mm: memcontrol: move kmem accounting code to CONFIG_MEMCG
[cascardo/linux.git] / include / linux / slab.h
1 /*
2  * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
3  *
4  * (C) SGI 2006, Christoph Lameter
5  *      Cleaned up and restructured to ease the addition of alternative
6  *      implementations of SLAB allocators.
7  * (C) Linux Foundation 2008-2013
8  *      Unified interface for all slab allocators
9  */
10
11 #ifndef _LINUX_SLAB_H
12 #define _LINUX_SLAB_H
13
14 #include <linux/gfp.h>
15 #include <linux/types.h>
16 #include <linux/workqueue.h>
17
18
19 /*
20  * Flags to pass to kmem_cache_create().
21  * The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set.
22  */
23 #define SLAB_DEBUG_FREE         0x00000100UL    /* DEBUG: Perform (expensive) checks on free */
24 #define SLAB_RED_ZONE           0x00000400UL    /* DEBUG: Red zone objs in a cache */
25 #define SLAB_POISON             0x00000800UL    /* DEBUG: Poison objects */
26 #define SLAB_HWCACHE_ALIGN      0x00002000UL    /* Align objs on cache lines */
27 #define SLAB_CACHE_DMA          0x00004000UL    /* Use GFP_DMA memory */
28 #define SLAB_STORE_USER         0x00010000UL    /* DEBUG: Store the last owner for bug hunting */
29 #define SLAB_PANIC              0x00040000UL    /* Panic if kmem_cache_create() fails */
30 /*
31  * SLAB_DESTROY_BY_RCU - **WARNING** READ THIS!
32  *
33  * This delays freeing the SLAB page by a grace period, it does _NOT_
34  * delay object freeing. This means that if you do kmem_cache_free()
35  * that memory location is free to be reused at any time. Thus it may
36  * be possible to see another object there in the same RCU grace period.
37  *
38  * This feature only ensures the memory location backing the object
39  * stays valid, the trick to using this is relying on an independent
40  * object validation pass. Something like:
41  *
42  *  rcu_read_lock()
43  * again:
44  *  obj = lockless_lookup(key);
45  *  if (obj) {
46  *    if (!try_get_ref(obj)) // might fail for free objects
47  *      goto again;
48  *
49  *    if (obj->key != key) { // not the object we expected
50  *      put_ref(obj);
51  *      goto again;
52  *    }
53  *  }
54  *  rcu_read_unlock();
55  *
56  * This is useful if we need to approach a kernel structure obliquely,
57  * from its address obtained without the usual locking. We can lock
58  * the structure to stabilize it and check it's still at the given address,
59  * only if we can be sure that the memory has not been meanwhile reused
60  * for some other kind of object (which our subsystem's lock might corrupt).
61  *
62  * rcu_read_lock before reading the address, then rcu_read_unlock after
63  * taking the spinlock within the structure expected at that address.
64  */
65 #define SLAB_DESTROY_BY_RCU     0x00080000UL    /* Defer freeing slabs to RCU */
66 #define SLAB_MEM_SPREAD         0x00100000UL    /* Spread some memory over cpuset */
67 #define SLAB_TRACE              0x00200000UL    /* Trace allocations and frees */
68
69 /* Flag to prevent checks on free */
70 #ifdef CONFIG_DEBUG_OBJECTS
71 # define SLAB_DEBUG_OBJECTS     0x00400000UL
72 #else
73 # define SLAB_DEBUG_OBJECTS     0x00000000UL
74 #endif
75
76 #define SLAB_NOLEAKTRACE        0x00800000UL    /* Avoid kmemleak tracing */
77
78 /* Don't track use of uninitialized memory */
79 #ifdef CONFIG_KMEMCHECK
80 # define SLAB_NOTRACK           0x01000000UL
81 #else
82 # define SLAB_NOTRACK           0x00000000UL
83 #endif
84 #ifdef CONFIG_FAILSLAB
85 # define SLAB_FAILSLAB          0x02000000UL    /* Fault injection mark */
86 #else
87 # define SLAB_FAILSLAB          0x00000000UL
88 #endif
89 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
90 # define SLAB_ACCOUNT           0x04000000UL    /* Account to memcg */
91 #else
92 # define SLAB_ACCOUNT           0x00000000UL
93 #endif
94
95 /* The following flags affect the page allocator grouping pages by mobility */
96 #define SLAB_RECLAIM_ACCOUNT    0x00020000UL            /* Objects are reclaimable */
97 #define SLAB_TEMPORARY          SLAB_RECLAIM_ACCOUNT    /* Objects are short-lived */
98 /*
99  * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
100  *
101  * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
102  *
103  * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
104  * Both make kfree a no-op.
105  */
106 #define ZERO_SIZE_PTR ((void *)16)
107
108 #define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
109                                 (unsigned long)ZERO_SIZE_PTR)
110
111 #include <linux/kmemleak.h>
112 #include <linux/kasan.h>
113
114 struct mem_cgroup;
115 /*
116  * struct kmem_cache related prototypes
117  */
118 void __init kmem_cache_init(void);
119 bool slab_is_available(void);
120
121 struct kmem_cache *kmem_cache_create(const char *, size_t, size_t,
122                         unsigned long,
123                         void (*)(void *));
124 void kmem_cache_destroy(struct kmem_cache *);
125 int kmem_cache_shrink(struct kmem_cache *);
126
127 void memcg_create_kmem_cache(struct mem_cgroup *, struct kmem_cache *);
128 void memcg_deactivate_kmem_caches(struct mem_cgroup *);
129 void memcg_destroy_kmem_caches(struct mem_cgroup *);
130
131 /*
132  * Please use this macro to create slab caches. Simply specify the
133  * name of the structure and maybe some flags that are listed above.
134  *
135  * The alignment of the struct determines object alignment. If you
136  * f.e. add ____cacheline_aligned_in_smp to the struct declaration
137  * then the objects will be properly aligned in SMP configurations.
138  */
139 #define KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
140                 sizeof(struct __struct), __alignof__(struct __struct),\
141                 (__flags), NULL)
142
143 /*
144  * Common kmalloc functions provided by all allocators
145  */
146 void * __must_check __krealloc(const void *, size_t, gfp_t);
147 void * __must_check krealloc(const void *, size_t, gfp_t);
148 void kfree(const void *);
149 void kzfree(const void *);
150 size_t ksize(const void *);
151
152 /*
153  * Some archs want to perform DMA into kmalloc caches and need a guaranteed
154  * alignment larger than the alignment of a 64-bit integer.
155  * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that.
156  */
157 #if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
158 #define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
159 #define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
160 #define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN)
161 #else
162 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
163 #endif
164
165 /*
166  * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
167  * Intended for arches that get misalignment faults even for 64 bit integer
168  * aligned buffers.
169  */
170 #ifndef ARCH_SLAB_MINALIGN
171 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
172 #endif
173
174 /*
175  * kmalloc and friends return ARCH_KMALLOC_MINALIGN aligned
176  * pointers. kmem_cache_alloc and friends return ARCH_SLAB_MINALIGN
177  * aligned pointers.
178  */
179 #define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN)
180 #define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN)
181 #define __assume_page_alignment __assume_aligned(PAGE_SIZE)
182
183 /*
184  * Kmalloc array related definitions
185  */
186
187 #ifdef CONFIG_SLAB
188 /*
189  * The largest kmalloc size supported by the SLAB allocators is
190  * 32 megabyte (2^25) or the maximum allocatable page order if that is
191  * less than 32 MB.
192  *
193  * WARNING: Its not easy to increase this value since the allocators have
194  * to do various tricks to work around compiler limitations in order to
195  * ensure proper constant folding.
196  */
197 #define KMALLOC_SHIFT_HIGH      ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
198                                 (MAX_ORDER + PAGE_SHIFT - 1) : 25)
199 #define KMALLOC_SHIFT_MAX       KMALLOC_SHIFT_HIGH
200 #ifndef KMALLOC_SHIFT_LOW
201 #define KMALLOC_SHIFT_LOW       5
202 #endif
203 #endif
204
205 #ifdef CONFIG_SLUB
206 /*
207  * SLUB directly allocates requests fitting in to an order-1 page
208  * (PAGE_SIZE*2).  Larger requests are passed to the page allocator.
209  */
210 #define KMALLOC_SHIFT_HIGH      (PAGE_SHIFT + 1)
211 #define KMALLOC_SHIFT_MAX       (MAX_ORDER + PAGE_SHIFT)
212 #ifndef KMALLOC_SHIFT_LOW
213 #define KMALLOC_SHIFT_LOW       3
214 #endif
215 #endif
216
217 #ifdef CONFIG_SLOB
218 /*
219  * SLOB passes all requests larger than one page to the page allocator.
220  * No kmalloc array is necessary since objects of different sizes can
221  * be allocated from the same page.
222  */
223 #define KMALLOC_SHIFT_HIGH      PAGE_SHIFT
224 #define KMALLOC_SHIFT_MAX       30
225 #ifndef KMALLOC_SHIFT_LOW
226 #define KMALLOC_SHIFT_LOW       3
227 #endif
228 #endif
229
230 /* Maximum allocatable size */
231 #define KMALLOC_MAX_SIZE        (1UL << KMALLOC_SHIFT_MAX)
232 /* Maximum size for which we actually use a slab cache */
233 #define KMALLOC_MAX_CACHE_SIZE  (1UL << KMALLOC_SHIFT_HIGH)
234 /* Maximum order allocatable via the slab allocagtor */
235 #define KMALLOC_MAX_ORDER       (KMALLOC_SHIFT_MAX - PAGE_SHIFT)
236
237 /*
238  * Kmalloc subsystem.
239  */
240 #ifndef KMALLOC_MIN_SIZE
241 #define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
242 #endif
243
244 /*
245  * This restriction comes from byte sized index implementation.
246  * Page size is normally 2^12 bytes and, in this case, if we want to use
247  * byte sized index which can represent 2^8 entries, the size of the object
248  * should be equal or greater to 2^12 / 2^8 = 2^4 = 16.
249  * If minimum size of kmalloc is less than 16, we use it as minimum object
250  * size and give up to use byte sized index.
251  */
252 #define SLAB_OBJ_MIN_SIZE      (KMALLOC_MIN_SIZE < 16 ? \
253                                (KMALLOC_MIN_SIZE) : 16)
254
255 #ifndef CONFIG_SLOB
256 extern struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
257 #ifdef CONFIG_ZONE_DMA
258 extern struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
259 #endif
260
261 /*
262  * Figure out which kmalloc slab an allocation of a certain size
263  * belongs to.
264  * 0 = zero alloc
265  * 1 =  65 .. 96 bytes
266  * 2 = 129 .. 192 bytes
267  * n = 2^(n-1)+1 .. 2^n
268  */
269 static __always_inline int kmalloc_index(size_t size)
270 {
271         if (!size)
272                 return 0;
273
274         if (size <= KMALLOC_MIN_SIZE)
275                 return KMALLOC_SHIFT_LOW;
276
277         if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
278                 return 1;
279         if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
280                 return 2;
281         if (size <=          8) return 3;
282         if (size <=         16) return 4;
283         if (size <=         32) return 5;
284         if (size <=         64) return 6;
285         if (size <=        128) return 7;
286         if (size <=        256) return 8;
287         if (size <=        512) return 9;
288         if (size <=       1024) return 10;
289         if (size <=   2 * 1024) return 11;
290         if (size <=   4 * 1024) return 12;
291         if (size <=   8 * 1024) return 13;
292         if (size <=  16 * 1024) return 14;
293         if (size <=  32 * 1024) return 15;
294         if (size <=  64 * 1024) return 16;
295         if (size <= 128 * 1024) return 17;
296         if (size <= 256 * 1024) return 18;
297         if (size <= 512 * 1024) return 19;
298         if (size <= 1024 * 1024) return 20;
299         if (size <=  2 * 1024 * 1024) return 21;
300         if (size <=  4 * 1024 * 1024) return 22;
301         if (size <=  8 * 1024 * 1024) return 23;
302         if (size <=  16 * 1024 * 1024) return 24;
303         if (size <=  32 * 1024 * 1024) return 25;
304         if (size <=  64 * 1024 * 1024) return 26;
305         BUG();
306
307         /* Will never be reached. Needed because the compiler may complain */
308         return -1;
309 }
310 #endif /* !CONFIG_SLOB */
311
312 void *__kmalloc(size_t size, gfp_t flags) __assume_kmalloc_alignment;
313 void *kmem_cache_alloc(struct kmem_cache *, gfp_t flags) __assume_slab_alignment;
314 void kmem_cache_free(struct kmem_cache *, void *);
315
316 /*
317  * Bulk allocation and freeing operations. These are accellerated in an
318  * allocator specific way to avoid taking locks repeatedly or building
319  * metadata structures unnecessarily.
320  *
321  * Note that interrupts must be enabled when calling these functions.
322  */
323 void kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
324 int kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
325
326 #ifdef CONFIG_NUMA
327 void *__kmalloc_node(size_t size, gfp_t flags, int node) __assume_kmalloc_alignment;
328 void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node) __assume_slab_alignment;
329 #else
330 static __always_inline void *__kmalloc_node(size_t size, gfp_t flags, int node)
331 {
332         return __kmalloc(size, flags);
333 }
334
335 static __always_inline void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node)
336 {
337         return kmem_cache_alloc(s, flags);
338 }
339 #endif
340
341 #ifdef CONFIG_TRACING
342 extern void *kmem_cache_alloc_trace(struct kmem_cache *, gfp_t, size_t) __assume_slab_alignment;
343
344 #ifdef CONFIG_NUMA
345 extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
346                                            gfp_t gfpflags,
347                                            int node, size_t size) __assume_slab_alignment;
348 #else
349 static __always_inline void *
350 kmem_cache_alloc_node_trace(struct kmem_cache *s,
351                               gfp_t gfpflags,
352                               int node, size_t size)
353 {
354         return kmem_cache_alloc_trace(s, gfpflags, size);
355 }
356 #endif /* CONFIG_NUMA */
357
358 #else /* CONFIG_TRACING */
359 static __always_inline void *kmem_cache_alloc_trace(struct kmem_cache *s,
360                 gfp_t flags, size_t size)
361 {
362         void *ret = kmem_cache_alloc(s, flags);
363
364         kasan_kmalloc(s, ret, size);
365         return ret;
366 }
367
368 static __always_inline void *
369 kmem_cache_alloc_node_trace(struct kmem_cache *s,
370                               gfp_t gfpflags,
371                               int node, size_t size)
372 {
373         void *ret = kmem_cache_alloc_node(s, gfpflags, node);
374
375         kasan_kmalloc(s, ret, size);
376         return ret;
377 }
378 #endif /* CONFIG_TRACING */
379
380 extern void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment;
381
382 #ifdef CONFIG_TRACING
383 extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment;
384 #else
385 static __always_inline void *
386 kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
387 {
388         return kmalloc_order(size, flags, order);
389 }
390 #endif
391
392 static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
393 {
394         unsigned int order = get_order(size);
395         return kmalloc_order_trace(size, flags, order);
396 }
397
398 /**
399  * kmalloc - allocate memory
400  * @size: how many bytes of memory are required.
401  * @flags: the type of memory to allocate.
402  *
403  * kmalloc is the normal method of allocating memory
404  * for objects smaller than page size in the kernel.
405  *
406  * The @flags argument may be one of:
407  *
408  * %GFP_USER - Allocate memory on behalf of user.  May sleep.
409  *
410  * %GFP_KERNEL - Allocate normal kernel ram.  May sleep.
411  *
412  * %GFP_ATOMIC - Allocation will not sleep.  May use emergency pools.
413  *   For example, use this inside interrupt handlers.
414  *
415  * %GFP_HIGHUSER - Allocate pages from high memory.
416  *
417  * %GFP_NOIO - Do not do any I/O at all while trying to get memory.
418  *
419  * %GFP_NOFS - Do not make any fs calls while trying to get memory.
420  *
421  * %GFP_NOWAIT - Allocation will not sleep.
422  *
423  * %__GFP_THISNODE - Allocate node-local memory only.
424  *
425  * %GFP_DMA - Allocation suitable for DMA.
426  *   Should only be used for kmalloc() caches. Otherwise, use a
427  *   slab created with SLAB_DMA.
428  *
429  * Also it is possible to set different flags by OR'ing
430  * in one or more of the following additional @flags:
431  *
432  * %__GFP_COLD - Request cache-cold pages instead of
433  *   trying to return cache-warm pages.
434  *
435  * %__GFP_HIGH - This allocation has high priority and may use emergency pools.
436  *
437  * %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail
438  *   (think twice before using).
439  *
440  * %__GFP_NORETRY - If memory is not immediately available,
441  *   then give up at once.
442  *
443  * %__GFP_NOWARN - If allocation fails, don't issue any warnings.
444  *
445  * %__GFP_REPEAT - If allocation fails initially, try once more before failing.
446  *
447  * There are other flags available as well, but these are not intended
448  * for general use, and so are not documented here. For a full list of
449  * potential flags, always refer to linux/gfp.h.
450  */
451 static __always_inline void *kmalloc(size_t size, gfp_t flags)
452 {
453         if (__builtin_constant_p(size)) {
454                 if (size > KMALLOC_MAX_CACHE_SIZE)
455                         return kmalloc_large(size, flags);
456 #ifndef CONFIG_SLOB
457                 if (!(flags & GFP_DMA)) {
458                         int index = kmalloc_index(size);
459
460                         if (!index)
461                                 return ZERO_SIZE_PTR;
462
463                         return kmem_cache_alloc_trace(kmalloc_caches[index],
464                                         flags, size);
465                 }
466 #endif
467         }
468         return __kmalloc(size, flags);
469 }
470
471 /*
472  * Determine size used for the nth kmalloc cache.
473  * return size or 0 if a kmalloc cache for that
474  * size does not exist
475  */
476 static __always_inline int kmalloc_size(int n)
477 {
478 #ifndef CONFIG_SLOB
479         if (n > 2)
480                 return 1 << n;
481
482         if (n == 1 && KMALLOC_MIN_SIZE <= 32)
483                 return 96;
484
485         if (n == 2 && KMALLOC_MIN_SIZE <= 64)
486                 return 192;
487 #endif
488         return 0;
489 }
490
491 static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
492 {
493 #ifndef CONFIG_SLOB
494         if (__builtin_constant_p(size) &&
495                 size <= KMALLOC_MAX_CACHE_SIZE && !(flags & GFP_DMA)) {
496                 int i = kmalloc_index(size);
497
498                 if (!i)
499                         return ZERO_SIZE_PTR;
500
501                 return kmem_cache_alloc_node_trace(kmalloc_caches[i],
502                                                 flags, node, size);
503         }
504 #endif
505         return __kmalloc_node(size, flags, node);
506 }
507
508 struct memcg_cache_array {
509         struct rcu_head rcu;
510         struct kmem_cache *entries[0];
511 };
512
513 /*
514  * This is the main placeholder for memcg-related information in kmem caches.
515  * Both the root cache and the child caches will have it. For the root cache,
516  * this will hold a dynamically allocated array large enough to hold
517  * information about the currently limited memcgs in the system. To allow the
518  * array to be accessed without taking any locks, on relocation we free the old
519  * version only after a grace period.
520  *
521  * Child caches will hold extra metadata needed for its operation. Fields are:
522  *
523  * @memcg: pointer to the memcg this cache belongs to
524  * @root_cache: pointer to the global, root cache, this cache was derived from
525  *
526  * Both root and child caches of the same kind are linked into a list chained
527  * through @list.
528  */
529 struct memcg_cache_params {
530         bool is_root_cache;
531         struct list_head list;
532         union {
533                 struct memcg_cache_array __rcu *memcg_caches;
534                 struct {
535                         struct mem_cgroup *memcg;
536                         struct kmem_cache *root_cache;
537                 };
538         };
539 };
540
541 int memcg_update_all_caches(int num_memcgs);
542
543 /**
544  * kmalloc_array - allocate memory for an array.
545  * @n: number of elements.
546  * @size: element size.
547  * @flags: the type of memory to allocate (see kmalloc).
548  */
549 static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags)
550 {
551         if (size != 0 && n > SIZE_MAX / size)
552                 return NULL;
553         return __kmalloc(n * size, flags);
554 }
555
556 /**
557  * kcalloc - allocate memory for an array. The memory is set to zero.
558  * @n: number of elements.
559  * @size: element size.
560  * @flags: the type of memory to allocate (see kmalloc).
561  */
562 static inline void *kcalloc(size_t n, size_t size, gfp_t flags)
563 {
564         return kmalloc_array(n, size, flags | __GFP_ZERO);
565 }
566
567 /*
568  * kmalloc_track_caller is a special version of kmalloc that records the
569  * calling function of the routine calling it for slab leak tracking instead
570  * of just the calling function (confusing, eh?).
571  * It's useful when the call to kmalloc comes from a widely-used standard
572  * allocator where we care about the real place the memory allocation
573  * request comes from.
574  */
575 extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long);
576 #define kmalloc_track_caller(size, flags) \
577         __kmalloc_track_caller(size, flags, _RET_IP_)
578
579 #ifdef CONFIG_NUMA
580 extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long);
581 #define kmalloc_node_track_caller(size, flags, node) \
582         __kmalloc_node_track_caller(size, flags, node, \
583                         _RET_IP_)
584
585 #else /* CONFIG_NUMA */
586
587 #define kmalloc_node_track_caller(size, flags, node) \
588         kmalloc_track_caller(size, flags)
589
590 #endif /* CONFIG_NUMA */
591
592 /*
593  * Shortcuts
594  */
595 static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
596 {
597         return kmem_cache_alloc(k, flags | __GFP_ZERO);
598 }
599
600 /**
601  * kzalloc - allocate memory. The memory is set to zero.
602  * @size: how many bytes of memory are required.
603  * @flags: the type of memory to allocate (see kmalloc).
604  */
605 static inline void *kzalloc(size_t size, gfp_t flags)
606 {
607         return kmalloc(size, flags | __GFP_ZERO);
608 }
609
610 /**
611  * kzalloc_node - allocate zeroed memory from a particular memory node.
612  * @size: how many bytes of memory are required.
613  * @flags: the type of memory to allocate (see kmalloc).
614  * @node: memory node from which to allocate
615  */
616 static inline void *kzalloc_node(size_t size, gfp_t flags, int node)
617 {
618         return kmalloc_node(size, flags | __GFP_ZERO, node);
619 }
620
621 unsigned int kmem_cache_size(struct kmem_cache *s);
622 void __init kmem_cache_init_late(void);
623
624 #endif  /* _LINUX_SLAB_H */