cfg80211: handle failed skb allocation
[cascardo/linux.git] / kernel / events / callchain.c
1 /*
2  * Performance events callchain code, extracted from core.c:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/perf_event.h>
13 #include <linux/slab.h>
14 #include "internal.h"
15
16 struct callchain_cpus_entries {
17         struct rcu_head                 rcu_head;
18         struct perf_callchain_entry     *cpu_entries[0];
19 };
20
21 int sysctl_perf_event_max_stack __read_mostly = PERF_MAX_STACK_DEPTH;
22
23 static inline size_t perf_callchain_entry__sizeof(void)
24 {
25         return (sizeof(struct perf_callchain_entry) +
26                 sizeof(__u64) * sysctl_perf_event_max_stack);
27 }
28
29 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
30 static atomic_t nr_callchain_events;
31 static DEFINE_MUTEX(callchain_mutex);
32 static struct callchain_cpus_entries *callchain_cpus_entries;
33
34
35 __weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
36                                   struct pt_regs *regs)
37 {
38 }
39
40 __weak void perf_callchain_user(struct perf_callchain_entry *entry,
41                                 struct pt_regs *regs)
42 {
43 }
44
45 static void release_callchain_buffers_rcu(struct rcu_head *head)
46 {
47         struct callchain_cpus_entries *entries;
48         int cpu;
49
50         entries = container_of(head, struct callchain_cpus_entries, rcu_head);
51
52         for_each_possible_cpu(cpu)
53                 kfree(entries->cpu_entries[cpu]);
54
55         kfree(entries);
56 }
57
58 static void release_callchain_buffers(void)
59 {
60         struct callchain_cpus_entries *entries;
61
62         entries = callchain_cpus_entries;
63         RCU_INIT_POINTER(callchain_cpus_entries, NULL);
64         call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
65 }
66
67 static int alloc_callchain_buffers(void)
68 {
69         int cpu;
70         int size;
71         struct callchain_cpus_entries *entries;
72
73         /*
74          * We can't use the percpu allocation API for data that can be
75          * accessed from NMI. Use a temporary manual per cpu allocation
76          * until that gets sorted out.
77          */
78         size = offsetof(struct callchain_cpus_entries, cpu_entries[nr_cpu_ids]);
79
80         entries = kzalloc(size, GFP_KERNEL);
81         if (!entries)
82                 return -ENOMEM;
83
84         size = perf_callchain_entry__sizeof() * PERF_NR_CONTEXTS;
85
86         for_each_possible_cpu(cpu) {
87                 entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
88                                                          cpu_to_node(cpu));
89                 if (!entries->cpu_entries[cpu])
90                         goto fail;
91         }
92
93         rcu_assign_pointer(callchain_cpus_entries, entries);
94
95         return 0;
96
97 fail:
98         for_each_possible_cpu(cpu)
99                 kfree(entries->cpu_entries[cpu]);
100         kfree(entries);
101
102         return -ENOMEM;
103 }
104
105 int get_callchain_buffers(void)
106 {
107         int err = 0;
108         int count;
109
110         mutex_lock(&callchain_mutex);
111
112         count = atomic_inc_return(&nr_callchain_events);
113         if (WARN_ON_ONCE(count < 1)) {
114                 err = -EINVAL;
115                 goto exit;
116         }
117
118         if (count > 1) {
119                 /* If the allocation failed, give up */
120                 if (!callchain_cpus_entries)
121                         err = -ENOMEM;
122                 goto exit;
123         }
124
125         err = alloc_callchain_buffers();
126 exit:
127         if (err)
128                 atomic_dec(&nr_callchain_events);
129
130         mutex_unlock(&callchain_mutex);
131
132         return err;
133 }
134
135 void put_callchain_buffers(void)
136 {
137         if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
138                 release_callchain_buffers();
139                 mutex_unlock(&callchain_mutex);
140         }
141 }
142
143 static struct perf_callchain_entry *get_callchain_entry(int *rctx)
144 {
145         int cpu;
146         struct callchain_cpus_entries *entries;
147
148         *rctx = get_recursion_context(this_cpu_ptr(callchain_recursion));
149         if (*rctx == -1)
150                 return NULL;
151
152         entries = rcu_dereference(callchain_cpus_entries);
153         if (!entries)
154                 return NULL;
155
156         cpu = smp_processor_id();
157
158         return (((void *)entries->cpu_entries[cpu]) +
159                 (*rctx * perf_callchain_entry__sizeof()));
160 }
161
162 static void
163 put_callchain_entry(int rctx)
164 {
165         put_recursion_context(this_cpu_ptr(callchain_recursion), rctx);
166 }
167
168 struct perf_callchain_entry *
169 perf_callchain(struct perf_event *event, struct pt_regs *regs)
170 {
171         bool kernel = !event->attr.exclude_callchain_kernel;
172         bool user   = !event->attr.exclude_callchain_user;
173         /* Disallow cross-task user callchains. */
174         bool crosstask = event->ctx->task && event->ctx->task != current;
175
176         if (!kernel && !user)
177                 return NULL;
178
179         return get_perf_callchain(regs, 0, kernel, user, crosstask, true);
180 }
181
182 struct perf_callchain_entry *
183 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
184                    bool crosstask, bool add_mark)
185 {
186         struct perf_callchain_entry *entry;
187         int rctx;
188
189         entry = get_callchain_entry(&rctx);
190         if (rctx == -1)
191                 return NULL;
192
193         if (!entry)
194                 goto exit_put;
195
196         entry->nr = init_nr;
197
198         if (kernel && !user_mode(regs)) {
199                 if (add_mark)
200                         perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
201                 perf_callchain_kernel(entry, regs);
202         }
203
204         if (user) {
205                 if (!user_mode(regs)) {
206                         if  (current->mm)
207                                 regs = task_pt_regs(current);
208                         else
209                                 regs = NULL;
210                 }
211
212                 if (regs) {
213                         if (crosstask)
214                                 goto exit_put;
215
216                         if (add_mark)
217                                 perf_callchain_store(entry, PERF_CONTEXT_USER);
218                         perf_callchain_user(entry, regs);
219                 }
220         }
221
222 exit_put:
223         put_callchain_entry(rctx);
224
225         return entry;
226 }
227
228 int perf_event_max_stack_handler(struct ctl_table *table, int write,
229                                  void __user *buffer, size_t *lenp, loff_t *ppos)
230 {
231         int new_value = sysctl_perf_event_max_stack, ret;
232         struct ctl_table new_table = *table;
233
234         new_table.data = &new_value;
235         ret = proc_dointvec_minmax(&new_table, write, buffer, lenp, ppos);
236         if (ret || !write)
237                 return ret;
238
239         mutex_lock(&callchain_mutex);
240         if (atomic_read(&nr_callchain_events))
241                 ret = -EBUSY;
242         else
243                 sysctl_perf_event_max_stack = new_value;
244
245         mutex_unlock(&callchain_mutex);
246
247         return ret;
248 }