cfg80211: handle failed skb allocation
[cascardo/linux.git] / fs / xfs / xfs_log.c
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_error.h"
26 #include "xfs_trans.h"
27 #include "xfs_trans_priv.h"
28 #include "xfs_log.h"
29 #include "xfs_log_priv.h"
30 #include "xfs_log_recover.h"
31 #include "xfs_inode.h"
32 #include "xfs_trace.h"
33 #include "xfs_fsops.h"
34 #include "xfs_cksum.h"
35 #include "xfs_sysfs.h"
36 #include "xfs_sb.h"
37
38 kmem_zone_t     *xfs_log_ticket_zone;
39
40 /* Local miscellaneous function prototypes */
41 STATIC int
42 xlog_commit_record(
43         struct xlog             *log,
44         struct xlog_ticket      *ticket,
45         struct xlog_in_core     **iclog,
46         xfs_lsn_t               *commitlsnp);
47
48 STATIC struct xlog *
49 xlog_alloc_log(
50         struct xfs_mount        *mp,
51         struct xfs_buftarg      *log_target,
52         xfs_daddr_t             blk_offset,
53         int                     num_bblks);
54 STATIC int
55 xlog_space_left(
56         struct xlog             *log,
57         atomic64_t              *head);
58 STATIC int
59 xlog_sync(
60         struct xlog             *log,
61         struct xlog_in_core     *iclog);
62 STATIC void
63 xlog_dealloc_log(
64         struct xlog             *log);
65
66 /* local state machine functions */
67 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
68 STATIC void
69 xlog_state_do_callback(
70         struct xlog             *log,
71         int                     aborted,
72         struct xlog_in_core     *iclog);
73 STATIC int
74 xlog_state_get_iclog_space(
75         struct xlog             *log,
76         int                     len,
77         struct xlog_in_core     **iclog,
78         struct xlog_ticket      *ticket,
79         int                     *continued_write,
80         int                     *logoffsetp);
81 STATIC int
82 xlog_state_release_iclog(
83         struct xlog             *log,
84         struct xlog_in_core     *iclog);
85 STATIC void
86 xlog_state_switch_iclogs(
87         struct xlog             *log,
88         struct xlog_in_core     *iclog,
89         int                     eventual_size);
90 STATIC void
91 xlog_state_want_sync(
92         struct xlog             *log,
93         struct xlog_in_core     *iclog);
94
95 STATIC void
96 xlog_grant_push_ail(
97         struct xlog             *log,
98         int                     need_bytes);
99 STATIC void
100 xlog_regrant_reserve_log_space(
101         struct xlog             *log,
102         struct xlog_ticket      *ticket);
103 STATIC void
104 xlog_ungrant_log_space(
105         struct xlog             *log,
106         struct xlog_ticket      *ticket);
107
108 #if defined(DEBUG)
109 STATIC void
110 xlog_verify_dest_ptr(
111         struct xlog             *log,
112         void                    *ptr);
113 STATIC void
114 xlog_verify_grant_tail(
115         struct xlog *log);
116 STATIC void
117 xlog_verify_iclog(
118         struct xlog             *log,
119         struct xlog_in_core     *iclog,
120         int                     count,
121         bool                    syncing);
122 STATIC void
123 xlog_verify_tail_lsn(
124         struct xlog             *log,
125         struct xlog_in_core     *iclog,
126         xfs_lsn_t               tail_lsn);
127 #else
128 #define xlog_verify_dest_ptr(a,b)
129 #define xlog_verify_grant_tail(a)
130 #define xlog_verify_iclog(a,b,c,d)
131 #define xlog_verify_tail_lsn(a,b,c)
132 #endif
133
134 STATIC int
135 xlog_iclogs_empty(
136         struct xlog             *log);
137
138 static void
139 xlog_grant_sub_space(
140         struct xlog             *log,
141         atomic64_t              *head,
142         int                     bytes)
143 {
144         int64_t head_val = atomic64_read(head);
145         int64_t new, old;
146
147         do {
148                 int     cycle, space;
149
150                 xlog_crack_grant_head_val(head_val, &cycle, &space);
151
152                 space -= bytes;
153                 if (space < 0) {
154                         space += log->l_logsize;
155                         cycle--;
156                 }
157
158                 old = head_val;
159                 new = xlog_assign_grant_head_val(cycle, space);
160                 head_val = atomic64_cmpxchg(head, old, new);
161         } while (head_val != old);
162 }
163
164 static void
165 xlog_grant_add_space(
166         struct xlog             *log,
167         atomic64_t              *head,
168         int                     bytes)
169 {
170         int64_t head_val = atomic64_read(head);
171         int64_t new, old;
172
173         do {
174                 int             tmp;
175                 int             cycle, space;
176
177                 xlog_crack_grant_head_val(head_val, &cycle, &space);
178
179                 tmp = log->l_logsize - space;
180                 if (tmp > bytes)
181                         space += bytes;
182                 else {
183                         space = bytes - tmp;
184                         cycle++;
185                 }
186
187                 old = head_val;
188                 new = xlog_assign_grant_head_val(cycle, space);
189                 head_val = atomic64_cmpxchg(head, old, new);
190         } while (head_val != old);
191 }
192
193 STATIC void
194 xlog_grant_head_init(
195         struct xlog_grant_head  *head)
196 {
197         xlog_assign_grant_head(&head->grant, 1, 0);
198         INIT_LIST_HEAD(&head->waiters);
199         spin_lock_init(&head->lock);
200 }
201
202 STATIC void
203 xlog_grant_head_wake_all(
204         struct xlog_grant_head  *head)
205 {
206         struct xlog_ticket      *tic;
207
208         spin_lock(&head->lock);
209         list_for_each_entry(tic, &head->waiters, t_queue)
210                 wake_up_process(tic->t_task);
211         spin_unlock(&head->lock);
212 }
213
214 static inline int
215 xlog_ticket_reservation(
216         struct xlog             *log,
217         struct xlog_grant_head  *head,
218         struct xlog_ticket      *tic)
219 {
220         if (head == &log->l_write_head) {
221                 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
222                 return tic->t_unit_res;
223         } else {
224                 if (tic->t_flags & XLOG_TIC_PERM_RESERV)
225                         return tic->t_unit_res * tic->t_cnt;
226                 else
227                         return tic->t_unit_res;
228         }
229 }
230
231 STATIC bool
232 xlog_grant_head_wake(
233         struct xlog             *log,
234         struct xlog_grant_head  *head,
235         int                     *free_bytes)
236 {
237         struct xlog_ticket      *tic;
238         int                     need_bytes;
239
240         list_for_each_entry(tic, &head->waiters, t_queue) {
241                 need_bytes = xlog_ticket_reservation(log, head, tic);
242                 if (*free_bytes < need_bytes)
243                         return false;
244
245                 *free_bytes -= need_bytes;
246                 trace_xfs_log_grant_wake_up(log, tic);
247                 wake_up_process(tic->t_task);
248         }
249
250         return true;
251 }
252
253 STATIC int
254 xlog_grant_head_wait(
255         struct xlog             *log,
256         struct xlog_grant_head  *head,
257         struct xlog_ticket      *tic,
258         int                     need_bytes) __releases(&head->lock)
259                                             __acquires(&head->lock)
260 {
261         list_add_tail(&tic->t_queue, &head->waiters);
262
263         do {
264                 if (XLOG_FORCED_SHUTDOWN(log))
265                         goto shutdown;
266                 xlog_grant_push_ail(log, need_bytes);
267
268                 __set_current_state(TASK_UNINTERRUPTIBLE);
269                 spin_unlock(&head->lock);
270
271                 XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
272
273                 trace_xfs_log_grant_sleep(log, tic);
274                 schedule();
275                 trace_xfs_log_grant_wake(log, tic);
276
277                 spin_lock(&head->lock);
278                 if (XLOG_FORCED_SHUTDOWN(log))
279                         goto shutdown;
280         } while (xlog_space_left(log, &head->grant) < need_bytes);
281
282         list_del_init(&tic->t_queue);
283         return 0;
284 shutdown:
285         list_del_init(&tic->t_queue);
286         return -EIO;
287 }
288
289 /*
290  * Atomically get the log space required for a log ticket.
291  *
292  * Once a ticket gets put onto head->waiters, it will only return after the
293  * needed reservation is satisfied.
294  *
295  * This function is structured so that it has a lock free fast path. This is
296  * necessary because every new transaction reservation will come through this
297  * path. Hence any lock will be globally hot if we take it unconditionally on
298  * every pass.
299  *
300  * As tickets are only ever moved on and off head->waiters under head->lock, we
301  * only need to take that lock if we are going to add the ticket to the queue
302  * and sleep. We can avoid taking the lock if the ticket was never added to
303  * head->waiters because the t_queue list head will be empty and we hold the
304  * only reference to it so it can safely be checked unlocked.
305  */
306 STATIC int
307 xlog_grant_head_check(
308         struct xlog             *log,
309         struct xlog_grant_head  *head,
310         struct xlog_ticket      *tic,
311         int                     *need_bytes)
312 {
313         int                     free_bytes;
314         int                     error = 0;
315
316         ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
317
318         /*
319          * If there are other waiters on the queue then give them a chance at
320          * logspace before us.  Wake up the first waiters, if we do not wake
321          * up all the waiters then go to sleep waiting for more free space,
322          * otherwise try to get some space for this transaction.
323          */
324         *need_bytes = xlog_ticket_reservation(log, head, tic);
325         free_bytes = xlog_space_left(log, &head->grant);
326         if (!list_empty_careful(&head->waiters)) {
327                 spin_lock(&head->lock);
328                 if (!xlog_grant_head_wake(log, head, &free_bytes) ||
329                     free_bytes < *need_bytes) {
330                         error = xlog_grant_head_wait(log, head, tic,
331                                                      *need_bytes);
332                 }
333                 spin_unlock(&head->lock);
334         } else if (free_bytes < *need_bytes) {
335                 spin_lock(&head->lock);
336                 error = xlog_grant_head_wait(log, head, tic, *need_bytes);
337                 spin_unlock(&head->lock);
338         }
339
340         return error;
341 }
342
343 static void
344 xlog_tic_reset_res(xlog_ticket_t *tic)
345 {
346         tic->t_res_num = 0;
347         tic->t_res_arr_sum = 0;
348         tic->t_res_num_ophdrs = 0;
349 }
350
351 static void
352 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
353 {
354         if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
355                 /* add to overflow and start again */
356                 tic->t_res_o_flow += tic->t_res_arr_sum;
357                 tic->t_res_num = 0;
358                 tic->t_res_arr_sum = 0;
359         }
360
361         tic->t_res_arr[tic->t_res_num].r_len = len;
362         tic->t_res_arr[tic->t_res_num].r_type = type;
363         tic->t_res_arr_sum += len;
364         tic->t_res_num++;
365 }
366
367 /*
368  * Replenish the byte reservation required by moving the grant write head.
369  */
370 int
371 xfs_log_regrant(
372         struct xfs_mount        *mp,
373         struct xlog_ticket      *tic)
374 {
375         struct xlog             *log = mp->m_log;
376         int                     need_bytes;
377         int                     error = 0;
378
379         if (XLOG_FORCED_SHUTDOWN(log))
380                 return -EIO;
381
382         XFS_STATS_INC(mp, xs_try_logspace);
383
384         /*
385          * This is a new transaction on the ticket, so we need to change the
386          * transaction ID so that the next transaction has a different TID in
387          * the log. Just add one to the existing tid so that we can see chains
388          * of rolling transactions in the log easily.
389          */
390         tic->t_tid++;
391
392         xlog_grant_push_ail(log, tic->t_unit_res);
393
394         tic->t_curr_res = tic->t_unit_res;
395         xlog_tic_reset_res(tic);
396
397         if (tic->t_cnt > 0)
398                 return 0;
399
400         trace_xfs_log_regrant(log, tic);
401
402         error = xlog_grant_head_check(log, &log->l_write_head, tic,
403                                       &need_bytes);
404         if (error)
405                 goto out_error;
406
407         xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
408         trace_xfs_log_regrant_exit(log, tic);
409         xlog_verify_grant_tail(log);
410         return 0;
411
412 out_error:
413         /*
414          * If we are failing, make sure the ticket doesn't have any current
415          * reservations.  We don't want to add this back when the ticket/
416          * transaction gets cancelled.
417          */
418         tic->t_curr_res = 0;
419         tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
420         return error;
421 }
422
423 /*
424  * Reserve log space and return a ticket corresponding the reservation.
425  *
426  * Each reservation is going to reserve extra space for a log record header.
427  * When writes happen to the on-disk log, we don't subtract the length of the
428  * log record header from any reservation.  By wasting space in each
429  * reservation, we prevent over allocation problems.
430  */
431 int
432 xfs_log_reserve(
433         struct xfs_mount        *mp,
434         int                     unit_bytes,
435         int                     cnt,
436         struct xlog_ticket      **ticp,
437         __uint8_t               client,
438         bool                    permanent,
439         uint                    t_type)
440 {
441         struct xlog             *log = mp->m_log;
442         struct xlog_ticket      *tic;
443         int                     need_bytes;
444         int                     error = 0;
445
446         ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
447
448         if (XLOG_FORCED_SHUTDOWN(log))
449                 return -EIO;
450
451         XFS_STATS_INC(mp, xs_try_logspace);
452
453         ASSERT(*ticp == NULL);
454         tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
455                                 KM_SLEEP | KM_MAYFAIL);
456         if (!tic)
457                 return -ENOMEM;
458
459         tic->t_trans_type = t_type;
460         *ticp = tic;
461
462         xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
463                                             : tic->t_unit_res);
464
465         trace_xfs_log_reserve(log, tic);
466
467         error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
468                                       &need_bytes);
469         if (error)
470                 goto out_error;
471
472         xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
473         xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
474         trace_xfs_log_reserve_exit(log, tic);
475         xlog_verify_grant_tail(log);
476         return 0;
477
478 out_error:
479         /*
480          * If we are failing, make sure the ticket doesn't have any current
481          * reservations.  We don't want to add this back when the ticket/
482          * transaction gets cancelled.
483          */
484         tic->t_curr_res = 0;
485         tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
486         return error;
487 }
488
489
490 /*
491  * NOTES:
492  *
493  *      1. currblock field gets updated at startup and after in-core logs
494  *              marked as with WANT_SYNC.
495  */
496
497 /*
498  * This routine is called when a user of a log manager ticket is done with
499  * the reservation.  If the ticket was ever used, then a commit record for
500  * the associated transaction is written out as a log operation header with
501  * no data.  The flag XLOG_TIC_INITED is set when the first write occurs with
502  * a given ticket.  If the ticket was one with a permanent reservation, then
503  * a few operations are done differently.  Permanent reservation tickets by
504  * default don't release the reservation.  They just commit the current
505  * transaction with the belief that the reservation is still needed.  A flag
506  * must be passed in before permanent reservations are actually released.
507  * When these type of tickets are not released, they need to be set into
508  * the inited state again.  By doing this, a start record will be written
509  * out when the next write occurs.
510  */
511 xfs_lsn_t
512 xfs_log_done(
513         struct xfs_mount        *mp,
514         struct xlog_ticket      *ticket,
515         struct xlog_in_core     **iclog,
516         bool                    regrant)
517 {
518         struct xlog             *log = mp->m_log;
519         xfs_lsn_t               lsn = 0;
520
521         if (XLOG_FORCED_SHUTDOWN(log) ||
522             /*
523              * If nothing was ever written, don't write out commit record.
524              * If we get an error, just continue and give back the log ticket.
525              */
526             (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
527              (xlog_commit_record(log, ticket, iclog, &lsn)))) {
528                 lsn = (xfs_lsn_t) -1;
529                 regrant = false;
530         }
531
532
533         if (!regrant) {
534                 trace_xfs_log_done_nonperm(log, ticket);
535
536                 /*
537                  * Release ticket if not permanent reservation or a specific
538                  * request has been made to release a permanent reservation.
539                  */
540                 xlog_ungrant_log_space(log, ticket);
541         } else {
542                 trace_xfs_log_done_perm(log, ticket);
543
544                 xlog_regrant_reserve_log_space(log, ticket);
545                 /* If this ticket was a permanent reservation and we aren't
546                  * trying to release it, reset the inited flags; so next time
547                  * we write, a start record will be written out.
548                  */
549                 ticket->t_flags |= XLOG_TIC_INITED;
550         }
551
552         xfs_log_ticket_put(ticket);
553         return lsn;
554 }
555
556 /*
557  * Attaches a new iclog I/O completion callback routine during
558  * transaction commit.  If the log is in error state, a non-zero
559  * return code is handed back and the caller is responsible for
560  * executing the callback at an appropriate time.
561  */
562 int
563 xfs_log_notify(
564         struct xfs_mount        *mp,
565         struct xlog_in_core     *iclog,
566         xfs_log_callback_t      *cb)
567 {
568         int     abortflg;
569
570         spin_lock(&iclog->ic_callback_lock);
571         abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
572         if (!abortflg) {
573                 ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
574                               (iclog->ic_state == XLOG_STATE_WANT_SYNC));
575                 cb->cb_next = NULL;
576                 *(iclog->ic_callback_tail) = cb;
577                 iclog->ic_callback_tail = &(cb->cb_next);
578         }
579         spin_unlock(&iclog->ic_callback_lock);
580         return abortflg;
581 }
582
583 int
584 xfs_log_release_iclog(
585         struct xfs_mount        *mp,
586         struct xlog_in_core     *iclog)
587 {
588         if (xlog_state_release_iclog(mp->m_log, iclog)) {
589                 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
590                 return -EIO;
591         }
592
593         return 0;
594 }
595
596 /*
597  * Mount a log filesystem
598  *
599  * mp           - ubiquitous xfs mount point structure
600  * log_target   - buftarg of on-disk log device
601  * blk_offset   - Start block # where block size is 512 bytes (BBSIZE)
602  * num_bblocks  - Number of BBSIZE blocks in on-disk log
603  *
604  * Return error or zero.
605  */
606 int
607 xfs_log_mount(
608         xfs_mount_t     *mp,
609         xfs_buftarg_t   *log_target,
610         xfs_daddr_t     blk_offset,
611         int             num_bblks)
612 {
613         int             error = 0;
614         int             min_logfsbs;
615
616         if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
617                 xfs_notice(mp, "Mounting V%d Filesystem",
618                            XFS_SB_VERSION_NUM(&mp->m_sb));
619         } else {
620                 xfs_notice(mp,
621 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
622                            XFS_SB_VERSION_NUM(&mp->m_sb));
623                 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
624         }
625
626         mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
627         if (IS_ERR(mp->m_log)) {
628                 error = PTR_ERR(mp->m_log);
629                 goto out;
630         }
631
632         /*
633          * Validate the given log space and drop a critical message via syslog
634          * if the log size is too small that would lead to some unexpected
635          * situations in transaction log space reservation stage.
636          *
637          * Note: we can't just reject the mount if the validation fails.  This
638          * would mean that people would have to downgrade their kernel just to
639          * remedy the situation as there is no way to grow the log (short of
640          * black magic surgery with xfs_db).
641          *
642          * We can, however, reject mounts for CRC format filesystems, as the
643          * mkfs binary being used to make the filesystem should never create a
644          * filesystem with a log that is too small.
645          */
646         min_logfsbs = xfs_log_calc_minimum_size(mp);
647
648         if (mp->m_sb.sb_logblocks < min_logfsbs) {
649                 xfs_warn(mp,
650                 "Log size %d blocks too small, minimum size is %d blocks",
651                          mp->m_sb.sb_logblocks, min_logfsbs);
652                 error = -EINVAL;
653         } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
654                 xfs_warn(mp,
655                 "Log size %d blocks too large, maximum size is %lld blocks",
656                          mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
657                 error = -EINVAL;
658         } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
659                 xfs_warn(mp,
660                 "log size %lld bytes too large, maximum size is %lld bytes",
661                          XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
662                          XFS_MAX_LOG_BYTES);
663                 error = -EINVAL;
664         }
665         if (error) {
666                 if (xfs_sb_version_hascrc(&mp->m_sb)) {
667                         xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
668                         ASSERT(0);
669                         goto out_free_log;
670                 }
671                 xfs_crit(mp, "Log size out of supported range.");
672                 xfs_crit(mp,
673 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
674         }
675
676         /*
677          * Initialize the AIL now we have a log.
678          */
679         error = xfs_trans_ail_init(mp);
680         if (error) {
681                 xfs_warn(mp, "AIL initialisation failed: error %d", error);
682                 goto out_free_log;
683         }
684         mp->m_log->l_ailp = mp->m_ail;
685
686         /*
687          * skip log recovery on a norecovery mount.  pretend it all
688          * just worked.
689          */
690         if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
691                 int     readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
692
693                 if (readonly)
694                         mp->m_flags &= ~XFS_MOUNT_RDONLY;
695
696                 error = xlog_recover(mp->m_log);
697
698                 if (readonly)
699                         mp->m_flags |= XFS_MOUNT_RDONLY;
700                 if (error) {
701                         xfs_warn(mp, "log mount/recovery failed: error %d",
702                                 error);
703                         xlog_recover_cancel(mp->m_log);
704                         goto out_destroy_ail;
705                 }
706         }
707
708         error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
709                                "log");
710         if (error)
711                 goto out_destroy_ail;
712
713         /* Normal transactions can now occur */
714         mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
715
716         /*
717          * Now the log has been fully initialised and we know were our
718          * space grant counters are, we can initialise the permanent ticket
719          * needed for delayed logging to work.
720          */
721         xlog_cil_init_post_recovery(mp->m_log);
722
723         return 0;
724
725 out_destroy_ail:
726         xfs_trans_ail_destroy(mp);
727 out_free_log:
728         xlog_dealloc_log(mp->m_log);
729 out:
730         return error;
731 }
732
733 /*
734  * Finish the recovery of the file system.  This is separate from the
735  * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
736  * in the root and real-time bitmap inodes between calling xfs_log_mount() and
737  * here.
738  *
739  * If we finish recovery successfully, start the background log work. If we are
740  * not doing recovery, then we have a RO filesystem and we don't need to start
741  * it.
742  */
743 int
744 xfs_log_mount_finish(
745         struct xfs_mount        *mp)
746 {
747         int     error = 0;
748
749         if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
750                 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
751                 return 0;
752         }
753
754         error = xlog_recover_finish(mp->m_log);
755         if (!error)
756                 xfs_log_work_queue(mp);
757
758         return error;
759 }
760
761 /*
762  * The mount has failed. Cancel the recovery if it hasn't completed and destroy
763  * the log.
764  */
765 int
766 xfs_log_mount_cancel(
767         struct xfs_mount        *mp)
768 {
769         int                     error;
770
771         error = xlog_recover_cancel(mp->m_log);
772         xfs_log_unmount(mp);
773
774         return error;
775 }
776
777 /*
778  * Final log writes as part of unmount.
779  *
780  * Mark the filesystem clean as unmount happens.  Note that during relocation
781  * this routine needs to be executed as part of source-bag while the
782  * deallocation must not be done until source-end.
783  */
784
785 /*
786  * Unmount record used to have a string "Unmount filesystem--" in the
787  * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
788  * We just write the magic number now since that particular field isn't
789  * currently architecture converted and "Unmount" is a bit foo.
790  * As far as I know, there weren't any dependencies on the old behaviour.
791  */
792
793 int
794 xfs_log_unmount_write(xfs_mount_t *mp)
795 {
796         struct xlog      *log = mp->m_log;
797         xlog_in_core_t   *iclog;
798 #ifdef DEBUG
799         xlog_in_core_t   *first_iclog;
800 #endif
801         xlog_ticket_t   *tic = NULL;
802         xfs_lsn_t        lsn;
803         int              error;
804
805         /*
806          * Don't write out unmount record on read-only mounts.
807          * Or, if we are doing a forced umount (typically because of IO errors).
808          */
809         if (mp->m_flags & XFS_MOUNT_RDONLY)
810                 return 0;
811
812         error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
813         ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
814
815 #ifdef DEBUG
816         first_iclog = iclog = log->l_iclog;
817         do {
818                 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
819                         ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
820                         ASSERT(iclog->ic_offset == 0);
821                 }
822                 iclog = iclog->ic_next;
823         } while (iclog != first_iclog);
824 #endif
825         if (! (XLOG_FORCED_SHUTDOWN(log))) {
826                 error = xfs_log_reserve(mp, 600, 1, &tic,
827                                         XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE);
828                 if (!error) {
829                         /* the data section must be 32 bit size aligned */
830                         struct {
831                             __uint16_t magic;
832                             __uint16_t pad1;
833                             __uint32_t pad2; /* may as well make it 64 bits */
834                         } magic = {
835                                 .magic = XLOG_UNMOUNT_TYPE,
836                         };
837                         struct xfs_log_iovec reg = {
838                                 .i_addr = &magic,
839                                 .i_len = sizeof(magic),
840                                 .i_type = XLOG_REG_TYPE_UNMOUNT,
841                         };
842                         struct xfs_log_vec vec = {
843                                 .lv_niovecs = 1,
844                                 .lv_iovecp = &reg,
845                         };
846
847                         /* remove inited flag, and account for space used */
848                         tic->t_flags = 0;
849                         tic->t_curr_res -= sizeof(magic);
850                         error = xlog_write(log, &vec, tic, &lsn,
851                                            NULL, XLOG_UNMOUNT_TRANS);
852                         /*
853                          * At this point, we're umounting anyway,
854                          * so there's no point in transitioning log state
855                          * to IOERROR. Just continue...
856                          */
857                 }
858
859                 if (error)
860                         xfs_alert(mp, "%s: unmount record failed", __func__);
861
862
863                 spin_lock(&log->l_icloglock);
864                 iclog = log->l_iclog;
865                 atomic_inc(&iclog->ic_refcnt);
866                 xlog_state_want_sync(log, iclog);
867                 spin_unlock(&log->l_icloglock);
868                 error = xlog_state_release_iclog(log, iclog);
869
870                 spin_lock(&log->l_icloglock);
871                 if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
872                       iclog->ic_state == XLOG_STATE_DIRTY)) {
873                         if (!XLOG_FORCED_SHUTDOWN(log)) {
874                                 xlog_wait(&iclog->ic_force_wait,
875                                                         &log->l_icloglock);
876                         } else {
877                                 spin_unlock(&log->l_icloglock);
878                         }
879                 } else {
880                         spin_unlock(&log->l_icloglock);
881                 }
882                 if (tic) {
883                         trace_xfs_log_umount_write(log, tic);
884                         xlog_ungrant_log_space(log, tic);
885                         xfs_log_ticket_put(tic);
886                 }
887         } else {
888                 /*
889                  * We're already in forced_shutdown mode, couldn't
890                  * even attempt to write out the unmount transaction.
891                  *
892                  * Go through the motions of sync'ing and releasing
893                  * the iclog, even though no I/O will actually happen,
894                  * we need to wait for other log I/Os that may already
895                  * be in progress.  Do this as a separate section of
896                  * code so we'll know if we ever get stuck here that
897                  * we're in this odd situation of trying to unmount
898                  * a file system that went into forced_shutdown as
899                  * the result of an unmount..
900                  */
901                 spin_lock(&log->l_icloglock);
902                 iclog = log->l_iclog;
903                 atomic_inc(&iclog->ic_refcnt);
904
905                 xlog_state_want_sync(log, iclog);
906                 spin_unlock(&log->l_icloglock);
907                 error =  xlog_state_release_iclog(log, iclog);
908
909                 spin_lock(&log->l_icloglock);
910
911                 if ( ! (   iclog->ic_state == XLOG_STATE_ACTIVE
912                         || iclog->ic_state == XLOG_STATE_DIRTY
913                         || iclog->ic_state == XLOG_STATE_IOERROR) ) {
914
915                                 xlog_wait(&iclog->ic_force_wait,
916                                                         &log->l_icloglock);
917                 } else {
918                         spin_unlock(&log->l_icloglock);
919                 }
920         }
921
922         return error;
923 }       /* xfs_log_unmount_write */
924
925 /*
926  * Empty the log for unmount/freeze.
927  *
928  * To do this, we first need to shut down the background log work so it is not
929  * trying to cover the log as we clean up. We then need to unpin all objects in
930  * the log so we can then flush them out. Once they have completed their IO and
931  * run the callbacks removing themselves from the AIL, we can write the unmount
932  * record.
933  */
934 void
935 xfs_log_quiesce(
936         struct xfs_mount        *mp)
937 {
938         cancel_delayed_work_sync(&mp->m_log->l_work);
939         xfs_log_force(mp, XFS_LOG_SYNC);
940
941         /*
942          * The superblock buffer is uncached and while xfs_ail_push_all_sync()
943          * will push it, xfs_wait_buftarg() will not wait for it. Further,
944          * xfs_buf_iowait() cannot be used because it was pushed with the
945          * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
946          * the IO to complete.
947          */
948         xfs_ail_push_all_sync(mp->m_ail);
949         xfs_wait_buftarg(mp->m_ddev_targp);
950         xfs_buf_lock(mp->m_sb_bp);
951         xfs_buf_unlock(mp->m_sb_bp);
952
953         xfs_log_unmount_write(mp);
954 }
955
956 /*
957  * Shut down and release the AIL and Log.
958  *
959  * During unmount, we need to ensure we flush all the dirty metadata objects
960  * from the AIL so that the log is empty before we write the unmount record to
961  * the log. Once this is done, we can tear down the AIL and the log.
962  */
963 void
964 xfs_log_unmount(
965         struct xfs_mount        *mp)
966 {
967         xfs_log_quiesce(mp);
968
969         xfs_trans_ail_destroy(mp);
970
971         xfs_sysfs_del(&mp->m_log->l_kobj);
972
973         xlog_dealloc_log(mp->m_log);
974 }
975
976 void
977 xfs_log_item_init(
978         struct xfs_mount        *mp,
979         struct xfs_log_item     *item,
980         int                     type,
981         const struct xfs_item_ops *ops)
982 {
983         item->li_mountp = mp;
984         item->li_ailp = mp->m_ail;
985         item->li_type = type;
986         item->li_ops = ops;
987         item->li_lv = NULL;
988
989         INIT_LIST_HEAD(&item->li_ail);
990         INIT_LIST_HEAD(&item->li_cil);
991 }
992
993 /*
994  * Wake up processes waiting for log space after we have moved the log tail.
995  */
996 void
997 xfs_log_space_wake(
998         struct xfs_mount        *mp)
999 {
1000         struct xlog             *log = mp->m_log;
1001         int                     free_bytes;
1002
1003         if (XLOG_FORCED_SHUTDOWN(log))
1004                 return;
1005
1006         if (!list_empty_careful(&log->l_write_head.waiters)) {
1007                 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1008
1009                 spin_lock(&log->l_write_head.lock);
1010                 free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1011                 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1012                 spin_unlock(&log->l_write_head.lock);
1013         }
1014
1015         if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1016                 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1017
1018                 spin_lock(&log->l_reserve_head.lock);
1019                 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1020                 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1021                 spin_unlock(&log->l_reserve_head.lock);
1022         }
1023 }
1024
1025 /*
1026  * Determine if we have a transaction that has gone to disk that needs to be
1027  * covered. To begin the transition to the idle state firstly the log needs to
1028  * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1029  * we start attempting to cover the log.
1030  *
1031  * Only if we are then in a state where covering is needed, the caller is
1032  * informed that dummy transactions are required to move the log into the idle
1033  * state.
1034  *
1035  * If there are any items in the AIl or CIL, then we do not want to attempt to
1036  * cover the log as we may be in a situation where there isn't log space
1037  * available to run a dummy transaction and this can lead to deadlocks when the
1038  * tail of the log is pinned by an item that is modified in the CIL.  Hence
1039  * there's no point in running a dummy transaction at this point because we
1040  * can't start trying to idle the log until both the CIL and AIL are empty.
1041  */
1042 int
1043 xfs_log_need_covered(xfs_mount_t *mp)
1044 {
1045         struct xlog     *log = mp->m_log;
1046         int             needed = 0;
1047
1048         if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
1049                 return 0;
1050
1051         if (!xlog_cil_empty(log))
1052                 return 0;
1053
1054         spin_lock(&log->l_icloglock);
1055         switch (log->l_covered_state) {
1056         case XLOG_STATE_COVER_DONE:
1057         case XLOG_STATE_COVER_DONE2:
1058         case XLOG_STATE_COVER_IDLE:
1059                 break;
1060         case XLOG_STATE_COVER_NEED:
1061         case XLOG_STATE_COVER_NEED2:
1062                 if (xfs_ail_min_lsn(log->l_ailp))
1063                         break;
1064                 if (!xlog_iclogs_empty(log))
1065                         break;
1066
1067                 needed = 1;
1068                 if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1069                         log->l_covered_state = XLOG_STATE_COVER_DONE;
1070                 else
1071                         log->l_covered_state = XLOG_STATE_COVER_DONE2;
1072                 break;
1073         default:
1074                 needed = 1;
1075                 break;
1076         }
1077         spin_unlock(&log->l_icloglock);
1078         return needed;
1079 }
1080
1081 /*
1082  * We may be holding the log iclog lock upon entering this routine.
1083  */
1084 xfs_lsn_t
1085 xlog_assign_tail_lsn_locked(
1086         struct xfs_mount        *mp)
1087 {
1088         struct xlog             *log = mp->m_log;
1089         struct xfs_log_item     *lip;
1090         xfs_lsn_t               tail_lsn;
1091
1092         assert_spin_locked(&mp->m_ail->xa_lock);
1093
1094         /*
1095          * To make sure we always have a valid LSN for the log tail we keep
1096          * track of the last LSN which was committed in log->l_last_sync_lsn,
1097          * and use that when the AIL was empty.
1098          */
1099         lip = xfs_ail_min(mp->m_ail);
1100         if (lip)
1101                 tail_lsn = lip->li_lsn;
1102         else
1103                 tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1104         trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1105         atomic64_set(&log->l_tail_lsn, tail_lsn);
1106         return tail_lsn;
1107 }
1108
1109 xfs_lsn_t
1110 xlog_assign_tail_lsn(
1111         struct xfs_mount        *mp)
1112 {
1113         xfs_lsn_t               tail_lsn;
1114
1115         spin_lock(&mp->m_ail->xa_lock);
1116         tail_lsn = xlog_assign_tail_lsn_locked(mp);
1117         spin_unlock(&mp->m_ail->xa_lock);
1118
1119         return tail_lsn;
1120 }
1121
1122 /*
1123  * Return the space in the log between the tail and the head.  The head
1124  * is passed in the cycle/bytes formal parms.  In the special case where
1125  * the reserve head has wrapped passed the tail, this calculation is no
1126  * longer valid.  In this case, just return 0 which means there is no space
1127  * in the log.  This works for all places where this function is called
1128  * with the reserve head.  Of course, if the write head were to ever
1129  * wrap the tail, we should blow up.  Rather than catch this case here,
1130  * we depend on other ASSERTions in other parts of the code.   XXXmiken
1131  *
1132  * This code also handles the case where the reservation head is behind
1133  * the tail.  The details of this case are described below, but the end
1134  * result is that we return the size of the log as the amount of space left.
1135  */
1136 STATIC int
1137 xlog_space_left(
1138         struct xlog     *log,
1139         atomic64_t      *head)
1140 {
1141         int             free_bytes;
1142         int             tail_bytes;
1143         int             tail_cycle;
1144         int             head_cycle;
1145         int             head_bytes;
1146
1147         xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1148         xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1149         tail_bytes = BBTOB(tail_bytes);
1150         if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1151                 free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1152         else if (tail_cycle + 1 < head_cycle)
1153                 return 0;
1154         else if (tail_cycle < head_cycle) {
1155                 ASSERT(tail_cycle == (head_cycle - 1));
1156                 free_bytes = tail_bytes - head_bytes;
1157         } else {
1158                 /*
1159                  * The reservation head is behind the tail.
1160                  * In this case we just want to return the size of the
1161                  * log as the amount of space left.
1162                  */
1163                 xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1164                 xfs_alert(log->l_mp,
1165                           "  tail_cycle = %d, tail_bytes = %d",
1166                           tail_cycle, tail_bytes);
1167                 xfs_alert(log->l_mp,
1168                           "  GH   cycle = %d, GH   bytes = %d",
1169                           head_cycle, head_bytes);
1170                 ASSERT(0);
1171                 free_bytes = log->l_logsize;
1172         }
1173         return free_bytes;
1174 }
1175
1176
1177 /*
1178  * Log function which is called when an io completes.
1179  *
1180  * The log manager needs its own routine, in order to control what
1181  * happens with the buffer after the write completes.
1182  */
1183 void
1184 xlog_iodone(xfs_buf_t *bp)
1185 {
1186         struct xlog_in_core     *iclog = bp->b_fspriv;
1187         struct xlog             *l = iclog->ic_log;
1188         int                     aborted = 0;
1189
1190         /*
1191          * Race to shutdown the filesystem if we see an error or the iclog is in
1192          * IOABORT state. The IOABORT state is only set in DEBUG mode to inject
1193          * CRC errors into log recovery.
1194          */
1195         if (XFS_TEST_ERROR(bp->b_error, l->l_mp, XFS_ERRTAG_IODONE_IOERR,
1196                            XFS_RANDOM_IODONE_IOERR) ||
1197             iclog->ic_state & XLOG_STATE_IOABORT) {
1198                 if (iclog->ic_state & XLOG_STATE_IOABORT)
1199                         iclog->ic_state &= ~XLOG_STATE_IOABORT;
1200
1201                 xfs_buf_ioerror_alert(bp, __func__);
1202                 xfs_buf_stale(bp);
1203                 xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1204                 /*
1205                  * This flag will be propagated to the trans-committed
1206                  * callback routines to let them know that the log-commit
1207                  * didn't succeed.
1208                  */
1209                 aborted = XFS_LI_ABORTED;
1210         } else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1211                 aborted = XFS_LI_ABORTED;
1212         }
1213
1214         /* log I/O is always issued ASYNC */
1215         ASSERT(bp->b_flags & XBF_ASYNC);
1216         xlog_state_done_syncing(iclog, aborted);
1217
1218         /*
1219          * drop the buffer lock now that we are done. Nothing references
1220          * the buffer after this, so an unmount waiting on this lock can now
1221          * tear it down safely. As such, it is unsafe to reference the buffer
1222          * (bp) after the unlock as we could race with it being freed.
1223          */
1224         xfs_buf_unlock(bp);
1225 }
1226
1227 /*
1228  * Return size of each in-core log record buffer.
1229  *
1230  * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1231  *
1232  * If the filesystem blocksize is too large, we may need to choose a
1233  * larger size since the directory code currently logs entire blocks.
1234  */
1235
1236 STATIC void
1237 xlog_get_iclog_buffer_size(
1238         struct xfs_mount        *mp,
1239         struct xlog             *log)
1240 {
1241         int size;
1242         int xhdrs;
1243
1244         if (mp->m_logbufs <= 0)
1245                 log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1246         else
1247                 log->l_iclog_bufs = mp->m_logbufs;
1248
1249         /*
1250          * Buffer size passed in from mount system call.
1251          */
1252         if (mp->m_logbsize > 0) {
1253                 size = log->l_iclog_size = mp->m_logbsize;
1254                 log->l_iclog_size_log = 0;
1255                 while (size != 1) {
1256                         log->l_iclog_size_log++;
1257                         size >>= 1;
1258                 }
1259
1260                 if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1261                         /* # headers = size / 32k
1262                          * one header holds cycles from 32k of data
1263                          */
1264
1265                         xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1266                         if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1267                                 xhdrs++;
1268                         log->l_iclog_hsize = xhdrs << BBSHIFT;
1269                         log->l_iclog_heads = xhdrs;
1270                 } else {
1271                         ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1272                         log->l_iclog_hsize = BBSIZE;
1273                         log->l_iclog_heads = 1;
1274                 }
1275                 goto done;
1276         }
1277
1278         /* All machines use 32kB buffers by default. */
1279         log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1280         log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1281
1282         /* the default log size is 16k or 32k which is one header sector */
1283         log->l_iclog_hsize = BBSIZE;
1284         log->l_iclog_heads = 1;
1285
1286 done:
1287         /* are we being asked to make the sizes selected above visible? */
1288         if (mp->m_logbufs == 0)
1289                 mp->m_logbufs = log->l_iclog_bufs;
1290         if (mp->m_logbsize == 0)
1291                 mp->m_logbsize = log->l_iclog_size;
1292 }       /* xlog_get_iclog_buffer_size */
1293
1294
1295 void
1296 xfs_log_work_queue(
1297         struct xfs_mount        *mp)
1298 {
1299         queue_delayed_work(mp->m_log_workqueue, &mp->m_log->l_work,
1300                                 msecs_to_jiffies(xfs_syncd_centisecs * 10));
1301 }
1302
1303 /*
1304  * Every sync period we need to unpin all items in the AIL and push them to
1305  * disk. If there is nothing dirty, then we might need to cover the log to
1306  * indicate that the filesystem is idle.
1307  */
1308 void
1309 xfs_log_worker(
1310         struct work_struct      *work)
1311 {
1312         struct xlog             *log = container_of(to_delayed_work(work),
1313                                                 struct xlog, l_work);
1314         struct xfs_mount        *mp = log->l_mp;
1315
1316         /* dgc: errors ignored - not fatal and nowhere to report them */
1317         if (xfs_log_need_covered(mp)) {
1318                 /*
1319                  * Dump a transaction into the log that contains no real change.
1320                  * This is needed to stamp the current tail LSN into the log
1321                  * during the covering operation.
1322                  *
1323                  * We cannot use an inode here for this - that will push dirty
1324                  * state back up into the VFS and then periodic inode flushing
1325                  * will prevent log covering from making progress. Hence we
1326                  * synchronously log the superblock instead to ensure the
1327                  * superblock is immediately unpinned and can be written back.
1328                  */
1329                 xfs_sync_sb(mp, true);
1330         } else
1331                 xfs_log_force(mp, 0);
1332
1333         /* start pushing all the metadata that is currently dirty */
1334         xfs_ail_push_all(mp->m_ail);
1335
1336         /* queue us up again */
1337         xfs_log_work_queue(mp);
1338 }
1339
1340 /*
1341  * This routine initializes some of the log structure for a given mount point.
1342  * Its primary purpose is to fill in enough, so recovery can occur.  However,
1343  * some other stuff may be filled in too.
1344  */
1345 STATIC struct xlog *
1346 xlog_alloc_log(
1347         struct xfs_mount        *mp,
1348         struct xfs_buftarg      *log_target,
1349         xfs_daddr_t             blk_offset,
1350         int                     num_bblks)
1351 {
1352         struct xlog             *log;
1353         xlog_rec_header_t       *head;
1354         xlog_in_core_t          **iclogp;
1355         xlog_in_core_t          *iclog, *prev_iclog=NULL;
1356         xfs_buf_t               *bp;
1357         int                     i;
1358         int                     error = -ENOMEM;
1359         uint                    log2_size = 0;
1360
1361         log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1362         if (!log) {
1363                 xfs_warn(mp, "Log allocation failed: No memory!");
1364                 goto out;
1365         }
1366
1367         log->l_mp          = mp;
1368         log->l_targ        = log_target;
1369         log->l_logsize     = BBTOB(num_bblks);
1370         log->l_logBBstart  = blk_offset;
1371         log->l_logBBsize   = num_bblks;
1372         log->l_covered_state = XLOG_STATE_COVER_IDLE;
1373         log->l_flags       |= XLOG_ACTIVE_RECOVERY;
1374         INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1375
1376         log->l_prev_block  = -1;
1377         /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1378         xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1379         xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1380         log->l_curr_cycle  = 1;     /* 0 is bad since this is initial value */
1381
1382         xlog_grant_head_init(&log->l_reserve_head);
1383         xlog_grant_head_init(&log->l_write_head);
1384
1385         error = -EFSCORRUPTED;
1386         if (xfs_sb_version_hassector(&mp->m_sb)) {
1387                 log2_size = mp->m_sb.sb_logsectlog;
1388                 if (log2_size < BBSHIFT) {
1389                         xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1390                                 log2_size, BBSHIFT);
1391                         goto out_free_log;
1392                 }
1393
1394                 log2_size -= BBSHIFT;
1395                 if (log2_size > mp->m_sectbb_log) {
1396                         xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1397                                 log2_size, mp->m_sectbb_log);
1398                         goto out_free_log;
1399                 }
1400
1401                 /* for larger sector sizes, must have v2 or external log */
1402                 if (log2_size && log->l_logBBstart > 0 &&
1403                             !xfs_sb_version_haslogv2(&mp->m_sb)) {
1404                         xfs_warn(mp,
1405                 "log sector size (0x%x) invalid for configuration.",
1406                                 log2_size);
1407                         goto out_free_log;
1408                 }
1409         }
1410         log->l_sectBBsize = 1 << log2_size;
1411
1412         xlog_get_iclog_buffer_size(mp, log);
1413
1414         /*
1415          * Use a NULL block for the extra log buffer used during splits so that
1416          * it will trigger errors if we ever try to do IO on it without first
1417          * having set it up properly.
1418          */
1419         error = -ENOMEM;
1420         bp = xfs_buf_alloc(mp->m_logdev_targp, XFS_BUF_DADDR_NULL,
1421                            BTOBB(log->l_iclog_size), 0);
1422         if (!bp)
1423                 goto out_free_log;
1424
1425         /*
1426          * The iclogbuf buffer locks are held over IO but we are not going to do
1427          * IO yet.  Hence unlock the buffer so that the log IO path can grab it
1428          * when appropriately.
1429          */
1430         ASSERT(xfs_buf_islocked(bp));
1431         xfs_buf_unlock(bp);
1432
1433         /* use high priority wq for log I/O completion */
1434         bp->b_ioend_wq = mp->m_log_workqueue;
1435         bp->b_iodone = xlog_iodone;
1436         log->l_xbuf = bp;
1437
1438         spin_lock_init(&log->l_icloglock);
1439         init_waitqueue_head(&log->l_flush_wait);
1440
1441         iclogp = &log->l_iclog;
1442         /*
1443          * The amount of memory to allocate for the iclog structure is
1444          * rather funky due to the way the structure is defined.  It is
1445          * done this way so that we can use different sizes for machines
1446          * with different amounts of memory.  See the definition of
1447          * xlog_in_core_t in xfs_log_priv.h for details.
1448          */
1449         ASSERT(log->l_iclog_size >= 4096);
1450         for (i=0; i < log->l_iclog_bufs; i++) {
1451                 *iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1452                 if (!*iclogp)
1453                         goto out_free_iclog;
1454
1455                 iclog = *iclogp;
1456                 iclog->ic_prev = prev_iclog;
1457                 prev_iclog = iclog;
1458
1459                 bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1460                                                 BTOBB(log->l_iclog_size), 0);
1461                 if (!bp)
1462                         goto out_free_iclog;
1463
1464                 ASSERT(xfs_buf_islocked(bp));
1465                 xfs_buf_unlock(bp);
1466
1467                 /* use high priority wq for log I/O completion */
1468                 bp->b_ioend_wq = mp->m_log_workqueue;
1469                 bp->b_iodone = xlog_iodone;
1470                 iclog->ic_bp = bp;
1471                 iclog->ic_data = bp->b_addr;
1472 #ifdef DEBUG
1473                 log->l_iclog_bak[i] = &iclog->ic_header;
1474 #endif
1475                 head = &iclog->ic_header;
1476                 memset(head, 0, sizeof(xlog_rec_header_t));
1477                 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1478                 head->h_version = cpu_to_be32(
1479                         xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1480                 head->h_size = cpu_to_be32(log->l_iclog_size);
1481                 /* new fields */
1482                 head->h_fmt = cpu_to_be32(XLOG_FMT);
1483                 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1484
1485                 iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1486                 iclog->ic_state = XLOG_STATE_ACTIVE;
1487                 iclog->ic_log = log;
1488                 atomic_set(&iclog->ic_refcnt, 0);
1489                 spin_lock_init(&iclog->ic_callback_lock);
1490                 iclog->ic_callback_tail = &(iclog->ic_callback);
1491                 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1492
1493                 init_waitqueue_head(&iclog->ic_force_wait);
1494                 init_waitqueue_head(&iclog->ic_write_wait);
1495
1496                 iclogp = &iclog->ic_next;
1497         }
1498         *iclogp = log->l_iclog;                 /* complete ring */
1499         log->l_iclog->ic_prev = prev_iclog;     /* re-write 1st prev ptr */
1500
1501         error = xlog_cil_init(log);
1502         if (error)
1503                 goto out_free_iclog;
1504         return log;
1505
1506 out_free_iclog:
1507         for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1508                 prev_iclog = iclog->ic_next;
1509                 if (iclog->ic_bp)
1510                         xfs_buf_free(iclog->ic_bp);
1511                 kmem_free(iclog);
1512         }
1513         spinlock_destroy(&log->l_icloglock);
1514         xfs_buf_free(log->l_xbuf);
1515 out_free_log:
1516         kmem_free(log);
1517 out:
1518         return ERR_PTR(error);
1519 }       /* xlog_alloc_log */
1520
1521
1522 /*
1523  * Write out the commit record of a transaction associated with the given
1524  * ticket.  Return the lsn of the commit record.
1525  */
1526 STATIC int
1527 xlog_commit_record(
1528         struct xlog             *log,
1529         struct xlog_ticket      *ticket,
1530         struct xlog_in_core     **iclog,
1531         xfs_lsn_t               *commitlsnp)
1532 {
1533         struct xfs_mount *mp = log->l_mp;
1534         int     error;
1535         struct xfs_log_iovec reg = {
1536                 .i_addr = NULL,
1537                 .i_len = 0,
1538                 .i_type = XLOG_REG_TYPE_COMMIT,
1539         };
1540         struct xfs_log_vec vec = {
1541                 .lv_niovecs = 1,
1542                 .lv_iovecp = &reg,
1543         };
1544
1545         ASSERT_ALWAYS(iclog);
1546         error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1547                                         XLOG_COMMIT_TRANS);
1548         if (error)
1549                 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1550         return error;
1551 }
1552
1553 /*
1554  * Push on the buffer cache code if we ever use more than 75% of the on-disk
1555  * log space.  This code pushes on the lsn which would supposedly free up
1556  * the 25% which we want to leave free.  We may need to adopt a policy which
1557  * pushes on an lsn which is further along in the log once we reach the high
1558  * water mark.  In this manner, we would be creating a low water mark.
1559  */
1560 STATIC void
1561 xlog_grant_push_ail(
1562         struct xlog     *log,
1563         int             need_bytes)
1564 {
1565         xfs_lsn_t       threshold_lsn = 0;
1566         xfs_lsn_t       last_sync_lsn;
1567         int             free_blocks;
1568         int             free_bytes;
1569         int             threshold_block;
1570         int             threshold_cycle;
1571         int             free_threshold;
1572
1573         ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1574
1575         free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1576         free_blocks = BTOBBT(free_bytes);
1577
1578         /*
1579          * Set the threshold for the minimum number of free blocks in the
1580          * log to the maximum of what the caller needs, one quarter of the
1581          * log, and 256 blocks.
1582          */
1583         free_threshold = BTOBB(need_bytes);
1584         free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1585         free_threshold = MAX(free_threshold, 256);
1586         if (free_blocks >= free_threshold)
1587                 return;
1588
1589         xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1590                                                 &threshold_block);
1591         threshold_block += free_threshold;
1592         if (threshold_block >= log->l_logBBsize) {
1593                 threshold_block -= log->l_logBBsize;
1594                 threshold_cycle += 1;
1595         }
1596         threshold_lsn = xlog_assign_lsn(threshold_cycle,
1597                                         threshold_block);
1598         /*
1599          * Don't pass in an lsn greater than the lsn of the last
1600          * log record known to be on disk. Use a snapshot of the last sync lsn
1601          * so that it doesn't change between the compare and the set.
1602          */
1603         last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1604         if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1605                 threshold_lsn = last_sync_lsn;
1606
1607         /*
1608          * Get the transaction layer to kick the dirty buffers out to
1609          * disk asynchronously. No point in trying to do this if
1610          * the filesystem is shutting down.
1611          */
1612         if (!XLOG_FORCED_SHUTDOWN(log))
1613                 xfs_ail_push(log->l_ailp, threshold_lsn);
1614 }
1615
1616 /*
1617  * Stamp cycle number in every block
1618  */
1619 STATIC void
1620 xlog_pack_data(
1621         struct xlog             *log,
1622         struct xlog_in_core     *iclog,
1623         int                     roundoff)
1624 {
1625         int                     i, j, k;
1626         int                     size = iclog->ic_offset + roundoff;
1627         __be32                  cycle_lsn;
1628         char                    *dp;
1629
1630         cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1631
1632         dp = iclog->ic_datap;
1633         for (i = 0; i < BTOBB(size); i++) {
1634                 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1635                         break;
1636                 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1637                 *(__be32 *)dp = cycle_lsn;
1638                 dp += BBSIZE;
1639         }
1640
1641         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1642                 xlog_in_core_2_t *xhdr = iclog->ic_data;
1643
1644                 for ( ; i < BTOBB(size); i++) {
1645                         j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1646                         k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1647                         xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1648                         *(__be32 *)dp = cycle_lsn;
1649                         dp += BBSIZE;
1650                 }
1651
1652                 for (i = 1; i < log->l_iclog_heads; i++)
1653                         xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1654         }
1655 }
1656
1657 /*
1658  * Calculate the checksum for a log buffer.
1659  *
1660  * This is a little more complicated than it should be because the various
1661  * headers and the actual data are non-contiguous.
1662  */
1663 __le32
1664 xlog_cksum(
1665         struct xlog             *log,
1666         struct xlog_rec_header  *rhead,
1667         char                    *dp,
1668         int                     size)
1669 {
1670         __uint32_t              crc;
1671
1672         /* first generate the crc for the record header ... */
1673         crc = xfs_start_cksum((char *)rhead,
1674                               sizeof(struct xlog_rec_header),
1675                               offsetof(struct xlog_rec_header, h_crc));
1676
1677         /* ... then for additional cycle data for v2 logs ... */
1678         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1679                 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1680                 int             i;
1681                 int             xheads;
1682
1683                 xheads = size / XLOG_HEADER_CYCLE_SIZE;
1684                 if (size % XLOG_HEADER_CYCLE_SIZE)
1685                         xheads++;
1686
1687                 for (i = 1; i < xheads; i++) {
1688                         crc = crc32c(crc, &xhdr[i].hic_xheader,
1689                                      sizeof(struct xlog_rec_ext_header));
1690                 }
1691         }
1692
1693         /* ... and finally for the payload */
1694         crc = crc32c(crc, dp, size);
1695
1696         return xfs_end_cksum(crc);
1697 }
1698
1699 /*
1700  * The bdstrat callback function for log bufs. This gives us a central
1701  * place to trap bufs in case we get hit by a log I/O error and need to
1702  * shutdown. Actually, in practice, even when we didn't get a log error,
1703  * we transition the iclogs to IOERROR state *after* flushing all existing
1704  * iclogs to disk. This is because we don't want anymore new transactions to be
1705  * started or completed afterwards.
1706  *
1707  * We lock the iclogbufs here so that we can serialise against IO completion
1708  * during unmount. We might be processing a shutdown triggered during unmount,
1709  * and that can occur asynchronously to the unmount thread, and hence we need to
1710  * ensure that completes before tearing down the iclogbufs. Hence we need to
1711  * hold the buffer lock across the log IO to acheive that.
1712  */
1713 STATIC int
1714 xlog_bdstrat(
1715         struct xfs_buf          *bp)
1716 {
1717         struct xlog_in_core     *iclog = bp->b_fspriv;
1718
1719         xfs_buf_lock(bp);
1720         if (iclog->ic_state & XLOG_STATE_IOERROR) {
1721                 xfs_buf_ioerror(bp, -EIO);
1722                 xfs_buf_stale(bp);
1723                 xfs_buf_ioend(bp);
1724                 /*
1725                  * It would seem logical to return EIO here, but we rely on
1726                  * the log state machine to propagate I/O errors instead of
1727                  * doing it here. Similarly, IO completion will unlock the
1728                  * buffer, so we don't do it here.
1729                  */
1730                 return 0;
1731         }
1732
1733         xfs_buf_submit(bp);
1734         return 0;
1735 }
1736
1737 /*
1738  * Flush out the in-core log (iclog) to the on-disk log in an asynchronous 
1739  * fashion.  Previously, we should have moved the current iclog
1740  * ptr in the log to point to the next available iclog.  This allows further
1741  * write to continue while this code syncs out an iclog ready to go.
1742  * Before an in-core log can be written out, the data section must be scanned
1743  * to save away the 1st word of each BBSIZE block into the header.  We replace
1744  * it with the current cycle count.  Each BBSIZE block is tagged with the
1745  * cycle count because there in an implicit assumption that drives will
1746  * guarantee that entire 512 byte blocks get written at once.  In other words,
1747  * we can't have part of a 512 byte block written and part not written.  By
1748  * tagging each block, we will know which blocks are valid when recovering
1749  * after an unclean shutdown.
1750  *
1751  * This routine is single threaded on the iclog.  No other thread can be in
1752  * this routine with the same iclog.  Changing contents of iclog can there-
1753  * fore be done without grabbing the state machine lock.  Updating the global
1754  * log will require grabbing the lock though.
1755  *
1756  * The entire log manager uses a logical block numbering scheme.  Only
1757  * log_sync (and then only bwrite()) know about the fact that the log may
1758  * not start with block zero on a given device.  The log block start offset
1759  * is added immediately before calling bwrite().
1760  */
1761
1762 STATIC int
1763 xlog_sync(
1764         struct xlog             *log,
1765         struct xlog_in_core     *iclog)
1766 {
1767         xfs_buf_t       *bp;
1768         int             i;
1769         uint            count;          /* byte count of bwrite */
1770         uint            count_init;     /* initial count before roundup */
1771         int             roundoff;       /* roundoff to BB or stripe */
1772         int             split = 0;      /* split write into two regions */
1773         int             error;
1774         int             v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1775         int             size;
1776
1777         XFS_STATS_INC(log->l_mp, xs_log_writes);
1778         ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1779
1780         /* Add for LR header */
1781         count_init = log->l_iclog_hsize + iclog->ic_offset;
1782
1783         /* Round out the log write size */
1784         if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1785                 /* we have a v2 stripe unit to use */
1786                 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1787         } else {
1788                 count = BBTOB(BTOBB(count_init));
1789         }
1790         roundoff = count - count_init;
1791         ASSERT(roundoff >= 0);
1792         ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 && 
1793                 roundoff < log->l_mp->m_sb.sb_logsunit)
1794                 || 
1795                 (log->l_mp->m_sb.sb_logsunit <= 1 && 
1796                  roundoff < BBTOB(1)));
1797
1798         /* move grant heads by roundoff in sync */
1799         xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1800         xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1801
1802         /* put cycle number in every block */
1803         xlog_pack_data(log, iclog, roundoff); 
1804
1805         /* real byte length */
1806         size = iclog->ic_offset;
1807         if (v2)
1808                 size += roundoff;
1809         iclog->ic_header.h_len = cpu_to_be32(size);
1810
1811         bp = iclog->ic_bp;
1812         XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1813
1814         XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1815
1816         /* Do we need to split this write into 2 parts? */
1817         if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1818                 char            *dptr;
1819
1820                 split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1821                 count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1822                 iclog->ic_bwritecnt = 2;
1823
1824                 /*
1825                  * Bump the cycle numbers at the start of each block in the
1826                  * part of the iclog that ends up in the buffer that gets
1827                  * written to the start of the log.
1828                  *
1829                  * Watch out for the header magic number case, though.
1830                  */
1831                 dptr = (char *)&iclog->ic_header + count;
1832                 for (i = 0; i < split; i += BBSIZE) {
1833                         __uint32_t cycle = be32_to_cpu(*(__be32 *)dptr);
1834                         if (++cycle == XLOG_HEADER_MAGIC_NUM)
1835                                 cycle++;
1836                         *(__be32 *)dptr = cpu_to_be32(cycle);
1837
1838                         dptr += BBSIZE;
1839                 }
1840         } else {
1841                 iclog->ic_bwritecnt = 1;
1842         }
1843
1844         /* calculcate the checksum */
1845         iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1846                                             iclog->ic_datap, size);
1847 #ifdef DEBUG
1848         /*
1849          * Intentionally corrupt the log record CRC based on the error injection
1850          * frequency, if defined. This facilitates testing log recovery in the
1851          * event of torn writes. Hence, set the IOABORT state to abort the log
1852          * write on I/O completion and shutdown the fs. The subsequent mount
1853          * detects the bad CRC and attempts to recover.
1854          */
1855         if (log->l_badcrc_factor &&
1856             (prandom_u32() % log->l_badcrc_factor == 0)) {
1857                 iclog->ic_header.h_crc &= 0xAAAAAAAA;
1858                 iclog->ic_state |= XLOG_STATE_IOABORT;
1859                 xfs_warn(log->l_mp,
1860         "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1861                          be64_to_cpu(iclog->ic_header.h_lsn));
1862         }
1863 #endif
1864
1865         bp->b_io_length = BTOBB(count);
1866         bp->b_fspriv = iclog;
1867         bp->b_flags &= ~(XBF_FUA | XBF_FLUSH);
1868         bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE);
1869
1870         if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) {
1871                 bp->b_flags |= XBF_FUA;
1872
1873                 /*
1874                  * Flush the data device before flushing the log to make
1875                  * sure all meta data written back from the AIL actually made
1876                  * it to disk before stamping the new log tail LSN into the
1877                  * log buffer.  For an external log we need to issue the
1878                  * flush explicitly, and unfortunately synchronously here;
1879                  * for an internal log we can simply use the block layer
1880                  * state machine for preflushes.
1881                  */
1882                 if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1883                         xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1884                 else
1885                         bp->b_flags |= XBF_FLUSH;
1886         }
1887
1888         ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1889         ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1890
1891         xlog_verify_iclog(log, iclog, count, true);
1892
1893         /* account for log which doesn't start at block #0 */
1894         XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1895
1896         /*
1897          * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1898          * is shutting down.
1899          */
1900         error = xlog_bdstrat(bp);
1901         if (error) {
1902                 xfs_buf_ioerror_alert(bp, "xlog_sync");
1903                 return error;
1904         }
1905         if (split) {
1906                 bp = iclog->ic_log->l_xbuf;
1907                 XFS_BUF_SET_ADDR(bp, 0);             /* logical 0 */
1908                 xfs_buf_associate_memory(bp,
1909                                 (char *)&iclog->ic_header + count, split);
1910                 bp->b_fspriv = iclog;
1911                 bp->b_flags &= ~(XBF_FUA | XBF_FLUSH);
1912                 bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE);
1913                 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
1914                         bp->b_flags |= XBF_FUA;
1915
1916                 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1917                 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1918
1919                 /* account for internal log which doesn't start at block #0 */
1920                 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1921                 error = xlog_bdstrat(bp);
1922                 if (error) {
1923                         xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1924                         return error;
1925                 }
1926         }
1927         return 0;
1928 }       /* xlog_sync */
1929
1930 /*
1931  * Deallocate a log structure
1932  */
1933 STATIC void
1934 xlog_dealloc_log(
1935         struct xlog     *log)
1936 {
1937         xlog_in_core_t  *iclog, *next_iclog;
1938         int             i;
1939
1940         xlog_cil_destroy(log);
1941
1942         /*
1943          * Cycle all the iclogbuf locks to make sure all log IO completion
1944          * is done before we tear down these buffers.
1945          */
1946         iclog = log->l_iclog;
1947         for (i = 0; i < log->l_iclog_bufs; i++) {
1948                 xfs_buf_lock(iclog->ic_bp);
1949                 xfs_buf_unlock(iclog->ic_bp);
1950                 iclog = iclog->ic_next;
1951         }
1952
1953         /*
1954          * Always need to ensure that the extra buffer does not point to memory
1955          * owned by another log buffer before we free it. Also, cycle the lock
1956          * first to ensure we've completed IO on it.
1957          */
1958         xfs_buf_lock(log->l_xbuf);
1959         xfs_buf_unlock(log->l_xbuf);
1960         xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
1961         xfs_buf_free(log->l_xbuf);
1962
1963         iclog = log->l_iclog;
1964         for (i = 0; i < log->l_iclog_bufs; i++) {
1965                 xfs_buf_free(iclog->ic_bp);
1966                 next_iclog = iclog->ic_next;
1967                 kmem_free(iclog);
1968                 iclog = next_iclog;
1969         }
1970         spinlock_destroy(&log->l_icloglock);
1971
1972         log->l_mp->m_log = NULL;
1973         kmem_free(log);
1974 }       /* xlog_dealloc_log */
1975
1976 /*
1977  * Update counters atomically now that memcpy is done.
1978  */
1979 /* ARGSUSED */
1980 static inline void
1981 xlog_state_finish_copy(
1982         struct xlog             *log,
1983         struct xlog_in_core     *iclog,
1984         int                     record_cnt,
1985         int                     copy_bytes)
1986 {
1987         spin_lock(&log->l_icloglock);
1988
1989         be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1990         iclog->ic_offset += copy_bytes;
1991
1992         spin_unlock(&log->l_icloglock);
1993 }       /* xlog_state_finish_copy */
1994
1995
1996
1997
1998 /*
1999  * print out info relating to regions written which consume
2000  * the reservation
2001  */
2002 void
2003 xlog_print_tic_res(
2004         struct xfs_mount        *mp,
2005         struct xlog_ticket      *ticket)
2006 {
2007         uint i;
2008         uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
2009
2010         /* match with XLOG_REG_TYPE_* in xfs_log.h */
2011 #define REG_TYPE_STR(type, str) [XLOG_REG_TYPE_##type] = str
2012         static char *res_type_str[XLOG_REG_TYPE_MAX + 1] = {
2013             REG_TYPE_STR(BFORMAT, "bformat"),
2014             REG_TYPE_STR(BCHUNK, "bchunk"),
2015             REG_TYPE_STR(EFI_FORMAT, "efi_format"),
2016             REG_TYPE_STR(EFD_FORMAT, "efd_format"),
2017             REG_TYPE_STR(IFORMAT, "iformat"),
2018             REG_TYPE_STR(ICORE, "icore"),
2019             REG_TYPE_STR(IEXT, "iext"),
2020             REG_TYPE_STR(IBROOT, "ibroot"),
2021             REG_TYPE_STR(ILOCAL, "ilocal"),
2022             REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
2023             REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
2024             REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
2025             REG_TYPE_STR(QFORMAT, "qformat"),
2026             REG_TYPE_STR(DQUOT, "dquot"),
2027             REG_TYPE_STR(QUOTAOFF, "quotaoff"),
2028             REG_TYPE_STR(LRHEADER, "LR header"),
2029             REG_TYPE_STR(UNMOUNT, "unmount"),
2030             REG_TYPE_STR(COMMIT, "commit"),
2031             REG_TYPE_STR(TRANSHDR, "trans header"),
2032             REG_TYPE_STR(ICREATE, "inode create")
2033         };
2034 #undef REG_TYPE_STR
2035 #define TRANS_TYPE_STR(type)    [XFS_TRANS_##type] = #type
2036         static char *trans_type_str[XFS_TRANS_TYPE_MAX] = {
2037             TRANS_TYPE_STR(SETATTR_NOT_SIZE),
2038             TRANS_TYPE_STR(SETATTR_SIZE),
2039             TRANS_TYPE_STR(INACTIVE),
2040             TRANS_TYPE_STR(CREATE),
2041             TRANS_TYPE_STR(CREATE_TRUNC),
2042             TRANS_TYPE_STR(TRUNCATE_FILE),
2043             TRANS_TYPE_STR(REMOVE),
2044             TRANS_TYPE_STR(LINK),
2045             TRANS_TYPE_STR(RENAME),
2046             TRANS_TYPE_STR(MKDIR),
2047             TRANS_TYPE_STR(RMDIR),
2048             TRANS_TYPE_STR(SYMLINK),
2049             TRANS_TYPE_STR(SET_DMATTRS),
2050             TRANS_TYPE_STR(GROWFS),
2051             TRANS_TYPE_STR(STRAT_WRITE),
2052             TRANS_TYPE_STR(DIOSTRAT),
2053             TRANS_TYPE_STR(WRITEID),
2054             TRANS_TYPE_STR(ADDAFORK),
2055             TRANS_TYPE_STR(ATTRINVAL),
2056             TRANS_TYPE_STR(ATRUNCATE),
2057             TRANS_TYPE_STR(ATTR_SET),
2058             TRANS_TYPE_STR(ATTR_RM),
2059             TRANS_TYPE_STR(ATTR_FLAG),
2060             TRANS_TYPE_STR(CLEAR_AGI_BUCKET),
2061             TRANS_TYPE_STR(SB_CHANGE),
2062             TRANS_TYPE_STR(DUMMY1),
2063             TRANS_TYPE_STR(DUMMY2),
2064             TRANS_TYPE_STR(QM_QUOTAOFF),
2065             TRANS_TYPE_STR(QM_DQALLOC),
2066             TRANS_TYPE_STR(QM_SETQLIM),
2067             TRANS_TYPE_STR(QM_DQCLUSTER),
2068             TRANS_TYPE_STR(QM_QINOCREATE),
2069             TRANS_TYPE_STR(QM_QUOTAOFF_END),
2070             TRANS_TYPE_STR(FSYNC_TS),
2071             TRANS_TYPE_STR(GROWFSRT_ALLOC),
2072             TRANS_TYPE_STR(GROWFSRT_ZERO),
2073             TRANS_TYPE_STR(GROWFSRT_FREE),
2074             TRANS_TYPE_STR(SWAPEXT),
2075             TRANS_TYPE_STR(CHECKPOINT),
2076             TRANS_TYPE_STR(ICREATE),
2077             TRANS_TYPE_STR(CREATE_TMPFILE)
2078         };
2079 #undef TRANS_TYPE_STR
2080
2081         xfs_warn(mp, "xlog_write: reservation summary:");
2082         xfs_warn(mp, "  trans type  = %s (%u)",
2083                  ((ticket->t_trans_type <= 0 ||
2084                    ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ?
2085                   "bad-trans-type" : trans_type_str[ticket->t_trans_type]),
2086                  ticket->t_trans_type);
2087         xfs_warn(mp, "  unit res    = %d bytes",
2088                  ticket->t_unit_res);
2089         xfs_warn(mp, "  current res = %d bytes",
2090                  ticket->t_curr_res);
2091         xfs_warn(mp, "  total reg   = %u bytes (o/flow = %u bytes)",
2092                  ticket->t_res_arr_sum, ticket->t_res_o_flow);
2093         xfs_warn(mp, "  ophdrs      = %u (ophdr space = %u bytes)",
2094                  ticket->t_res_num_ophdrs, ophdr_spc);
2095         xfs_warn(mp, "  ophdr + reg = %u bytes",
2096                  ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2097         xfs_warn(mp, "  num regions = %u",
2098                  ticket->t_res_num);
2099
2100         for (i = 0; i < ticket->t_res_num; i++) {
2101                 uint r_type = ticket->t_res_arr[i].r_type;
2102                 xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2103                             ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2104                             "bad-rtype" : res_type_str[r_type]),
2105                             ticket->t_res_arr[i].r_len);
2106         }
2107
2108         xfs_alert_tag(mp, XFS_PTAG_LOGRES,
2109                 "xlog_write: reservation ran out. Need to up reservation");
2110         xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
2111 }
2112
2113 /*
2114  * Calculate the potential space needed by the log vector.  Each region gets
2115  * its own xlog_op_header_t and may need to be double word aligned.
2116  */
2117 static int
2118 xlog_write_calc_vec_length(
2119         struct xlog_ticket      *ticket,
2120         struct xfs_log_vec      *log_vector)
2121 {
2122         struct xfs_log_vec      *lv;
2123         int                     headers = 0;
2124         int                     len = 0;
2125         int                     i;
2126
2127         /* acct for start rec of xact */
2128         if (ticket->t_flags & XLOG_TIC_INITED)
2129                 headers++;
2130
2131         for (lv = log_vector; lv; lv = lv->lv_next) {
2132                 /* we don't write ordered log vectors */
2133                 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2134                         continue;
2135
2136                 headers += lv->lv_niovecs;
2137
2138                 for (i = 0; i < lv->lv_niovecs; i++) {
2139                         struct xfs_log_iovec    *vecp = &lv->lv_iovecp[i];
2140
2141                         len += vecp->i_len;
2142                         xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2143                 }
2144         }
2145
2146         ticket->t_res_num_ophdrs += headers;
2147         len += headers * sizeof(struct xlog_op_header);
2148
2149         return len;
2150 }
2151
2152 /*
2153  * If first write for transaction, insert start record  We can't be trying to
2154  * commit if we are inited.  We can't have any "partial_copy" if we are inited.
2155  */
2156 static int
2157 xlog_write_start_rec(
2158         struct xlog_op_header   *ophdr,
2159         struct xlog_ticket      *ticket)
2160 {
2161         if (!(ticket->t_flags & XLOG_TIC_INITED))
2162                 return 0;
2163
2164         ophdr->oh_tid   = cpu_to_be32(ticket->t_tid);
2165         ophdr->oh_clientid = ticket->t_clientid;
2166         ophdr->oh_len = 0;
2167         ophdr->oh_flags = XLOG_START_TRANS;
2168         ophdr->oh_res2 = 0;
2169
2170         ticket->t_flags &= ~XLOG_TIC_INITED;
2171
2172         return sizeof(struct xlog_op_header);
2173 }
2174
2175 static xlog_op_header_t *
2176 xlog_write_setup_ophdr(
2177         struct xlog             *log,
2178         struct xlog_op_header   *ophdr,
2179         struct xlog_ticket      *ticket,
2180         uint                    flags)
2181 {
2182         ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2183         ophdr->oh_clientid = ticket->t_clientid;
2184         ophdr->oh_res2 = 0;
2185
2186         /* are we copying a commit or unmount record? */
2187         ophdr->oh_flags = flags;
2188
2189         /*
2190          * We've seen logs corrupted with bad transaction client ids.  This
2191          * makes sure that XFS doesn't generate them on.  Turn this into an EIO
2192          * and shut down the filesystem.
2193          */
2194         switch (ophdr->oh_clientid)  {
2195         case XFS_TRANSACTION:
2196         case XFS_VOLUME:
2197         case XFS_LOG:
2198                 break;
2199         default:
2200                 xfs_warn(log->l_mp,
2201                         "Bad XFS transaction clientid 0x%x in ticket 0x%p",
2202                         ophdr->oh_clientid, ticket);
2203                 return NULL;
2204         }
2205
2206         return ophdr;
2207 }
2208
2209 /*
2210  * Set up the parameters of the region copy into the log. This has
2211  * to handle region write split across multiple log buffers - this
2212  * state is kept external to this function so that this code can
2213  * be written in an obvious, self documenting manner.
2214  */
2215 static int
2216 xlog_write_setup_copy(
2217         struct xlog_ticket      *ticket,
2218         struct xlog_op_header   *ophdr,
2219         int                     space_available,
2220         int                     space_required,
2221         int                     *copy_off,
2222         int                     *copy_len,
2223         int                     *last_was_partial_copy,
2224         int                     *bytes_consumed)
2225 {
2226         int                     still_to_copy;
2227
2228         still_to_copy = space_required - *bytes_consumed;
2229         *copy_off = *bytes_consumed;
2230
2231         if (still_to_copy <= space_available) {
2232                 /* write of region completes here */
2233                 *copy_len = still_to_copy;
2234                 ophdr->oh_len = cpu_to_be32(*copy_len);
2235                 if (*last_was_partial_copy)
2236                         ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2237                 *last_was_partial_copy = 0;
2238                 *bytes_consumed = 0;
2239                 return 0;
2240         }
2241
2242         /* partial write of region, needs extra log op header reservation */
2243         *copy_len = space_available;
2244         ophdr->oh_len = cpu_to_be32(*copy_len);
2245         ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2246         if (*last_was_partial_copy)
2247                 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2248         *bytes_consumed += *copy_len;
2249         (*last_was_partial_copy)++;
2250
2251         /* account for new log op header */
2252         ticket->t_curr_res -= sizeof(struct xlog_op_header);
2253         ticket->t_res_num_ophdrs++;
2254
2255         return sizeof(struct xlog_op_header);
2256 }
2257
2258 static int
2259 xlog_write_copy_finish(
2260         struct xlog             *log,
2261         struct xlog_in_core     *iclog,
2262         uint                    flags,
2263         int                     *record_cnt,
2264         int                     *data_cnt,
2265         int                     *partial_copy,
2266         int                     *partial_copy_len,
2267         int                     log_offset,
2268         struct xlog_in_core     **commit_iclog)
2269 {
2270         if (*partial_copy) {
2271                 /*
2272                  * This iclog has already been marked WANT_SYNC by
2273                  * xlog_state_get_iclog_space.
2274                  */
2275                 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2276                 *record_cnt = 0;
2277                 *data_cnt = 0;
2278                 return xlog_state_release_iclog(log, iclog);
2279         }
2280
2281         *partial_copy = 0;
2282         *partial_copy_len = 0;
2283
2284         if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2285                 /* no more space in this iclog - push it. */
2286                 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2287                 *record_cnt = 0;
2288                 *data_cnt = 0;
2289
2290                 spin_lock(&log->l_icloglock);
2291                 xlog_state_want_sync(log, iclog);
2292                 spin_unlock(&log->l_icloglock);
2293
2294                 if (!commit_iclog)
2295                         return xlog_state_release_iclog(log, iclog);
2296                 ASSERT(flags & XLOG_COMMIT_TRANS);
2297                 *commit_iclog = iclog;
2298         }
2299
2300         return 0;
2301 }
2302
2303 /*
2304  * Write some region out to in-core log
2305  *
2306  * This will be called when writing externally provided regions or when
2307  * writing out a commit record for a given transaction.
2308  *
2309  * General algorithm:
2310  *      1. Find total length of this write.  This may include adding to the
2311  *              lengths passed in.
2312  *      2. Check whether we violate the tickets reservation.
2313  *      3. While writing to this iclog
2314  *          A. Reserve as much space in this iclog as can get
2315  *          B. If this is first write, save away start lsn
2316  *          C. While writing this region:
2317  *              1. If first write of transaction, write start record
2318  *              2. Write log operation header (header per region)
2319  *              3. Find out if we can fit entire region into this iclog
2320  *              4. Potentially, verify destination memcpy ptr
2321  *              5. Memcpy (partial) region
2322  *              6. If partial copy, release iclog; otherwise, continue
2323  *                      copying more regions into current iclog
2324  *      4. Mark want sync bit (in simulation mode)
2325  *      5. Release iclog for potential flush to on-disk log.
2326  *
2327  * ERRORS:
2328  * 1.   Panic if reservation is overrun.  This should never happen since
2329  *      reservation amounts are generated internal to the filesystem.
2330  * NOTES:
2331  * 1. Tickets are single threaded data structures.
2332  * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2333  *      syncing routine.  When a single log_write region needs to span
2334  *      multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2335  *      on all log operation writes which don't contain the end of the
2336  *      region.  The XLOG_END_TRANS bit is used for the in-core log
2337  *      operation which contains the end of the continued log_write region.
2338  * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2339  *      we don't really know exactly how much space will be used.  As a result,
2340  *      we don't update ic_offset until the end when we know exactly how many
2341  *      bytes have been written out.
2342  */
2343 int
2344 xlog_write(
2345         struct xlog             *log,
2346         struct xfs_log_vec      *log_vector,
2347         struct xlog_ticket      *ticket,
2348         xfs_lsn_t               *start_lsn,
2349         struct xlog_in_core     **commit_iclog,
2350         uint                    flags)
2351 {
2352         struct xlog_in_core     *iclog = NULL;
2353         struct xfs_log_iovec    *vecp;
2354         struct xfs_log_vec      *lv;
2355         int                     len;
2356         int                     index;
2357         int                     partial_copy = 0;
2358         int                     partial_copy_len = 0;
2359         int                     contwr = 0;
2360         int                     record_cnt = 0;
2361         int                     data_cnt = 0;
2362         int                     error;
2363
2364         *start_lsn = 0;
2365
2366         len = xlog_write_calc_vec_length(ticket, log_vector);
2367
2368         /*
2369          * Region headers and bytes are already accounted for.
2370          * We only need to take into account start records and
2371          * split regions in this function.
2372          */
2373         if (ticket->t_flags & XLOG_TIC_INITED)
2374                 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2375
2376         /*
2377          * Commit record headers need to be accounted for. These
2378          * come in as separate writes so are easy to detect.
2379          */
2380         if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2381                 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2382
2383         if (ticket->t_curr_res < 0)
2384                 xlog_print_tic_res(log->l_mp, ticket);
2385
2386         index = 0;
2387         lv = log_vector;
2388         vecp = lv->lv_iovecp;
2389         while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2390                 void            *ptr;
2391                 int             log_offset;
2392
2393                 error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2394                                                    &contwr, &log_offset);
2395                 if (error)
2396                         return error;
2397
2398                 ASSERT(log_offset <= iclog->ic_size - 1);
2399                 ptr = iclog->ic_datap + log_offset;
2400
2401                 /* start_lsn is the first lsn written to. That's all we need. */
2402                 if (!*start_lsn)
2403                         *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2404
2405                 /*
2406                  * This loop writes out as many regions as can fit in the amount
2407                  * of space which was allocated by xlog_state_get_iclog_space().
2408                  */
2409                 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2410                         struct xfs_log_iovec    *reg;
2411                         struct xlog_op_header   *ophdr;
2412                         int                     start_rec_copy;
2413                         int                     copy_len;
2414                         int                     copy_off;
2415                         bool                    ordered = false;
2416
2417                         /* ordered log vectors have no regions to write */
2418                         if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2419                                 ASSERT(lv->lv_niovecs == 0);
2420                                 ordered = true;
2421                                 goto next_lv;
2422                         }
2423
2424                         reg = &vecp[index];
2425                         ASSERT(reg->i_len % sizeof(__int32_t) == 0);
2426                         ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0);
2427
2428                         start_rec_copy = xlog_write_start_rec(ptr, ticket);
2429                         if (start_rec_copy) {
2430                                 record_cnt++;
2431                                 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2432                                                    start_rec_copy);
2433                         }
2434
2435                         ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2436                         if (!ophdr)
2437                                 return -EIO;
2438
2439                         xlog_write_adv_cnt(&ptr, &len, &log_offset,
2440                                            sizeof(struct xlog_op_header));
2441
2442                         len += xlog_write_setup_copy(ticket, ophdr,
2443                                                      iclog->ic_size-log_offset,
2444                                                      reg->i_len,
2445                                                      &copy_off, &copy_len,
2446                                                      &partial_copy,
2447                                                      &partial_copy_len);
2448                         xlog_verify_dest_ptr(log, ptr);
2449
2450                         /*
2451                          * Copy region.
2452                          *
2453                          * Unmount records just log an opheader, so can have
2454                          * empty payloads with no data region to copy. Hence we
2455                          * only copy the payload if the vector says it has data
2456                          * to copy.
2457                          */
2458                         ASSERT(copy_len >= 0);
2459                         if (copy_len > 0) {
2460                                 memcpy(ptr, reg->i_addr + copy_off, copy_len);
2461                                 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2462                                                    copy_len);
2463                         }
2464                         copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2465                         record_cnt++;
2466                         data_cnt += contwr ? copy_len : 0;
2467
2468                         error = xlog_write_copy_finish(log, iclog, flags,
2469                                                        &record_cnt, &data_cnt,
2470                                                        &partial_copy,
2471                                                        &partial_copy_len,
2472                                                        log_offset,
2473                                                        commit_iclog);
2474                         if (error)
2475                                 return error;
2476
2477                         /*
2478                          * if we had a partial copy, we need to get more iclog
2479                          * space but we don't want to increment the region
2480                          * index because there is still more is this region to
2481                          * write.
2482                          *
2483                          * If we completed writing this region, and we flushed
2484                          * the iclog (indicated by resetting of the record
2485                          * count), then we also need to get more log space. If
2486                          * this was the last record, though, we are done and
2487                          * can just return.
2488                          */
2489                         if (partial_copy)
2490                                 break;
2491
2492                         if (++index == lv->lv_niovecs) {
2493 next_lv:
2494                                 lv = lv->lv_next;
2495                                 index = 0;
2496                                 if (lv)
2497                                         vecp = lv->lv_iovecp;
2498                         }
2499                         if (record_cnt == 0 && ordered == false) {
2500                                 if (!lv)
2501                                         return 0;
2502                                 break;
2503                         }
2504                 }
2505         }
2506
2507         ASSERT(len == 0);
2508
2509         xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2510         if (!commit_iclog)
2511                 return xlog_state_release_iclog(log, iclog);
2512
2513         ASSERT(flags & XLOG_COMMIT_TRANS);
2514         *commit_iclog = iclog;
2515         return 0;
2516 }
2517
2518
2519 /*****************************************************************************
2520  *
2521  *              State Machine functions
2522  *
2523  *****************************************************************************
2524  */
2525
2526 /* Clean iclogs starting from the head.  This ordering must be
2527  * maintained, so an iclog doesn't become ACTIVE beyond one that
2528  * is SYNCING.  This is also required to maintain the notion that we use
2529  * a ordered wait queue to hold off would be writers to the log when every
2530  * iclog is trying to sync to disk.
2531  *
2532  * State Change: DIRTY -> ACTIVE
2533  */
2534 STATIC void
2535 xlog_state_clean_log(
2536         struct xlog *log)
2537 {
2538         xlog_in_core_t  *iclog;
2539         int changed = 0;
2540
2541         iclog = log->l_iclog;
2542         do {
2543                 if (iclog->ic_state == XLOG_STATE_DIRTY) {
2544                         iclog->ic_state = XLOG_STATE_ACTIVE;
2545                         iclog->ic_offset       = 0;
2546                         ASSERT(iclog->ic_callback == NULL);
2547                         /*
2548                          * If the number of ops in this iclog indicate it just
2549                          * contains the dummy transaction, we can
2550                          * change state into IDLE (the second time around).
2551                          * Otherwise we should change the state into
2552                          * NEED a dummy.
2553                          * We don't need to cover the dummy.
2554                          */
2555                         if (!changed &&
2556                            (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2557                                         XLOG_COVER_OPS)) {
2558                                 changed = 1;
2559                         } else {
2560                                 /*
2561                                  * We have two dirty iclogs so start over
2562                                  * This could also be num of ops indicates
2563                                  * this is not the dummy going out.
2564                                  */
2565                                 changed = 2;
2566                         }
2567                         iclog->ic_header.h_num_logops = 0;
2568                         memset(iclog->ic_header.h_cycle_data, 0,
2569                               sizeof(iclog->ic_header.h_cycle_data));
2570                         iclog->ic_header.h_lsn = 0;
2571                 } else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2572                         /* do nothing */;
2573                 else
2574                         break;  /* stop cleaning */
2575                 iclog = iclog->ic_next;
2576         } while (iclog != log->l_iclog);
2577
2578         /* log is locked when we are called */
2579         /*
2580          * Change state for the dummy log recording.
2581          * We usually go to NEED. But we go to NEED2 if the changed indicates
2582          * we are done writing the dummy record.
2583          * If we are done with the second dummy recored (DONE2), then
2584          * we go to IDLE.
2585          */
2586         if (changed) {
2587                 switch (log->l_covered_state) {
2588                 case XLOG_STATE_COVER_IDLE:
2589                 case XLOG_STATE_COVER_NEED:
2590                 case XLOG_STATE_COVER_NEED2:
2591                         log->l_covered_state = XLOG_STATE_COVER_NEED;
2592                         break;
2593
2594                 case XLOG_STATE_COVER_DONE:
2595                         if (changed == 1)
2596                                 log->l_covered_state = XLOG_STATE_COVER_NEED2;
2597                         else
2598                                 log->l_covered_state = XLOG_STATE_COVER_NEED;
2599                         break;
2600
2601                 case XLOG_STATE_COVER_DONE2:
2602                         if (changed == 1)
2603                                 log->l_covered_state = XLOG_STATE_COVER_IDLE;
2604                         else
2605                                 log->l_covered_state = XLOG_STATE_COVER_NEED;
2606                         break;
2607
2608                 default:
2609                         ASSERT(0);
2610                 }
2611         }
2612 }       /* xlog_state_clean_log */
2613
2614 STATIC xfs_lsn_t
2615 xlog_get_lowest_lsn(
2616         struct xlog     *log)
2617 {
2618         xlog_in_core_t  *lsn_log;
2619         xfs_lsn_t       lowest_lsn, lsn;
2620
2621         lsn_log = log->l_iclog;
2622         lowest_lsn = 0;
2623         do {
2624             if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2625                 lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2626                 if ((lsn && !lowest_lsn) ||
2627                     (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2628                         lowest_lsn = lsn;
2629                 }
2630             }
2631             lsn_log = lsn_log->ic_next;
2632         } while (lsn_log != log->l_iclog);
2633         return lowest_lsn;
2634 }
2635
2636
2637 STATIC void
2638 xlog_state_do_callback(
2639         struct xlog             *log,
2640         int                     aborted,
2641         struct xlog_in_core     *ciclog)
2642 {
2643         xlog_in_core_t     *iclog;
2644         xlog_in_core_t     *first_iclog;        /* used to know when we've
2645                                                  * processed all iclogs once */
2646         xfs_log_callback_t *cb, *cb_next;
2647         int                flushcnt = 0;
2648         xfs_lsn_t          lowest_lsn;
2649         int                ioerrors;    /* counter: iclogs with errors */
2650         int                loopdidcallbacks; /* flag: inner loop did callbacks*/
2651         int                funcdidcallbacks; /* flag: function did callbacks */
2652         int                repeats;     /* for issuing console warnings if
2653                                          * looping too many times */
2654         int                wake = 0;
2655
2656         spin_lock(&log->l_icloglock);
2657         first_iclog = iclog = log->l_iclog;
2658         ioerrors = 0;
2659         funcdidcallbacks = 0;
2660         repeats = 0;
2661
2662         do {
2663                 /*
2664                  * Scan all iclogs starting with the one pointed to by the
2665                  * log.  Reset this starting point each time the log is
2666                  * unlocked (during callbacks).
2667                  *
2668                  * Keep looping through iclogs until one full pass is made
2669                  * without running any callbacks.
2670                  */
2671                 first_iclog = log->l_iclog;
2672                 iclog = log->l_iclog;
2673                 loopdidcallbacks = 0;
2674                 repeats++;
2675
2676                 do {
2677
2678                         /* skip all iclogs in the ACTIVE & DIRTY states */
2679                         if (iclog->ic_state &
2680                             (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2681                                 iclog = iclog->ic_next;
2682                                 continue;
2683                         }
2684
2685                         /*
2686                          * Between marking a filesystem SHUTDOWN and stopping
2687                          * the log, we do flush all iclogs to disk (if there
2688                          * wasn't a log I/O error). So, we do want things to
2689                          * go smoothly in case of just a SHUTDOWN  w/o a
2690                          * LOG_IO_ERROR.
2691                          */
2692                         if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2693                                 /*
2694                                  * Can only perform callbacks in order.  Since
2695                                  * this iclog is not in the DONE_SYNC/
2696                                  * DO_CALLBACK state, we skip the rest and
2697                                  * just try to clean up.  If we set our iclog
2698                                  * to DO_CALLBACK, we will not process it when
2699                                  * we retry since a previous iclog is in the
2700                                  * CALLBACK and the state cannot change since
2701                                  * we are holding the l_icloglock.
2702                                  */
2703                                 if (!(iclog->ic_state &
2704                                         (XLOG_STATE_DONE_SYNC |
2705                                                  XLOG_STATE_DO_CALLBACK))) {
2706                                         if (ciclog && (ciclog->ic_state ==
2707                                                         XLOG_STATE_DONE_SYNC)) {
2708                                                 ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2709                                         }
2710                                         break;
2711                                 }
2712                                 /*
2713                                  * We now have an iclog that is in either the
2714                                  * DO_CALLBACK or DONE_SYNC states. The other
2715                                  * states (WANT_SYNC, SYNCING, or CALLBACK were
2716                                  * caught by the above if and are going to
2717                                  * clean (i.e. we aren't doing their callbacks)
2718                                  * see the above if.
2719                                  */
2720
2721                                 /*
2722                                  * We will do one more check here to see if we
2723                                  * have chased our tail around.
2724                                  */
2725
2726                                 lowest_lsn = xlog_get_lowest_lsn(log);
2727                                 if (lowest_lsn &&
2728                                     XFS_LSN_CMP(lowest_lsn,
2729                                                 be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2730                                         iclog = iclog->ic_next;
2731                                         continue; /* Leave this iclog for
2732                                                    * another thread */
2733                                 }
2734
2735                                 iclog->ic_state = XLOG_STATE_CALLBACK;
2736
2737
2738                                 /*
2739                                  * Completion of a iclog IO does not imply that
2740                                  * a transaction has completed, as transactions
2741                                  * can be large enough to span many iclogs. We
2742                                  * cannot change the tail of the log half way
2743                                  * through a transaction as this may be the only
2744                                  * transaction in the log and moving th etail to
2745                                  * point to the middle of it will prevent
2746                                  * recovery from finding the start of the
2747                                  * transaction. Hence we should only update the
2748                                  * last_sync_lsn if this iclog contains
2749                                  * transaction completion callbacks on it.
2750                                  *
2751                                  * We have to do this before we drop the
2752                                  * icloglock to ensure we are the only one that
2753                                  * can update it.
2754                                  */
2755                                 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2756                                         be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2757                                 if (iclog->ic_callback)
2758                                         atomic64_set(&log->l_last_sync_lsn,
2759                                                 be64_to_cpu(iclog->ic_header.h_lsn));
2760
2761                         } else
2762                                 ioerrors++;
2763
2764                         spin_unlock(&log->l_icloglock);
2765
2766                         /*
2767                          * Keep processing entries in the callback list until
2768                          * we come around and it is empty.  We need to
2769                          * atomically see that the list is empty and change the
2770                          * state to DIRTY so that we don't miss any more
2771                          * callbacks being added.
2772                          */
2773                         spin_lock(&iclog->ic_callback_lock);
2774                         cb = iclog->ic_callback;
2775                         while (cb) {
2776                                 iclog->ic_callback_tail = &(iclog->ic_callback);
2777                                 iclog->ic_callback = NULL;
2778                                 spin_unlock(&iclog->ic_callback_lock);
2779
2780                                 /* perform callbacks in the order given */
2781                                 for (; cb; cb = cb_next) {
2782                                         cb_next = cb->cb_next;
2783                                         cb->cb_func(cb->cb_arg, aborted);
2784                                 }
2785                                 spin_lock(&iclog->ic_callback_lock);
2786                                 cb = iclog->ic_callback;
2787                         }
2788
2789                         loopdidcallbacks++;
2790                         funcdidcallbacks++;
2791
2792                         spin_lock(&log->l_icloglock);
2793                         ASSERT(iclog->ic_callback == NULL);
2794                         spin_unlock(&iclog->ic_callback_lock);
2795                         if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2796                                 iclog->ic_state = XLOG_STATE_DIRTY;
2797
2798                         /*
2799                          * Transition from DIRTY to ACTIVE if applicable.
2800                          * NOP if STATE_IOERROR.
2801                          */
2802                         xlog_state_clean_log(log);
2803
2804                         /* wake up threads waiting in xfs_log_force() */
2805                         wake_up_all(&iclog->ic_force_wait);
2806
2807                         iclog = iclog->ic_next;
2808                 } while (first_iclog != iclog);
2809
2810                 if (repeats > 5000) {
2811                         flushcnt += repeats;
2812                         repeats = 0;
2813                         xfs_warn(log->l_mp,
2814                                 "%s: possible infinite loop (%d iterations)",
2815                                 __func__, flushcnt);
2816                 }
2817         } while (!ioerrors && loopdidcallbacks);
2818
2819 #ifdef DEBUG
2820         /*
2821          * Make one last gasp attempt to see if iclogs are being left in limbo.
2822          * If the above loop finds an iclog earlier than the current iclog and
2823          * in one of the syncing states, the current iclog is put into
2824          * DO_CALLBACK and the callbacks are deferred to the completion of the
2825          * earlier iclog. Walk the iclogs in order and make sure that no iclog
2826          * is in DO_CALLBACK unless an earlier iclog is in one of the syncing
2827          * states.
2828          *
2829          * Note that SYNCING|IOABORT is a valid state so we cannot just check
2830          * for ic_state == SYNCING.
2831          */
2832         if (funcdidcallbacks) {
2833                 first_iclog = iclog = log->l_iclog;
2834                 do {
2835                         ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2836                         /*
2837                          * Terminate the loop if iclogs are found in states
2838                          * which will cause other threads to clean up iclogs.
2839                          *
2840                          * SYNCING - i/o completion will go through logs
2841                          * DONE_SYNC - interrupt thread should be waiting for
2842                          *              l_icloglock
2843                          * IOERROR - give up hope all ye who enter here
2844                          */
2845                         if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2846                             iclog->ic_state & XLOG_STATE_SYNCING ||
2847                             iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2848                             iclog->ic_state == XLOG_STATE_IOERROR )
2849                                 break;
2850                         iclog = iclog->ic_next;
2851                 } while (first_iclog != iclog);
2852         }
2853 #endif
2854
2855         if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2856                 wake = 1;
2857         spin_unlock(&log->l_icloglock);
2858
2859         if (wake)
2860                 wake_up_all(&log->l_flush_wait);
2861 }
2862
2863
2864 /*
2865  * Finish transitioning this iclog to the dirty state.
2866  *
2867  * Make sure that we completely execute this routine only when this is
2868  * the last call to the iclog.  There is a good chance that iclog flushes,
2869  * when we reach the end of the physical log, get turned into 2 separate
2870  * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2871  * routine.  By using the reference count bwritecnt, we guarantee that only
2872  * the second completion goes through.
2873  *
2874  * Callbacks could take time, so they are done outside the scope of the
2875  * global state machine log lock.
2876  */
2877 STATIC void
2878 xlog_state_done_syncing(
2879         xlog_in_core_t  *iclog,
2880         int             aborted)
2881 {
2882         struct xlog        *log = iclog->ic_log;
2883
2884         spin_lock(&log->l_icloglock);
2885
2886         ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2887                iclog->ic_state == XLOG_STATE_IOERROR);
2888         ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2889         ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2890
2891
2892         /*
2893          * If we got an error, either on the first buffer, or in the case of
2894          * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2895          * and none should ever be attempted to be written to disk
2896          * again.
2897          */
2898         if (iclog->ic_state != XLOG_STATE_IOERROR) {
2899                 if (--iclog->ic_bwritecnt == 1) {
2900                         spin_unlock(&log->l_icloglock);
2901                         return;
2902                 }
2903                 iclog->ic_state = XLOG_STATE_DONE_SYNC;
2904         }
2905
2906         /*
2907          * Someone could be sleeping prior to writing out the next
2908          * iclog buffer, we wake them all, one will get to do the
2909          * I/O, the others get to wait for the result.
2910          */
2911         wake_up_all(&iclog->ic_write_wait);
2912         spin_unlock(&log->l_icloglock);
2913         xlog_state_do_callback(log, aborted, iclog);    /* also cleans log */
2914 }       /* xlog_state_done_syncing */
2915
2916
2917 /*
2918  * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2919  * sleep.  We wait on the flush queue on the head iclog as that should be
2920  * the first iclog to complete flushing. Hence if all iclogs are syncing,
2921  * we will wait here and all new writes will sleep until a sync completes.
2922  *
2923  * The in-core logs are used in a circular fashion. They are not used
2924  * out-of-order even when an iclog past the head is free.
2925  *
2926  * return:
2927  *      * log_offset where xlog_write() can start writing into the in-core
2928  *              log's data space.
2929  *      * in-core log pointer to which xlog_write() should write.
2930  *      * boolean indicating this is a continued write to an in-core log.
2931  *              If this is the last write, then the in-core log's offset field
2932  *              needs to be incremented, depending on the amount of data which
2933  *              is copied.
2934  */
2935 STATIC int
2936 xlog_state_get_iclog_space(
2937         struct xlog             *log,
2938         int                     len,
2939         struct xlog_in_core     **iclogp,
2940         struct xlog_ticket      *ticket,
2941         int                     *continued_write,
2942         int                     *logoffsetp)
2943 {
2944         int               log_offset;
2945         xlog_rec_header_t *head;
2946         xlog_in_core_t    *iclog;
2947         int               error;
2948
2949 restart:
2950         spin_lock(&log->l_icloglock);
2951         if (XLOG_FORCED_SHUTDOWN(log)) {
2952                 spin_unlock(&log->l_icloglock);
2953                 return -EIO;
2954         }
2955
2956         iclog = log->l_iclog;
2957         if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2958                 XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2959
2960                 /* Wait for log writes to have flushed */
2961                 xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2962                 goto restart;
2963         }
2964
2965         head = &iclog->ic_header;
2966
2967         atomic_inc(&iclog->ic_refcnt);  /* prevents sync */
2968         log_offset = iclog->ic_offset;
2969
2970         /* On the 1st write to an iclog, figure out lsn.  This works
2971          * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2972          * committing to.  If the offset is set, that's how many blocks
2973          * must be written.
2974          */
2975         if (log_offset == 0) {
2976                 ticket->t_curr_res -= log->l_iclog_hsize;
2977                 xlog_tic_add_region(ticket,
2978                                     log->l_iclog_hsize,
2979                                     XLOG_REG_TYPE_LRHEADER);
2980                 head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2981                 head->h_lsn = cpu_to_be64(
2982                         xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2983                 ASSERT(log->l_curr_block >= 0);
2984         }
2985
2986         /* If there is enough room to write everything, then do it.  Otherwise,
2987          * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2988          * bit is on, so this will get flushed out.  Don't update ic_offset
2989          * until you know exactly how many bytes get copied.  Therefore, wait
2990          * until later to update ic_offset.
2991          *
2992          * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2993          * can fit into remaining data section.
2994          */
2995         if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2996                 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2997
2998                 /*
2999                  * If I'm the only one writing to this iclog, sync it to disk.
3000                  * We need to do an atomic compare and decrement here to avoid
3001                  * racing with concurrent atomic_dec_and_lock() calls in
3002                  * xlog_state_release_iclog() when there is more than one
3003                  * reference to the iclog.
3004                  */
3005                 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
3006                         /* we are the only one */
3007                         spin_unlock(&log->l_icloglock);
3008                         error = xlog_state_release_iclog(log, iclog);
3009                         if (error)
3010                                 return error;
3011                 } else {
3012                         spin_unlock(&log->l_icloglock);
3013                 }
3014                 goto restart;
3015         }
3016
3017         /* Do we have enough room to write the full amount in the remainder
3018          * of this iclog?  Or must we continue a write on the next iclog and
3019          * mark this iclog as completely taken?  In the case where we switch
3020          * iclogs (to mark it taken), this particular iclog will release/sync
3021          * to disk in xlog_write().
3022          */
3023         if (len <= iclog->ic_size - iclog->ic_offset) {
3024                 *continued_write = 0;
3025                 iclog->ic_offset += len;
3026         } else {
3027                 *continued_write = 1;
3028                 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3029         }
3030         *iclogp = iclog;
3031
3032         ASSERT(iclog->ic_offset <= iclog->ic_size);
3033         spin_unlock(&log->l_icloglock);
3034
3035         *logoffsetp = log_offset;
3036         return 0;
3037 }       /* xlog_state_get_iclog_space */
3038
3039 /* The first cnt-1 times through here we don't need to
3040  * move the grant write head because the permanent
3041  * reservation has reserved cnt times the unit amount.
3042  * Release part of current permanent unit reservation and
3043  * reset current reservation to be one units worth.  Also
3044  * move grant reservation head forward.
3045  */
3046 STATIC void
3047 xlog_regrant_reserve_log_space(
3048         struct xlog             *log,
3049         struct xlog_ticket      *ticket)
3050 {
3051         trace_xfs_log_regrant_reserve_enter(log, ticket);
3052
3053         if (ticket->t_cnt > 0)
3054                 ticket->t_cnt--;
3055
3056         xlog_grant_sub_space(log, &log->l_reserve_head.grant,
3057                                         ticket->t_curr_res);
3058         xlog_grant_sub_space(log, &log->l_write_head.grant,
3059                                         ticket->t_curr_res);
3060         ticket->t_curr_res = ticket->t_unit_res;
3061         xlog_tic_reset_res(ticket);
3062
3063         trace_xfs_log_regrant_reserve_sub(log, ticket);
3064
3065         /* just return if we still have some of the pre-reserved space */
3066         if (ticket->t_cnt > 0)
3067                 return;
3068
3069         xlog_grant_add_space(log, &log->l_reserve_head.grant,
3070                                         ticket->t_unit_res);
3071
3072         trace_xfs_log_regrant_reserve_exit(log, ticket);
3073
3074         ticket->t_curr_res = ticket->t_unit_res;
3075         xlog_tic_reset_res(ticket);
3076 }       /* xlog_regrant_reserve_log_space */
3077
3078
3079 /*
3080  * Give back the space left from a reservation.
3081  *
3082  * All the information we need to make a correct determination of space left
3083  * is present.  For non-permanent reservations, things are quite easy.  The
3084  * count should have been decremented to zero.  We only need to deal with the
3085  * space remaining in the current reservation part of the ticket.  If the
3086  * ticket contains a permanent reservation, there may be left over space which
3087  * needs to be released.  A count of N means that N-1 refills of the current
3088  * reservation can be done before we need to ask for more space.  The first
3089  * one goes to fill up the first current reservation.  Once we run out of
3090  * space, the count will stay at zero and the only space remaining will be
3091  * in the current reservation field.
3092  */
3093 STATIC void
3094 xlog_ungrant_log_space(
3095         struct xlog             *log,
3096         struct xlog_ticket      *ticket)
3097 {
3098         int     bytes;
3099
3100         if (ticket->t_cnt > 0)
3101                 ticket->t_cnt--;
3102
3103         trace_xfs_log_ungrant_enter(log, ticket);
3104         trace_xfs_log_ungrant_sub(log, ticket);
3105
3106         /*
3107          * If this is a permanent reservation ticket, we may be able to free
3108          * up more space based on the remaining count.
3109          */
3110         bytes = ticket->t_curr_res;
3111         if (ticket->t_cnt > 0) {
3112                 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3113                 bytes += ticket->t_unit_res*ticket->t_cnt;
3114         }
3115
3116         xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3117         xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3118
3119         trace_xfs_log_ungrant_exit(log, ticket);
3120
3121         xfs_log_space_wake(log->l_mp);
3122 }
3123
3124 /*
3125  * Flush iclog to disk if this is the last reference to the given iclog and
3126  * the WANT_SYNC bit is set.
3127  *
3128  * When this function is entered, the iclog is not necessarily in the
3129  * WANT_SYNC state.  It may be sitting around waiting to get filled.
3130  *
3131  *
3132  */
3133 STATIC int
3134 xlog_state_release_iclog(
3135         struct xlog             *log,
3136         struct xlog_in_core     *iclog)
3137 {
3138         int             sync = 0;       /* do we sync? */
3139
3140         if (iclog->ic_state & XLOG_STATE_IOERROR)
3141                 return -EIO;
3142
3143         ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
3144         if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
3145                 return 0;
3146
3147         if (iclog->ic_state & XLOG_STATE_IOERROR) {
3148                 spin_unlock(&log->l_icloglock);
3149                 return -EIO;
3150         }
3151         ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
3152                iclog->ic_state == XLOG_STATE_WANT_SYNC);
3153
3154         if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
3155                 /* update tail before writing to iclog */
3156                 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
3157                 sync++;
3158                 iclog->ic_state = XLOG_STATE_SYNCING;
3159                 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
3160                 xlog_verify_tail_lsn(log, iclog, tail_lsn);
3161                 /* cycle incremented when incrementing curr_block */
3162         }
3163         spin_unlock(&log->l_icloglock);
3164
3165         /*
3166          * We let the log lock go, so it's possible that we hit a log I/O
3167          * error or some other SHUTDOWN condition that marks the iclog
3168          * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3169          * this iclog has consistent data, so we ignore IOERROR
3170          * flags after this point.
3171          */
3172         if (sync)
3173                 return xlog_sync(log, iclog);
3174         return 0;
3175 }       /* xlog_state_release_iclog */
3176
3177
3178 /*
3179  * This routine will mark the current iclog in the ring as WANT_SYNC
3180  * and move the current iclog pointer to the next iclog in the ring.
3181  * When this routine is called from xlog_state_get_iclog_space(), the
3182  * exact size of the iclog has not yet been determined.  All we know is
3183  * that every data block.  We have run out of space in this log record.
3184  */
3185 STATIC void
3186 xlog_state_switch_iclogs(
3187         struct xlog             *log,
3188         struct xlog_in_core     *iclog,
3189         int                     eventual_size)
3190 {
3191         ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3192         if (!eventual_size)
3193                 eventual_size = iclog->ic_offset;
3194         iclog->ic_state = XLOG_STATE_WANT_SYNC;
3195         iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3196         log->l_prev_block = log->l_curr_block;
3197         log->l_prev_cycle = log->l_curr_cycle;
3198
3199         /* roll log?: ic_offset changed later */
3200         log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3201
3202         /* Round up to next log-sunit */
3203         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3204             log->l_mp->m_sb.sb_logsunit > 1) {
3205                 __uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3206                 log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3207         }
3208
3209         if (log->l_curr_block >= log->l_logBBsize) {
3210                 /*
3211                  * Rewind the current block before the cycle is bumped to make
3212                  * sure that the combined LSN never transiently moves forward
3213                  * when the log wraps to the next cycle. This is to support the
3214                  * unlocked sample of these fields from xlog_valid_lsn(). Most
3215                  * other cases should acquire l_icloglock.
3216                  */
3217                 log->l_curr_block -= log->l_logBBsize;
3218                 ASSERT(log->l_curr_block >= 0);
3219                 smp_wmb();
3220                 log->l_curr_cycle++;
3221                 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3222                         log->l_curr_cycle++;
3223         }
3224         ASSERT(iclog == log->l_iclog);
3225         log->l_iclog = iclog->ic_next;
3226 }       /* xlog_state_switch_iclogs */
3227
3228 /*
3229  * Write out all data in the in-core log as of this exact moment in time.
3230  *
3231  * Data may be written to the in-core log during this call.  However,
3232  * we don't guarantee this data will be written out.  A change from past
3233  * implementation means this routine will *not* write out zero length LRs.
3234  *
3235  * Basically, we try and perform an intelligent scan of the in-core logs.
3236  * If we determine there is no flushable data, we just return.  There is no
3237  * flushable data if:
3238  *
3239  *      1. the current iclog is active and has no data; the previous iclog
3240  *              is in the active or dirty state.
3241  *      2. the current iclog is drity, and the previous iclog is in the
3242  *              active or dirty state.
3243  *
3244  * We may sleep if:
3245  *
3246  *      1. the current iclog is not in the active nor dirty state.
3247  *      2. the current iclog dirty, and the previous iclog is not in the
3248  *              active nor dirty state.
3249  *      3. the current iclog is active, and there is another thread writing
3250  *              to this particular iclog.
3251  *      4. a) the current iclog is active and has no other writers
3252  *         b) when we return from flushing out this iclog, it is still
3253  *              not in the active nor dirty state.
3254  */
3255 int
3256 _xfs_log_force(
3257         struct xfs_mount        *mp,
3258         uint                    flags,
3259         int                     *log_flushed)
3260 {
3261         struct xlog             *log = mp->m_log;
3262         struct xlog_in_core     *iclog;
3263         xfs_lsn_t               lsn;
3264
3265         XFS_STATS_INC(mp, xs_log_force);
3266
3267         xlog_cil_force(log);
3268
3269         spin_lock(&log->l_icloglock);
3270
3271         iclog = log->l_iclog;
3272         if (iclog->ic_state & XLOG_STATE_IOERROR) {
3273                 spin_unlock(&log->l_icloglock);
3274                 return -EIO;
3275         }
3276
3277         /* If the head iclog is not active nor dirty, we just attach
3278          * ourselves to the head and go to sleep.
3279          */
3280         if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3281             iclog->ic_state == XLOG_STATE_DIRTY) {
3282                 /*
3283                  * If the head is dirty or (active and empty), then
3284                  * we need to look at the previous iclog.  If the previous
3285                  * iclog is active or dirty we are done.  There is nothing
3286                  * to sync out.  Otherwise, we attach ourselves to the
3287                  * previous iclog and go to sleep.
3288                  */
3289                 if (iclog->ic_state == XLOG_STATE_DIRTY ||
3290                     (atomic_read(&iclog->ic_refcnt) == 0
3291                      && iclog->ic_offset == 0)) {
3292                         iclog = iclog->ic_prev;
3293                         if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3294                             iclog->ic_state == XLOG_STATE_DIRTY)
3295                                 goto no_sleep;
3296                         else
3297                                 goto maybe_sleep;
3298                 } else {
3299                         if (atomic_read(&iclog->ic_refcnt) == 0) {
3300                                 /* We are the only one with access to this
3301                                  * iclog.  Flush it out now.  There should
3302                                  * be a roundoff of zero to show that someone
3303                                  * has already taken care of the roundoff from
3304                                  * the previous sync.
3305                                  */
3306                                 atomic_inc(&iclog->ic_refcnt);
3307                                 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3308                                 xlog_state_switch_iclogs(log, iclog, 0);
3309                                 spin_unlock(&log->l_icloglock);
3310
3311                                 if (xlog_state_release_iclog(log, iclog))
3312                                         return -EIO;
3313
3314                                 if (log_flushed)
3315                                         *log_flushed = 1;
3316                                 spin_lock(&log->l_icloglock);
3317                                 if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
3318                                     iclog->ic_state != XLOG_STATE_DIRTY)
3319                                         goto maybe_sleep;
3320                                 else
3321                                         goto no_sleep;
3322                         } else {
3323                                 /* Someone else is writing to this iclog.
3324                                  * Use its call to flush out the data.  However,
3325                                  * the other thread may not force out this LR,
3326                                  * so we mark it WANT_SYNC.
3327                                  */
3328                                 xlog_state_switch_iclogs(log, iclog, 0);
3329                                 goto maybe_sleep;
3330                         }
3331                 }
3332         }
3333
3334         /* By the time we come around again, the iclog could've been filled
3335          * which would give it another lsn.  If we have a new lsn, just
3336          * return because the relevant data has been flushed.
3337          */
3338 maybe_sleep:
3339         if (flags & XFS_LOG_SYNC) {
3340                 /*
3341                  * We must check if we're shutting down here, before
3342                  * we wait, while we're holding the l_icloglock.
3343                  * Then we check again after waking up, in case our
3344                  * sleep was disturbed by a bad news.
3345                  */
3346                 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3347                         spin_unlock(&log->l_icloglock);
3348                         return -EIO;
3349                 }
3350                 XFS_STATS_INC(mp, xs_log_force_sleep);
3351                 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3352                 /*
3353                  * No need to grab the log lock here since we're
3354                  * only deciding whether or not to return EIO
3355                  * and the memory read should be atomic.
3356                  */
3357                 if (iclog->ic_state & XLOG_STATE_IOERROR)
3358                         return -EIO;
3359                 if (log_flushed)
3360                         *log_flushed = 1;
3361         } else {
3362
3363 no_sleep:
3364                 spin_unlock(&log->l_icloglock);
3365         }
3366         return 0;
3367 }
3368
3369 /*
3370  * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3371  * about errors or whether the log was flushed or not. This is the normal
3372  * interface to use when trying to unpin items or move the log forward.
3373  */
3374 void
3375 xfs_log_force(
3376         xfs_mount_t     *mp,
3377         uint            flags)
3378 {
3379         int     error;
3380
3381         trace_xfs_log_force(mp, 0);
3382         error = _xfs_log_force(mp, flags, NULL);
3383         if (error)
3384                 xfs_warn(mp, "%s: error %d returned.", __func__, error);
3385 }
3386
3387 /*
3388  * Force the in-core log to disk for a specific LSN.
3389  *
3390  * Find in-core log with lsn.
3391  *      If it is in the DIRTY state, just return.
3392  *      If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3393  *              state and go to sleep or return.
3394  *      If it is in any other state, go to sleep or return.
3395  *
3396  * Synchronous forces are implemented with a signal variable. All callers
3397  * to force a given lsn to disk will wait on a the sv attached to the
3398  * specific in-core log.  When given in-core log finally completes its
3399  * write to disk, that thread will wake up all threads waiting on the
3400  * sv.
3401  */
3402 int
3403 _xfs_log_force_lsn(
3404         struct xfs_mount        *mp,
3405         xfs_lsn_t               lsn,
3406         uint                    flags,
3407         int                     *log_flushed)
3408 {
3409         struct xlog             *log = mp->m_log;
3410         struct xlog_in_core     *iclog;
3411         int                     already_slept = 0;
3412
3413         ASSERT(lsn != 0);
3414
3415         XFS_STATS_INC(mp, xs_log_force);
3416
3417         lsn = xlog_cil_force_lsn(log, lsn);
3418         if (lsn == NULLCOMMITLSN)
3419                 return 0;
3420
3421 try_again:
3422         spin_lock(&log->l_icloglock);
3423         iclog = log->l_iclog;
3424         if (iclog->ic_state & XLOG_STATE_IOERROR) {
3425                 spin_unlock(&log->l_icloglock);
3426                 return -EIO;
3427         }
3428
3429         do {
3430                 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3431                         iclog = iclog->ic_next;
3432                         continue;
3433                 }
3434
3435                 if (iclog->ic_state == XLOG_STATE_DIRTY) {
3436                         spin_unlock(&log->l_icloglock);
3437                         return 0;
3438                 }
3439
3440                 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3441                         /*
3442                          * We sleep here if we haven't already slept (e.g.
3443                          * this is the first time we've looked at the correct
3444                          * iclog buf) and the buffer before us is going to
3445                          * be sync'ed. The reason for this is that if we
3446                          * are doing sync transactions here, by waiting for
3447                          * the previous I/O to complete, we can allow a few
3448                          * more transactions into this iclog before we close
3449                          * it down.
3450                          *
3451                          * Otherwise, we mark the buffer WANT_SYNC, and bump
3452                          * up the refcnt so we can release the log (which
3453                          * drops the ref count).  The state switch keeps new
3454                          * transaction commits from using this buffer.  When
3455                          * the current commits finish writing into the buffer,
3456                          * the refcount will drop to zero and the buffer will
3457                          * go out then.
3458                          */
3459                         if (!already_slept &&
3460                             (iclog->ic_prev->ic_state &
3461                              (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3462                                 ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3463
3464                                 XFS_STATS_INC(mp, xs_log_force_sleep);
3465
3466                                 xlog_wait(&iclog->ic_prev->ic_write_wait,
3467                                                         &log->l_icloglock);
3468                                 if (log_flushed)
3469                                         *log_flushed = 1;
3470                                 already_slept = 1;
3471                                 goto try_again;
3472                         }
3473                         atomic_inc(&iclog->ic_refcnt);
3474                         xlog_state_switch_iclogs(log, iclog, 0);
3475                         spin_unlock(&log->l_icloglock);
3476                         if (xlog_state_release_iclog(log, iclog))
3477                                 return -EIO;
3478                         if (log_flushed)
3479                                 *log_flushed = 1;
3480                         spin_lock(&log->l_icloglock);
3481                 }
3482
3483                 if ((flags & XFS_LOG_SYNC) && /* sleep */
3484                     !(iclog->ic_state &
3485                       (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3486                         /*
3487                          * Don't wait on completion if we know that we've
3488                          * gotten a log write error.
3489                          */
3490                         if (iclog->ic_state & XLOG_STATE_IOERROR) {
3491                                 spin_unlock(&log->l_icloglock);
3492                                 return -EIO;
3493                         }
3494                         XFS_STATS_INC(mp, xs_log_force_sleep);
3495                         xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3496                         /*
3497                          * No need to grab the log lock here since we're
3498                          * only deciding whether or not to return EIO
3499                          * and the memory read should be atomic.
3500                          */
3501                         if (iclog->ic_state & XLOG_STATE_IOERROR)
3502                                 return -EIO;
3503
3504                         if (log_flushed)
3505                                 *log_flushed = 1;
3506                 } else {                /* just return */
3507                         spin_unlock(&log->l_icloglock);
3508                 }
3509
3510                 return 0;
3511         } while (iclog != log->l_iclog);
3512
3513         spin_unlock(&log->l_icloglock);
3514         return 0;
3515 }
3516
3517 /*
3518  * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3519  * about errors or whether the log was flushed or not. This is the normal
3520  * interface to use when trying to unpin items or move the log forward.
3521  */
3522 void
3523 xfs_log_force_lsn(
3524         xfs_mount_t     *mp,
3525         xfs_lsn_t       lsn,
3526         uint            flags)
3527 {
3528         int     error;
3529
3530         trace_xfs_log_force(mp, lsn);
3531         error = _xfs_log_force_lsn(mp, lsn, flags, NULL);
3532         if (error)
3533                 xfs_warn(mp, "%s: error %d returned.", __func__, error);
3534 }
3535
3536 /*
3537  * Called when we want to mark the current iclog as being ready to sync to
3538  * disk.
3539  */
3540 STATIC void
3541 xlog_state_want_sync(
3542         struct xlog             *log,
3543         struct xlog_in_core     *iclog)
3544 {
3545         assert_spin_locked(&log->l_icloglock);
3546
3547         if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3548                 xlog_state_switch_iclogs(log, iclog, 0);
3549         } else {
3550                 ASSERT(iclog->ic_state &
3551                         (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3552         }
3553 }
3554
3555
3556 /*****************************************************************************
3557  *
3558  *              TICKET functions
3559  *
3560  *****************************************************************************
3561  */
3562
3563 /*
3564  * Free a used ticket when its refcount falls to zero.
3565  */
3566 void
3567 xfs_log_ticket_put(
3568         xlog_ticket_t   *ticket)
3569 {
3570         ASSERT(atomic_read(&ticket->t_ref) > 0);
3571         if (atomic_dec_and_test(&ticket->t_ref))
3572                 kmem_zone_free(xfs_log_ticket_zone, ticket);
3573 }
3574
3575 xlog_ticket_t *
3576 xfs_log_ticket_get(
3577         xlog_ticket_t   *ticket)
3578 {
3579         ASSERT(atomic_read(&ticket->t_ref) > 0);
3580         atomic_inc(&ticket->t_ref);
3581         return ticket;
3582 }
3583
3584 /*
3585  * Figure out the total log space unit (in bytes) that would be
3586  * required for a log ticket.
3587  */
3588 int
3589 xfs_log_calc_unit_res(
3590         struct xfs_mount        *mp,
3591         int                     unit_bytes)
3592 {
3593         struct xlog             *log = mp->m_log;
3594         int                     iclog_space;
3595         uint                    num_headers;
3596
3597         /*
3598          * Permanent reservations have up to 'cnt'-1 active log operations
3599          * in the log.  A unit in this case is the amount of space for one
3600          * of these log operations.  Normal reservations have a cnt of 1
3601          * and their unit amount is the total amount of space required.
3602          *
3603          * The following lines of code account for non-transaction data
3604          * which occupy space in the on-disk log.
3605          *
3606          * Normal form of a transaction is:
3607          * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3608          * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3609          *
3610          * We need to account for all the leadup data and trailer data
3611          * around the transaction data.
3612          * And then we need to account for the worst case in terms of using
3613          * more space.
3614          * The worst case will happen if:
3615          * - the placement of the transaction happens to be such that the
3616          *   roundoff is at its maximum
3617          * - the transaction data is synced before the commit record is synced
3618          *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3619          *   Therefore the commit record is in its own Log Record.
3620          *   This can happen as the commit record is called with its
3621          *   own region to xlog_write().
3622          *   This then means that in the worst case, roundoff can happen for
3623          *   the commit-rec as well.
3624          *   The commit-rec is smaller than padding in this scenario and so it is
3625          *   not added separately.
3626          */
3627
3628         /* for trans header */
3629         unit_bytes += sizeof(xlog_op_header_t);
3630         unit_bytes += sizeof(xfs_trans_header_t);
3631
3632         /* for start-rec */
3633         unit_bytes += sizeof(xlog_op_header_t);
3634
3635         /*
3636          * for LR headers - the space for data in an iclog is the size minus
3637          * the space used for the headers. If we use the iclog size, then we
3638          * undercalculate the number of headers required.
3639          *
3640          * Furthermore - the addition of op headers for split-recs might
3641          * increase the space required enough to require more log and op
3642          * headers, so take that into account too.
3643          *
3644          * IMPORTANT: This reservation makes the assumption that if this
3645          * transaction is the first in an iclog and hence has the LR headers
3646          * accounted to it, then the remaining space in the iclog is
3647          * exclusively for this transaction.  i.e. if the transaction is larger
3648          * than the iclog, it will be the only thing in that iclog.
3649          * Fundamentally, this means we must pass the entire log vector to
3650          * xlog_write to guarantee this.
3651          */
3652         iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3653         num_headers = howmany(unit_bytes, iclog_space);
3654
3655         /* for split-recs - ophdrs added when data split over LRs */
3656         unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3657
3658         /* add extra header reservations if we overrun */
3659         while (!num_headers ||
3660                howmany(unit_bytes, iclog_space) > num_headers) {
3661                 unit_bytes += sizeof(xlog_op_header_t);
3662                 num_headers++;
3663         }
3664         unit_bytes += log->l_iclog_hsize * num_headers;
3665
3666         /* for commit-rec LR header - note: padding will subsume the ophdr */
3667         unit_bytes += log->l_iclog_hsize;
3668
3669         /* for roundoff padding for transaction data and one for commit record */
3670         if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3671                 /* log su roundoff */
3672                 unit_bytes += 2 * mp->m_sb.sb_logsunit;
3673         } else {
3674                 /* BB roundoff */
3675                 unit_bytes += 2 * BBSIZE;
3676         }
3677
3678         return unit_bytes;
3679 }
3680
3681 /*
3682  * Allocate and initialise a new log ticket.
3683  */
3684 struct xlog_ticket *
3685 xlog_ticket_alloc(
3686         struct xlog             *log,
3687         int                     unit_bytes,
3688         int                     cnt,
3689         char                    client,
3690         bool                    permanent,
3691         xfs_km_flags_t          alloc_flags)
3692 {
3693         struct xlog_ticket      *tic;
3694         int                     unit_res;
3695
3696         tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3697         if (!tic)
3698                 return NULL;
3699
3700         unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3701
3702         atomic_set(&tic->t_ref, 1);
3703         tic->t_task             = current;
3704         INIT_LIST_HEAD(&tic->t_queue);
3705         tic->t_unit_res         = unit_res;
3706         tic->t_curr_res         = unit_res;
3707         tic->t_cnt              = cnt;
3708         tic->t_ocnt             = cnt;
3709         tic->t_tid              = prandom_u32();
3710         tic->t_clientid         = client;
3711         tic->t_flags            = XLOG_TIC_INITED;
3712         tic->t_trans_type       = 0;
3713         if (permanent)
3714                 tic->t_flags |= XLOG_TIC_PERM_RESERV;
3715
3716         xlog_tic_reset_res(tic);
3717
3718         return tic;
3719 }
3720
3721
3722 /******************************************************************************
3723  *
3724  *              Log debug routines
3725  *
3726  ******************************************************************************
3727  */
3728 #if defined(DEBUG)
3729 /*
3730  * Make sure that the destination ptr is within the valid data region of
3731  * one of the iclogs.  This uses backup pointers stored in a different
3732  * part of the log in case we trash the log structure.
3733  */
3734 void
3735 xlog_verify_dest_ptr(
3736         struct xlog     *log,
3737         void            *ptr)
3738 {
3739         int i;
3740         int good_ptr = 0;
3741
3742         for (i = 0; i < log->l_iclog_bufs; i++) {
3743                 if (ptr >= log->l_iclog_bak[i] &&
3744                     ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3745                         good_ptr++;
3746         }
3747
3748         if (!good_ptr)
3749                 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3750 }
3751
3752 /*
3753  * Check to make sure the grant write head didn't just over lap the tail.  If
3754  * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3755  * the cycles differ by exactly one and check the byte count.
3756  *
3757  * This check is run unlocked, so can give false positives. Rather than assert
3758  * on failures, use a warn-once flag and a panic tag to allow the admin to
3759  * determine if they want to panic the machine when such an error occurs. For
3760  * debug kernels this will have the same effect as using an assert but, unlinke
3761  * an assert, it can be turned off at runtime.
3762  */
3763 STATIC void
3764 xlog_verify_grant_tail(
3765         struct xlog     *log)
3766 {
3767         int             tail_cycle, tail_blocks;
3768         int             cycle, space;
3769
3770         xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3771         xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3772         if (tail_cycle != cycle) {
3773                 if (cycle - 1 != tail_cycle &&
3774                     !(log->l_flags & XLOG_TAIL_WARN)) {
3775                         xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3776                                 "%s: cycle - 1 != tail_cycle", __func__);
3777                         log->l_flags |= XLOG_TAIL_WARN;
3778                 }
3779
3780                 if (space > BBTOB(tail_blocks) &&
3781                     !(log->l_flags & XLOG_TAIL_WARN)) {
3782                         xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3783                                 "%s: space > BBTOB(tail_blocks)", __func__);
3784                         log->l_flags |= XLOG_TAIL_WARN;
3785                 }
3786         }
3787 }
3788
3789 /* check if it will fit */
3790 STATIC void
3791 xlog_verify_tail_lsn(
3792         struct xlog             *log,
3793         struct xlog_in_core     *iclog,
3794         xfs_lsn_t               tail_lsn)
3795 {
3796     int blocks;
3797
3798     if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3799         blocks =
3800             log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3801         if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3802                 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3803     } else {
3804         ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3805
3806         if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3807                 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3808
3809         blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3810         if (blocks < BTOBB(iclog->ic_offset) + 1)
3811                 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3812     }
3813 }       /* xlog_verify_tail_lsn */
3814
3815 /*
3816  * Perform a number of checks on the iclog before writing to disk.
3817  *
3818  * 1. Make sure the iclogs are still circular
3819  * 2. Make sure we have a good magic number
3820  * 3. Make sure we don't have magic numbers in the data
3821  * 4. Check fields of each log operation header for:
3822  *      A. Valid client identifier
3823  *      B. tid ptr value falls in valid ptr space (user space code)
3824  *      C. Length in log record header is correct according to the
3825  *              individual operation headers within record.
3826  * 5. When a bwrite will occur within 5 blocks of the front of the physical
3827  *      log, check the preceding blocks of the physical log to make sure all
3828  *      the cycle numbers agree with the current cycle number.
3829  */
3830 STATIC void
3831 xlog_verify_iclog(
3832         struct xlog             *log,
3833         struct xlog_in_core     *iclog,
3834         int                     count,
3835         bool                    syncing)
3836 {
3837         xlog_op_header_t        *ophead;
3838         xlog_in_core_t          *icptr;
3839         xlog_in_core_2_t        *xhdr;
3840         void                    *base_ptr, *ptr, *p;
3841         ptrdiff_t               field_offset;
3842         __uint8_t               clientid;
3843         int                     len, i, j, k, op_len;
3844         int                     idx;
3845
3846         /* check validity of iclog pointers */
3847         spin_lock(&log->l_icloglock);
3848         icptr = log->l_iclog;
3849         for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3850                 ASSERT(icptr);
3851
3852         if (icptr != log->l_iclog)
3853                 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3854         spin_unlock(&log->l_icloglock);
3855
3856         /* check log magic numbers */
3857         if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3858                 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3859
3860         base_ptr = ptr = &iclog->ic_header;
3861         p = &iclog->ic_header;
3862         for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3863                 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3864                         xfs_emerg(log->l_mp, "%s: unexpected magic num",
3865                                 __func__);
3866         }
3867
3868         /* check fields */
3869         len = be32_to_cpu(iclog->ic_header.h_num_logops);
3870         base_ptr = ptr = iclog->ic_datap;
3871         ophead = ptr;
3872         xhdr = iclog->ic_data;
3873         for (i = 0; i < len; i++) {
3874                 ophead = ptr;
3875
3876                 /* clientid is only 1 byte */
3877                 p = &ophead->oh_clientid;
3878                 field_offset = p - base_ptr;
3879                 if (!syncing || (field_offset & 0x1ff)) {
3880                         clientid = ophead->oh_clientid;
3881                 } else {
3882                         idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
3883                         if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3884                                 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3885                                 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3886                                 clientid = xlog_get_client_id(
3887                                         xhdr[j].hic_xheader.xh_cycle_data[k]);
3888                         } else {
3889                                 clientid = xlog_get_client_id(
3890                                         iclog->ic_header.h_cycle_data[idx]);
3891                         }
3892                 }
3893                 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3894                         xfs_warn(log->l_mp,
3895                                 "%s: invalid clientid %d op 0x%p offset 0x%lx",
3896                                 __func__, clientid, ophead,
3897                                 (unsigned long)field_offset);
3898
3899                 /* check length */
3900                 p = &ophead->oh_len;
3901                 field_offset = p - base_ptr;
3902                 if (!syncing || (field_offset & 0x1ff)) {
3903                         op_len = be32_to_cpu(ophead->oh_len);
3904                 } else {
3905                         idx = BTOBBT((uintptr_t)&ophead->oh_len -
3906                                     (uintptr_t)iclog->ic_datap);
3907                         if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3908                                 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3909                                 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3910                                 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3911                         } else {
3912                                 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3913                         }
3914                 }
3915                 ptr += sizeof(xlog_op_header_t) + op_len;
3916         }
3917 }       /* xlog_verify_iclog */
3918 #endif
3919
3920 /*
3921  * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3922  */
3923 STATIC int
3924 xlog_state_ioerror(
3925         struct xlog     *log)
3926 {
3927         xlog_in_core_t  *iclog, *ic;
3928
3929         iclog = log->l_iclog;
3930         if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3931                 /*
3932                  * Mark all the incore logs IOERROR.
3933                  * From now on, no log flushes will result.
3934                  */
3935                 ic = iclog;
3936                 do {
3937                         ic->ic_state = XLOG_STATE_IOERROR;
3938                         ic = ic->ic_next;
3939                 } while (ic != iclog);
3940                 return 0;
3941         }
3942         /*
3943          * Return non-zero, if state transition has already happened.
3944          */
3945         return 1;
3946 }
3947
3948 /*
3949  * This is called from xfs_force_shutdown, when we're forcibly
3950  * shutting down the filesystem, typically because of an IO error.
3951  * Our main objectives here are to make sure that:
3952  *      a. if !logerror, flush the logs to disk. Anything modified
3953  *         after this is ignored.
3954  *      b. the filesystem gets marked 'SHUTDOWN' for all interested
3955  *         parties to find out, 'atomically'.
3956  *      c. those who're sleeping on log reservations, pinned objects and
3957  *          other resources get woken up, and be told the bad news.
3958  *      d. nothing new gets queued up after (b) and (c) are done.
3959  *
3960  * Note: for the !logerror case we need to flush the regions held in memory out
3961  * to disk first. This needs to be done before the log is marked as shutdown,
3962  * otherwise the iclog writes will fail.
3963  */
3964 int
3965 xfs_log_force_umount(
3966         struct xfs_mount        *mp,
3967         int                     logerror)
3968 {
3969         struct xlog     *log;
3970         int             retval;
3971
3972         log = mp->m_log;
3973
3974         /*
3975          * If this happens during log recovery, don't worry about
3976          * locking; the log isn't open for business yet.
3977          */
3978         if (!log ||
3979             log->l_flags & XLOG_ACTIVE_RECOVERY) {
3980                 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3981                 if (mp->m_sb_bp)
3982                         mp->m_sb_bp->b_flags |= XBF_DONE;
3983                 return 0;
3984         }
3985
3986         /*
3987          * Somebody could've already done the hard work for us.
3988          * No need to get locks for this.
3989          */
3990         if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3991                 ASSERT(XLOG_FORCED_SHUTDOWN(log));
3992                 return 1;
3993         }
3994
3995         /*
3996          * Flush all the completed transactions to disk before marking the log
3997          * being shut down. We need to do it in this order to ensure that
3998          * completed operations are safely on disk before we shut down, and that
3999          * we don't have to issue any buffer IO after the shutdown flags are set
4000          * to guarantee this.
4001          */
4002         if (!logerror)
4003                 _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
4004
4005         /*
4006          * mark the filesystem and the as in a shutdown state and wake
4007          * everybody up to tell them the bad news.
4008          */
4009         spin_lock(&log->l_icloglock);
4010         mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
4011         if (mp->m_sb_bp)
4012                 mp->m_sb_bp->b_flags |= XBF_DONE;
4013
4014         /*
4015          * Mark the log and the iclogs with IO error flags to prevent any
4016          * further log IO from being issued or completed.
4017          */
4018         log->l_flags |= XLOG_IO_ERROR;
4019         retval = xlog_state_ioerror(log);
4020         spin_unlock(&log->l_icloglock);
4021
4022         /*
4023          * We don't want anybody waiting for log reservations after this. That
4024          * means we have to wake up everybody queued up on reserveq as well as
4025          * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
4026          * we don't enqueue anything once the SHUTDOWN flag is set, and this
4027          * action is protected by the grant locks.
4028          */
4029         xlog_grant_head_wake_all(&log->l_reserve_head);
4030         xlog_grant_head_wake_all(&log->l_write_head);
4031
4032         /*
4033          * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
4034          * as if the log writes were completed. The abort handling in the log
4035          * item committed callback functions will do this again under lock to
4036          * avoid races.
4037          */
4038         wake_up_all(&log->l_cilp->xc_commit_wait);
4039         xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
4040
4041 #ifdef XFSERRORDEBUG
4042         {
4043                 xlog_in_core_t  *iclog;
4044
4045                 spin_lock(&log->l_icloglock);
4046                 iclog = log->l_iclog;
4047                 do {
4048                         ASSERT(iclog->ic_callback == 0);
4049                         iclog = iclog->ic_next;
4050                 } while (iclog != log->l_iclog);
4051                 spin_unlock(&log->l_icloglock);
4052         }
4053 #endif
4054         /* return non-zero if log IOERROR transition had already happened */
4055         return retval;
4056 }
4057
4058 STATIC int
4059 xlog_iclogs_empty(
4060         struct xlog     *log)
4061 {
4062         xlog_in_core_t  *iclog;
4063
4064         iclog = log->l_iclog;
4065         do {
4066                 /* endianness does not matter here, zero is zero in
4067                  * any language.
4068                  */
4069                 if (iclog->ic_header.h_num_logops)
4070                         return 0;
4071                 iclog = iclog->ic_next;
4072         } while (iclog != log->l_iclog);
4073         return 1;
4074 }
4075
4076 /*
4077  * Verify that an LSN stamped into a piece of metadata is valid. This is
4078  * intended for use in read verifiers on v5 superblocks.
4079  */
4080 bool
4081 xfs_log_check_lsn(
4082         struct xfs_mount        *mp,
4083         xfs_lsn_t               lsn)
4084 {
4085         struct xlog             *log = mp->m_log;
4086         bool                    valid;
4087
4088         /*
4089          * norecovery mode skips mount-time log processing and unconditionally
4090          * resets the in-core LSN. We can't validate in this mode, but
4091          * modifications are not allowed anyways so just return true.
4092          */
4093         if (mp->m_flags & XFS_MOUNT_NORECOVERY)
4094                 return true;
4095
4096         /*
4097          * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
4098          * handled by recovery and thus safe to ignore here.
4099          */
4100         if (lsn == NULLCOMMITLSN)
4101                 return true;
4102
4103         valid = xlog_valid_lsn(mp->m_log, lsn);
4104
4105         /* warn the user about what's gone wrong before verifier failure */
4106         if (!valid) {
4107                 spin_lock(&log->l_icloglock);
4108                 xfs_warn(mp,
4109 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
4110 "Please unmount and run xfs_repair (>= v4.3) to resolve.",
4111                          CYCLE_LSN(lsn), BLOCK_LSN(lsn),
4112                          log->l_curr_cycle, log->l_curr_block);
4113                 spin_unlock(&log->l_icloglock);
4114         }
4115
4116         return valid;
4117 }