Merge branches 'device-properties' and 'acpi-misc'
[cascardo/linux.git] / kernel / cpu.c
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched.h>
11 #include <linux/unistd.h>
12 #include <linux/cpu.h>
13 #include <linux/oom.h>
14 #include <linux/rcupdate.h>
15 #include <linux/export.h>
16 #include <linux/bug.h>
17 #include <linux/kthread.h>
18 #include <linux/stop_machine.h>
19 #include <linux/mutex.h>
20 #include <linux/gfp.h>
21 #include <linux/suspend.h>
22 #include <linux/lockdep.h>
23 #include <linux/tick.h>
24 #include <linux/irq.h>
25 #include <linux/smpboot.h>
26
27 #include <trace/events/power.h>
28 #define CREATE_TRACE_POINTS
29 #include <trace/events/cpuhp.h>
30
31 #include "smpboot.h"
32
33 /**
34  * cpuhp_cpu_state - Per cpu hotplug state storage
35  * @state:      The current cpu state
36  * @target:     The target state
37  * @thread:     Pointer to the hotplug thread
38  * @should_run: Thread should execute
39  * @rollback:   Perform a rollback
40  * @cb_stat:    The state for a single callback (install/uninstall)
41  * @cb:         Single callback function (install/uninstall)
42  * @result:     Result of the operation
43  * @done:       Signal completion to the issuer of the task
44  */
45 struct cpuhp_cpu_state {
46         enum cpuhp_state        state;
47         enum cpuhp_state        target;
48 #ifdef CONFIG_SMP
49         struct task_struct      *thread;
50         bool                    should_run;
51         bool                    rollback;
52         enum cpuhp_state        cb_state;
53         int                     (*cb)(unsigned int cpu);
54         int                     result;
55         struct completion       done;
56 #endif
57 };
58
59 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state);
60
61 /**
62  * cpuhp_step - Hotplug state machine step
63  * @name:       Name of the step
64  * @startup:    Startup function of the step
65  * @teardown:   Teardown function of the step
66  * @skip_onerr: Do not invoke the functions on error rollback
67  *              Will go away once the notifiers are gone
68  * @cant_stop:  Bringup/teardown can't be stopped at this step
69  */
70 struct cpuhp_step {
71         const char      *name;
72         int             (*startup)(unsigned int cpu);
73         int             (*teardown)(unsigned int cpu);
74         bool            skip_onerr;
75         bool            cant_stop;
76 };
77
78 static DEFINE_MUTEX(cpuhp_state_mutex);
79 static struct cpuhp_step cpuhp_bp_states[];
80 static struct cpuhp_step cpuhp_ap_states[];
81
82 /**
83  * cpuhp_invoke_callback _ Invoke the callbacks for a given state
84  * @cpu:        The cpu for which the callback should be invoked
85  * @step:       The step in the state machine
86  * @cb:         The callback function to invoke
87  *
88  * Called from cpu hotplug and from the state register machinery
89  */
90 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state step,
91                                  int (*cb)(unsigned int))
92 {
93         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
94         int ret = 0;
95
96         if (cb) {
97                 trace_cpuhp_enter(cpu, st->target, step, cb);
98                 ret = cb(cpu);
99                 trace_cpuhp_exit(cpu, st->state, step, ret);
100         }
101         return ret;
102 }
103
104 #ifdef CONFIG_SMP
105 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
106 static DEFINE_MUTEX(cpu_add_remove_lock);
107 bool cpuhp_tasks_frozen;
108 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
109
110 /*
111  * The following two APIs (cpu_maps_update_begin/done) must be used when
112  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
113  * The APIs cpu_notifier_register_begin/done() must be used to protect CPU
114  * hotplug callback (un)registration performed using __register_cpu_notifier()
115  * or __unregister_cpu_notifier().
116  */
117 void cpu_maps_update_begin(void)
118 {
119         mutex_lock(&cpu_add_remove_lock);
120 }
121 EXPORT_SYMBOL(cpu_notifier_register_begin);
122
123 void cpu_maps_update_done(void)
124 {
125         mutex_unlock(&cpu_add_remove_lock);
126 }
127 EXPORT_SYMBOL(cpu_notifier_register_done);
128
129 static RAW_NOTIFIER_HEAD(cpu_chain);
130
131 /* If set, cpu_up and cpu_down will return -EBUSY and do nothing.
132  * Should always be manipulated under cpu_add_remove_lock
133  */
134 static int cpu_hotplug_disabled;
135
136 #ifdef CONFIG_HOTPLUG_CPU
137
138 static struct {
139         struct task_struct *active_writer;
140         /* wait queue to wake up the active_writer */
141         wait_queue_head_t wq;
142         /* verifies that no writer will get active while readers are active */
143         struct mutex lock;
144         /*
145          * Also blocks the new readers during
146          * an ongoing cpu hotplug operation.
147          */
148         atomic_t refcount;
149
150 #ifdef CONFIG_DEBUG_LOCK_ALLOC
151         struct lockdep_map dep_map;
152 #endif
153 } cpu_hotplug = {
154         .active_writer = NULL,
155         .wq = __WAIT_QUEUE_HEAD_INITIALIZER(cpu_hotplug.wq),
156         .lock = __MUTEX_INITIALIZER(cpu_hotplug.lock),
157 #ifdef CONFIG_DEBUG_LOCK_ALLOC
158         .dep_map = {.name = "cpu_hotplug.lock" },
159 #endif
160 };
161
162 /* Lockdep annotations for get/put_online_cpus() and cpu_hotplug_begin/end() */
163 #define cpuhp_lock_acquire_read() lock_map_acquire_read(&cpu_hotplug.dep_map)
164 #define cpuhp_lock_acquire_tryread() \
165                                   lock_map_acquire_tryread(&cpu_hotplug.dep_map)
166 #define cpuhp_lock_acquire()      lock_map_acquire(&cpu_hotplug.dep_map)
167 #define cpuhp_lock_release()      lock_map_release(&cpu_hotplug.dep_map)
168
169
170 void get_online_cpus(void)
171 {
172         might_sleep();
173         if (cpu_hotplug.active_writer == current)
174                 return;
175         cpuhp_lock_acquire_read();
176         mutex_lock(&cpu_hotplug.lock);
177         atomic_inc(&cpu_hotplug.refcount);
178         mutex_unlock(&cpu_hotplug.lock);
179 }
180 EXPORT_SYMBOL_GPL(get_online_cpus);
181
182 void put_online_cpus(void)
183 {
184         int refcount;
185
186         if (cpu_hotplug.active_writer == current)
187                 return;
188
189         refcount = atomic_dec_return(&cpu_hotplug.refcount);
190         if (WARN_ON(refcount < 0)) /* try to fix things up */
191                 atomic_inc(&cpu_hotplug.refcount);
192
193         if (refcount <= 0 && waitqueue_active(&cpu_hotplug.wq))
194                 wake_up(&cpu_hotplug.wq);
195
196         cpuhp_lock_release();
197
198 }
199 EXPORT_SYMBOL_GPL(put_online_cpus);
200
201 /*
202  * This ensures that the hotplug operation can begin only when the
203  * refcount goes to zero.
204  *
205  * Note that during a cpu-hotplug operation, the new readers, if any,
206  * will be blocked by the cpu_hotplug.lock
207  *
208  * Since cpu_hotplug_begin() is always called after invoking
209  * cpu_maps_update_begin(), we can be sure that only one writer is active.
210  *
211  * Note that theoretically, there is a possibility of a livelock:
212  * - Refcount goes to zero, last reader wakes up the sleeping
213  *   writer.
214  * - Last reader unlocks the cpu_hotplug.lock.
215  * - A new reader arrives at this moment, bumps up the refcount.
216  * - The writer acquires the cpu_hotplug.lock finds the refcount
217  *   non zero and goes to sleep again.
218  *
219  * However, this is very difficult to achieve in practice since
220  * get_online_cpus() not an api which is called all that often.
221  *
222  */
223 void cpu_hotplug_begin(void)
224 {
225         DEFINE_WAIT(wait);
226
227         cpu_hotplug.active_writer = current;
228         cpuhp_lock_acquire();
229
230         for (;;) {
231                 mutex_lock(&cpu_hotplug.lock);
232                 prepare_to_wait(&cpu_hotplug.wq, &wait, TASK_UNINTERRUPTIBLE);
233                 if (likely(!atomic_read(&cpu_hotplug.refcount)))
234                                 break;
235                 mutex_unlock(&cpu_hotplug.lock);
236                 schedule();
237         }
238         finish_wait(&cpu_hotplug.wq, &wait);
239 }
240
241 void cpu_hotplug_done(void)
242 {
243         cpu_hotplug.active_writer = NULL;
244         mutex_unlock(&cpu_hotplug.lock);
245         cpuhp_lock_release();
246 }
247
248 /*
249  * Wait for currently running CPU hotplug operations to complete (if any) and
250  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
251  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
252  * hotplug path before performing hotplug operations. So acquiring that lock
253  * guarantees mutual exclusion from any currently running hotplug operations.
254  */
255 void cpu_hotplug_disable(void)
256 {
257         cpu_maps_update_begin();
258         cpu_hotplug_disabled++;
259         cpu_maps_update_done();
260 }
261 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
262
263 void cpu_hotplug_enable(void)
264 {
265         cpu_maps_update_begin();
266         WARN_ON(--cpu_hotplug_disabled < 0);
267         cpu_maps_update_done();
268 }
269 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
270 #endif  /* CONFIG_HOTPLUG_CPU */
271
272 /* Need to know about CPUs going up/down? */
273 int register_cpu_notifier(struct notifier_block *nb)
274 {
275         int ret;
276         cpu_maps_update_begin();
277         ret = raw_notifier_chain_register(&cpu_chain, nb);
278         cpu_maps_update_done();
279         return ret;
280 }
281
282 int __register_cpu_notifier(struct notifier_block *nb)
283 {
284         return raw_notifier_chain_register(&cpu_chain, nb);
285 }
286
287 static int __cpu_notify(unsigned long val, unsigned int cpu, int nr_to_call,
288                         int *nr_calls)
289 {
290         unsigned long mod = cpuhp_tasks_frozen ? CPU_TASKS_FROZEN : 0;
291         void *hcpu = (void *)(long)cpu;
292
293         int ret;
294
295         ret = __raw_notifier_call_chain(&cpu_chain, val | mod, hcpu, nr_to_call,
296                                         nr_calls);
297
298         return notifier_to_errno(ret);
299 }
300
301 static int cpu_notify(unsigned long val, unsigned int cpu)
302 {
303         return __cpu_notify(val, cpu, -1, NULL);
304 }
305
306 static void cpu_notify_nofail(unsigned long val, unsigned int cpu)
307 {
308         BUG_ON(cpu_notify(val, cpu));
309 }
310
311 /* Notifier wrappers for transitioning to state machine */
312 static int notify_prepare(unsigned int cpu)
313 {
314         int nr_calls = 0;
315         int ret;
316
317         ret = __cpu_notify(CPU_UP_PREPARE, cpu, -1, &nr_calls);
318         if (ret) {
319                 nr_calls--;
320                 printk(KERN_WARNING "%s: attempt to bring up CPU %u failed\n",
321                                 __func__, cpu);
322                 __cpu_notify(CPU_UP_CANCELED, cpu, nr_calls, NULL);
323         }
324         return ret;
325 }
326
327 static int notify_online(unsigned int cpu)
328 {
329         cpu_notify(CPU_ONLINE, cpu);
330         return 0;
331 }
332
333 static int notify_starting(unsigned int cpu)
334 {
335         cpu_notify(CPU_STARTING, cpu);
336         return 0;
337 }
338
339 static int bringup_wait_for_ap(unsigned int cpu)
340 {
341         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
342
343         wait_for_completion(&st->done);
344         return st->result;
345 }
346
347 static int bringup_cpu(unsigned int cpu)
348 {
349         struct task_struct *idle = idle_thread_get(cpu);
350         int ret;
351
352         /* Arch-specific enabling code. */
353         ret = __cpu_up(cpu, idle);
354         if (ret) {
355                 cpu_notify(CPU_UP_CANCELED, cpu);
356                 return ret;
357         }
358         ret = bringup_wait_for_ap(cpu);
359         BUG_ON(!cpu_online(cpu));
360         return ret;
361 }
362
363 /*
364  * Hotplug state machine related functions
365  */
366 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st,
367                           struct cpuhp_step *steps)
368 {
369         for (st->state++; st->state < st->target; st->state++) {
370                 struct cpuhp_step *step = steps + st->state;
371
372                 if (!step->skip_onerr)
373                         cpuhp_invoke_callback(cpu, st->state, step->startup);
374         }
375 }
376
377 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
378                                 struct cpuhp_step *steps, enum cpuhp_state target)
379 {
380         enum cpuhp_state prev_state = st->state;
381         int ret = 0;
382
383         for (; st->state > target; st->state--) {
384                 struct cpuhp_step *step = steps + st->state;
385
386                 ret = cpuhp_invoke_callback(cpu, st->state, step->teardown);
387                 if (ret) {
388                         st->target = prev_state;
389                         undo_cpu_down(cpu, st, steps);
390                         break;
391                 }
392         }
393         return ret;
394 }
395
396 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st,
397                         struct cpuhp_step *steps)
398 {
399         for (st->state--; st->state > st->target; st->state--) {
400                 struct cpuhp_step *step = steps + st->state;
401
402                 if (!step->skip_onerr)
403                         cpuhp_invoke_callback(cpu, st->state, step->teardown);
404         }
405 }
406
407 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
408                               struct cpuhp_step *steps, enum cpuhp_state target)
409 {
410         enum cpuhp_state prev_state = st->state;
411         int ret = 0;
412
413         while (st->state < target) {
414                 struct cpuhp_step *step;
415
416                 st->state++;
417                 step = steps + st->state;
418                 ret = cpuhp_invoke_callback(cpu, st->state, step->startup);
419                 if (ret) {
420                         st->target = prev_state;
421                         undo_cpu_up(cpu, st, steps);
422                         break;
423                 }
424         }
425         return ret;
426 }
427
428 /*
429  * The cpu hotplug threads manage the bringup and teardown of the cpus
430  */
431 static void cpuhp_create(unsigned int cpu)
432 {
433         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
434
435         init_completion(&st->done);
436 }
437
438 static int cpuhp_should_run(unsigned int cpu)
439 {
440         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
441
442         return st->should_run;
443 }
444
445 /* Execute the teardown callbacks. Used to be CPU_DOWN_PREPARE */
446 static int cpuhp_ap_offline(unsigned int cpu, struct cpuhp_cpu_state *st)
447 {
448         enum cpuhp_state target = max((int)st->target, CPUHP_TEARDOWN_CPU);
449
450         return cpuhp_down_callbacks(cpu, st, cpuhp_ap_states, target);
451 }
452
453 /* Execute the online startup callbacks. Used to be CPU_ONLINE */
454 static int cpuhp_ap_online(unsigned int cpu, struct cpuhp_cpu_state *st)
455 {
456         return cpuhp_up_callbacks(cpu, st, cpuhp_ap_states, st->target);
457 }
458
459 /*
460  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
461  * callbacks when a state gets [un]installed at runtime.
462  */
463 static void cpuhp_thread_fun(unsigned int cpu)
464 {
465         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
466         int ret = 0;
467
468         /*
469          * Paired with the mb() in cpuhp_kick_ap_work and
470          * cpuhp_invoke_ap_callback, so the work set is consistent visible.
471          */
472         smp_mb();
473         if (!st->should_run)
474                 return;
475
476         st->should_run = false;
477
478         /* Single callback invocation for [un]install ? */
479         if (st->cb) {
480                 if (st->cb_state < CPUHP_AP_ONLINE) {
481                         local_irq_disable();
482                         ret = cpuhp_invoke_callback(cpu, st->cb_state, st->cb);
483                         local_irq_enable();
484                 } else {
485                         ret = cpuhp_invoke_callback(cpu, st->cb_state, st->cb);
486                 }
487         } else if (st->rollback) {
488                 BUG_ON(st->state < CPUHP_AP_ONLINE_IDLE);
489
490                 undo_cpu_down(cpu, st, cpuhp_ap_states);
491                 /*
492                  * This is a momentary workaround to keep the notifier users
493                  * happy. Will go away once we got rid of the notifiers.
494                  */
495                 cpu_notify_nofail(CPU_DOWN_FAILED, cpu);
496                 st->rollback = false;
497         } else {
498                 /* Cannot happen .... */
499                 BUG_ON(st->state < CPUHP_AP_ONLINE_IDLE);
500
501                 /* Regular hotplug work */
502                 if (st->state < st->target)
503                         ret = cpuhp_ap_online(cpu, st);
504                 else if (st->state > st->target)
505                         ret = cpuhp_ap_offline(cpu, st);
506         }
507         st->result = ret;
508         complete(&st->done);
509 }
510
511 /* Invoke a single callback on a remote cpu */
512 static int cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state,
513                                     int (*cb)(unsigned int))
514 {
515         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
516
517         if (!cpu_online(cpu))
518                 return 0;
519
520         /*
521          * If we are up and running, use the hotplug thread. For early calls
522          * we invoke the thread function directly.
523          */
524         if (!st->thread)
525                 return cpuhp_invoke_callback(cpu, state, cb);
526
527         st->cb_state = state;
528         st->cb = cb;
529         /*
530          * Make sure the above stores are visible before should_run becomes
531          * true. Paired with the mb() above in cpuhp_thread_fun()
532          */
533         smp_mb();
534         st->should_run = true;
535         wake_up_process(st->thread);
536         wait_for_completion(&st->done);
537         return st->result;
538 }
539
540 /* Regular hotplug invocation of the AP hotplug thread */
541 static void __cpuhp_kick_ap_work(struct cpuhp_cpu_state *st)
542 {
543         st->result = 0;
544         st->cb = NULL;
545         /*
546          * Make sure the above stores are visible before should_run becomes
547          * true. Paired with the mb() above in cpuhp_thread_fun()
548          */
549         smp_mb();
550         st->should_run = true;
551         wake_up_process(st->thread);
552 }
553
554 static int cpuhp_kick_ap_work(unsigned int cpu)
555 {
556         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
557         enum cpuhp_state state = st->state;
558
559         trace_cpuhp_enter(cpu, st->target, state, cpuhp_kick_ap_work);
560         __cpuhp_kick_ap_work(st);
561         wait_for_completion(&st->done);
562         trace_cpuhp_exit(cpu, st->state, state, st->result);
563         return st->result;
564 }
565
566 static struct smp_hotplug_thread cpuhp_threads = {
567         .store                  = &cpuhp_state.thread,
568         .create                 = &cpuhp_create,
569         .thread_should_run      = cpuhp_should_run,
570         .thread_fn              = cpuhp_thread_fun,
571         .thread_comm            = "cpuhp/%u",
572         .selfparking            = true,
573 };
574
575 void __init cpuhp_threads_init(void)
576 {
577         BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
578         kthread_unpark(this_cpu_read(cpuhp_state.thread));
579 }
580
581 #ifdef CONFIG_HOTPLUG_CPU
582 EXPORT_SYMBOL(register_cpu_notifier);
583 EXPORT_SYMBOL(__register_cpu_notifier);
584 void unregister_cpu_notifier(struct notifier_block *nb)
585 {
586         cpu_maps_update_begin();
587         raw_notifier_chain_unregister(&cpu_chain, nb);
588         cpu_maps_update_done();
589 }
590 EXPORT_SYMBOL(unregister_cpu_notifier);
591
592 void __unregister_cpu_notifier(struct notifier_block *nb)
593 {
594         raw_notifier_chain_unregister(&cpu_chain, nb);
595 }
596 EXPORT_SYMBOL(__unregister_cpu_notifier);
597
598 /**
599  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
600  * @cpu: a CPU id
601  *
602  * This function walks all processes, finds a valid mm struct for each one and
603  * then clears a corresponding bit in mm's cpumask.  While this all sounds
604  * trivial, there are various non-obvious corner cases, which this function
605  * tries to solve in a safe manner.
606  *
607  * Also note that the function uses a somewhat relaxed locking scheme, so it may
608  * be called only for an already offlined CPU.
609  */
610 void clear_tasks_mm_cpumask(int cpu)
611 {
612         struct task_struct *p;
613
614         /*
615          * This function is called after the cpu is taken down and marked
616          * offline, so its not like new tasks will ever get this cpu set in
617          * their mm mask. -- Peter Zijlstra
618          * Thus, we may use rcu_read_lock() here, instead of grabbing
619          * full-fledged tasklist_lock.
620          */
621         WARN_ON(cpu_online(cpu));
622         rcu_read_lock();
623         for_each_process(p) {
624                 struct task_struct *t;
625
626                 /*
627                  * Main thread might exit, but other threads may still have
628                  * a valid mm. Find one.
629                  */
630                 t = find_lock_task_mm(p);
631                 if (!t)
632                         continue;
633                 cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
634                 task_unlock(t);
635         }
636         rcu_read_unlock();
637 }
638
639 static inline void check_for_tasks(int dead_cpu)
640 {
641         struct task_struct *g, *p;
642
643         read_lock(&tasklist_lock);
644         for_each_process_thread(g, p) {
645                 if (!p->on_rq)
646                         continue;
647                 /*
648                  * We do the check with unlocked task_rq(p)->lock.
649                  * Order the reading to do not warn about a task,
650                  * which was running on this cpu in the past, and
651                  * it's just been woken on another cpu.
652                  */
653                 rmb();
654                 if (task_cpu(p) != dead_cpu)
655                         continue;
656
657                 pr_warn("Task %s (pid=%d) is on cpu %d (state=%ld, flags=%x)\n",
658                         p->comm, task_pid_nr(p), dead_cpu, p->state, p->flags);
659         }
660         read_unlock(&tasklist_lock);
661 }
662
663 static int notify_down_prepare(unsigned int cpu)
664 {
665         int err, nr_calls = 0;
666
667         err = __cpu_notify(CPU_DOWN_PREPARE, cpu, -1, &nr_calls);
668         if (err) {
669                 nr_calls--;
670                 __cpu_notify(CPU_DOWN_FAILED, cpu, nr_calls, NULL);
671                 pr_warn("%s: attempt to take down CPU %u failed\n",
672                                 __func__, cpu);
673         }
674         return err;
675 }
676
677 static int notify_dying(unsigned int cpu)
678 {
679         cpu_notify(CPU_DYING, cpu);
680         return 0;
681 }
682
683 /* Take this CPU down. */
684 static int take_cpu_down(void *_param)
685 {
686         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
687         enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
688         int err, cpu = smp_processor_id();
689
690         /* Ensure this CPU doesn't handle any more interrupts. */
691         err = __cpu_disable();
692         if (err < 0)
693                 return err;
694
695         /* Invoke the former CPU_DYING callbacks */
696         for (; st->state > target; st->state--) {
697                 struct cpuhp_step *step = cpuhp_ap_states + st->state;
698
699                 cpuhp_invoke_callback(cpu, st->state, step->teardown);
700         }
701         /* Give up timekeeping duties */
702         tick_handover_do_timer();
703         /* Park the stopper thread */
704         stop_machine_park(cpu);
705         return 0;
706 }
707
708 static int takedown_cpu(unsigned int cpu)
709 {
710         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
711         int err;
712
713         /* Park the smpboot threads */
714         kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
715         smpboot_park_threads(cpu);
716
717         /*
718          * Prevent irq alloc/free while the dying cpu reorganizes the
719          * interrupt affinities.
720          */
721         irq_lock_sparse();
722
723         /*
724          * So now all preempt/rcu users must observe !cpu_active().
725          */
726         err = stop_machine(take_cpu_down, NULL, cpumask_of(cpu));
727         if (err) {
728                 /* CPU refused to die */
729                 irq_unlock_sparse();
730                 /* Unpark the hotplug thread so we can rollback there */
731                 kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
732                 return err;
733         }
734         BUG_ON(cpu_online(cpu));
735
736         /*
737          * The migration_call() CPU_DYING callback will have removed all
738          * runnable tasks from the cpu, there's only the idle task left now
739          * that the migration thread is done doing the stop_machine thing.
740          *
741          * Wait for the stop thread to go away.
742          */
743         wait_for_completion(&st->done);
744         BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
745
746         /* Interrupts are moved away from the dying cpu, reenable alloc/free */
747         irq_unlock_sparse();
748
749         hotplug_cpu__broadcast_tick_pull(cpu);
750         /* This actually kills the CPU. */
751         __cpu_die(cpu);
752
753         tick_cleanup_dead_cpu(cpu);
754         return 0;
755 }
756
757 static int notify_dead(unsigned int cpu)
758 {
759         cpu_notify_nofail(CPU_DEAD, cpu);
760         check_for_tasks(cpu);
761         return 0;
762 }
763
764 static void cpuhp_complete_idle_dead(void *arg)
765 {
766         struct cpuhp_cpu_state *st = arg;
767
768         complete(&st->done);
769 }
770
771 void cpuhp_report_idle_dead(void)
772 {
773         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
774
775         BUG_ON(st->state != CPUHP_AP_OFFLINE);
776         rcu_report_dead(smp_processor_id());
777         st->state = CPUHP_AP_IDLE_DEAD;
778         /*
779          * We cannot call complete after rcu_report_dead() so we delegate it
780          * to an online cpu.
781          */
782         smp_call_function_single(cpumask_first(cpu_online_mask),
783                                  cpuhp_complete_idle_dead, st, 0);
784 }
785
786 #else
787 #define notify_down_prepare     NULL
788 #define takedown_cpu            NULL
789 #define notify_dead             NULL
790 #define notify_dying            NULL
791 #endif
792
793 #ifdef CONFIG_HOTPLUG_CPU
794
795 /* Requires cpu_add_remove_lock to be held */
796 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
797                            enum cpuhp_state target)
798 {
799         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
800         int prev_state, ret = 0;
801         bool hasdied = false;
802
803         if (num_online_cpus() == 1)
804                 return -EBUSY;
805
806         if (!cpu_present(cpu))
807                 return -EINVAL;
808
809         cpu_hotplug_begin();
810
811         cpuhp_tasks_frozen = tasks_frozen;
812
813         prev_state = st->state;
814         st->target = target;
815         /*
816          * If the current CPU state is in the range of the AP hotplug thread,
817          * then we need to kick the thread.
818          */
819         if (st->state > CPUHP_TEARDOWN_CPU) {
820                 ret = cpuhp_kick_ap_work(cpu);
821                 /*
822                  * The AP side has done the error rollback already. Just
823                  * return the error code..
824                  */
825                 if (ret)
826                         goto out;
827
828                 /*
829                  * We might have stopped still in the range of the AP hotplug
830                  * thread. Nothing to do anymore.
831                  */
832                 if (st->state > CPUHP_TEARDOWN_CPU)
833                         goto out;
834         }
835         /*
836          * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
837          * to do the further cleanups.
838          */
839         ret = cpuhp_down_callbacks(cpu, st, cpuhp_bp_states, target);
840         if (ret && st->state > CPUHP_TEARDOWN_CPU && st->state < prev_state) {
841                 st->target = prev_state;
842                 st->rollback = true;
843                 cpuhp_kick_ap_work(cpu);
844         }
845
846         hasdied = prev_state != st->state && st->state == CPUHP_OFFLINE;
847 out:
848         cpu_hotplug_done();
849         /* This post dead nonsense must die */
850         if (!ret && hasdied)
851                 cpu_notify_nofail(CPU_POST_DEAD, cpu);
852         return ret;
853 }
854
855 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
856 {
857         int err;
858
859         cpu_maps_update_begin();
860
861         if (cpu_hotplug_disabled) {
862                 err = -EBUSY;
863                 goto out;
864         }
865
866         err = _cpu_down(cpu, 0, target);
867
868 out:
869         cpu_maps_update_done();
870         return err;
871 }
872 int cpu_down(unsigned int cpu)
873 {
874         return do_cpu_down(cpu, CPUHP_OFFLINE);
875 }
876 EXPORT_SYMBOL(cpu_down);
877 #endif /*CONFIG_HOTPLUG_CPU*/
878
879 /**
880  * notify_cpu_starting(cpu) - call the CPU_STARTING notifiers
881  * @cpu: cpu that just started
882  *
883  * This function calls the cpu_chain notifiers with CPU_STARTING.
884  * It must be called by the arch code on the new cpu, before the new cpu
885  * enables interrupts and before the "boot" cpu returns from __cpu_up().
886  */
887 void notify_cpu_starting(unsigned int cpu)
888 {
889         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
890         enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
891
892         while (st->state < target) {
893                 struct cpuhp_step *step;
894
895                 st->state++;
896                 step = cpuhp_ap_states + st->state;
897                 cpuhp_invoke_callback(cpu, st->state, step->startup);
898         }
899 }
900
901 /*
902  * Called from the idle task. We need to set active here, so we can kick off
903  * the stopper thread and unpark the smpboot threads. If the target state is
904  * beyond CPUHP_AP_ONLINE_IDLE we kick cpuhp thread and let it bring up the
905  * cpu further.
906  */
907 void cpuhp_online_idle(enum cpuhp_state state)
908 {
909         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
910         unsigned int cpu = smp_processor_id();
911
912         /* Happens for the boot cpu */
913         if (state != CPUHP_AP_ONLINE_IDLE)
914                 return;
915
916         st->state = CPUHP_AP_ONLINE_IDLE;
917
918         /* Unpark the stopper thread and the hotplug thread of this cpu */
919         stop_machine_unpark(cpu);
920         kthread_unpark(st->thread);
921
922         /* Should we go further up ? */
923         if (st->target > CPUHP_AP_ONLINE_IDLE)
924                 __cpuhp_kick_ap_work(st);
925         else
926                 complete(&st->done);
927 }
928
929 /* Requires cpu_add_remove_lock to be held */
930 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
931 {
932         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
933         struct task_struct *idle;
934         int ret = 0;
935
936         cpu_hotplug_begin();
937
938         if (!cpu_present(cpu)) {
939                 ret = -EINVAL;
940                 goto out;
941         }
942
943         /*
944          * The caller of do_cpu_up might have raced with another
945          * caller. Ignore it for now.
946          */
947         if (st->state >= target)
948                 goto out;
949
950         if (st->state == CPUHP_OFFLINE) {
951                 /* Let it fail before we try to bring the cpu up */
952                 idle = idle_thread_get(cpu);
953                 if (IS_ERR(idle)) {
954                         ret = PTR_ERR(idle);
955                         goto out;
956                 }
957         }
958
959         cpuhp_tasks_frozen = tasks_frozen;
960
961         st->target = target;
962         /*
963          * If the current CPU state is in the range of the AP hotplug thread,
964          * then we need to kick the thread once more.
965          */
966         if (st->state > CPUHP_BRINGUP_CPU) {
967                 ret = cpuhp_kick_ap_work(cpu);
968                 /*
969                  * The AP side has done the error rollback already. Just
970                  * return the error code..
971                  */
972                 if (ret)
973                         goto out;
974         }
975
976         /*
977          * Try to reach the target state. We max out on the BP at
978          * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
979          * responsible for bringing it up to the target state.
980          */
981         target = min((int)target, CPUHP_BRINGUP_CPU);
982         ret = cpuhp_up_callbacks(cpu, st, cpuhp_bp_states, target);
983 out:
984         cpu_hotplug_done();
985         return ret;
986 }
987
988 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
989 {
990         int err = 0;
991
992         if (!cpu_possible(cpu)) {
993                 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
994                        cpu);
995 #if defined(CONFIG_IA64)
996                 pr_err("please check additional_cpus= boot parameter\n");
997 #endif
998                 return -EINVAL;
999         }
1000
1001         err = try_online_node(cpu_to_node(cpu));
1002         if (err)
1003                 return err;
1004
1005         cpu_maps_update_begin();
1006
1007         if (cpu_hotplug_disabled) {
1008                 err = -EBUSY;
1009                 goto out;
1010         }
1011
1012         err = _cpu_up(cpu, 0, target);
1013 out:
1014         cpu_maps_update_done();
1015         return err;
1016 }
1017
1018 int cpu_up(unsigned int cpu)
1019 {
1020         return do_cpu_up(cpu, CPUHP_ONLINE);
1021 }
1022 EXPORT_SYMBOL_GPL(cpu_up);
1023
1024 #ifdef CONFIG_PM_SLEEP_SMP
1025 static cpumask_var_t frozen_cpus;
1026
1027 int freeze_secondary_cpus(int primary)
1028 {
1029         int cpu, error = 0;
1030
1031         cpu_maps_update_begin();
1032         if (!cpu_online(primary))
1033                 primary = cpumask_first(cpu_online_mask);
1034         /*
1035          * We take down all of the non-boot CPUs in one shot to avoid races
1036          * with the userspace trying to use the CPU hotplug at the same time
1037          */
1038         cpumask_clear(frozen_cpus);
1039
1040         pr_info("Disabling non-boot CPUs ...\n");
1041         for_each_online_cpu(cpu) {
1042                 if (cpu == primary)
1043                         continue;
1044                 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1045                 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1046                 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1047                 if (!error)
1048                         cpumask_set_cpu(cpu, frozen_cpus);
1049                 else {
1050                         pr_err("Error taking CPU%d down: %d\n", cpu, error);
1051                         break;
1052                 }
1053         }
1054
1055         if (!error)
1056                 BUG_ON(num_online_cpus() > 1);
1057         else
1058                 pr_err("Non-boot CPUs are not disabled\n");
1059
1060         /*
1061          * Make sure the CPUs won't be enabled by someone else. We need to do
1062          * this even in case of failure as all disable_nonboot_cpus() users are
1063          * supposed to do enable_nonboot_cpus() on the failure path.
1064          */
1065         cpu_hotplug_disabled++;
1066
1067         cpu_maps_update_done();
1068         return error;
1069 }
1070
1071 void __weak arch_enable_nonboot_cpus_begin(void)
1072 {
1073 }
1074
1075 void __weak arch_enable_nonboot_cpus_end(void)
1076 {
1077 }
1078
1079 void enable_nonboot_cpus(void)
1080 {
1081         int cpu, error;
1082
1083         /* Allow everyone to use the CPU hotplug again */
1084         cpu_maps_update_begin();
1085         WARN_ON(--cpu_hotplug_disabled < 0);
1086         if (cpumask_empty(frozen_cpus))
1087                 goto out;
1088
1089         pr_info("Enabling non-boot CPUs ...\n");
1090
1091         arch_enable_nonboot_cpus_begin();
1092
1093         for_each_cpu(cpu, frozen_cpus) {
1094                 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1095                 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1096                 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1097                 if (!error) {
1098                         pr_info("CPU%d is up\n", cpu);
1099                         continue;
1100                 }
1101                 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1102         }
1103
1104         arch_enable_nonboot_cpus_end();
1105
1106         cpumask_clear(frozen_cpus);
1107 out:
1108         cpu_maps_update_done();
1109 }
1110
1111 static int __init alloc_frozen_cpus(void)
1112 {
1113         if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1114                 return -ENOMEM;
1115         return 0;
1116 }
1117 core_initcall(alloc_frozen_cpus);
1118
1119 /*
1120  * When callbacks for CPU hotplug notifications are being executed, we must
1121  * ensure that the state of the system with respect to the tasks being frozen
1122  * or not, as reported by the notification, remains unchanged *throughout the
1123  * duration* of the execution of the callbacks.
1124  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1125  *
1126  * This synchronization is implemented by mutually excluding regular CPU
1127  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1128  * Hibernate notifications.
1129  */
1130 static int
1131 cpu_hotplug_pm_callback(struct notifier_block *nb,
1132                         unsigned long action, void *ptr)
1133 {
1134         switch (action) {
1135
1136         case PM_SUSPEND_PREPARE:
1137         case PM_HIBERNATION_PREPARE:
1138                 cpu_hotplug_disable();
1139                 break;
1140
1141         case PM_POST_SUSPEND:
1142         case PM_POST_HIBERNATION:
1143                 cpu_hotplug_enable();
1144                 break;
1145
1146         default:
1147                 return NOTIFY_DONE;
1148         }
1149
1150         return NOTIFY_OK;
1151 }
1152
1153
1154 static int __init cpu_hotplug_pm_sync_init(void)
1155 {
1156         /*
1157          * cpu_hotplug_pm_callback has higher priority than x86
1158          * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1159          * to disable cpu hotplug to avoid cpu hotplug race.
1160          */
1161         pm_notifier(cpu_hotplug_pm_callback, 0);
1162         return 0;
1163 }
1164 core_initcall(cpu_hotplug_pm_sync_init);
1165
1166 #endif /* CONFIG_PM_SLEEP_SMP */
1167
1168 #endif /* CONFIG_SMP */
1169
1170 /* Boot processor state steps */
1171 static struct cpuhp_step cpuhp_bp_states[] = {
1172         [CPUHP_OFFLINE] = {
1173                 .name                   = "offline",
1174                 .startup                = NULL,
1175                 .teardown               = NULL,
1176         },
1177 #ifdef CONFIG_SMP
1178         [CPUHP_CREATE_THREADS]= {
1179                 .name                   = "threads:create",
1180                 .startup                = smpboot_create_threads,
1181                 .teardown               = NULL,
1182                 .cant_stop              = true,
1183         },
1184         [CPUHP_PERF_PREPARE] = {
1185                 .name = "perf prepare",
1186                 .startup = perf_event_init_cpu,
1187                 .teardown = perf_event_exit_cpu,
1188         },
1189         [CPUHP_WORKQUEUE_PREP] = {
1190                 .name = "workqueue prepare",
1191                 .startup = workqueue_prepare_cpu,
1192                 .teardown = NULL,
1193         },
1194         [CPUHP_HRTIMERS_PREPARE] = {
1195                 .name = "hrtimers prepare",
1196                 .startup = hrtimers_prepare_cpu,
1197                 .teardown = hrtimers_dead_cpu,
1198         },
1199         [CPUHP_SMPCFD_PREPARE] = {
1200                 .name = "SMPCFD prepare",
1201                 .startup = smpcfd_prepare_cpu,
1202                 .teardown = smpcfd_dead_cpu,
1203         },
1204         [CPUHP_RCUTREE_PREP] = {
1205                 .name = "RCU-tree prepare",
1206                 .startup = rcutree_prepare_cpu,
1207                 .teardown = rcutree_dead_cpu,
1208         },
1209         /*
1210          * Preparatory and dead notifiers. Will be replaced once the notifiers
1211          * are converted to states.
1212          */
1213         [CPUHP_NOTIFY_PREPARE] = {
1214                 .name                   = "notify:prepare",
1215                 .startup                = notify_prepare,
1216                 .teardown               = notify_dead,
1217                 .skip_onerr             = true,
1218                 .cant_stop              = true,
1219         },
1220         /*
1221          * On the tear-down path, timers_dead_cpu() must be invoked
1222          * before blk_mq_queue_reinit_notify() from notify_dead(),
1223          * otherwise a RCU stall occurs.
1224          */
1225         [CPUHP_TIMERS_DEAD] = {
1226                 .name = "timers dead",
1227                 .startup = NULL,
1228                 .teardown = timers_dead_cpu,
1229         },
1230         /* Kicks the plugged cpu into life */
1231         [CPUHP_BRINGUP_CPU] = {
1232                 .name                   = "cpu:bringup",
1233                 .startup                = bringup_cpu,
1234                 .teardown               = NULL,
1235                 .cant_stop              = true,
1236         },
1237         [CPUHP_AP_SMPCFD_DYING] = {
1238                 .startup = NULL,
1239                 .teardown = smpcfd_dying_cpu,
1240         },
1241         /*
1242          * Handled on controll processor until the plugged processor manages
1243          * this itself.
1244          */
1245         [CPUHP_TEARDOWN_CPU] = {
1246                 .name                   = "cpu:teardown",
1247                 .startup                = NULL,
1248                 .teardown               = takedown_cpu,
1249                 .cant_stop              = true,
1250         },
1251 #else
1252         [CPUHP_BRINGUP_CPU] = { },
1253 #endif
1254 };
1255
1256 /* Application processor state steps */
1257 static struct cpuhp_step cpuhp_ap_states[] = {
1258 #ifdef CONFIG_SMP
1259         /* Final state before CPU kills itself */
1260         [CPUHP_AP_IDLE_DEAD] = {
1261                 .name                   = "idle:dead",
1262         },
1263         /*
1264          * Last state before CPU enters the idle loop to die. Transient state
1265          * for synchronization.
1266          */
1267         [CPUHP_AP_OFFLINE] = {
1268                 .name                   = "ap:offline",
1269                 .cant_stop              = true,
1270         },
1271         /* First state is scheduler control. Interrupts are disabled */
1272         [CPUHP_AP_SCHED_STARTING] = {
1273                 .name                   = "sched:starting",
1274                 .startup                = sched_cpu_starting,
1275                 .teardown               = sched_cpu_dying,
1276         },
1277         [CPUHP_AP_RCUTREE_DYING] = {
1278                 .startup = NULL,
1279                 .teardown = rcutree_dying_cpu,
1280         },
1281         /*
1282          * Low level startup/teardown notifiers. Run with interrupts
1283          * disabled. Will be removed once the notifiers are converted to
1284          * states.
1285          */
1286         [CPUHP_AP_NOTIFY_STARTING] = {
1287                 .name                   = "notify:starting",
1288                 .startup                = notify_starting,
1289                 .teardown               = notify_dying,
1290                 .skip_onerr             = true,
1291                 .cant_stop              = true,
1292         },
1293         /* Entry state on starting. Interrupts enabled from here on. Transient
1294          * state for synchronsization */
1295         [CPUHP_AP_ONLINE] = {
1296                 .name                   = "ap:online",
1297         },
1298         /* Handle smpboot threads park/unpark */
1299         [CPUHP_AP_SMPBOOT_THREADS] = {
1300                 .name                   = "smpboot:threads",
1301                 .startup                = smpboot_unpark_threads,
1302                 .teardown               = NULL,
1303         },
1304         [CPUHP_AP_PERF_ONLINE] = {
1305                 .name = "perf online",
1306                 .startup = perf_event_init_cpu,
1307                 .teardown = perf_event_exit_cpu,
1308         },
1309         [CPUHP_AP_WORKQUEUE_ONLINE] = {
1310                 .name = "workqueue online",
1311                 .startup = workqueue_online_cpu,
1312                 .teardown = workqueue_offline_cpu,
1313         },
1314         [CPUHP_AP_RCUTREE_ONLINE] = {
1315                 .name = "RCU-tree online",
1316                 .startup = rcutree_online_cpu,
1317                 .teardown = rcutree_offline_cpu,
1318         },
1319
1320         /*
1321          * Online/down_prepare notifiers. Will be removed once the notifiers
1322          * are converted to states.
1323          */
1324         [CPUHP_AP_NOTIFY_ONLINE] = {
1325                 .name                   = "notify:online",
1326                 .startup                = notify_online,
1327                 .teardown               = notify_down_prepare,
1328                 .skip_onerr             = true,
1329         },
1330 #endif
1331         /*
1332          * The dynamically registered state space is here
1333          */
1334
1335 #ifdef CONFIG_SMP
1336         /* Last state is scheduler control setting the cpu active */
1337         [CPUHP_AP_ACTIVE] = {
1338                 .name                   = "sched:active",
1339                 .startup                = sched_cpu_activate,
1340                 .teardown               = sched_cpu_deactivate,
1341         },
1342 #endif
1343
1344         /* CPU is fully up and running. */
1345         [CPUHP_ONLINE] = {
1346                 .name                   = "online",
1347                 .startup                = NULL,
1348                 .teardown               = NULL,
1349         },
1350 };
1351
1352 /* Sanity check for callbacks */
1353 static int cpuhp_cb_check(enum cpuhp_state state)
1354 {
1355         if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1356                 return -EINVAL;
1357         return 0;
1358 }
1359
1360 static bool cpuhp_is_ap_state(enum cpuhp_state state)
1361 {
1362         /*
1363          * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
1364          * purposes as that state is handled explicitely in cpu_down.
1365          */
1366         return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
1367 }
1368
1369 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
1370 {
1371         struct cpuhp_step *sp;
1372
1373         sp = cpuhp_is_ap_state(state) ? cpuhp_ap_states : cpuhp_bp_states;
1374         return sp + state;
1375 }
1376
1377 static void cpuhp_store_callbacks(enum cpuhp_state state,
1378                                   const char *name,
1379                                   int (*startup)(unsigned int cpu),
1380                                   int (*teardown)(unsigned int cpu))
1381 {
1382         /* (Un)Install the callbacks for further cpu hotplug operations */
1383         struct cpuhp_step *sp;
1384
1385         mutex_lock(&cpuhp_state_mutex);
1386         sp = cpuhp_get_step(state);
1387         sp->startup = startup;
1388         sp->teardown = teardown;
1389         sp->name = name;
1390         mutex_unlock(&cpuhp_state_mutex);
1391 }
1392
1393 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1394 {
1395         return cpuhp_get_step(state)->teardown;
1396 }
1397
1398 /*
1399  * Call the startup/teardown function for a step either on the AP or
1400  * on the current CPU.
1401  */
1402 static int cpuhp_issue_call(int cpu, enum cpuhp_state state,
1403                             int (*cb)(unsigned int), bool bringup)
1404 {
1405         int ret;
1406
1407         if (!cb)
1408                 return 0;
1409         /*
1410          * The non AP bound callbacks can fail on bringup. On teardown
1411          * e.g. module removal we crash for now.
1412          */
1413 #ifdef CONFIG_SMP
1414         if (cpuhp_is_ap_state(state))
1415                 ret = cpuhp_invoke_ap_callback(cpu, state, cb);
1416         else
1417                 ret = cpuhp_invoke_callback(cpu, state, cb);
1418 #else
1419         ret = cpuhp_invoke_callback(cpu, state, cb);
1420 #endif
1421         BUG_ON(ret && !bringup);
1422         return ret;
1423 }
1424
1425 /*
1426  * Called from __cpuhp_setup_state on a recoverable failure.
1427  *
1428  * Note: The teardown callbacks for rollback are not allowed to fail!
1429  */
1430 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1431                                    int (*teardown)(unsigned int cpu))
1432 {
1433         int cpu;
1434
1435         if (!teardown)
1436                 return;
1437
1438         /* Roll back the already executed steps on the other cpus */
1439         for_each_present_cpu(cpu) {
1440                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1441                 int cpustate = st->state;
1442
1443                 if (cpu >= failedcpu)
1444                         break;
1445
1446                 /* Did we invoke the startup call on that cpu ? */
1447                 if (cpustate >= state)
1448                         cpuhp_issue_call(cpu, state, teardown, false);
1449         }
1450 }
1451
1452 /*
1453  * Returns a free for dynamic slot assignment of the Online state. The states
1454  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1455  * by having no name assigned.
1456  */
1457 static int cpuhp_reserve_state(enum cpuhp_state state)
1458 {
1459         enum cpuhp_state i;
1460
1461         mutex_lock(&cpuhp_state_mutex);
1462         for (i = CPUHP_AP_ONLINE_DYN; i <= CPUHP_AP_ONLINE_DYN_END; i++) {
1463                 if (cpuhp_ap_states[i].name)
1464                         continue;
1465
1466                 cpuhp_ap_states[i].name = "Reserved";
1467                 mutex_unlock(&cpuhp_state_mutex);
1468                 return i;
1469         }
1470         mutex_unlock(&cpuhp_state_mutex);
1471         WARN(1, "No more dynamic states available for CPU hotplug\n");
1472         return -ENOSPC;
1473 }
1474
1475 /**
1476  * __cpuhp_setup_state - Setup the callbacks for an hotplug machine state
1477  * @state:      The state to setup
1478  * @invoke:     If true, the startup function is invoked for cpus where
1479  *              cpu state >= @state
1480  * @startup:    startup callback function
1481  * @teardown:   teardown callback function
1482  *
1483  * Returns 0 if successful, otherwise a proper error code
1484  */
1485 int __cpuhp_setup_state(enum cpuhp_state state,
1486                         const char *name, bool invoke,
1487                         int (*startup)(unsigned int cpu),
1488                         int (*teardown)(unsigned int cpu))
1489 {
1490         int cpu, ret = 0;
1491         int dyn_state = 0;
1492
1493         if (cpuhp_cb_check(state) || !name)
1494                 return -EINVAL;
1495
1496         get_online_cpus();
1497
1498         /* currently assignments for the ONLINE state are possible */
1499         if (state == CPUHP_AP_ONLINE_DYN) {
1500                 dyn_state = 1;
1501                 ret = cpuhp_reserve_state(state);
1502                 if (ret < 0)
1503                         goto out;
1504                 state = ret;
1505         }
1506
1507         cpuhp_store_callbacks(state, name, startup, teardown);
1508
1509         if (!invoke || !startup)
1510                 goto out;
1511
1512         /*
1513          * Try to call the startup callback for each present cpu
1514          * depending on the hotplug state of the cpu.
1515          */
1516         for_each_present_cpu(cpu) {
1517                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1518                 int cpustate = st->state;
1519
1520                 if (cpustate < state)
1521                         continue;
1522
1523                 ret = cpuhp_issue_call(cpu, state, startup, true);
1524                 if (ret) {
1525                         cpuhp_rollback_install(cpu, state, teardown);
1526                         cpuhp_store_callbacks(state, NULL, NULL, NULL);
1527                         goto out;
1528                 }
1529         }
1530 out:
1531         put_online_cpus();
1532         if (!ret && dyn_state)
1533                 return state;
1534         return ret;
1535 }
1536 EXPORT_SYMBOL(__cpuhp_setup_state);
1537
1538 /**
1539  * __cpuhp_remove_state - Remove the callbacks for an hotplug machine state
1540  * @state:      The state to remove
1541  * @invoke:     If true, the teardown function is invoked for cpus where
1542  *              cpu state >= @state
1543  *
1544  * The teardown callback is currently not allowed to fail. Think
1545  * about module removal!
1546  */
1547 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1548 {
1549         int (*teardown)(unsigned int cpu) = cpuhp_get_teardown_cb(state);
1550         int cpu;
1551
1552         BUG_ON(cpuhp_cb_check(state));
1553
1554         get_online_cpus();
1555
1556         if (!invoke || !teardown)
1557                 goto remove;
1558
1559         /*
1560          * Call the teardown callback for each present cpu depending
1561          * on the hotplug state of the cpu. This function is not
1562          * allowed to fail currently!
1563          */
1564         for_each_present_cpu(cpu) {
1565                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1566                 int cpustate = st->state;
1567
1568                 if (cpustate >= state)
1569                         cpuhp_issue_call(cpu, state, teardown, false);
1570         }
1571 remove:
1572         cpuhp_store_callbacks(state, NULL, NULL, NULL);
1573         put_online_cpus();
1574 }
1575 EXPORT_SYMBOL(__cpuhp_remove_state);
1576
1577 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1578 static ssize_t show_cpuhp_state(struct device *dev,
1579                                 struct device_attribute *attr, char *buf)
1580 {
1581         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1582
1583         return sprintf(buf, "%d\n", st->state);
1584 }
1585 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1586
1587 static ssize_t write_cpuhp_target(struct device *dev,
1588                                   struct device_attribute *attr,
1589                                   const char *buf, size_t count)
1590 {
1591         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1592         struct cpuhp_step *sp;
1593         int target, ret;
1594
1595         ret = kstrtoint(buf, 10, &target);
1596         if (ret)
1597                 return ret;
1598
1599 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1600         if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1601                 return -EINVAL;
1602 #else
1603         if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1604                 return -EINVAL;
1605 #endif
1606
1607         ret = lock_device_hotplug_sysfs();
1608         if (ret)
1609                 return ret;
1610
1611         mutex_lock(&cpuhp_state_mutex);
1612         sp = cpuhp_get_step(target);
1613         ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1614         mutex_unlock(&cpuhp_state_mutex);
1615         if (ret)
1616                 return ret;
1617
1618         if (st->state < target)
1619                 ret = do_cpu_up(dev->id, target);
1620         else
1621                 ret = do_cpu_down(dev->id, target);
1622
1623         unlock_device_hotplug();
1624         return ret ? ret : count;
1625 }
1626
1627 static ssize_t show_cpuhp_target(struct device *dev,
1628                                  struct device_attribute *attr, char *buf)
1629 {
1630         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1631
1632         return sprintf(buf, "%d\n", st->target);
1633 }
1634 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1635
1636 static struct attribute *cpuhp_cpu_attrs[] = {
1637         &dev_attr_state.attr,
1638         &dev_attr_target.attr,
1639         NULL
1640 };
1641
1642 static struct attribute_group cpuhp_cpu_attr_group = {
1643         .attrs = cpuhp_cpu_attrs,
1644         .name = "hotplug",
1645         NULL
1646 };
1647
1648 static ssize_t show_cpuhp_states(struct device *dev,
1649                                  struct device_attribute *attr, char *buf)
1650 {
1651         ssize_t cur, res = 0;
1652         int i;
1653
1654         mutex_lock(&cpuhp_state_mutex);
1655         for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
1656                 struct cpuhp_step *sp = cpuhp_get_step(i);
1657
1658                 if (sp->name) {
1659                         cur = sprintf(buf, "%3d: %s\n", i, sp->name);
1660                         buf += cur;
1661                         res += cur;
1662                 }
1663         }
1664         mutex_unlock(&cpuhp_state_mutex);
1665         return res;
1666 }
1667 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
1668
1669 static struct attribute *cpuhp_cpu_root_attrs[] = {
1670         &dev_attr_states.attr,
1671         NULL
1672 };
1673
1674 static struct attribute_group cpuhp_cpu_root_attr_group = {
1675         .attrs = cpuhp_cpu_root_attrs,
1676         .name = "hotplug",
1677         NULL
1678 };
1679
1680 static int __init cpuhp_sysfs_init(void)
1681 {
1682         int cpu, ret;
1683
1684         ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
1685                                  &cpuhp_cpu_root_attr_group);
1686         if (ret)
1687                 return ret;
1688
1689         for_each_possible_cpu(cpu) {
1690                 struct device *dev = get_cpu_device(cpu);
1691
1692                 if (!dev)
1693                         continue;
1694                 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
1695                 if (ret)
1696                         return ret;
1697         }
1698         return 0;
1699 }
1700 device_initcall(cpuhp_sysfs_init);
1701 #endif
1702
1703 /*
1704  * cpu_bit_bitmap[] is a special, "compressed" data structure that
1705  * represents all NR_CPUS bits binary values of 1<<nr.
1706  *
1707  * It is used by cpumask_of() to get a constant address to a CPU
1708  * mask value that has a single bit set only.
1709  */
1710
1711 /* cpu_bit_bitmap[0] is empty - so we can back into it */
1712 #define MASK_DECLARE_1(x)       [x+1][0] = (1UL << (x))
1713 #define MASK_DECLARE_2(x)       MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
1714 #define MASK_DECLARE_4(x)       MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
1715 #define MASK_DECLARE_8(x)       MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
1716
1717 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
1718
1719         MASK_DECLARE_8(0),      MASK_DECLARE_8(8),
1720         MASK_DECLARE_8(16),     MASK_DECLARE_8(24),
1721 #if BITS_PER_LONG > 32
1722         MASK_DECLARE_8(32),     MASK_DECLARE_8(40),
1723         MASK_DECLARE_8(48),     MASK_DECLARE_8(56),
1724 #endif
1725 };
1726 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
1727
1728 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
1729 EXPORT_SYMBOL(cpu_all_bits);
1730
1731 #ifdef CONFIG_INIT_ALL_POSSIBLE
1732 struct cpumask __cpu_possible_mask __read_mostly
1733         = {CPU_BITS_ALL};
1734 #else
1735 struct cpumask __cpu_possible_mask __read_mostly;
1736 #endif
1737 EXPORT_SYMBOL(__cpu_possible_mask);
1738
1739 struct cpumask __cpu_online_mask __read_mostly;
1740 EXPORT_SYMBOL(__cpu_online_mask);
1741
1742 struct cpumask __cpu_present_mask __read_mostly;
1743 EXPORT_SYMBOL(__cpu_present_mask);
1744
1745 struct cpumask __cpu_active_mask __read_mostly;
1746 EXPORT_SYMBOL(__cpu_active_mask);
1747
1748 void init_cpu_present(const struct cpumask *src)
1749 {
1750         cpumask_copy(&__cpu_present_mask, src);
1751 }
1752
1753 void init_cpu_possible(const struct cpumask *src)
1754 {
1755         cpumask_copy(&__cpu_possible_mask, src);
1756 }
1757
1758 void init_cpu_online(const struct cpumask *src)
1759 {
1760         cpumask_copy(&__cpu_online_mask, src);
1761 }
1762
1763 /*
1764  * Activate the first processor.
1765  */
1766 void __init boot_cpu_init(void)
1767 {
1768         int cpu = smp_processor_id();
1769
1770         /* Mark the boot cpu "present", "online" etc for SMP and UP case */
1771         set_cpu_online(cpu, true);
1772         set_cpu_active(cpu, true);
1773         set_cpu_present(cpu, true);
1774         set_cpu_possible(cpu, true);
1775 }
1776
1777 /*
1778  * Must be called _AFTER_ setting up the per_cpu areas
1779  */
1780 void __init boot_cpu_state_init(void)
1781 {
1782         per_cpu_ptr(&cpuhp_state, smp_processor_id())->state = CPUHP_ONLINE;
1783 }