Merge branch 'acpi-battery'
[cascardo/linux.git] / include / linux / perf_event.h
1 /*
2  * Performance events:
3  *
4  *    Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5  *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6  *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7  *
8  * Data type definitions, declarations, prototypes.
9  *
10  *    Started by: Thomas Gleixner and Ingo Molnar
11  *
12  * For licencing details see kernel-base/COPYING
13  */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16
17 #include <uapi/linux/perf_event.h>
18
19 /*
20  * Kernel-internal data types and definitions:
21  */
22
23 #ifdef CONFIG_PERF_EVENTS
24 # include <asm/perf_event.h>
25 # include <asm/local64.h>
26 #endif
27
28 struct perf_guest_info_callbacks {
29         int                             (*is_in_guest)(void);
30         int                             (*is_user_mode)(void);
31         unsigned long                   (*get_guest_ip)(void);
32 };
33
34 #ifdef CONFIG_HAVE_HW_BREAKPOINT
35 #include <asm/hw_breakpoint.h>
36 #endif
37
38 #include <linux/list.h>
39 #include <linux/mutex.h>
40 #include <linux/rculist.h>
41 #include <linux/rcupdate.h>
42 #include <linux/spinlock.h>
43 #include <linux/hrtimer.h>
44 #include <linux/fs.h>
45 #include <linux/pid_namespace.h>
46 #include <linux/workqueue.h>
47 #include <linux/ftrace.h>
48 #include <linux/cpu.h>
49 #include <linux/irq_work.h>
50 #include <linux/static_key.h>
51 #include <linux/jump_label_ratelimit.h>
52 #include <linux/atomic.h>
53 #include <linux/sysfs.h>
54 #include <linux/perf_regs.h>
55 #include <linux/workqueue.h>
56 #include <linux/cgroup.h>
57 #include <asm/local.h>
58
59 struct perf_callchain_entry {
60         __u64                           nr;
61         __u64                           ip[0]; /* /proc/sys/kernel/perf_event_max_stack */
62 };
63
64 struct perf_raw_record {
65         u32                             size;
66         void                            *data;
67 };
68
69 /*
70  * branch stack layout:
71  *  nr: number of taken branches stored in entries[]
72  *
73  * Note that nr can vary from sample to sample
74  * branches (to, from) are stored from most recent
75  * to least recent, i.e., entries[0] contains the most
76  * recent branch.
77  */
78 struct perf_branch_stack {
79         __u64                           nr;
80         struct perf_branch_entry        entries[0];
81 };
82
83 struct task_struct;
84
85 /*
86  * extra PMU register associated with an event
87  */
88 struct hw_perf_event_extra {
89         u64             config; /* register value */
90         unsigned int    reg;    /* register address or index */
91         int             alloc;  /* extra register already allocated */
92         int             idx;    /* index in shared_regs->regs[] */
93 };
94
95 /**
96  * struct hw_perf_event - performance event hardware details:
97  */
98 struct hw_perf_event {
99 #ifdef CONFIG_PERF_EVENTS
100         union {
101                 struct { /* hardware */
102                         u64             config;
103                         u64             last_tag;
104                         unsigned long   config_base;
105                         unsigned long   event_base;
106                         int             event_base_rdpmc;
107                         int             idx;
108                         int             last_cpu;
109                         int             flags;
110
111                         struct hw_perf_event_extra extra_reg;
112                         struct hw_perf_event_extra branch_reg;
113                 };
114                 struct { /* software */
115                         struct hrtimer  hrtimer;
116                 };
117                 struct { /* tracepoint */
118                         /* for tp_event->class */
119                         struct list_head        tp_list;
120                 };
121                 struct { /* intel_cqm */
122                         int                     cqm_state;
123                         u32                     cqm_rmid;
124                         int                     is_group_event;
125                         struct list_head        cqm_events_entry;
126                         struct list_head        cqm_groups_entry;
127                         struct list_head        cqm_group_entry;
128                 };
129                 struct { /* itrace */
130                         int                     itrace_started;
131                 };
132                 struct { /* amd_power */
133                         u64     pwr_acc;
134                         u64     ptsc;
135                 };
136 #ifdef CONFIG_HAVE_HW_BREAKPOINT
137                 struct { /* breakpoint */
138                         /*
139                          * Crufty hack to avoid the chicken and egg
140                          * problem hw_breakpoint has with context
141                          * creation and event initalization.
142                          */
143                         struct arch_hw_breakpoint       info;
144                         struct list_head                bp_list;
145                 };
146 #endif
147         };
148         /*
149          * If the event is a per task event, this will point to the task in
150          * question. See the comment in perf_event_alloc().
151          */
152         struct task_struct              *target;
153
154         /*
155          * PMU would store hardware filter configuration
156          * here.
157          */
158         void                            *addr_filters;
159
160         /* Last sync'ed generation of filters */
161         unsigned long                   addr_filters_gen;
162
163 /*
164  * hw_perf_event::state flags; used to track the PERF_EF_* state.
165  */
166 #define PERF_HES_STOPPED        0x01 /* the counter is stopped */
167 #define PERF_HES_UPTODATE       0x02 /* event->count up-to-date */
168 #define PERF_HES_ARCH           0x04
169
170         int                             state;
171
172         /*
173          * The last observed hardware counter value, updated with a
174          * local64_cmpxchg() such that pmu::read() can be called nested.
175          */
176         local64_t                       prev_count;
177
178         /*
179          * The period to start the next sample with.
180          */
181         u64                             sample_period;
182
183         /*
184          * The period we started this sample with.
185          */
186         u64                             last_period;
187
188         /*
189          * However much is left of the current period; note that this is
190          * a full 64bit value and allows for generation of periods longer
191          * than hardware might allow.
192          */
193         local64_t                       period_left;
194
195         /*
196          * State for throttling the event, see __perf_event_overflow() and
197          * perf_adjust_freq_unthr_context().
198          */
199         u64                             interrupts_seq;
200         u64                             interrupts;
201
202         /*
203          * State for freq target events, see __perf_event_overflow() and
204          * perf_adjust_freq_unthr_context().
205          */
206         u64                             freq_time_stamp;
207         u64                             freq_count_stamp;
208 #endif
209 };
210
211 struct perf_event;
212
213 /*
214  * Common implementation detail of pmu::{start,commit,cancel}_txn
215  */
216 #define PERF_PMU_TXN_ADD  0x1           /* txn to add/schedule event on PMU */
217 #define PERF_PMU_TXN_READ 0x2           /* txn to read event group from PMU */
218
219 /**
220  * pmu::capabilities flags
221  */
222 #define PERF_PMU_CAP_NO_INTERRUPT               0x01
223 #define PERF_PMU_CAP_NO_NMI                     0x02
224 #define PERF_PMU_CAP_AUX_NO_SG                  0x04
225 #define PERF_PMU_CAP_AUX_SW_DOUBLEBUF           0x08
226 #define PERF_PMU_CAP_EXCLUSIVE                  0x10
227 #define PERF_PMU_CAP_ITRACE                     0x20
228 #define PERF_PMU_CAP_HETEROGENEOUS_CPUS         0x40
229
230 /**
231  * struct pmu - generic performance monitoring unit
232  */
233 struct pmu {
234         struct list_head                entry;
235
236         struct module                   *module;
237         struct device                   *dev;
238         const struct attribute_group    **attr_groups;
239         const char                      *name;
240         int                             type;
241
242         /*
243          * various common per-pmu feature flags
244          */
245         int                             capabilities;
246
247         int * __percpu                  pmu_disable_count;
248         struct perf_cpu_context * __percpu pmu_cpu_context;
249         atomic_t                        exclusive_cnt; /* < 0: cpu; > 0: tsk */
250         int                             task_ctx_nr;
251         int                             hrtimer_interval_ms;
252
253         /* number of address filters this PMU can do */
254         unsigned int                    nr_addr_filters;
255
256         /*
257          * Fully disable/enable this PMU, can be used to protect from the PMI
258          * as well as for lazy/batch writing of the MSRs.
259          */
260         void (*pmu_enable)              (struct pmu *pmu); /* optional */
261         void (*pmu_disable)             (struct pmu *pmu); /* optional */
262
263         /*
264          * Try and initialize the event for this PMU.
265          *
266          * Returns:
267          *  -ENOENT     -- @event is not for this PMU
268          *
269          *  -ENODEV     -- @event is for this PMU but PMU not present
270          *  -EBUSY      -- @event is for this PMU but PMU temporarily unavailable
271          *  -EINVAL     -- @event is for this PMU but @event is not valid
272          *  -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
273          *  -EACCESS    -- @event is for this PMU, @event is valid, but no privilidges
274          *
275          *  0           -- @event is for this PMU and valid
276          *
277          * Other error return values are allowed.
278          */
279         int (*event_init)               (struct perf_event *event);
280
281         /*
282          * Notification that the event was mapped or unmapped.  Called
283          * in the context of the mapping task.
284          */
285         void (*event_mapped)            (struct perf_event *event); /*optional*/
286         void (*event_unmapped)          (struct perf_event *event); /*optional*/
287
288         /*
289          * Flags for ->add()/->del()/ ->start()/->stop(). There are
290          * matching hw_perf_event::state flags.
291          */
292 #define PERF_EF_START   0x01            /* start the counter when adding    */
293 #define PERF_EF_RELOAD  0x02            /* reload the counter when starting */
294 #define PERF_EF_UPDATE  0x04            /* update the counter when stopping */
295
296         /*
297          * Adds/Removes a counter to/from the PMU, can be done inside a
298          * transaction, see the ->*_txn() methods.
299          *
300          * The add/del callbacks will reserve all hardware resources required
301          * to service the event, this includes any counter constraint
302          * scheduling etc.
303          *
304          * Called with IRQs disabled and the PMU disabled on the CPU the event
305          * is on.
306          *
307          * ->add() called without PERF_EF_START should result in the same state
308          *  as ->add() followed by ->stop().
309          *
310          * ->del() must always PERF_EF_UPDATE stop an event. If it calls
311          *  ->stop() that must deal with already being stopped without
312          *  PERF_EF_UPDATE.
313          */
314         int  (*add)                     (struct perf_event *event, int flags);
315         void (*del)                     (struct perf_event *event, int flags);
316
317         /*
318          * Starts/Stops a counter present on the PMU.
319          *
320          * The PMI handler should stop the counter when perf_event_overflow()
321          * returns !0. ->start() will be used to continue.
322          *
323          * Also used to change the sample period.
324          *
325          * Called with IRQs disabled and the PMU disabled on the CPU the event
326          * is on -- will be called from NMI context with the PMU generates
327          * NMIs.
328          *
329          * ->stop() with PERF_EF_UPDATE will read the counter and update
330          *  period/count values like ->read() would.
331          *
332          * ->start() with PERF_EF_RELOAD will reprogram the the counter
333          *  value, must be preceded by a ->stop() with PERF_EF_UPDATE.
334          */
335         void (*start)                   (struct perf_event *event, int flags);
336         void (*stop)                    (struct perf_event *event, int flags);
337
338         /*
339          * Updates the counter value of the event.
340          *
341          * For sampling capable PMUs this will also update the software period
342          * hw_perf_event::period_left field.
343          */
344         void (*read)                    (struct perf_event *event);
345
346         /*
347          * Group events scheduling is treated as a transaction, add
348          * group events as a whole and perform one schedulability test.
349          * If the test fails, roll back the whole group
350          *
351          * Start the transaction, after this ->add() doesn't need to
352          * do schedulability tests.
353          *
354          * Optional.
355          */
356         void (*start_txn)               (struct pmu *pmu, unsigned int txn_flags);
357         /*
358          * If ->start_txn() disabled the ->add() schedulability test
359          * then ->commit_txn() is required to perform one. On success
360          * the transaction is closed. On error the transaction is kept
361          * open until ->cancel_txn() is called.
362          *
363          * Optional.
364          */
365         int  (*commit_txn)              (struct pmu *pmu);
366         /*
367          * Will cancel the transaction, assumes ->del() is called
368          * for each successful ->add() during the transaction.
369          *
370          * Optional.
371          */
372         void (*cancel_txn)              (struct pmu *pmu);
373
374         /*
375          * Will return the value for perf_event_mmap_page::index for this event,
376          * if no implementation is provided it will default to: event->hw.idx + 1.
377          */
378         int (*event_idx)                (struct perf_event *event); /*optional */
379
380         /*
381          * context-switches callback
382          */
383         void (*sched_task)              (struct perf_event_context *ctx,
384                                         bool sched_in);
385         /*
386          * PMU specific data size
387          */
388         size_t                          task_ctx_size;
389
390
391         /*
392          * Return the count value for a counter.
393          */
394         u64 (*count)                    (struct perf_event *event); /*optional*/
395
396         /*
397          * Set up pmu-private data structures for an AUX area
398          */
399         void *(*setup_aux)              (int cpu, void **pages,
400                                          int nr_pages, bool overwrite);
401                                         /* optional */
402
403         /*
404          * Free pmu-private AUX data structures
405          */
406         void (*free_aux)                (void *aux); /* optional */
407
408         /*
409          * Validate address range filters: make sure the HW supports the
410          * requested configuration and number of filters; return 0 if the
411          * supplied filters are valid, -errno otherwise.
412          *
413          * Runs in the context of the ioctl()ing process and is not serialized
414          * with the rest of the PMU callbacks.
415          */
416         int (*addr_filters_validate)    (struct list_head *filters);
417                                         /* optional */
418
419         /*
420          * Synchronize address range filter configuration:
421          * translate hw-agnostic filters into hardware configuration in
422          * event::hw::addr_filters.
423          *
424          * Runs as a part of filter sync sequence that is done in ->start()
425          * callback by calling perf_event_addr_filters_sync().
426          *
427          * May (and should) traverse event::addr_filters::list, for which its
428          * caller provides necessary serialization.
429          */
430         void (*addr_filters_sync)       (struct perf_event *event);
431                                         /* optional */
432
433         /*
434          * Filter events for PMU-specific reasons.
435          */
436         int (*filter_match)             (struct perf_event *event); /* optional */
437 };
438
439 /**
440  * struct perf_addr_filter - address range filter definition
441  * @entry:      event's filter list linkage
442  * @inode:      object file's inode for file-based filters
443  * @offset:     filter range offset
444  * @size:       filter range size
445  * @range:      1: range, 0: address
446  * @filter:     1: filter/start, 0: stop
447  *
448  * This is a hardware-agnostic filter configuration as specified by the user.
449  */
450 struct perf_addr_filter {
451         struct list_head        entry;
452         struct inode            *inode;
453         unsigned long           offset;
454         unsigned long           size;
455         unsigned int            range   : 1,
456                                 filter  : 1;
457 };
458
459 /**
460  * struct perf_addr_filters_head - container for address range filters
461  * @list:       list of filters for this event
462  * @lock:       spinlock that serializes accesses to the @list and event's
463  *              (and its children's) filter generations.
464  *
465  * A child event will use parent's @list (and therefore @lock), so they are
466  * bundled together; see perf_event_addr_filters().
467  */
468 struct perf_addr_filters_head {
469         struct list_head        list;
470         raw_spinlock_t          lock;
471 };
472
473 /**
474  * enum perf_event_active_state - the states of a event
475  */
476 enum perf_event_active_state {
477         PERF_EVENT_STATE_DEAD           = -4,
478         PERF_EVENT_STATE_EXIT           = -3,
479         PERF_EVENT_STATE_ERROR          = -2,
480         PERF_EVENT_STATE_OFF            = -1,
481         PERF_EVENT_STATE_INACTIVE       =  0,
482         PERF_EVENT_STATE_ACTIVE         =  1,
483 };
484
485 struct file;
486 struct perf_sample_data;
487
488 typedef void (*perf_overflow_handler_t)(struct perf_event *,
489                                         struct perf_sample_data *,
490                                         struct pt_regs *regs);
491
492 enum perf_group_flag {
493         PERF_GROUP_SOFTWARE             = 0x1,
494 };
495
496 #define SWEVENT_HLIST_BITS              8
497 #define SWEVENT_HLIST_SIZE              (1 << SWEVENT_HLIST_BITS)
498
499 struct swevent_hlist {
500         struct hlist_head               heads[SWEVENT_HLIST_SIZE];
501         struct rcu_head                 rcu_head;
502 };
503
504 #define PERF_ATTACH_CONTEXT     0x01
505 #define PERF_ATTACH_GROUP       0x02
506 #define PERF_ATTACH_TASK        0x04
507 #define PERF_ATTACH_TASK_DATA   0x08
508
509 struct perf_cgroup;
510 struct ring_buffer;
511
512 /**
513  * struct perf_event - performance event kernel representation:
514  */
515 struct perf_event {
516 #ifdef CONFIG_PERF_EVENTS
517         /*
518          * entry onto perf_event_context::event_list;
519          *   modifications require ctx->lock
520          *   RCU safe iterations.
521          */
522         struct list_head                event_entry;
523
524         /*
525          * XXX: group_entry and sibling_list should be mutually exclusive;
526          * either you're a sibling on a group, or you're the group leader.
527          * Rework the code to always use the same list element.
528          *
529          * Locked for modification by both ctx->mutex and ctx->lock; holding
530          * either sufficies for read.
531          */
532         struct list_head                group_entry;
533         struct list_head                sibling_list;
534
535         /*
536          * We need storage to track the entries in perf_pmu_migrate_context; we
537          * cannot use the event_entry because of RCU and we want to keep the
538          * group in tact which avoids us using the other two entries.
539          */
540         struct list_head                migrate_entry;
541
542         struct hlist_node               hlist_entry;
543         struct list_head                active_entry;
544         int                             nr_siblings;
545         int                             group_flags;
546         struct perf_event               *group_leader;
547         struct pmu                      *pmu;
548         void                            *pmu_private;
549
550         enum perf_event_active_state    state;
551         unsigned int                    attach_state;
552         local64_t                       count;
553         atomic64_t                      child_count;
554
555         /*
556          * These are the total time in nanoseconds that the event
557          * has been enabled (i.e. eligible to run, and the task has
558          * been scheduled in, if this is a per-task event)
559          * and running (scheduled onto the CPU), respectively.
560          *
561          * They are computed from tstamp_enabled, tstamp_running and
562          * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
563          */
564         u64                             total_time_enabled;
565         u64                             total_time_running;
566
567         /*
568          * These are timestamps used for computing total_time_enabled
569          * and total_time_running when the event is in INACTIVE or
570          * ACTIVE state, measured in nanoseconds from an arbitrary point
571          * in time.
572          * tstamp_enabled: the notional time when the event was enabled
573          * tstamp_running: the notional time when the event was scheduled on
574          * tstamp_stopped: in INACTIVE state, the notional time when the
575          *      event was scheduled off.
576          */
577         u64                             tstamp_enabled;
578         u64                             tstamp_running;
579         u64                             tstamp_stopped;
580
581         /*
582          * timestamp shadows the actual context timing but it can
583          * be safely used in NMI interrupt context. It reflects the
584          * context time as it was when the event was last scheduled in.
585          *
586          * ctx_time already accounts for ctx->timestamp. Therefore to
587          * compute ctx_time for a sample, simply add perf_clock().
588          */
589         u64                             shadow_ctx_time;
590
591         struct perf_event_attr          attr;
592         u16                             header_size;
593         u16                             id_header_size;
594         u16                             read_size;
595         struct hw_perf_event            hw;
596
597         struct perf_event_context       *ctx;
598         atomic_long_t                   refcount;
599
600         /*
601          * These accumulate total time (in nanoseconds) that children
602          * events have been enabled and running, respectively.
603          */
604         atomic64_t                      child_total_time_enabled;
605         atomic64_t                      child_total_time_running;
606
607         /*
608          * Protect attach/detach and child_list:
609          */
610         struct mutex                    child_mutex;
611         struct list_head                child_list;
612         struct perf_event               *parent;
613
614         int                             oncpu;
615         int                             cpu;
616
617         struct list_head                owner_entry;
618         struct task_struct              *owner;
619
620         /* mmap bits */
621         struct mutex                    mmap_mutex;
622         atomic_t                        mmap_count;
623
624         struct ring_buffer              *rb;
625         struct list_head                rb_entry;
626         unsigned long                   rcu_batches;
627         int                             rcu_pending;
628
629         /* poll related */
630         wait_queue_head_t               waitq;
631         struct fasync_struct            *fasync;
632
633         /* delayed work for NMIs and such */
634         int                             pending_wakeup;
635         int                             pending_kill;
636         int                             pending_disable;
637         struct irq_work                 pending;
638
639         atomic_t                        event_limit;
640
641         /* address range filters */
642         struct perf_addr_filters_head   addr_filters;
643         /* vma address array for file-based filders */
644         unsigned long                   *addr_filters_offs;
645         unsigned long                   addr_filters_gen;
646
647         void (*destroy)(struct perf_event *);
648         struct rcu_head                 rcu_head;
649
650         struct pid_namespace            *ns;
651         u64                             id;
652
653         u64                             (*clock)(void);
654         perf_overflow_handler_t         overflow_handler;
655         void                            *overflow_handler_context;
656
657 #ifdef CONFIG_EVENT_TRACING
658         struct trace_event_call         *tp_event;
659         struct event_filter             *filter;
660 #ifdef CONFIG_FUNCTION_TRACER
661         struct ftrace_ops               ftrace_ops;
662 #endif
663 #endif
664
665 #ifdef CONFIG_CGROUP_PERF
666         struct perf_cgroup              *cgrp; /* cgroup event is attach to */
667         int                             cgrp_defer_enabled;
668 #endif
669
670 #endif /* CONFIG_PERF_EVENTS */
671 };
672
673 /**
674  * struct perf_event_context - event context structure
675  *
676  * Used as a container for task events and CPU events as well:
677  */
678 struct perf_event_context {
679         struct pmu                      *pmu;
680         /*
681          * Protect the states of the events in the list,
682          * nr_active, and the list:
683          */
684         raw_spinlock_t                  lock;
685         /*
686          * Protect the list of events.  Locking either mutex or lock
687          * is sufficient to ensure the list doesn't change; to change
688          * the list you need to lock both the mutex and the spinlock.
689          */
690         struct mutex                    mutex;
691
692         struct list_head                active_ctx_list;
693         struct list_head                pinned_groups;
694         struct list_head                flexible_groups;
695         struct list_head                event_list;
696         int                             nr_events;
697         int                             nr_active;
698         int                             is_active;
699         int                             nr_stat;
700         int                             nr_freq;
701         int                             rotate_disable;
702         atomic_t                        refcount;
703         struct task_struct              *task;
704
705         /*
706          * Context clock, runs when context enabled.
707          */
708         u64                             time;
709         u64                             timestamp;
710
711         /*
712          * These fields let us detect when two contexts have both
713          * been cloned (inherited) from a common ancestor.
714          */
715         struct perf_event_context       *parent_ctx;
716         u64                             parent_gen;
717         u64                             generation;
718         int                             pin_count;
719         int                             nr_cgroups;      /* cgroup evts */
720         void                            *task_ctx_data; /* pmu specific data */
721         struct rcu_head                 rcu_head;
722 };
723
724 /*
725  * Number of contexts where an event can trigger:
726  *      task, softirq, hardirq, nmi.
727  */
728 #define PERF_NR_CONTEXTS        4
729
730 /**
731  * struct perf_event_cpu_context - per cpu event context structure
732  */
733 struct perf_cpu_context {
734         struct perf_event_context       ctx;
735         struct perf_event_context       *task_ctx;
736         int                             active_oncpu;
737         int                             exclusive;
738
739         raw_spinlock_t                  hrtimer_lock;
740         struct hrtimer                  hrtimer;
741         ktime_t                         hrtimer_interval;
742         unsigned int                    hrtimer_active;
743
744         struct pmu                      *unique_pmu;
745         struct perf_cgroup              *cgrp;
746 };
747
748 struct perf_output_handle {
749         struct perf_event               *event;
750         struct ring_buffer              *rb;
751         unsigned long                   wakeup;
752         unsigned long                   size;
753         union {
754                 void                    *addr;
755                 unsigned long           head;
756         };
757         int                             page;
758 };
759
760 #ifdef CONFIG_CGROUP_PERF
761
762 /*
763  * perf_cgroup_info keeps track of time_enabled for a cgroup.
764  * This is a per-cpu dynamically allocated data structure.
765  */
766 struct perf_cgroup_info {
767         u64                             time;
768         u64                             timestamp;
769 };
770
771 struct perf_cgroup {
772         struct cgroup_subsys_state      css;
773         struct perf_cgroup_info __percpu *info;
774 };
775
776 /*
777  * Must ensure cgroup is pinned (css_get) before calling
778  * this function. In other words, we cannot call this function
779  * if there is no cgroup event for the current CPU context.
780  */
781 static inline struct perf_cgroup *
782 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
783 {
784         return container_of(task_css_check(task, perf_event_cgrp_id,
785                                            ctx ? lockdep_is_held(&ctx->lock)
786                                                : true),
787                             struct perf_cgroup, css);
788 }
789 #endif /* CONFIG_CGROUP_PERF */
790
791 #ifdef CONFIG_PERF_EVENTS
792
793 extern void *perf_aux_output_begin(struct perf_output_handle *handle,
794                                    struct perf_event *event);
795 extern void perf_aux_output_end(struct perf_output_handle *handle,
796                                 unsigned long size, bool truncated);
797 extern int perf_aux_output_skip(struct perf_output_handle *handle,
798                                 unsigned long size);
799 extern void *perf_get_aux(struct perf_output_handle *handle);
800
801 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
802 extern void perf_pmu_unregister(struct pmu *pmu);
803
804 extern int perf_num_counters(void);
805 extern const char *perf_pmu_name(void);
806 extern void __perf_event_task_sched_in(struct task_struct *prev,
807                                        struct task_struct *task);
808 extern void __perf_event_task_sched_out(struct task_struct *prev,
809                                         struct task_struct *next);
810 extern int perf_event_init_task(struct task_struct *child);
811 extern void perf_event_exit_task(struct task_struct *child);
812 extern void perf_event_free_task(struct task_struct *task);
813 extern void perf_event_delayed_put(struct task_struct *task);
814 extern struct file *perf_event_get(unsigned int fd);
815 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
816 extern void perf_event_print_debug(void);
817 extern void perf_pmu_disable(struct pmu *pmu);
818 extern void perf_pmu_enable(struct pmu *pmu);
819 extern void perf_sched_cb_dec(struct pmu *pmu);
820 extern void perf_sched_cb_inc(struct pmu *pmu);
821 extern int perf_event_task_disable(void);
822 extern int perf_event_task_enable(void);
823 extern int perf_event_refresh(struct perf_event *event, int refresh);
824 extern void perf_event_update_userpage(struct perf_event *event);
825 extern int perf_event_release_kernel(struct perf_event *event);
826 extern struct perf_event *
827 perf_event_create_kernel_counter(struct perf_event_attr *attr,
828                                 int cpu,
829                                 struct task_struct *task,
830                                 perf_overflow_handler_t callback,
831                                 void *context);
832 extern void perf_pmu_migrate_context(struct pmu *pmu,
833                                 int src_cpu, int dst_cpu);
834 extern u64 perf_event_read_local(struct perf_event *event);
835 extern u64 perf_event_read_value(struct perf_event *event,
836                                  u64 *enabled, u64 *running);
837
838
839 struct perf_sample_data {
840         /*
841          * Fields set by perf_sample_data_init(), group so as to
842          * minimize the cachelines touched.
843          */
844         u64                             addr;
845         struct perf_raw_record          *raw;
846         struct perf_branch_stack        *br_stack;
847         u64                             period;
848         u64                             weight;
849         u64                             txn;
850         union  perf_mem_data_src        data_src;
851
852         /*
853          * The other fields, optionally {set,used} by
854          * perf_{prepare,output}_sample().
855          */
856         u64                             type;
857         u64                             ip;
858         struct {
859                 u32     pid;
860                 u32     tid;
861         }                               tid_entry;
862         u64                             time;
863         u64                             id;
864         u64                             stream_id;
865         struct {
866                 u32     cpu;
867                 u32     reserved;
868         }                               cpu_entry;
869         struct perf_callchain_entry     *callchain;
870
871         /*
872          * regs_user may point to task_pt_regs or to regs_user_copy, depending
873          * on arch details.
874          */
875         struct perf_regs                regs_user;
876         struct pt_regs                  regs_user_copy;
877
878         struct perf_regs                regs_intr;
879         u64                             stack_user_size;
880 } ____cacheline_aligned;
881
882 /* default value for data source */
883 #define PERF_MEM_NA (PERF_MEM_S(OP, NA)   |\
884                     PERF_MEM_S(LVL, NA)   |\
885                     PERF_MEM_S(SNOOP, NA) |\
886                     PERF_MEM_S(LOCK, NA)  |\
887                     PERF_MEM_S(TLB, NA))
888
889 static inline void perf_sample_data_init(struct perf_sample_data *data,
890                                          u64 addr, u64 period)
891 {
892         /* remaining struct members initialized in perf_prepare_sample() */
893         data->addr = addr;
894         data->raw  = NULL;
895         data->br_stack = NULL;
896         data->period = period;
897         data->weight = 0;
898         data->data_src.val = PERF_MEM_NA;
899         data->txn = 0;
900 }
901
902 extern void perf_output_sample(struct perf_output_handle *handle,
903                                struct perf_event_header *header,
904                                struct perf_sample_data *data,
905                                struct perf_event *event);
906 extern void perf_prepare_sample(struct perf_event_header *header,
907                                 struct perf_sample_data *data,
908                                 struct perf_event *event,
909                                 struct pt_regs *regs);
910
911 extern int perf_event_overflow(struct perf_event *event,
912                                  struct perf_sample_data *data,
913                                  struct pt_regs *regs);
914
915 extern void perf_event_output_forward(struct perf_event *event,
916                                      struct perf_sample_data *data,
917                                      struct pt_regs *regs);
918 extern void perf_event_output_backward(struct perf_event *event,
919                                        struct perf_sample_data *data,
920                                        struct pt_regs *regs);
921 extern void perf_event_output(struct perf_event *event,
922                               struct perf_sample_data *data,
923                               struct pt_regs *regs);
924
925 static inline bool
926 is_default_overflow_handler(struct perf_event *event)
927 {
928         if (likely(event->overflow_handler == perf_event_output_forward))
929                 return true;
930         if (unlikely(event->overflow_handler == perf_event_output_backward))
931                 return true;
932         return false;
933 }
934
935 extern void
936 perf_event_header__init_id(struct perf_event_header *header,
937                            struct perf_sample_data *data,
938                            struct perf_event *event);
939 extern void
940 perf_event__output_id_sample(struct perf_event *event,
941                              struct perf_output_handle *handle,
942                              struct perf_sample_data *sample);
943
944 extern void
945 perf_log_lost_samples(struct perf_event *event, u64 lost);
946
947 static inline bool is_sampling_event(struct perf_event *event)
948 {
949         return event->attr.sample_period != 0;
950 }
951
952 /*
953  * Return 1 for a software event, 0 for a hardware event
954  */
955 static inline int is_software_event(struct perf_event *event)
956 {
957         return event->pmu->task_ctx_nr == perf_sw_context;
958 }
959
960 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
961
962 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
963 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
964
965 #ifndef perf_arch_fetch_caller_regs
966 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
967 #endif
968
969 /*
970  * Take a snapshot of the regs. Skip ip and frame pointer to
971  * the nth caller. We only need a few of the regs:
972  * - ip for PERF_SAMPLE_IP
973  * - cs for user_mode() tests
974  * - bp for callchains
975  * - eflags, for future purposes, just in case
976  */
977 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
978 {
979         memset(regs, 0, sizeof(*regs));
980
981         perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
982 }
983
984 static __always_inline void
985 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
986 {
987         if (static_key_false(&perf_swevent_enabled[event_id]))
988                 __perf_sw_event(event_id, nr, regs, addr);
989 }
990
991 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
992
993 /*
994  * 'Special' version for the scheduler, it hard assumes no recursion,
995  * which is guaranteed by us not actually scheduling inside other swevents
996  * because those disable preemption.
997  */
998 static __always_inline void
999 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
1000 {
1001         if (static_key_false(&perf_swevent_enabled[event_id])) {
1002                 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1003
1004                 perf_fetch_caller_regs(regs);
1005                 ___perf_sw_event(event_id, nr, regs, addr);
1006         }
1007 }
1008
1009 extern struct static_key_false perf_sched_events;
1010
1011 static __always_inline bool
1012 perf_sw_migrate_enabled(void)
1013 {
1014         if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS]))
1015                 return true;
1016         return false;
1017 }
1018
1019 static inline void perf_event_task_migrate(struct task_struct *task)
1020 {
1021         if (perf_sw_migrate_enabled())
1022                 task->sched_migrated = 1;
1023 }
1024
1025 static inline void perf_event_task_sched_in(struct task_struct *prev,
1026                                             struct task_struct *task)
1027 {
1028         if (static_branch_unlikely(&perf_sched_events))
1029                 __perf_event_task_sched_in(prev, task);
1030
1031         if (perf_sw_migrate_enabled() && task->sched_migrated) {
1032                 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1033
1034                 perf_fetch_caller_regs(regs);
1035                 ___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0);
1036                 task->sched_migrated = 0;
1037         }
1038 }
1039
1040 static inline void perf_event_task_sched_out(struct task_struct *prev,
1041                                              struct task_struct *next)
1042 {
1043         perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1044
1045         if (static_branch_unlikely(&perf_sched_events))
1046                 __perf_event_task_sched_out(prev, next);
1047 }
1048
1049 static inline u64 __perf_event_count(struct perf_event *event)
1050 {
1051         return local64_read(&event->count) + atomic64_read(&event->child_count);
1052 }
1053
1054 extern void perf_event_mmap(struct vm_area_struct *vma);
1055 extern struct perf_guest_info_callbacks *perf_guest_cbs;
1056 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1057 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1058
1059 extern void perf_event_exec(void);
1060 extern void perf_event_comm(struct task_struct *tsk, bool exec);
1061 extern void perf_event_fork(struct task_struct *tsk);
1062
1063 /* Callchains */
1064 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1065
1066 extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs);
1067 extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs);
1068 extern struct perf_callchain_entry *
1069 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
1070                    bool crosstask, bool add_mark);
1071 extern int get_callchain_buffers(void);
1072 extern void put_callchain_buffers(void);
1073
1074 extern int sysctl_perf_event_max_stack;
1075
1076 static inline int perf_callchain_store(struct perf_callchain_entry *entry, u64 ip)
1077 {
1078         if (entry->nr < sysctl_perf_event_max_stack) {
1079                 entry->ip[entry->nr++] = ip;
1080                 return 0;
1081         } else {
1082                 return -1; /* no more room, stop walking the stack */
1083         }
1084 }
1085
1086 extern int sysctl_perf_event_paranoid;
1087 extern int sysctl_perf_event_mlock;
1088 extern int sysctl_perf_event_sample_rate;
1089 extern int sysctl_perf_cpu_time_max_percent;
1090
1091 extern void perf_sample_event_took(u64 sample_len_ns);
1092
1093 extern int perf_proc_update_handler(struct ctl_table *table, int write,
1094                 void __user *buffer, size_t *lenp,
1095                 loff_t *ppos);
1096 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
1097                 void __user *buffer, size_t *lenp,
1098                 loff_t *ppos);
1099
1100 int perf_event_max_stack_handler(struct ctl_table *table, int write,
1101                                  void __user *buffer, size_t *lenp, loff_t *ppos);
1102
1103 static inline bool perf_paranoid_tracepoint_raw(void)
1104 {
1105         return sysctl_perf_event_paranoid > -1;
1106 }
1107
1108 static inline bool perf_paranoid_cpu(void)
1109 {
1110         return sysctl_perf_event_paranoid > 0;
1111 }
1112
1113 static inline bool perf_paranoid_kernel(void)
1114 {
1115         return sysctl_perf_event_paranoid > 1;
1116 }
1117
1118 extern void perf_event_init(void);
1119 extern void perf_tp_event(u64 addr, u64 count, void *record,
1120                           int entry_size, struct pt_regs *regs,
1121                           struct hlist_head *head, int rctx,
1122                           struct task_struct *task);
1123 extern void perf_bp_event(struct perf_event *event, void *data);
1124
1125 #ifndef perf_misc_flags
1126 # define perf_misc_flags(regs) \
1127                 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1128 # define perf_instruction_pointer(regs) instruction_pointer(regs)
1129 #endif
1130
1131 static inline bool has_branch_stack(struct perf_event *event)
1132 {
1133         return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1134 }
1135
1136 static inline bool needs_branch_stack(struct perf_event *event)
1137 {
1138         return event->attr.branch_sample_type != 0;
1139 }
1140
1141 static inline bool has_aux(struct perf_event *event)
1142 {
1143         return event->pmu->setup_aux;
1144 }
1145
1146 static inline bool is_write_backward(struct perf_event *event)
1147 {
1148         return !!event->attr.write_backward;
1149 }
1150
1151 static inline bool has_addr_filter(struct perf_event *event)
1152 {
1153         return event->pmu->nr_addr_filters;
1154 }
1155
1156 /*
1157  * An inherited event uses parent's filters
1158  */
1159 static inline struct perf_addr_filters_head *
1160 perf_event_addr_filters(struct perf_event *event)
1161 {
1162         struct perf_addr_filters_head *ifh = &event->addr_filters;
1163
1164         if (event->parent)
1165                 ifh = &event->parent->addr_filters;
1166
1167         return ifh;
1168 }
1169
1170 extern void perf_event_addr_filters_sync(struct perf_event *event);
1171
1172 extern int perf_output_begin(struct perf_output_handle *handle,
1173                              struct perf_event *event, unsigned int size);
1174 extern int perf_output_begin_forward(struct perf_output_handle *handle,
1175                                     struct perf_event *event,
1176                                     unsigned int size);
1177 extern int perf_output_begin_backward(struct perf_output_handle *handle,
1178                                       struct perf_event *event,
1179                                       unsigned int size);
1180
1181 extern void perf_output_end(struct perf_output_handle *handle);
1182 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1183                              const void *buf, unsigned int len);
1184 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1185                                      unsigned int len);
1186 extern int perf_swevent_get_recursion_context(void);
1187 extern void perf_swevent_put_recursion_context(int rctx);
1188 extern u64 perf_swevent_set_period(struct perf_event *event);
1189 extern void perf_event_enable(struct perf_event *event);
1190 extern void perf_event_disable(struct perf_event *event);
1191 extern void perf_event_disable_local(struct perf_event *event);
1192 extern void perf_event_task_tick(void);
1193 #else /* !CONFIG_PERF_EVENTS: */
1194 static inline void *
1195 perf_aux_output_begin(struct perf_output_handle *handle,
1196                       struct perf_event *event)                         { return NULL; }
1197 static inline void
1198 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size,
1199                     bool truncated)                                     { }
1200 static inline int
1201 perf_aux_output_skip(struct perf_output_handle *handle,
1202                      unsigned long size)                                { return -EINVAL; }
1203 static inline void *
1204 perf_get_aux(struct perf_output_handle *handle)                         { return NULL; }
1205 static inline void
1206 perf_event_task_migrate(struct task_struct *task)                       { }
1207 static inline void
1208 perf_event_task_sched_in(struct task_struct *prev,
1209                          struct task_struct *task)                      { }
1210 static inline void
1211 perf_event_task_sched_out(struct task_struct *prev,
1212                           struct task_struct *next)                     { }
1213 static inline int perf_event_init_task(struct task_struct *child)       { return 0; }
1214 static inline void perf_event_exit_task(struct task_struct *child)      { }
1215 static inline void perf_event_free_task(struct task_struct *task)       { }
1216 static inline void perf_event_delayed_put(struct task_struct *task)     { }
1217 static inline struct file *perf_event_get(unsigned int fd)      { return ERR_PTR(-EINVAL); }
1218 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1219 {
1220         return ERR_PTR(-EINVAL);
1221 }
1222 static inline u64 perf_event_read_local(struct perf_event *event)       { return -EINVAL; }
1223 static inline void perf_event_print_debug(void)                         { }
1224 static inline int perf_event_task_disable(void)                         { return -EINVAL; }
1225 static inline int perf_event_task_enable(void)                          { return -EINVAL; }
1226 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1227 {
1228         return -EINVAL;
1229 }
1230
1231 static inline void
1232 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)     { }
1233 static inline void
1234 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)                     { }
1235 static inline void
1236 perf_bp_event(struct perf_event *event, void *data)                     { }
1237
1238 static inline int perf_register_guest_info_callbacks
1239 (struct perf_guest_info_callbacks *callbacks)                           { return 0; }
1240 static inline int perf_unregister_guest_info_callbacks
1241 (struct perf_guest_info_callbacks *callbacks)                           { return 0; }
1242
1243 static inline void perf_event_mmap(struct vm_area_struct *vma)          { }
1244 static inline void perf_event_exec(void)                                { }
1245 static inline void perf_event_comm(struct task_struct *tsk, bool exec)  { }
1246 static inline void perf_event_fork(struct task_struct *tsk)             { }
1247 static inline void perf_event_init(void)                                { }
1248 static inline int  perf_swevent_get_recursion_context(void)             { return -1; }
1249 static inline void perf_swevent_put_recursion_context(int rctx)         { }
1250 static inline u64 perf_swevent_set_period(struct perf_event *event)     { return 0; }
1251 static inline void perf_event_enable(struct perf_event *event)          { }
1252 static inline void perf_event_disable(struct perf_event *event)         { }
1253 static inline int __perf_event_disable(void *info)                      { return -1; }
1254 static inline void perf_event_task_tick(void)                           { }
1255 static inline int perf_event_release_kernel(struct perf_event *event)   { return 0; }
1256 #endif
1257
1258 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1259 extern void perf_restore_debug_store(void);
1260 #else
1261 static inline void perf_restore_debug_store(void)                       { }
1262 #endif
1263
1264 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1265
1266 /*
1267  * This has to have a higher priority than migration_notifier in sched/core.c.
1268  */
1269 #define perf_cpu_notifier(fn)                                           \
1270 do {                                                                    \
1271         static struct notifier_block fn##_nb =                          \
1272                 { .notifier_call = fn, .priority = CPU_PRI_PERF };      \
1273         unsigned long cpu = smp_processor_id();                         \
1274         unsigned long flags;                                            \
1275                                                                         \
1276         cpu_notifier_register_begin();                                  \
1277         fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE,                     \
1278                 (void *)(unsigned long)cpu);                            \
1279         local_irq_save(flags);                                          \
1280         fn(&fn##_nb, (unsigned long)CPU_STARTING,                       \
1281                 (void *)(unsigned long)cpu);                            \
1282         local_irq_restore(flags);                                       \
1283         fn(&fn##_nb, (unsigned long)CPU_ONLINE,                         \
1284                 (void *)(unsigned long)cpu);                            \
1285         __register_cpu_notifier(&fn##_nb);                              \
1286         cpu_notifier_register_done();                                   \
1287 } while (0)
1288
1289 /*
1290  * Bare-bones version of perf_cpu_notifier(), which doesn't invoke the
1291  * callback for already online CPUs.
1292  */
1293 #define __perf_cpu_notifier(fn)                                         \
1294 do {                                                                    \
1295         static struct notifier_block fn##_nb =                          \
1296                 { .notifier_call = fn, .priority = CPU_PRI_PERF };      \
1297                                                                         \
1298         __register_cpu_notifier(&fn##_nb);                              \
1299 } while (0)
1300
1301 struct perf_pmu_events_attr {
1302         struct device_attribute attr;
1303         u64 id;
1304         const char *event_str;
1305 };
1306
1307 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1308                               char *page);
1309
1310 #define PMU_EVENT_ATTR(_name, _var, _id, _show)                         \
1311 static struct perf_pmu_events_attr _var = {                             \
1312         .attr = __ATTR(_name, 0444, _show, NULL),                       \
1313         .id   =  _id,                                                   \
1314 };
1315
1316 #define PMU_EVENT_ATTR_STRING(_name, _var, _str)                            \
1317 static struct perf_pmu_events_attr _var = {                                 \
1318         .attr           = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1319         .id             = 0,                                                \
1320         .event_str      = _str,                                             \
1321 };
1322
1323 #define PMU_FORMAT_ATTR(_name, _format)                                 \
1324 static ssize_t                                                          \
1325 _name##_show(struct device *dev,                                        \
1326                                struct device_attribute *attr,           \
1327                                char *page)                              \
1328 {                                                                       \
1329         BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE);                     \
1330         return sprintf(page, _format "\n");                             \
1331 }                                                                       \
1332                                                                         \
1333 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1334
1335 #endif /* _LINUX_PERF_EVENT_H */