;
317                 tb->rbytes = -1;
318                 return;
319         }
320
321         d_size = 0, ih_size = IH_SIZE;
322
323         /* last item may be merge with first item in right neighbor */
324         if (vi->vi_type & VI_TYPE_RIGHT_MERGEABLE)
325                 d_size = -(int)IH_SIZE, ih_size = 0;
326
327         tb->rnum[0] = 0;
328         for (i = vn->vn_nr_item - 1; i >= 0;
329              i--, d_size = 0, ih_size = IH_SIZE, vi--) {
330                 d_size += vi->vi_item_len;
331                 if (cur_free >= d_size) {
332                         /* the item can be shifted entirely */
333                         cur_free -= d_size;
334                         tb->rnum[0]++;
335                         continue;
336                 }
337
338                 /*
339                  * check whether R[0] can hold ih and at least one
340                  * byte of the item body
341                  */
342
343                 /* cannot shift even a part of the current item */
344                 if (cur_free <= ih_size) {
345                         tb->rbytes = -1;
346                         return;
347                 }
348
349                 /*
350                  * R[0] can hold the header of the item and at least
351                  * one byte of its body
352                  */
353                 cur_free -= ih_size;    /* cur_free is still > 0 */
354
355                 tb->rbytes = op_check_right(vi, cur_free);
356                 if (tb->rbytes != -1)
357                         /* count partially shifted item */
358                         tb->rnum[0]++;
359
360                 break;
361         }
362
363         return;
364 }
365
366 /*
367  * from - number of items, which are shifted to left neighbor entirely
368  * to - number of item, which are shifted to right neighbor entirely
369  * from_bytes - number of bytes of boundary item (or directory entries)
370  *              which are shifted to left neighbor
371  * to_bytes - number of bytes of boundary item (or directory entries)
372  *            which are shifted to right neighbor
373  */
374 static int get_num_ver(int mode, struct tree_balance *tb, int h,
375                        int from, int from_bytes,
376                        int to, int to_bytes, short *snum012, int flow)
377 {
378         int i;
379         int cur_free;
380         int units;
381         struct virtual_node *vn = tb->tb_vn;
382         int total_node_size, max_node_size, current_item_size;
383         int needed_nodes;
384
385         /* position of item we start filling node from */
386         int start_item;
387
388         /* position of item we finish filling node by */
389         int end_item;
390
391         /*
392          * number of first bytes (entries for directory) of start_item-th item
393          * we do not include into node that is being filled
394          */
395         int start_bytes;
396
397         /*
398          * number of last bytes (entries for directory) of end_item-th item
399          * we do node include into node that is being filled
400          */
401         int end_bytes;
402
403         /*
404          * these are positions in virtual item of items, that are split
405          * between S[0] and S1new and S1new and S2new
406          */
407         int split_item_positions[2];
408
409         split_item_positions[0] = -1;
410         split_item_positions[1] = -1;
411
412         /*
413          * We only create additional nodes if we are in insert or paste mode
414          * or we are in replace mode at the internal level. If h is 0 and
415          * the mode is M_REPLACE then in fix_nodes we change the mode to
416          * paste or insert before we get here in the code.
417          */
418         RFALSE(tb->insert_size[h] < 0 || (mode != M_INSERT && mode != M_PASTE),
419                "vs-8100: insert_size < 0 in overflow");
420
421         max_node_size = MAX_CHILD_SIZE(PATH_H_PBUFFER(tb->tb_path, h));
422
423         /*
424          * snum012 [0-2] - number of items, that lay
425          * to S[0], first new node and second new node
426          */
427         snum012[3] = -1;        /* s1bytes */
428         snum012[4] = -1;        /* s2bytes */
429
430         /* internal level */
431         if (h > 0) {
432                 i = ((to - from) * (KEY_SIZE + DC_SIZE) + DC_SIZE);
433                 if (i == max_node_size)
434                         return 1;
435                 return (i / max_node_size + 1);
436         }
437
438         /* leaf level */
439         needed_nodes = 1;
440         total_node_size = 0;
441         cur_free = max_node_size;
442
443         /* start from 'from'-th item */
444         start_item = from;
445         /* skip its first 'start_bytes' units */
446         start_bytes = ((from_bytes != -1) ? from_bytes : 0);
447
448         /* last included item is the 'end_item'-th one */
449         end_item = vn->vn_nr_item - to - 1;
450         /* do not count last 'end_bytes' units of 'end_item'-th item */
451         end_bytes = (to_bytes != -1) ? to_bytes : 0;
452
453         /*
454          * go through all item beginning from the start_item-th item
455          * and ending by the end_item-th item. Do not count first
456          * 'start_bytes' units of 'start_item'-th item and last
457          * 'end_bytes' of 'end_item'-th item
458          */
459         for (i = start_item; i <= end_item; i++) {
460                 struct virtual_item *vi = vn->vn_vi + i;
461                 int skip_from_end = ((i == end_item) ? end_bytes : 0);
462
463                 RFALSE(needed_nodes > 3, "vs-8105: too many nodes are needed");
464
465                 /* get size of current item */
466                 current_item_size = vi->vi_item_len;
467
468                 /*
469                  * do not take in calculation head part (from_bytes)
470                  * of from-th item
471                  */
472                 current_item_size -=
473                     op_part_size(vi, 0 /*from start */ , start_bytes);
474
475                 /* do not take in calculation tail part of last item */
476                 current_item_size -=
477                     op_part_size(vi, 1 /*from end */ , skip_from_end);
478
479                 /* if item fits into current node entierly */
480                 if (total_node_size + current_item_size <= max_node_size) {
481                         snum012[needed_nodes - 1]++;
482                         total_node_size += current_item_size;
483                         start_bytes = 0;
484                         continue;
485                 }
486
487                 /*
488                  * virtual item length is longer, than max size of item in
489                  * a node. It is impossible for direct item
490                  */
491                 if (current_item_size > max_node_size) {
492                         RFALSE(is_direct_le_ih(vi->vi_ih),
493                                "vs-8110: "
494                                "direct item length is %d. It can not be longer than %d",
495                                current_item_size, max_node_size);
496                         /* we will try to split it */
497                         flow = 1;
498                 }
499
500                 /* as we do not split items, take new node and continue */
501                 if (!flow) {
502                         needed_nodes++;
503                         i--;
504                         total_node_size = 0;
505                         continue;
506                 }
507
508                 /*
509                  * calculate number of item units which fit into node being
510                  * filled
511                  */
512                 {
513                         int free_space;
514
515                         free_space = max_node_size - total_node_size - IH_SIZE;
516                         units =
517                             op_check_left(vi, free_space, start_bytes,
518                                           skip_from_end);
519                         /*
520                          * nothing fits into current node, take new
521                          * node and continue
522                          */
523                         if (units == -1) {
524                                 needed_nodes++, i--, total_node_size = 0;
525                                 continue;
526                         }
527                 }
528
529                 /* something fits into the current node */
530                 start_bytes += units;
531                 snum012[needed_nodes - 1 + 3] = units;
532
533                 if (needed_nodes > 2)
534                         reiserfs_warning(tb->tb_sb, "vs-8111",
535                                          "split_item_position is out of range");
536                 snum012[needed_nodes - 1]++;
537                 split_item_positions[needed_nodes - 1] = i;
538                 needed_nodes++;
539                 /* continue from the same item with start_bytes != -1 */
540                 start_item = i;
541                 i--;
542                 total_node_size = 0;
543         }
544
545         /*
546          * sum012[4] (if it is not -1) contains number of units of which
547          * are to be in S1new, snum012[3] - to be in S0. They are supposed
548          * to be S1bytes and S2bytes correspondingly, so recalculate
549          */
550         if (snum012[4] > 0) {
551                 int split_item_num;
552                 int bytes_to_r, bytes_to_l;
553                 int bytes_to_S1new;
554
555                 split_item_num = split_item_positions[1];
556                 bytes_to_l =
557                     ((from == split_item_num
558                       && from_bytes != -1) ? from_bytes : 0);
559                 bytes_to_r =
560                     ((end_item == split_item_num
561                       && end_bytes != -1) ? end_bytes : 0);
562                 bytes_to_S1new =
563                     ((split_item_positions[0] ==
564                       split_item_positions[1]) ? snum012[3] : 0);
565
566                 /* s2bytes */
567                 snum012[4] =
568                     op_unit_num(&vn->vn_vi[split_item_num]) - snum012[4] -
569                     bytes_to_r - bytes_to_l - bytes_to_S1new;
570
571                 if (vn->vn_vi[split_item_num].vi_index != TYPE_DIRENTRY &&
572                     vn->vn_vi[split_item_num].vi_index != TYPE_INDIRECT)
573                         reiserfs_warning(tb->tb_sb, "vs-8115",
574                                          "not directory or indirect item");
575         }
576
577         /* now we know S2bytes, calculate S1bytes */
578         if (snum012[3] > 0) {
579                 int split_item_num;
580                 int bytes_to_r, bytes_to_l;
581                 int bytes_to_S2new;
582
583                 split_item_num = split_item_positions[0];
584                 bytes_to_l =
585                     ((from == split_item_num
586                       && from_bytes != -1) ? from_bytes : 0);
587                 bytes_to_r =
588                     ((end_item == split_item_num
589                       && end_bytes != -1) ? end_bytes : 0);
590                 bytes_to_S2new =
591                     ((split_item_positions[0] == split_item_positions[1]
592                       && snum012[4] != -1) ? snum012[4] : 0);
593
594                 /* s1bytes */
595                 snum012[3] =
596                     op_unit_num(&vn->vn_vi[split_item_num]) - snum012[3] -
597                     bytes_to_r - bytes_to_l - bytes_to_S2new;
598         }
599
600         return needed_nodes;
601 }
602
603
604 /*
605  * Set parameters for balancing.
606  * Performs write of results of analysis of balancing into structure tb,
607  * where it will later be used by the functions that actually do the balancing.
608  * Parameters:
609  *      tb      tree_balance structure;
610  *      h       current level of the node;
611  *      lnum    number of items from S[h] that must be shifted to L[h];
612  *      rnum    number of items from S[h] that must be shifted to R[h];
613  *      blk_num number of blocks that S[h] will be splitted into;
614  *      s012    number of items that fall into splitted nodes.
615  *      lbytes  number of bytes which flow to the left neighbor from the
616  *              item that is not not shifted entirely
617  *      rbytes  number of bytes which flow to the right neighbor from the
618  *              item that is not not shifted entirely
619  *      s1bytes number of bytes which flow to the first  new node when
620  *              S[0] splits (this number is contained in s012 array)
621  */
622
623 static void set_parameters(struct tree_balance *tb, int h, int lnum,
624                            int rnum, int blk_num, short *s012, int lb, int rb)
625 {
626
627         tb->lnum[h] = lnum;
628         tb->rnum[h] = rnum;
629         tb->blknum[h] = blk_num;
630
631         /* only for leaf level */
632         if (h == 0) {
633                 if (s012 != NULL) {
634                         tb->s0num = *s012++,
635                             tb->s1num = *s012++, tb->s2num = *s012++;
636                         tb->s1bytes = *s012++;
637                         tb->s2bytes = *s012;
638                 }
639                 tb->lbytes = lb;
640                 tb->rbytes = rb;
641         }
642         PROC_INFO_ADD(tb->tb_sb, lnum[h], lnum);
643         PROC_INFO_ADD(tb->tb_sb, rnum[h], rnum);
644
645         PROC_INFO_ADD(tb->tb_sb, lbytes[h], lb);
646         PROC_INFO_ADD(tb->tb_sb, rbytes[h], rb);
647 }
648
649 /*
650  * check if node disappears if we shift tb->lnum[0] items to left
651  * neighbor and tb->rnum[0] to the right one.
652  */
653 static int is_leaf_removable(struct tree_balance *tb)
654 {
655         struct virtual_node *vn = tb->tb_vn;
656         int to_left, to_right;
657         int size;
658         int remain_items;
659
660         /*
661          * number of items that will be shifted to left (right) neighbor
662          * entirely
663          */
664         to_left = tb->lnum[0] - ((tb->lbytes != -1) ? 1 : 0);
665         to_right = tb->rnum[0] - ((tb->rbytes != -1) ? 1 : 0);
666         remain_items = vn->vn_nr_item;
667
668         /* how many items remain in S[0] after shiftings to neighbors */
669         remain_items -= (to_left + to_right);
670
671         /* all content of node can be shifted to neighbors */
672         if (remain_items < 1) {
673                 set_parameters(tb, 0, to_left, vn->vn_nr_item - to_left, 0,
674                                NULL, -1, -1);
675                 return 1;
676         }
677
678         /* S[0] is not removable */
679         if (remain_items > 1 || tb->lbytes == -1 || tb->rbytes == -1)
680                 return 0;
681
682         /* check whether we can divide 1 remaining item between neighbors */
683
684         /* get size of remaining item (in item units) */
685         size = op_unit_num(&(vn->vn_vi[to_left]));
686
687         if (tb->lbytes + tb->rbytes >= size) {
688                 set_parameters(tb, 0, to_left + 1, to_right + 1, 0, NULL,
689                                tb->lbytes, -1);
690                 return 1;
691         }
692
693         return 0;
694 }
695
696 /* check whether L, S, R can be joined in one node */
697 static int are_leaves_removable(struct tree_balance *tb, int lfree, int rfree)
698 {
699         struct virtual_node *vn = tb->tb_vn;
700         int ih_size;
701         struct buffer_head *S0;
702
703         S0 = PATH_H_PBUFFER(tb->tb_path, 0);
704
705         ih_size = 0;
706         if (vn->vn_nr_item) {
707                 if (vn->vn_vi[0].vi_type & VI_TYPE_LEFT_MERGEABLE)
708                         ih_size += IH_SIZE;
709
710                 if (vn->vn_vi[vn->vn_nr_item - 1].
711                     vi_type & VI_TYPE_RIGHT_MERGEABLE)
712                         ih_size += IH_SIZE;
713         } else {
714                 /* there was only one item and it will be deleted */
715                 struct item_head *ih;
716
717                 RFALSE(B_NR_ITEMS(S0) != 1,
718                        "vs-8125: item number must be 1: it is %d",
719                        B_NR_ITEMS(S0));
720
721                 ih = item_head(S0, 0);
722                 if (tb->CFR[0]
723                     && !comp_short_le_keys(&(ih->ih_key),
724                                            internal_key(tb->CFR[0],
725                                                           tb->rkey[0])))
726                         /*
727                          * Directory must be in correct state here: that is
728                          * somewhere at the left side should exist first
729                          * directory item. But the item being deleted can
730                          * not be that first one because its right neighbor
731                          * is item of the same directory. (But first item
732                          * always gets deleted in last turn). So, neighbors
733                          * of deleted item can be merged, so we can save
734                          * ih_size
735                          */
736                         if (is_direntry_le_ih(ih)) {
737                                 ih_size = IH_SIZE;
738
739                                 /*
740                                  * we might check that left neighbor exists
741                                  * and is of the same directory
742                                  */
743                                 RFALSE(le_ih_k_offset(ih) == DOT_OFFSET,
744                                        "vs-8130: first directory item can not be removed until directory is not empty");
745                         }
746
747         }
748
749         if (MAX_CHILD_SIZE(S0) + vn->vn_size <= rfree + lfree + ih_size) {
750                 set_parameters(tb, 0, -1, -1, -1, NULL, -1, -1);
751                 PROC_INFO_INC(tb->tb_sb, leaves_removable);
752                 return 1;
753         }
754         return 0;
755
756 }
757
758 /* when we do not split item, lnum and rnum are numbers of entire items */
759 #define SET_PAR_SHIFT_LEFT \
760 if (h)\
761 {\
762    int to_l;\
763    \
764    to_l = (MAX_NR_KEY(Sh)+1 - lpar + vn->vn_nr_item + 1) / 2 -\
765               (MAX_NR_KEY(Sh) + 1 - lpar);\
766               \
767               set_parameters (tb, h, to_l, 0, lnver, NULL, -1, -1);\
768 }\
769 else \
770 {\
771    if (lset==LEFT_SHIFT_FLOW)\
772      set_parameters (tb, h, lpar, 0, lnver, snum012+lset,\
773                      tb->lbytes, -1);\
774    else\
775      set_parameters (tb, h, lpar - (tb->lbytes!=-1), 0, lnver, snum012+lset,\
776                      -1, -1);\
777 }
778
779 #define SET_PAR_SHIFT_RIGHT \
780 if (h)\
781 {\
782    int to_r;\
783    \
784    to_r = (MAX_NR_KEY(Sh)+1 - rpar + vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 - rpar);\
785    \
786    set_parameters (tb, h, 0, to_r, rnver, NULL, -1, -1);\
787 }\
788 else \
789 {\
790    if (rset==RIGHT_SHIFT_FLOW)\
791      set_parameters (tb, h, 0, rpar, rnver, snum012+rset,\
792                   -1, tb->rbytes);\
793    else\
794      set_parameters (tb, h, 0, rpar - (tb->rbytes!=-1), rnver, snum012+rset,\
795                   -1, -1);\
796 }
797
798 static void free_buffers_in_tb(struct tree_balance *tb)
799 {
800         int i;
801
802         pathrelse(tb->tb_path);
803
804         for (i = 0; i < MAX_HEIGHT; i++) {
805                 brelse(tb->L[i]);
806                 brelse(tb->R[i]);
807                 brelse(tb->FL[i]);
808                 brelse(tb->FR[i]);
809                 brelse(tb->CFL[i]);
810                 brelse(tb->CFR[i]);
811
812                 tb->L[i] = NULL;
813                 tb->R[i] = NULL;
814                 tb->FL[i] = NULL;
815                 tb->FR[i] = NULL;
816                 tb->CFL[i] = NULL;
817                 tb->CFR[i] = NULL;
818         }
819 }
820
821 /*
822  * Get new buffers for storing new nodes that are created while balancing.
823  * Returns:     SCHEDULE_OCCURRED - schedule occurred while the function worked;
824  *              CARRY_ON - schedule didn't occur while the function worked;
825  *              NO_DISK_SPACE - no disk space.
826  */
827 /* The function is NOT SCHEDULE-SAFE! */
828 static int get_empty_nodes(struct tree_balance *tb, int h)
829 {
830         struct buffer_head *new_bh, *Sh = PATH_H_PBUFFER(tb->tb_path, h);
831         b_blocknr_t *blocknr, blocknrs[MAX_AMOUNT_NEEDED] = { 0, };
832         int counter, number_of_freeblk;
833         int  amount_needed;     /* number of needed empty blocks */
834         int  retval = CARRY_ON;
835         struct super_block *sb = tb->tb_sb;
836
837         /*
838          * number_of_freeblk is the number of empty blocks which have been
839          * acquired for use by the balancing algorithm minus the number of
840          * empty blocks used in the previous levels of the analysis,
841          * number_of_freeblk = tb->cur_blknum can be non-zero if a schedule
842          * occurs after empty blocks are acquired, and the balancing analysis
843          * is then restarted, amount_needed is the number needed by this
844          * level (h) of the balancing analysis.
845          *
846          * Note that for systems with many processes writing, it would be
847          * more layout optimal to calculate the total number needed by all
848          * levels and then to run reiserfs_new_blocks to get all of them at
849          * once.
850          */
851
852         /*
853          * Initiate number_of_freeblk to the amount acquired prior to the
854          * restart of the analysis or 0 if not restarted, then subtract the
855          * amount needed by all of the levels of the tree below h.
856          */
857         /* blknum includes S[h], so we subtract 1 in this calculation */
858         for (counter = 0, number_of_freeblk = tb->cur_blknum;
859              counter < h; counter++)
860                 number_of_freeblk -=
861                     (tb->blknum[counter]) ? (tb->blknum[counter] -
862                                                    1) : 0;
863
864         /* Allocate missing empty blocks. */
865         /* if Sh == 0  then we are getting a new root */
866         amount_needed = (Sh) ? (tb->blknum[h] - 1) : 1;
867         /*
868          * Amount_needed = the amount that we need more than the
869          * amount that we have.
870          */
871         if (amount_needed > number_of_freeblk)
872                 amount_needed -= number_of_freeblk;
873         else    /* If we have enough already then there is nothing to do. */
874                 return CARRY_ON;
875
876         /*
877          * No need to check quota - is not allocated for blocks used
878          * for formatted nodes
879          */
880         if (reiserfs_new_form_blocknrs(tb, blocknrs,
881                                        amount_needed) == NO_DISK_SPACE)
882                 return NO_DISK_SPACE;
883
884         /* for each blocknumber we just got, get a buffer and stick it on FEB */
885         for (blocknr = blocknrs, counter = 0;
886              counter < amount_needed; blocknr++, counter++) {
887
888                 RFALSE(!*blocknr,
889                        "PAP-8135: reiserfs_new_blocknrs failed when got new blocks");
890
891                 new_bh = sb_getblk(sb, *blocknr);
892                 RFALSE(buffer_dirty(new_bh) ||
893                        buffer_journaled(new_bh) ||
894                        buffer_journal_dirty(new_bh),
895                        "PAP-8140: journaled or dirty buffer %b for the new block",
896                        new_bh);
897
898                 /* Put empty buffers into the array. */
899                 RFALSE(tb->FEB[tb->cur_blknum],
900                        "PAP-8141: busy slot for new buffer");
901
902                 set_buffer_journal_new(new_bh);
903                 tb->FEB[tb->cur_blknum++] = new_bh;
904         }
905
906         if (retval == CARRY_ON && FILESYSTEM_CHANGED_TB(tb))
907                 retval = REPEAT_SEARCH;
908
909         return retval;
910 }
911
912 /*
913  * Get free space of the left neighbor, which is stored in the parent
914  * node of the left neighbor.
915  */
916 static int get_lfree(struct tree_balance *tb, int h)
917 {
918         struct buffer_head *l, *f;
919         int order;
920
921         if ((f = PATH_H_PPARENT(tb->tb_path, h)) == NULL ||
922             (l = tb->FL[h]) == NULL)
923                 return 0;
924
925         if (f == l)
926                 order = PATH_H_B_ITEM_ORDER(tb->tb_path, h) - 1;
927         else {
928                 order = B_NR_ITEMS(l);
929                 f = l;
930         }
931
932         return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f, order)));
933 }
934
935 /*
936  * Get free space of the right neighbor,
937  * which is stored in the parent node of the right neighbor.
938  */
939 static int get_rfree(struct tree_balance *tb, int h)
940 {
941         struct buffer_head *r, *f;
942         int order;
943
944         if ((f = PATH_H_PPARENT(tb->tb_path, h)) == NULL ||
945             (r = tb->FR[h]) == NULL)
946                 return 0;
947
948         if (f == r)
949                 order = PATH_H_B_ITEM_ORDER(tb->tb_path, h) + 1;
950         else {
951                 order = 0;
952                 f = r;
953         }
954
955         return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f, order)));
956
957 }
958
959 /* Check whether left neighbor is in memory. */
960 static int is_left_neighbor_in_cache(struct tree_balance *tb, int h)
961 {
962         struct buffer_head *father, *left;
963         struct super_block *sb = tb->tb_sb;
964         b_blocknr_t left_neighbor_blocknr;
965         int left_neighbor_position;
966
967         /* Father of the left neighbor does not exist. */
968         if (!tb->FL[h])
969                 return 0;
970
971         /* Calculate father of the node to be balanced. */
972         father = PATH_H_PBUFFER(tb->tb_path, h + 1);
973
974         RFALSE(!father ||
975                !B_IS_IN_TREE(father) ||
976                !B_IS_IN_TREE(tb->FL[h]) ||
977                !buffer_uptodate(father) ||
978                !buffer_uptodate(tb->FL[h]),
979                "vs-8165: F[h] (%b) or FL[h] (%b) is invalid",
980                father, tb->FL[h]);
981
982         /*
983          * Get position of the pointer to the left neighbor
984          * into the left father.
985          */
986         left_neighbor_position = (father == tb->FL[h]) ?
987             tb->lkey[h] : B_NR_ITEMS(tb->FL[h]);
988         /* Get left neighbor block number. */
989         left_neighbor_blocknr =
990             B_N_CHILD_NUM(tb->FL[h], left_neighbor_position);
991         /* Look for the left neighbor in the cache. */
992         if ((left = sb_find_get_block(sb, left_neighbor_blocknr))) {
993
994                 RFALSE(buffer_uptodate(left) && !B_IS_IN_TREE(left),
995                        "vs-8170: left neighbor (%b %z) is not in the tree",
996                        left, left);
997                 put_bh(left);
998                 return 1;
999         }
1000
1001         return 0;
1002 }
1003
1004 #define LEFT_PARENTS  'l'
1005 #define RIGHT_PARENTS 'r'
1006
1007 static void decrement_key(struct cpu_key *key)
1008 {
1009         /* call item specific function for this key */
1010         item_ops[cpu_key_k_type(key)]->decrement_key(key);
1011 }
1012
1013 /*
1014  * Calculate far left/right parent of the left/right neighbor of the
1015  * current node, that is calculate the left/right (FL[h]/FR[h]) neighbor
1016  * of the parent F[h].
1017  * Calculate left/right common parent of the current node and L[h]/R[h].
1018  * Calculate left/right delimiting key position.
1019  * Returns:     PATH_INCORRECT    - path in the tree is not correct
1020  *              SCHEDULE_OCCURRED - schedule occurred while the function worked
1021  *              CARRY_ON          - schedule didn't occur while the function
1022  *                                  worked
1023  */
1024 static int get_far_parent(struct tree_balance *tb,
1025                           int h,
1026                           struct buffer_head **pfather,
1027                           struct buffer_head **pcom_father, char c_lr_par)
1028 {
1029         struct buffer_head *parent;
1030         INITIALIZE_PATH(s_path_to_neighbor_father);
1031         struct treepath *path = tb->tb_path;
1032         struct cpu_key s_lr_father_key;
1033         int counter,
1034             position = INT_MAX,
1035             first_last_position = 0,
1036             path_offset = PATH_H_PATH_OFFSET(path, h);
1037
1038         /*
1039          * Starting from F[h] go upwards in the tree, and look for the common
1040          * ancestor of F[h], and its neighbor l/r, that should be obtained.
1041          */
1042
1043         counter = path_offset;
1044
1045         RFALSE(counter < FIRST_PATH_ELEMENT_OFFSET,
1046                "PAP-8180: invalid path length");
1047
1048         for (; counter > FIRST_PATH_ELEMENT_OFFSET; counter--) {
1049                 /*
1050                  * Check whether parent of the current buffer in the path
1051                  * is really parent in the tree.
1052                  */
1053                 if (!B_IS_IN_TREE
1054                     (parent = PATH_OFFSET_PBUFFER(path, counter - 1)))
1055                         return REPEAT_SEARCH;
1056
1057                 /* Check whether position in the parent is correct. */
1058                 if ((position =
1059                      PATH_OFFSET_POSITION(path,
1060                                           counter - 1)) >
1061                     B_NR_ITEMS(parent))
1062                         return REPEAT_SEARCH;
1063
1064                 /*
1065                  * Check whether parent at the path really points
1066                  * to the child.
1067                  */
1068                 if (B_N_CHILD_NUM(parent, position) !=
1069                     PATH_OFFSET_PBUFFER(path, counter)->b_blocknr)
1070                         return REPEAT_SEARCH;
1071
1072                 /*
1073                  * Return delimiting key if position in the parent is not
1074                  * equal to first/last one.
1075                  */
1076                 if (c_lr_par == RIGHT_PARENTS)
1077                         first_last_position = B_NR_ITEMS(parent);
1078                 if (position != first_last_position) {
1079                         *pcom_father = parent;
1080                         get_bh(*pcom_father);
1081                         /*(*pcom_father = parent)->b_count++; */
1082                         break;
1083                 }
1084         }
1085
1086         /* if we are in the root of the tree, then there is no common father */
1087         if (counter == FIRST_PATH_ELEMENT_OFFSET) {
1088                 /*
1089                  * Check whether first buffer in the path is the
1090                  * root of the tree.
1091                  */
1092                 if (PATH_OFFSET_PBUFFER
1093                     (tb->tb_path,
1094                      FIRST_PATH_ELEMENT_OFFSET)->b_blocknr ==
1095                     SB_ROOT_BLOCK(tb->tb_sb)) {
1096                         *pfather = *pcom_father = NULL;
1097                         return CARRY_ON;
1098                 }
1099                 return REPEAT_SEARCH;
1100         }
1101
1102         RFALSE(B_LEVEL(*pcom_father) <= DISK_LEAF_NODE_LEVEL,
1103                "PAP-8185: (%b %z) level too small",
1104                *pcom_father, *pcom_father);
1105
1106         /* Check whether the common parent is locked. */
1107
1108         if (buffer_locked(*pcom_father)) {
1109
1110                 /* Release the write lock while the buffer is busy */
1111                 int depth = reiserfs_write_unlock_nested(tb->tb_sb);
1112                 __wait_on_buffer(*pcom_father);
1113                 reiserfs_write_lock_nested(tb->tb_sb, depth);
1114                 if (FILESYSTEM_CHANGED_TB(tb)) {
1115                         brelse(*pcom_father);
1116                         return REPEAT_SEARCH;
1117                 }
1118         }
1119
1120         /*
1121          * So, we got common parent of the current node and its
1122          * left/right neighbor.  Now we are getting the parent of the
1123          * left/right neighbor.
1124          */
1125
1126         /* Form key to get parent of the left/right neighbor. */
1127         le_key2cpu_key(&s_lr_father_key,
1128                        internal_key(*pcom_father,
1129                                       (c_lr_par ==
1130                                        LEFT_PARENTS) ? (tb->lkey[h - 1] =
1131                                                         position -
1132                                                         1) : (tb->rkey[h -
1133                                                                            1] =
1134                                                               position)));
1135
1136         if (c_lr_par == LEFT_PARENTS)
1137                 decrement_key(&s_lr_father_key);
1138
1139         if (search_by_key
1140             (tb->tb_sb, &s_lr_father_key, &s_path_to_neighbor_father,
1141              h + 1) == IO_ERROR)
1142                 /* path is released */
1143                 return IO_ERROR;
1144
1145         if (FILESYSTEM_CHANGED_TB(tb)) {
1146                 pathrelse(&s_path_to_neighbor_father);
1147                 brelse(*pcom_father);
1148                 return REPEAT_SEARCH;
1149         }
1150
1151         *pfather = PATH_PLAST_BUFFER(&s_path_to_neighbor_father);
1152
1153         RFALSE(B_LEVEL(*pfather) != h + 1,
1154                "PAP-8190: (%b %z) level too small", *pfather, *pfather);
1155         RFALSE(s_path_to_neighbor_father.path_length <
1156                FIRST_PATH_ELEMENT_OFFSET, "PAP-8192: path length is too small");
1157
1158         s_path_to_neighbor_father.path_length--;
1159         pathrelse(&s_path_to_neighbor_father);
1160         return CARRY_ON;
1161 }
1162
1163 /*
1164  * Get parents of neighbors of node in the path(S[path_offset]) and
1165  * common parents of S[path_offset] and L[path_offset]/R[path_offset]:
1166  * F[path_offset], FL[path_offset], FR[path_offset], CFL[path_offset],
1167  * CFR[path_offset].
1168  * Calculate numbers of left and right delimiting keys position:
1169  * lkey[path_offset], rkey[path_offset].
1170  * Returns:     SCHEDULE_OCCURRED - schedule occurred while the function worked
1171  *              CARRY_ON - schedule didn't occur while the function worked
1172  */
1173 static int get_parents(struct tree_balance *tb, int h)
1174 {
1175         struct treepath *path = tb->tb_path;
1176         int position,
1177             ret,
1178             path_offset = PATH_H_PATH_OFFSET(tb->tb_path, h);
1179         struct buffer_head *curf, *curcf;
1180
1181         /* Current node is the root of the tree or will be root of the tree */
1182         if (path_offset <= FIRST_PATH_ELEMENT_OFFSET) {
1183                 /*
1184                  * The root can not have parents.
1185                  * Release nodes which previously were obtained as
1186                  * parents of the current node neighbors.
1187                  */
1188                 brelse(tb->FL[h]);
1189                 brelse(tb->CFL[h]);
1190                 brelse(tb->FR[h]);
1191                 brelse(tb->CFR[h]);
1192                 tb->FL[h]  = NULL;
1193                 tb->CFL[h] = NULL;
1194                 tb->FR[h]  = NULL;
1195                 tb->CFR[h] = NULL;
1196                 return CARRY_ON;
1197         }
1198
1199         /* Get parent FL[path_offset] of L[path_offset]. */
1200         position = PATH_OFFSET_POSITION(path, path_offset - 1);
1201         if (position) {
1202                 /* Current node is not the first child of its parent. */
1203                 curf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
1204                 curcf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
1205                 get_bh(curf);
1206                 get_bh(curf);
1207                 tb->lkey[h] = position - 1;
1208         } else {
1209                 /*
1210                  * Calculate current parent of L[path_offset], which is the
1211                  * left neighbor of the current node.  Calculate current
1212                  * common parent of L[path_offset] and the current node.
1213                  * Note that CFL[path_offset] not equal FL[path_offset] and
1214                  * CFL[path_offset] not equal F[path_offset].
1215                  * Calculate lkey[path_offset].
1216                  */
1217                 if ((ret = get_far_parent(tb, h + 1, &curf,
1218                                                   &curcf,
1219                                                   LEFT_PARENTS)) != CARRY_ON)
1220                         return ret;
1221         }
1222
1223         brelse(tb->FL[h]);
1224         tb->FL[h] = curf;       /* New initialization of FL[h]. */
1225         brelse(tb->CFL[h]);
1226         tb->CFL[h] = curcf;     /* New initialization of CFL[h]. */
1227
1228         RFALSE((curf && !B_IS_IN_TREE(curf)) ||
1229                (curcf && !B_IS_IN_TREE(curcf)),
1230                "PAP-8195: FL (%b) or CFL (%b) is invalid", curf, curcf);
1231
1232         /* Get parent FR[h] of R[h]. */
1233
1234         /* Current node is the last child of F[h]. FR[h] != F[h]. */
1235         if (position == B_NR_ITEMS(PATH_H_PBUFFER(path, h + 1))) {
1236                 /*
1237                  * Calculate current parent of R[h], which is the right
1238                  * neighbor of F[h].  Calculate current common parent of
1239                  * R[h] and current node. Note that CFR[h] not equal
1240                  * FR[path_offset] and CFR[h] not equal F[h].
1241                  */
1242                 if ((ret =
1243                      get_far_parent(tb, h + 1, &curf, &curcf,
1244                                     RIGHT_PARENTS)) != CARRY_ON)
1245                         return ret;
1246         } else {
1247                 /* Current node is not the last child of its parent F[h]. */
1248                 curf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
1249                 curcf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
1250                 get_bh(curf);
1251                 get_bh(curf);
1252                 tb->rkey[h] = position;
1253         }
1254
1255         brelse(tb->FR[h]);
1256         /* New initialization of FR[path_offset]. */
1257         tb->FR[h] = curf;
1258
1259         brelse(tb->CFR[h]);
1260         /* New initialization of CFR[path_offset]. */
1261         tb->CFR[h] = curcf;
1262
1263         RFALSE((curf && !B_IS_IN_TREE(curf)) ||
1264                (curcf && !B_IS_IN_TREE(curcf)),
1265                "PAP-8205: FR (%b) or CFR (%b) is invalid", curf, curcf);
1266
1267         return CARRY_ON;
1268 }
1269
1270 /*
1271  * it is possible to remove node as result of shiftings to
1272  * neighbors even when we insert or paste item.
1273  */
1274 static inline int can_node_be_removed(int mode, int lfree, int sfree, int rfree,
1275                                       struct tree_balance *tb, int h)
1276 {
1277         struct buffer_head *Sh = PATH_H_PBUFFER(tb->tb_path, h);
1278         int levbytes = tb->insert_size[h];
1279         struct item_head *ih;
1280         struct reiserfs_key *r_key = NULL;
1281
1282         ih = item_head(Sh, 0);
1283         if (tb->CFR[h])
1284                 r_key = internal_key(tb->CFR[h], tb->rkey[h]);
1285
1286         if (lfree + rfree + sfree < MAX_CHILD_SIZE(Sh) + levbytes
1287             /* shifting may merge items which might save space */
1288             -
1289             ((!h
1290               && op_is_left_mergeable(&(ih->ih_key), Sh->b_size)) ? IH_SIZE : 0)
1291             -
1292             ((!h && r_key
1293               && op_is_left_mergeable(r_key, Sh->b_size)) ? IH_SIZE : 0)
1294             + ((h) ? KEY_SIZE : 0)) {
1295                 /* node can not be removed */
1296                 if (sfree >= levbytes) {
1297                         /* new item fits into node S[h] without any shifting */
1298                         if (!h)
1299                                 tb->s0num =
1300                                     B_NR_ITEMS(Sh) +
1301                                     ((mode == M_INSERT) ? 1 : 0);
1302                         set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1303                         return NO_BALANCING_NEEDED;
1304                 }
1305         }
1306         PROC_INFO_INC(tb->tb_sb, can_node_be_removed[h]);
1307         return !NO_BALANCING_NEEDED;
1308 }
1309
1310 /*
1311  * Check whether current node S[h] is balanced when increasing its size by
1312  * Inserting or Pasting.
1313  * Calculate parameters for balancing for current level h.
1314  * Parameters:
1315  *      tb      tree_balance structure;
1316  *      h       current level of the node;
1317  *      inum    item number in S[h];
1318  *      mode    i - insert, p - paste;
1319  * Returns:     1 - schedule occurred;
1320  *              0 - balancing for higher levels needed;
1321  *             -1 - no balancing for higher levels needed;
1322  *             -2 - no disk space.
1323  */
1324 /* ip means Inserting or Pasting */
1325 static int ip_check_balance(struct tree_balance *tb, int h)
1326 {
1327         struct virtual_node *vn = tb->tb_vn;
1328         /*
1329          * Number of bytes that must be inserted into (value is negative
1330          * if bytes are deleted) buffer which contains node being balanced.
1331          * The mnemonic is that the attempted change in node space used
1332          * level is levbytes bytes.
1333          */
1334         int levbytes;
1335         int ret;
1336
1337         int lfree, sfree, rfree /* free space in L, S and R */ ;
1338
1339         /*
1340          * nver is short for number of vertixes, and lnver is the number if
1341          * we shift to the left, rnver is the number if we shift to the
1342          * right, and lrnver is the number if we shift in both directions.
1343          * The goal is to minimize first the number of vertixes, and second,
1344          * the number of vertixes whose contents are changed by shifting,
1345          * and third the number of uncached vertixes whose contents are
1346          * changed by shifting and must be read from disk.
1347          */
1348         int nver, lnver, rnver, lrnver;
1349
1350         /*
1351          * used at leaf level only, S0 = S[0] is the node being balanced,
1352          * sInum [ I = 0,1,2 ] is the number of items that will
1353          * remain in node SI after balancing.  S1 and S2 are new
1354          * nodes that might be created.
1355          */
1356
1357         /*
1358          * we perform 8 calls to get_num_ver().  For each call we
1359          * calculate five parameters.  where 4th parameter is s1bytes
1360          * and 5th - s2bytes
1361          *
1362          * s0num, s1num, s2num for 8 cases
1363          * 0,1 - do not shift and do not shift but bottle
1364          * 2   - shift only whole item to left
1365          * 3   - shift to left and bottle as much as possible
1366          * 4,5 - shift to right (whole items and as much as possible
1367          * 6,7 - shift to both directions (whole items and as much as possible)
1368          */
1369         short snum012[40] = { 0, };
1370
1371         /* Sh is the node whose balance is currently being checked */
1372         struct buffer_head *Sh;
1373
1374         Sh = PATH_H_PBUFFER(tb->tb_path, h);
1375         levbytes = tb->insert_size[h];
1376
1377         /* Calculate balance parameters for creating new root. */
1378         if (!Sh) {
1379                 if (!h)
1380                         reiserfs_panic(tb->tb_sb, "vs-8210",
1381                                        "S[0] can not be 0");
1382                 switch (ret = get_empty_nodes(tb, h)) {
1383                 /* no balancing for higher levels needed */
1384                 case CARRY_ON:
1385                         set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1386                         return NO_BALANCING_NEEDED;
1387
1388                 case NO_DISK_SPACE:
1389                 case REPEAT_SEARCH:
1390                         return ret;
1391                 default:
1392                         reiserfs_panic(tb->tb_sb, "vs-8215", "incorrect "
1393                                        "return value of get_empty_nodes");
1394                 }
1395         }
1396
1397         /* get parents of S[h] neighbors. */
1398         ret = get_parents(tb, h);
1399         if (ret != CARRY_ON)
1400                 return ret;
1401
1402         sfree = B_FREE_SPACE(Sh);
1403
1404         /* get free space of neighbors */
1405         rfree = get_rfree(tb, h);
1406         lfree = get_lfree(tb, h);
1407
1408         /* and new item fits into node S[h] without any shifting */
1409         if (can_node_be_removed(vn->vn_mode, lfree, sfree, rfree, tb, h) ==
1410             NO_BALANCING_NEEDED)
1411                 return NO_BALANCING_NEEDED;
1412
1413         create_virtual_node(tb, h);
1414
1415         /*
1416          * determine maximal number of items we can shift to the left
1417          * neighbor (in tb structure) and the maximal number of bytes
1418          * that can flow to the left neighbor from the left most liquid
1419          * item that cannot be shifted from S[0] entirely (returned value)
1420          */
1421         check_left(tb, h, lfree);
1422
1423         /*
1424          * determine maximal number of items we can shift to the right
1425          * neighbor (in tb structure) and the maximal number of bytes
1426          * that can flow to the right neighbor from the right most liquid
1427          * item that cannot be shifted from S[0] entirely (returned value)
1428          */
1429         check_right(tb, h, rfree);
1430
1431         /*
1432          * all contents of internal node S[h] can be moved into its
1433          * neighbors, S[h] will be removed after balancing
1434          */
1435         if (h && (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1)) {
1436                 int to_r;
1437
1438                 /*
1439                  * Since we are working on internal nodes, and our internal
1440                  * nodes have fixed size entries, then we can balance by the
1441                  * number of items rather than the space they consume.  In this
1442                  * routine we set the left node equal to the right node,
1443                  * allowing a difference of less than or equal to 1 child
1444                  * pointer.
1445                  */
1446                 to_r =
1447                     ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - tb->rnum[h] +
1448                      vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 -
1449                                                 tb->rnum[h]);
1450                 set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL,
1451                                -1, -1);
1452                 return CARRY_ON;
1453         }
1454
1455         /*
1456          * this checks balance condition, that any two neighboring nodes
1457          * can not fit in one node
1458          */
1459         RFALSE(h &&
1460                (tb->lnum[h] >= vn->vn_nr_item + 1 ||
1461                 tb->rnum[h] >= vn->vn_nr_item + 1),
1462                "vs-8220: tree is not balanced on internal level");
1463         RFALSE(!h && ((tb->lnum[h] >= vn->vn_nr_item && (tb->lbytes == -1)) ||
1464                       (tb->rnum[h] >= vn->vn_nr_item && (tb->rbytes == -1))),
1465                "vs-8225: tree is not balanced on leaf level");
1466
1467         /*
1468          * all contents of S[0] can be moved into its neighbors
1469          * S[0] will be removed after balancing.
1470          */
1471         if (!h && is_leaf_removable(tb))
1472                 return CARRY_ON;
1473
1474         /*
1475          * why do we perform this check here rather than earlier??
1476          * Answer: we can win 1 node in some cases above. Moreover we
1477          * checked it above, when we checked, that S[0] is not removable
1478          * in principle
1479          */
1480
1481          /* new item fits into node S[h] without any shifting */
1482         if (sfree >= levbytes) {
1483                 if (!h)
1484                         tb->s0num = vn->vn_nr_item;
1485                 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1486                 return NO_BALANCING_NEEDED;
1487         }
1488
1489         {
1490                 int lpar, rpar, nset, lset, rset, lrset;
1491                 /* regular overflowing of the node */
1492
1493                 /*
1494                  * get_num_ver works in 2 modes (FLOW & NO_FLOW)
1495                  * lpar, rpar - number of items we can shift to left/right
1496                  *              neighbor (including splitting item)
1497                  * nset, lset, rset, lrset - shows, whether flowing items
1498                  *                           give better packing
1499                  */
1500 #define FLOW 1
1501 #define NO_FLOW 0               /* do not any splitting */
1502
1503                 /* we choose one of the following */
1504 #define NOTHING_SHIFT_NO_FLOW   0
1505 #define NOTHING_SHIFT_FLOW      5
1506 #define LEFT_SHIFT_NO_FLOW      10
1507 #define LEFT_SHIFT_FLOW         15
1508 #define RIGHT_SHIFT_NO_FLOW     20
1509 #define RIGHT_SHIFT_FLOW        25
1510 #define LR_SHIFT_NO_FLOW        30
1511 #define LR_SHIFT_FLOW           35
1512
1513                 lpar = tb->lnum[h];
1514                 rpar = tb->rnum[h];
1515
1516                 /*
1517                  * calculate number of blocks S[h] must be split into when
1518                  * nothing is shifted to the neighbors, as well as number of
1519                  * items in each part of the split node (s012 numbers),
1520                  * and number of bytes (s1bytes) of the shared drop which
1521                  * flow to S1 if any
1522                  */
1523                 nset = NOTHING_SHIFT_NO_FLOW;
1524                 nver = get_num_ver(vn->vn_mode, tb, h,
1525                                    0, -1, h ? vn->vn_nr_item : 0, -1,
1526                                    snum012, NO_FLOW);
1527
1528                 if (!h) {
1529                         int nver1;
1530
1531                         /*
1532                          * note, that in this case we try to bottle
1533                          * between S[0] and S1 (S1 - the first new node)
1534                          */
1535                         nver1 = get_num_ver(vn->vn_mode, tb, h,
1536                                             0, -1, 0, -1,
1537                                             snum012 + NOTHING_SHIFT_FLOW, FLOW);
1538                         if (nver > nver1)
1539                                 nset = NOTHING_SHIFT_FLOW, nver = nver1;
1540                 }
1541
1542                 /*
1543                  * calculate number of blocks S[h] must be split into when
1544                  * l_shift_num first items and l_shift_bytes of the right
1545                  * most liquid item to be shifted are shifted to the left
1546                  * neighbor, as well as number of items in each part of the
1547                  * splitted node (s012 numbers), and number of bytes
1548                  * (s1bytes) of the shared drop which flow to S1 if any
1549                  */
1550                 lset = LEFT_SHIFT_NO_FLOW;
1551                 lnver = get_num_ver(vn->vn_mode, tb, h,
1552                                     lpar - ((h || tb->lbytes == -1) ? 0 : 1),
1553                                     -1, h ? vn->vn_nr_item : 0, -1,
1554                                     snum012 + LEFT_SHIFT_NO_FLOW, NO_FLOW);
1555                 if (!h) {
1556                         int lnver1;
1557
1558                         lnver1 = get_num_ver(vn->vn_mode, tb, h,
1559                                              lpar -
1560                                              ((tb->lbytes != -1) ? 1 : 0),
1561                                              tb->lbytes, 0, -1,
1562                                              snum012 + LEFT_SHIFT_FLOW, FLOW);
1563                         if (lnver > lnver1)
1564                                 lset = LEFT_SHIFT_FLOW, lnver = lnver1;
1565                 }
1566
1567                 /*
1568                  * calculate number of blocks S[h] must be split into when
1569                  * r_shift_num first items and r_shift_bytes of the left most
1570                  * liquid item to be shifted are shifted to the right neighbor,
1571                  * as well as number of items in each part of the splitted
1572                  * node (s012 numbers), and number of bytes (s1bytes) of the
1573                  * shared drop which flow to S1 if any
1574                  */
1575                 rset = RIGHT_SHIFT_NO_FLOW;
1576                 rnver = get_num_ver(vn->vn_mode, tb, h,
1577                                     0, -1,
1578                                     h ? (vn->vn_nr_item - rpar) : (rpar -
1579                                                                    ((tb->
1580                                                                      rbytes !=
1581                                                                      -1) ? 1 :
1582                                                                     0)), -1,
1583                                     snum012 + RIGHT_SHIFT_NO_FLOW, NO_FLOW);
1584                 if (!h) {
1585                         int rnver1;
1586
1587                         rnver1 = get_num_ver(vn->vn_mode, tb, h,
1588                                              0, -1,
1589                                              (rpar -
1590                                               ((tb->rbytes != -1) ? 1 : 0)),
1591                                              tb->rbytes,
1592                                              snum012 + RIGHT_SHIFT_FLOW, FLOW);
1593
1594                         if (rnver > rnver1)
1595                                 rset = RIGHT_SHIFT_FLOW, rnver = rnver1;
1596                 }
1597
1598                 /*
1599                  * calculate number of blocks S[h] must be split into when
1600                  * items are shifted in both directions, as well as number
1601                  * of items in each part of the splitted node (s012 numbers),
1602                  * and number of bytes (s1bytes) of the shared drop which
1603                  * flow to S1 if any
1604                  */
1605                 lrset = LR_SHIFT_NO_FLOW;
1606                 lrnver = get_num_ver(vn->vn_mode, tb, h,
1607                                      lpar - ((h || tb->lbytes == -1) ? 0 : 1),
1608                                      -1,
1609                                      h ? (vn->vn_nr_item - rpar) : (rpar -
1610                                                                     ((tb->
1611                                                                       rbytes !=
1612                                                                       -1) ? 1 :
1613                                                                      0)), -1,
1614                                      snum012 + LR_SHIFT_NO_FLOW, NO_FLOW);
1615                 if (!h) {
1616                         int lrnver1;
1617
1618                         lrnver1 = get_num_ver(vn->vn_mode, tb, h,
1619                                               lpar -
1620                                               ((tb->lbytes != -1) ? 1 : 0),
1621                                               tb->lbytes,
1622                                               (rpar -
1623                                                ((tb->rbytes != -1) ? 1 : 0)),
1624                                               tb->rbytes,
1625                                               snum012 + LR_SHIFT_FLOW, FLOW);
1626                         if (lrnver > lrnver1)
1627                                 lrset = LR_SHIFT_FLOW, lrnver = lrnver1;
1628                 }
1629
1630                 /*
1631                  * Our general shifting strategy is:
1632                  * 1) to minimized number of new nodes;
1633                  * 2) to minimized number of neighbors involved in shifting;
1634                  * 3) to minimized number of disk reads;
1635                  */
1636
1637                 /* we can win TWO or ONE nodes by shifting in both directions */
1638                 if (lrnver < lnver && lrnver < rnver) {
1639                         RFALSE(h &&
1640                                (tb->lnum[h] != 1 ||
1641                                 tb->rnum[h] != 1 ||
1642                                 lrnver != 1 || rnver != 2 || lnver != 2
1643                                 || h != 1), "vs-8230: bad h");
1644                         if (lrset == LR_SHIFT_FLOW)
1645                                 set_parameters(tb, h, tb->lnum[h], tb->rnum[h],
1646                                                lrnver, snum012 + lrset,
1647                                                tb->lbytes, tb->rbytes);
1648                         else
1649                                 set_parameters(tb, h,
1650                                                tb->lnum[h] -
1651                                                ((tb->lbytes == -1) ? 0 : 1),
1652                                                tb->rnum[h] -
1653                                                ((tb->rbytes == -1) ? 0 : 1),
1654                                                lrnver, snum012 + lrset, -1, -1);
1655
1656                         return CARRY_ON;
1657                 }
1658
1659                 /*
1660                  * if shifting doesn't lead to better packing
1661                  * then don't shift
1662                  */
1663                 if (nver == lrnver) {
1664                         set_parameters(tb, h, 0, 0, nver, snum012 + nset, -1,
1665                                        -1);
1666                         return CARRY_ON;
1667                 }
1668
1669                 /*
1670                  * now we know that for better packing shifting in only one
1671                  * direction either to the left or to the right is required
1672                  */
1673
1674                 /*
1675                  * if shifting to the left is better than
1676                  * shifting to the right
1677                  */
1678                 if (lnver < rnver) {
1679                         SET_PAR_SHIFT_LEFT;
1680                         return CARRY_ON;
1681                 }
1682
1683                 /*
1684                  * if shifting to the right is better than
1685                  * shifting to the left
1686                  */
1687                 if (lnver > rnver) {
1688                         SET_PAR_SHIFT_RIGHT;
1689                         return CARRY_ON;
1690                 }
1691
1692                 /*
1693                  * now shifting in either direction gives the same number
1694                  * of nodes and we can make use of the cached neighbors
1695                  */
1696                 if (is_left_neighbor_in_cache(tb, h)) {
1697                         SET_PAR_SHIFT_LEFT;
1698                         return CARRY_ON;
1699                 }
1700
1701                 /*
1702                  * shift to the right independently on whether the
1703                  * right neighbor in cache or not
1704                  */
1705                 SET_PAR_SHIFT_RIGHT;
1706                 return CARRY_ON;
1707         }
1708 }
1709
1710 /*
1711  * Check whether current node S[h] is balanced when Decreasing its size by
1712  * Deleting or Cutting for INTERNAL node of S+tree.
1713  * Calculate parameters for balancing for current level h.
1714  * Parameters:
1715  *      tb      tree_balance structure;
1716  *      h       current level of the node;
1717  *      inum    item number in S[h];
1718  *      mode    i - insert, p - paste;
1719  * Returns:     1 - schedule occurred;
1720  *              0 - balancing for higher levels needed;
1721  *             -1 - no balancing for higher levels needed;
1722  *             -2 - no disk space.
1723  *
1724  * Note: Items of internal nodes have fixed size, so the balance condition for
1725  * the internal part of S+tree is as for the B-trees.
1726  */
1727 static int dc_check_balance_internal(struct tree_balance *tb, int h)
1728 {
1729         struct virtual_node *vn = tb->tb_vn;
1730
1731         /*
1732          * Sh is the node whose balance is currently being checked,
1733          * and Fh is its father.
1734          */
1735         struct buffer_head *Sh, *Fh;
1736         int maxsize, ret;
1737         int lfree, rfree /* free space in L and R */ ;
1738
1739         Sh = PATH_H_PBUFFER(tb->tb_path, h);
1740         Fh = PATH_H_PPARENT(tb->tb_path, h);
1741
1742         maxsize = MAX_CHILD_SIZE(Sh);
1743
1744         /*
1745          * using tb->insert_size[h], which is negative in this case,
1746          * create_virtual_node calculates:
1747          * new_nr_item = number of items node would have if operation is
1748          * performed without balancing (new_nr_item);
1749          */
1750         create_virtual_node(tb, h);
1751
1752         if (!Fh) {              /* S[h] is the root. */
1753                 /* no balancing for higher levels needed */
1754                 if (vn->vn_nr_item > 0) {
1755                         set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1756                         return NO_BALANCING_NEEDED;
1757                 }
1758                 /*
1759                  * new_nr_item == 0.
1760                  * Current root will be deleted resulting in
1761                  * decrementing the tree height.
1762                  */
1763                 set_parameters(tb, h, 0, 0, 0, NULL, -1, -1);
1764                 return CARRY_ON;
1765         }
1766
1767         if ((ret = get_parents(tb, h)) != CARRY_ON)
1768                 return ret;
1769
1770         /* get free space of neighbors */
1771         rfree = get_rfree(tb, h);
1772         lfree = get_lfree(tb, h);
1773
1774         /* determine maximal number of items we can fit into neighbors */
1775         check_left(tb, h, lfree);
1776         check_right(tb, h, rfree);
1777
1778         /*
1779          * Balance condition for the internal node is valid.
1780          * In this case we balance only if it leads to better packing.
1781          */
1782         if (vn->vn_nr_item >= MIN_NR_KEY(Sh)) {
1783                 /*
1784                  * Here we join S[h] with one of its neighbors,
1785                  * which is impossible with greater values of new_nr_item.
1786                  */
1787                 if (vn->vn_nr_item == MIN_NR_KEY(Sh)) {
1788                         /* All contents of S[h] can be moved to L[h]. */
1789                         if (tb->lnum[h] >= vn->vn_nr_item + 1) {
1790                                 int n;
1791                                 int order_L;
1792
1793                                 order_L =
1794                                     ((n =
1795                                       PATH_H_B_ITEM_ORDER(tb->tb_path,
1796                                                           h)) ==
1797                                      0) ? B_NR_ITEMS(tb->FL[h]) : n - 1;
1798                                 n = dc_size(B_N_CHILD(tb->FL[h], order_L)) /
1799                                     (DC_SIZE + KEY_SIZE);
1800                                 set_parameters(tb, h, -n - 1, 0, 0, NULL, -1,
1801                                                -1);
1802                                 return CARRY_ON;
1803                         }
1804
1805                         /* All contents of S[h] can be moved to R[h]. */
1806                         if (tb->rnum[h] >= vn->vn_nr_item + 1) {
1807                                 int n;
1808                                 int order_R;
1809
1810                                 order_R =
1811                                     ((n =
1812                                       PATH_H_B_ITEM_ORDER(tb->tb_path,
1813                                                           h)) ==
1814                                      B_NR_ITEMS(Fh)) ? 0 : n + 1;
1815                                 n = dc_size(B_N_CHILD(tb->FR[h], order_R)) /
1816                                     (DC_SIZE + KEY_SIZE);
1817                                 set_parameters(tb, h, 0, -n - 1, 0, NULL, -1,
1818                                                -1);
1819                                 return CARRY_ON;
1820                         }
1821                 }
1822
1823                 /*
1824                  * All contents of S[h] can be moved to the neighbors
1825                  * (L[h] & R[h]).
1826                  */
1827                 if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) {
1828                         int to_r;
1829
1830                         to_r =
1831                             ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] -
1832                              tb->rnum[h] + vn->vn_nr_item + 1) / 2 -
1833                             (MAX_NR_KEY(Sh) + 1 - tb->rnum[h]);
1834                         set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r,
1835                                        0, NULL, -1, -1);
1836                         return CARRY_ON;
1837                 }
1838
1839                 /* Balancing does not lead to better packing. */
1840                 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1841                 return NO_BALANCING_NEEDED;
1842         }
1843
1844         /*
1845          * Current node contain insufficient number of items.
1846          * Balancing is required.
1847          */
1848         /* Check whether we can merge S[h] with left neighbor. */
1849         if (tb->lnum[h] >= vn->vn_nr_item + 1)
1850                 if (is_left_neighbor_in_cache(tb, h)
1851                     || tb->rnum[h] < vn->vn_nr_item + 1 || !tb->FR[h]) {
1852                         int n;
1853                         int order_L;
1854
1855                         order_L =
1856                             ((n =
1857                               PATH_H_B_ITEM_ORDER(tb->tb_path,
1858                                                   h)) ==
1859                              0) ? B_NR_ITEMS(tb->FL[h]) : n - 1;
1860                         n = dc_size(B_N_CHILD(tb->FL[h], order_L)) / (DC_SIZE +
1861                                                                       KEY_SIZE);
1862                         set_parameters(tb, h, -n - 1, 0, 0, NULL, -1, -1);
1863                         return CARRY_ON;
1864                 }
1865
1866         /* Check whether we can merge S[h] with right neighbor. */
1867         if (tb->rnum[h] >= vn->vn_nr_item + 1) {
1868                 int n;
1869                 int order_R;
1870
1871                 order_R =
1872                     ((n =
1873                       PATH_H_B_ITEM_ORDER(tb->tb_path,
1874                                           h)) == B_NR_ITEMS(Fh)) ? 0 : (n + 1);
1875                 n = dc_size(B_N_CHILD(tb->FR[h], order_R)) / (DC_SIZE +
1876                                                               KEY_SIZE);
1877                 set_parameters(tb, h, 0, -n - 1, 0, NULL, -1, -1);
1878                 return CARRY_ON;
1879         }
1880
1881         /* All contents of S[h] can be moved to the neighbors (L[h] & R[h]). */
1882         if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) {
1883                 int to_r;
1884
1885                 to_r =
1886                     ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - tb->rnum[h] +
1887                      vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 -
1888                                                 tb->rnum[h]);
1889                 set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL,
1890                                -1, -1);
1891                 return CARRY_ON;
1892         }
1893
1894         /* For internal nodes try to borrow item from a neighbor */
1895         RFALSE(!tb->FL[h] && !tb->FR[h], "vs-8235: trying to borrow for root");
1896
1897         /* Borrow one or two items from caching neighbor */
1898         if (is_left_neighbor_in_cache(tb, h) || !tb->FR[h]) {
1899                 int from_l;
1900
1901                 from_l =
1902                     (MAX_NR_KEY(Sh) + 1 - tb->lnum[h] + vn->vn_nr_item +
1903                      1) / 2 - (vn->vn_nr_item + 1);
1904                 set_parameters(tb, h, -from_l, 0, 1, NULL, -1, -1);
1905                 return CARRY_ON;
1906         }
1907
1908         set_parameters(tb, h, 0,
1909                        -((MAX_NR_KEY(Sh) + 1 - tb->rnum[h] + vn->vn_nr_item +
1910                           1) / 2 - (vn->vn_nr_item + 1)), 1, NULL, -1, -1);
1911         return CARRY_ON;
1912 }
1913
1914 /*
1915  * Check whether current node S[h] is balanced when Decreasing its size by
1916  * Deleting or Truncating for LEAF node of S+tree.
1917  * Calculate parameters for balancing for current level h.
1918  * Parameters:
1919  *      tb      tree_balance structure;
1920  *      h       current level of the node;
1921  *      inum    item number in S[h];
1922  *      mode    i - insert, p - paste;
1923  * Returns:     1 - schedule occurred;
1924  *              0 - balancing for higher levels needed;
1925  *             -1 - no balancing for higher levels needed;
1926  *             -2 - no disk space.
1927  */
1928 static int dc_check_balance_leaf(struct tree_balance *tb, int h)
1929 {
1930         struct virtual_node *vn = tb->tb_vn;
1931
1932         /*
1933          * Number of bytes that must be deleted from
1934          * (value is negative if bytes are deleted) buffer which
1935          * contains node being balanced.  The mnemonic is that the
1936          * attempted change in node space used level is levbytes bytes.
1937          */
1938         int levbytes;
1939
1940         /* the maximal item size */
1941         int maxsize, ret;
1942
1943         /*
1944          * S0 is the node whose balance is currently being checked,
1945          * and F0 is its father.
1946          */
1947         struct buffer_head *S0, *F0;
1948         int lfree, rfree /* free space in L and R */ ;
1949
1950         S0 = PATH_H_PBUFFER(tb->tb_path, 0);
1951         F0 = PATH_H_PPARENT(tb->tb_path, 0);
1952
1953         levbytes = tb->insert_size[h];
1954
1955         maxsize = MAX_CHILD_SIZE(S0);   /* maximal possible size of an item */
1956
1957         if (!F0) {              /* S[0] is the root now. */
1958
1959                 RFALSE(-levbytes >= maxsize - B_FREE_SPACE(S0),
1960                        "vs-8240: attempt to create empty buffer tree");
1961
1962                 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1963                 return NO_BALANCING_NEEDED;
1964         }
1965
1966         if ((ret = get_parents(tb, h)) != CARRY_ON)
1967                 return ret;
1968
1969         /* get free space of neighbors */
1970         rfree = get_rfree(tb, h);
1971         lfree = get_lfree(tb, h);
1972
1973         create_virtual_node(tb, h);
1974
1975         /* if 3 leaves can be merge to one, set parameters and return */
1976         if (are_leaves_removable(tb, lfree, rfree))
1977                 return CARRY_ON;
1978
1979         /*
1980          * determine maximal number of items we can shift to the left/right
1981          * neighbor and the maximal number of bytes that can flow to the
1982          * left/right neighbor from the left/right most liquid item that
1983          * cannot be shifted from S[0] entirely
1984          */
1985         check_left(tb, h, lfree);
1986         check_right(tb, h, rfree);
1987
1988         /* check whether we can merge S with left neighbor. */
1989         if (tb->lnum[0] >= vn->vn_nr_item && tb->lbytes == -1)
1990                 if (is_left_neighbor_in_cache(tb, h) || ((tb->rnum[0] - ((tb->rbytes == -1) ? 0 : 1)) < vn->vn_nr_item) ||      /* S can not be merged with R */
1991                     !tb->FR[h]) {
1992
1993                         RFALSE(!tb->FL[h],
1994                                "vs-8245: dc_check_balance_leaf: FL[h] must exist");
1995
1996                         /* set parameter to merge S[0] with its left neighbor */
1997                         set_parameters(tb, h, -1, 0, 0, NULL, -1, -1);
1998                         return CARRY_ON;
1999                 }
2000
2001         /* check whether we can merge S[0] with right neighbor. */
2002         if (tb->rnum[0] >= vn->vn_nr_item && tb->rbytes == -1) {
2003                 set_parameters(tb, h, 0, -1, 0, NULL, -1, -1);
2004                 return CARRY_ON;
2005         }
2006
2007         /*
2008          * All contents of S[0] can be moved to the neighbors (L[0] & R[0]).
2009          * Set parameters and return
2010          */
2011         if (is_leaf_removable(tb))
2012                 return CARRY_ON;
2013
2014         /* Balancing is not required. */
2015         tb->s0num = vn->vn_nr_item;
2016         set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
2017         return NO_BALANCING_NEEDED;
2018 }
2019
2020 /*
2021  * Check whether current node S[h] is balanced when Decreasing its size by
2022  * Deleting or Cutting.
2023  * Calculate parameters for balancing for current level h.
2024  * Parameters:
2025  *      tb      tree_balance structure;
2026  *      h       current level of the node;
2027  *      inum    item number in S[h];
2028  *      mode    d - delete, c - cut.
2029  * Returns:     1 - schedule occurred;
2030  *              0 - balancing for higher levels needed;
2031  *             -1 - no balancing for higher levels needed;
2032  *             -2 - no disk space.
2033  */
2034 static int dc_check_balance(struct tree_balance *tb, int h)
2035 {
2036         RFALSE(!(PATH_H_PBUFFER(tb->tb_path, h)),
2037                "vs-8250: S is not initialized");
2038
2039         if (h)
2040                 return dc_check_balance_internal(tb, h);
2041         else
2042                 return dc_check_balance_leaf(tb, h);
2043 }
2044
2045 /*
2046  * Check whether current node S[h] is balanced.
2047  * Calculate parameters for balancing for current level h.
2048  * Parameters:
2049  *
2050  *      tb      tree_balance structure:
2051  *
2052  *              tb is a large structure that must be read about in the header
2053  *              file at the same time as this procedure if the reader is
2054  *              to successfully understand this procedure
2055  *
2056  *      h       current level of the node;
2057  *      inum    item number in S[h];
2058  *      mode    i - insert, p - paste, d - delete, c - cut.
2059  * Returns:     1 - schedule occurred;
2060  *              0 - balancing for higher levels needed;
2061  *             -1 - no balancing for higher levels needed;
2062  *             -2 - no disk space.
2063  */
2064 static int check_balance(int mode,
2065                          struct tree_balance *tb,
2066                          int h,
2067                          int inum,
2068                          int pos_in_item,
2069                          struct item_head *ins_ih, const void *data)
2070 {
2071         struct virtual_node *vn;
2072
2073         vn = tb->tb_vn = (struct virtual_node *)(tb->vn_buf);
2074         vn->vn_free_ptr = (char *)(tb->tb_vn + 1);
2075         vn->vn_mode = mode;
2076         vn->vn_affected_item_num = inum;
2077         vn->vn_pos_in_item = pos_in_item;
2078         vn->vn_ins_ih = ins_ih;
2079         vn->vn_data = data;
2080
2081         RFALSE(mode == M_INSERT && !vn->vn_ins_ih,
2082                "vs-8255: ins_ih can not be 0 in insert mode");
2083
2084         /* Calculate balance parameters when size of node is increasing. */
2085         if (tb->insert_size[h] > 0)
2086                 return ip_check_balance(tb, h);
2087
2088         /* Calculate balance parameters when  size of node is decreasing. */
2089         return dc_check_balance(tb, h);
2090 }
2091
2092 /* Check whether parent at the path is the really parent of the current node.*/
2093 static int get_direct_parent(struct tree_balance *tb, int h)
2094 {
2095         struct buffer_head *bh;
2096         struct treepath *path = tb->tb_path;
2097         int position,
2098             path_offset = PATH_H_PATH_OFFSET(tb->tb_path, h);
2099
2100         /* We are in the root or in the new root. */
2101         if (path_offset <= FIRST_PATH_ELEMENT_OFFSET) {
2102
2103                 RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET - 1,
2104                        "PAP-8260: invalid offset in the path");
2105
2106                 if (PATH_OFFSET_PBUFFER(path, FIRST_PATH_ELEMENT_OFFSET)->
2107                     b_blocknr == SB_ROOT_BLOCK(tb->tb_sb)) {
2108                         /* Root is not changed. */
2109                         PATH_OFFSET_PBUFFER(path, path_offset - 1) = NULL;
2110                         PATH_OFFSET_POSITION(path, path_offset - 1) = 0;
2111                         return CARRY_ON;
2112                 }
2113                 /* Root is changed and we must recalculate the path. */
2114                 return REPEAT_SEARCH;
2115         }
2116
2117         /* Parent in the path is not in the tree. */
2118         if (!B_IS_IN_TREE
2119             (bh = PATH_OFFSET_PBUFFER(path, path_offset - 1)))
2120                 return REPEAT_SEARCH;
2121
2122         if ((position =
2123              PATH_OFFSET_POSITION(path,
2124                                   path_offset - 1)) > B_NR_ITEMS(bh))
2125                 return REPEAT_SEARCH;
2126
2127         /* Parent in the path is not parent of the current node in the tree. */
2128         if (B_N_CHILD_NUM(bh, position) !=
2129             PATH_OFFSET_PBUFFER(path, path_offset)->b_blocknr)
2130                 return REPEAT_SEARCH;
2131
2132         if (buffer_locked(bh)) {
2133                 int depth = reiserfs_write_unlock_nested(tb->tb_sb);
2134                 __wait_on_buffer(bh);
2135                 reiserfs_write_lock_nested(tb->tb_sb, depth);
2136                 if (FILESYSTEM_CHANGED_TB(tb))
2137                         return REPEAT_SEARCH;
2138         }
2139
2140         /*
2141          * Parent in the path is unlocked and really parent
2142          * of the current node.
2143          */
2144         return CARRY_ON;
2145 }
2146
2147 /*
2148  * Using lnum[h] and rnum[h] we should determine what neighbors
2149  * of S[h] we
2150  * need in order to balance S[h], and get them if necessary.
2151  * Returns:     SCHEDULE_OCCURRED - schedule occurred while the function worked;
2152  *              CARRY_ON - schedule didn't occur while the function worked;
2153  */
2154 static int get_neighbors(struct tree_balance *tb, int h)
2155 {
2156         int child_position,
2157             path_offset = PATH_H_PATH_OFFSET(tb->tb_path, h + 1);
2158         unsigned long son_number;
2159         struct super_block *sb = tb->tb_sb;
2160         struct buffer_head *bh;
2161         int depth;
2162
2163         PROC_INFO_INC(sb, get_neighbors[h]);
2164
2165         if (tb->lnum[h]) {
2166                 /* We need left neighbor to balance S[h]. */
2167                 PROC_INFO_INC(sb, need_l_neighbor[h]);
2168                 bh = PATH_OFFSET_PBUFFER(tb->tb_path, path_offset);
2169
2170                 RFALSE(bh == tb->FL[h] &&
2171                        !PATH_OFFSET_POSITION(tb->tb_path, path_offset),
2172                        "PAP-8270: invalid position in the parent");
2173
2174                 child_position =
2175                     (bh ==
2176                      tb->FL[h]) ? tb->lkey[h] : B_NR_ITEMS(tb->
2177                                                                        FL[h]);
2178                 son_number = B_N_CHILD_NUM(tb->FL[h], child_position);
2179                 depth = reiserfs_write_unlock_nested(tb->tb_sb);
2180                 bh = sb_bread(sb, son_number);
2181                 reiserfs_write_lock_nested(tb->tb_sb, depth);
2182                 if (!bh)
2183                         return IO_ERROR;
2184                 if (FILESYSTEM_CHANGED_TB(tb)) {
2185                         brelse(bh);
2186                         PROC_INFO_INC(sb, get_neighbors_restart[h]);
2187                         return REPEAT_SEARCH;
2188                 }
2189
2190                 RFALSE(!B_IS_IN_TREE(tb->FL[h]) ||
2191                        child_position > B_NR_ITEMS(tb->FL[h]) ||
2192                        B_N_CHILD_NUM(tb->FL[h], child_position) !=
2193                        bh->b_blocknr, "PAP-8275: invalid parent");
2194                 RFALSE(!B_IS_IN_TREE(bh), "PAP-8280: invalid child");
2195                 RFALSE(!h &&
2196                        B_FREE_SPACE(bh) !=
2197                        MAX_CHILD_SIZE(bh) -
2198                        dc_size(B_N_CHILD(tb->FL[0], child_position)),
2199                        "PAP-8290: invalid child size of left neighbor");
2200
2201                 brelse(tb->L[h]);
2202                 tb->L[h] = bh;
2203         }
2204
2205         /* We need right neighbor to balance S[path_offset]. */
2206         if (tb->rnum[h]) {
2207                 PROC_INFO_INC(sb, need_r_neighbor[h]);
2208                 bh = PATH_OFFSET_PBUFFER(tb->tb_path, path_offset);
2209
2210                 RFALSE(bh == tb->FR[h] &&
2211                        PATH_OFFSET_POSITION(tb->tb_path,
2212                                             path_offset) >=
2213                        B_NR_ITEMS(bh),
2214                        "PAP-8295: invalid position in the parent");
2215
2216                 child_position =
2217                     (bh == tb->FR[h]) ? tb->rkey[h] + 1 : 0;
2218                 son_number = B_N_CHILD_NUM(tb->FR[h], child_position);
2219                 depth = reiserfs_write_unlock_nested(tb->tb_sb);
2220                 bh = sb_bread(sb, son_number);
2221                 reiserfs_write_lock_nested(tb->tb_sb, depth);
2222                 if (!bh)
2223                         return IO_ERROR;
2224                 if (FILESYSTEM_CHANGED_TB(tb)) {
2225                         brelse(bh);
2226                         PROC_INFO_INC(sb, get_neighbors_restart[h]);
2227                         return REPEAT_SEARCH;
2228                 }
2229                 brelse(tb->R[h]);
2230                 tb->R[h] = bh;
2231
2232                 RFALSE(!h
2233                        && B_FREE_SPACE(bh) !=
2234                        MAX_CHILD_SIZE(bh) -
2235                        dc_size(B_N_CHILD(tb->FR[0], child_position)),
2236                        "PAP-8300: invalid child size of right neighbor (%d != %d - %d)",
2237                        B_FREE_SPACE(bh), MAX_CHILD_SIZE(bh),
2238                        dc_size(B_N_CHILD(tb->FR[0], child_position)));
2239
2240         }
2241         return CARRY_ON;
2242 }
2243
2244 static int get_virtual_node_size(struct super_block *sb, struct buffer_head *bh)
2245 {
2246         int max_num_of_items;
2247         int max_num_of_entries;
2248         unsigned long blocksize = sb->s_blocksize;
2249
2250 #define MIN_NAME_LEN 1
2251
2252         max_num_of_items = (blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN);
2253         max_num_of_entries = (blocksize - BLKH_SIZE - IH_SIZE) /
2254             (DEH_SIZE + MIN_NAME_LEN);
2255
2256         return sizeof(struct virtual_node) +
2257             max(max_num_of_items * sizeof(struct virtual_item),
2258                 sizeof(struct virtual_item) + sizeof(struct direntry_uarea) +
2259                 (max_num_of_entries - 1) * sizeof(__u16));
2260 }
2261
2262 /*
2263  * maybe we should fail balancing we are going to perform when kmalloc
2264  * fails several times. But now it will loop until kmalloc gets
2265  * required memory
2266  */
2267 static int get_mem_for_virtual_node(struct tree_balance *tb)
2268 {
2269         int check_fs = 0;
2270         int size;
2271         char *buf;
2272
2273         size = get_virtual_node_size(tb->tb_sb, PATH_PLAST_BUFFER(tb->tb_path));
2274
2275         /* we have to allocate more memory for virtual node */
2276         if (size > tb->vn_buf_size) {
2277                 if (tb->vn_buf) {
2278                         /* free memory allocated before */
2279                         kfree(tb->vn_buf);
2280                         /* this is not needed if kfree is atomic */
2281                         check_fs = 1;
2282                 }
2283
2284                 /* virtual node requires now more memory */
2285                 tb->vn_buf_size = size;
2286
2287                 /* get memory for virtual item */
2288                 buf = kmalloc(size, GFP_ATOMIC | __GFP_NOWARN);
2289                 if (!buf) {
2290                         /*
2291                          * getting memory with GFP_KERNEL priority may involve
2292                          * balancing now (due to indirect_to_direct conversion
2293                          * on dcache shrinking). So, release path and collected
2294                          * resources here
2295                          */
2296                         free_buffers_in_tb(tb);
2297                         buf = kmalloc(size, GFP_NOFS);
2298                         if (!buf) {
2299                                 tb->vn_buf_size = 0;
2300                         }
2301                         tb->vn_buf = buf;
2302                         schedule();
2303                         return REPEAT_SEARCH;
2304                 }
2305
2306                 tb->vn_buf = buf;
2307         }
2308
2309         if (check_fs && FILESYSTEM_CHANGED_TB(tb))
2310                 return REPEAT_SEARCH;
2311
2312         return CARRY_ON;
2313 }
2314
2315 #ifdef CONFIG_REISERFS_CHECK
2316 static void tb_buffer_sanity_check(struct super_block *sb,
2317                                    struct buffer_head *bh,
2318                                    const char *descr, int level)
2319 {
2320         if (bh) {
2321                 if (atomic_read(&(bh->b_count)) <= 0)
2322
2323                         reiserfs_panic(sb, "jmacd-1", "negative or zero "
2324                                        "reference counter for buffer %s[%d] "
2325                                        "(%b)", descr, level, bh);
2326
2327                 if (!buffer_uptodate(bh))
2328                         reiserfs_panic(sb, "jmacd-2", "buffer is not up "
2329                                        "to date %s[%d] (%b)",
2330                                        descr, level, bh);
2331
2332                 if (!B_IS_IN_TREE(bh))
2333                         reiserfs_panic(sb, "jmacd-3", "buffer is not "
2334                                        "in tree %s[%d] (%b)",
2335                                        descr, level, bh);
2336
2337                 if (bh->b_bdev != sb->s_bdev)
2338                         reiserfs_panic(sb, "jmacd-4", "buffer has wrong "
2339                                        "device %s[%d] (%b)",
2340                                        descr, level, bh);
2341
2342                 if (bh->b_size != sb->s_blocksize)
2343                         reiserfs_panic(sb, "jmacd-5", "buffer has wrong "
2344                                        "blocksize %s[%d] (%b)",
2345                                        descr, level, bh);
2346
2347                 if (bh->b_blocknr > SB_BLOCK_COUNT(sb))
2348                         reiserfs_panic(sb, "jmacd-6", "buffer block "
2349                                        "number too high %s[%d] (%b)",
2350                                        descr, level, bh);
2351         }
2352 }
2353 #else
2354 static void tb_buffer_sanity_check(struct super_block *sb,
2355                                    struct buffer_head *bh,
2356                                    const char *descr, int level)
2357 {;
2358 }
2359 #endif
2360
2361 static int clear_all_dirty_bits(struct super_block *s, struct buffer_head *bh)
2362 {
2363         return reiserfs_prepare_for_journal(s, bh, 0);
2364 }
2365
2366 static int wait_tb_buffers_until_unlocked(struct tree_balance *tb)
2367 {
2368         struct buffer_head *locked;
2369 #ifdef CONFIG_REISERFS_CHECK
2370         int repeat_counter = 0;
2371 #endif
2372         int i;
2373
2374         do {
2375
2376                 locked = NULL;
2377
2378                 for (i = tb->tb_path->path_length;
2379                      !locked && i > ILLEGAL_PATH_ELEMENT_OFFSET; i--) {
2380                         if (PATH_OFFSET_PBUFFER(tb->tb_path, i)) {
2381                                 /*
2382                                  * if I understand correctly, we can only
2383                                  * be sure the last buffer in the path is
2384                                  * in the tree --clm
2385                                  */
2386 #ifdef CONFIG_REISERFS_CHECK
2387                                 if (PATH_PLAST_BUFFER(tb->tb_path) ==
2388                                     PATH_OFFSET_PBUFFER(tb->tb_path, i))
2389                                         tb_buffer_sanity_check(tb->tb_sb,
2390                                                                PATH_OFFSET_PBUFFER
2391                                                                (tb->tb_path,
2392                                                                 i), "S",
2393                                                                tb->tb_path->
2394                                                                path_length - i);
2395 #endif
2396                                 if (!clear_all_dirty_bits(tb->tb_sb,
2397                                                           PATH_OFFSET_PBUFFER
2398                                                           (tb->tb_path,
2399                                                            i))) {
2400                                         locked =
2401                                             PATH_OFFSET_PBUFFER(tb->tb_path,
2402                                                                 i);
2403                                 }
2404                         }
2405                 }
2406
2407                 for (i = 0; !locked && i < MAX_HEIGHT && tb->insert_size[i];
2408                      i++) {
2409
2410                         if (tb->lnum[i]) {
2411
2412                                 if (tb->L[i]) {
2413                                         tb_buffer_sanity_check(tb->tb_sb,
2414                                                                tb->L[i],
2415                                                                "L", i);
2416                                         if (!clear_all_dirty_bits
2417                                             (tb->tb_sb, tb->L[i]))
2418                                                 locked = tb->L[i];
2419                                 }
2420
2421                                 if (!locked && tb->FL[i]) {
2422                                         tb_buffer_sanity_check(tb->tb_sb,
2423                                                                tb->FL[i],
2424                                                                "FL", i);
2425                                         if (!clear_all_dirty_bits
2426                                             (tb->tb_sb, tb->FL[i]))
2427                                                 locked = tb->FL[i];
2428                                 }
2429
2430                                 if (!locked && tb->CFL[i]) {
2431                                         tb_buffer_sanity_check(tb->tb_sb,
2432                                                                tb->CFL[i],
2433                                                                "CFL", i);
2434                                         if (!clear_all_dirty_bits
2435                                             (tb->tb_sb, tb->CFL[i]))
2436                                                 locked = tb->CFL[i];
2437                                 }
2438
2439                         }
2440
2441                         if (!locked && (tb->rnum[i])) {
2442
2443                                 if (tb->R[i]) {
2444                                         tb_buffer_sanity_check(tb->tb_sb,
2445                                                                tb->R[i],
2446                                                                "R", i);
2447                                         if (!clear_all_dirty_bits
2448                                             (tb->tb_sb, tb->R[i]))
2449                                                 locked = tb->R[i];
2450                                 }
2451
2452                                 if (!locked && tb->FR[i]) {
2453                                         tb_buffer_sanity_check(tb->tb_sb,
2454                                                                tb->FR[i],
2455                                                                "FR", i);
2456                                         if (!clear_all_dirty_bits
2457                                             (tb->tb_sb, tb->FR[i]))
2458                                                 locked = tb->FR[i];
2459                                 }
2460
2461                                 if (!locked && tb->CFR[i]) {
2462                                         tb_buffer_sanity_check(tb->tb_sb,
2463                                                                tb->CFR[i],
2464                                                                "CFR", i);
2465                                         if (!clear_all_dirty_bits
2466                                             (tb->tb_sb, tb->CFR[i]))
2467                                                 locked = tb->CFR[i];
2468                                 }
2469                         }
2470                 }
2471
2472                 /*
2473                  * as far as I can tell, this is not required.  The FEB list
2474                  * seems to be full of newly allocated nodes, which will
2475                  * never be locked, dirty, or anything else.
2476                  * To be safe, I'm putting in the checks and waits in.
2477                  * For the moment, they are needed to keep the code in
2478                  * journal.c from complaining about the buffer.
2479                  * That code is inside CONFIG_REISERFS_CHECK as well.  --clm
2480                  */
2481                 for (i = 0; !locked && i < MAX_FEB_SIZE; i++) {
2482                         if (tb->FEB[i]) {
2483                                 if (!clear_all_dirty_bits
2484                                     (tb->tb_sb, tb->FEB[i]))
2485                                         locked = tb->FEB[i];
2486                         }
2487                 }
2488
2489                 if (locked) {
2490                         int depth;
2491 #ifdef CONFIG_REISERFS_CHECK
2492                         repeat_counter++;
2493                         if ((repeat_counter % 10000) == 0) {
2494                                 reiserfs_warning(tb->tb_sb, "reiserfs-8200",
2495                                                  "too many iterations waiting "
2496                                                  "for buffer to unlock "
2497                                                  "(%b)", locked);
2498
2499                                 /* Don't loop forever.  Try to recover from possible error. */
2500
2501                                 return (FILESYSTEM_CHANGED_TB(tb)) ?
2502                                     REPEAT_SEARCH : CARRY_ON;
2503                         }
2504 #endif
2505                         depth = reiserfs_write_unlock_nested(tb->tb_sb);
2506                         __wait_on_buffer(locked);
2507                         reiserfs_write_lock_nested(tb->tb_sb, depth);
2508                         if (FILESYSTEM_CHANGED_TB(tb))
2509                                 return REPEAT_SEARCH;
2510                 }
2511
2512         } while (locked);
2513
2514         return CARRY_ON;
2515 }
2516
2517 /*
2518  * Prepare for balancing, that is
2519  *      get all necessary parents, and neighbors;
2520  *      analyze what and where should be moved;
2521  *      get sufficient number of new nodes;
2522  * Balancing will start only after all resources will be collected at a time.
2523  *
2524  * When ported to SMP kernels, only at the last moment after all needed nodes
2525  * are collected in cache, will the resources be locked using the usual
2526  * textbook ordered lock acquisition algorithms.  Note that ensuring that
2527  * this code neither write locks what it does not need to write lock nor locks
2528  * out of order will be a pain in the butt that could have been avoided.
2529  * Grumble grumble. -Hans
2530  *
2531  * fix is meant in the sense of render unchanging
2532  *
2533  * Latency might be improved by first gathering a list of what buffers
2534  * are needed and then getting as many of them in parallel as possible? -Hans
2535  *
2536  * Parameters:
2537  *      op_mode i - insert, d - delete, c - cut (truncate), p - paste (append)
2538  *      tb      tree_balance structure;
2539  *      inum    item number in S[h];
2540  *      pos_in_item - comment this if you can
2541  *      ins_ih  item head of item being inserted
2542  *      data    inserted item or data to be pasted
2543  * Returns:     1 - schedule occurred while the function worked;
2544  *              0 - schedule didn't occur while the function worked;
2545  *             -1 - if no_disk_space
2546  */
2547
2548 int fix_nodes(int op_mode, struct tree_balance *tb,
2549               struct item_head *ins_ih, const void *data)
2550 {
2551         int ret, h, item_num = PATH_LAST_POSITION(tb->tb_path);
2552         int pos_in_item;
2553
2554         /*
2555          * we set wait_tb_buffers_run when we have to restore any dirty
2556          * bits cleared during wait_tb_buffers_run
2557          */
2558         int wait_tb_buffers_run = 0;
2559         struct buffer_head *tbS0 = PATH_PLAST_BUFFER(tb->tb_path);
2560
2561         ++REISERFS_SB(tb->tb_sb)->s_fix_nodes;
2562
2563         pos_in_item = tb->tb_path->pos_in_item;
2564
2565         tb->fs_gen = get_generation(tb->tb_sb);
2566
2567         /*
2568          * we prepare and log the super here so it will already be in the
2569          * transaction when do_balance needs to change it.
2570          * This way do_balance won't have to schedule when trying to prepare
2571          * the super for logging
2572          */
2573         reiserfs_prepare_for_journal(tb->tb_sb,
2574                                      SB_BUFFER_WITH_SB(tb->tb_sb), 1);
2575         journal_mark_dirty(tb->transaction_handle,
2576                            SB_BUFFER_WITH_SB(tb->tb_sb));
2577         if (FILESYSTEM_CHANGED_TB(tb))
2578                 return REPEAT_SEARCH;
2579
2580         /* if it possible in indirect_to_direct conversion */
2581         if (buffer_locked(tbS0)) {
2582                 int depth = reiserfs_write_unlock_nested(tb->tb_sb);
2583                 __wait_on_buffer(tbS0);
2584                 reiserfs_write_lock_nested(tb->tb_sb, depth);
2585                 if (FILESYSTEM_CHANGED_TB(tb))
2586                         return REPEAT_SEARCH;
2587         }
2588 #ifdef CONFIG_REISERFS_CHECK
2589         if (REISERFS_SB(tb->tb_sb)->cur_tb) {
2590                 print_cur_tb("fix_nodes");
2591                 reiserfs_panic(tb->tb_sb, "PAP-8305",
2592                                "there is pending do_balance");
2593         }
2594
2595         if (!buffer_uptodate(tbS0) || !B_IS_IN_TREE(tbS0))
2596                 reiserfs_panic(tb->tb_sb, "PAP-8320", "S[0] (%b %z) is "
2597                                "not uptodate at the beginning of fix_nodes "
2598                                "or not in tree (mode %c)",
2599                                tbS0, tbS0, op_mode);
2600
2601         /* Check parameters. */
2602         switch (op_mode) {
2603         case M_INSERT:
2604                 if (item_num <= 0 || item_num > B_NR_ITEMS(tbS0))
2605                         reiserfs_panic(tb->tb_sb, "PAP-8330", "Incorrect "
2606                                        "item number %d (in S0 - %d) in case "
2607                                        "of insert", item_num,
2608                                        B_NR_ITEMS(tbS0));
2609                 break;
2610         case M_PASTE:
2611         case M_DELETE:
2612         case M_CUT:
2613                 if (item_num < 0 || item_num >= B_NR_ITEMS(tbS0)) {
2614                         print_block(tbS0, 0, -1, -1);
2615                         reiserfs_panic(tb->tb_sb, "PAP-8335", "Incorrect "
2616                                        "item number(%d); mode = %c "
2617                                        "insert_size = %d",
2618                                        item_num, op_mode,
2619                                        tb->insert_size[0]);
2620                 }
2621                 break;
2622         default:
2623                 reiserfs_panic(tb->tb_sb, "PAP-8340", "Incorrect mode "
2624                                "of operation");
2625         }
2626 #endif
2627
2628         if (get_mem_for_virtual_node(tb) == REPEAT_SEARCH)
2629                 /* FIXME: maybe -ENOMEM when tb->vn_buf == 0? Now just repeat */
2630                 return REPEAT_SEARCH;
2631
2632         /* Starting from the leaf level; for all levels h of the tree. */
2633         for (h = 0; h < MAX_HEIGHT && tb->insert_size[h]; h++) {
2634                 ret = get_direct_parent(tb, h);
2635                 if (ret != CARRY_ON)
2636                         goto repeat;
2637
2638                 ret = check_balance(op_mode, tb, h, item_num,
2639                                     pos_in_item, ins_ih, data);
2640                 if (ret != CARRY_ON) {
2641                         if (ret == NO_BALANCING_NEEDED) {
2642                                 /* No balancing for higher levels needed. */
2643                                 ret = get_neighbors(tb, h);
2644                                 if (ret != CARRY_ON)
2645                                         goto repeat;
2646                                 if (h != MAX_HEIGHT - 1)
2647                                         tb->insert_size[h + 1] = 0;
2648                                 /*
2649                                  * ok, analysis and resource gathering
2650                                  * are complete
2651                                  */
2652                                 break;
2653                         }
2654                         goto repeat;
2655                 }
2656
2657                 ret = get_neighbors(tb, h);
2658                 if (ret != CARRY_ON)
2659                         goto repeat;
2660
2661                 /*
2662                  * No disk space, or schedule occurred and analysis may be
2663                  * invalid and needs to be redone.
2664                  */
2665                 ret = get_empty_nodes(tb, h);
2666                 if (ret != CARRY_ON)
2667                         goto repeat;
2668
2669                 /*
2670                  * We have a positive insert size but no nodes exist on this
2671                  * level, this means that we are creating a new root.
2672                  */
2673                 if (!PATH_H_PBUFFER(tb->tb_path, h)) {
2674
2675                         RFALSE(tb->blknum[h] != 1,
2676                                "PAP-8350: creating new empty root");
2677
2678                         if (h < MAX_HEIGHT - 1)
2679                                 tb->insert_size[h + 1] = 0;
2680                 } else if (!PATH_H_PBUFFER(tb->tb_path, h + 1)) {
2681                         /*
2682                          * The tree needs to be grown, so this node S[h]
2683                          * which is the root node is split into two nodes,
2684                          * and a new node (S[h+1]) will be created to
2685                          * become the root node.
2686                          */
2687                         if (tb->blknum[h] > 1) {
2688
2689                                 RFALSE(h == MAX_HEIGHT - 1,
2690                                        "PAP-8355: attempt to create too high of a tree");
2691
2692                                 tb->insert_size[h + 1] =
2693                                     (DC_SIZE +
2694                                      KEY_SIZE) * (tb->blknum[h] - 1) +
2695                                     DC_SIZE;
2696                         } else if (h < MAX_HEIGHT - 1)
2697                                 tb->insert_size[h + 1] = 0;
2698                 } else
2699                         tb->insert_size[h + 1] =
2700                             (DC_SIZE + KEY_SIZE) * (tb->blknum[h] - 1);
2701         }
2702
2703         ret = wait_tb_buffers_until_unlocked(tb);
2704         if (ret == CARRY_ON) {
2705                 if (FILESYSTEM_CHANGED_TB(tb)) {
2706                         wait_tb_buffers_run = 1;
2707                         ret = REPEAT_SEARCH;
2708                         goto repeat;
2709                 } else {
2710                         return CARRY_ON;
2711                 }
2712         } else {
2713                 wait_tb_buffers_run = 1;
2714                 goto repeat;
2715         }
2716
2717       repeat:
2718         /*
2719          * fix_nodes was unable to perform its calculation due to
2720          * filesystem got changed under us, lack of free disk space or i/o
2721          * failure. If the first is the case - the search will be
2722          * repeated. For now - free all resources acquired so far except
2723          * for the new allocated nodes
2724          */
2725         {
2726                 int i;
2727
2728                 /* Release path buffers. */
2729                 if (wait_tb_buffers_run) {
2730                         pathrelse_and_restore(tb->tb_sb, tb->tb_path);
2731                 } else {
2732                         pathrelse(tb->tb_path);
2733                 }
2734                 /* brelse all resources collected for balancing */
2735                 for (i = 0; i < MAX_HEIGHT; i++) {
2736                         if (wait_tb_buffers_run) {
2737                                 reiserfs_restore_prepared_buffer(tb->tb_sb,
2738                                                                  tb->L[i]);
2739                                 reiserfs_restore_prepared_buffer(tb->tb_sb,
2740                                                                  tb->R[i]);
2741                                 reiserfs_restore_prepared_buffer(tb->tb_sb,
2742                                                                  tb->FL[i]);
2743                                 reiserfs_restore_prepared_buffer(tb->tb_sb,
2744                                                                  tb->FR[i]);
2745                                 reiserfs_restore_prepared_buffer(tb->tb_sb,
2746                                                                  tb->
2747                                                                  CFL[i]);
2748                                 reiserfs_restore_prepared_buffer(tb->tb_sb,
2749                                                                  tb->
2750                                                                  CFR[i]);
2751                         }
2752
2753                         brelse(tb->L[i]);
2754                         brelse(tb->R[i]);
2755                         brelse(tb->FL[i]);
2756                         brelse(tb->FR[i]);
2757                         brelse(tb->CFL[i]);
2758                         brelse(tb->CFR[i]);
2759
2760                         tb->L[i] = NULL;
2761                         tb->R[i] = NULL;
2762                         tb->FL[i] = NULL;
2763                         tb->FR[i] = NULL;
2764                         tb->CFL[i] = NULL;
2765                         tb->CFR[i] = NULL;
2766                 }
2767
2768                 if (wait_tb_buffers_run) {
2769                         for (i = 0; i < MAX_FEB_SIZE; i++) {
2770                                 if (tb->FEB[i])
2771                                         reiserfs_restore_prepared_buffer
2772                                             (tb->tb_sb, tb->FEB[i]);
2773                         }
2774                 }
2775                 return ret;
2776         }
2777
2778 }
2779
2780 void unfix_nodes(struct tree_balance *tb)
2781 {
2782         int i;
2783
2784         /* Release path buffers. */
2785         pathrelse_and_restore(tb->tb_sb, tb->tb_path);
2786
2787         /* brelse all resources collected for balancing */
2788         for (i = 0; i < MAX_HEIGHT; i++) {
2789                 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->L[i]);
2790                 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->R[i]);
2791                 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->FL[i]);
2792                 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->FR[i]);
2793                 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->CFL[i]);
2794                 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->CFR[i]);
2795
2796                 brelse(tb->L[i]);
2797                 brelse(tb->R[i]);
2798                 brelse(tb->FL[i]);
2799                 brelse(tb->FR[i]);
2800                 brelse(tb->CFL[i]);
2801                 brelse(tb->CFR[i]);
2802         }
2803
2804         /* deal with list of allocated (used and unused) nodes */
2805         for (i = 0; i < MAX_FEB_SIZE; i++) {
2806                 if (tb->FEB[i]) {
2807                         b_blocknr_t blocknr = tb->FEB[i]->b_blocknr;
2808                         /*
2809                          * de-allocated block which was not used by
2810                          * balancing and bforget about buffer for it
2811                          */
2812                         brelse(tb->FEB[i]);
2813                         reiserfs_free_block(tb->transaction_handle, NULL,
2814                                             blocknr, 0);
2815                 }
2816                 if (tb->used[i]) {
2817                         /* release used as new nodes including a new root */
2818                         brelse(tb->used[i]);
2819                 }
2820         }
2821
2822         kfree(tb->vn_buf);
2823
2824 }