reiserfs: cleanup, rename key and item accessors to more friendly names
[cascardo/linux.git] / fs / reiserfs / fix_node.c
1 /*
2  * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3  */
4
5 /**
6  ** old_item_num
7  ** old_entry_num
8  ** set_entry_sizes
9  ** create_virtual_node
10  ** check_left
11  ** check_right
12  ** directory_part_size
13  ** get_num_ver
14  ** set_parameters
15  ** is_leaf_removable
16  ** are_leaves_removable
17  ** get_empty_nodes
18  ** get_lfree
19  ** get_rfree
20  ** is_left_neighbor_in_cache
21  ** decrement_key
22  ** get_far_parent
23  ** get_parents
24  ** can_node_be_removed
25  ** ip_check_balance
26  ** dc_check_balance_internal
27  ** dc_check_balance_leaf
28  ** dc_check_balance
29  ** check_balance
30  ** get_direct_parent
31  ** get_neighbors
32  ** fix_nodes
33  **
34  **
35  **/
36
37 #include <linux/time.h>
38 #include <linux/slab.h>
39 #include <linux/string.h>
40 #include "reiserfs.h"
41 #include <linux/buffer_head.h>
42
43 /* To make any changes in the tree we find a node, that contains item
44    to be changed/deleted or position in the node we insert a new item
45    to. We call this node S. To do balancing we need to decide what we
46    will shift to left/right neighbor, or to a new node, where new item
47    will be etc. To make this analysis simpler we build virtual
48    node. Virtual node is an array of items, that will replace items of
49    node S. (For instance if we are going to delete an item, virtual
50    node does not contain it). Virtual node keeps information about
51    item sizes and types, mergeability of first and last items, sizes
52    of all entries in directory item. We use this array of items when
53    calculating what we can shift to neighbors and how many nodes we
54    have to have if we do not any shiftings, if we shift to left/right
55    neighbor or to both. */
56
57 /* taking item number in virtual node, returns number of item, that it has in source buffer */
58 static inline int old_item_num(int new_num, int affected_item_num, int mode)
59 {
60         if (mode == M_PASTE || mode == M_CUT || new_num < affected_item_num)
61                 return new_num;
62
63         if (mode == M_INSERT) {
64
65                 RFALSE(new_num == 0,
66                        "vs-8005: for INSERT mode and item number of inserted item");
67
68                 return new_num - 1;
69         }
70
71         RFALSE(mode != M_DELETE,
72                "vs-8010: old_item_num: mode must be M_DELETE (mode = \'%c\'",
73                mode);
74         /* delete mode */
75         return new_num + 1;
76 }
77
78 static void create_virtual_node(struct tree_balance *tb, int h)
79 {
80         struct item_head *ih;
81         struct virtual_node *vn = tb->tb_vn;
82         int new_num;
83         struct buffer_head *Sh; /* this comes from tb->S[h] */
84
85         Sh = PATH_H_PBUFFER(tb->tb_path, h);
86
87         /* size of changed node */
88         vn->vn_size =
89             MAX_CHILD_SIZE(Sh) - B_FREE_SPACE(Sh) + tb->insert_size[h];
90
91         /* for internal nodes array if virtual items is not created */
92         if (h) {
93                 vn->vn_nr_item = (vn->vn_size - DC_SIZE) / (DC_SIZE + KEY_SIZE);
94                 return;
95         }
96
97         /* number of items in virtual node  */
98         vn->vn_nr_item =
99             B_NR_ITEMS(Sh) + ((vn->vn_mode == M_INSERT) ? 1 : 0) -
100             ((vn->vn_mode == M_DELETE) ? 1 : 0);
101
102         /* first virtual item */
103         vn->vn_vi = (struct virtual_item *)(tb->tb_vn + 1);
104         memset(vn->vn_vi, 0, vn->vn_nr_item * sizeof(struct virtual_item));
105         vn->vn_free_ptr += vn->vn_nr_item * sizeof(struct virtual_item);
106
107         /* first item in the node */
108         ih = item_head(Sh, 0);
109
110         /* define the mergeability for 0-th item (if it is not being deleted) */
111         if (op_is_left_mergeable(&(ih->ih_key), Sh->b_size)
112             && (vn->vn_mode != M_DELETE || vn->vn_affected_item_num))
113                 vn->vn_vi[0].vi_type |= VI_TYPE_LEFT_MERGEABLE;
114
115         /* go through all items those remain in the virtual node (except for the new (inserted) one) */
116         for (new_num = 0; new_num < vn->vn_nr_item; new_num++) {
117                 int j;
118                 struct virtual_item *vi = vn->vn_vi + new_num;
119                 int is_affected =
120                     ((new_num != vn->vn_affected_item_num) ? 0 : 1);
121
122                 if (is_affected && vn->vn_mode == M_INSERT)
123                         continue;
124
125                 /* get item number in source node */
126                 j = old_item_num(new_num, vn->vn_affected_item_num,
127                                  vn->vn_mode);
128
129                 vi->vi_item_len += ih_item_len(ih + j) + IH_SIZE;
130                 vi->vi_ih = ih + j;
131                 vi->vi_item = ih_item_body(Sh, ih + j);
132                 vi->vi_uarea = vn->vn_free_ptr;
133
134                 // FIXME: there is no check, that item operation did not
135                 // consume too much memory
136                 vn->vn_free_ptr +=
137                     op_create_vi(vn, vi, is_affected, tb->insert_size[0]);
138                 if (tb->vn_buf + tb->vn_buf_size < vn->vn_free_ptr)
139                         reiserfs_panic(tb->tb_sb, "vs-8030",
140                                        "virtual node space consumed");
141
142                 if (!is_affected)
143                         /* this is not being changed */
144                         continue;
145
146                 if (vn->vn_mode == M_PASTE || vn->vn_mode == M_CUT) {
147                         vn->vn_vi[new_num].vi_item_len += tb->insert_size[0];
148                         vi->vi_new_data = vn->vn_data;  // pointer to data which is going to be pasted
149                 }
150         }
151
152         /* virtual inserted item is not defined yet */
153         if (vn->vn_mode == M_INSERT) {
154                 struct virtual_item *vi = vn->vn_vi + vn->vn_affected_item_num;
155
156                 RFALSE(vn->vn_ins_ih == NULL,
157                        "vs-8040: item header of inserted item is not specified");
158                 vi->vi_item_len = tb->insert_size[0];
159                 vi->vi_ih = vn->vn_ins_ih;
160                 vi->vi_item = vn->vn_data;
161                 vi->vi_uarea = vn->vn_free_ptr;
162
163                 op_create_vi(vn, vi, 0 /*not pasted or cut */ ,
164                              tb->insert_size[0]);
165         }
166
167         /* set right merge flag we take right delimiting key and check whether it is a mergeable item */
168         if (tb->CFR[0]) {
169                 struct reiserfs_key *key;
170
171                 key = internal_key(tb->CFR[0], tb->rkey[0]);
172                 if (op_is_left_mergeable(key, Sh->b_size)
173                     && (vn->vn_mode != M_DELETE
174                         || vn->vn_affected_item_num != B_NR_ITEMS(Sh) - 1))
175                         vn->vn_vi[vn->vn_nr_item - 1].vi_type |=
176                             VI_TYPE_RIGHT_MERGEABLE;
177
178 #ifdef CONFIG_REISERFS_CHECK
179                 if (op_is_left_mergeable(key, Sh->b_size) &&
180                     !(vn->vn_mode != M_DELETE
181                       || vn->vn_affected_item_num != B_NR_ITEMS(Sh) - 1)) {
182                         /* we delete last item and it could be merged with right neighbor's first item */
183                         if (!
184                             (B_NR_ITEMS(Sh) == 1
185                              && is_direntry_le_ih(item_head(Sh, 0))
186                              && ih_entry_count(item_head(Sh, 0)) == 1)) {
187                                 /* node contains more than 1 item, or item is not directory item, or this item contains more than 1 entry */
188                                 print_block(Sh, 0, -1, -1);
189                                 reiserfs_panic(tb->tb_sb, "vs-8045",
190                                                "rdkey %k, affected item==%d "
191                                                "(mode==%c) Must be %c",
192                                                key, vn->vn_affected_item_num,
193                                                vn->vn_mode, M_DELETE);
194                         }
195                 }
196 #endif
197
198         }
199 }
200
201 /* using virtual node check, how many items can be shifted to left
202    neighbor */
203 static void check_left(struct tree_balance *tb, int h, int cur_free)
204 {
205         int i;
206         struct virtual_node *vn = tb->tb_vn;
207         struct virtual_item *vi;
208         int d_size, ih_size;
209
210         RFALSE(cur_free < 0, "vs-8050: cur_free (%d) < 0", cur_free);
211
212         /* internal level */
213         if (h > 0) {
214                 tb->lnum[h] = cur_free / (DC_SIZE + KEY_SIZE);
215                 return;
216         }
217
218         /* leaf level */
219
220         if (!cur_free || !vn->vn_nr_item) {
221                 /* no free space or nothing to move */
222                 tb->lnum[h] = 0;
223                 tb->lbytes = -1;
224                 return;
225         }
226
227         RFALSE(!PATH_H_PPARENT(tb->tb_path, 0),
228                "vs-8055: parent does not exist or invalid");
229
230         vi = vn->vn_vi;
231         if ((unsigned int)cur_free >=
232             (vn->vn_size -
233              ((vi->vi_type & VI_TYPE_LEFT_MERGEABLE) ? IH_SIZE : 0))) {
234                 /* all contents of S[0] fits into L[0] */
235
236                 RFALSE(vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE,
237                        "vs-8055: invalid mode or balance condition failed");
238
239                 tb->lnum[0] = vn->vn_nr_item;
240                 tb->lbytes = -1;
241                 return;
242         }
243
244         d_size = 0, ih_size = IH_SIZE;
245
246         /* first item may be merge with last item in left neighbor */
247         if (vi->vi_type & VI_TYPE_LEFT_MERGEABLE)
248                 d_size = -((int)IH_SIZE), ih_size = 0;
249
250         tb->lnum[0] = 0;
251         for (i = 0; i < vn->vn_nr_item;
252              i++, ih_size = IH_SIZE, d_size = 0, vi++) {
253                 d_size += vi->vi_item_len;
254                 if (cur_free >= d_size) {
255                         /* the item can be shifted entirely */
256                         cur_free -= d_size;
257                         tb->lnum[0]++;
258                         continue;
259                 }
260
261                 /* the item cannot be shifted entirely, try to split it */
262                 /* check whether L[0] can hold ih and at least one byte of the item body */
263                 if (cur_free <= ih_size) {
264                         /* cannot shift even a part of the current item */
265                         tb->lbytes = -1;
266                         return;
267                 }
268                 cur_free -= ih_size;
269
270                 tb->lbytes = op_check_left(vi, cur_free, 0, 0);
271                 if (tb->lbytes != -1)
272                         /* count partially shifted item */
273                         tb->lnum[0]++;
274
275                 break;
276         }
277
278         return;
279 }
280
281 /* using virtual node check, how many items can be shifted to right
282    neighbor */
283 static void check_right(struct tree_balance *tb, int h, int cur_free)
284 {
285         int i;
286         struct virtual_node *vn = tb->tb_vn;
287         struct virtual_item *vi;
288         int d_size, ih_size;
289
290         RFALSE(cur_free < 0, "vs-8070: cur_free < 0");
291
292         /* internal level */
293         if (h > 0) {
294                 tb->rnum[h] = cur_free / (DC_SIZE + KEY_SIZE);
295                 return;
296         }
297
298         /* leaf level */
299
300         if (!cur_free || !vn->vn_nr_item) {
301                 /* no free space  */
302                 tb->rnum[h] = 0;
303                 tb->rbytes = -1;
304                 return;
305         }
306
307         RFALSE(!PATH_H_PPARENT(tb->tb_path, 0),
308                "vs-8075: parent does not exist or invalid");
309
310         vi = vn->vn_vi + vn->vn_nr_item - 1;
311         if ((unsigned int)cur_free >=
312             (vn->vn_size -
313              ((vi->vi_type & VI_TYPE_RIGHT_MERGEABLE) ? IH_SIZE : 0))) {
314                 /* all contents of S[0] fits into R[0] */
315
316                 RFALSE(vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE,
317                        "vs-8080: invalid mode or balance condition failed");
318
319                 tb->rnum[h] = vn->vn_nr_item;
320                 tb->rbytes = -1;
321                 return;
322         }
323
324         d_size = 0, ih_size = IH_SIZE;
325
326         /* last item may be merge with first item in right neighbor */
327         if (vi->vi_type & VI_TYPE_RIGHT_MERGEABLE)
328                 d_size = -(int)IH_SIZE, ih_size = 0;
329
330         tb->rnum[0] = 0;
331         for (i = vn->vn_nr_item - 1; i >= 0;
332              i--, d_size = 0, ih_size = IH_SIZE, vi--) {
333                 d_size += vi->vi_item_len;
334                 if (cur_free >= d_size) {
335                         /* the item can be shifted entirely */
336                         cur_free -= d_size;
337                         tb->rnum[0]++;
338                         continue;
339                 }
340
341                 /* check whether R[0] can hold ih and at least one byte of the item body */
342                 if (cur_free <= ih_size) {      /* cannot shift even a part of the current item */
343                         tb->rbytes = -1;
344                         return;
345                 }
346
347                 /* R[0] can hold the header of the item and at least one byte of its body */
348                 cur_free -= ih_size;    /* cur_free is still > 0 */
349
350                 tb->rbytes = op_check_right(vi, cur_free);
351                 if (tb->rbytes != -1)
352                         /* count partially shifted item */
353                         tb->rnum[0]++;
354
355                 break;
356         }
357
358         return;
359 }
360
361 /*
362  * from - number of items, which are shifted to left neighbor entirely
363  * to - number of item, which are shifted to right neighbor entirely
364  * from_bytes - number of bytes of boundary item (or directory entries) which are shifted to left neighbor
365  * to_bytes - number of bytes of boundary item (or directory entries) which are shifted to right neighbor */
366 static int get_num_ver(int mode, struct tree_balance *tb, int h,
367                        int from, int from_bytes,
368                        int to, int to_bytes, short *snum012, int flow)
369 {
370         int i;
371         int cur_free;
372         //    int bytes;
373         int units;
374         struct virtual_node *vn = tb->tb_vn;
375         //    struct virtual_item * vi;
376
377         int total_node_size, max_node_size, current_item_size;
378         int needed_nodes;
379         int start_item,         /* position of item we start filling node from */
380          end_item,              /* position of item we finish filling node by */
381          start_bytes,           /* number of first bytes (entries for directory) of start_item-th item
382                                    we do not include into node that is being filled */
383          end_bytes;             /* number of last bytes (entries for directory) of end_item-th item
384                                    we do node include into node that is being filled */
385         int split_item_positions[2];    /* these are positions in virtual item of
386                                            items, that are split between S[0] and
387                                            S1new and S1new and S2new */
388
389         split_item_positions[0] = -1;
390         split_item_positions[1] = -1;
391
392         /* We only create additional nodes if we are in insert or paste mode
393            or we are in replace mode at the internal level. If h is 0 and
394            the mode is M_REPLACE then in fix_nodes we change the mode to
395            paste or insert before we get here in the code.  */
396         RFALSE(tb->insert_size[h] < 0 || (mode != M_INSERT && mode != M_PASTE),
397                "vs-8100: insert_size < 0 in overflow");
398
399         max_node_size = MAX_CHILD_SIZE(PATH_H_PBUFFER(tb->tb_path, h));
400
401         /* snum012 [0-2] - number of items, that lay
402            to S[0], first new node and second new node */
403         snum012[3] = -1;        /* s1bytes */
404         snum012[4] = -1;        /* s2bytes */
405
406         /* internal level */
407         if (h > 0) {
408                 i = ((to - from) * (KEY_SIZE + DC_SIZE) + DC_SIZE);
409                 if (i == max_node_size)
410                         return 1;
411                 return (i / max_node_size + 1);
412         }
413
414         /* leaf level */
415         needed_nodes = 1;
416         total_node_size = 0;
417         cur_free = max_node_size;
418
419         // start from 'from'-th item
420         start_item = from;
421         // skip its first 'start_bytes' units
422         start_bytes = ((from_bytes != -1) ? from_bytes : 0);
423
424         // last included item is the 'end_item'-th one
425         end_item = vn->vn_nr_item - to - 1;
426         // do not count last 'end_bytes' units of 'end_item'-th item
427         end_bytes = (to_bytes != -1) ? to_bytes : 0;
428
429         /* go through all item beginning from the start_item-th item and ending by
430            the end_item-th item. Do not count first 'start_bytes' units of
431            'start_item'-th item and last 'end_bytes' of 'end_item'-th item */
432
433         for (i = start_item; i <= end_item; i++) {
434                 struct virtual_item *vi = vn->vn_vi + i;
435                 int skip_from_end = ((i == end_item) ? end_bytes : 0);
436
437                 RFALSE(needed_nodes > 3, "vs-8105: too many nodes are needed");
438
439                 /* get size of current item */
440                 current_item_size = vi->vi_item_len;
441
442                 /* do not take in calculation head part (from_bytes) of from-th item */
443                 current_item_size -=
444                     op_part_size(vi, 0 /*from start */ , start_bytes);
445
446                 /* do not take in calculation tail part of last item */
447                 current_item_size -=
448                     op_part_size(vi, 1 /*from end */ , skip_from_end);
449
450                 /* if item fits into current node entierly */
451                 if (total_node_size + current_item_size <= max_node_size) {
452                         snum012[needed_nodes - 1]++;
453                         total_node_size += current_item_size;
454                         start_bytes = 0;
455                         continue;
456                 }
457
458                 if (current_item_size > max_node_size) {
459                         /* virtual item length is longer, than max size of item in
460                            a node. It is impossible for direct item */
461                         RFALSE(is_direct_le_ih(vi->vi_ih),
462                                "vs-8110: "
463                                "direct item length is %d. It can not be longer than %d",
464                                current_item_size, max_node_size);
465                         /* we will try to split it */
466                         flow = 1;
467                 }
468
469                 if (!flow) {
470                         /* as we do not split items, take new node and continue */
471                         needed_nodes++;
472                         i--;
473                         total_node_size = 0;
474                         continue;
475                 }
476                 // calculate number of item units which fit into node being
477                 // filled
478                 {
479                         int free_space;
480
481                         free_space = max_node_size - total_node_size - IH_SIZE;
482                         units =
483                             op_check_left(vi, free_space, start_bytes,
484                                           skip_from_end);
485                         if (units == -1) {
486                                 /* nothing fits into current node, take new node and continue */
487                                 needed_nodes++, i--, total_node_size = 0;
488                                 continue;
489                         }
490                 }
491
492                 /* something fits into the current node */
493                 //if (snum012[3] != -1 || needed_nodes != 1)
494                 //  reiserfs_panic (tb->tb_sb, "vs-8115: get_num_ver: too many nodes required");
495                 //snum012[needed_nodes - 1 + 3] = op_unit_num (vi) - start_bytes - units;
496                 start_bytes += units;
497                 snum012[needed_nodes - 1 + 3] = units;
498
499                 if (needed_nodes > 2)
500                         reiserfs_warning(tb->tb_sb, "vs-8111",
501                                          "split_item_position is out of range");
502                 snum012[needed_nodes - 1]++;
503                 split_item_positions[needed_nodes - 1] = i;
504                 needed_nodes++;
505                 /* continue from the same item with start_bytes != -1 */
506                 start_item = i;
507                 i--;
508                 total_node_size = 0;
509         }
510
511         // sum012[4] (if it is not -1) contains number of units of which
512         // are to be in S1new, snum012[3] - to be in S0. They are supposed
513         // to be S1bytes and S2bytes correspondingly, so recalculate
514         if (snum012[4] > 0) {
515                 int split_item_num;
516                 int bytes_to_r, bytes_to_l;
517                 int bytes_to_S1new;
518
519                 split_item_num = split_item_positions[1];
520                 bytes_to_l =
521                     ((from == split_item_num
522                       && from_bytes != -1) ? from_bytes : 0);
523                 bytes_to_r =
524                     ((end_item == split_item_num
525                       && end_bytes != -1) ? end_bytes : 0);
526                 bytes_to_S1new =
527                     ((split_item_positions[0] ==
528                       split_item_positions[1]) ? snum012[3] : 0);
529
530                 // s2bytes
531                 snum012[4] =
532                     op_unit_num(&vn->vn_vi[split_item_num]) - snum012[4] -
533                     bytes_to_r - bytes_to_l - bytes_to_S1new;
534
535                 if (vn->vn_vi[split_item_num].vi_index != TYPE_DIRENTRY &&
536                     vn->vn_vi[split_item_num].vi_index != TYPE_INDIRECT)
537                         reiserfs_warning(tb->tb_sb, "vs-8115",
538                                          "not directory or indirect item");
539         }
540
541         /* now we know S2bytes, calculate S1bytes */
542         if (snum012[3] > 0) {
543                 int split_item_num;
544                 int bytes_to_r, bytes_to_l;
545                 int bytes_to_S2new;
546
547                 split_item_num = split_item_positions[0];
548                 bytes_to_l =
549                     ((from == split_item_num
550                       && from_bytes != -1) ? from_bytes : 0);
551                 bytes_to_r =
552                     ((end_item == split_item_num
553                       && end_bytes != -1) ? end_bytes : 0);
554                 bytes_to_S2new =
555                     ((split_item_positions[0] == split_item_positions[1]
556                       && snum012[4] != -1) ? snum012[4] : 0);
557
558                 // s1bytes
559                 snum012[3] =
560                     op_unit_num(&vn->vn_vi[split_item_num]) - snum012[3] -
561                     bytes_to_r - bytes_to_l - bytes_to_S2new;
562         }
563
564         return needed_nodes;
565 }
566
567
568 /* Set parameters for balancing.
569  * Performs write of results of analysis of balancing into structure tb,
570  * where it will later be used by the functions that actually do the balancing.
571  * Parameters:
572  *      tb      tree_balance structure;
573  *      h       current level of the node;
574  *      lnum    number of items from S[h] that must be shifted to L[h];
575  *      rnum    number of items from S[h] that must be shifted to R[h];
576  *      blk_num number of blocks that S[h] will be splitted into;
577  *      s012    number of items that fall into splitted nodes.
578  *      lbytes  number of bytes which flow to the left neighbor from the item that is not
579  *              not shifted entirely
580  *      rbytes  number of bytes which flow to the right neighbor from the item that is not
581  *              not shifted entirely
582  *      s1bytes number of bytes which flow to the first  new node when S[0] splits (this number is contained in s012 array)
583  */
584
585 static void set_parameters(struct tree_balance *tb, int h, int lnum,
586                            int rnum, int blk_num, short *s012, int lb, int rb)
587 {
588
589         tb->lnum[h] = lnum;
590         tb->rnum[h] = rnum;
591         tb->blknum[h] = blk_num;
592
593         if (h == 0) {           /* only for leaf level */
594                 if (s012 != NULL) {
595                         tb->s0num = *s012++,
596                             tb->s1num = *s012++, tb->s2num = *s012++;
597                         tb->s1bytes = *s012++;
598                         tb->s2bytes = *s012;
599                 }
600                 tb->lbytes = lb;
601                 tb->rbytes = rb;
602         }
603         PROC_INFO_ADD(tb->tb_sb, lnum[h], lnum);
604         PROC_INFO_ADD(tb->tb_sb, rnum[h], rnum);
605
606         PROC_INFO_ADD(tb->tb_sb, lbytes[h], lb);
607         PROC_INFO_ADD(tb->tb_sb, rbytes[h], rb);
608 }
609
610 /* check, does node disappear if we shift tb->lnum[0] items to left
611    neighbor and tb->rnum[0] to the right one. */
612 static int is_leaf_removable(struct tree_balance *tb)
613 {
614         struct virtual_node *vn = tb->tb_vn;
615         int to_left, to_right;
616         int size;
617         int remain_items;
618
619         /* number of items, that will be shifted to left (right) neighbor
620            entirely */
621         to_left = tb->lnum[0] - ((tb->lbytes != -1) ? 1 : 0);
622         to_right = tb->rnum[0] - ((tb->rbytes != -1) ? 1 : 0);
623         remain_items = vn->vn_nr_item;
624
625         /* how many items remain in S[0] after shiftings to neighbors */
626         remain_items -= (to_left + to_right);
627
628         if (remain_items < 1) {
629                 /* all content of node can be shifted to neighbors */
630                 set_parameters(tb, 0, to_left, vn->vn_nr_item - to_left, 0,
631                                NULL, -1, -1);
632                 return 1;
633         }
634
635         if (remain_items > 1 || tb->lbytes == -1 || tb->rbytes == -1)
636                 /* S[0] is not removable */
637                 return 0;
638
639         /* check, whether we can divide 1 remaining item between neighbors */
640
641         /* get size of remaining item (in item units) */
642         size = op_unit_num(&(vn->vn_vi[to_left]));
643
644         if (tb->lbytes + tb->rbytes >= size) {
645                 set_parameters(tb, 0, to_left + 1, to_right + 1, 0, NULL,
646                                tb->lbytes, -1);
647                 return 1;
648         }
649
650         return 0;
651 }
652
653 /* check whether L, S, R can be joined in one node */
654 static int are_leaves_removable(struct tree_balance *tb, int lfree, int rfree)
655 {
656         struct virtual_node *vn = tb->tb_vn;
657         int ih_size;
658         struct buffer_head *S0;
659
660         S0 = PATH_H_PBUFFER(tb->tb_path, 0);
661
662         ih_size = 0;
663         if (vn->vn_nr_item) {
664                 if (vn->vn_vi[0].vi_type & VI_TYPE_LEFT_MERGEABLE)
665                         ih_size += IH_SIZE;
666
667                 if (vn->vn_vi[vn->vn_nr_item - 1].
668                     vi_type & VI_TYPE_RIGHT_MERGEABLE)
669                         ih_size += IH_SIZE;
670         } else {
671                 /* there was only one item and it will be deleted */
672                 struct item_head *ih;
673
674                 RFALSE(B_NR_ITEMS(S0) != 1,
675                        "vs-8125: item number must be 1: it is %d",
676                        B_NR_ITEMS(S0));
677
678                 ih = item_head(S0, 0);
679                 if (tb->CFR[0]
680                     && !comp_short_le_keys(&(ih->ih_key),
681                                            internal_key(tb->CFR[0],
682                                                           tb->rkey[0])))
683                         if (is_direntry_le_ih(ih)) {
684                                 /* Directory must be in correct state here: that is
685                                    somewhere at the left side should exist first directory
686                                    item. But the item being deleted can not be that first
687                                    one because its right neighbor is item of the same
688                                    directory. (But first item always gets deleted in last
689                                    turn). So, neighbors of deleted item can be merged, so
690                                    we can save ih_size */
691                                 ih_size = IH_SIZE;
692
693                                 /* we might check that left neighbor exists and is of the
694                                    same directory */
695                                 RFALSE(le_ih_k_offset(ih) == DOT_OFFSET,
696                                        "vs-8130: first directory item can not be removed until directory is not empty");
697                         }
698
699         }
700
701         if (MAX_CHILD_SIZE(S0) + vn->vn_size <= rfree + lfree + ih_size) {
702                 set_parameters(tb, 0, -1, -1, -1, NULL, -1, -1);
703                 PROC_INFO_INC(tb->tb_sb, leaves_removable);
704                 return 1;
705         }
706         return 0;
707
708 }
709
710 /* when we do not split item, lnum and rnum are numbers of entire items */
711 #define SET_PAR_SHIFT_LEFT \
712 if (h)\
713 {\
714    int to_l;\
715    \
716    to_l = (MAX_NR_KEY(Sh)+1 - lpar + vn->vn_nr_item + 1) / 2 -\
717               (MAX_NR_KEY(Sh) + 1 - lpar);\
718               \
719               set_parameters (tb, h, to_l, 0, lnver, NULL, -1, -1);\
720 }\
721 else \
722 {\
723    if (lset==LEFT_SHIFT_FLOW)\
724      set_parameters (tb, h, lpar, 0, lnver, snum012+lset,\
725                      tb->lbytes, -1);\
726    else\
727      set_parameters (tb, h, lpar - (tb->lbytes!=-1), 0, lnver, snum012+lset,\
728                      -1, -1);\
729 }
730
731 #define SET_PAR_SHIFT_RIGHT \
732 if (h)\
733 {\
734    int to_r;\
735    \
736    to_r = (MAX_NR_KEY(Sh)+1 - rpar + vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 - rpar);\
737    \
738    set_parameters (tb, h, 0, to_r, rnver, NULL, -1, -1);\
739 }\
740 else \
741 {\
742    if (rset==RIGHT_SHIFT_FLOW)\
743      set_parameters (tb, h, 0, rpar, rnver, snum012+rset,\
744                   -1, tb->rbytes);\
745    else\
746      set_parameters (tb, h, 0, rpar - (tb->rbytes!=-1), rnver, snum012+rset,\
747                   -1, -1);\
748 }
749
750 static void free_buffers_in_tb(struct tree_balance *tb)
751 {
752         int i;
753
754         pathrelse(tb->tb_path);
755
756         for (i = 0; i < MAX_HEIGHT; i++) {
757                 brelse(tb->L[i]);
758                 brelse(tb->R[i]);
759                 brelse(tb->FL[i]);
760                 brelse(tb->FR[i]);
761                 brelse(tb->CFL[i]);
762                 brelse(tb->CFR[i]);
763
764                 tb->L[i] = NULL;
765                 tb->R[i] = NULL;
766                 tb->FL[i] = NULL;
767                 tb->FR[i] = NULL;
768                 tb->CFL[i] = NULL;
769                 tb->CFR[i] = NULL;
770         }
771 }
772
773 /* Get new buffers for storing new nodes that are created while balancing.
774  * Returns:     SCHEDULE_OCCURRED - schedule occurred while the function worked;
775  *              CARRY_ON - schedule didn't occur while the function worked;
776  *              NO_DISK_SPACE - no disk space.
777  */
778 /* The function is NOT SCHEDULE-SAFE! */
779 static int get_empty_nodes(struct tree_balance *tb, int h)
780 {
781         struct buffer_head *new_bh,
782             *Sh = PATH_H_PBUFFER(tb->tb_path, h);
783         b_blocknr_t *blocknr, blocknrs[MAX_AMOUNT_NEEDED] = { 0, };
784         int counter, number_of_freeblk, amount_needed,  /* number of needed empty blocks */
785          retval = CARRY_ON;
786         struct super_block *sb = tb->tb_sb;
787
788         /* number_of_freeblk is the number of empty blocks which have been
789            acquired for use by the balancing algorithm minus the number of
790            empty blocks used in the previous levels of the analysis,
791            number_of_freeblk = tb->cur_blknum can be non-zero if a schedule occurs
792            after empty blocks are acquired, and the balancing analysis is
793            then restarted, amount_needed is the number needed by this level
794            (h) of the balancing analysis.
795
796            Note that for systems with many processes writing, it would be
797            more layout optimal to calculate the total number needed by all
798            levels and then to run reiserfs_new_blocks to get all of them at once.  */
799
800         /* Initiate number_of_freeblk to the amount acquired prior to the restart of
801            the analysis or 0 if not restarted, then subtract the amount needed
802            by all of the levels of the tree below h. */
803         /* blknum includes S[h], so we subtract 1 in this calculation */
804         for (counter = 0, number_of_freeblk = tb->cur_blknum;
805              counter < h; counter++)
806                 number_of_freeblk -=
807                     (tb->blknum[counter]) ? (tb->blknum[counter] -
808                                                    1) : 0;
809
810         /* Allocate missing empty blocks. */
811         /* if Sh == 0  then we are getting a new root */
812         amount_needed = (Sh) ? (tb->blknum[h] - 1) : 1;
813         /*  Amount_needed = the amount that we need more than the amount that we have. */
814         if (amount_needed > number_of_freeblk)
815                 amount_needed -= number_of_freeblk;
816         else                    /* If we have enough already then there is nothing to do. */
817                 return CARRY_ON;
818
819         /* No need to check quota - is not allocated for blocks used for formatted nodes */
820         if (reiserfs_new_form_blocknrs(tb, blocknrs,
821                                        amount_needed) == NO_DISK_SPACE)
822                 return NO_DISK_SPACE;
823
824         /* for each blocknumber we just got, get a buffer and stick it on FEB */
825         for (blocknr = blocknrs, counter = 0;
826              counter < amount_needed; blocknr++, counter++) {
827
828                 RFALSE(!*blocknr,
829                        "PAP-8135: reiserfs_new_blocknrs failed when got new blocks");
830
831                 new_bh = sb_getblk(sb, *blocknr);
832                 RFALSE(buffer_dirty(new_bh) ||
833                        buffer_journaled(new_bh) ||
834                        buffer_journal_dirty(new_bh),
835                        "PAP-8140: journaled or dirty buffer %b for the new block",
836                        new_bh);
837
838                 /* Put empty buffers into the array. */
839                 RFALSE(tb->FEB[tb->cur_blknum],
840                        "PAP-8141: busy slot for new buffer");
841
842                 set_buffer_journal_new(new_bh);
843                 tb->FEB[tb->cur_blknum++] = new_bh;
844         }
845
846         if (retval == CARRY_ON && FILESYSTEM_CHANGED_TB(tb))
847                 retval = REPEAT_SEARCH;
848
849         return retval;
850 }
851
852 /* Get free space of the left neighbor, which is stored in the parent
853  * node of the left neighbor.  */
854 static int get_lfree(struct tree_balance *tb, int h)
855 {
856         struct buffer_head *l, *f;
857         int order;
858
859         if ((f = PATH_H_PPARENT(tb->tb_path, h)) == NULL ||
860             (l = tb->FL[h]) == NULL)
861                 return 0;
862
863         if (f == l)
864                 order = PATH_H_B_ITEM_ORDER(tb->tb_path, h) - 1;
865         else {
866                 order = B_NR_ITEMS(l);
867                 f = l;
868         }
869
870         return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f, order)));
871 }
872
873 /* Get free space of the right neighbor,
874  * which is stored in the parent node of the right neighbor.
875  */
876 static int get_rfree(struct tree_balance *tb, int h)
877 {
878         struct buffer_head *r, *f;
879         int order;
880
881         if ((f = PATH_H_PPARENT(tb->tb_path, h)) == NULL ||
882             (r = tb->FR[h]) == NULL)
883                 return 0;
884
885         if (f == r)
886                 order = PATH_H_B_ITEM_ORDER(tb->tb_path, h) + 1;
887         else {
888                 order = 0;
889                 f = r;
890         }
891
892         return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f, order)));
893
894 }
895
896 /* Check whether left neighbor is in memory. */
897 static int is_left_neighbor_in_cache(struct tree_balance *tb, int h)
898 {
899         struct buffer_head *father, *left;
900         struct super_block *sb = tb->tb_sb;
901         b_blocknr_t left_neighbor_blocknr;
902         int left_neighbor_position;
903
904         /* Father of the left neighbor does not exist. */
905         if (!tb->FL[h])
906                 return 0;
907
908         /* Calculate father of the node to be balanced. */
909         father = PATH_H_PBUFFER(tb->tb_path, h + 1);
910
911         RFALSE(!father ||
912                !B_IS_IN_TREE(father) ||
913                !B_IS_IN_TREE(tb->FL[h]) ||
914                !buffer_uptodate(father) ||
915                !buffer_uptodate(tb->FL[h]),
916                "vs-8165: F[h] (%b) or FL[h] (%b) is invalid",
917                father, tb->FL[h]);
918
919         /* Get position of the pointer to the left neighbor into the left father. */
920         left_neighbor_position = (father == tb->FL[h]) ?
921             tb->lkey[h] : B_NR_ITEMS(tb->FL[h]);
922         /* Get left neighbor block number. */
923         left_neighbor_blocknr =
924             B_N_CHILD_NUM(tb->FL[h], left_neighbor_position);
925         /* Look for the left neighbor in the cache. */
926         if ((left = sb_find_get_block(sb, left_neighbor_blocknr))) {
927
928                 RFALSE(buffer_uptodate(left) && !B_IS_IN_TREE(left),
929                        "vs-8170: left neighbor (%b %z) is not in the tree",
930                        left, left);
931                 put_bh(left);
932                 return 1;
933         }
934
935         return 0;
936 }
937
938 #define LEFT_PARENTS  'l'
939 #define RIGHT_PARENTS 'r'
940
941 static void decrement_key(struct cpu_key *key)
942 {
943         // call item specific function for this key
944         item_ops[cpu_key_k_type(key)]->decrement_key(key);
945 }
946
947 /* Calculate far left/right parent of the left/right neighbor of the current node, that
948  * is calculate the left/right (FL[h]/FR[h]) neighbor of the parent F[h].
949  * Calculate left/right common parent of the current node and L[h]/R[h].
950  * Calculate left/right delimiting key position.
951  * Returns:     PATH_INCORRECT   - path in the tree is not correct;
952                 SCHEDULE_OCCURRED - schedule occurred while the function worked;
953  *              CARRY_ON         - schedule didn't occur while the function worked;
954  */
955 static int get_far_parent(struct tree_balance *tb,
956                           int h,
957                           struct buffer_head **pfather,
958                           struct buffer_head **pcom_father, char c_lr_par)
959 {
960         struct buffer_head *parent;
961         INITIALIZE_PATH(s_path_to_neighbor_father);
962         struct treepath *path = tb->tb_path;
963         struct cpu_key s_lr_father_key;
964         int counter,
965             position = INT_MAX,
966             first_last_position = 0,
967             path_offset = PATH_H_PATH_OFFSET(path, h);
968
969         /* Starting from F[h] go upwards in the tree, and look for the common
970            ancestor of F[h], and its neighbor l/r, that should be obtained. */
971
972         counter = path_offset;
973
974         RFALSE(counter < FIRST_PATH_ELEMENT_OFFSET,
975                "PAP-8180: invalid path length");
976
977         for (; counter > FIRST_PATH_ELEMENT_OFFSET; counter--) {
978                 /* Check whether parent of the current buffer in the path is really parent in the tree. */
979                 if (!B_IS_IN_TREE
980                     (parent = PATH_OFFSET_PBUFFER(path, counter - 1)))
981                         return REPEAT_SEARCH;
982                 /* Check whether position in the parent is correct. */
983                 if ((position =
984                      PATH_OFFSET_POSITION(path,
985                                           counter - 1)) >
986                     B_NR_ITEMS(parent))
987                         return REPEAT_SEARCH;
988                 /* Check whether parent at the path really points to the child. */
989                 if (B_N_CHILD_NUM(parent, position) !=
990                     PATH_OFFSET_PBUFFER(path, counter)->b_blocknr)
991                         return REPEAT_SEARCH;
992                 /* Return delimiting key if position in the parent is not equal to first/last one. */
993                 if (c_lr_par == RIGHT_PARENTS)
994                         first_last_position = B_NR_ITEMS(parent);
995                 if (position != first_last_position) {
996                         *pcom_father = parent;
997                         get_bh(*pcom_father);
998                         /*(*pcom_father = parent)->b_count++; */
999                         break;
1000                 }
1001         }
1002
1003         /* if we are in the root of the tree, then there is no common father */
1004         if (counter == FIRST_PATH_ELEMENT_OFFSET) {
1005                 /* Check whether first buffer in the path is the root of the tree. */
1006                 if (PATH_OFFSET_PBUFFER
1007                     (tb->tb_path,
1008                      FIRST_PATH_ELEMENT_OFFSET)->b_blocknr ==
1009                     SB_ROOT_BLOCK(tb->tb_sb)) {
1010                         *pfather = *pcom_father = NULL;
1011                         return CARRY_ON;
1012                 }
1013                 return REPEAT_SEARCH;
1014         }
1015
1016         RFALSE(B_LEVEL(*pcom_father) <= DISK_LEAF_NODE_LEVEL,
1017                "PAP-8185: (%b %z) level too small",
1018                *pcom_father, *pcom_father);
1019
1020         /* Check whether the common parent is locked. */
1021
1022         if (buffer_locked(*pcom_father)) {
1023
1024                 /* Release the write lock while the buffer is busy */
1025                 int depth = reiserfs_write_unlock_nested(tb->tb_sb);
1026                 __wait_on_buffer(*pcom_father);
1027                 reiserfs_write_lock_nested(tb->tb_sb, depth);
1028                 if (FILESYSTEM_CHANGED_TB(tb)) {
1029                         brelse(*pcom_father);
1030                         return REPEAT_SEARCH;
1031                 }
1032         }
1033
1034         /* So, we got common parent of the current node and its left/right neighbor.
1035            Now we are geting the parent of the left/right neighbor. */
1036
1037         /* Form key to get parent of the left/right neighbor. */
1038         le_key2cpu_key(&s_lr_father_key,
1039                        internal_key(*pcom_father,
1040                                       (c_lr_par ==
1041                                        LEFT_PARENTS) ? (tb->lkey[h - 1] =
1042                                                         position -
1043                                                         1) : (tb->rkey[h -
1044                                                                            1] =
1045                                                               position)));
1046
1047         if (c_lr_par == LEFT_PARENTS)
1048                 decrement_key(&s_lr_father_key);
1049
1050         if (search_by_key
1051             (tb->tb_sb, &s_lr_father_key, &s_path_to_neighbor_father,
1052              h + 1) == IO_ERROR)
1053                 // path is released
1054                 return IO_ERROR;
1055
1056         if (FILESYSTEM_CHANGED_TB(tb)) {
1057                 pathrelse(&s_path_to_neighbor_father);
1058                 brelse(*pcom_father);
1059                 return REPEAT_SEARCH;
1060         }
1061
1062         *pfather = PATH_PLAST_BUFFER(&s_path_to_neighbor_father);
1063
1064         RFALSE(B_LEVEL(*pfather) != h + 1,
1065                "PAP-8190: (%b %z) level too small", *pfather, *pfather);
1066         RFALSE(s_path_to_neighbor_father.path_length <
1067                FIRST_PATH_ELEMENT_OFFSET, "PAP-8192: path length is too small");
1068
1069         s_path_to_neighbor_father.path_length--;
1070         pathrelse(&s_path_to_neighbor_father);
1071         return CARRY_ON;
1072 }
1073
1074 /* Get parents of neighbors of node in the path(S[path_offset]) and common parents of
1075  * S[path_offset] and L[path_offset]/R[path_offset]: F[path_offset], FL[path_offset],
1076  * FR[path_offset], CFL[path_offset], CFR[path_offset].
1077  * Calculate numbers of left and right delimiting keys position: lkey[path_offset], rkey[path_offset].
1078  * Returns:     SCHEDULE_OCCURRED - schedule occurred while the function worked;
1079  *              CARRY_ON - schedule didn't occur while the function worked;
1080  */
1081 static int get_parents(struct tree_balance *tb, int h)
1082 {
1083         struct treepath *path = tb->tb_path;
1084         int position,
1085             ret,
1086             path_offset = PATH_H_PATH_OFFSET(tb->tb_path, h);
1087         struct buffer_head *curf, *curcf;
1088
1089         /* Current node is the root of the tree or will be root of the tree */
1090         if (path_offset <= FIRST_PATH_ELEMENT_OFFSET) {
1091                 /* The root can not have parents.
1092                    Release nodes which previously were obtained as parents of the current node neighbors. */
1093                 brelse(tb->FL[h]);
1094                 brelse(tb->CFL[h]);
1095                 brelse(tb->FR[h]);
1096                 brelse(tb->CFR[h]);
1097                 tb->FL[h]  = NULL;
1098                 tb->CFL[h] = NULL;
1099                 tb->FR[h]  = NULL;
1100                 tb->CFR[h] = NULL;
1101                 return CARRY_ON;
1102         }
1103
1104         /* Get parent FL[path_offset] of L[path_offset]. */
1105         position = PATH_OFFSET_POSITION(path, path_offset - 1);
1106         if (position) {
1107                 /* Current node is not the first child of its parent. */
1108                 curf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
1109                 curcf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
1110                 get_bh(curf);
1111                 get_bh(curf);
1112                 tb->lkey[h] = position - 1;
1113         } else {
1114                 /* Calculate current parent of L[path_offset], which is the left neighbor of the current node.
1115                    Calculate current common parent of L[path_offset] and the current node. Note that
1116                    CFL[path_offset] not equal FL[path_offset] and CFL[path_offset] not equal F[path_offset].
1117                    Calculate lkey[path_offset]. */
1118                 if ((ret = get_far_parent(tb, h + 1, &curf,
1119                                                   &curcf,
1120                                                   LEFT_PARENTS)) != CARRY_ON)
1121                         return ret;
1122         }
1123
1124         brelse(tb->FL[h]);
1125         tb->FL[h] = curf;       /* New initialization of FL[h]. */
1126         brelse(tb->CFL[h]);
1127         tb->CFL[h] = curcf;     /* New initialization of CFL[h]. */
1128
1129         RFALSE((curf && !B_IS_IN_TREE(curf)) ||
1130                (curcf && !B_IS_IN_TREE(curcf)),
1131                "PAP-8195: FL (%b) or CFL (%b) is invalid", curf, curcf);
1132
1133 /* Get parent FR[h] of R[h]. */
1134
1135 /* Current node is the last child of F[h]. FR[h] != F[h]. */
1136         if (position == B_NR_ITEMS(PATH_H_PBUFFER(path, h + 1))) {
1137 /* Calculate current parent of R[h], which is the right neighbor of F[h].
1138    Calculate current common parent of R[h] and current node. Note that CFR[h]
1139    not equal FR[path_offset] and CFR[h] not equal F[h]. */
1140                 if ((ret =
1141                      get_far_parent(tb, h + 1, &curf, &curcf,
1142                                     RIGHT_PARENTS)) != CARRY_ON)
1143                         return ret;
1144         } else {
1145 /* Current node is not the last child of its parent F[h]. */
1146                 curf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
1147                 curcf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
1148                 get_bh(curf);
1149                 get_bh(curf);
1150                 tb->rkey[h] = position;
1151         }
1152
1153         brelse(tb->FR[h]);
1154         /* New initialization of FR[path_offset]. */
1155         tb->FR[h] = curf;
1156
1157         brelse(tb->CFR[h]);
1158         /* New initialization of CFR[path_offset]. */
1159         tb->CFR[h] = curcf;
1160
1161         RFALSE((curf && !B_IS_IN_TREE(curf)) ||
1162                (curcf && !B_IS_IN_TREE(curcf)),
1163                "PAP-8205: FR (%b) or CFR (%b) is invalid", curf, curcf);
1164
1165         return CARRY_ON;
1166 }
1167
1168 /* it is possible to remove node as result of shiftings to
1169    neighbors even when we insert or paste item. */
1170 static inline int can_node_be_removed(int mode, int lfree, int sfree, int rfree,
1171                                       struct tree_balance *tb, int h)
1172 {
1173         struct buffer_head *Sh = PATH_H_PBUFFER(tb->tb_path, h);
1174         int levbytes = tb->insert_size[h];
1175         struct item_head *ih;
1176         struct reiserfs_key *r_key = NULL;
1177
1178         ih = item_head(Sh, 0);
1179         if (tb->CFR[h])
1180                 r_key = internal_key(tb->CFR[h], tb->rkey[h]);
1181
1182         if (lfree + rfree + sfree < MAX_CHILD_SIZE(Sh) + levbytes
1183             /* shifting may merge items which might save space */
1184             -
1185             ((!h
1186               && op_is_left_mergeable(&(ih->ih_key), Sh->b_size)) ? IH_SIZE : 0)
1187             -
1188             ((!h && r_key
1189               && op_is_left_mergeable(r_key, Sh->b_size)) ? IH_SIZE : 0)
1190             + ((h) ? KEY_SIZE : 0)) {
1191                 /* node can not be removed */
1192                 if (sfree >= levbytes) {        /* new item fits into node S[h] without any shifting */
1193                         if (!h)
1194                                 tb->s0num =
1195                                     B_NR_ITEMS(Sh) +
1196                                     ((mode == M_INSERT) ? 1 : 0);
1197                         set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1198                         return NO_BALANCING_NEEDED;
1199                 }
1200         }
1201         PROC_INFO_INC(tb->tb_sb, can_node_be_removed[h]);
1202         return !NO_BALANCING_NEEDED;
1203 }
1204
1205 /* Check whether current node S[h] is balanced when increasing its size by
1206  * Inserting or Pasting.
1207  * Calculate parameters for balancing for current level h.
1208  * Parameters:
1209  *      tb      tree_balance structure;
1210  *      h       current level of the node;
1211  *      inum    item number in S[h];
1212  *      mode    i - insert, p - paste;
1213  * Returns:     1 - schedule occurred;
1214  *              0 - balancing for higher levels needed;
1215  *             -1 - no balancing for higher levels needed;
1216  *             -2 - no disk space.
1217  */
1218 /* ip means Inserting or Pasting */
1219 static int ip_check_balance(struct tree_balance *tb, int h)
1220 {
1221         struct virtual_node *vn = tb->tb_vn;
1222         int levbytes,           /* Number of bytes that must be inserted into (value
1223                                    is negative if bytes are deleted) buffer which
1224                                    contains node being balanced.  The mnemonic is
1225                                    that the attempted change in node space used level
1226                                    is levbytes bytes. */
1227          ret;
1228
1229         int lfree, sfree, rfree /* free space in L, S and R */ ;
1230
1231         /* nver is short for number of vertixes, and lnver is the number if
1232            we shift to the left, rnver is the number if we shift to the
1233            right, and lrnver is the number if we shift in both directions.
1234            The goal is to minimize first the number of vertixes, and second,
1235            the number of vertixes whose contents are changed by shifting,
1236            and third the number of uncached vertixes whose contents are
1237            changed by shifting and must be read from disk.  */
1238         int nver, lnver, rnver, lrnver;
1239
1240         /* used at leaf level only, S0 = S[0] is the node being balanced,
1241            sInum [ I = 0,1,2 ] is the number of items that will
1242            remain in node SI after balancing.  S1 and S2 are new
1243            nodes that might be created. */
1244
1245         /* we perform 8 calls to get_num_ver().  For each call we calculate five parameters.
1246            where 4th parameter is s1bytes and 5th - s2bytes
1247          */
1248         short snum012[40] = { 0, };     /* s0num, s1num, s2num for 8 cases
1249                                            0,1 - do not shift and do not shift but bottle
1250                                            2 - shift only whole item to left
1251                                            3 - shift to left and bottle as much as possible
1252                                            4,5 - shift to right (whole items and as much as possible
1253                                            6,7 - shift to both directions (whole items and as much as possible)
1254                                          */
1255
1256         /* Sh is the node whose balance is currently being checked */
1257         struct buffer_head *Sh;
1258
1259         Sh = PATH_H_PBUFFER(tb->tb_path, h);
1260         levbytes = tb->insert_size[h];
1261
1262         /* Calculate balance parameters for creating new root. */
1263         if (!Sh) {
1264                 if (!h)
1265                         reiserfs_panic(tb->tb_sb, "vs-8210",
1266                                        "S[0] can not be 0");
1267                 switch (ret = get_empty_nodes(tb, h)) {
1268                 case CARRY_ON:
1269                         set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1270                         return NO_BALANCING_NEEDED;     /* no balancing for higher levels needed */
1271
1272                 case NO_DISK_SPACE:
1273                 case REPEAT_SEARCH:
1274                         return ret;
1275                 default:
1276                         reiserfs_panic(tb->tb_sb, "vs-8215", "incorrect "
1277                                        "return value of get_empty_nodes");
1278                 }
1279         }
1280
1281         if ((ret = get_parents(tb, h)) != CARRY_ON)     /* get parents of S[h] neighbors. */
1282                 return ret;
1283
1284         sfree = B_FREE_SPACE(Sh);
1285
1286         /* get free space of neighbors */
1287         rfree = get_rfree(tb, h);
1288         lfree = get_lfree(tb, h);
1289
1290         if (can_node_be_removed(vn->vn_mode, lfree, sfree, rfree, tb, h) ==
1291             NO_BALANCING_NEEDED)
1292                 /* and new item fits into node S[h] without any shifting */
1293                 return NO_BALANCING_NEEDED;
1294
1295         create_virtual_node(tb, h);
1296
1297         /*
1298            determine maximal number of items we can shift to the left neighbor (in tb structure)
1299            and the maximal number of bytes that can flow to the left neighbor
1300            from the left most liquid item that cannot be shifted from S[0] entirely (returned value)
1301          */
1302         check_left(tb, h, lfree);
1303
1304         /*
1305            determine maximal number of items we can shift to the right neighbor (in tb structure)
1306            and the maximal number of bytes that can flow to the right neighbor
1307            from the right most liquid item that cannot be shifted from S[0] entirely (returned value)
1308          */
1309         check_right(tb, h, rfree);
1310
1311         /* all contents of internal node S[h] can be moved into its
1312            neighbors, S[h] will be removed after balancing */
1313         if (h && (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1)) {
1314                 int to_r;
1315
1316                 /* Since we are working on internal nodes, and our internal
1317                    nodes have fixed size entries, then we can balance by the
1318                    number of items rather than the space they consume.  In this
1319                    routine we set the left node equal to the right node,
1320                    allowing a difference of less than or equal to 1 child
1321                    pointer. */
1322                 to_r =
1323                     ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - tb->rnum[h] +
1324                      vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 -
1325                                                 tb->rnum[h]);
1326                 set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL,
1327                                -1, -1);
1328                 return CARRY_ON;
1329         }
1330
1331         /* this checks balance condition, that any two neighboring nodes can not fit in one node */
1332         RFALSE(h &&
1333                (tb->lnum[h] >= vn->vn_nr_item + 1 ||
1334                 tb->rnum[h] >= vn->vn_nr_item + 1),
1335                "vs-8220: tree is not balanced on internal level");
1336         RFALSE(!h && ((tb->lnum[h] >= vn->vn_nr_item && (tb->lbytes == -1)) ||
1337                       (tb->rnum[h] >= vn->vn_nr_item && (tb->rbytes == -1))),
1338                "vs-8225: tree is not balanced on leaf level");
1339
1340         /* all contents of S[0] can be moved into its neighbors
1341            S[0] will be removed after balancing. */
1342         if (!h && is_leaf_removable(tb))
1343                 return CARRY_ON;
1344
1345         /* why do we perform this check here rather than earlier??
1346            Answer: we can win 1 node in some cases above. Moreover we
1347            checked it above, when we checked, that S[0] is not removable
1348            in principle */
1349         if (sfree >= levbytes) {        /* new item fits into node S[h] without any shifting */
1350                 if (!h)
1351                         tb->s0num = vn->vn_nr_item;
1352                 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1353                 return NO_BALANCING_NEEDED;
1354         }
1355
1356         {
1357                 int lpar, rpar, nset, lset, rset, lrset;
1358                 /*
1359                  * regular overflowing of the node
1360                  */
1361
1362                 /* get_num_ver works in 2 modes (FLOW & NO_FLOW)
1363                    lpar, rpar - number of items we can shift to left/right neighbor (including splitting item)
1364                    nset, lset, rset, lrset - shows, whether flowing items give better packing
1365                  */
1366 #define FLOW 1
1367 #define NO_FLOW 0               /* do not any splitting */
1368
1369                 /* we choose one the following */
1370 #define NOTHING_SHIFT_NO_FLOW   0
1371 #define NOTHING_SHIFT_FLOW      5
1372 #define LEFT_SHIFT_NO_FLOW      10
1373 #define LEFT_SHIFT_FLOW         15
1374 #define RIGHT_SHIFT_NO_FLOW     20
1375 #define RIGHT_SHIFT_FLOW        25
1376 #define LR_SHIFT_NO_FLOW        30
1377 #define LR_SHIFT_FLOW           35
1378
1379                 lpar = tb->lnum[h];
1380                 rpar = tb->rnum[h];
1381
1382                 /* calculate number of blocks S[h] must be split into when
1383                    nothing is shifted to the neighbors,
1384                    as well as number of items in each part of the split node (s012 numbers),
1385                    and number of bytes (s1bytes) of the shared drop which flow to S1 if any */
1386                 nset = NOTHING_SHIFT_NO_FLOW;
1387                 nver = get_num_ver(vn->vn_mode, tb, h,
1388                                    0, -1, h ? vn->vn_nr_item : 0, -1,
1389                                    snum012, NO_FLOW);
1390
1391                 if (!h) {
1392                         int nver1;
1393
1394                         /* note, that in this case we try to bottle between S[0] and S1 (S1 - the first new node) */
1395                         nver1 = get_num_ver(vn->vn_mode, tb, h,
1396                                             0, -1, 0, -1,
1397                                             snum012 + NOTHING_SHIFT_FLOW, FLOW);
1398                         if (nver > nver1)
1399                                 nset = NOTHING_SHIFT_FLOW, nver = nver1;
1400                 }
1401
1402                 /* calculate number of blocks S[h] must be split into when
1403                    l_shift_num first items and l_shift_bytes of the right most
1404                    liquid item to be shifted are shifted to the left neighbor,
1405                    as well as number of items in each part of the splitted node (s012 numbers),
1406                    and number of bytes (s1bytes) of the shared drop which flow to S1 if any
1407                  */
1408                 lset = LEFT_SHIFT_NO_FLOW;
1409                 lnver = get_num_ver(vn->vn_mode, tb, h,
1410                                     lpar - ((h || tb->lbytes == -1) ? 0 : 1),
1411                                     -1, h ? vn->vn_nr_item : 0, -1,
1412                                     snum012 + LEFT_SHIFT_NO_FLOW, NO_FLOW);
1413                 if (!h) {
1414                         int lnver1;
1415
1416                         lnver1 = get_num_ver(vn->vn_mode, tb, h,
1417                                              lpar -
1418                                              ((tb->lbytes != -1) ? 1 : 0),
1419                                              tb->lbytes, 0, -1,
1420                                              snum012 + LEFT_SHIFT_FLOW, FLOW);
1421                         if (lnver > lnver1)
1422                                 lset = LEFT_SHIFT_FLOW, lnver = lnver1;
1423                 }
1424
1425                 /* calculate number of blocks S[h] must be split into when
1426                    r_shift_num first items and r_shift_bytes of the left most
1427                    liquid item to be shifted are shifted to the right neighbor,
1428                    as well as number of items in each part of the splitted node (s012 numbers),
1429                    and number of bytes (s1bytes) of the shared drop which flow to S1 if any
1430                  */
1431                 rset = RIGHT_SHIFT_NO_FLOW;
1432                 rnver = get_num_ver(vn->vn_mode, tb, h,
1433                                     0, -1,
1434                                     h ? (vn->vn_nr_item - rpar) : (rpar -
1435                                                                    ((tb->
1436                                                                      rbytes !=
1437                                                                      -1) ? 1 :
1438                                                                     0)), -1,
1439                                     snum012 + RIGHT_SHIFT_NO_FLOW, NO_FLOW);
1440                 if (!h) {
1441                         int rnver1;
1442
1443                         rnver1 = get_num_ver(vn->vn_mode, tb, h,
1444                                              0, -1,
1445                                              (rpar -
1446                                               ((tb->rbytes != -1) ? 1 : 0)),
1447                                              tb->rbytes,
1448                                              snum012 + RIGHT_SHIFT_FLOW, FLOW);
1449
1450                         if (rnver > rnver1)
1451                                 rset = RIGHT_SHIFT_FLOW, rnver = rnver1;
1452                 }
1453
1454                 /* calculate number of blocks S[h] must be split into when
1455                    items are shifted in both directions,
1456                    as well as number of items in each part of the splitted node (s012 numbers),
1457                    and number of bytes (s1bytes) of the shared drop which flow to S1 if any
1458                  */
1459                 lrset = LR_SHIFT_NO_FLOW;
1460                 lrnver = get_num_ver(vn->vn_mode, tb, h,
1461                                      lpar - ((h || tb->lbytes == -1) ? 0 : 1),
1462                                      -1,
1463                                      h ? (vn->vn_nr_item - rpar) : (rpar -
1464                                                                     ((tb->
1465                                                                       rbytes !=
1466                                                                       -1) ? 1 :
1467                                                                      0)), -1,
1468                                      snum012 + LR_SHIFT_NO_FLOW, NO_FLOW);
1469                 if (!h) {
1470                         int lrnver1;
1471
1472                         lrnver1 = get_num_ver(vn->vn_mode, tb, h,
1473                                               lpar -
1474                                               ((tb->lbytes != -1) ? 1 : 0),
1475                                               tb->lbytes,
1476                                               (rpar -
1477                                                ((tb->rbytes != -1) ? 1 : 0)),
1478                                               tb->rbytes,
1479                                               snum012 + LR_SHIFT_FLOW, FLOW);
1480                         if (lrnver > lrnver1)
1481                                 lrset = LR_SHIFT_FLOW, lrnver = lrnver1;
1482                 }
1483
1484                 /* Our general shifting strategy is:
1485                    1) to minimized number of new nodes;
1486                    2) to minimized number of neighbors involved in shifting;
1487                    3) to minimized number of disk reads; */
1488
1489                 /* we can win TWO or ONE nodes by shifting in both directions */
1490                 if (lrnver < lnver && lrnver < rnver) {
1491                         RFALSE(h &&
1492                                (tb->lnum[h] != 1 ||
1493                                 tb->rnum[h] != 1 ||
1494                                 lrnver != 1 || rnver != 2 || lnver != 2
1495                                 || h != 1), "vs-8230: bad h");
1496                         if (lrset == LR_SHIFT_FLOW)
1497                                 set_parameters(tb, h, tb->lnum[h], tb->rnum[h],
1498                                                lrnver, snum012 + lrset,
1499                                                tb->lbytes, tb->rbytes);
1500                         else
1501                                 set_parameters(tb, h,
1502                                                tb->lnum[h] -
1503                                                ((tb->lbytes == -1) ? 0 : 1),
1504                                                tb->rnum[h] -
1505                                                ((tb->rbytes == -1) ? 0 : 1),
1506                                                lrnver, snum012 + lrset, -1, -1);
1507
1508                         return CARRY_ON;
1509                 }
1510
1511                 /* if shifting doesn't lead to better packing then don't shift */
1512                 if (nver == lrnver) {
1513                         set_parameters(tb, h, 0, 0, nver, snum012 + nset, -1,
1514                                        -1);
1515                         return CARRY_ON;
1516                 }
1517
1518                 /* now we know that for better packing shifting in only one
1519                    direction either to the left or to the right is required */
1520
1521                 /*  if shifting to the left is better than shifting to the right */
1522                 if (lnver < rnver) {
1523                         SET_PAR_SHIFT_LEFT;
1524                         return CARRY_ON;
1525                 }
1526
1527                 /* if shifting to the right is better than shifting to the left */
1528                 if (lnver > rnver) {
1529                         SET_PAR_SHIFT_RIGHT;
1530                         return CARRY_ON;
1531                 }
1532
1533                 /* now shifting in either direction gives the same number
1534                    of nodes and we can make use of the cached neighbors */
1535                 if (is_left_neighbor_in_cache(tb, h)) {
1536                         SET_PAR_SHIFT_LEFT;
1537                         return CARRY_ON;
1538                 }
1539
1540                 /* shift to the right independently on whether the right neighbor in cache or not */
1541                 SET_PAR_SHIFT_RIGHT;
1542                 return CARRY_ON;
1543         }
1544 }
1545
1546 /* Check whether current node S[h] is balanced when Decreasing its size by
1547  * Deleting or Cutting for INTERNAL node of S+tree.
1548  * Calculate parameters for balancing for current level h.
1549  * Parameters:
1550  *      tb      tree_balance structure;
1551  *      h       current level of the node;
1552  *      inum    item number in S[h];
1553  *      mode    i - insert, p - paste;
1554  * Returns:     1 - schedule occurred;
1555  *              0 - balancing for higher levels needed;
1556  *             -1 - no balancing for higher levels needed;
1557  *             -2 - no disk space.
1558  *
1559  * Note: Items of internal nodes have fixed size, so the balance condition for
1560  * the internal part of S+tree is as for the B-trees.
1561  */
1562 static int dc_check_balance_internal(struct tree_balance *tb, int h)
1563 {
1564         struct virtual_node *vn = tb->tb_vn;
1565
1566         /* Sh is the node whose balance is currently being checked,
1567            and Fh is its father.  */
1568         struct buffer_head *Sh, *Fh;
1569         int maxsize, ret;
1570         int lfree, rfree /* free space in L and R */ ;
1571
1572         Sh = PATH_H_PBUFFER(tb->tb_path, h);
1573         Fh = PATH_H_PPARENT(tb->tb_path, h);
1574
1575         maxsize = MAX_CHILD_SIZE(Sh);
1576
1577 /*   using tb->insert_size[h], which is negative in this case, create_virtual_node calculates: */
1578 /*   new_nr_item = number of items node would have if operation is */
1579 /*      performed without balancing (new_nr_item); */
1580         create_virtual_node(tb, h);
1581
1582         if (!Fh) {              /* S[h] is the root. */
1583                 if (vn->vn_nr_item > 0) {
1584                         set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1585                         return NO_BALANCING_NEEDED;     /* no balancing for higher levels needed */
1586                 }
1587                 /* new_nr_item == 0.
1588                  * Current root will be deleted resulting in
1589                  * decrementing the tree height. */
1590                 set_parameters(tb, h, 0, 0, 0, NULL, -1, -1);
1591                 return CARRY_ON;
1592         }
1593
1594         if ((ret = get_parents(tb, h)) != CARRY_ON)
1595                 return ret;
1596
1597         /* get free space of neighbors */
1598         rfree = get_rfree(tb, h);
1599         lfree = get_lfree(tb, h);
1600
1601         /* determine maximal number of items we can fit into neighbors */
1602         check_left(tb, h, lfree);
1603         check_right(tb, h, rfree);
1604
1605         if (vn->vn_nr_item >= MIN_NR_KEY(Sh)) { /* Balance condition for the internal node is valid.
1606                                                  * In this case we balance only if it leads to better packing. */
1607                 if (vn->vn_nr_item == MIN_NR_KEY(Sh)) { /* Here we join S[h] with one of its neighbors,
1608                                                          * which is impossible with greater values of new_nr_item. */
1609                         if (tb->lnum[h] >= vn->vn_nr_item + 1) {
1610                                 /* All contents of S[h] can be moved to L[h]. */
1611                                 int n;
1612                                 int order_L;
1613
1614                                 order_L =
1615                                     ((n =
1616                                       PATH_H_B_ITEM_ORDER(tb->tb_path,
1617                                                           h)) ==
1618                                      0) ? B_NR_ITEMS(tb->FL[h]) : n - 1;
1619                                 n = dc_size(B_N_CHILD(tb->FL[h], order_L)) /
1620                                     (DC_SIZE + KEY_SIZE);
1621                                 set_parameters(tb, h, -n - 1, 0, 0, NULL, -1,
1622                                                -1);
1623                                 return CARRY_ON;
1624                         }
1625
1626                         if (tb->rnum[h] >= vn->vn_nr_item + 1) {
1627                                 /* All contents of S[h] can be moved to R[h]. */
1628                                 int n;
1629                                 int order_R;
1630
1631                                 order_R =
1632                                     ((n =
1633                                       PATH_H_B_ITEM_ORDER(tb->tb_path,
1634                                                           h)) ==
1635                                      B_NR_ITEMS(Fh)) ? 0 : n + 1;
1636                                 n = dc_size(B_N_CHILD(tb->FR[h], order_R)) /
1637                                     (DC_SIZE + KEY_SIZE);
1638                                 set_parameters(tb, h, 0, -n - 1, 0, NULL, -1,
1639                                                -1);
1640                                 return CARRY_ON;
1641                         }
1642                 }
1643
1644                 if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) {
1645                         /* All contents of S[h] can be moved to the neighbors (L[h] & R[h]). */
1646                         int to_r;
1647
1648                         to_r =
1649                             ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] -
1650                              tb->rnum[h] + vn->vn_nr_item + 1) / 2 -
1651                             (MAX_NR_KEY(Sh) + 1 - tb->rnum[h]);
1652                         set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r,
1653                                        0, NULL, -1, -1);
1654                         return CARRY_ON;
1655                 }
1656
1657                 /* Balancing does not lead to better packing. */
1658                 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1659                 return NO_BALANCING_NEEDED;
1660         }
1661
1662         /* Current node contain insufficient number of items. Balancing is required. */
1663         /* Check whether we can merge S[h] with left neighbor. */
1664         if (tb->lnum[h] >= vn->vn_nr_item + 1)
1665                 if (is_left_neighbor_in_cache(tb, h)
1666                     || tb->rnum[h] < vn->vn_nr_item + 1 || !tb->FR[h]) {
1667                         int n;
1668                         int order_L;
1669
1670                         order_L =
1671                             ((n =
1672                               PATH_H_B_ITEM_ORDER(tb->tb_path,
1673                                                   h)) ==
1674                              0) ? B_NR_ITEMS(tb->FL[h]) : n - 1;
1675                         n = dc_size(B_N_CHILD(tb->FL[h], order_L)) / (DC_SIZE +
1676                                                                       KEY_SIZE);
1677                         set_parameters(tb, h, -n - 1, 0, 0, NULL, -1, -1);
1678                         return CARRY_ON;
1679                 }
1680
1681         /* Check whether we can merge S[h] with right neighbor. */
1682         if (tb->rnum[h] >= vn->vn_nr_item + 1) {
1683                 int n;
1684                 int order_R;
1685
1686                 order_R =
1687                     ((n =
1688                       PATH_H_B_ITEM_ORDER(tb->tb_path,
1689                                           h)) == B_NR_ITEMS(Fh)) ? 0 : (n + 1);
1690                 n = dc_size(B_N_CHILD(tb->FR[h], order_R)) / (DC_SIZE +
1691                                                               KEY_SIZE);
1692                 set_parameters(tb, h, 0, -n - 1, 0, NULL, -1, -1);
1693                 return CARRY_ON;
1694         }
1695
1696         /* All contents of S[h] can be moved to the neighbors (L[h] & R[h]). */
1697         if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) {
1698                 int to_r;
1699
1700                 to_r =
1701                     ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - tb->rnum[h] +
1702                      vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 -
1703                                                 tb->rnum[h]);
1704                 set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL,
1705                                -1, -1);
1706                 return CARRY_ON;
1707         }
1708
1709         /* For internal nodes try to borrow item from a neighbor */
1710         RFALSE(!tb->FL[h] && !tb->FR[h], "vs-8235: trying to borrow for root");
1711
1712         /* Borrow one or two items from caching neighbor */
1713         if (is_left_neighbor_in_cache(tb, h) || !tb->FR[h]) {
1714                 int from_l;
1715
1716                 from_l =
1717                     (MAX_NR_KEY(Sh) + 1 - tb->lnum[h] + vn->vn_nr_item +
1718                      1) / 2 - (vn->vn_nr_item + 1);
1719                 set_parameters(tb, h, -from_l, 0, 1, NULL, -1, -1);
1720                 return CARRY_ON;
1721         }
1722
1723         set_parameters(tb, h, 0,
1724                        -((MAX_NR_KEY(Sh) + 1 - tb->rnum[h] + vn->vn_nr_item +
1725                           1) / 2 - (vn->vn_nr_item + 1)), 1, NULL, -1, -1);
1726         return CARRY_ON;
1727 }
1728
1729 /* Check whether current node S[h] is balanced when Decreasing its size by
1730  * Deleting or Truncating for LEAF node of S+tree.
1731  * Calculate parameters for balancing for current level h.
1732  * Parameters:
1733  *      tb      tree_balance structure;
1734  *      h       current level of the node;
1735  *      inum    item number in S[h];
1736  *      mode    i - insert, p - paste;
1737  * Returns:     1 - schedule occurred;
1738  *              0 - balancing for higher levels needed;
1739  *             -1 - no balancing for higher levels needed;
1740  *             -2 - no disk space.
1741  */
1742 static int dc_check_balance_leaf(struct tree_balance *tb, int h)
1743 {
1744         struct virtual_node *vn = tb->tb_vn;
1745
1746         /* Number of bytes that must be deleted from
1747            (value is negative if bytes are deleted) buffer which
1748            contains node being balanced.  The mnemonic is that the
1749            attempted change in node space used level is levbytes bytes. */
1750         int levbytes;
1751         /* the maximal item size */
1752         int maxsize, ret;
1753         /* S0 is the node whose balance is currently being checked,
1754            and F0 is its father.  */
1755         struct buffer_head *S0, *F0;
1756         int lfree, rfree /* free space in L and R */ ;
1757
1758         S0 = PATH_H_PBUFFER(tb->tb_path, 0);
1759         F0 = PATH_H_PPARENT(tb->tb_path, 0);
1760
1761         levbytes = tb->insert_size[h];
1762
1763         maxsize = MAX_CHILD_SIZE(S0);   /* maximal possible size of an item */
1764
1765         if (!F0) {              /* S[0] is the root now. */
1766
1767                 RFALSE(-levbytes >= maxsize - B_FREE_SPACE(S0),
1768                        "vs-8240: attempt to create empty buffer tree");
1769
1770                 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1771                 return NO_BALANCING_NEEDED;
1772         }
1773
1774         if ((ret = get_parents(tb, h)) != CARRY_ON)
1775                 return ret;
1776
1777         /* get free space of neighbors */
1778         rfree = get_rfree(tb, h);
1779         lfree = get_lfree(tb, h);
1780
1781         create_virtual_node(tb, h);
1782
1783         /* if 3 leaves can be merge to one, set parameters and return */
1784         if (are_leaves_removable(tb, lfree, rfree))
1785                 return CARRY_ON;
1786
1787         /* determine maximal number of items we can shift to the left/right  neighbor
1788            and the maximal number of bytes that can flow to the left/right neighbor
1789            from the left/right most liquid item that cannot be shifted from S[0] entirely
1790          */
1791         check_left(tb, h, lfree);
1792         check_right(tb, h, rfree);
1793
1794         /* check whether we can merge S with left neighbor. */
1795         if (tb->lnum[0] >= vn->vn_nr_item && tb->lbytes == -1)
1796                 if (is_left_neighbor_in_cache(tb, h) || ((tb->rnum[0] - ((tb->rbytes == -1) ? 0 : 1)) < vn->vn_nr_item) ||      /* S can not be merged with R */
1797                     !tb->FR[h]) {
1798
1799                         RFALSE(!tb->FL[h],
1800                                "vs-8245: dc_check_balance_leaf: FL[h] must exist");
1801
1802                         /* set parameter to merge S[0] with its left neighbor */
1803                         set_parameters(tb, h, -1, 0, 0, NULL, -1, -1);
1804                         return CARRY_ON;
1805                 }
1806
1807         /* check whether we can merge S[0] with right neighbor. */
1808         if (tb->rnum[0] >= vn->vn_nr_item && tb->rbytes == -1) {
1809                 set_parameters(tb, h, 0, -1, 0, NULL, -1, -1);
1810                 return CARRY_ON;
1811         }
1812
1813         /* All contents of S[0] can be moved to the neighbors (L[0] & R[0]). Set parameters and return */
1814         if (is_leaf_removable(tb))
1815                 return CARRY_ON;
1816
1817         /* Balancing is not required. */
1818         tb->s0num = vn->vn_nr_item;
1819         set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1820         return NO_BALANCING_NEEDED;
1821 }
1822
1823 /* Check whether current node S[h] is balanced when Decreasing its size by
1824  * Deleting or Cutting.
1825  * Calculate parameters for balancing for current level h.
1826  * Parameters:
1827  *      tb      tree_balance structure;
1828  *      h       current level of the node;
1829  *      inum    item number in S[h];
1830  *      mode    d - delete, c - cut.
1831  * Returns:     1 - schedule occurred;
1832  *              0 - balancing for higher levels needed;
1833  *             -1 - no balancing for higher levels needed;
1834  *             -2 - no disk space.
1835  */
1836 static int dc_check_balance(struct tree_balance *tb, int h)
1837 {
1838         RFALSE(!(PATH_H_PBUFFER(tb->tb_path, h)),
1839                "vs-8250: S is not initialized");
1840
1841         if (h)
1842                 return dc_check_balance_internal(tb, h);
1843         else
1844                 return dc_check_balance_leaf(tb, h);
1845 }
1846
1847 /* Check whether current node S[h] is balanced.
1848  * Calculate parameters for balancing for current level h.
1849  * Parameters:
1850  *
1851  *      tb      tree_balance structure:
1852  *
1853  *              tb is a large structure that must be read about in the header file
1854  *              at the same time as this procedure if the reader is to successfully
1855  *              understand this procedure
1856  *
1857  *      h       current level of the node;
1858  *      inum    item number in S[h];
1859  *      mode    i - insert, p - paste, d - delete, c - cut.
1860  * Returns:     1 - schedule occurred;
1861  *              0 - balancing for higher levels needed;
1862  *             -1 - no balancing for higher levels needed;
1863  *             -2 - no disk space.
1864  */
1865 static int check_balance(int mode,
1866                          struct tree_balance *tb,
1867                          int h,
1868                          int inum,
1869                          int pos_in_item,
1870                          struct item_head *ins_ih, const void *data)
1871 {
1872         struct virtual_node *vn;
1873
1874         vn = tb->tb_vn = (struct virtual_node *)(tb->vn_buf);
1875         vn->vn_free_ptr = (char *)(tb->tb_vn + 1);
1876         vn->vn_mode = mode;
1877         vn->vn_affected_item_num = inum;
1878         vn->vn_pos_in_item = pos_in_item;
1879         vn->vn_ins_ih = ins_ih;
1880         vn->vn_data = data;
1881
1882         RFALSE(mode == M_INSERT && !vn->vn_ins_ih,
1883                "vs-8255: ins_ih can not be 0 in insert mode");
1884
1885         if (tb->insert_size[h] > 0)
1886                 /* Calculate balance parameters when size of node is increasing. */
1887                 return ip_check_balance(tb, h);
1888
1889         /* Calculate balance parameters when  size of node is decreasing. */
1890         return dc_check_balance(tb, h);
1891 }
1892
1893 /* Check whether parent at the path is the really parent of the current node.*/
1894 static int get_direct_parent(struct tree_balance *tb, int h)
1895 {
1896         struct buffer_head *bh;
1897         struct treepath *path = tb->tb_path;
1898         int position,
1899             path_offset = PATH_H_PATH_OFFSET(tb->tb_path, h);
1900
1901         /* We are in the root or in the new root. */
1902         if (path_offset <= FIRST_PATH_ELEMENT_OFFSET) {
1903
1904                 RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET - 1,
1905                        "PAP-8260: invalid offset in the path");
1906
1907                 if (PATH_OFFSET_PBUFFER(path, FIRST_PATH_ELEMENT_OFFSET)->
1908                     b_blocknr == SB_ROOT_BLOCK(tb->tb_sb)) {
1909                         /* Root is not changed. */
1910                         PATH_OFFSET_PBUFFER(path, path_offset - 1) = NULL;
1911                         PATH_OFFSET_POSITION(path, path_offset - 1) = 0;
1912                         return CARRY_ON;
1913                 }
1914                 return REPEAT_SEARCH;   /* Root is changed and we must recalculate the path. */
1915         }
1916
1917         if (!B_IS_IN_TREE
1918             (bh = PATH_OFFSET_PBUFFER(path, path_offset - 1)))
1919                 return REPEAT_SEARCH;   /* Parent in the path is not in the tree. */
1920
1921         if ((position =
1922              PATH_OFFSET_POSITION(path,
1923                                   path_offset - 1)) > B_NR_ITEMS(bh))
1924                 return REPEAT_SEARCH;
1925
1926         if (B_N_CHILD_NUM(bh, position) !=
1927             PATH_OFFSET_PBUFFER(path, path_offset)->b_blocknr)
1928                 /* Parent in the path is not parent of the current node in the tree. */
1929                 return REPEAT_SEARCH;
1930
1931         if (buffer_locked(bh)) {
1932                 int depth = reiserfs_write_unlock_nested(tb->tb_sb);
1933                 __wait_on_buffer(bh);
1934                 reiserfs_write_lock_nested(tb->tb_sb, depth);
1935                 if (FILESYSTEM_CHANGED_TB(tb))
1936                         return REPEAT_SEARCH;
1937         }
1938
1939         return CARRY_ON;        /* Parent in the path is unlocked and really parent of the current node.  */
1940 }
1941
1942 /* Using lnum[h] and rnum[h] we should determine what neighbors
1943  * of S[h] we
1944  * need in order to balance S[h], and get them if necessary.
1945  * Returns:     SCHEDULE_OCCURRED - schedule occurred while the function worked;
1946  *              CARRY_ON - schedule didn't occur while the function worked;
1947  */
1948 static int get_neighbors(struct tree_balance *tb, int h)
1949 {
1950         int child_position,
1951             path_offset = PATH_H_PATH_OFFSET(tb->tb_path, h + 1);
1952         unsigned long son_number;
1953         struct super_block *sb = tb->tb_sb;
1954         struct buffer_head *bh;
1955         int depth;
1956
1957         PROC_INFO_INC(sb, get_neighbors[h]);
1958
1959         if (tb->lnum[h]) {
1960                 /* We need left neighbor to balance S[h]. */
1961                 PROC_INFO_INC(sb, need_l_neighbor[h]);
1962                 bh = PATH_OFFSET_PBUFFER(tb->tb_path, path_offset);
1963
1964                 RFALSE(bh == tb->FL[h] &&
1965                        !PATH_OFFSET_POSITION(tb->tb_path, path_offset),
1966                        "PAP-8270: invalid position in the parent");
1967
1968                 child_position =
1969                     (bh ==
1970                      tb->FL[h]) ? tb->lkey[h] : B_NR_ITEMS(tb->
1971                                                                        FL[h]);
1972                 son_number = B_N_CHILD_NUM(tb->FL[h], child_position);
1973                 depth = reiserfs_write_unlock_nested(tb->tb_sb);
1974                 bh = sb_bread(sb, son_number);
1975                 reiserfs_write_lock_nested(tb->tb_sb, depth);
1976                 if (!bh)
1977                         return IO_ERROR;
1978                 if (FILESYSTEM_CHANGED_TB(tb)) {
1979                         brelse(bh);
1980                         PROC_INFO_INC(sb, get_neighbors_restart[h]);
1981                         return REPEAT_SEARCH;
1982                 }
1983
1984                 RFALSE(!B_IS_IN_TREE(tb->FL[h]) ||
1985                        child_position > B_NR_ITEMS(tb->FL[h]) ||
1986                        B_N_CHILD_NUM(tb->FL[h], child_position) !=
1987                        bh->b_blocknr, "PAP-8275: invalid parent");
1988                 RFALSE(!B_IS_IN_TREE(bh), "PAP-8280: invalid child");
1989                 RFALSE(!h &&
1990                        B_FREE_SPACE(bh) !=
1991                        MAX_CHILD_SIZE(bh) -
1992                        dc_size(B_N_CHILD(tb->FL[0], child_position)),
1993                        "PAP-8290: invalid child size of left neighbor");
1994
1995                 brelse(tb->L[h]);
1996                 tb->L[h] = bh;
1997         }
1998
1999         /* We need right neighbor to balance S[path_offset]. */
2000         if (tb->rnum[h]) {      /* We need right neighbor to balance S[path_offset]. */
2001                 PROC_INFO_INC(sb, need_r_neighbor[h]);
2002                 bh = PATH_OFFSET_PBUFFER(tb->tb_path, path_offset);
2003
2004                 RFALSE(bh == tb->FR[h] &&
2005                        PATH_OFFSET_POSITION(tb->tb_path,
2006                                             path_offset) >=
2007                        B_NR_ITEMS(bh),
2008                        "PAP-8295: invalid position in the parent");
2009
2010                 child_position =
2011                     (bh == tb->FR[h]) ? tb->rkey[h] + 1 : 0;
2012                 son_number = B_N_CHILD_NUM(tb->FR[h], child_position);
2013                 depth = reiserfs_write_unlock_nested(tb->tb_sb);
2014                 bh = sb_bread(sb, son_number);
2015                 reiserfs_write_lock_nested(tb->tb_sb, depth);
2016                 if (!bh)
2017                         return IO_ERROR;
2018                 if (FILESYSTEM_CHANGED_TB(tb)) {
2019                         brelse(bh);
2020                         PROC_INFO_INC(sb, get_neighbors_restart[h]);
2021                         return REPEAT_SEARCH;
2022                 }
2023                 brelse(tb->R[h]);
2024                 tb->R[h] = bh;
2025
2026                 RFALSE(!h
2027                        && B_FREE_SPACE(bh) !=
2028                        MAX_CHILD_SIZE(bh) -
2029                        dc_size(B_N_CHILD(tb->FR[0], child_position)),
2030                        "PAP-8300: invalid child size of right neighbor (%d != %d - %d)",
2031                        B_FREE_SPACE(bh), MAX_CHILD_SIZE(bh),
2032                        dc_size(B_N_CHILD(tb->FR[0], child_position)));
2033
2034         }
2035         return CARRY_ON;
2036 }
2037
2038 static int get_virtual_node_size(struct super_block *sb, struct buffer_head *bh)
2039 {
2040         int max_num_of_items;
2041         int max_num_of_entries;
2042         unsigned long blocksize = sb->s_blocksize;
2043
2044 #define MIN_NAME_LEN 1
2045
2046         max_num_of_items = (blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN);
2047         max_num_of_entries = (blocksize - BLKH_SIZE - IH_SIZE) /
2048             (DEH_SIZE + MIN_NAME_LEN);
2049
2050         return sizeof(struct virtual_node) +
2051             max(max_num_of_items * sizeof(struct virtual_item),
2052                 sizeof(struct virtual_item) + sizeof(struct direntry_uarea) +
2053                 (max_num_of_entries - 1) * sizeof(__u16));
2054 }
2055
2056 /* maybe we should fail balancing we are going to perform when kmalloc
2057    fails several times. But now it will loop until kmalloc gets
2058    required memory */
2059 static int get_mem_for_virtual_node(struct tree_balance *tb)
2060 {
2061         int check_fs = 0;
2062         int size;
2063         char *buf;
2064
2065         size = get_virtual_node_size(tb->tb_sb, PATH_PLAST_BUFFER(tb->tb_path));
2066
2067         if (size > tb->vn_buf_size) {
2068                 /* we have to allocate more memory for virtual node */
2069                 if (tb->vn_buf) {
2070                         /* free memory allocated before */
2071                         kfree(tb->vn_buf);
2072                         /* this is not needed if kfree is atomic */
2073                         check_fs = 1;
2074                 }
2075
2076                 /* virtual node requires now more memory */
2077                 tb->vn_buf_size = size;
2078
2079                 /* get memory for virtual item */
2080                 buf = kmalloc(size, GFP_ATOMIC | __GFP_NOWARN);
2081                 if (!buf) {
2082                         /* getting memory with GFP_KERNEL priority may involve
2083                            balancing now (due to indirect_to_direct conversion on
2084                            dcache shrinking). So, release path and collected
2085                            resources here */
2086                         free_buffers_in_tb(tb);
2087                         buf = kmalloc(size, GFP_NOFS);
2088                         if (!buf) {
2089                                 tb->vn_buf_size = 0;
2090                         }
2091                         tb->vn_buf = buf;
2092                         schedule();
2093                         return REPEAT_SEARCH;
2094                 }
2095
2096                 tb->vn_buf = buf;
2097         }
2098
2099         if (check_fs && FILESYSTEM_CHANGED_TB(tb))
2100                 return REPEAT_SEARCH;
2101
2102         return CARRY_ON;
2103 }
2104
2105 #ifdef CONFIG_REISERFS_CHECK
2106 static void tb_buffer_sanity_check(struct super_block *sb,
2107                                    struct buffer_head *bh,
2108                                    const char *descr, int level)
2109 {
2110         if (bh) {
2111                 if (atomic_read(&(bh->b_count)) <= 0)
2112
2113                         reiserfs_panic(sb, "jmacd-1", "negative or zero "
2114                                        "reference counter for buffer %s[%d] "
2115                                        "(%b)", descr, level, bh);
2116
2117                 if (!buffer_uptodate(bh))
2118                         reiserfs_panic(sb, "jmacd-2", "buffer is not up "
2119                                        "to date %s[%d] (%b)",
2120                                        descr, level, bh);
2121
2122                 if (!B_IS_IN_TREE(bh))
2123                         reiserfs_panic(sb, "jmacd-3", "buffer is not "
2124                                        "in tree %s[%d] (%b)",
2125                                        descr, level, bh);
2126
2127                 if (bh->b_bdev != sb->s_bdev)
2128                         reiserfs_panic(sb, "jmacd-4", "buffer has wrong "
2129                                        "device %s[%d] (%b)",
2130                                        descr, level, bh);
2131
2132                 if (bh->b_size != sb->s_blocksize)
2133                         reiserfs_panic(sb, "jmacd-5", "buffer has wrong "
2134                                        "blocksize %s[%d] (%b)",
2135                                        descr, level, bh);
2136
2137                 if (bh->b_blocknr > SB_BLOCK_COUNT(sb))
2138                         reiserfs_panic(sb, "jmacd-6", "buffer block "
2139                                        "number too high %s[%d] (%b)",
2140                                        descr, level, bh);
2141         }
2142 }
2143 #else
2144 static void tb_buffer_sanity_check(struct super_block *sb,
2145                                    struct buffer_head *bh,
2146                                    const char *descr, int level)
2147 {;
2148 }
2149 #endif
2150
2151 static int clear_all_dirty_bits(struct super_block *s, struct buffer_head *bh)
2152 {
2153         return reiserfs_prepare_for_journal(s, bh, 0);
2154 }
2155
2156 static int wait_tb_buffers_until_unlocked(struct tree_balance *tb)
2157 {
2158         struct buffer_head *locked;
2159 #ifdef CONFIG_REISERFS_CHECK
2160         int repeat_counter = 0;
2161 #endif
2162         int i;
2163
2164         do {
2165
2166                 locked = NULL;
2167
2168                 for (i = tb->tb_path->path_length;
2169                      !locked && i > ILLEGAL_PATH_ELEMENT_OFFSET; i--) {
2170                         if (PATH_OFFSET_PBUFFER(tb->tb_path, i)) {
2171                                 /* if I understand correctly, we can only be sure the last buffer
2172                                  ** in the path is in the tree --clm
2173                                  */
2174 #ifdef CONFIG_REISERFS_CHECK
2175                                 if (PATH_PLAST_BUFFER(tb->tb_path) ==
2176                                     PATH_OFFSET_PBUFFER(tb->tb_path, i))
2177                                         tb_buffer_sanity_check(tb->tb_sb,
2178                                                                PATH_OFFSET_PBUFFER
2179                                                                (tb->tb_path,
2180                                                                 i), "S",
2181                                                                tb->tb_path->
2182                                                                path_length - i);
2183 #endif
2184                                 if (!clear_all_dirty_bits(tb->tb_sb,
2185                                                           PATH_OFFSET_PBUFFER
2186                                                           (tb->tb_path,
2187                                                            i))) {
2188                                         locked =
2189                                             PATH_OFFSET_PBUFFER(tb->tb_path,
2190                                                                 i);
2191                                 }
2192                         }
2193                 }
2194
2195                 for (i = 0; !locked && i < MAX_HEIGHT && tb->insert_size[i];
2196                      i++) {
2197
2198                         if (tb->lnum[i]) {
2199
2200                                 if (tb->L[i]) {
2201                                         tb_buffer_sanity_check(tb->tb_sb,
2202                                                                tb->L[i],
2203                                                                "L", i);
2204                                         if (!clear_all_dirty_bits
2205                                             (tb->tb_sb, tb->L[i]))
2206                                                 locked = tb->L[i];
2207                                 }
2208
2209                                 if (!locked && tb->FL[i]) {
2210                                         tb_buffer_sanity_check(tb->tb_sb,
2211                                                                tb->FL[i],
2212                                                                "FL", i);
2213                                         if (!clear_all_dirty_bits
2214                                             (tb->tb_sb, tb->FL[i]))
2215                                                 locked = tb->FL[i];
2216                                 }
2217
2218                                 if (!locked && tb->CFL[i]) {
2219                                         tb_buffer_sanity_check(tb->tb_sb,
2220                                                                tb->CFL[i],
2221                                                                "CFL", i);
2222                                         if (!clear_all_dirty_bits
2223                                             (tb->tb_sb, tb->CFL[i]))
2224                                                 locked = tb->CFL[i];
2225                                 }
2226
2227                         }
2228
2229                         if (!locked && (tb->rnum[i])) {
2230
2231                                 if (tb->R[i]) {
2232                                         tb_buffer_sanity_check(tb->tb_sb,
2233                                                                tb->R[i],
2234                                                                "R", i);
2235                                         if (!clear_all_dirty_bits
2236                                             (tb->tb_sb, tb->R[i]))
2237                                                 locked = tb->R[i];
2238                                 }
2239
2240                                 if (!locked && tb->FR[i]) {
2241                                         tb_buffer_sanity_check(tb->tb_sb,
2242                                                                tb->FR[i],
2243                                                                "FR", i);
2244                                         if (!clear_all_dirty_bits
2245                                             (tb->tb_sb, tb->FR[i]))
2246                                                 locked = tb->FR[i];
2247                                 }
2248
2249                                 if (!locked && tb->CFR[i]) {
2250                                         tb_buffer_sanity_check(tb->tb_sb,
2251                                                                tb->CFR[i],
2252                                                                "CFR", i);
2253                                         if (!clear_all_dirty_bits
2254                                             (tb->tb_sb, tb->CFR[i]))
2255                                                 locked = tb->CFR[i];
2256                                 }
2257                         }
2258                 }
2259                 /* as far as I can tell, this is not required.  The FEB list seems
2260                  ** to be full of newly allocated nodes, which will never be locked,
2261                  ** dirty, or anything else.
2262                  ** To be safe, I'm putting in the checks and waits in.  For the moment,
2263                  ** they are needed to keep the code in journal.c from complaining
2264                  ** about the buffer.  That code is inside CONFIG_REISERFS_CHECK as well.
2265                  ** --clm
2266                  */
2267                 for (i = 0; !locked && i < MAX_FEB_SIZE; i++) {
2268                         if (tb->FEB[i]) {
2269                                 if (!clear_all_dirty_bits
2270                                     (tb->tb_sb, tb->FEB[i]))
2271                                         locked = tb->FEB[i];
2272                         }
2273                 }
2274
2275                 if (locked) {
2276                         int depth;
2277 #ifdef CONFIG_REISERFS_CHECK
2278                         repeat_counter++;
2279                         if ((repeat_counter % 10000) == 0) {
2280                                 reiserfs_warning(tb->tb_sb, "reiserfs-8200",
2281                                                  "too many iterations waiting "
2282                                                  "for buffer to unlock "
2283                                                  "(%b)", locked);
2284
2285                                 /* Don't loop forever.  Try to recover from possible error. */
2286
2287                                 return (FILESYSTEM_CHANGED_TB(tb)) ?
2288                                     REPEAT_SEARCH : CARRY_ON;
2289                         }
2290 #endif
2291                         depth = reiserfs_write_unlock_nested(tb->tb_sb);
2292                         __wait_on_buffer(locked);
2293                         reiserfs_write_lock_nested(tb->tb_sb, depth);
2294                         if (FILESYSTEM_CHANGED_TB(tb))
2295                                 return REPEAT_SEARCH;
2296                 }
2297
2298         } while (locked);
2299
2300         return CARRY_ON;
2301 }
2302
2303 /* Prepare for balancing, that is
2304  *      get all necessary parents, and neighbors;
2305  *      analyze what and where should be moved;
2306  *      get sufficient number of new nodes;
2307  * Balancing will start only after all resources will be collected at a time.
2308  *
2309  * When ported to SMP kernels, only at the last moment after all needed nodes
2310  * are collected in cache, will the resources be locked using the usual
2311  * textbook ordered lock acquisition algorithms.  Note that ensuring that
2312  * this code neither write locks what it does not need to write lock nor locks out of order
2313  * will be a pain in the butt that could have been avoided.  Grumble grumble. -Hans
2314  *
2315  * fix is meant in the sense of render unchanging
2316  *
2317  * Latency might be improved by first gathering a list of what buffers are needed
2318  * and then getting as many of them in parallel as possible? -Hans
2319  *
2320  * Parameters:
2321  *      op_mode i - insert, d - delete, c - cut (truncate), p - paste (append)
2322  *      tb      tree_balance structure;
2323  *      inum    item number in S[h];
2324  *      pos_in_item - comment this if you can
2325  *      ins_ih  item head of item being inserted
2326  *      data    inserted item or data to be pasted
2327  * Returns:     1 - schedule occurred while the function worked;
2328  *              0 - schedule didn't occur while the function worked;
2329  *             -1 - if no_disk_space
2330  */
2331
2332 int fix_nodes(int op_mode, struct tree_balance *tb,
2333               struct item_head *ins_ih, const void *data)
2334 {
2335         int ret, h, item_num = PATH_LAST_POSITION(tb->tb_path);
2336         int pos_in_item;
2337
2338         /* we set wait_tb_buffers_run when we have to restore any dirty bits cleared
2339          ** during wait_tb_buffers_run
2340          */
2341         int wait_tb_buffers_run = 0;
2342         struct buffer_head *tbS0 = PATH_PLAST_BUFFER(tb->tb_path);
2343
2344         ++REISERFS_SB(tb->tb_sb)->s_fix_nodes;
2345
2346         pos_in_item = tb->tb_path->pos_in_item;
2347
2348         tb->fs_gen = get_generation(tb->tb_sb);
2349
2350         /* we prepare and log the super here so it will already be in the
2351          ** transaction when do_balance needs to change it.
2352          ** This way do_balance won't have to schedule when trying to prepare
2353          ** the super for logging
2354          */
2355         reiserfs_prepare_for_journal(tb->tb_sb,
2356                                      SB_BUFFER_WITH_SB(tb->tb_sb), 1);
2357         journal_mark_dirty(tb->transaction_handle, tb->tb_sb,
2358                            SB_BUFFER_WITH_SB(tb->tb_sb));
2359         if (FILESYSTEM_CHANGED_TB(tb))
2360                 return REPEAT_SEARCH;
2361
2362         /* if it possible in indirect_to_direct conversion */
2363         if (buffer_locked(tbS0)) {
2364                 int depth = reiserfs_write_unlock_nested(tb->tb_sb);
2365                 __wait_on_buffer(tbS0);
2366                 reiserfs_write_lock_nested(tb->tb_sb, depth);
2367                 if (FILESYSTEM_CHANGED_TB(tb))
2368                         return REPEAT_SEARCH;
2369         }
2370 #ifdef CONFIG_REISERFS_CHECK
2371         if (REISERFS_SB(tb->tb_sb)->cur_tb) {
2372                 print_cur_tb("fix_nodes");
2373                 reiserfs_panic(tb->tb_sb, "PAP-8305",
2374                                "there is pending do_balance");
2375         }
2376
2377         if (!buffer_uptodate(tbS0) || !B_IS_IN_TREE(tbS0))
2378                 reiserfs_panic(tb->tb_sb, "PAP-8320", "S[0] (%b %z) is "
2379                                "not uptodate at the beginning of fix_nodes "
2380                                "or not in tree (mode %c)",
2381                                tbS0, tbS0, op_mode);
2382
2383         /* Check parameters. */
2384         switch (op_mode) {
2385         case M_INSERT:
2386                 if (item_num <= 0 || item_num > B_NR_ITEMS(tbS0))
2387                         reiserfs_panic(tb->tb_sb, "PAP-8330", "Incorrect "
2388                                        "item number %d (in S0 - %d) in case "
2389                                        "of insert", item_num,
2390                                        B_NR_ITEMS(tbS0));
2391                 break;
2392         case M_PASTE:
2393         case M_DELETE:
2394         case M_CUT:
2395                 if (item_num < 0 || item_num >= B_NR_ITEMS(tbS0)) {
2396                         print_block(tbS0, 0, -1, -1);
2397                         reiserfs_panic(tb->tb_sb, "PAP-8335", "Incorrect "
2398                                        "item number(%d); mode = %c "
2399                                        "insert_size = %d",
2400                                        item_num, op_mode,
2401                                        tb->insert_size[0]);
2402                 }
2403                 break;
2404         default:
2405                 reiserfs_panic(tb->tb_sb, "PAP-8340", "Incorrect mode "
2406                                "of operation");
2407         }
2408 #endif
2409
2410         if (get_mem_for_virtual_node(tb) == REPEAT_SEARCH)
2411                 // FIXME: maybe -ENOMEM when tb->vn_buf == 0? Now just repeat
2412                 return REPEAT_SEARCH;
2413
2414         /* Starting from the leaf level; for all levels h of the tree. */
2415         for (h = 0; h < MAX_HEIGHT && tb->insert_size[h]; h++) {
2416                 ret = get_direct_parent(tb, h);
2417                 if (ret != CARRY_ON)
2418                         goto repeat;
2419
2420                 ret = check_balance(op_mode, tb, h, item_num,
2421                                     pos_in_item, ins_ih, data);
2422                 if (ret != CARRY_ON) {
2423                         if (ret == NO_BALANCING_NEEDED) {
2424                                 /* No balancing for higher levels needed. */
2425                                 ret = get_neighbors(tb, h);
2426                                 if (ret != CARRY_ON)
2427                                         goto repeat;
2428                                 if (h != MAX_HEIGHT - 1)
2429                                         tb->insert_size[h + 1] = 0;
2430                                 /* ok, analysis and resource gathering are complete */
2431                                 break;
2432                         }
2433                         goto repeat;
2434                 }
2435
2436                 ret = get_neighbors(tb, h);
2437                 if (ret != CARRY_ON)
2438                         goto repeat;
2439
2440                 /* No disk space, or schedule occurred and analysis may be
2441                  * invalid and needs to be redone. */
2442                 ret = get_empty_nodes(tb, h);
2443                 if (ret != CARRY_ON)
2444                         goto repeat;
2445
2446                 if (!PATH_H_PBUFFER(tb->tb_path, h)) {
2447                         /* We have a positive insert size but no nodes exist on this
2448                            level, this means that we are creating a new root. */
2449
2450                         RFALSE(tb->blknum[h] != 1,
2451                                "PAP-8350: creating new empty root");
2452
2453                         if (h < MAX_HEIGHT - 1)
2454                                 tb->insert_size[h + 1] = 0;
2455                 } else if (!PATH_H_PBUFFER(tb->tb_path, h + 1)) {
2456                         if (tb->blknum[h] > 1) {
2457                                 /* The tree needs to be grown, so this node S[h]
2458                                    which is the root node is split into two nodes,
2459                                    and a new node (S[h+1]) will be created to
2460                                    become the root node.  */
2461
2462                                 RFALSE(h == MAX_HEIGHT - 1,
2463                                        "PAP-8355: attempt to create too high of a tree");
2464
2465                                 tb->insert_size[h + 1] =
2466                                     (DC_SIZE +
2467                                      KEY_SIZE) * (tb->blknum[h] - 1) +
2468                                     DC_SIZE;
2469                         } else if (h < MAX_HEIGHT - 1)
2470                                 tb->insert_size[h + 1] = 0;
2471                 } else
2472                         tb->insert_size[h + 1] =
2473                             (DC_SIZE + KEY_SIZE) * (tb->blknum[h] - 1);
2474         }
2475
2476         ret = wait_tb_buffers_until_unlocked(tb);
2477         if (ret == CARRY_ON) {
2478                 if (FILESYSTEM_CHANGED_TB(tb)) {
2479                         wait_tb_buffers_run = 1;
2480                         ret = REPEAT_SEARCH;
2481                         goto repeat;
2482                 } else {
2483                         return CARRY_ON;
2484                 }
2485         } else {
2486                 wait_tb_buffers_run = 1;
2487                 goto repeat;
2488         }
2489
2490       repeat:
2491         // fix_nodes was unable to perform its calculation due to
2492         // filesystem got changed under us, lack of free disk space or i/o
2493         // failure. If the first is the case - the search will be
2494         // repeated. For now - free all resources acquired so far except
2495         // for the new allocated nodes
2496         {
2497                 int i;
2498
2499                 /* Release path buffers. */
2500                 if (wait_tb_buffers_run) {
2501                         pathrelse_and_restore(tb->tb_sb, tb->tb_path);
2502                 } else {
2503                         pathrelse(tb->tb_path);
2504                 }
2505                 /* brelse all resources collected for balancing */
2506                 for (i = 0; i < MAX_HEIGHT; i++) {
2507                         if (wait_tb_buffers_run) {
2508                                 reiserfs_restore_prepared_buffer(tb->tb_sb,
2509                                                                  tb->L[i]);
2510                                 reiserfs_restore_prepared_buffer(tb->tb_sb,
2511                                                                  tb->R[i]);
2512                                 reiserfs_restore_prepared_buffer(tb->tb_sb,
2513                                                                  tb->FL[i]);
2514                                 reiserfs_restore_prepared_buffer(tb->tb_sb,
2515                                                                  tb->FR[i]);
2516                                 reiserfs_restore_prepared_buffer(tb->tb_sb,
2517                                                                  tb->
2518                                                                  CFL[i]);
2519                                 reiserfs_restore_prepared_buffer(tb->tb_sb,
2520                                                                  tb->
2521                                                                  CFR[i]);
2522                         }
2523
2524                         brelse(tb->L[i]);
2525                         brelse(tb->R[i]);
2526                         brelse(tb->FL[i]);
2527                         brelse(tb->FR[i]);
2528                         brelse(tb->CFL[i]);
2529                         brelse(tb->CFR[i]);
2530
2531                         tb->L[i] = NULL;
2532                         tb->R[i] = NULL;
2533                         tb->FL[i] = NULL;
2534                         tb->FR[i] = NULL;
2535                         tb->CFL[i] = NULL;
2536                         tb->CFR[i] = NULL;
2537                 }
2538
2539                 if (wait_tb_buffers_run) {
2540                         for (i = 0; i < MAX_FEB_SIZE; i++) {
2541                                 if (tb->FEB[i])
2542                                         reiserfs_restore_prepared_buffer
2543                                             (tb->tb_sb, tb->FEB[i]);
2544                         }
2545                 }
2546                 return ret;
2547         }
2548
2549 }
2550
2551 /* Anatoly will probably forgive me renaming tb to tb. I just
2552    wanted to make lines shorter */
2553 void unfix_nodes(struct tree_balance *tb)
2554 {
2555         int i;
2556
2557         /* Release path buffers. */
2558         pathrelse_and_restore(tb->tb_sb, tb->tb_path);
2559
2560         /* brelse all resources collected for balancing */
2561         for (i = 0; i < MAX_HEIGHT; i++) {
2562                 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->L[i]);
2563                 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->R[i]);
2564                 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->FL[i]);
2565                 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->FR[i]);
2566                 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->CFL[i]);
2567                 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->CFR[i]);
2568
2569                 brelse(tb->L[i]);
2570                 brelse(tb->R[i]);
2571                 brelse(tb->FL[i]);
2572                 brelse(tb->FR[i]);
2573                 brelse(tb->CFL[i]);
2574                 brelse(tb->CFR[i]);
2575         }
2576
2577         /* deal with list of allocated (used and unused) nodes */
2578         for (i = 0; i < MAX_FEB_SIZE; i++) {
2579                 if (tb->FEB[i]) {
2580                         b_blocknr_t blocknr = tb->FEB[i]->b_blocknr;
2581                         /* de-allocated block which was not used by balancing and
2582                            bforget about buffer for it */
2583                         brelse(tb->FEB[i]);
2584                         reiserfs_free_block(tb->transaction_handle, NULL,
2585                                             blocknr, 0);
2586                 }
2587                 if (tb->used[i]) {
2588                         /* release used as new nodes including a new root */
2589                         brelse(tb->used[i]);
2590                 }
2591         }
2592
2593         kfree(tb->vn_buf);
2594
2595 }