signals/sigaltstack: If SS_AUTODISARM, bypass on_sig_stack()
[cascardo/linux.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 #include <uapi/linux/sched.h>
5
6 #include <linux/sched/prio.h>
7
8
9 struct sched_param {
10         int sched_priority;
11 };
12
13 #include <asm/param.h>  /* for HZ */
14
15 #include <linux/capability.h>
16 #include <linux/threads.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/timex.h>
20 #include <linux/jiffies.h>
21 #include <linux/plist.h>
22 #include <linux/rbtree.h>
23 #include <linux/thread_info.h>
24 #include <linux/cpumask.h>
25 #include <linux/errno.h>
26 #include <linux/nodemask.h>
27 #include <linux/mm_types.h>
28 #include <linux/preempt.h>
29
30 #include <asm/page.h>
31 #include <asm/ptrace.h>
32 #include <linux/cputime.h>
33
34 #include <linux/smp.h>
35 #include <linux/sem.h>
36 #include <linux/shm.h>
37 #include <linux/signal.h>
38 #include <linux/compiler.h>
39 #include <linux/completion.h>
40 #include <linux/pid.h>
41 #include <linux/percpu.h>
42 #include <linux/topology.h>
43 #include <linux/proportions.h>
44 #include <linux/seccomp.h>
45 #include <linux/rcupdate.h>
46 #include <linux/rculist.h>
47 #include <linux/rtmutex.h>
48
49 #include <linux/time.h>
50 #include <linux/param.h>
51 #include <linux/resource.h>
52 #include <linux/timer.h>
53 #include <linux/hrtimer.h>
54 #include <linux/kcov.h>
55 #include <linux/task_io_accounting.h>
56 #include <linux/latencytop.h>
57 #include <linux/cred.h>
58 #include <linux/llist.h>
59 #include <linux/uidgid.h>
60 #include <linux/gfp.h>
61 #include <linux/magic.h>
62 #include <linux/cgroup-defs.h>
63
64 #include <asm/processor.h>
65
66 #define SCHED_ATTR_SIZE_VER0    48      /* sizeof first published struct */
67
68 /*
69  * Extended scheduling parameters data structure.
70  *
71  * This is needed because the original struct sched_param can not be
72  * altered without introducing ABI issues with legacy applications
73  * (e.g., in sched_getparam()).
74  *
75  * However, the possibility of specifying more than just a priority for
76  * the tasks may be useful for a wide variety of application fields, e.g.,
77  * multimedia, streaming, automation and control, and many others.
78  *
79  * This variant (sched_attr) is meant at describing a so-called
80  * sporadic time-constrained task. In such model a task is specified by:
81  *  - the activation period or minimum instance inter-arrival time;
82  *  - the maximum (or average, depending on the actual scheduling
83  *    discipline) computation time of all instances, a.k.a. runtime;
84  *  - the deadline (relative to the actual activation time) of each
85  *    instance.
86  * Very briefly, a periodic (sporadic) task asks for the execution of
87  * some specific computation --which is typically called an instance--
88  * (at most) every period. Moreover, each instance typically lasts no more
89  * than the runtime and must be completed by time instant t equal to
90  * the instance activation time + the deadline.
91  *
92  * This is reflected by the actual fields of the sched_attr structure:
93  *
94  *  @size               size of the structure, for fwd/bwd compat.
95  *
96  *  @sched_policy       task's scheduling policy
97  *  @sched_flags        for customizing the scheduler behaviour
98  *  @sched_nice         task's nice value      (SCHED_NORMAL/BATCH)
99  *  @sched_priority     task's static priority (SCHED_FIFO/RR)
100  *  @sched_deadline     representative of the task's deadline
101  *  @sched_runtime      representative of the task's runtime
102  *  @sched_period       representative of the task's period
103  *
104  * Given this task model, there are a multiplicity of scheduling algorithms
105  * and policies, that can be used to ensure all the tasks will make their
106  * timing constraints.
107  *
108  * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
109  * only user of this new interface. More information about the algorithm
110  * available in the scheduling class file or in Documentation/.
111  */
112 struct sched_attr {
113         u32 size;
114
115         u32 sched_policy;
116         u64 sched_flags;
117
118         /* SCHED_NORMAL, SCHED_BATCH */
119         s32 sched_nice;
120
121         /* SCHED_FIFO, SCHED_RR */
122         u32 sched_priority;
123
124         /* SCHED_DEADLINE */
125         u64 sched_runtime;
126         u64 sched_deadline;
127         u64 sched_period;
128 };
129
130 struct futex_pi_state;
131 struct robust_list_head;
132 struct bio_list;
133 struct fs_struct;
134 struct perf_event_context;
135 struct blk_plug;
136 struct filename;
137 struct nameidata;
138
139 #define VMACACHE_BITS 2
140 #define VMACACHE_SIZE (1U << VMACACHE_BITS)
141 #define VMACACHE_MASK (VMACACHE_SIZE - 1)
142
143 /*
144  * These are the constant used to fake the fixed-point load-average
145  * counting. Some notes:
146  *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
147  *    a load-average precision of 10 bits integer + 11 bits fractional
148  *  - if you want to count load-averages more often, you need more
149  *    precision, or rounding will get you. With 2-second counting freq,
150  *    the EXP_n values would be 1981, 2034 and 2043 if still using only
151  *    11 bit fractions.
152  */
153 extern unsigned long avenrun[];         /* Load averages */
154 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
155
156 #define FSHIFT          11              /* nr of bits of precision */
157 #define FIXED_1         (1<<FSHIFT)     /* 1.0 as fixed-point */
158 #define LOAD_FREQ       (5*HZ+1)        /* 5 sec intervals */
159 #define EXP_1           1884            /* 1/exp(5sec/1min) as fixed-point */
160 #define EXP_5           2014            /* 1/exp(5sec/5min) */
161 #define EXP_15          2037            /* 1/exp(5sec/15min) */
162
163 #define CALC_LOAD(load,exp,n) \
164         load *= exp; \
165         load += n*(FIXED_1-exp); \
166         load >>= FSHIFT;
167
168 extern unsigned long total_forks;
169 extern int nr_threads;
170 DECLARE_PER_CPU(unsigned long, process_counts);
171 extern int nr_processes(void);
172 extern unsigned long nr_running(void);
173 extern bool single_task_running(void);
174 extern unsigned long nr_iowait(void);
175 extern unsigned long nr_iowait_cpu(int cpu);
176 extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load);
177
178 extern void calc_global_load(unsigned long ticks);
179
180 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
181 extern void update_cpu_load_nohz(int active);
182 #else
183 static inline void update_cpu_load_nohz(int active) { }
184 #endif
185
186 extern void dump_cpu_task(int cpu);
187
188 struct seq_file;
189 struct cfs_rq;
190 struct task_group;
191 #ifdef CONFIG_SCHED_DEBUG
192 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
193 extern void proc_sched_set_task(struct task_struct *p);
194 #endif
195
196 /*
197  * Task state bitmask. NOTE! These bits are also
198  * encoded in fs/proc/array.c: get_task_state().
199  *
200  * We have two separate sets of flags: task->state
201  * is about runnability, while task->exit_state are
202  * about the task exiting. Confusing, but this way
203  * modifying one set can't modify the other one by
204  * mistake.
205  */
206 #define TASK_RUNNING            0
207 #define TASK_INTERRUPTIBLE      1
208 #define TASK_UNINTERRUPTIBLE    2
209 #define __TASK_STOPPED          4
210 #define __TASK_TRACED           8
211 /* in tsk->exit_state */
212 #define EXIT_DEAD               16
213 #define EXIT_ZOMBIE             32
214 #define EXIT_TRACE              (EXIT_ZOMBIE | EXIT_DEAD)
215 /* in tsk->state again */
216 #define TASK_DEAD               64
217 #define TASK_WAKEKILL           128
218 #define TASK_WAKING             256
219 #define TASK_PARKED             512
220 #define TASK_NOLOAD             1024
221 #define TASK_STATE_MAX          2048
222
223 #define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPN"
224
225 extern char ___assert_task_state[1 - 2*!!(
226                 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
227
228 /* Convenience macros for the sake of set_task_state */
229 #define TASK_KILLABLE           (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
230 #define TASK_STOPPED            (TASK_WAKEKILL | __TASK_STOPPED)
231 #define TASK_TRACED             (TASK_WAKEKILL | __TASK_TRACED)
232
233 #define TASK_IDLE               (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
234
235 /* Convenience macros for the sake of wake_up */
236 #define TASK_NORMAL             (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
237 #define TASK_ALL                (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
238
239 /* get_task_state() */
240 #define TASK_REPORT             (TASK_RUNNING | TASK_INTERRUPTIBLE | \
241                                  TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
242                                  __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
243
244 #define task_is_traced(task)    ((task->state & __TASK_TRACED) != 0)
245 #define task_is_stopped(task)   ((task->state & __TASK_STOPPED) != 0)
246 #define task_is_stopped_or_traced(task) \
247                         ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
248 #define task_contributes_to_load(task)  \
249                                 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
250                                  (task->flags & PF_FROZEN) == 0 && \
251                                  (task->state & TASK_NOLOAD) == 0)
252
253 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
254
255 #define __set_task_state(tsk, state_value)                      \
256         do {                                                    \
257                 (tsk)->task_state_change = _THIS_IP_;           \
258                 (tsk)->state = (state_value);                   \
259         } while (0)
260 #define set_task_state(tsk, state_value)                        \
261         do {                                                    \
262                 (tsk)->task_state_change = _THIS_IP_;           \
263                 smp_store_mb((tsk)->state, (state_value));              \
264         } while (0)
265
266 /*
267  * set_current_state() includes a barrier so that the write of current->state
268  * is correctly serialised wrt the caller's subsequent test of whether to
269  * actually sleep:
270  *
271  *      set_current_state(TASK_UNINTERRUPTIBLE);
272  *      if (do_i_need_to_sleep())
273  *              schedule();
274  *
275  * If the caller does not need such serialisation then use __set_current_state()
276  */
277 #define __set_current_state(state_value)                        \
278         do {                                                    \
279                 current->task_state_change = _THIS_IP_;         \
280                 current->state = (state_value);                 \
281         } while (0)
282 #define set_current_state(state_value)                          \
283         do {                                                    \
284                 current->task_state_change = _THIS_IP_;         \
285                 smp_store_mb(current->state, (state_value));            \
286         } while (0)
287
288 #else
289
290 #define __set_task_state(tsk, state_value)              \
291         do { (tsk)->state = (state_value); } while (0)
292 #define set_task_state(tsk, state_value)                \
293         smp_store_mb((tsk)->state, (state_value))
294
295 /*
296  * set_current_state() includes a barrier so that the write of current->state
297  * is correctly serialised wrt the caller's subsequent test of whether to
298  * actually sleep:
299  *
300  *      set_current_state(TASK_UNINTERRUPTIBLE);
301  *      if (do_i_need_to_sleep())
302  *              schedule();
303  *
304  * If the caller does not need such serialisation then use __set_current_state()
305  */
306 #define __set_current_state(state_value)                \
307         do { current->state = (state_value); } while (0)
308 #define set_current_state(state_value)                  \
309         smp_store_mb(current->state, (state_value))
310
311 #endif
312
313 /* Task command name length */
314 #define TASK_COMM_LEN 16
315
316 #include <linux/spinlock.h>
317
318 /*
319  * This serializes "schedule()" and also protects
320  * the run-queue from deletions/modifications (but
321  * _adding_ to the beginning of the run-queue has
322  * a separate lock).
323  */
324 extern rwlock_t tasklist_lock;
325 extern spinlock_t mmlist_lock;
326
327 struct task_struct;
328
329 #ifdef CONFIG_PROVE_RCU
330 extern int lockdep_tasklist_lock_is_held(void);
331 #endif /* #ifdef CONFIG_PROVE_RCU */
332
333 extern void sched_init(void);
334 extern void sched_init_smp(void);
335 extern asmlinkage void schedule_tail(struct task_struct *prev);
336 extern void init_idle(struct task_struct *idle, int cpu);
337 extern void init_idle_bootup_task(struct task_struct *idle);
338
339 extern cpumask_var_t cpu_isolated_map;
340
341 extern int runqueue_is_locked(int cpu);
342
343 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
344 extern void nohz_balance_enter_idle(int cpu);
345 extern void set_cpu_sd_state_idle(void);
346 extern int get_nohz_timer_target(void);
347 #else
348 static inline void nohz_balance_enter_idle(int cpu) { }
349 static inline void set_cpu_sd_state_idle(void) { }
350 #endif
351
352 /*
353  * Only dump TASK_* tasks. (0 for all tasks)
354  */
355 extern void show_state_filter(unsigned long state_filter);
356
357 static inline void show_state(void)
358 {
359         show_state_filter(0);
360 }
361
362 extern void show_regs(struct pt_regs *);
363
364 /*
365  * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
366  * task), SP is the stack pointer of the first frame that should be shown in the back
367  * trace (or NULL if the entire call-chain of the task should be shown).
368  */
369 extern void show_stack(struct task_struct *task, unsigned long *sp);
370
371 extern void cpu_init (void);
372 extern void trap_init(void);
373 extern void update_process_times(int user);
374 extern void scheduler_tick(void);
375
376 extern void sched_show_task(struct task_struct *p);
377
378 #ifdef CONFIG_LOCKUP_DETECTOR
379 extern void touch_softlockup_watchdog_sched(void);
380 extern void touch_softlockup_watchdog(void);
381 extern void touch_softlockup_watchdog_sync(void);
382 extern void touch_all_softlockup_watchdogs(void);
383 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
384                                   void __user *buffer,
385                                   size_t *lenp, loff_t *ppos);
386 extern unsigned int  softlockup_panic;
387 extern unsigned int  hardlockup_panic;
388 void lockup_detector_init(void);
389 #else
390 static inline void touch_softlockup_watchdog_sched(void)
391 {
392 }
393 static inline void touch_softlockup_watchdog(void)
394 {
395 }
396 static inline void touch_softlockup_watchdog_sync(void)
397 {
398 }
399 static inline void touch_all_softlockup_watchdogs(void)
400 {
401 }
402 static inline void lockup_detector_init(void)
403 {
404 }
405 #endif
406
407 #ifdef CONFIG_DETECT_HUNG_TASK
408 void reset_hung_task_detector(void);
409 #else
410 static inline void reset_hung_task_detector(void)
411 {
412 }
413 #endif
414
415 /* Attach to any functions which should be ignored in wchan output. */
416 #define __sched         __attribute__((__section__(".sched.text")))
417
418 /* Linker adds these: start and end of __sched functions */
419 extern char __sched_text_start[], __sched_text_end[];
420
421 /* Is this address in the __sched functions? */
422 extern int in_sched_functions(unsigned long addr);
423
424 #define MAX_SCHEDULE_TIMEOUT    LONG_MAX
425 extern signed long schedule_timeout(signed long timeout);
426 extern signed long schedule_timeout_interruptible(signed long timeout);
427 extern signed long schedule_timeout_killable(signed long timeout);
428 extern signed long schedule_timeout_uninterruptible(signed long timeout);
429 extern signed long schedule_timeout_idle(signed long timeout);
430 asmlinkage void schedule(void);
431 extern void schedule_preempt_disabled(void);
432
433 extern long io_schedule_timeout(long timeout);
434
435 static inline void io_schedule(void)
436 {
437         io_schedule_timeout(MAX_SCHEDULE_TIMEOUT);
438 }
439
440 struct nsproxy;
441 struct user_namespace;
442
443 #ifdef CONFIG_MMU
444 extern void arch_pick_mmap_layout(struct mm_struct *mm);
445 extern unsigned long
446 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
447                        unsigned long, unsigned long);
448 extern unsigned long
449 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
450                           unsigned long len, unsigned long pgoff,
451                           unsigned long flags);
452 #else
453 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
454 #endif
455
456 #define SUID_DUMP_DISABLE       0       /* No setuid dumping */
457 #define SUID_DUMP_USER          1       /* Dump as user of process */
458 #define SUID_DUMP_ROOT          2       /* Dump as root */
459
460 /* mm flags */
461
462 /* for SUID_DUMP_* above */
463 #define MMF_DUMPABLE_BITS 2
464 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
465
466 extern void set_dumpable(struct mm_struct *mm, int value);
467 /*
468  * This returns the actual value of the suid_dumpable flag. For things
469  * that are using this for checking for privilege transitions, it must
470  * test against SUID_DUMP_USER rather than treating it as a boolean
471  * value.
472  */
473 static inline int __get_dumpable(unsigned long mm_flags)
474 {
475         return mm_flags & MMF_DUMPABLE_MASK;
476 }
477
478 static inline int get_dumpable(struct mm_struct *mm)
479 {
480         return __get_dumpable(mm->flags);
481 }
482
483 /* coredump filter bits */
484 #define MMF_DUMP_ANON_PRIVATE   2
485 #define MMF_DUMP_ANON_SHARED    3
486 #define MMF_DUMP_MAPPED_PRIVATE 4
487 #define MMF_DUMP_MAPPED_SHARED  5
488 #define MMF_DUMP_ELF_HEADERS    6
489 #define MMF_DUMP_HUGETLB_PRIVATE 7
490 #define MMF_DUMP_HUGETLB_SHARED  8
491 #define MMF_DUMP_DAX_PRIVATE    9
492 #define MMF_DUMP_DAX_SHARED     10
493
494 #define MMF_DUMP_FILTER_SHIFT   MMF_DUMPABLE_BITS
495 #define MMF_DUMP_FILTER_BITS    9
496 #define MMF_DUMP_FILTER_MASK \
497         (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
498 #define MMF_DUMP_FILTER_DEFAULT \
499         ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
500          (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
501
502 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
503 # define MMF_DUMP_MASK_DEFAULT_ELF      (1 << MMF_DUMP_ELF_HEADERS)
504 #else
505 # define MMF_DUMP_MASK_DEFAULT_ELF      0
506 #endif
507                                         /* leave room for more dump flags */
508 #define MMF_VM_MERGEABLE        16      /* KSM may merge identical pages */
509 #define MMF_VM_HUGEPAGE         17      /* set when VM_HUGEPAGE is set on vma */
510 #define MMF_EXE_FILE_CHANGED    18      /* see prctl_set_mm_exe_file() */
511
512 #define MMF_HAS_UPROBES         19      /* has uprobes */
513 #define MMF_RECALC_UPROBES      20      /* MMF_HAS_UPROBES can be wrong */
514
515 #define MMF_INIT_MASK           (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
516
517 struct sighand_struct {
518         atomic_t                count;
519         struct k_sigaction      action[_NSIG];
520         spinlock_t              siglock;
521         wait_queue_head_t       signalfd_wqh;
522 };
523
524 struct pacct_struct {
525         int                     ac_flag;
526         long                    ac_exitcode;
527         unsigned long           ac_mem;
528         cputime_t               ac_utime, ac_stime;
529         unsigned long           ac_minflt, ac_majflt;
530 };
531
532 struct cpu_itimer {
533         cputime_t expires;
534         cputime_t incr;
535         u32 error;
536         u32 incr_error;
537 };
538
539 /**
540  * struct prev_cputime - snaphsot of system and user cputime
541  * @utime: time spent in user mode
542  * @stime: time spent in system mode
543  * @lock: protects the above two fields
544  *
545  * Stores previous user/system time values such that we can guarantee
546  * monotonicity.
547  */
548 struct prev_cputime {
549 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
550         cputime_t utime;
551         cputime_t stime;
552         raw_spinlock_t lock;
553 #endif
554 };
555
556 static inline void prev_cputime_init(struct prev_cputime *prev)
557 {
558 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
559         prev->utime = prev->stime = 0;
560         raw_spin_lock_init(&prev->lock);
561 #endif
562 }
563
564 /**
565  * struct task_cputime - collected CPU time counts
566  * @utime:              time spent in user mode, in &cputime_t units
567  * @stime:              time spent in kernel mode, in &cputime_t units
568  * @sum_exec_runtime:   total time spent on the CPU, in nanoseconds
569  *
570  * This structure groups together three kinds of CPU time that are tracked for
571  * threads and thread groups.  Most things considering CPU time want to group
572  * these counts together and treat all three of them in parallel.
573  */
574 struct task_cputime {
575         cputime_t utime;
576         cputime_t stime;
577         unsigned long long sum_exec_runtime;
578 };
579
580 /* Alternate field names when used to cache expirations. */
581 #define virt_exp        utime
582 #define prof_exp        stime
583 #define sched_exp       sum_exec_runtime
584
585 #define INIT_CPUTIME    \
586         (struct task_cputime) {                                 \
587                 .utime = 0,                                     \
588                 .stime = 0,                                     \
589                 .sum_exec_runtime = 0,                          \
590         }
591
592 /*
593  * This is the atomic variant of task_cputime, which can be used for
594  * storing and updating task_cputime statistics without locking.
595  */
596 struct task_cputime_atomic {
597         atomic64_t utime;
598         atomic64_t stime;
599         atomic64_t sum_exec_runtime;
600 };
601
602 #define INIT_CPUTIME_ATOMIC \
603         (struct task_cputime_atomic) {                          \
604                 .utime = ATOMIC64_INIT(0),                      \
605                 .stime = ATOMIC64_INIT(0),                      \
606                 .sum_exec_runtime = ATOMIC64_INIT(0),           \
607         }
608
609 #define PREEMPT_DISABLED        (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
610
611 /*
612  * Disable preemption until the scheduler is running -- use an unconditional
613  * value so that it also works on !PREEMPT_COUNT kernels.
614  *
615  * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count().
616  */
617 #define INIT_PREEMPT_COUNT      PREEMPT_OFFSET
618
619 /*
620  * Initial preempt_count value; reflects the preempt_count schedule invariant
621  * which states that during context switches:
622  *
623  *    preempt_count() == 2*PREEMPT_DISABLE_OFFSET
624  *
625  * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels.
626  * Note: See finish_task_switch().
627  */
628 #define FORK_PREEMPT_COUNT      (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
629
630 /**
631  * struct thread_group_cputimer - thread group interval timer counts
632  * @cputime_atomic:     atomic thread group interval timers.
633  * @running:            true when there are timers running and
634  *                      @cputime_atomic receives updates.
635  * @checking_timer:     true when a thread in the group is in the
636  *                      process of checking for thread group timers.
637  *
638  * This structure contains the version of task_cputime, above, that is
639  * used for thread group CPU timer calculations.
640  */
641 struct thread_group_cputimer {
642         struct task_cputime_atomic cputime_atomic;
643         bool running;
644         bool checking_timer;
645 };
646
647 #include <linux/rwsem.h>
648 struct autogroup;
649
650 /*
651  * NOTE! "signal_struct" does not have its own
652  * locking, because a shared signal_struct always
653  * implies a shared sighand_struct, so locking
654  * sighand_struct is always a proper superset of
655  * the locking of signal_struct.
656  */
657 struct signal_struct {
658         atomic_t                sigcnt;
659         atomic_t                live;
660         int                     nr_threads;
661         struct list_head        thread_head;
662
663         wait_queue_head_t       wait_chldexit;  /* for wait4() */
664
665         /* current thread group signal load-balancing target: */
666         struct task_struct      *curr_target;
667
668         /* shared signal handling: */
669         struct sigpending       shared_pending;
670
671         /* thread group exit support */
672         int                     group_exit_code;
673         /* overloaded:
674          * - notify group_exit_task when ->count is equal to notify_count
675          * - everyone except group_exit_task is stopped during signal delivery
676          *   of fatal signals, group_exit_task processes the signal.
677          */
678         int                     notify_count;
679         struct task_struct      *group_exit_task;
680
681         /* thread group stop support, overloads group_exit_code too */
682         int                     group_stop_count;
683         unsigned int            flags; /* see SIGNAL_* flags below */
684
685         /*
686          * PR_SET_CHILD_SUBREAPER marks a process, like a service
687          * manager, to re-parent orphan (double-forking) child processes
688          * to this process instead of 'init'. The service manager is
689          * able to receive SIGCHLD signals and is able to investigate
690          * the process until it calls wait(). All children of this
691          * process will inherit a flag if they should look for a
692          * child_subreaper process at exit.
693          */
694         unsigned int            is_child_subreaper:1;
695         unsigned int            has_child_subreaper:1;
696
697         /* POSIX.1b Interval Timers */
698         int                     posix_timer_id;
699         struct list_head        posix_timers;
700
701         /* ITIMER_REAL timer for the process */
702         struct hrtimer real_timer;
703         struct pid *leader_pid;
704         ktime_t it_real_incr;
705
706         /*
707          * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
708          * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
709          * values are defined to 0 and 1 respectively
710          */
711         struct cpu_itimer it[2];
712
713         /*
714          * Thread group totals for process CPU timers.
715          * See thread_group_cputimer(), et al, for details.
716          */
717         struct thread_group_cputimer cputimer;
718
719         /* Earliest-expiration cache. */
720         struct task_cputime cputime_expires;
721
722 #ifdef CONFIG_NO_HZ_FULL
723         atomic_t tick_dep_mask;
724 #endif
725
726         struct list_head cpu_timers[3];
727
728         struct pid *tty_old_pgrp;
729
730         /* boolean value for session group leader */
731         int leader;
732
733         struct tty_struct *tty; /* NULL if no tty */
734
735 #ifdef CONFIG_SCHED_AUTOGROUP
736         struct autogroup *autogroup;
737 #endif
738         /*
739          * Cumulative resource counters for dead threads in the group,
740          * and for reaped dead child processes forked by this group.
741          * Live threads maintain their own counters and add to these
742          * in __exit_signal, except for the group leader.
743          */
744         seqlock_t stats_lock;
745         cputime_t utime, stime, cutime, cstime;
746         cputime_t gtime;
747         cputime_t cgtime;
748         struct prev_cputime prev_cputime;
749         unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
750         unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
751         unsigned long inblock, oublock, cinblock, coublock;
752         unsigned long maxrss, cmaxrss;
753         struct task_io_accounting ioac;
754
755         /*
756          * Cumulative ns of schedule CPU time fo dead threads in the
757          * group, not including a zombie group leader, (This only differs
758          * from jiffies_to_ns(utime + stime) if sched_clock uses something
759          * other than jiffies.)
760          */
761         unsigned long long sum_sched_runtime;
762
763         /*
764          * We don't bother to synchronize most readers of this at all,
765          * because there is no reader checking a limit that actually needs
766          * to get both rlim_cur and rlim_max atomically, and either one
767          * alone is a single word that can safely be read normally.
768          * getrlimit/setrlimit use task_lock(current->group_leader) to
769          * protect this instead of the siglock, because they really
770          * have no need to disable irqs.
771          */
772         struct rlimit rlim[RLIM_NLIMITS];
773
774 #ifdef CONFIG_BSD_PROCESS_ACCT
775         struct pacct_struct pacct;      /* per-process accounting information */
776 #endif
777 #ifdef CONFIG_TASKSTATS
778         struct taskstats *stats;
779 #endif
780 #ifdef CONFIG_AUDIT
781         unsigned audit_tty;
782         struct tty_audit_buf *tty_audit_buf;
783 #endif
784
785         oom_flags_t oom_flags;
786         short oom_score_adj;            /* OOM kill score adjustment */
787         short oom_score_adj_min;        /* OOM kill score adjustment min value.
788                                          * Only settable by CAP_SYS_RESOURCE. */
789
790         struct mutex cred_guard_mutex;  /* guard against foreign influences on
791                                          * credential calculations
792                                          * (notably. ptrace) */
793 };
794
795 /*
796  * Bits in flags field of signal_struct.
797  */
798 #define SIGNAL_STOP_STOPPED     0x00000001 /* job control stop in effect */
799 #define SIGNAL_STOP_CONTINUED   0x00000002 /* SIGCONT since WCONTINUED reap */
800 #define SIGNAL_GROUP_EXIT       0x00000004 /* group exit in progress */
801 #define SIGNAL_GROUP_COREDUMP   0x00000008 /* coredump in progress */
802 /*
803  * Pending notifications to parent.
804  */
805 #define SIGNAL_CLD_STOPPED      0x00000010
806 #define SIGNAL_CLD_CONTINUED    0x00000020
807 #define SIGNAL_CLD_MASK         (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
808
809 #define SIGNAL_UNKILLABLE       0x00000040 /* for init: ignore fatal signals */
810
811 /* If true, all threads except ->group_exit_task have pending SIGKILL */
812 static inline int signal_group_exit(const struct signal_struct *sig)
813 {
814         return  (sig->flags & SIGNAL_GROUP_EXIT) ||
815                 (sig->group_exit_task != NULL);
816 }
817
818 /*
819  * Some day this will be a full-fledged user tracking system..
820  */
821 struct user_struct {
822         atomic_t __count;       /* reference count */
823         atomic_t processes;     /* How many processes does this user have? */
824         atomic_t sigpending;    /* How many pending signals does this user have? */
825 #ifdef CONFIG_INOTIFY_USER
826         atomic_t inotify_watches; /* How many inotify watches does this user have? */
827         atomic_t inotify_devs;  /* How many inotify devs does this user have opened? */
828 #endif
829 #ifdef CONFIG_FANOTIFY
830         atomic_t fanotify_listeners;
831 #endif
832 #ifdef CONFIG_EPOLL
833         atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
834 #endif
835 #ifdef CONFIG_POSIX_MQUEUE
836         /* protected by mq_lock */
837         unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
838 #endif
839         unsigned long locked_shm; /* How many pages of mlocked shm ? */
840         unsigned long unix_inflight;    /* How many files in flight in unix sockets */
841         atomic_long_t pipe_bufs;  /* how many pages are allocated in pipe buffers */
842
843 #ifdef CONFIG_KEYS
844         struct key *uid_keyring;        /* UID specific keyring */
845         struct key *session_keyring;    /* UID's default session keyring */
846 #endif
847
848         /* Hash table maintenance information */
849         struct hlist_node uidhash_node;
850         kuid_t uid;
851
852 #if defined(CONFIG_PERF_EVENTS) || defined(CONFIG_BPF_SYSCALL)
853         atomic_long_t locked_vm;
854 #endif
855 };
856
857 extern int uids_sysfs_init(void);
858
859 extern struct user_struct *find_user(kuid_t);
860
861 extern struct user_struct root_user;
862 #define INIT_USER (&root_user)
863
864
865 struct backing_dev_info;
866 struct reclaim_state;
867
868 #ifdef CONFIG_SCHED_INFO
869 struct sched_info {
870         /* cumulative counters */
871         unsigned long pcount;         /* # of times run on this cpu */
872         unsigned long long run_delay; /* time spent waiting on a runqueue */
873
874         /* timestamps */
875         unsigned long long last_arrival,/* when we last ran on a cpu */
876                            last_queued; /* when we were last queued to run */
877 };
878 #endif /* CONFIG_SCHED_INFO */
879
880 #ifdef CONFIG_TASK_DELAY_ACCT
881 struct task_delay_info {
882         spinlock_t      lock;
883         unsigned int    flags;  /* Private per-task flags */
884
885         /* For each stat XXX, add following, aligned appropriately
886          *
887          * struct timespec XXX_start, XXX_end;
888          * u64 XXX_delay;
889          * u32 XXX_count;
890          *
891          * Atomicity of updates to XXX_delay, XXX_count protected by
892          * single lock above (split into XXX_lock if contention is an issue).
893          */
894
895         /*
896          * XXX_count is incremented on every XXX operation, the delay
897          * associated with the operation is added to XXX_delay.
898          * XXX_delay contains the accumulated delay time in nanoseconds.
899          */
900         u64 blkio_start;        /* Shared by blkio, swapin */
901         u64 blkio_delay;        /* wait for sync block io completion */
902         u64 swapin_delay;       /* wait for swapin block io completion */
903         u32 blkio_count;        /* total count of the number of sync block */
904                                 /* io operations performed */
905         u32 swapin_count;       /* total count of the number of swapin block */
906                                 /* io operations performed */
907
908         u64 freepages_start;
909         u64 freepages_delay;    /* wait for memory reclaim */
910         u32 freepages_count;    /* total count of memory reclaim */
911 };
912 #endif  /* CONFIG_TASK_DELAY_ACCT */
913
914 static inline int sched_info_on(void)
915 {
916 #ifdef CONFIG_SCHEDSTATS
917         return 1;
918 #elif defined(CONFIG_TASK_DELAY_ACCT)
919         extern int delayacct_on;
920         return delayacct_on;
921 #else
922         return 0;
923 #endif
924 }
925
926 #ifdef CONFIG_SCHEDSTATS
927 void force_schedstat_enabled(void);
928 #endif
929
930 enum cpu_idle_type {
931         CPU_IDLE,
932         CPU_NOT_IDLE,
933         CPU_NEWLY_IDLE,
934         CPU_MAX_IDLE_TYPES
935 };
936
937 /*
938  * Increase resolution of cpu_capacity calculations
939  */
940 #define SCHED_CAPACITY_SHIFT    10
941 #define SCHED_CAPACITY_SCALE    (1L << SCHED_CAPACITY_SHIFT)
942
943 /*
944  * Wake-queues are lists of tasks with a pending wakeup, whose
945  * callers have already marked the task as woken internally,
946  * and can thus carry on. A common use case is being able to
947  * do the wakeups once the corresponding user lock as been
948  * released.
949  *
950  * We hold reference to each task in the list across the wakeup,
951  * thus guaranteeing that the memory is still valid by the time
952  * the actual wakeups are performed in wake_up_q().
953  *
954  * One per task suffices, because there's never a need for a task to be
955  * in two wake queues simultaneously; it is forbidden to abandon a task
956  * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is
957  * already in a wake queue, the wakeup will happen soon and the second
958  * waker can just skip it.
959  *
960  * The WAKE_Q macro declares and initializes the list head.
961  * wake_up_q() does NOT reinitialize the list; it's expected to be
962  * called near the end of a function, where the fact that the queue is
963  * not used again will be easy to see by inspection.
964  *
965  * Note that this can cause spurious wakeups. schedule() callers
966  * must ensure the call is done inside a loop, confirming that the
967  * wakeup condition has in fact occurred.
968  */
969 struct wake_q_node {
970         struct wake_q_node *next;
971 };
972
973 struct wake_q_head {
974         struct wake_q_node *first;
975         struct wake_q_node **lastp;
976 };
977
978 #define WAKE_Q_TAIL ((struct wake_q_node *) 0x01)
979
980 #define WAKE_Q(name)                                    \
981         struct wake_q_head name = { WAKE_Q_TAIL, &name.first }
982
983 extern void wake_q_add(struct wake_q_head *head,
984                        struct task_struct *task);
985 extern void wake_up_q(struct wake_q_head *head);
986
987 /*
988  * sched-domains (multiprocessor balancing) declarations:
989  */
990 #ifdef CONFIG_SMP
991 #define SD_LOAD_BALANCE         0x0001  /* Do load balancing on this domain. */
992 #define SD_BALANCE_NEWIDLE      0x0002  /* Balance when about to become idle */
993 #define SD_BALANCE_EXEC         0x0004  /* Balance on exec */
994 #define SD_BALANCE_FORK         0x0008  /* Balance on fork, clone */
995 #define SD_BALANCE_WAKE         0x0010  /* Balance on wakeup */
996 #define SD_WAKE_AFFINE          0x0020  /* Wake task to waking CPU */
997 #define SD_SHARE_CPUCAPACITY    0x0080  /* Domain members share cpu power */
998 #define SD_SHARE_POWERDOMAIN    0x0100  /* Domain members share power domain */
999 #define SD_SHARE_PKG_RESOURCES  0x0200  /* Domain members share cpu pkg resources */
1000 #define SD_SERIALIZE            0x0400  /* Only a single load balancing instance */
1001 #define SD_ASYM_PACKING         0x0800  /* Place busy groups earlier in the domain */
1002 #define SD_PREFER_SIBLING       0x1000  /* Prefer to place tasks in a sibling domain */
1003 #define SD_OVERLAP              0x2000  /* sched_domains of this level overlap */
1004 #define SD_NUMA                 0x4000  /* cross-node balancing */
1005
1006 #ifdef CONFIG_SCHED_SMT
1007 static inline int cpu_smt_flags(void)
1008 {
1009         return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
1010 }
1011 #endif
1012
1013 #ifdef CONFIG_SCHED_MC
1014 static inline int cpu_core_flags(void)
1015 {
1016         return SD_SHARE_PKG_RESOURCES;
1017 }
1018 #endif
1019
1020 #ifdef CONFIG_NUMA
1021 static inline int cpu_numa_flags(void)
1022 {
1023         return SD_NUMA;
1024 }
1025 #endif
1026
1027 struct sched_domain_attr {
1028         int relax_domain_level;
1029 };
1030
1031 #define SD_ATTR_INIT    (struct sched_domain_attr) {    \
1032         .relax_domain_level = -1,                       \
1033 }
1034
1035 extern int sched_domain_level_max;
1036
1037 struct sched_group;
1038
1039 struct sched_domain {
1040         /* These fields must be setup */
1041         struct sched_domain *parent;    /* top domain must be null terminated */
1042         struct sched_domain *child;     /* bottom domain must be null terminated */
1043         struct sched_group *groups;     /* the balancing groups of the domain */
1044         unsigned long min_interval;     /* Minimum balance interval ms */
1045         unsigned long max_interval;     /* Maximum balance interval ms */
1046         unsigned int busy_factor;       /* less balancing by factor if busy */
1047         unsigned int imbalance_pct;     /* No balance until over watermark */
1048         unsigned int cache_nice_tries;  /* Leave cache hot tasks for # tries */
1049         unsigned int busy_idx;
1050         unsigned int idle_idx;
1051         unsigned int newidle_idx;
1052         unsigned int wake_idx;
1053         unsigned int forkexec_idx;
1054         unsigned int smt_gain;
1055
1056         int nohz_idle;                  /* NOHZ IDLE status */
1057         int flags;                      /* See SD_* */
1058         int level;
1059
1060         /* Runtime fields. */
1061         unsigned long last_balance;     /* init to jiffies. units in jiffies */
1062         unsigned int balance_interval;  /* initialise to 1. units in ms. */
1063         unsigned int nr_balance_failed; /* initialise to 0 */
1064
1065         /* idle_balance() stats */
1066         u64 max_newidle_lb_cost;
1067         unsigned long next_decay_max_lb_cost;
1068
1069 #ifdef CONFIG_SCHEDSTATS
1070         /* load_balance() stats */
1071         unsigned int lb_count[CPU_MAX_IDLE_TYPES];
1072         unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
1073         unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
1074         unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
1075         unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
1076         unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
1077         unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
1078         unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
1079
1080         /* Active load balancing */
1081         unsigned int alb_count;
1082         unsigned int alb_failed;
1083         unsigned int alb_pushed;
1084
1085         /* SD_BALANCE_EXEC stats */
1086         unsigned int sbe_count;
1087         unsigned int sbe_balanced;
1088         unsigned int sbe_pushed;
1089
1090         /* SD_BALANCE_FORK stats */
1091         unsigned int sbf_count;
1092         unsigned int sbf_balanced;
1093         unsigned int sbf_pushed;
1094
1095         /* try_to_wake_up() stats */
1096         unsigned int ttwu_wake_remote;
1097         unsigned int ttwu_move_affine;
1098         unsigned int ttwu_move_balance;
1099 #endif
1100 #ifdef CONFIG_SCHED_DEBUG
1101         char *name;
1102 #endif
1103         union {
1104                 void *private;          /* used during construction */
1105                 struct rcu_head rcu;    /* used during destruction */
1106         };
1107
1108         unsigned int span_weight;
1109         /*
1110          * Span of all CPUs in this domain.
1111          *
1112          * NOTE: this field is variable length. (Allocated dynamically
1113          * by attaching extra space to the end of the structure,
1114          * depending on how many CPUs the kernel has booted up with)
1115          */
1116         unsigned long span[0];
1117 };
1118
1119 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1120 {
1121         return to_cpumask(sd->span);
1122 }
1123
1124 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1125                                     struct sched_domain_attr *dattr_new);
1126
1127 /* Allocate an array of sched domains, for partition_sched_domains(). */
1128 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1129 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1130
1131 bool cpus_share_cache(int this_cpu, int that_cpu);
1132
1133 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
1134 typedef int (*sched_domain_flags_f)(void);
1135
1136 #define SDTL_OVERLAP    0x01
1137
1138 struct sd_data {
1139         struct sched_domain **__percpu sd;
1140         struct sched_group **__percpu sg;
1141         struct sched_group_capacity **__percpu sgc;
1142 };
1143
1144 struct sched_domain_topology_level {
1145         sched_domain_mask_f mask;
1146         sched_domain_flags_f sd_flags;
1147         int                 flags;
1148         int                 numa_level;
1149         struct sd_data      data;
1150 #ifdef CONFIG_SCHED_DEBUG
1151         char                *name;
1152 #endif
1153 };
1154
1155 extern void set_sched_topology(struct sched_domain_topology_level *tl);
1156 extern void wake_up_if_idle(int cpu);
1157
1158 #ifdef CONFIG_SCHED_DEBUG
1159 # define SD_INIT_NAME(type)             .name = #type
1160 #else
1161 # define SD_INIT_NAME(type)
1162 #endif
1163
1164 #else /* CONFIG_SMP */
1165
1166 struct sched_domain_attr;
1167
1168 static inline void
1169 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1170                         struct sched_domain_attr *dattr_new)
1171 {
1172 }
1173
1174 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1175 {
1176         return true;
1177 }
1178
1179 #endif  /* !CONFIG_SMP */
1180
1181
1182 struct io_context;                      /* See blkdev.h */
1183
1184
1185 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1186 extern void prefetch_stack(struct task_struct *t);
1187 #else
1188 static inline void prefetch_stack(struct task_struct *t) { }
1189 #endif
1190
1191 struct audit_context;           /* See audit.c */
1192 struct mempolicy;
1193 struct pipe_inode_info;
1194 struct uts_namespace;
1195
1196 struct load_weight {
1197         unsigned long weight;
1198         u32 inv_weight;
1199 };
1200
1201 /*
1202  * The load_avg/util_avg accumulates an infinite geometric series.
1203  * 1) load_avg factors frequency scaling into the amount of time that a
1204  * sched_entity is runnable on a rq into its weight. For cfs_rq, it is the
1205  * aggregated such weights of all runnable and blocked sched_entities.
1206  * 2) util_avg factors frequency and cpu scaling into the amount of time
1207  * that a sched_entity is running on a CPU, in the range [0..SCHED_LOAD_SCALE].
1208  * For cfs_rq, it is the aggregated such times of all runnable and
1209  * blocked sched_entities.
1210  * The 64 bit load_sum can:
1211  * 1) for cfs_rq, afford 4353082796 (=2^64/47742/88761) entities with
1212  * the highest weight (=88761) always runnable, we should not overflow
1213  * 2) for entity, support any load.weight always runnable
1214  */
1215 struct sched_avg {
1216         u64 last_update_time, load_sum;
1217         u32 util_sum, period_contrib;
1218         unsigned long load_avg, util_avg;
1219 };
1220
1221 #ifdef CONFIG_SCHEDSTATS
1222 struct sched_statistics {
1223         u64                     wait_start;
1224         u64                     wait_max;
1225         u64                     wait_count;
1226         u64                     wait_sum;
1227         u64                     iowait_count;
1228         u64                     iowait_sum;
1229
1230         u64                     sleep_start;
1231         u64                     sleep_max;
1232         s64                     sum_sleep_runtime;
1233
1234         u64                     block_start;
1235         u64                     block_max;
1236         u64                     exec_max;
1237         u64                     slice_max;
1238
1239         u64                     nr_migrations_cold;
1240         u64                     nr_failed_migrations_affine;
1241         u64                     nr_failed_migrations_running;
1242         u64                     nr_failed_migrations_hot;
1243         u64                     nr_forced_migrations;
1244
1245         u64                     nr_wakeups;
1246         u64                     nr_wakeups_sync;
1247         u64                     nr_wakeups_migrate;
1248         u64                     nr_wakeups_local;
1249         u64                     nr_wakeups_remote;
1250         u64                     nr_wakeups_affine;
1251         u64                     nr_wakeups_affine_attempts;
1252         u64                     nr_wakeups_passive;
1253         u64                     nr_wakeups_idle;
1254 };
1255 #endif
1256
1257 struct sched_entity {
1258         struct load_weight      load;           /* for load-balancing */
1259         struct rb_node          run_node;
1260         struct list_head        group_node;
1261         unsigned int            on_rq;
1262
1263         u64                     exec_start;
1264         u64                     sum_exec_runtime;
1265         u64                     vruntime;
1266         u64                     prev_sum_exec_runtime;
1267
1268         u64                     nr_migrations;
1269
1270 #ifdef CONFIG_SCHEDSTATS
1271         struct sched_statistics statistics;
1272 #endif
1273
1274 #ifdef CONFIG_FAIR_GROUP_SCHED
1275         int                     depth;
1276         struct sched_entity     *parent;
1277         /* rq on which this entity is (to be) queued: */
1278         struct cfs_rq           *cfs_rq;
1279         /* rq "owned" by this entity/group: */
1280         struct cfs_rq           *my_q;
1281 #endif
1282
1283 #ifdef CONFIG_SMP
1284         /*
1285          * Per entity load average tracking.
1286          *
1287          * Put into separate cache line so it does not
1288          * collide with read-mostly values above.
1289          */
1290         struct sched_avg        avg ____cacheline_aligned_in_smp;
1291 #endif
1292 };
1293
1294 struct sched_rt_entity {
1295         struct list_head run_list;
1296         unsigned long timeout;
1297         unsigned long watchdog_stamp;
1298         unsigned int time_slice;
1299         unsigned short on_rq;
1300         unsigned short on_list;
1301
1302         struct sched_rt_entity *back;
1303 #ifdef CONFIG_RT_GROUP_SCHED
1304         struct sched_rt_entity  *parent;
1305         /* rq on which this entity is (to be) queued: */
1306         struct rt_rq            *rt_rq;
1307         /* rq "owned" by this entity/group: */
1308         struct rt_rq            *my_q;
1309 #endif
1310 };
1311
1312 struct sched_dl_entity {
1313         struct rb_node  rb_node;
1314
1315         /*
1316          * Original scheduling parameters. Copied here from sched_attr
1317          * during sched_setattr(), they will remain the same until
1318          * the next sched_setattr().
1319          */
1320         u64 dl_runtime;         /* maximum runtime for each instance    */
1321         u64 dl_deadline;        /* relative deadline of each instance   */
1322         u64 dl_period;          /* separation of two instances (period) */
1323         u64 dl_bw;              /* dl_runtime / dl_deadline             */
1324
1325         /*
1326          * Actual scheduling parameters. Initialized with the values above,
1327          * they are continously updated during task execution. Note that
1328          * the remaining runtime could be < 0 in case we are in overrun.
1329          */
1330         s64 runtime;            /* remaining runtime for this instance  */
1331         u64 deadline;           /* absolute deadline for this instance  */
1332         unsigned int flags;     /* specifying the scheduler behaviour   */
1333
1334         /*
1335          * Some bool flags:
1336          *
1337          * @dl_throttled tells if we exhausted the runtime. If so, the
1338          * task has to wait for a replenishment to be performed at the
1339          * next firing of dl_timer.
1340          *
1341          * @dl_boosted tells if we are boosted due to DI. If so we are
1342          * outside bandwidth enforcement mechanism (but only until we
1343          * exit the critical section);
1344          *
1345          * @dl_yielded tells if task gave up the cpu before consuming
1346          * all its available runtime during the last job.
1347          */
1348         int dl_throttled, dl_boosted, dl_yielded;
1349
1350         /*
1351          * Bandwidth enforcement timer. Each -deadline task has its
1352          * own bandwidth to be enforced, thus we need one timer per task.
1353          */
1354         struct hrtimer dl_timer;
1355 };
1356
1357 union rcu_special {
1358         struct {
1359                 u8 blocked;
1360                 u8 need_qs;
1361                 u8 exp_need_qs;
1362                 u8 pad; /* Otherwise the compiler can store garbage here. */
1363         } b; /* Bits. */
1364         u32 s; /* Set of bits. */
1365 };
1366 struct rcu_node;
1367
1368 enum perf_event_task_context {
1369         perf_invalid_context = -1,
1370         perf_hw_context = 0,
1371         perf_sw_context,
1372         perf_nr_task_contexts,
1373 };
1374
1375 /* Track pages that require TLB flushes */
1376 struct tlbflush_unmap_batch {
1377         /*
1378          * Each bit set is a CPU that potentially has a TLB entry for one of
1379          * the PFNs being flushed. See set_tlb_ubc_flush_pending().
1380          */
1381         struct cpumask cpumask;
1382
1383         /* True if any bit in cpumask is set */
1384         bool flush_required;
1385
1386         /*
1387          * If true then the PTE was dirty when unmapped. The entry must be
1388          * flushed before IO is initiated or a stale TLB entry potentially
1389          * allows an update without redirtying the page.
1390          */
1391         bool writable;
1392 };
1393
1394 struct task_struct {
1395         volatile long state;    /* -1 unrunnable, 0 runnable, >0 stopped */
1396         void *stack;
1397         atomic_t usage;
1398         unsigned int flags;     /* per process flags, defined below */
1399         unsigned int ptrace;
1400
1401 #ifdef CONFIG_SMP
1402         struct llist_node wake_entry;
1403         int on_cpu;
1404         unsigned int wakee_flips;
1405         unsigned long wakee_flip_decay_ts;
1406         struct task_struct *last_wakee;
1407
1408         int wake_cpu;
1409 #endif
1410         int on_rq;
1411
1412         int prio, static_prio, normal_prio;
1413         unsigned int rt_priority;
1414         const struct sched_class *sched_class;
1415         struct sched_entity se;
1416         struct sched_rt_entity rt;
1417 #ifdef CONFIG_CGROUP_SCHED
1418         struct task_group *sched_task_group;
1419 #endif
1420         struct sched_dl_entity dl;
1421
1422 #ifdef CONFIG_PREEMPT_NOTIFIERS
1423         /* list of struct preempt_notifier: */
1424         struct hlist_head preempt_notifiers;
1425 #endif
1426
1427 #ifdef CONFIG_BLK_DEV_IO_TRACE
1428         unsigned int btrace_seq;
1429 #endif
1430
1431         unsigned int policy;
1432         int nr_cpus_allowed;
1433         cpumask_t cpus_allowed;
1434
1435 #ifdef CONFIG_PREEMPT_RCU
1436         int rcu_read_lock_nesting;
1437         union rcu_special rcu_read_unlock_special;
1438         struct list_head rcu_node_entry;
1439         struct rcu_node *rcu_blocked_node;
1440 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1441 #ifdef CONFIG_TASKS_RCU
1442         unsigned long rcu_tasks_nvcsw;
1443         bool rcu_tasks_holdout;
1444         struct list_head rcu_tasks_holdout_list;
1445         int rcu_tasks_idle_cpu;
1446 #endif /* #ifdef CONFIG_TASKS_RCU */
1447
1448 #ifdef CONFIG_SCHED_INFO
1449         struct sched_info sched_info;
1450 #endif
1451
1452         struct list_head tasks;
1453 #ifdef CONFIG_SMP
1454         struct plist_node pushable_tasks;
1455         struct rb_node pushable_dl_tasks;
1456 #endif
1457
1458         struct mm_struct *mm, *active_mm;
1459         /* per-thread vma caching */
1460         u32 vmacache_seqnum;
1461         struct vm_area_struct *vmacache[VMACACHE_SIZE];
1462 #if defined(SPLIT_RSS_COUNTING)
1463         struct task_rss_stat    rss_stat;
1464 #endif
1465 /* task state */
1466         int exit_state;
1467         int exit_code, exit_signal;
1468         int pdeath_signal;  /*  The signal sent when the parent dies  */
1469         unsigned long jobctl;   /* JOBCTL_*, siglock protected */
1470
1471         /* Used for emulating ABI behavior of previous Linux versions */
1472         unsigned int personality;
1473
1474         /* scheduler bits, serialized by scheduler locks */
1475         unsigned sched_reset_on_fork:1;
1476         unsigned sched_contributes_to_load:1;
1477         unsigned sched_migrated:1;
1478         unsigned :0; /* force alignment to the next boundary */
1479
1480         /* unserialized, strictly 'current' */
1481         unsigned in_execve:1; /* bit to tell LSMs we're in execve */
1482         unsigned in_iowait:1;
1483 #ifdef CONFIG_MEMCG
1484         unsigned memcg_may_oom:1;
1485 #ifndef CONFIG_SLOB
1486         unsigned memcg_kmem_skip_account:1;
1487 #endif
1488 #endif
1489 #ifdef CONFIG_COMPAT_BRK
1490         unsigned brk_randomized:1;
1491 #endif
1492
1493         unsigned long atomic_flags; /* Flags needing atomic access. */
1494
1495         struct restart_block restart_block;
1496
1497         pid_t pid;
1498         pid_t tgid;
1499
1500 #ifdef CONFIG_CC_STACKPROTECTOR
1501         /* Canary value for the -fstack-protector gcc feature */
1502         unsigned long stack_canary;
1503 #endif
1504         /*
1505          * pointers to (original) parent process, youngest child, younger sibling,
1506          * older sibling, respectively.  (p->father can be replaced with
1507          * p->real_parent->pid)
1508          */
1509         struct task_struct __rcu *real_parent; /* real parent process */
1510         struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1511         /*
1512          * children/sibling forms the list of my natural children
1513          */
1514         struct list_head children;      /* list of my children */
1515         struct list_head sibling;       /* linkage in my parent's children list */
1516         struct task_struct *group_leader;       /* threadgroup leader */
1517
1518         /*
1519          * ptraced is the list of tasks this task is using ptrace on.
1520          * This includes both natural children and PTRACE_ATTACH targets.
1521          * p->ptrace_entry is p's link on the p->parent->ptraced list.
1522          */
1523         struct list_head ptraced;
1524         struct list_head ptrace_entry;
1525
1526         /* PID/PID hash table linkage. */
1527         struct pid_link pids[PIDTYPE_MAX];
1528         struct list_head thread_group;
1529         struct list_head thread_node;
1530
1531         struct completion *vfork_done;          /* for vfork() */
1532         int __user *set_child_tid;              /* CLONE_CHILD_SETTID */
1533         int __user *clear_child_tid;            /* CLONE_CHILD_CLEARTID */
1534
1535         cputime_t utime, stime, utimescaled, stimescaled;
1536         cputime_t gtime;
1537         struct prev_cputime prev_cputime;
1538 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1539         seqcount_t vtime_seqcount;
1540         unsigned long long vtime_snap;
1541         enum {
1542                 /* Task is sleeping or running in a CPU with VTIME inactive */
1543                 VTIME_INACTIVE = 0,
1544                 /* Task runs in userspace in a CPU with VTIME active */
1545                 VTIME_USER,
1546                 /* Task runs in kernelspace in a CPU with VTIME active */
1547                 VTIME_SYS,
1548         } vtime_snap_whence;
1549 #endif
1550
1551 #ifdef CONFIG_NO_HZ_FULL
1552         atomic_t tick_dep_mask;
1553 #endif
1554         unsigned long nvcsw, nivcsw; /* context switch counts */
1555         u64 start_time;         /* monotonic time in nsec */
1556         u64 real_start_time;    /* boot based time in nsec */
1557 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1558         unsigned long min_flt, maj_flt;
1559
1560         struct task_cputime cputime_expires;
1561         struct list_head cpu_timers[3];
1562
1563 /* process credentials */
1564         const struct cred __rcu *real_cred; /* objective and real subjective task
1565                                          * credentials (COW) */
1566         const struct cred __rcu *cred;  /* effective (overridable) subjective task
1567                                          * credentials (COW) */
1568         char comm[TASK_COMM_LEN]; /* executable name excluding path
1569                                      - access with [gs]et_task_comm (which lock
1570                                        it with task_lock())
1571                                      - initialized normally by setup_new_exec */
1572 /* file system info */
1573         struct nameidata *nameidata;
1574 #ifdef CONFIG_SYSVIPC
1575 /* ipc stuff */
1576         struct sysv_sem sysvsem;
1577         struct sysv_shm sysvshm;
1578 #endif
1579 #ifdef CONFIG_DETECT_HUNG_TASK
1580 /* hung task detection */
1581         unsigned long last_switch_count;
1582 #endif
1583 /* filesystem information */
1584         struct fs_struct *fs;
1585 /* open file information */
1586         struct files_struct *files;
1587 /* namespaces */
1588         struct nsproxy *nsproxy;
1589 /* signal handlers */
1590         struct signal_struct *signal;
1591         struct sighand_struct *sighand;
1592
1593         sigset_t blocked, real_blocked;
1594         sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1595         struct sigpending pending;
1596
1597         unsigned long sas_ss_sp;
1598         size_t sas_ss_size;
1599         unsigned sas_ss_flags;
1600
1601         struct callback_head *task_works;
1602
1603         struct audit_context *audit_context;
1604 #ifdef CONFIG_AUDITSYSCALL
1605         kuid_t loginuid;
1606         unsigned int sessionid;
1607 #endif
1608         struct seccomp seccomp;
1609
1610 /* Thread group tracking */
1611         u32 parent_exec_id;
1612         u32 self_exec_id;
1613 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1614  * mempolicy */
1615         spinlock_t alloc_lock;
1616
1617         /* Protection of the PI data structures: */
1618         raw_spinlock_t pi_lock;
1619
1620         struct wake_q_node wake_q;
1621
1622 #ifdef CONFIG_RT_MUTEXES
1623         /* PI waiters blocked on a rt_mutex held by this task */
1624         struct rb_root pi_waiters;
1625         struct rb_node *pi_waiters_leftmost;
1626         /* Deadlock detection and priority inheritance handling */
1627         struct rt_mutex_waiter *pi_blocked_on;
1628 #endif
1629
1630 #ifdef CONFIG_DEBUG_MUTEXES
1631         /* mutex deadlock detection */
1632         struct mutex_waiter *blocked_on;
1633 #endif
1634 #ifdef CONFIG_TRACE_IRQFLAGS
1635         unsigned int irq_events;
1636         unsigned long hardirq_enable_ip;
1637         unsigned long hardirq_disable_ip;
1638         unsigned int hardirq_enable_event;
1639         unsigned int hardirq_disable_event;
1640         int hardirqs_enabled;
1641         int hardirq_context;
1642         unsigned long softirq_disable_ip;
1643         unsigned long softirq_enable_ip;
1644         unsigned int softirq_disable_event;
1645         unsigned int softirq_enable_event;
1646         int softirqs_enabled;
1647         int softirq_context;
1648 #endif
1649 #ifdef CONFIG_LOCKDEP
1650 # define MAX_LOCK_DEPTH 48UL
1651         u64 curr_chain_key;
1652         int lockdep_depth;
1653         unsigned int lockdep_recursion;
1654         struct held_lock held_locks[MAX_LOCK_DEPTH];
1655         gfp_t lockdep_reclaim_gfp;
1656 #endif
1657 #ifdef CONFIG_UBSAN
1658         unsigned int in_ubsan;
1659 #endif
1660
1661 /* journalling filesystem info */
1662         void *journal_info;
1663
1664 /* stacked block device info */
1665         struct bio_list *bio_list;
1666
1667 #ifdef CONFIG_BLOCK
1668 /* stack plugging */
1669         struct blk_plug *plug;
1670 #endif
1671
1672 /* VM state */
1673         struct reclaim_state *reclaim_state;
1674
1675         struct backing_dev_info *backing_dev_info;
1676
1677         struct io_context *io_context;
1678
1679         unsigned long ptrace_message;
1680         siginfo_t *last_siginfo; /* For ptrace use.  */
1681         struct task_io_accounting ioac;
1682 #if defined(CONFIG_TASK_XACCT)
1683         u64 acct_rss_mem1;      /* accumulated rss usage */
1684         u64 acct_vm_mem1;       /* accumulated virtual memory usage */
1685         cputime_t acct_timexpd; /* stime + utime since last update */
1686 #endif
1687 #ifdef CONFIG_CPUSETS
1688         nodemask_t mems_allowed;        /* Protected by alloc_lock */
1689         seqcount_t mems_allowed_seq;    /* Seqence no to catch updates */
1690         int cpuset_mem_spread_rotor;
1691         int cpuset_slab_spread_rotor;
1692 #endif
1693 #ifdef CONFIG_CGROUPS
1694         /* Control Group info protected by css_set_lock */
1695         struct css_set __rcu *cgroups;
1696         /* cg_list protected by css_set_lock and tsk->alloc_lock */
1697         struct list_head cg_list;
1698 #endif
1699 #ifdef CONFIG_FUTEX
1700         struct robust_list_head __user *robust_list;
1701 #ifdef CONFIG_COMPAT
1702         struct compat_robust_list_head __user *compat_robust_list;
1703 #endif
1704         struct list_head pi_state_list;
1705         struct futex_pi_state *pi_state_cache;
1706 #endif
1707 #ifdef CONFIG_PERF_EVENTS
1708         struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1709         struct mutex perf_event_mutex;
1710         struct list_head perf_event_list;
1711 #endif
1712 #ifdef CONFIG_DEBUG_PREEMPT
1713         unsigned long preempt_disable_ip;
1714 #endif
1715 #ifdef CONFIG_NUMA
1716         struct mempolicy *mempolicy;    /* Protected by alloc_lock */
1717         short il_next;
1718         short pref_node_fork;
1719 #endif
1720 #ifdef CONFIG_NUMA_BALANCING
1721         int numa_scan_seq;
1722         unsigned int numa_scan_period;
1723         unsigned int numa_scan_period_max;
1724         int numa_preferred_nid;
1725         unsigned long numa_migrate_retry;
1726         u64 node_stamp;                 /* migration stamp  */
1727         u64 last_task_numa_placement;
1728         u64 last_sum_exec_runtime;
1729         struct callback_head numa_work;
1730
1731         struct list_head numa_entry;
1732         struct numa_group *numa_group;
1733
1734         /*
1735          * numa_faults is an array split into four regions:
1736          * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1737          * in this precise order.
1738          *
1739          * faults_memory: Exponential decaying average of faults on a per-node
1740          * basis. Scheduling placement decisions are made based on these
1741          * counts. The values remain static for the duration of a PTE scan.
1742          * faults_cpu: Track the nodes the process was running on when a NUMA
1743          * hinting fault was incurred.
1744          * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1745          * during the current scan window. When the scan completes, the counts
1746          * in faults_memory and faults_cpu decay and these values are copied.
1747          */
1748         unsigned long *numa_faults;
1749         unsigned long total_numa_faults;
1750
1751         /*
1752          * numa_faults_locality tracks if faults recorded during the last
1753          * scan window were remote/local or failed to migrate. The task scan
1754          * period is adapted based on the locality of the faults with different
1755          * weights depending on whether they were shared or private faults
1756          */
1757         unsigned long numa_faults_locality[3];
1758
1759         unsigned long numa_pages_migrated;
1760 #endif /* CONFIG_NUMA_BALANCING */
1761
1762 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1763         struct tlbflush_unmap_batch tlb_ubc;
1764 #endif
1765
1766         struct rcu_head rcu;
1767
1768         /*
1769          * cache last used pipe for splice
1770          */
1771         struct pipe_inode_info *splice_pipe;
1772
1773         struct page_frag task_frag;
1774
1775 #ifdef  CONFIG_TASK_DELAY_ACCT
1776         struct task_delay_info *delays;
1777 #endif
1778 #ifdef CONFIG_FAULT_INJECTION
1779         int make_it_fail;
1780 #endif
1781         /*
1782          * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1783          * balance_dirty_pages() for some dirty throttling pause
1784          */
1785         int nr_dirtied;
1786         int nr_dirtied_pause;
1787         unsigned long dirty_paused_when; /* start of a write-and-pause period */
1788
1789 #ifdef CONFIG_LATENCYTOP
1790         int latency_record_count;
1791         struct latency_record latency_record[LT_SAVECOUNT];
1792 #endif
1793         /*
1794          * time slack values; these are used to round up poll() and
1795          * select() etc timeout values. These are in nanoseconds.
1796          */
1797         u64 timer_slack_ns;
1798         u64 default_timer_slack_ns;
1799
1800 #ifdef CONFIG_KASAN
1801         unsigned int kasan_depth;
1802 #endif
1803 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1804         /* Index of current stored address in ret_stack */
1805         int curr_ret_stack;
1806         /* Stack of return addresses for return function tracing */
1807         struct ftrace_ret_stack *ret_stack;
1808         /* time stamp for last schedule */
1809         unsigned long long ftrace_timestamp;
1810         /*
1811          * Number of functions that haven't been traced
1812          * because of depth overrun.
1813          */
1814         atomic_t trace_overrun;
1815         /* Pause for the tracing */
1816         atomic_t tracing_graph_pause;
1817 #endif
1818 #ifdef CONFIG_TRACING
1819         /* state flags for use by tracers */
1820         unsigned long trace;
1821         /* bitmask and counter of trace recursion */
1822         unsigned long trace_recursion;
1823 #endif /* CONFIG_TRACING */
1824 #ifdef CONFIG_KCOV
1825         /* Coverage collection mode enabled for this task (0 if disabled). */
1826         enum kcov_mode kcov_mode;
1827         /* Size of the kcov_area. */
1828         unsigned        kcov_size;
1829         /* Buffer for coverage collection. */
1830         void            *kcov_area;
1831         /* kcov desciptor wired with this task or NULL. */
1832         struct kcov     *kcov;
1833 #endif
1834 #ifdef CONFIG_MEMCG
1835         struct mem_cgroup *memcg_in_oom;
1836         gfp_t memcg_oom_gfp_mask;
1837         int memcg_oom_order;
1838
1839         /* number of pages to reclaim on returning to userland */
1840         unsigned int memcg_nr_pages_over_high;
1841 #endif
1842 #ifdef CONFIG_UPROBES
1843         struct uprobe_task *utask;
1844 #endif
1845 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1846         unsigned int    sequential_io;
1847         unsigned int    sequential_io_avg;
1848 #endif
1849 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1850         unsigned long   task_state_change;
1851 #endif
1852         int pagefault_disabled;
1853 #ifdef CONFIG_MMU
1854         struct task_struct *oom_reaper_list;
1855 #endif
1856 /* CPU-specific state of this task */
1857         struct thread_struct thread;
1858 /*
1859  * WARNING: on x86, 'thread_struct' contains a variable-sized
1860  * structure.  It *MUST* be at the end of 'task_struct'.
1861  *
1862  * Do not put anything below here!
1863  */
1864 };
1865
1866 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1867 extern int arch_task_struct_size __read_mostly;
1868 #else
1869 # define arch_task_struct_size (sizeof(struct task_struct))
1870 #endif
1871
1872 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1873 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1874
1875 #define TNF_MIGRATED    0x01
1876 #define TNF_NO_GROUP    0x02
1877 #define TNF_SHARED      0x04
1878 #define TNF_FAULT_LOCAL 0x08
1879 #define TNF_MIGRATE_FAIL 0x10
1880
1881 #ifdef CONFIG_NUMA_BALANCING
1882 extern void task_numa_fault(int last_node, int node, int pages, int flags);
1883 extern pid_t task_numa_group_id(struct task_struct *p);
1884 extern void set_numabalancing_state(bool enabled);
1885 extern void task_numa_free(struct task_struct *p);
1886 extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
1887                                         int src_nid, int dst_cpu);
1888 #else
1889 static inline void task_numa_fault(int last_node, int node, int pages,
1890                                    int flags)
1891 {
1892 }
1893 static inline pid_t task_numa_group_id(struct task_struct *p)
1894 {
1895         return 0;
1896 }
1897 static inline void set_numabalancing_state(bool enabled)
1898 {
1899 }
1900 static inline void task_numa_free(struct task_struct *p)
1901 {
1902 }
1903 static inline bool should_numa_migrate_memory(struct task_struct *p,
1904                                 struct page *page, int src_nid, int dst_cpu)
1905 {
1906         return true;
1907 }
1908 #endif
1909
1910 static inline struct pid *task_pid(struct task_struct *task)
1911 {
1912         return task->pids[PIDTYPE_PID].pid;
1913 }
1914
1915 static inline struct pid *task_tgid(struct task_struct *task)
1916 {
1917         return task->group_leader->pids[PIDTYPE_PID].pid;
1918 }
1919
1920 /*
1921  * Without tasklist or rcu lock it is not safe to dereference
1922  * the result of task_pgrp/task_session even if task == current,
1923  * we can race with another thread doing sys_setsid/sys_setpgid.
1924  */
1925 static inline struct pid *task_pgrp(struct task_struct *task)
1926 {
1927         return task->group_leader->pids[PIDTYPE_PGID].pid;
1928 }
1929
1930 static inline struct pid *task_session(struct task_struct *task)
1931 {
1932         return task->group_leader->pids[PIDTYPE_SID].pid;
1933 }
1934
1935 struct pid_namespace;
1936
1937 /*
1938  * the helpers to get the task's different pids as they are seen
1939  * from various namespaces
1940  *
1941  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1942  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1943  *                     current.
1944  * task_xid_nr_ns()  : id seen from the ns specified;
1945  *
1946  * set_task_vxid()   : assigns a virtual id to a task;
1947  *
1948  * see also pid_nr() etc in include/linux/pid.h
1949  */
1950 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1951                         struct pid_namespace *ns);
1952
1953 static inline pid_t task_pid_nr(struct task_struct *tsk)
1954 {
1955         return tsk->pid;
1956 }
1957
1958 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1959                                         struct pid_namespace *ns)
1960 {
1961         return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1962 }
1963
1964 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1965 {
1966         return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1967 }
1968
1969
1970 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1971 {
1972         return tsk->tgid;
1973 }
1974
1975 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1976
1977 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1978 {
1979         return pid_vnr(task_tgid(tsk));
1980 }
1981
1982
1983 static inline int pid_alive(const struct task_struct *p);
1984 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1985 {
1986         pid_t pid = 0;
1987
1988         rcu_read_lock();
1989         if (pid_alive(tsk))
1990                 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1991         rcu_read_unlock();
1992
1993         return pid;
1994 }
1995
1996 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1997 {
1998         return task_ppid_nr_ns(tsk, &init_pid_ns);
1999 }
2000
2001 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
2002                                         struct pid_namespace *ns)
2003 {
2004         return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
2005 }
2006
2007 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
2008 {
2009         return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
2010 }
2011
2012
2013 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
2014                                         struct pid_namespace *ns)
2015 {
2016         return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
2017 }
2018
2019 static inline pid_t task_session_vnr(struct task_struct *tsk)
2020 {
2021         return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
2022 }
2023
2024 /* obsolete, do not use */
2025 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
2026 {
2027         return task_pgrp_nr_ns(tsk, &init_pid_ns);
2028 }
2029
2030 /**
2031  * pid_alive - check that a task structure is not stale
2032  * @p: Task structure to be checked.
2033  *
2034  * Test if a process is not yet dead (at most zombie state)
2035  * If pid_alive fails, then pointers within the task structure
2036  * can be stale and must not be dereferenced.
2037  *
2038  * Return: 1 if the process is alive. 0 otherwise.
2039  */
2040 static inline int pid_alive(const struct task_struct *p)
2041 {
2042         return p->pids[PIDTYPE_PID].pid != NULL;
2043 }
2044
2045 /**
2046  * is_global_init - check if a task structure is init. Since init
2047  * is free to have sub-threads we need to check tgid.
2048  * @tsk: Task structure to be checked.
2049  *
2050  * Check if a task structure is the first user space task the kernel created.
2051  *
2052  * Return: 1 if the task structure is init. 0 otherwise.
2053  */
2054 static inline int is_global_init(struct task_struct *tsk)
2055 {
2056         return task_tgid_nr(tsk) == 1;
2057 }
2058
2059 extern struct pid *cad_pid;
2060
2061 extern void free_task(struct task_struct *tsk);
2062 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
2063
2064 extern void __put_task_struct(struct task_struct *t);
2065
2066 static inline void put_task_struct(struct task_struct *t)
2067 {
2068         if (atomic_dec_and_test(&t->usage))
2069                 __put_task_struct(t);
2070 }
2071
2072 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2073 extern void task_cputime(struct task_struct *t,
2074                          cputime_t *utime, cputime_t *stime);
2075 extern void task_cputime_scaled(struct task_struct *t,
2076                                 cputime_t *utimescaled, cputime_t *stimescaled);
2077 extern cputime_t task_gtime(struct task_struct *t);
2078 #else
2079 static inline void task_cputime(struct task_struct *t,
2080                                 cputime_t *utime, cputime_t *stime)
2081 {
2082         if (utime)
2083                 *utime = t->utime;
2084         if (stime)
2085                 *stime = t->stime;
2086 }
2087
2088 static inline void task_cputime_scaled(struct task_struct *t,
2089                                        cputime_t *utimescaled,
2090                                        cputime_t *stimescaled)
2091 {
2092         if (utimescaled)
2093                 *utimescaled = t->utimescaled;
2094         if (stimescaled)
2095                 *stimescaled = t->stimescaled;
2096 }
2097
2098 static inline cputime_t task_gtime(struct task_struct *t)
2099 {
2100         return t->gtime;
2101 }
2102 #endif
2103 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2104 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2105
2106 /*
2107  * Per process flags
2108  */
2109 #define PF_EXITING      0x00000004      /* getting shut down */
2110 #define PF_EXITPIDONE   0x00000008      /* pi exit done on shut down */
2111 #define PF_VCPU         0x00000010      /* I'm a virtual CPU */
2112 #define PF_WQ_WORKER    0x00000020      /* I'm a workqueue worker */
2113 #define PF_FORKNOEXEC   0x00000040      /* forked but didn't exec */
2114 #define PF_MCE_PROCESS  0x00000080      /* process policy on mce errors */
2115 #define PF_SUPERPRIV    0x00000100      /* used super-user privileges */
2116 #define PF_DUMPCORE     0x00000200      /* dumped core */
2117 #define PF_SIGNALED     0x00000400      /* killed by a signal */
2118 #define PF_MEMALLOC     0x00000800      /* Allocating memory */
2119 #define PF_NPROC_EXCEEDED 0x00001000    /* set_user noticed that RLIMIT_NPROC was exceeded */
2120 #define PF_USED_MATH    0x00002000      /* if unset the fpu must be initialized before use */
2121 #define PF_USED_ASYNC   0x00004000      /* used async_schedule*(), used by module init */
2122 #define PF_NOFREEZE     0x00008000      /* this thread should not be frozen */
2123 #define PF_FROZEN       0x00010000      /* frozen for system suspend */
2124 #define PF_FSTRANS      0x00020000      /* inside a filesystem transaction */
2125 #define PF_KSWAPD       0x00040000      /* I am kswapd */
2126 #define PF_MEMALLOC_NOIO 0x00080000     /* Allocating memory without IO involved */
2127 #define PF_LESS_THROTTLE 0x00100000     /* Throttle me less: I clean memory */
2128 #define PF_KTHREAD      0x00200000      /* I am a kernel thread */
2129 #define PF_RANDOMIZE    0x00400000      /* randomize virtual address space */
2130 #define PF_SWAPWRITE    0x00800000      /* Allowed to write to swap */
2131 #define PF_NO_SETAFFINITY 0x04000000    /* Userland is not allowed to meddle with cpus_allowed */
2132 #define PF_MCE_EARLY    0x08000000      /* Early kill for mce process policy */
2133 #define PF_MUTEX_TESTER 0x20000000      /* Thread belongs to the rt mutex tester */
2134 #define PF_FREEZER_SKIP 0x40000000      /* Freezer should not count it as freezable */
2135 #define PF_SUSPEND_TASK 0x80000000      /* this thread called freeze_processes and should not be frozen */
2136
2137 /*
2138  * Only the _current_ task can read/write to tsk->flags, but other
2139  * tasks can access tsk->flags in readonly mode for example
2140  * with tsk_used_math (like during threaded core dumping).
2141  * There is however an exception to this rule during ptrace
2142  * or during fork: the ptracer task is allowed to write to the
2143  * child->flags of its traced child (same goes for fork, the parent
2144  * can write to the child->flags), because we're guaranteed the
2145  * child is not running and in turn not changing child->flags
2146  * at the same time the parent does it.
2147  */
2148 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
2149 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
2150 #define clear_used_math() clear_stopped_child_used_math(current)
2151 #define set_used_math() set_stopped_child_used_math(current)
2152 #define conditional_stopped_child_used_math(condition, child) \
2153         do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
2154 #define conditional_used_math(condition) \
2155         conditional_stopped_child_used_math(condition, current)
2156 #define copy_to_stopped_child_used_math(child) \
2157         do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
2158 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
2159 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
2160 #define used_math() tsk_used_math(current)
2161
2162 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
2163  * __GFP_FS is also cleared as it implies __GFP_IO.
2164  */
2165 static inline gfp_t memalloc_noio_flags(gfp_t flags)
2166 {
2167         if (unlikely(current->flags & PF_MEMALLOC_NOIO))
2168                 flags &= ~(__GFP_IO | __GFP_FS);
2169         return flags;
2170 }
2171
2172 static inline unsigned int memalloc_noio_save(void)
2173 {
2174         unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
2175         current->flags |= PF_MEMALLOC_NOIO;
2176         return flags;
2177 }
2178
2179 static inline void memalloc_noio_restore(unsigned int flags)
2180 {
2181         current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
2182 }
2183
2184 /* Per-process atomic flags. */
2185 #define PFA_NO_NEW_PRIVS 0      /* May not gain new privileges. */
2186 #define PFA_SPREAD_PAGE  1      /* Spread page cache over cpuset */
2187 #define PFA_SPREAD_SLAB  2      /* Spread some slab caches over cpuset */
2188
2189
2190 #define TASK_PFA_TEST(name, func)                                       \
2191         static inline bool task_##func(struct task_struct *p)           \
2192         { return test_bit(PFA_##name, &p->atomic_flags); }
2193 #define TASK_PFA_SET(name, func)                                        \
2194         static inline void task_set_##func(struct task_struct *p)       \
2195         { set_bit(PFA_##name, &p->atomic_flags); }
2196 #define TASK_PFA_CLEAR(name, func)                                      \
2197         static inline void task_clear_##func(struct task_struct *p)     \
2198         { clear_bit(PFA_##name, &p->atomic_flags); }
2199
2200 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
2201 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
2202
2203 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
2204 TASK_PFA_SET(SPREAD_PAGE, spread_page)
2205 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
2206
2207 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
2208 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
2209 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
2210
2211 /*
2212  * task->jobctl flags
2213  */
2214 #define JOBCTL_STOP_SIGMASK     0xffff  /* signr of the last group stop */
2215
2216 #define JOBCTL_STOP_DEQUEUED_BIT 16     /* stop signal dequeued */
2217 #define JOBCTL_STOP_PENDING_BIT 17      /* task should stop for group stop */
2218 #define JOBCTL_STOP_CONSUME_BIT 18      /* consume group stop count */
2219 #define JOBCTL_TRAP_STOP_BIT    19      /* trap for STOP */
2220 #define JOBCTL_TRAP_NOTIFY_BIT  20      /* trap for NOTIFY */
2221 #define JOBCTL_TRAPPING_BIT     21      /* switching to TRACED */
2222 #define JOBCTL_LISTENING_BIT    22      /* ptracer is listening for events */
2223
2224 #define JOBCTL_STOP_DEQUEUED    (1UL << JOBCTL_STOP_DEQUEUED_BIT)
2225 #define JOBCTL_STOP_PENDING     (1UL << JOBCTL_STOP_PENDING_BIT)
2226 #define JOBCTL_STOP_CONSUME     (1UL << JOBCTL_STOP_CONSUME_BIT)
2227 #define JOBCTL_TRAP_STOP        (1UL << JOBCTL_TRAP_STOP_BIT)
2228 #define JOBCTL_TRAP_NOTIFY      (1UL << JOBCTL_TRAP_NOTIFY_BIT)
2229 #define JOBCTL_TRAPPING         (1UL << JOBCTL_TRAPPING_BIT)
2230 #define JOBCTL_LISTENING        (1UL << JOBCTL_LISTENING_BIT)
2231
2232 #define JOBCTL_TRAP_MASK        (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
2233 #define JOBCTL_PENDING_MASK     (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
2234
2235 extern bool task_set_jobctl_pending(struct task_struct *task,
2236                                     unsigned long mask);
2237 extern void task_clear_jobctl_trapping(struct task_struct *task);
2238 extern void task_clear_jobctl_pending(struct task_struct *task,
2239                                       unsigned long mask);
2240
2241 static inline void rcu_copy_process(struct task_struct *p)
2242 {
2243 #ifdef CONFIG_PREEMPT_RCU
2244         p->rcu_read_lock_nesting = 0;
2245         p->rcu_read_unlock_special.s = 0;
2246         p->rcu_blocked_node = NULL;
2247         INIT_LIST_HEAD(&p->rcu_node_entry);
2248 #endif /* #ifdef CONFIG_PREEMPT_RCU */
2249 #ifdef CONFIG_TASKS_RCU
2250         p->rcu_tasks_holdout = false;
2251         INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
2252         p->rcu_tasks_idle_cpu = -1;
2253 #endif /* #ifdef CONFIG_TASKS_RCU */
2254 }
2255
2256 static inline void tsk_restore_flags(struct task_struct *task,
2257                                 unsigned long orig_flags, unsigned long flags)
2258 {
2259         task->flags &= ~flags;
2260         task->flags |= orig_flags & flags;
2261 }
2262
2263 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur,
2264                                      const struct cpumask *trial);
2265 extern int task_can_attach(struct task_struct *p,
2266                            const struct cpumask *cs_cpus_allowed);
2267 #ifdef CONFIG_SMP
2268 extern void do_set_cpus_allowed(struct task_struct *p,
2269                                const struct cpumask *new_mask);
2270
2271 extern int set_cpus_allowed_ptr(struct task_struct *p,
2272                                 const struct cpumask *new_mask);
2273 #else
2274 static inline void do_set_cpus_allowed(struct task_struct *p,
2275                                       const struct cpumask *new_mask)
2276 {
2277 }
2278 static inline int set_cpus_allowed_ptr(struct task_struct *p,
2279                                        const struct cpumask *new_mask)
2280 {
2281         if (!cpumask_test_cpu(0, new_mask))
2282                 return -EINVAL;
2283         return 0;
2284 }
2285 #endif
2286
2287 #ifdef CONFIG_NO_HZ_COMMON
2288 void calc_load_enter_idle(void);
2289 void calc_load_exit_idle(void);
2290 #else
2291 static inline void calc_load_enter_idle(void) { }
2292 static inline void calc_load_exit_idle(void) { }
2293 #endif /* CONFIG_NO_HZ_COMMON */
2294
2295 /*
2296  * Do not use outside of architecture code which knows its limitations.
2297  *
2298  * sched_clock() has no promise of monotonicity or bounded drift between
2299  * CPUs, use (which you should not) requires disabling IRQs.
2300  *
2301  * Please use one of the three interfaces below.
2302  */
2303 extern unsigned long long notrace sched_clock(void);
2304 /*
2305  * See the comment in kernel/sched/clock.c
2306  */
2307 extern u64 cpu_clock(int cpu);
2308 extern u64 local_clock(void);
2309 extern u64 running_clock(void);
2310 extern u64 sched_clock_cpu(int cpu);
2311
2312
2313 extern void sched_clock_init(void);
2314
2315 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2316 static inline void sched_clock_tick(void)
2317 {
2318 }
2319
2320 static inline void sched_clock_idle_sleep_event(void)
2321 {
2322 }
2323
2324 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
2325 {
2326 }
2327 #else
2328 /*
2329  * Architectures can set this to 1 if they have specified
2330  * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2331  * but then during bootup it turns out that sched_clock()
2332  * is reliable after all:
2333  */
2334 extern int sched_clock_stable(void);
2335 extern void set_sched_clock_stable(void);
2336 extern void clear_sched_clock_stable(void);
2337
2338 extern void sched_clock_tick(void);
2339 extern void sched_clock_idle_sleep_event(void);
2340 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2341 #endif
2342
2343 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2344 /*
2345  * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2346  * The reason for this explicit opt-in is not to have perf penalty with
2347  * slow sched_clocks.
2348  */
2349 extern void enable_sched_clock_irqtime(void);
2350 extern void disable_sched_clock_irqtime(void);
2351 #else
2352 static inline void enable_sched_clock_irqtime(void) {}
2353 static inline void disable_sched_clock_irqtime(void) {}
2354 #endif
2355
2356 extern unsigned long long
2357 task_sched_runtime(struct task_struct *task);
2358
2359 /* sched_exec is called by processes performing an exec */
2360 #ifdef CONFIG_SMP
2361 extern void sched_exec(void);
2362 #else
2363 #define sched_exec()   {}
2364 #endif
2365
2366 extern void sched_clock_idle_sleep_event(void);
2367 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2368
2369 #ifdef CONFIG_HOTPLUG_CPU
2370 extern void idle_task_exit(void);
2371 #else
2372 static inline void idle_task_exit(void) {}
2373 #endif
2374
2375 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
2376 extern void wake_up_nohz_cpu(int cpu);
2377 #else
2378 static inline void wake_up_nohz_cpu(int cpu) { }
2379 #endif
2380
2381 #ifdef CONFIG_NO_HZ_FULL
2382 extern u64 scheduler_tick_max_deferment(void);
2383 #endif
2384
2385 #ifdef CONFIG_SCHED_AUTOGROUP
2386 extern void sched_autogroup_create_attach(struct task_struct *p);
2387 extern void sched_autogroup_detach(struct task_struct *p);
2388 extern void sched_autogroup_fork(struct signal_struct *sig);
2389 extern void sched_autogroup_exit(struct signal_struct *sig);
2390 #ifdef CONFIG_PROC_FS
2391 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2392 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
2393 #endif
2394 #else
2395 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2396 static inline void sched_autogroup_detach(struct task_struct *p) { }
2397 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2398 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2399 #endif
2400
2401 extern int yield_to(struct task_struct *p, bool preempt);
2402 extern void set_user_nice(struct task_struct *p, long nice);
2403 extern int task_prio(const struct task_struct *p);
2404 /**
2405  * task_nice - return the nice value of a given task.
2406  * @p: the task in question.
2407  *
2408  * Return: The nice value [ -20 ... 0 ... 19 ].
2409  */
2410 static inline int task_nice(const struct task_struct *p)
2411 {
2412         return PRIO_TO_NICE((p)->static_prio);
2413 }
2414 extern int can_nice(const struct task_struct *p, const int nice);
2415 extern int task_curr(const struct task_struct *p);
2416 extern int idle_cpu(int cpu);
2417 extern int sched_setscheduler(struct task_struct *, int,
2418                               const struct sched_param *);
2419 extern int sched_setscheduler_nocheck(struct task_struct *, int,
2420                                       const struct sched_param *);
2421 extern int sched_setattr(struct task_struct *,
2422                          const struct sched_attr *);
2423 extern struct task_struct *idle_task(int cpu);
2424 /**
2425  * is_idle_task - is the specified task an idle task?
2426  * @p: the task in question.
2427  *
2428  * Return: 1 if @p is an idle task. 0 otherwise.
2429  */
2430 static inline bool is_idle_task(const struct task_struct *p)
2431 {
2432         return p->pid == 0;
2433 }
2434 extern struct task_struct *curr_task(int cpu);
2435 extern void set_curr_task(int cpu, struct task_struct *p);
2436
2437 void yield(void);
2438
2439 union thread_union {
2440         struct thread_info thread_info;
2441         unsigned long stack[THREAD_SIZE/sizeof(long)];
2442 };
2443
2444 #ifndef __HAVE_ARCH_KSTACK_END
2445 static inline int kstack_end(void *addr)
2446 {
2447         /* Reliable end of stack detection:
2448          * Some APM bios versions misalign the stack
2449          */
2450         return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2451 }
2452 #endif
2453
2454 extern union thread_union init_thread_union;
2455 extern struct task_struct init_task;
2456
2457 extern struct   mm_struct init_mm;
2458
2459 extern struct pid_namespace init_pid_ns;
2460
2461 /*
2462  * find a task by one of its numerical ids
2463  *
2464  * find_task_by_pid_ns():
2465  *      finds a task by its pid in the specified namespace
2466  * find_task_by_vpid():
2467  *      finds a task by its virtual pid
2468  *
2469  * see also find_vpid() etc in include/linux/pid.h
2470  */
2471
2472 extern struct task_struct *find_task_by_vpid(pid_t nr);
2473 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2474                 struct pid_namespace *ns);
2475
2476 /* per-UID process charging. */
2477 extern struct user_struct * alloc_uid(kuid_t);
2478 static inline struct user_struct *get_uid(struct user_struct *u)
2479 {
2480         atomic_inc(&u->__count);
2481         return u;
2482 }
2483 extern void free_uid(struct user_struct *);
2484
2485 #include <asm/current.h>
2486
2487 extern void xtime_update(unsigned long ticks);
2488
2489 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2490 extern int wake_up_process(struct task_struct *tsk);
2491 extern void wake_up_new_task(struct task_struct *tsk);
2492 #ifdef CONFIG_SMP
2493  extern void kick_process(struct task_struct *tsk);
2494 #else
2495  static inline void kick_process(struct task_struct *tsk) { }
2496 #endif
2497 extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
2498 extern void sched_dead(struct task_struct *p);
2499
2500 extern void proc_caches_init(void);
2501 extern void flush_signals(struct task_struct *);
2502 extern void ignore_signals(struct task_struct *);
2503 extern void flush_signal_handlers(struct task_struct *, int force_default);
2504 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2505
2506 static inline int kernel_dequeue_signal(siginfo_t *info)
2507 {
2508         struct task_struct *tsk = current;
2509         siginfo_t __info;
2510         int ret;
2511
2512         spin_lock_irq(&tsk->sighand->siglock);
2513         ret = dequeue_signal(tsk, &tsk->blocked, info ?: &__info);
2514         spin_unlock_irq(&tsk->sighand->siglock);
2515
2516         return ret;
2517 }
2518
2519 static inline void kernel_signal_stop(void)
2520 {
2521         spin_lock_irq(&current->sighand->siglock);
2522         if (current->jobctl & JOBCTL_STOP_DEQUEUED)
2523                 __set_current_state(TASK_STOPPED);
2524         spin_unlock_irq(&current->sighand->siglock);
2525
2526         schedule();
2527 }
2528
2529 extern void release_task(struct task_struct * p);
2530 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2531 extern int force_sigsegv(int, struct task_struct *);
2532 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2533 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2534 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2535 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2536                                 const struct cred *, u32);
2537 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2538 extern int kill_pid(struct pid *pid, int sig, int priv);
2539 extern int kill_proc_info(int, struct siginfo *, pid_t);
2540 extern __must_check bool do_notify_parent(struct task_struct *, int);
2541 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2542 extern void force_sig(int, struct task_struct *);
2543 extern int send_sig(int, struct task_struct *, int);
2544 extern int zap_other_threads(struct task_struct *p);
2545 extern struct sigqueue *sigqueue_alloc(void);
2546 extern void sigqueue_free(struct sigqueue *);
2547 extern int send_sigqueue(struct sigqueue *,  struct task_struct *, int group);
2548 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2549
2550 static inline void restore_saved_sigmask(void)
2551 {
2552         if (test_and_clear_restore_sigmask())
2553                 __set_current_blocked(&current->saved_sigmask);
2554 }
2555
2556 static inline sigset_t *sigmask_to_save(void)
2557 {
2558         sigset_t *res = &current->blocked;
2559         if (unlikely(test_restore_sigmask()))
2560                 res = &current->saved_sigmask;
2561         return res;
2562 }
2563
2564 static inline int kill_cad_pid(int sig, int priv)
2565 {
2566         return kill_pid(cad_pid, sig, priv);
2567 }
2568
2569 /* These can be the second arg to send_sig_info/send_group_sig_info.  */
2570 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2571 #define SEND_SIG_PRIV   ((struct siginfo *) 1)
2572 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2573
2574 /*
2575  * True if we are on the alternate signal stack.
2576  */
2577 static inline int on_sig_stack(unsigned long sp)
2578 {
2579         /*
2580          * If the signal stack is SS_AUTODISARM then, by construction, we
2581          * can't be on the signal stack unless user code deliberately set
2582          * SS_AUTODISARM when we were already on it.
2583          *
2584          * This improves reliability: if user state gets corrupted such that
2585          * the stack pointer points very close to the end of the signal stack,
2586          * then this check will enable the signal to be handled anyway.
2587          */
2588         if (current->sas_ss_flags & SS_AUTODISARM)
2589                 return 0;
2590
2591 #ifdef CONFIG_STACK_GROWSUP
2592         return sp >= current->sas_ss_sp &&
2593                 sp - current->sas_ss_sp < current->sas_ss_size;
2594 #else
2595         return sp > current->sas_ss_sp &&
2596                 sp - current->sas_ss_sp <= current->sas_ss_size;
2597 #endif
2598 }
2599
2600 static inline int sas_ss_flags(unsigned long sp)
2601 {
2602         if (!current->sas_ss_size)
2603                 return SS_DISABLE;
2604
2605         return on_sig_stack(sp) ? SS_ONSTACK : 0;
2606 }
2607
2608 static inline void sas_ss_reset(struct task_struct *p)
2609 {
2610         p->sas_ss_sp = 0;
2611         p->sas_ss_size = 0;
2612         p->sas_ss_flags = SS_DISABLE;
2613 }
2614
2615 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2616 {
2617         if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2618 #ifdef CONFIG_STACK_GROWSUP
2619                 return current->sas_ss_sp;
2620 #else
2621                 return current->sas_ss_sp + current->sas_ss_size;
2622 #endif
2623         return sp;
2624 }
2625
2626 /*
2627  * Routines for handling mm_structs
2628  */
2629 extern struct mm_struct * mm_alloc(void);
2630
2631 /* mmdrop drops the mm and the page tables */
2632 extern void __mmdrop(struct mm_struct *);
2633 static inline void mmdrop(struct mm_struct * mm)
2634 {
2635         if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2636                 __mmdrop(mm);
2637 }
2638
2639 /* mmput gets rid of the mappings and all user-space */
2640 extern void mmput(struct mm_struct *);
2641 /* Grab a reference to a task's mm, if it is not already going away */
2642 extern struct mm_struct *get_task_mm(struct task_struct *task);
2643 /*
2644  * Grab a reference to a task's mm, if it is not already going away
2645  * and ptrace_may_access with the mode parameter passed to it
2646  * succeeds.
2647  */
2648 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2649 /* Remove the current tasks stale references to the old mm_struct */
2650 extern void mm_release(struct task_struct *, struct mm_struct *);
2651
2652 #ifdef CONFIG_HAVE_COPY_THREAD_TLS
2653 extern int copy_thread_tls(unsigned long, unsigned long, unsigned long,
2654                         struct task_struct *, unsigned long);
2655 #else
2656 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2657                         struct task_struct *);
2658
2659 /* Architectures that haven't opted into copy_thread_tls get the tls argument
2660  * via pt_regs, so ignore the tls argument passed via C. */
2661 static inline int copy_thread_tls(
2662                 unsigned long clone_flags, unsigned long sp, unsigned long arg,
2663                 struct task_struct *p, unsigned long tls)
2664 {
2665         return copy_thread(clone_flags, sp, arg, p);
2666 }
2667 #endif
2668 extern void flush_thread(void);
2669 extern void exit_thread(void);
2670
2671 extern void exit_files(struct task_struct *);
2672 extern void __cleanup_sighand(struct sighand_struct *);
2673
2674 extern void exit_itimers(struct signal_struct *);
2675 extern void flush_itimer_signals(void);
2676
2677 extern void do_group_exit(int);
2678
2679 extern int do_execve(struct filename *,
2680                      const char __user * const __user *,
2681                      const char __user * const __user *);
2682 extern int do_execveat(int, struct filename *,
2683                        const char __user * const __user *,
2684                        const char __user * const __user *,
2685                        int);
2686 extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long);
2687 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2688 struct task_struct *fork_idle(int);
2689 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2690
2691 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
2692 static inline void set_task_comm(struct task_struct *tsk, const char *from)
2693 {
2694         __set_task_comm(tsk, from, false);
2695 }
2696 extern char *get_task_comm(char *to, struct task_struct *tsk);
2697
2698 #ifdef CONFIG_SMP
2699 void scheduler_ipi(void);
2700 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2701 #else
2702 static inline void scheduler_ipi(void) { }
2703 static inline unsigned long wait_task_inactive(struct task_struct *p,
2704                                                long match_state)
2705 {
2706         return 1;
2707 }
2708 #endif
2709
2710 #define tasklist_empty() \
2711         list_empty(&init_task.tasks)
2712
2713 #define next_task(p) \
2714         list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2715
2716 #define for_each_process(p) \
2717         for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2718
2719 extern bool current_is_single_threaded(void);
2720
2721 /*
2722  * Careful: do_each_thread/while_each_thread is a double loop so
2723  *          'break' will not work as expected - use goto instead.
2724  */
2725 #define do_each_thread(g, t) \
2726         for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2727
2728 #define while_each_thread(g, t) \
2729         while ((t = next_thread(t)) != g)
2730
2731 #define __for_each_thread(signal, t)    \
2732         list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
2733
2734 #define for_each_thread(p, t)           \
2735         __for_each_thread((p)->signal, t)
2736
2737 /* Careful: this is a double loop, 'break' won't work as expected. */
2738 #define for_each_process_thread(p, t)   \
2739         for_each_process(p) for_each_thread(p, t)
2740
2741 static inline int get_nr_threads(struct task_struct *tsk)
2742 {
2743         return tsk->signal->nr_threads;
2744 }
2745
2746 static inline bool thread_group_leader(struct task_struct *p)
2747 {
2748         return p->exit_signal >= 0;
2749 }
2750
2751 /* Do to the insanities of de_thread it is possible for a process
2752  * to have the pid of the thread group leader without actually being
2753  * the thread group leader.  For iteration through the pids in proc
2754  * all we care about is that we have a task with the appropriate
2755  * pid, we don't actually care if we have the right task.
2756  */
2757 static inline bool has_group_leader_pid(struct task_struct *p)
2758 {
2759         return task_pid(p) == p->signal->leader_pid;
2760 }
2761
2762 static inline
2763 bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
2764 {
2765         return p1->signal == p2->signal;
2766 }
2767
2768 static inline struct task_struct *next_thread(const struct task_struct *p)
2769 {
2770         return list_entry_rcu(p->thread_group.next,
2771                               struct task_struct, thread_group);
2772 }
2773
2774 static inline int thread_group_empty(struct task_struct *p)
2775 {
2776         return list_empty(&p->thread_group);
2777 }
2778
2779 #define delay_group_leader(p) \
2780                 (thread_group_leader(p) && !thread_group_empty(p))
2781
2782 /*
2783  * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2784  * subscriptions and synchronises with wait4().  Also used in procfs.  Also
2785  * pins the final release of task.io_context.  Also protects ->cpuset and
2786  * ->cgroup.subsys[]. And ->vfork_done.
2787  *
2788  * Nests both inside and outside of read_lock(&tasklist_lock).
2789  * It must not be nested with write_lock_irq(&tasklist_lock),
2790  * neither inside nor outside.
2791  */
2792 static inline void task_lock(struct task_struct *p)
2793 {
2794         spin_lock(&p->alloc_lock);
2795 }
2796
2797 static inline void task_unlock(struct task_struct *p)
2798 {
2799         spin_unlock(&p->alloc_lock);
2800 }
2801
2802 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2803                                                         unsigned long *flags);
2804
2805 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2806                                                        unsigned long *flags)
2807 {
2808         struct sighand_struct *ret;
2809
2810         ret = __lock_task_sighand(tsk, flags);
2811         (void)__cond_lock(&tsk->sighand->siglock, ret);
2812         return ret;
2813 }
2814
2815 static inline void unlock_task_sighand(struct task_struct *tsk,
2816                                                 unsigned long *flags)
2817 {
2818         spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2819 }
2820
2821 /**
2822  * threadgroup_change_begin - mark the beginning of changes to a threadgroup
2823  * @tsk: task causing the changes
2824  *
2825  * All operations which modify a threadgroup - a new thread joining the
2826  * group, death of a member thread (the assertion of PF_EXITING) and
2827  * exec(2) dethreading the process and replacing the leader - are wrapped
2828  * by threadgroup_change_{begin|end}().  This is to provide a place which
2829  * subsystems needing threadgroup stability can hook into for
2830  * synchronization.
2831  */
2832 static inline void threadgroup_change_begin(struct task_struct *tsk)
2833 {
2834         might_sleep();
2835         cgroup_threadgroup_change_begin(tsk);
2836 }
2837
2838 /**
2839  * threadgroup_change_end - mark the end of changes to a threadgroup
2840  * @tsk: task causing the changes
2841  *
2842  * See threadgroup_change_begin().
2843  */
2844 static inline void threadgroup_change_end(struct task_struct *tsk)
2845 {
2846         cgroup_threadgroup_change_end(tsk);
2847 }
2848
2849 #ifndef __HAVE_THREAD_FUNCTIONS
2850
2851 #define task_thread_info(task)  ((struct thread_info *)(task)->stack)
2852 #define task_stack_page(task)   ((task)->stack)
2853
2854 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2855 {
2856         *task_thread_info(p) = *task_thread_info(org);
2857         task_thread_info(p)->task = p;
2858 }
2859
2860 /*
2861  * Return the address of the last usable long on the stack.
2862  *
2863  * When the stack grows down, this is just above the thread
2864  * info struct. Going any lower will corrupt the threadinfo.
2865  *
2866  * When the stack grows up, this is the highest address.
2867  * Beyond that position, we corrupt data on the next page.
2868  */
2869 static inline unsigned long *end_of_stack(struct task_struct *p)
2870 {
2871 #ifdef CONFIG_STACK_GROWSUP
2872         return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1;
2873 #else
2874         return (unsigned long *)(task_thread_info(p) + 1);
2875 #endif
2876 }
2877
2878 #endif
2879 #define task_stack_end_corrupted(task) \
2880                 (*(end_of_stack(task)) != STACK_END_MAGIC)
2881
2882 static inline int object_is_on_stack(void *obj)
2883 {
2884         void *stack = task_stack_page(current);
2885
2886         return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2887 }
2888
2889 extern void thread_info_cache_init(void);
2890
2891 #ifdef CONFIG_DEBUG_STACK_USAGE
2892 static inline unsigned long stack_not_used(struct task_struct *p)
2893 {
2894         unsigned long *n = end_of_stack(p);
2895
2896         do {    /* Skip over canary */
2897 # ifdef CONFIG_STACK_GROWSUP
2898                 n--;
2899 # else
2900                 n++;
2901 # endif
2902         } while (!*n);
2903
2904 # ifdef CONFIG_STACK_GROWSUP
2905         return (unsigned long)end_of_stack(p) - (unsigned long)n;
2906 # else
2907         return (unsigned long)n - (unsigned long)end_of_stack(p);
2908 # endif
2909 }
2910 #endif
2911 extern void set_task_stack_end_magic(struct task_struct *tsk);
2912
2913 /* set thread flags in other task's structures
2914  * - see asm/thread_info.h for TIF_xxxx flags available
2915  */
2916 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2917 {
2918         set_ti_thread_flag(task_thread_info(tsk), flag);
2919 }
2920
2921 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2922 {
2923         clear_ti_thread_flag(task_thread_info(tsk), flag);
2924 }
2925
2926 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2927 {
2928         return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2929 }
2930
2931 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2932 {
2933         return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2934 }
2935
2936 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2937 {
2938         return test_ti_thread_flag(task_thread_info(tsk), flag);
2939 }
2940
2941 static inline void set_tsk_need_resched(struct task_struct *tsk)
2942 {
2943         set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2944 }
2945
2946 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2947 {
2948         clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2949 }
2950
2951 static inline int test_tsk_need_resched(struct task_struct *tsk)
2952 {
2953         return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2954 }
2955
2956 static inline int restart_syscall(void)
2957 {
2958         set_tsk_thread_flag(current, TIF_SIGPENDING);
2959         return -ERESTARTNOINTR;
2960 }
2961
2962 static inline int signal_pending(struct task_struct *p)
2963 {
2964         return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2965 }
2966
2967 static inline int __fatal_signal_pending(struct task_struct *p)
2968 {
2969         return unlikely(sigismember(&p->pending.signal, SIGKILL));
2970 }
2971
2972 static inline int fatal_signal_pending(struct task_struct *p)
2973 {
2974         return signal_pending(p) && __fatal_signal_pending(p);
2975 }
2976
2977 static inline int signal_pending_state(long state, struct task_struct *p)
2978 {
2979         if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2980                 return 0;
2981         if (!signal_pending(p))
2982                 return 0;
2983
2984         return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2985 }
2986
2987 /*
2988  * cond_resched() and cond_resched_lock(): latency reduction via
2989  * explicit rescheduling in places that are safe. The return
2990  * value indicates whether a reschedule was done in fact.
2991  * cond_resched_lock() will drop the spinlock before scheduling,
2992  * cond_resched_softirq() will enable bhs before scheduling.
2993  */
2994 extern int _cond_resched(void);
2995
2996 #define cond_resched() ({                       \
2997         ___might_sleep(__FILE__, __LINE__, 0);  \
2998         _cond_resched();                        \
2999 })
3000
3001 extern int __cond_resched_lock(spinlock_t *lock);
3002
3003 #define cond_resched_lock(lock) ({                              \
3004         ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
3005         __cond_resched_lock(lock);                              \
3006 })
3007
3008 extern int __cond_resched_softirq(void);
3009
3010 #define cond_resched_softirq() ({                                       \
3011         ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET);     \
3012         __cond_resched_softirq();                                       \
3013 })
3014
3015 static inline void cond_resched_rcu(void)
3016 {
3017 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
3018         rcu_read_unlock();
3019         cond_resched();
3020         rcu_read_lock();
3021 #endif
3022 }
3023
3024 /*
3025  * Does a critical section need to be broken due to another
3026  * task waiting?: (technically does not depend on CONFIG_PREEMPT,
3027  * but a general need for low latency)
3028  */
3029 static inline int spin_needbreak(spinlock_t *lock)
3030 {
3031 #ifdef CONFIG_PREEMPT
3032         return spin_is_contended(lock);
3033 #else
3034         return 0;
3035 #endif
3036 }
3037
3038 /*
3039  * Idle thread specific functions to determine the need_resched
3040  * polling state.
3041  */
3042 #ifdef TIF_POLLING_NRFLAG
3043 static inline int tsk_is_polling(struct task_struct *p)
3044 {
3045         return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
3046 }
3047
3048 static inline void __current_set_polling(void)
3049 {
3050         set_thread_flag(TIF_POLLING_NRFLAG);
3051 }
3052
3053 static inline bool __must_check current_set_polling_and_test(void)
3054 {
3055         __current_set_polling();
3056
3057         /*
3058          * Polling state must be visible before we test NEED_RESCHED,
3059          * paired by resched_curr()
3060          */
3061         smp_mb__after_atomic();
3062
3063         return unlikely(tif_need_resched());
3064 }
3065
3066 static inline void __current_clr_polling(void)
3067 {
3068         clear_thread_flag(TIF_POLLING_NRFLAG);
3069 }
3070
3071 static inline bool __must_check current_clr_polling_and_test(void)
3072 {
3073         __current_clr_polling();
3074
3075         /*
3076          * Polling state must be visible before we test NEED_RESCHED,
3077          * paired by resched_curr()
3078          */
3079         smp_mb__after_atomic();
3080
3081         return unlikely(tif_need_resched());
3082 }
3083
3084 #else
3085 static inline int tsk_is_polling(struct task_struct *p) { return 0; }
3086 static inline void __current_set_polling(void) { }
3087 static inline void __current_clr_polling(void) { }
3088
3089 static inline bool __must_check current_set_polling_and_test(void)
3090 {
3091         return unlikely(tif_need_resched());
3092 }
3093 static inline bool __must_check current_clr_polling_and_test(void)
3094 {
3095         return unlikely(tif_need_resched());
3096 }
3097 #endif
3098
3099 static inline void current_clr_polling(void)
3100 {
3101         __current_clr_polling();
3102
3103         /*
3104          * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
3105          * Once the bit is cleared, we'll get IPIs with every new
3106          * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
3107          * fold.
3108          */
3109         smp_mb(); /* paired with resched_curr() */
3110
3111         preempt_fold_need_resched();
3112 }
3113
3114 static __always_inline bool need_resched(void)
3115 {
3116         return unlikely(tif_need_resched());
3117 }
3118
3119 /*
3120  * Thread group CPU time accounting.
3121  */
3122 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
3123 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
3124
3125 /*
3126  * Reevaluate whether the task has signals pending delivery.
3127  * Wake the task if so.
3128  * This is required every time the blocked sigset_t changes.
3129  * callers must hold sighand->siglock.
3130  */
3131 extern void recalc_sigpending_and_wake(struct task_struct *t);
3132 extern void recalc_sigpending(void);
3133
3134 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
3135
3136 static inline void signal_wake_up(struct task_struct *t, bool resume)
3137 {
3138         signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
3139 }
3140 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
3141 {
3142         signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
3143 }
3144
3145 /*
3146  * Wrappers for p->thread_info->cpu access. No-op on UP.
3147  */
3148 #ifdef CONFIG_SMP
3149
3150 static inline unsigned int task_cpu(const struct task_struct *p)
3151 {
3152         return task_thread_info(p)->cpu;
3153 }
3154
3155 static inline int task_node(const struct task_struct *p)
3156 {
3157         return cpu_to_node(task_cpu(p));
3158 }
3159
3160 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
3161
3162 #else
3163
3164 static inline unsigned int task_cpu(const struct task_struct *p)
3165 {
3166         return 0;
3167 }
3168
3169 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
3170 {
3171 }
3172
3173 #endif /* CONFIG_SMP */
3174
3175 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
3176 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
3177
3178 #ifdef CONFIG_CGROUP_SCHED
3179 extern struct task_group root_task_group;
3180 #endif /* CONFIG_CGROUP_SCHED */
3181
3182 extern int task_can_switch_user(struct user_struct *up,
3183                                         struct task_struct *tsk);
3184
3185 #ifdef CONFIG_TASK_XACCT
3186 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3187 {
3188         tsk->ioac.rchar += amt;
3189 }
3190
3191 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3192 {
3193         tsk->ioac.wchar += amt;
3194 }
3195
3196 static inline void inc_syscr(struct task_struct *tsk)
3197 {
3198         tsk->ioac.syscr++;
3199 }
3200
3201 static inline void inc_syscw(struct task_struct *tsk)
3202 {
3203         tsk->ioac.syscw++;
3204 }
3205 #else
3206 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3207 {
3208 }
3209
3210 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3211 {
3212 }
3213
3214 static inline void inc_syscr(struct task_struct *tsk)
3215 {
3216 }
3217
3218 static inline void inc_syscw(struct task_struct *tsk)
3219 {
3220 }
3221 #endif
3222
3223 #ifndef TASK_SIZE_OF
3224 #define TASK_SIZE_OF(tsk)       TASK_SIZE
3225 #endif
3226
3227 #ifdef CONFIG_MEMCG
3228 extern void mm_update_next_owner(struct mm_struct *mm);
3229 #else
3230 static inline void mm_update_next_owner(struct mm_struct *mm)
3231 {
3232 }
3233 #endif /* CONFIG_MEMCG */
3234
3235 static inline unsigned long task_rlimit(const struct task_struct *tsk,
3236                 unsigned int limit)
3237 {
3238         return READ_ONCE(tsk->signal->rlim[limit].rlim_cur);
3239 }
3240
3241 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
3242                 unsigned int limit)
3243 {
3244         return READ_ONCE(tsk->signal->rlim[limit].rlim_max);
3245 }
3246
3247 static inline unsigned long rlimit(unsigned int limit)
3248 {
3249         return task_rlimit(current, limit);
3250 }
3251
3252 static inline unsigned long rlimit_max(unsigned int limit)
3253 {
3254         return task_rlimit_max(current, limit);
3255 }
3256
3257 #ifdef CONFIG_CPU_FREQ
3258 struct update_util_data {
3259         void (*func)(struct update_util_data *data,
3260                      u64 time, unsigned long util, unsigned long max);
3261 };
3262
3263 void cpufreq_set_update_util_data(int cpu, struct update_util_data *data);
3264 #endif /* CONFIG_CPU_FREQ */
3265
3266 #endif