05b923e2111a654f75654a10603b6e61871fc71a
[cascardo/linux.git] / kernel / events / core.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49
50 #include "internal.h"
51
52 #include <asm/irq_regs.h>
53
54 typedef int (*remote_function_f)(void *);
55
56 struct remote_function_call {
57         struct task_struct      *p;
58         remote_function_f       func;
59         void                    *info;
60         int                     ret;
61 };
62
63 static void remote_function(void *data)
64 {
65         struct remote_function_call *tfc = data;
66         struct task_struct *p = tfc->p;
67
68         if (p) {
69                 /* -EAGAIN */
70                 if (task_cpu(p) != smp_processor_id())
71                         return;
72
73                 /*
74                  * Now that we're on right CPU with IRQs disabled, we can test
75                  * if we hit the right task without races.
76                  */
77
78                 tfc->ret = -ESRCH; /* No such (running) process */
79                 if (p != current)
80                         return;
81         }
82
83         tfc->ret = tfc->func(tfc->info);
84 }
85
86 /**
87  * task_function_call - call a function on the cpu on which a task runs
88  * @p:          the task to evaluate
89  * @func:       the function to be called
90  * @info:       the function call argument
91  *
92  * Calls the function @func when the task is currently running. This might
93  * be on the current CPU, which just calls the function directly
94  *
95  * returns: @func return value, or
96  *          -ESRCH  - when the process isn't running
97  *          -EAGAIN - when the process moved away
98  */
99 static int
100 task_function_call(struct task_struct *p, remote_function_f func, void *info)
101 {
102         struct remote_function_call data = {
103                 .p      = p,
104                 .func   = func,
105                 .info   = info,
106                 .ret    = -EAGAIN,
107         };
108         int ret;
109
110         do {
111                 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
112                 if (!ret)
113                         ret = data.ret;
114         } while (ret == -EAGAIN);
115
116         return ret;
117 }
118
119 /**
120  * cpu_function_call - call a function on the cpu
121  * @func:       the function to be called
122  * @info:       the function call argument
123  *
124  * Calls the function @func on the remote cpu.
125  *
126  * returns: @func return value or -ENXIO when the cpu is offline
127  */
128 static int cpu_function_call(int cpu, remote_function_f func, void *info)
129 {
130         struct remote_function_call data = {
131                 .p      = NULL,
132                 .func   = func,
133                 .info   = info,
134                 .ret    = -ENXIO, /* No such CPU */
135         };
136
137         smp_call_function_single(cpu, remote_function, &data, 1);
138
139         return data.ret;
140 }
141
142 static inline struct perf_cpu_context *
143 __get_cpu_context(struct perf_event_context *ctx)
144 {
145         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
146 }
147
148 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
149                           struct perf_event_context *ctx)
150 {
151         raw_spin_lock(&cpuctx->ctx.lock);
152         if (ctx)
153                 raw_spin_lock(&ctx->lock);
154 }
155
156 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
157                             struct perf_event_context *ctx)
158 {
159         if (ctx)
160                 raw_spin_unlock(&ctx->lock);
161         raw_spin_unlock(&cpuctx->ctx.lock);
162 }
163
164 #define TASK_TOMBSTONE ((void *)-1L)
165
166 static bool is_kernel_event(struct perf_event *event)
167 {
168         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
169 }
170
171 /*
172  * On task ctx scheduling...
173  *
174  * When !ctx->nr_events a task context will not be scheduled. This means
175  * we can disable the scheduler hooks (for performance) without leaving
176  * pending task ctx state.
177  *
178  * This however results in two special cases:
179  *
180  *  - removing the last event from a task ctx; this is relatively straight
181  *    forward and is done in __perf_remove_from_context.
182  *
183  *  - adding the first event to a task ctx; this is tricky because we cannot
184  *    rely on ctx->is_active and therefore cannot use event_function_call().
185  *    See perf_install_in_context().
186  *
187  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
188  */
189
190 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
191                         struct perf_event_context *, void *);
192
193 struct event_function_struct {
194         struct perf_event *event;
195         event_f func;
196         void *data;
197 };
198
199 static int event_function(void *info)
200 {
201         struct event_function_struct *efs = info;
202         struct perf_event *event = efs->event;
203         struct perf_event_context *ctx = event->ctx;
204         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
205         struct perf_event_context *task_ctx = cpuctx->task_ctx;
206         int ret = 0;
207
208         WARN_ON_ONCE(!irqs_disabled());
209
210         perf_ctx_lock(cpuctx, task_ctx);
211         /*
212          * Since we do the IPI call without holding ctx->lock things can have
213          * changed, double check we hit the task we set out to hit.
214          */
215         if (ctx->task) {
216                 if (ctx->task != current) {
217                         ret = -ESRCH;
218                         goto unlock;
219                 }
220
221                 /*
222                  * We only use event_function_call() on established contexts,
223                  * and event_function() is only ever called when active (or
224                  * rather, we'll have bailed in task_function_call() or the
225                  * above ctx->task != current test), therefore we must have
226                  * ctx->is_active here.
227                  */
228                 WARN_ON_ONCE(!ctx->is_active);
229                 /*
230                  * And since we have ctx->is_active, cpuctx->task_ctx must
231                  * match.
232                  */
233                 WARN_ON_ONCE(task_ctx != ctx);
234         } else {
235                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
236         }
237
238         efs->func(event, cpuctx, ctx, efs->data);
239 unlock:
240         perf_ctx_unlock(cpuctx, task_ctx);
241
242         return ret;
243 }
244
245 static void event_function_local(struct perf_event *event, event_f func, void *data)
246 {
247         struct event_function_struct efs = {
248                 .event = event,
249                 .func = func,
250                 .data = data,
251         };
252
253         int ret = event_function(&efs);
254         WARN_ON_ONCE(ret);
255 }
256
257 static void event_function_call(struct perf_event *event, event_f func, void *data)
258 {
259         struct perf_event_context *ctx = event->ctx;
260         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
261         struct event_function_struct efs = {
262                 .event = event,
263                 .func = func,
264                 .data = data,
265         };
266
267         if (!event->parent) {
268                 /*
269                  * If this is a !child event, we must hold ctx::mutex to
270                  * stabilize the the event->ctx relation. See
271                  * perf_event_ctx_lock().
272                  */
273                 lockdep_assert_held(&ctx->mutex);
274         }
275
276         if (!task) {
277                 cpu_function_call(event->cpu, event_function, &efs);
278                 return;
279         }
280
281         if (task == TASK_TOMBSTONE)
282                 return;
283
284 again:
285         if (!task_function_call(task, event_function, &efs))
286                 return;
287
288         raw_spin_lock_irq(&ctx->lock);
289         /*
290          * Reload the task pointer, it might have been changed by
291          * a concurrent perf_event_context_sched_out().
292          */
293         task = ctx->task;
294         if (task == TASK_TOMBSTONE) {
295                 raw_spin_unlock_irq(&ctx->lock);
296                 return;
297         }
298         if (ctx->is_active) {
299                 raw_spin_unlock_irq(&ctx->lock);
300                 goto again;
301         }
302         func(event, NULL, ctx, data);
303         raw_spin_unlock_irq(&ctx->lock);
304 }
305
306 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
307                        PERF_FLAG_FD_OUTPUT  |\
308                        PERF_FLAG_PID_CGROUP |\
309                        PERF_FLAG_FD_CLOEXEC)
310
311 /*
312  * branch priv levels that need permission checks
313  */
314 #define PERF_SAMPLE_BRANCH_PERM_PLM \
315         (PERF_SAMPLE_BRANCH_KERNEL |\
316          PERF_SAMPLE_BRANCH_HV)
317
318 enum event_type_t {
319         EVENT_FLEXIBLE = 0x1,
320         EVENT_PINNED = 0x2,
321         EVENT_TIME = 0x4,
322         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
323 };
324
325 /*
326  * perf_sched_events : >0 events exist
327  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
328  */
329
330 static void perf_sched_delayed(struct work_struct *work);
331 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
332 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
333 static DEFINE_MUTEX(perf_sched_mutex);
334 static atomic_t perf_sched_count;
335
336 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
337 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
338 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
339
340 static atomic_t nr_mmap_events __read_mostly;
341 static atomic_t nr_comm_events __read_mostly;
342 static atomic_t nr_task_events __read_mostly;
343 static atomic_t nr_freq_events __read_mostly;
344 static atomic_t nr_switch_events __read_mostly;
345
346 static LIST_HEAD(pmus);
347 static DEFINE_MUTEX(pmus_lock);
348 static struct srcu_struct pmus_srcu;
349
350 /*
351  * perf event paranoia level:
352  *  -1 - not paranoid at all
353  *   0 - disallow raw tracepoint access for unpriv
354  *   1 - disallow cpu events for unpriv
355  *   2 - disallow kernel profiling for unpriv
356  */
357 int sysctl_perf_event_paranoid __read_mostly = 2;
358
359 /* Minimum for 512 kiB + 1 user control page */
360 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
361
362 /*
363  * max perf event sample rate
364  */
365 #define DEFAULT_MAX_SAMPLE_RATE         100000
366 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
367 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
368
369 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
370
371 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
372 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
373
374 static int perf_sample_allowed_ns __read_mostly =
375         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
376
377 static void update_perf_cpu_limits(void)
378 {
379         u64 tmp = perf_sample_period_ns;
380
381         tmp *= sysctl_perf_cpu_time_max_percent;
382         tmp = div_u64(tmp, 100);
383         if (!tmp)
384                 tmp = 1;
385
386         WRITE_ONCE(perf_sample_allowed_ns, tmp);
387 }
388
389 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
390
391 int perf_proc_update_handler(struct ctl_table *table, int write,
392                 void __user *buffer, size_t *lenp,
393                 loff_t *ppos)
394 {
395         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
396
397         if (ret || !write)
398                 return ret;
399
400         /*
401          * If throttling is disabled don't allow the write:
402          */
403         if (sysctl_perf_cpu_time_max_percent == 100 ||
404             sysctl_perf_cpu_time_max_percent == 0)
405                 return -EINVAL;
406
407         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
408         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
409         update_perf_cpu_limits();
410
411         return 0;
412 }
413
414 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
415
416 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
417                                 void __user *buffer, size_t *lenp,
418                                 loff_t *ppos)
419 {
420         int ret = proc_dointvec(table, write, buffer, lenp, ppos);
421
422         if (ret || !write)
423                 return ret;
424
425         if (sysctl_perf_cpu_time_max_percent == 100 ||
426             sysctl_perf_cpu_time_max_percent == 0) {
427                 printk(KERN_WARNING
428                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
429                 WRITE_ONCE(perf_sample_allowed_ns, 0);
430         } else {
431                 update_perf_cpu_limits();
432         }
433
434         return 0;
435 }
436
437 /*
438  * perf samples are done in some very critical code paths (NMIs).
439  * If they take too much CPU time, the system can lock up and not
440  * get any real work done.  This will drop the sample rate when
441  * we detect that events are taking too long.
442  */
443 #define NR_ACCUMULATED_SAMPLES 128
444 static DEFINE_PER_CPU(u64, running_sample_length);
445
446 static u64 __report_avg;
447 static u64 __report_allowed;
448
449 static void perf_duration_warn(struct irq_work *w)
450 {
451         printk_ratelimited(KERN_WARNING
452                 "perf: interrupt took too long (%lld > %lld), lowering "
453                 "kernel.perf_event_max_sample_rate to %d\n",
454                 __report_avg, __report_allowed,
455                 sysctl_perf_event_sample_rate);
456 }
457
458 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
459
460 void perf_sample_event_took(u64 sample_len_ns)
461 {
462         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
463         u64 running_len;
464         u64 avg_len;
465         u32 max;
466
467         if (max_len == 0)
468                 return;
469
470         /* Decay the counter by 1 average sample. */
471         running_len = __this_cpu_read(running_sample_length);
472         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
473         running_len += sample_len_ns;
474         __this_cpu_write(running_sample_length, running_len);
475
476         /*
477          * Note: this will be biased artifically low until we have
478          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
479          * from having to maintain a count.
480          */
481         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
482         if (avg_len <= max_len)
483                 return;
484
485         __report_avg = avg_len;
486         __report_allowed = max_len;
487
488         /*
489          * Compute a throttle threshold 25% below the current duration.
490          */
491         avg_len += avg_len / 4;
492         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
493         if (avg_len < max)
494                 max /= (u32)avg_len;
495         else
496                 max = 1;
497
498         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
499         WRITE_ONCE(max_samples_per_tick, max);
500
501         sysctl_perf_event_sample_rate = max * HZ;
502         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
503
504         if (!irq_work_queue(&perf_duration_work)) {
505                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
506                              "kernel.perf_event_max_sample_rate to %d\n",
507                              __report_avg, __report_allowed,
508                              sysctl_perf_event_sample_rate);
509         }
510 }
511
512 static atomic64_t perf_event_id;
513
514 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
515                               enum event_type_t event_type);
516
517 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
518                              enum event_type_t event_type,
519                              struct task_struct *task);
520
521 static void update_context_time(struct perf_event_context *ctx);
522 static u64 perf_event_time(struct perf_event *event);
523
524 void __weak perf_event_print_debug(void)        { }
525
526 extern __weak const char *perf_pmu_name(void)
527 {
528         return "pmu";
529 }
530
531 static inline u64 perf_clock(void)
532 {
533         return local_clock();
534 }
535
536 static inline u64 perf_event_clock(struct perf_event *event)
537 {
538         return event->clock();
539 }
540
541 #ifdef CONFIG_CGROUP_PERF
542
543 static inline bool
544 perf_cgroup_match(struct perf_event *event)
545 {
546         struct perf_event_context *ctx = event->ctx;
547         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
548
549         /* @event doesn't care about cgroup */
550         if (!event->cgrp)
551                 return true;
552
553         /* wants specific cgroup scope but @cpuctx isn't associated with any */
554         if (!cpuctx->cgrp)
555                 return false;
556
557         /*
558          * Cgroup scoping is recursive.  An event enabled for a cgroup is
559          * also enabled for all its descendant cgroups.  If @cpuctx's
560          * cgroup is a descendant of @event's (the test covers identity
561          * case), it's a match.
562          */
563         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
564                                     event->cgrp->css.cgroup);
565 }
566
567 static inline void perf_detach_cgroup(struct perf_event *event)
568 {
569         css_put(&event->cgrp->css);
570         event->cgrp = NULL;
571 }
572
573 static inline int is_cgroup_event(struct perf_event *event)
574 {
575         return event->cgrp != NULL;
576 }
577
578 static inline u64 perf_cgroup_event_time(struct perf_event *event)
579 {
580         struct perf_cgroup_info *t;
581
582         t = per_cpu_ptr(event->cgrp->info, event->cpu);
583         return t->time;
584 }
585
586 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
587 {
588         struct perf_cgroup_info *info;
589         u64 now;
590
591         now = perf_clock();
592
593         info = this_cpu_ptr(cgrp->info);
594
595         info->time += now - info->timestamp;
596         info->timestamp = now;
597 }
598
599 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
600 {
601         struct perf_cgroup *cgrp_out = cpuctx->cgrp;
602         if (cgrp_out)
603                 __update_cgrp_time(cgrp_out);
604 }
605
606 static inline void update_cgrp_time_from_event(struct perf_event *event)
607 {
608         struct perf_cgroup *cgrp;
609
610         /*
611          * ensure we access cgroup data only when needed and
612          * when we know the cgroup is pinned (css_get)
613          */
614         if (!is_cgroup_event(event))
615                 return;
616
617         cgrp = perf_cgroup_from_task(current, event->ctx);
618         /*
619          * Do not update time when cgroup is not active
620          */
621         if (cgrp == event->cgrp)
622                 __update_cgrp_time(event->cgrp);
623 }
624
625 static inline void
626 perf_cgroup_set_timestamp(struct task_struct *task,
627                           struct perf_event_context *ctx)
628 {
629         struct perf_cgroup *cgrp;
630         struct perf_cgroup_info *info;
631
632         /*
633          * ctx->lock held by caller
634          * ensure we do not access cgroup data
635          * unless we have the cgroup pinned (css_get)
636          */
637         if (!task || !ctx->nr_cgroups)
638                 return;
639
640         cgrp = perf_cgroup_from_task(task, ctx);
641         info = this_cpu_ptr(cgrp->info);
642         info->timestamp = ctx->timestamp;
643 }
644
645 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
646 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
647
648 /*
649  * reschedule events based on the cgroup constraint of task.
650  *
651  * mode SWOUT : schedule out everything
652  * mode SWIN : schedule in based on cgroup for next
653  */
654 static void perf_cgroup_switch(struct task_struct *task, int mode)
655 {
656         struct perf_cpu_context *cpuctx;
657         struct pmu *pmu;
658         unsigned long flags;
659
660         /*
661          * disable interrupts to avoid geting nr_cgroup
662          * changes via __perf_event_disable(). Also
663          * avoids preemption.
664          */
665         local_irq_save(flags);
666
667         /*
668          * we reschedule only in the presence of cgroup
669          * constrained events.
670          */
671
672         list_for_each_entry_rcu(pmu, &pmus, entry) {
673                 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
674                 if (cpuctx->unique_pmu != pmu)
675                         continue; /* ensure we process each cpuctx once */
676
677                 /*
678                  * perf_cgroup_events says at least one
679                  * context on this CPU has cgroup events.
680                  *
681                  * ctx->nr_cgroups reports the number of cgroup
682                  * events for a context.
683                  */
684                 if (cpuctx->ctx.nr_cgroups > 0) {
685                         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
686                         perf_pmu_disable(cpuctx->ctx.pmu);
687
688                         if (mode & PERF_CGROUP_SWOUT) {
689                                 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
690                                 /*
691                                  * must not be done before ctxswout due
692                                  * to event_filter_match() in event_sched_out()
693                                  */
694                                 cpuctx->cgrp = NULL;
695                         }
696
697                         if (mode & PERF_CGROUP_SWIN) {
698                                 WARN_ON_ONCE(cpuctx->cgrp);
699                                 /*
700                                  * set cgrp before ctxsw in to allow
701                                  * event_filter_match() to not have to pass
702                                  * task around
703                                  * we pass the cpuctx->ctx to perf_cgroup_from_task()
704                                  * because cgorup events are only per-cpu
705                                  */
706                                 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
707                                 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
708                         }
709                         perf_pmu_enable(cpuctx->ctx.pmu);
710                         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
711                 }
712         }
713
714         local_irq_restore(flags);
715 }
716
717 static inline void perf_cgroup_sched_out(struct task_struct *task,
718                                          struct task_struct *next)
719 {
720         struct perf_cgroup *cgrp1;
721         struct perf_cgroup *cgrp2 = NULL;
722
723         rcu_read_lock();
724         /*
725          * we come here when we know perf_cgroup_events > 0
726          * we do not need to pass the ctx here because we know
727          * we are holding the rcu lock
728          */
729         cgrp1 = perf_cgroup_from_task(task, NULL);
730         cgrp2 = perf_cgroup_from_task(next, NULL);
731
732         /*
733          * only schedule out current cgroup events if we know
734          * that we are switching to a different cgroup. Otherwise,
735          * do no touch the cgroup events.
736          */
737         if (cgrp1 != cgrp2)
738                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
739
740         rcu_read_unlock();
741 }
742
743 static inline void perf_cgroup_sched_in(struct task_struct *prev,
744                                         struct task_struct *task)
745 {
746         struct perf_cgroup *cgrp1;
747         struct perf_cgroup *cgrp2 = NULL;
748
749         rcu_read_lock();
750         /*
751          * we come here when we know perf_cgroup_events > 0
752          * we do not need to pass the ctx here because we know
753          * we are holding the rcu lock
754          */
755         cgrp1 = perf_cgroup_from_task(task, NULL);
756         cgrp2 = perf_cgroup_from_task(prev, NULL);
757
758         /*
759          * only need to schedule in cgroup events if we are changing
760          * cgroup during ctxsw. Cgroup events were not scheduled
761          * out of ctxsw out if that was not the case.
762          */
763         if (cgrp1 != cgrp2)
764                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
765
766         rcu_read_unlock();
767 }
768
769 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
770                                       struct perf_event_attr *attr,
771                                       struct perf_event *group_leader)
772 {
773         struct perf_cgroup *cgrp;
774         struct cgroup_subsys_state *css;
775         struct fd f = fdget(fd);
776         int ret = 0;
777
778         if (!f.file)
779                 return -EBADF;
780
781         css = css_tryget_online_from_dir(f.file->f_path.dentry,
782                                          &perf_event_cgrp_subsys);
783         if (IS_ERR(css)) {
784                 ret = PTR_ERR(css);
785                 goto out;
786         }
787
788         cgrp = container_of(css, struct perf_cgroup, css);
789         event->cgrp = cgrp;
790
791         /*
792          * all events in a group must monitor
793          * the same cgroup because a task belongs
794          * to only one perf cgroup at a time
795          */
796         if (group_leader && group_leader->cgrp != cgrp) {
797                 perf_detach_cgroup(event);
798                 ret = -EINVAL;
799         }
800 out:
801         fdput(f);
802         return ret;
803 }
804
805 static inline void
806 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
807 {
808         struct perf_cgroup_info *t;
809         t = per_cpu_ptr(event->cgrp->info, event->cpu);
810         event->shadow_ctx_time = now - t->timestamp;
811 }
812
813 static inline void
814 perf_cgroup_defer_enabled(struct perf_event *event)
815 {
816         /*
817          * when the current task's perf cgroup does not match
818          * the event's, we need to remember to call the
819          * perf_mark_enable() function the first time a task with
820          * a matching perf cgroup is scheduled in.
821          */
822         if (is_cgroup_event(event) && !perf_cgroup_match(event))
823                 event->cgrp_defer_enabled = 1;
824 }
825
826 static inline void
827 perf_cgroup_mark_enabled(struct perf_event *event,
828                          struct perf_event_context *ctx)
829 {
830         struct perf_event *sub;
831         u64 tstamp = perf_event_time(event);
832
833         if (!event->cgrp_defer_enabled)
834                 return;
835
836         event->cgrp_defer_enabled = 0;
837
838         event->tstamp_enabled = tstamp - event->total_time_enabled;
839         list_for_each_entry(sub, &event->sibling_list, group_entry) {
840                 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
841                         sub->tstamp_enabled = tstamp - sub->total_time_enabled;
842                         sub->cgrp_defer_enabled = 0;
843                 }
844         }
845 }
846 #else /* !CONFIG_CGROUP_PERF */
847
848 static inline bool
849 perf_cgroup_match(struct perf_event *event)
850 {
851         return true;
852 }
853
854 static inline void perf_detach_cgroup(struct perf_event *event)
855 {}
856
857 static inline int is_cgroup_event(struct perf_event *event)
858 {
859         return 0;
860 }
861
862 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
863 {
864         return 0;
865 }
866
867 static inline void update_cgrp_time_from_event(struct perf_event *event)
868 {
869 }
870
871 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
872 {
873 }
874
875 static inline void perf_cgroup_sched_out(struct task_struct *task,
876                                          struct task_struct *next)
877 {
878 }
879
880 static inline void perf_cgroup_sched_in(struct task_struct *prev,
881                                         struct task_struct *task)
882 {
883 }
884
885 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
886                                       struct perf_event_attr *attr,
887                                       struct perf_event *group_leader)
888 {
889         return -EINVAL;
890 }
891
892 static inline void
893 perf_cgroup_set_timestamp(struct task_struct *task,
894                           struct perf_event_context *ctx)
895 {
896 }
897
898 void
899 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
900 {
901 }
902
903 static inline void
904 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
905 {
906 }
907
908 static inline u64 perf_cgroup_event_time(struct perf_event *event)
909 {
910         return 0;
911 }
912
913 static inline void
914 perf_cgroup_defer_enabled(struct perf_event *event)
915 {
916 }
917
918 static inline void
919 perf_cgroup_mark_enabled(struct perf_event *event,
920                          struct perf_event_context *ctx)
921 {
922 }
923 #endif
924
925 /*
926  * set default to be dependent on timer tick just
927  * like original code
928  */
929 #define PERF_CPU_HRTIMER (1000 / HZ)
930 /*
931  * function must be called with interrupts disbled
932  */
933 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
934 {
935         struct perf_cpu_context *cpuctx;
936         int rotations = 0;
937
938         WARN_ON(!irqs_disabled());
939
940         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
941         rotations = perf_rotate_context(cpuctx);
942
943         raw_spin_lock(&cpuctx->hrtimer_lock);
944         if (rotations)
945                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
946         else
947                 cpuctx->hrtimer_active = 0;
948         raw_spin_unlock(&cpuctx->hrtimer_lock);
949
950         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
951 }
952
953 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
954 {
955         struct hrtimer *timer = &cpuctx->hrtimer;
956         struct pmu *pmu = cpuctx->ctx.pmu;
957         u64 interval;
958
959         /* no multiplexing needed for SW PMU */
960         if (pmu->task_ctx_nr == perf_sw_context)
961                 return;
962
963         /*
964          * check default is sane, if not set then force to
965          * default interval (1/tick)
966          */
967         interval = pmu->hrtimer_interval_ms;
968         if (interval < 1)
969                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
970
971         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
972
973         raw_spin_lock_init(&cpuctx->hrtimer_lock);
974         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
975         timer->function = perf_mux_hrtimer_handler;
976 }
977
978 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
979 {
980         struct hrtimer *timer = &cpuctx->hrtimer;
981         struct pmu *pmu = cpuctx->ctx.pmu;
982         unsigned long flags;
983
984         /* not for SW PMU */
985         if (pmu->task_ctx_nr == perf_sw_context)
986                 return 0;
987
988         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
989         if (!cpuctx->hrtimer_active) {
990                 cpuctx->hrtimer_active = 1;
991                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
992                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
993         }
994         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
995
996         return 0;
997 }
998
999 void perf_pmu_disable(struct pmu *pmu)
1000 {
1001         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1002         if (!(*count)++)
1003                 pmu->pmu_disable(pmu);
1004 }
1005
1006 void perf_pmu_enable(struct pmu *pmu)
1007 {
1008         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1009         if (!--(*count))
1010                 pmu->pmu_enable(pmu);
1011 }
1012
1013 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1014
1015 /*
1016  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1017  * perf_event_task_tick() are fully serialized because they're strictly cpu
1018  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1019  * disabled, while perf_event_task_tick is called from IRQ context.
1020  */
1021 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1022 {
1023         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1024
1025         WARN_ON(!irqs_disabled());
1026
1027         WARN_ON(!list_empty(&ctx->active_ctx_list));
1028
1029         list_add(&ctx->active_ctx_list, head);
1030 }
1031
1032 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1033 {
1034         WARN_ON(!irqs_disabled());
1035
1036         WARN_ON(list_empty(&ctx->active_ctx_list));
1037
1038         list_del_init(&ctx->active_ctx_list);
1039 }
1040
1041 static void get_ctx(struct perf_event_context *ctx)
1042 {
1043         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1044 }
1045
1046 static void free_ctx(struct rcu_head *head)
1047 {
1048         struct perf_event_context *ctx;
1049
1050         ctx = container_of(head, struct perf_event_context, rcu_head);
1051         kfree(ctx->task_ctx_data);
1052         kfree(ctx);
1053 }
1054
1055 static void put_ctx(struct perf_event_context *ctx)
1056 {
1057         if (atomic_dec_and_test(&ctx->refcount)) {
1058                 if (ctx->parent_ctx)
1059                         put_ctx(ctx->parent_ctx);
1060                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1061                         put_task_struct(ctx->task);
1062                 call_rcu(&ctx->rcu_head, free_ctx);
1063         }
1064 }
1065
1066 /*
1067  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1068  * perf_pmu_migrate_context() we need some magic.
1069  *
1070  * Those places that change perf_event::ctx will hold both
1071  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1072  *
1073  * Lock ordering is by mutex address. There are two other sites where
1074  * perf_event_context::mutex nests and those are:
1075  *
1076  *  - perf_event_exit_task_context()    [ child , 0 ]
1077  *      perf_event_exit_event()
1078  *        put_event()                   [ parent, 1 ]
1079  *
1080  *  - perf_event_init_context()         [ parent, 0 ]
1081  *      inherit_task_group()
1082  *        inherit_group()
1083  *          inherit_event()
1084  *            perf_event_alloc()
1085  *              perf_init_event()
1086  *                perf_try_init_event() [ child , 1 ]
1087  *
1088  * While it appears there is an obvious deadlock here -- the parent and child
1089  * nesting levels are inverted between the two. This is in fact safe because
1090  * life-time rules separate them. That is an exiting task cannot fork, and a
1091  * spawning task cannot (yet) exit.
1092  *
1093  * But remember that that these are parent<->child context relations, and
1094  * migration does not affect children, therefore these two orderings should not
1095  * interact.
1096  *
1097  * The change in perf_event::ctx does not affect children (as claimed above)
1098  * because the sys_perf_event_open() case will install a new event and break
1099  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1100  * concerned with cpuctx and that doesn't have children.
1101  *
1102  * The places that change perf_event::ctx will issue:
1103  *
1104  *   perf_remove_from_context();
1105  *   synchronize_rcu();
1106  *   perf_install_in_context();
1107  *
1108  * to affect the change. The remove_from_context() + synchronize_rcu() should
1109  * quiesce the event, after which we can install it in the new location. This
1110  * means that only external vectors (perf_fops, prctl) can perturb the event
1111  * while in transit. Therefore all such accessors should also acquire
1112  * perf_event_context::mutex to serialize against this.
1113  *
1114  * However; because event->ctx can change while we're waiting to acquire
1115  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1116  * function.
1117  *
1118  * Lock order:
1119  *    cred_guard_mutex
1120  *      task_struct::perf_event_mutex
1121  *        perf_event_context::mutex
1122  *          perf_event::child_mutex;
1123  *            perf_event_context::lock
1124  *          perf_event::mmap_mutex
1125  *          mmap_sem
1126  */
1127 static struct perf_event_context *
1128 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1129 {
1130         struct perf_event_context *ctx;
1131
1132 again:
1133         rcu_read_lock();
1134         ctx = ACCESS_ONCE(event->ctx);
1135         if (!atomic_inc_not_zero(&ctx->refcount)) {
1136                 rcu_read_unlock();
1137                 goto again;
1138         }
1139         rcu_read_unlock();
1140
1141         mutex_lock_nested(&ctx->mutex, nesting);
1142         if (event->ctx != ctx) {
1143                 mutex_unlock(&ctx->mutex);
1144                 put_ctx(ctx);
1145                 goto again;
1146         }
1147
1148         return ctx;
1149 }
1150
1151 static inline struct perf_event_context *
1152 perf_event_ctx_lock(struct perf_event *event)
1153 {
1154         return perf_event_ctx_lock_nested(event, 0);
1155 }
1156
1157 static void perf_event_ctx_unlock(struct perf_event *event,
1158                                   struct perf_event_context *ctx)
1159 {
1160         mutex_unlock(&ctx->mutex);
1161         put_ctx(ctx);
1162 }
1163
1164 /*
1165  * This must be done under the ctx->lock, such as to serialize against
1166  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1167  * calling scheduler related locks and ctx->lock nests inside those.
1168  */
1169 static __must_check struct perf_event_context *
1170 unclone_ctx(struct perf_event_context *ctx)
1171 {
1172         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1173
1174         lockdep_assert_held(&ctx->lock);
1175
1176         if (parent_ctx)
1177                 ctx->parent_ctx = NULL;
1178         ctx->generation++;
1179
1180         return parent_ctx;
1181 }
1182
1183 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1184 {
1185         /*
1186          * only top level events have the pid namespace they were created in
1187          */
1188         if (event->parent)
1189                 event = event->parent;
1190
1191         return task_tgid_nr_ns(p, event->ns);
1192 }
1193
1194 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1195 {
1196         /*
1197          * only top level events have the pid namespace they were created in
1198          */
1199         if (event->parent)
1200                 event = event->parent;
1201
1202         return task_pid_nr_ns(p, event->ns);
1203 }
1204
1205 /*
1206  * If we inherit events we want to return the parent event id
1207  * to userspace.
1208  */
1209 static u64 primary_event_id(struct perf_event *event)
1210 {
1211         u64 id = event->id;
1212
1213         if (event->parent)
1214                 id = event->parent->id;
1215
1216         return id;
1217 }
1218
1219 /*
1220  * Get the perf_event_context for a task and lock it.
1221  *
1222  * This has to cope with with the fact that until it is locked,
1223  * the context could get moved to another task.
1224  */
1225 static struct perf_event_context *
1226 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1227 {
1228         struct perf_event_context *ctx;
1229
1230 retry:
1231         /*
1232          * One of the few rules of preemptible RCU is that one cannot do
1233          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1234          * part of the read side critical section was irqs-enabled -- see
1235          * rcu_read_unlock_special().
1236          *
1237          * Since ctx->lock nests under rq->lock we must ensure the entire read
1238          * side critical section has interrupts disabled.
1239          */
1240         local_irq_save(*flags);
1241         rcu_read_lock();
1242         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1243         if (ctx) {
1244                 /*
1245                  * If this context is a clone of another, it might
1246                  * get swapped for another underneath us by
1247                  * perf_event_task_sched_out, though the
1248                  * rcu_read_lock() protects us from any context
1249                  * getting freed.  Lock the context and check if it
1250                  * got swapped before we could get the lock, and retry
1251                  * if so.  If we locked the right context, then it
1252                  * can't get swapped on us any more.
1253                  */
1254                 raw_spin_lock(&ctx->lock);
1255                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1256                         raw_spin_unlock(&ctx->lock);
1257                         rcu_read_unlock();
1258                         local_irq_restore(*flags);
1259                         goto retry;
1260                 }
1261
1262                 if (ctx->task == TASK_TOMBSTONE ||
1263                     !atomic_inc_not_zero(&ctx->refcount)) {
1264                         raw_spin_unlock(&ctx->lock);
1265                         ctx = NULL;
1266                 } else {
1267                         WARN_ON_ONCE(ctx->task != task);
1268                 }
1269         }
1270         rcu_read_unlock();
1271         if (!ctx)
1272                 local_irq_restore(*flags);
1273         return ctx;
1274 }
1275
1276 /*
1277  * Get the context for a task and increment its pin_count so it
1278  * can't get swapped to another task.  This also increments its
1279  * reference count so that the context can't get freed.
1280  */
1281 static struct perf_event_context *
1282 perf_pin_task_context(struct task_struct *task, int ctxn)
1283 {
1284         struct perf_event_context *ctx;
1285         unsigned long flags;
1286
1287         ctx = perf_lock_task_context(task, ctxn, &flags);
1288         if (ctx) {
1289                 ++ctx->pin_count;
1290                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1291         }
1292         return ctx;
1293 }
1294
1295 static void perf_unpin_context(struct perf_event_context *ctx)
1296 {
1297         unsigned long flags;
1298
1299         raw_spin_lock_irqsave(&ctx->lock, flags);
1300         --ctx->pin_count;
1301         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1302 }
1303
1304 /*
1305  * Update the record of the current time in a context.
1306  */
1307 static void update_context_time(struct perf_event_context *ctx)
1308 {
1309         u64 now = perf_clock();
1310
1311         ctx->time += now - ctx->timestamp;
1312         ctx->timestamp = now;
1313 }
1314
1315 static u64 perf_event_time(struct perf_event *event)
1316 {
1317         struct perf_event_context *ctx = event->ctx;
1318
1319         if (is_cgroup_event(event))
1320                 return perf_cgroup_event_time(event);
1321
1322         return ctx ? ctx->time : 0;
1323 }
1324
1325 /*
1326  * Update the total_time_enabled and total_time_running fields for a event.
1327  */
1328 static void update_event_times(struct perf_event *event)
1329 {
1330         struct perf_event_context *ctx = event->ctx;
1331         u64 run_end;
1332
1333         lockdep_assert_held(&ctx->lock);
1334
1335         if (event->state < PERF_EVENT_STATE_INACTIVE ||
1336             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1337                 return;
1338
1339         /*
1340          * in cgroup mode, time_enabled represents
1341          * the time the event was enabled AND active
1342          * tasks were in the monitored cgroup. This is
1343          * independent of the activity of the context as
1344          * there may be a mix of cgroup and non-cgroup events.
1345          *
1346          * That is why we treat cgroup events differently
1347          * here.
1348          */
1349         if (is_cgroup_event(event))
1350                 run_end = perf_cgroup_event_time(event);
1351         else if (ctx->is_active)
1352                 run_end = ctx->time;
1353         else
1354                 run_end = event->tstamp_stopped;
1355
1356         event->total_time_enabled = run_end - event->tstamp_enabled;
1357
1358         if (event->state == PERF_EVENT_STATE_INACTIVE)
1359                 run_end = event->tstamp_stopped;
1360         else
1361                 run_end = perf_event_time(event);
1362
1363         event->total_time_running = run_end - event->tstamp_running;
1364
1365 }
1366
1367 /*
1368  * Update total_time_enabled and total_time_running for all events in a group.
1369  */
1370 static void update_group_times(struct perf_event *leader)
1371 {
1372         struct perf_event *event;
1373
1374         update_event_times(leader);
1375         list_for_each_entry(event, &leader->sibling_list, group_entry)
1376                 update_event_times(event);
1377 }
1378
1379 static struct list_head *
1380 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1381 {
1382         if (event->attr.pinned)
1383                 return &ctx->pinned_groups;
1384         else
1385                 return &ctx->flexible_groups;
1386 }
1387
1388 /*
1389  * Add a event from the lists for its context.
1390  * Must be called with ctx->mutex and ctx->lock held.
1391  */
1392 static void
1393 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1394 {
1395         lockdep_assert_held(&ctx->lock);
1396
1397         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1398         event->attach_state |= PERF_ATTACH_CONTEXT;
1399
1400         /*
1401          * If we're a stand alone event or group leader, we go to the context
1402          * list, group events are kept attached to the group so that
1403          * perf_group_detach can, at all times, locate all siblings.
1404          */
1405         if (event->group_leader == event) {
1406                 struct list_head *list;
1407
1408                 if (is_software_event(event))
1409                         event->group_flags |= PERF_GROUP_SOFTWARE;
1410
1411                 list = ctx_group_list(event, ctx);
1412                 list_add_tail(&event->group_entry, list);
1413         }
1414
1415         if (is_cgroup_event(event))
1416                 ctx->nr_cgroups++;
1417
1418         list_add_rcu(&event->event_entry, &ctx->event_list);
1419         ctx->nr_events++;
1420         if (event->attr.inherit_stat)
1421                 ctx->nr_stat++;
1422
1423         ctx->generation++;
1424 }
1425
1426 /*
1427  * Initialize event state based on the perf_event_attr::disabled.
1428  */
1429 static inline void perf_event__state_init(struct perf_event *event)
1430 {
1431         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1432                                               PERF_EVENT_STATE_INACTIVE;
1433 }
1434
1435 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1436 {
1437         int entry = sizeof(u64); /* value */
1438         int size = 0;
1439         int nr = 1;
1440
1441         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1442                 size += sizeof(u64);
1443
1444         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1445                 size += sizeof(u64);
1446
1447         if (event->attr.read_format & PERF_FORMAT_ID)
1448                 entry += sizeof(u64);
1449
1450         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1451                 nr += nr_siblings;
1452                 size += sizeof(u64);
1453         }
1454
1455         size += entry * nr;
1456         event->read_size = size;
1457 }
1458
1459 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1460 {
1461         struct perf_sample_data *data;
1462         u16 size = 0;
1463
1464         if (sample_type & PERF_SAMPLE_IP)
1465                 size += sizeof(data->ip);
1466
1467         if (sample_type & PERF_SAMPLE_ADDR)
1468                 size += sizeof(data->addr);
1469
1470         if (sample_type & PERF_SAMPLE_PERIOD)
1471                 size += sizeof(data->period);
1472
1473         if (sample_type & PERF_SAMPLE_WEIGHT)
1474                 size += sizeof(data->weight);
1475
1476         if (sample_type & PERF_SAMPLE_READ)
1477                 size += event->read_size;
1478
1479         if (sample_type & PERF_SAMPLE_DATA_SRC)
1480                 size += sizeof(data->data_src.val);
1481
1482         if (sample_type & PERF_SAMPLE_TRANSACTION)
1483                 size += sizeof(data->txn);
1484
1485         event->header_size = size;
1486 }
1487
1488 /*
1489  * Called at perf_event creation and when events are attached/detached from a
1490  * group.
1491  */
1492 static void perf_event__header_size(struct perf_event *event)
1493 {
1494         __perf_event_read_size(event,
1495                                event->group_leader->nr_siblings);
1496         __perf_event_header_size(event, event->attr.sample_type);
1497 }
1498
1499 static void perf_event__id_header_size(struct perf_event *event)
1500 {
1501         struct perf_sample_data *data;
1502         u64 sample_type = event->attr.sample_type;
1503         u16 size = 0;
1504
1505         if (sample_type & PERF_SAMPLE_TID)
1506                 size += sizeof(data->tid_entry);
1507
1508         if (sample_type & PERF_SAMPLE_TIME)
1509                 size += sizeof(data->time);
1510
1511         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1512                 size += sizeof(data->id);
1513
1514         if (sample_type & PERF_SAMPLE_ID)
1515                 size += sizeof(data->id);
1516
1517         if (sample_type & PERF_SAMPLE_STREAM_ID)
1518                 size += sizeof(data->stream_id);
1519
1520         if (sample_type & PERF_SAMPLE_CPU)
1521                 size += sizeof(data->cpu_entry);
1522
1523         event->id_header_size = size;
1524 }
1525
1526 static bool perf_event_validate_size(struct perf_event *event)
1527 {
1528         /*
1529          * The values computed here will be over-written when we actually
1530          * attach the event.
1531          */
1532         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1533         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1534         perf_event__id_header_size(event);
1535
1536         /*
1537          * Sum the lot; should not exceed the 64k limit we have on records.
1538          * Conservative limit to allow for callchains and other variable fields.
1539          */
1540         if (event->read_size + event->header_size +
1541             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1542                 return false;
1543
1544         return true;
1545 }
1546
1547 static void perf_group_attach(struct perf_event *event)
1548 {
1549         struct perf_event *group_leader = event->group_leader, *pos;
1550
1551         /*
1552          * We can have double attach due to group movement in perf_event_open.
1553          */
1554         if (event->attach_state & PERF_ATTACH_GROUP)
1555                 return;
1556
1557         event->attach_state |= PERF_ATTACH_GROUP;
1558
1559         if (group_leader == event)
1560                 return;
1561
1562         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1563
1564         if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1565                         !is_software_event(event))
1566                 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1567
1568         list_add_tail(&event->group_entry, &group_leader->sibling_list);
1569         group_leader->nr_siblings++;
1570
1571         perf_event__header_size(group_leader);
1572
1573         list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1574                 perf_event__header_size(pos);
1575 }
1576
1577 /*
1578  * Remove a event from the lists for its context.
1579  * Must be called with ctx->mutex and ctx->lock held.
1580  */
1581 static void
1582 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1583 {
1584         struct perf_cpu_context *cpuctx;
1585
1586         WARN_ON_ONCE(event->ctx != ctx);
1587         lockdep_assert_held(&ctx->lock);
1588
1589         /*
1590          * We can have double detach due to exit/hot-unplug + close.
1591          */
1592         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1593                 return;
1594
1595         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1596
1597         if (is_cgroup_event(event)) {
1598                 ctx->nr_cgroups--;
1599                 /*
1600                  * Because cgroup events are always per-cpu events, this will
1601                  * always be called from the right CPU.
1602                  */
1603                 cpuctx = __get_cpu_context(ctx);
1604                 /*
1605                  * If there are no more cgroup events then clear cgrp to avoid
1606                  * stale pointer in update_cgrp_time_from_cpuctx().
1607                  */
1608                 if (!ctx->nr_cgroups)
1609                         cpuctx->cgrp = NULL;
1610         }
1611
1612         ctx->nr_events--;
1613         if (event->attr.inherit_stat)
1614                 ctx->nr_stat--;
1615
1616         list_del_rcu(&event->event_entry);
1617
1618         if (event->group_leader == event)
1619                 list_del_init(&event->group_entry);
1620
1621         update_group_times(event);
1622
1623         /*
1624          * If event was in error state, then keep it
1625          * that way, otherwise bogus counts will be
1626          * returned on read(). The only way to get out
1627          * of error state is by explicit re-enabling
1628          * of the event
1629          */
1630         if (event->state > PERF_EVENT_STATE_OFF)
1631                 event->state = PERF_EVENT_STATE_OFF;
1632
1633         ctx->generation++;
1634 }
1635
1636 static void perf_group_detach(struct perf_event *event)
1637 {
1638         struct perf_event *sibling, *tmp;
1639         struct list_head *list = NULL;
1640
1641         /*
1642          * We can have double detach due to exit/hot-unplug + close.
1643          */
1644         if (!(event->attach_state & PERF_ATTACH_GROUP))
1645                 return;
1646
1647         event->attach_state &= ~PERF_ATTACH_GROUP;
1648
1649         /*
1650          * If this is a sibling, remove it from its group.
1651          */
1652         if (event->group_leader != event) {
1653                 list_del_init(&event->group_entry);
1654                 event->group_leader->nr_siblings--;
1655                 goto out;
1656         }
1657
1658         if (!list_empty(&event->group_entry))
1659                 list = &event->group_entry;
1660
1661         /*
1662          * If this was a group event with sibling events then
1663          * upgrade the siblings to singleton events by adding them
1664          * to whatever list we are on.
1665          */
1666         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1667                 if (list)
1668                         list_move_tail(&sibling->group_entry, list);
1669                 sibling->group_leader = sibling;
1670
1671                 /* Inherit group flags from the previous leader */
1672                 sibling->group_flags = event->group_flags;
1673
1674                 WARN_ON_ONCE(sibling->ctx != event->ctx);
1675         }
1676
1677 out:
1678         perf_event__header_size(event->group_leader);
1679
1680         list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1681                 perf_event__header_size(tmp);
1682 }
1683
1684 static bool is_orphaned_event(struct perf_event *event)
1685 {
1686         return event->state == PERF_EVENT_STATE_DEAD;
1687 }
1688
1689 static inline int pmu_filter_match(struct perf_event *event)
1690 {
1691         struct pmu *pmu = event->pmu;
1692         return pmu->filter_match ? pmu->filter_match(event) : 1;
1693 }
1694
1695 static inline int
1696 event_filter_match(struct perf_event *event)
1697 {
1698         return (event->cpu == -1 || event->cpu == smp_processor_id())
1699             && perf_cgroup_match(event) && pmu_filter_match(event);
1700 }
1701
1702 static void
1703 event_sched_out(struct perf_event *event,
1704                   struct perf_cpu_context *cpuctx,
1705                   struct perf_event_context *ctx)
1706 {
1707         u64 tstamp = perf_event_time(event);
1708         u64 delta;
1709
1710         WARN_ON_ONCE(event->ctx != ctx);
1711         lockdep_assert_held(&ctx->lock);
1712
1713         /*
1714          * An event which could not be activated because of
1715          * filter mismatch still needs to have its timings
1716          * maintained, otherwise bogus information is return
1717          * via read() for time_enabled, time_running:
1718          */
1719         if (event->state == PERF_EVENT_STATE_INACTIVE
1720             && !event_filter_match(event)) {
1721                 delta = tstamp - event->tstamp_stopped;
1722                 event->tstamp_running += delta;
1723                 event->tstamp_stopped = tstamp;
1724         }
1725
1726         if (event->state != PERF_EVENT_STATE_ACTIVE)
1727                 return;
1728
1729         perf_pmu_disable(event->pmu);
1730
1731         event->tstamp_stopped = tstamp;
1732         event->pmu->del(event, 0);
1733         event->oncpu = -1;
1734         event->state = PERF_EVENT_STATE_INACTIVE;
1735         if (event->pending_disable) {
1736                 event->pending_disable = 0;
1737                 event->state = PERF_EVENT_STATE_OFF;
1738         }
1739
1740         if (!is_software_event(event))
1741                 cpuctx->active_oncpu--;
1742         if (!--ctx->nr_active)
1743                 perf_event_ctx_deactivate(ctx);
1744         if (event->attr.freq && event->attr.sample_freq)
1745                 ctx->nr_freq--;
1746         if (event->attr.exclusive || !cpuctx->active_oncpu)
1747                 cpuctx->exclusive = 0;
1748
1749         perf_pmu_enable(event->pmu);
1750 }
1751
1752 static void
1753 group_sched_out(struct perf_event *group_event,
1754                 struct perf_cpu_context *cpuctx,
1755                 struct perf_event_context *ctx)
1756 {
1757         struct perf_event *event;
1758         int state = group_event->state;
1759
1760         event_sched_out(group_event, cpuctx, ctx);
1761
1762         /*
1763          * Schedule out siblings (if any):
1764          */
1765         list_for_each_entry(event, &group_event->sibling_list, group_entry)
1766                 event_sched_out(event, cpuctx, ctx);
1767
1768         if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1769                 cpuctx->exclusive = 0;
1770 }
1771
1772 #define DETACH_GROUP    0x01UL
1773
1774 /*
1775  * Cross CPU call to remove a performance event
1776  *
1777  * We disable the event on the hardware level first. After that we
1778  * remove it from the context list.
1779  */
1780 static void
1781 __perf_remove_from_context(struct perf_event *event,
1782                            struct perf_cpu_context *cpuctx,
1783                            struct perf_event_context *ctx,
1784                            void *info)
1785 {
1786         unsigned long flags = (unsigned long)info;
1787
1788         event_sched_out(event, cpuctx, ctx);
1789         if (flags & DETACH_GROUP)
1790                 perf_group_detach(event);
1791         list_del_event(event, ctx);
1792
1793         if (!ctx->nr_events && ctx->is_active) {
1794                 ctx->is_active = 0;
1795                 if (ctx->task) {
1796                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1797                         cpuctx->task_ctx = NULL;
1798                 }
1799         }
1800 }
1801
1802 /*
1803  * Remove the event from a task's (or a CPU's) list of events.
1804  *
1805  * If event->ctx is a cloned context, callers must make sure that
1806  * every task struct that event->ctx->task could possibly point to
1807  * remains valid.  This is OK when called from perf_release since
1808  * that only calls us on the top-level context, which can't be a clone.
1809  * When called from perf_event_exit_task, it's OK because the
1810  * context has been detached from its task.
1811  */
1812 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1813 {
1814         lockdep_assert_held(&event->ctx->mutex);
1815
1816         event_function_call(event, __perf_remove_from_context, (void *)flags);
1817 }
1818
1819 /*
1820  * Cross CPU call to disable a performance event
1821  */
1822 static void __perf_event_disable(struct perf_event *event,
1823                                  struct perf_cpu_context *cpuctx,
1824                                  struct perf_event_context *ctx,
1825                                  void *info)
1826 {
1827         if (event->state < PERF_EVENT_STATE_INACTIVE)
1828                 return;
1829
1830         update_context_time(ctx);
1831         update_cgrp_time_from_event(event);
1832         update_group_times(event);
1833         if (event == event->group_leader)
1834                 group_sched_out(event, cpuctx, ctx);
1835         else
1836                 event_sched_out(event, cpuctx, ctx);
1837         event->state = PERF_EVENT_STATE_OFF;
1838 }
1839
1840 /*
1841  * Disable a event.
1842  *
1843  * If event->ctx is a cloned context, callers must make sure that
1844  * every task struct that event->ctx->task could possibly point to
1845  * remains valid.  This condition is satisifed when called through
1846  * perf_event_for_each_child or perf_event_for_each because they
1847  * hold the top-level event's child_mutex, so any descendant that
1848  * goes to exit will block in perf_event_exit_event().
1849  *
1850  * When called from perf_pending_event it's OK because event->ctx
1851  * is the current context on this CPU and preemption is disabled,
1852  * hence we can't get into perf_event_task_sched_out for this context.
1853  */
1854 static void _perf_event_disable(struct perf_event *event)
1855 {
1856         struct perf_event_context *ctx = event->ctx;
1857
1858         raw_spin_lock_irq(&ctx->lock);
1859         if (event->state <= PERF_EVENT_STATE_OFF) {
1860                 raw_spin_unlock_irq(&ctx->lock);
1861                 return;
1862         }
1863         raw_spin_unlock_irq(&ctx->lock);
1864
1865         event_function_call(event, __perf_event_disable, NULL);
1866 }
1867
1868 void perf_event_disable_local(struct perf_event *event)
1869 {
1870         event_function_local(event, __perf_event_disable, NULL);
1871 }
1872
1873 /*
1874  * Strictly speaking kernel users cannot create groups and therefore this
1875  * interface does not need the perf_event_ctx_lock() magic.
1876  */
1877 void perf_event_disable(struct perf_event *event)
1878 {
1879         struct perf_event_context *ctx;
1880
1881         ctx = perf_event_ctx_lock(event);
1882         _perf_event_disable(event);
1883         perf_event_ctx_unlock(event, ctx);
1884 }
1885 EXPORT_SYMBOL_GPL(perf_event_disable);
1886
1887 static void perf_set_shadow_time(struct perf_event *event,
1888                                  struct perf_event_context *ctx,
1889                                  u64 tstamp)
1890 {
1891         /*
1892          * use the correct time source for the time snapshot
1893          *
1894          * We could get by without this by leveraging the
1895          * fact that to get to this function, the caller
1896          * has most likely already called update_context_time()
1897          * and update_cgrp_time_xx() and thus both timestamp
1898          * are identical (or very close). Given that tstamp is,
1899          * already adjusted for cgroup, we could say that:
1900          *    tstamp - ctx->timestamp
1901          * is equivalent to
1902          *    tstamp - cgrp->timestamp.
1903          *
1904          * Then, in perf_output_read(), the calculation would
1905          * work with no changes because:
1906          * - event is guaranteed scheduled in
1907          * - no scheduled out in between
1908          * - thus the timestamp would be the same
1909          *
1910          * But this is a bit hairy.
1911          *
1912          * So instead, we have an explicit cgroup call to remain
1913          * within the time time source all along. We believe it
1914          * is cleaner and simpler to understand.
1915          */
1916         if (is_cgroup_event(event))
1917                 perf_cgroup_set_shadow_time(event, tstamp);
1918         else
1919                 event->shadow_ctx_time = tstamp - ctx->timestamp;
1920 }
1921
1922 #define MAX_INTERRUPTS (~0ULL)
1923
1924 static void perf_log_throttle(struct perf_event *event, int enable);
1925 static void perf_log_itrace_start(struct perf_event *event);
1926
1927 static int
1928 event_sched_in(struct perf_event *event,
1929                  struct perf_cpu_context *cpuctx,
1930                  struct perf_event_context *ctx)
1931 {
1932         u64 tstamp = perf_event_time(event);
1933         int ret = 0;
1934
1935         lockdep_assert_held(&ctx->lock);
1936
1937         if (event->state <= PERF_EVENT_STATE_OFF)
1938                 return 0;
1939
1940         WRITE_ONCE(event->oncpu, smp_processor_id());
1941         /*
1942          * Order event::oncpu write to happen before the ACTIVE state
1943          * is visible.
1944          */
1945         smp_wmb();
1946         WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
1947
1948         /*
1949          * Unthrottle events, since we scheduled we might have missed several
1950          * ticks already, also for a heavily scheduling task there is little
1951          * guarantee it'll get a tick in a timely manner.
1952          */
1953         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1954                 perf_log_throttle(event, 1);
1955                 event->hw.interrupts = 0;
1956         }
1957
1958         /*
1959          * The new state must be visible before we turn it on in the hardware:
1960          */
1961         smp_wmb();
1962
1963         perf_pmu_disable(event->pmu);
1964
1965         perf_set_shadow_time(event, ctx, tstamp);
1966
1967         perf_log_itrace_start(event);
1968
1969         if (event->pmu->add(event, PERF_EF_START)) {
1970                 event->state = PERF_EVENT_STATE_INACTIVE;
1971                 event->oncpu = -1;
1972                 ret = -EAGAIN;
1973                 goto out;
1974         }
1975
1976         event->tstamp_running += tstamp - event->tstamp_stopped;
1977
1978         if (!is_software_event(event))
1979                 cpuctx->active_oncpu++;
1980         if (!ctx->nr_active++)
1981                 perf_event_ctx_activate(ctx);
1982         if (event->attr.freq && event->attr.sample_freq)
1983                 ctx->nr_freq++;
1984
1985         if (event->attr.exclusive)
1986                 cpuctx->exclusive = 1;
1987
1988 out:
1989         perf_pmu_enable(event->pmu);
1990
1991         return ret;
1992 }
1993
1994 static int
1995 group_sched_in(struct perf_event *group_event,
1996                struct perf_cpu_context *cpuctx,
1997                struct perf_event_context *ctx)
1998 {
1999         struct perf_event *event, *partial_group = NULL;
2000         struct pmu *pmu = ctx->pmu;
2001         u64 now = ctx->time;
2002         bool simulate = false;
2003
2004         if (group_event->state == PERF_EVENT_STATE_OFF)
2005                 return 0;
2006
2007         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2008
2009         if (event_sched_in(group_event, cpuctx, ctx)) {
2010                 pmu->cancel_txn(pmu);
2011                 perf_mux_hrtimer_restart(cpuctx);
2012                 return -EAGAIN;
2013         }
2014
2015         /*
2016          * Schedule in siblings as one group (if any):
2017          */
2018         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2019                 if (event_sched_in(event, cpuctx, ctx)) {
2020                         partial_group = event;
2021                         goto group_error;
2022                 }
2023         }
2024
2025         if (!pmu->commit_txn(pmu))
2026                 return 0;
2027
2028 group_error:
2029         /*
2030          * Groups can be scheduled in as one unit only, so undo any
2031          * partial group before returning:
2032          * The events up to the failed event are scheduled out normally,
2033          * tstamp_stopped will be updated.
2034          *
2035          * The failed events and the remaining siblings need to have
2036          * their timings updated as if they had gone thru event_sched_in()
2037          * and event_sched_out(). This is required to get consistent timings
2038          * across the group. This also takes care of the case where the group
2039          * could never be scheduled by ensuring tstamp_stopped is set to mark
2040          * the time the event was actually stopped, such that time delta
2041          * calculation in update_event_times() is correct.
2042          */
2043         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2044                 if (event == partial_group)
2045                         simulate = true;
2046
2047                 if (simulate) {
2048                         event->tstamp_running += now - event->tstamp_stopped;
2049                         event->tstamp_stopped = now;
2050                 } else {
2051                         event_sched_out(event, cpuctx, ctx);
2052                 }
2053         }
2054         event_sched_out(group_event, cpuctx, ctx);
2055
2056         pmu->cancel_txn(pmu);
2057
2058         perf_mux_hrtimer_restart(cpuctx);
2059
2060         return -EAGAIN;
2061 }
2062
2063 /*
2064  * Work out whether we can put this event group on the CPU now.
2065  */
2066 static int group_can_go_on(struct perf_event *event,
2067                            struct perf_cpu_context *cpuctx,
2068                            int can_add_hw)
2069 {
2070         /*
2071          * Groups consisting entirely of software events can always go on.
2072          */
2073         if (event->group_flags & PERF_GROUP_SOFTWARE)
2074                 return 1;
2075         /*
2076          * If an exclusive group is already on, no other hardware
2077          * events can go on.
2078          */
2079         if (cpuctx->exclusive)
2080                 return 0;
2081         /*
2082          * If this group is exclusive and there are already
2083          * events on the CPU, it can't go on.
2084          */
2085         if (event->attr.exclusive && cpuctx->active_oncpu)
2086                 return 0;
2087         /*
2088          * Otherwise, try to add it if all previous groups were able
2089          * to go on.
2090          */
2091         return can_add_hw;
2092 }
2093
2094 static void add_event_to_ctx(struct perf_event *event,
2095                                struct perf_event_context *ctx)
2096 {
2097         u64 tstamp = perf_event_time(event);
2098
2099         list_add_event(event, ctx);
2100         perf_group_attach(event);
2101         event->tstamp_enabled = tstamp;
2102         event->tstamp_running = tstamp;
2103         event->tstamp_stopped = tstamp;
2104 }
2105
2106 static void ctx_sched_out(struct perf_event_context *ctx,
2107                           struct perf_cpu_context *cpuctx,
2108                           enum event_type_t event_type);
2109 static void
2110 ctx_sched_in(struct perf_event_context *ctx,
2111              struct perf_cpu_context *cpuctx,
2112              enum event_type_t event_type,
2113              struct task_struct *task);
2114
2115 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2116                                struct perf_event_context *ctx)
2117 {
2118         if (!cpuctx->task_ctx)
2119                 return;
2120
2121         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2122                 return;
2123
2124         ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2125 }
2126
2127 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2128                                 struct perf_event_context *ctx,
2129                                 struct task_struct *task)
2130 {
2131         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2132         if (ctx)
2133                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2134         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2135         if (ctx)
2136                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2137 }
2138
2139 static void ctx_resched(struct perf_cpu_context *cpuctx,
2140                         struct perf_event_context *task_ctx)
2141 {
2142         perf_pmu_disable(cpuctx->ctx.pmu);
2143         if (task_ctx)
2144                 task_ctx_sched_out(cpuctx, task_ctx);
2145         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2146         perf_event_sched_in(cpuctx, task_ctx, current);
2147         perf_pmu_enable(cpuctx->ctx.pmu);
2148 }
2149
2150 /*
2151  * Cross CPU call to install and enable a performance event
2152  *
2153  * Very similar to remote_function() + event_function() but cannot assume that
2154  * things like ctx->is_active and cpuctx->task_ctx are set.
2155  */
2156 static int  __perf_install_in_context(void *info)
2157 {
2158         struct perf_event *event = info;
2159         struct perf_event_context *ctx = event->ctx;
2160         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2161         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2162         bool activate = true;
2163         int ret = 0;
2164
2165         raw_spin_lock(&cpuctx->ctx.lock);
2166         if (ctx->task) {
2167                 raw_spin_lock(&ctx->lock);
2168                 task_ctx = ctx;
2169
2170                 /* If we're on the wrong CPU, try again */
2171                 if (task_cpu(ctx->task) != smp_processor_id()) {
2172                         ret = -ESRCH;
2173                         goto unlock;
2174                 }
2175
2176                 /*
2177                  * If we're on the right CPU, see if the task we target is
2178                  * current, if not we don't have to activate the ctx, a future
2179                  * context switch will do that for us.
2180                  */
2181                 if (ctx->task != current)
2182                         activate = false;
2183                 else
2184                         WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2185
2186         } else if (task_ctx) {
2187                 raw_spin_lock(&task_ctx->lock);
2188         }
2189
2190         if (activate) {
2191                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2192                 add_event_to_ctx(event, ctx);
2193                 ctx_resched(cpuctx, task_ctx);
2194         } else {
2195                 add_event_to_ctx(event, ctx);
2196         }
2197
2198 unlock:
2199         perf_ctx_unlock(cpuctx, task_ctx);
2200
2201         return ret;
2202 }
2203
2204 /*
2205  * Attach a performance event to a context.
2206  *
2207  * Very similar to event_function_call, see comment there.
2208  */
2209 static void
2210 perf_install_in_context(struct perf_event_context *ctx,
2211                         struct perf_event *event,
2212                         int cpu)
2213 {
2214         struct task_struct *task = READ_ONCE(ctx->task);
2215
2216         lockdep_assert_held(&ctx->mutex);
2217
2218         event->ctx = ctx;
2219         if (event->cpu != -1)
2220                 event->cpu = cpu;
2221
2222         if (!task) {
2223                 cpu_function_call(cpu, __perf_install_in_context, event);
2224                 return;
2225         }
2226
2227         /*
2228          * Should not happen, we validate the ctx is still alive before calling.
2229          */
2230         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2231                 return;
2232
2233         /*
2234          * Installing events is tricky because we cannot rely on ctx->is_active
2235          * to be set in case this is the nr_events 0 -> 1 transition.
2236          */
2237 again:
2238         /*
2239          * Cannot use task_function_call() because we need to run on the task's
2240          * CPU regardless of whether its current or not.
2241          */
2242         if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event))
2243                 return;
2244
2245         raw_spin_lock_irq(&ctx->lock);
2246         task = ctx->task;
2247         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2248                 /*
2249                  * Cannot happen because we already checked above (which also
2250                  * cannot happen), and we hold ctx->mutex, which serializes us
2251                  * against perf_event_exit_task_context().
2252                  */
2253                 raw_spin_unlock_irq(&ctx->lock);
2254                 return;
2255         }
2256         raw_spin_unlock_irq(&ctx->lock);
2257         /*
2258          * Since !ctx->is_active doesn't mean anything, we must IPI
2259          * unconditionally.
2260          */
2261         goto again;
2262 }
2263
2264 /*
2265  * Put a event into inactive state and update time fields.
2266  * Enabling the leader of a group effectively enables all
2267  * the group members that aren't explicitly disabled, so we
2268  * have to update their ->tstamp_enabled also.
2269  * Note: this works for group members as well as group leaders
2270  * since the non-leader members' sibling_lists will be empty.
2271  */
2272 static void __perf_event_mark_enabled(struct perf_event *event)
2273 {
2274         struct perf_event *sub;
2275         u64 tstamp = perf_event_time(event);
2276
2277         event->state = PERF_EVENT_STATE_INACTIVE;
2278         event->tstamp_enabled = tstamp - event->total_time_enabled;
2279         list_for_each_entry(sub, &event->sibling_list, group_entry) {
2280                 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2281                         sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2282         }
2283 }
2284
2285 /*
2286  * Cross CPU call to enable a performance event
2287  */
2288 static void __perf_event_enable(struct perf_event *event,
2289                                 struct perf_cpu_context *cpuctx,
2290                                 struct perf_event_context *ctx,
2291                                 void *info)
2292 {
2293         struct perf_event *leader = event->group_leader;
2294         struct perf_event_context *task_ctx;
2295
2296         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2297             event->state <= PERF_EVENT_STATE_ERROR)
2298                 return;
2299
2300         if (ctx->is_active)
2301                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2302
2303         __perf_event_mark_enabled(event);
2304
2305         if (!ctx->is_active)
2306                 return;
2307
2308         if (!event_filter_match(event)) {
2309                 if (is_cgroup_event(event))
2310                         perf_cgroup_defer_enabled(event);
2311                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2312                 return;
2313         }
2314
2315         /*
2316          * If the event is in a group and isn't the group leader,
2317          * then don't put it on unless the group is on.
2318          */
2319         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2320                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2321                 return;
2322         }
2323
2324         task_ctx = cpuctx->task_ctx;
2325         if (ctx->task)
2326                 WARN_ON_ONCE(task_ctx != ctx);
2327
2328         ctx_resched(cpuctx, task_ctx);
2329 }
2330
2331 /*
2332  * Enable a event.
2333  *
2334  * If event->ctx is a cloned context, callers must make sure that
2335  * every task struct that event->ctx->task could possibly point to
2336  * remains valid.  This condition is satisfied when called through
2337  * perf_event_for_each_child or perf_event_for_each as described
2338  * for perf_event_disable.
2339  */
2340 static void _perf_event_enable(struct perf_event *event)
2341 {
2342         struct perf_event_context *ctx = event->ctx;
2343
2344         raw_spin_lock_irq(&ctx->lock);
2345         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2346             event->state <  PERF_EVENT_STATE_ERROR) {
2347                 raw_spin_unlock_irq(&ctx->lock);
2348                 return;
2349         }
2350
2351         /*
2352          * If the event is in error state, clear that first.
2353          *
2354          * That way, if we see the event in error state below, we know that it
2355          * has gone back into error state, as distinct from the task having
2356          * been scheduled away before the cross-call arrived.
2357          */
2358         if (event->state == PERF_EVENT_STATE_ERROR)
2359                 event->state = PERF_EVENT_STATE_OFF;
2360         raw_spin_unlock_irq(&ctx->lock);
2361
2362         event_function_call(event, __perf_event_enable, NULL);
2363 }
2364
2365 /*
2366  * See perf_event_disable();
2367  */
2368 void perf_event_enable(struct perf_event *event)
2369 {
2370         struct perf_event_context *ctx;
2371
2372         ctx = perf_event_ctx_lock(event);
2373         _perf_event_enable(event);
2374         perf_event_ctx_unlock(event, ctx);
2375 }
2376 EXPORT_SYMBOL_GPL(perf_event_enable);
2377
2378 struct stop_event_data {
2379         struct perf_event       *event;
2380         unsigned int            restart;
2381 };
2382
2383 static int __perf_event_stop(void *info)
2384 {
2385         struct stop_event_data *sd = info;
2386         struct perf_event *event = sd->event;
2387
2388         /* if it's already INACTIVE, do nothing */
2389         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2390                 return 0;
2391
2392         /* matches smp_wmb() in event_sched_in() */
2393         smp_rmb();
2394
2395         /*
2396          * There is a window with interrupts enabled before we get here,
2397          * so we need to check again lest we try to stop another CPU's event.
2398          */
2399         if (READ_ONCE(event->oncpu) != smp_processor_id())
2400                 return -EAGAIN;
2401
2402         event->pmu->stop(event, PERF_EF_UPDATE);
2403
2404         /*
2405          * May race with the actual stop (through perf_pmu_output_stop()),
2406          * but it is only used for events with AUX ring buffer, and such
2407          * events will refuse to restart because of rb::aux_mmap_count==0,
2408          * see comments in perf_aux_output_begin().
2409          *
2410          * Since this is happening on a event-local CPU, no trace is lost
2411          * while restarting.
2412          */
2413         if (sd->restart)
2414                 event->pmu->start(event, PERF_EF_START);
2415
2416         return 0;
2417 }
2418
2419 static int perf_event_restart(struct perf_event *event)
2420 {
2421         struct stop_event_data sd = {
2422                 .event          = event,
2423                 .restart        = 1,
2424         };
2425         int ret = 0;
2426
2427         do {
2428                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2429                         return 0;
2430
2431                 /* matches smp_wmb() in event_sched_in() */
2432                 smp_rmb();
2433
2434                 /*
2435                  * We only want to restart ACTIVE events, so if the event goes
2436                  * inactive here (event->oncpu==-1), there's nothing more to do;
2437                  * fall through with ret==-ENXIO.
2438                  */
2439                 ret = cpu_function_call(READ_ONCE(event->oncpu),
2440                                         __perf_event_stop, &sd);
2441         } while (ret == -EAGAIN);
2442
2443         return ret;
2444 }
2445
2446 /*
2447  * In order to contain the amount of racy and tricky in the address filter
2448  * configuration management, it is a two part process:
2449  *
2450  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2451  *      we update the addresses of corresponding vmas in
2452  *      event::addr_filters_offs array and bump the event::addr_filters_gen;
2453  * (p2) when an event is scheduled in (pmu::add), it calls
2454  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2455  *      if the generation has changed since the previous call.
2456  *
2457  * If (p1) happens while the event is active, we restart it to force (p2).
2458  *
2459  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2460  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2461  *     ioctl;
2462  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2463  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2464  *     for reading;
2465  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2466  *     of exec.
2467  */
2468 void perf_event_addr_filters_sync(struct perf_event *event)
2469 {
2470         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2471
2472         if (!has_addr_filter(event))
2473                 return;
2474
2475         raw_spin_lock(&ifh->lock);
2476         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2477                 event->pmu->addr_filters_sync(event);
2478                 event->hw.addr_filters_gen = event->addr_filters_gen;
2479         }
2480         raw_spin_unlock(&ifh->lock);
2481 }
2482 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2483
2484 static int _perf_event_refresh(struct perf_event *event, int refresh)
2485 {
2486         /*
2487          * not supported on inherited events
2488          */
2489         if (event->attr.inherit || !is_sampling_event(event))
2490                 return -EINVAL;
2491
2492         atomic_add(refresh, &event->event_limit);
2493         _perf_event_enable(event);
2494
2495         return 0;
2496 }
2497
2498 /*
2499  * See perf_event_disable()
2500  */
2501 int perf_event_refresh(struct perf_event *event, int refresh)
2502 {
2503         struct perf_event_context *ctx;
2504         int ret;
2505
2506         ctx = perf_event_ctx_lock(event);
2507         ret = _perf_event_refresh(event, refresh);
2508         perf_event_ctx_unlock(event, ctx);
2509
2510         return ret;
2511 }
2512 EXPORT_SYMBOL_GPL(perf_event_refresh);
2513
2514 static void ctx_sched_out(struct perf_event_context *ctx,
2515                           struct perf_cpu_context *cpuctx,
2516                           enum event_type_t event_type)
2517 {
2518         int is_active = ctx->is_active;
2519         struct perf_event *event;
2520
2521         lockdep_assert_held(&ctx->lock);
2522
2523         if (likely(!ctx->nr_events)) {
2524                 /*
2525                  * See __perf_remove_from_context().
2526                  */
2527                 WARN_ON_ONCE(ctx->is_active);
2528                 if (ctx->task)
2529                         WARN_ON_ONCE(cpuctx->task_ctx);
2530                 return;
2531         }
2532
2533         ctx->is_active &= ~event_type;
2534         if (!(ctx->is_active & EVENT_ALL))
2535                 ctx->is_active = 0;
2536
2537         if (ctx->task) {
2538                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2539                 if (!ctx->is_active)
2540                         cpuctx->task_ctx = NULL;
2541         }
2542
2543         /*
2544          * Always update time if it was set; not only when it changes.
2545          * Otherwise we can 'forget' to update time for any but the last
2546          * context we sched out. For example:
2547          *
2548          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2549          *   ctx_sched_out(.event_type = EVENT_PINNED)
2550          *
2551          * would only update time for the pinned events.
2552          */
2553         if (is_active & EVENT_TIME) {
2554                 /* update (and stop) ctx time */
2555                 update_context_time(ctx);
2556                 update_cgrp_time_from_cpuctx(cpuctx);
2557         }
2558
2559         is_active ^= ctx->is_active; /* changed bits */
2560
2561         if (!ctx->nr_active || !(is_active & EVENT_ALL))
2562                 return;
2563
2564         perf_pmu_disable(ctx->pmu);
2565         if (is_active & EVENT_PINNED) {
2566                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2567                         group_sched_out(event, cpuctx, ctx);
2568         }
2569
2570         if (is_active & EVENT_FLEXIBLE) {
2571                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2572                         group_sched_out(event, cpuctx, ctx);
2573         }
2574         perf_pmu_enable(ctx->pmu);
2575 }
2576
2577 /*
2578  * Test whether two contexts are equivalent, i.e. whether they have both been
2579  * cloned from the same version of the same context.
2580  *
2581  * Equivalence is measured using a generation number in the context that is
2582  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2583  * and list_del_event().
2584  */
2585 static int context_equiv(struct perf_event_context *ctx1,
2586                          struct perf_event_context *ctx2)
2587 {
2588         lockdep_assert_held(&ctx1->lock);
2589         lockdep_assert_held(&ctx2->lock);
2590
2591         /* Pinning disables the swap optimization */
2592         if (ctx1->pin_count || ctx2->pin_count)
2593                 return 0;
2594
2595         /* If ctx1 is the parent of ctx2 */
2596         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2597                 return 1;
2598
2599         /* If ctx2 is the parent of ctx1 */
2600         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2601                 return 1;
2602
2603         /*
2604          * If ctx1 and ctx2 have the same parent; we flatten the parent
2605          * hierarchy, see perf_event_init_context().
2606          */
2607         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2608                         ctx1->parent_gen == ctx2->parent_gen)
2609                 return 1;
2610
2611         /* Unmatched */
2612         return 0;
2613 }
2614
2615 static void __perf_event_sync_stat(struct perf_event *event,
2616                                      struct perf_event *next_event)
2617 {
2618         u64 value;
2619
2620         if (!event->attr.inherit_stat)
2621                 return;
2622
2623         /*
2624          * Update the event value, we cannot use perf_event_read()
2625          * because we're in the middle of a context switch and have IRQs
2626          * disabled, which upsets smp_call_function_single(), however
2627          * we know the event must be on the current CPU, therefore we
2628          * don't need to use it.
2629          */
2630         switch (event->state) {
2631         case PERF_EVENT_STATE_ACTIVE:
2632                 event->pmu->read(event);
2633                 /* fall-through */
2634
2635         case PERF_EVENT_STATE_INACTIVE:
2636                 update_event_times(event);
2637                 break;
2638
2639         default:
2640                 break;
2641         }
2642
2643         /*
2644          * In order to keep per-task stats reliable we need to flip the event
2645          * values when we flip the contexts.
2646          */
2647         value = local64_read(&next_event->count);
2648         value = local64_xchg(&event->count, value);
2649         local64_set(&next_event->count, value);
2650
2651         swap(event->total_time_enabled, next_event->total_time_enabled);
2652         swap(event->total_time_running, next_event->total_time_running);
2653
2654         /*
2655          * Since we swizzled the values, update the user visible data too.
2656          */
2657         perf_event_update_userpage(event);
2658         perf_event_update_userpage(next_event);
2659 }
2660
2661 static void perf_event_sync_stat(struct perf_event_context *ctx,
2662                                    struct perf_event_context *next_ctx)
2663 {
2664         struct perf_event *event, *next_event;
2665
2666         if (!ctx->nr_stat)
2667                 return;
2668
2669         update_context_time(ctx);
2670
2671         event = list_first_entry(&ctx->event_list,
2672                                    struct perf_event, event_entry);
2673
2674         next_event = list_first_entry(&next_ctx->event_list,
2675                                         struct perf_event, event_entry);
2676
2677         while (&event->event_entry != &ctx->event_list &&
2678                &next_event->event_entry != &next_ctx->event_list) {
2679
2680                 __perf_event_sync_stat(event, next_event);
2681
2682                 event = list_next_entry(event, event_entry);
2683                 next_event = list_next_entry(next_event, event_entry);
2684         }
2685 }
2686
2687 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2688                                          struct task_struct *next)
2689 {
2690         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2691         struct perf_event_context *next_ctx;
2692         struct perf_event_context *parent, *next_parent;
2693         struct perf_cpu_context *cpuctx;
2694         int do_switch = 1;
2695
2696         if (likely(!ctx))
2697                 return;
2698
2699         cpuctx = __get_cpu_context(ctx);
2700         if (!cpuctx->task_ctx)
2701                 return;
2702
2703         rcu_read_lock();
2704         next_ctx = next->perf_event_ctxp[ctxn];
2705         if (!next_ctx)
2706                 goto unlock;
2707
2708         parent = rcu_dereference(ctx->parent_ctx);
2709         next_parent = rcu_dereference(next_ctx->parent_ctx);
2710
2711         /* If neither context have a parent context; they cannot be clones. */
2712         if (!parent && !next_parent)
2713                 goto unlock;
2714
2715         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2716                 /*
2717                  * Looks like the two contexts are clones, so we might be
2718                  * able to optimize the context switch.  We lock both
2719                  * contexts and check that they are clones under the
2720                  * lock (including re-checking that neither has been
2721                  * uncloned in the meantime).  It doesn't matter which
2722                  * order we take the locks because no other cpu could
2723                  * be trying to lock both of these tasks.
2724                  */
2725                 raw_spin_lock(&ctx->lock);
2726                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2727                 if (context_equiv(ctx, next_ctx)) {
2728                         WRITE_ONCE(ctx->task, next);
2729                         WRITE_ONCE(next_ctx->task, task);
2730
2731                         swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2732
2733                         /*
2734                          * RCU_INIT_POINTER here is safe because we've not
2735                          * modified the ctx and the above modification of
2736                          * ctx->task and ctx->task_ctx_data are immaterial
2737                          * since those values are always verified under
2738                          * ctx->lock which we're now holding.
2739                          */
2740                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2741                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2742
2743                         do_switch = 0;
2744
2745                         perf_event_sync_stat(ctx, next_ctx);
2746                 }
2747                 raw_spin_unlock(&next_ctx->lock);
2748                 raw_spin_unlock(&ctx->lock);
2749         }
2750 unlock:
2751         rcu_read_unlock();
2752
2753         if (do_switch) {
2754                 raw_spin_lock(&ctx->lock);
2755                 task_ctx_sched_out(cpuctx, ctx);
2756                 raw_spin_unlock(&ctx->lock);
2757         }
2758 }
2759
2760 void perf_sched_cb_dec(struct pmu *pmu)
2761 {
2762         this_cpu_dec(perf_sched_cb_usages);
2763 }
2764
2765 void perf_sched_cb_inc(struct pmu *pmu)
2766 {
2767         this_cpu_inc(perf_sched_cb_usages);
2768 }
2769
2770 /*
2771  * This function provides the context switch callback to the lower code
2772  * layer. It is invoked ONLY when the context switch callback is enabled.
2773  */
2774 static void perf_pmu_sched_task(struct task_struct *prev,
2775                                 struct task_struct *next,
2776                                 bool sched_in)
2777 {
2778         struct perf_cpu_context *cpuctx;
2779         struct pmu *pmu;
2780         unsigned long flags;
2781
2782         if (prev == next)
2783                 return;
2784
2785         local_irq_save(flags);
2786
2787         rcu_read_lock();
2788
2789         list_for_each_entry_rcu(pmu, &pmus, entry) {
2790                 if (pmu->sched_task) {
2791                         cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2792
2793                         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2794
2795                         perf_pmu_disable(pmu);
2796
2797                         pmu->sched_task(cpuctx->task_ctx, sched_in);
2798
2799                         perf_pmu_enable(pmu);
2800
2801                         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2802                 }
2803         }
2804
2805         rcu_read_unlock();
2806
2807         local_irq_restore(flags);
2808 }
2809
2810 static void perf_event_switch(struct task_struct *task,
2811                               struct task_struct *next_prev, bool sched_in);
2812
2813 #define for_each_task_context_nr(ctxn)                                  \
2814         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2815
2816 /*
2817  * Called from scheduler to remove the events of the current task,
2818  * with interrupts disabled.
2819  *
2820  * We stop each event and update the event value in event->count.
2821  *
2822  * This does not protect us against NMI, but disable()
2823  * sets the disabled bit in the control field of event _before_
2824  * accessing the event control register. If a NMI hits, then it will
2825  * not restart the event.
2826  */
2827 void __perf_event_task_sched_out(struct task_struct *task,
2828                                  struct task_struct *next)
2829 {
2830         int ctxn;
2831
2832         if (__this_cpu_read(perf_sched_cb_usages))
2833                 perf_pmu_sched_task(task, next, false);
2834
2835         if (atomic_read(&nr_switch_events))
2836                 perf_event_switch(task, next, false);
2837
2838         for_each_task_context_nr(ctxn)
2839                 perf_event_context_sched_out(task, ctxn, next);
2840
2841         /*
2842          * if cgroup events exist on this CPU, then we need
2843          * to check if we have to switch out PMU state.
2844          * cgroup event are system-wide mode only
2845          */
2846         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2847                 perf_cgroup_sched_out(task, next);
2848 }
2849
2850 /*
2851  * Called with IRQs disabled
2852  */
2853 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2854                               enum event_type_t event_type)
2855 {
2856         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2857 }
2858
2859 static void
2860 ctx_pinned_sched_in(struct perf_event_context *ctx,
2861                     struct perf_cpu_context *cpuctx)
2862 {
2863         struct perf_event *event;
2864
2865         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2866                 if (event->state <= PERF_EVENT_STATE_OFF)
2867                         continue;
2868                 if (!event_filter_match(event))
2869                         continue;
2870
2871                 /* may need to reset tstamp_enabled */
2872                 if (is_cgroup_event(event))
2873                         perf_cgroup_mark_enabled(event, ctx);
2874
2875                 if (group_can_go_on(event, cpuctx, 1))
2876                         group_sched_in(event, cpuctx, ctx);
2877
2878                 /*
2879                  * If this pinned group hasn't been scheduled,
2880                  * put it in error state.
2881                  */
2882                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2883                         update_group_times(event);
2884                         event->state = PERF_EVENT_STATE_ERROR;
2885                 }
2886         }
2887 }
2888
2889 static void
2890 ctx_flexible_sched_in(struct perf_event_context *ctx,
2891                       struct perf_cpu_context *cpuctx)
2892 {
2893         struct perf_event *event;
2894         int can_add_hw = 1;
2895
2896         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2897                 /* Ignore events in OFF or ERROR state */
2898                 if (event->state <= PERF_EVENT_STATE_OFF)
2899                         continue;
2900                 /*
2901                  * Listen to the 'cpu' scheduling filter constraint
2902                  * of events:
2903                  */
2904                 if (!event_filter_match(event))
2905                         continue;
2906
2907                 /* may need to reset tstamp_enabled */
2908                 if (is_cgroup_event(event))
2909                         perf_cgroup_mark_enabled(event, ctx);
2910
2911                 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2912                         if (group_sched_in(event, cpuctx, ctx))
2913                                 can_add_hw = 0;
2914                 }
2915         }
2916 }
2917
2918 static void
2919 ctx_sched_in(struct perf_event_context *ctx,
2920              struct perf_cpu_context *cpuctx,
2921              enum event_type_t event_type,
2922              struct task_struct *task)
2923 {
2924         int is_active = ctx->is_active;
2925         u64 now;
2926
2927         lockdep_assert_held(&ctx->lock);
2928
2929         if (likely(!ctx->nr_events))
2930                 return;
2931
2932         ctx->is_active |= (event_type | EVENT_TIME);
2933         if (ctx->task) {
2934                 if (!is_active)
2935                         cpuctx->task_ctx = ctx;
2936                 else
2937                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2938         }
2939
2940         is_active ^= ctx->is_active; /* changed bits */
2941
2942         if (is_active & EVENT_TIME) {
2943                 /* start ctx time */
2944                 now = perf_clock();
2945                 ctx->timestamp = now;
2946                 perf_cgroup_set_timestamp(task, ctx);
2947         }
2948
2949         /*
2950          * First go through the list and put on any pinned groups
2951          * in order to give them the best chance of going on.
2952          */
2953         if (is_active & EVENT_PINNED)
2954                 ctx_pinned_sched_in(ctx, cpuctx);
2955
2956         /* Then walk through the lower prio flexible groups */
2957         if (is_active & EVENT_FLEXIBLE)
2958                 ctx_flexible_sched_in(ctx, cpuctx);
2959 }
2960
2961 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2962                              enum event_type_t event_type,
2963                              struct task_struct *task)
2964 {
2965         struct perf_event_context *ctx = &cpuctx->ctx;
2966
2967         ctx_sched_in(ctx, cpuctx, event_type, task);
2968 }
2969
2970 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2971                                         struct task_struct *task)
2972 {
2973         struct perf_cpu_context *cpuctx;
2974
2975         cpuctx = __get_cpu_context(ctx);
2976         if (cpuctx->task_ctx == ctx)
2977                 return;
2978
2979         perf_ctx_lock(cpuctx, ctx);
2980         perf_pmu_disable(ctx->pmu);
2981         /*
2982          * We want to keep the following priority order:
2983          * cpu pinned (that don't need to move), task pinned,
2984          * cpu flexible, task flexible.
2985          */
2986         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2987         perf_event_sched_in(cpuctx, ctx, task);
2988         perf_pmu_enable(ctx->pmu);
2989         perf_ctx_unlock(cpuctx, ctx);
2990 }
2991
2992 /*
2993  * Called from scheduler to add the events of the current task
2994  * with interrupts disabled.
2995  *
2996  * We restore the event value and then enable it.
2997  *
2998  * This does not protect us against NMI, but enable()
2999  * sets the enabled bit in the control field of event _before_
3000  * accessing the event control register. If a NMI hits, then it will
3001  * keep the event running.
3002  */
3003 void __perf_event_task_sched_in(struct task_struct *prev,
3004                                 struct task_struct *task)
3005 {
3006         struct perf_event_context *ctx;
3007         int ctxn;
3008
3009         /*
3010          * If cgroup events exist on this CPU, then we need to check if we have
3011          * to switch in PMU state; cgroup event are system-wide mode only.
3012          *
3013          * Since cgroup events are CPU events, we must schedule these in before
3014          * we schedule in the task events.
3015          */
3016         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3017                 perf_cgroup_sched_in(prev, task);
3018
3019         for_each_task_context_nr(ctxn) {
3020                 ctx = task->perf_event_ctxp[ctxn];
3021                 if (likely(!ctx))
3022                         continue;
3023
3024                 perf_event_context_sched_in(ctx, task);
3025         }
3026
3027         if (atomic_read(&nr_switch_events))
3028                 perf_event_switch(task, prev, true);
3029
3030         if (__this_cpu_read(perf_sched_cb_usages))
3031                 perf_pmu_sched_task(prev, task, true);
3032 }
3033
3034 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3035 {
3036         u64 frequency = event->attr.sample_freq;
3037         u64 sec = NSEC_PER_SEC;
3038         u64 divisor, dividend;
3039
3040         int count_fls, nsec_fls, frequency_fls, sec_fls;
3041
3042         count_fls = fls64(count);
3043         nsec_fls = fls64(nsec);
3044         frequency_fls = fls64(frequency);
3045         sec_fls = 30;
3046
3047         /*
3048          * We got @count in @nsec, with a target of sample_freq HZ
3049          * the target period becomes:
3050          *
3051          *             @count * 10^9
3052          * period = -------------------
3053          *          @nsec * sample_freq
3054          *
3055          */
3056
3057         /*
3058          * Reduce accuracy by one bit such that @a and @b converge
3059          * to a similar magnitude.
3060          */
3061 #define REDUCE_FLS(a, b)                \
3062 do {                                    \
3063         if (a##_fls > b##_fls) {        \
3064                 a >>= 1;                \
3065                 a##_fls--;              \
3066         } else {                        \
3067                 b >>= 1;                \
3068                 b##_fls--;              \
3069         }                               \
3070 } while (0)
3071
3072         /*
3073          * Reduce accuracy until either term fits in a u64, then proceed with
3074          * the other, so that finally we can do a u64/u64 division.
3075          */
3076         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3077                 REDUCE_FLS(nsec, frequency);
3078                 REDUCE_FLS(sec, count);
3079         }
3080
3081         if (count_fls + sec_fls > 64) {
3082                 divisor = nsec * frequency;
3083
3084                 while (count_fls + sec_fls > 64) {
3085                         REDUCE_FLS(count, sec);
3086                         divisor >>= 1;
3087                 }
3088
3089                 dividend = count * sec;
3090         } else {
3091                 dividend = count * sec;
3092
3093                 while (nsec_fls + frequency_fls > 64) {
3094                         REDUCE_FLS(nsec, frequency);
3095                         dividend >>= 1;
3096                 }
3097
3098                 divisor = nsec * frequency;
3099         }
3100
3101         if (!divisor)
3102                 return dividend;
3103
3104         return div64_u64(dividend, divisor);
3105 }
3106
3107 static DEFINE_PER_CPU(int, perf_throttled_count);
3108 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3109
3110 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3111 {
3112         struct hw_perf_event *hwc = &event->hw;
3113         s64 period, sample_period;
3114         s64 delta;
3115
3116         period = perf_calculate_period(event, nsec, count);
3117
3118         delta = (s64)(period - hwc->sample_period);
3119         delta = (delta + 7) / 8; /* low pass filter */
3120
3121         sample_period = hwc->sample_period + delta;
3122
3123         if (!sample_period)
3124                 sample_period = 1;
3125
3126         hwc->sample_period = sample_period;
3127
3128         if (local64_read(&hwc->period_left) > 8*sample_period) {
3129                 if (disable)
3130                         event->pmu->stop(event, PERF_EF_UPDATE);
3131
3132                 local64_set(&hwc->period_left, 0);
3133
3134                 if (disable)
3135                         event->pmu->start(event, PERF_EF_RELOAD);
3136         }
3137 }
3138
3139 /*
3140  * combine freq adjustment with unthrottling to avoid two passes over the
3141  * events. At the same time, make sure, having freq events does not change
3142  * the rate of unthrottling as that would introduce bias.
3143  */
3144 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3145                                            int needs_unthr)
3146 {
3147         struct perf_event *event;
3148         struct hw_perf_event *hwc;
3149         u64 now, period = TICK_NSEC;
3150         s64 delta;
3151
3152         /*
3153          * only need to iterate over all events iff:
3154          * - context have events in frequency mode (needs freq adjust)
3155          * - there are events to unthrottle on this cpu
3156          */
3157         if (!(ctx->nr_freq || needs_unthr))
3158                 return;
3159
3160         raw_spin_lock(&ctx->lock);
3161         perf_pmu_disable(ctx->pmu);
3162
3163         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3164                 if (event->state != PERF_EVENT_STATE_ACTIVE)
3165                         continue;
3166
3167                 if (!event_filter_match(event))
3168                         continue;
3169
3170                 perf_pmu_disable(event->pmu);
3171
3172                 hwc = &event->hw;
3173
3174                 if (hwc->interrupts == MAX_INTERRUPTS) {
3175                         hwc->interrupts = 0;
3176                         perf_log_throttle(event, 1);
3177                         event->pmu->start(event, 0);
3178                 }
3179
3180                 if (!event->attr.freq || !event->attr.sample_freq)
3181                         goto next;
3182
3183                 /*
3184                  * stop the event and update event->count
3185                  */
3186                 event->pmu->stop(event, PERF_EF_UPDATE);
3187
3188                 now = local64_read(&event->count);
3189                 delta = now - hwc->freq_count_stamp;
3190                 hwc->freq_count_stamp = now;
3191
3192                 /*
3193                  * restart the event
3194                  * reload only if value has changed
3195                  * we have stopped the event so tell that
3196                  * to perf_adjust_period() to avoid stopping it
3197                  * twice.
3198                  */
3199                 if (delta > 0)
3200                         perf_adjust_period(event, period, delta, false);
3201
3202                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3203         next:
3204                 perf_pmu_enable(event->pmu);
3205         }
3206
3207         perf_pmu_enable(ctx->pmu);
3208         raw_spin_unlock(&ctx->lock);
3209 }
3210
3211 /*
3212  * Round-robin a context's events:
3213  */
3214 static void rotate_ctx(struct perf_event_context *ctx)
3215 {
3216         /*
3217          * Rotate the first entry last of non-pinned groups. Rotation might be
3218          * disabled by the inheritance code.
3219          */
3220         if (!ctx->rotate_disable)
3221                 list_rotate_left(&ctx->flexible_groups);
3222 }
3223
3224 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3225 {
3226         struct perf_event_context *ctx = NULL;
3227         int rotate = 0;
3228
3229         if (cpuctx->ctx.nr_events) {
3230                 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3231                         rotate = 1;
3232         }
3233
3234         ctx = cpuctx->task_ctx;
3235         if (ctx && ctx->nr_events) {
3236                 if (ctx->nr_events != ctx->nr_active)
3237                         rotate = 1;
3238         }
3239
3240         if (!rotate)
3241                 goto done;
3242
3243         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3244         perf_pmu_disable(cpuctx->ctx.pmu);
3245
3246         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3247         if (ctx)
3248                 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3249
3250         rotate_ctx(&cpuctx->ctx);
3251         if (ctx)
3252                 rotate_ctx(ctx);
3253
3254         perf_event_sched_in(cpuctx, ctx, current);
3255
3256         perf_pmu_enable(cpuctx->ctx.pmu);
3257         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3258 done:
3259
3260         return rotate;
3261 }
3262
3263 void perf_event_task_tick(void)
3264 {
3265         struct list_head *head = this_cpu_ptr(&active_ctx_list);
3266         struct perf_event_context *ctx, *tmp;
3267         int throttled;
3268
3269         WARN_ON(!irqs_disabled());
3270
3271         __this_cpu_inc(perf_throttled_seq);
3272         throttled = __this_cpu_xchg(perf_throttled_count, 0);
3273         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3274
3275         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3276                 perf_adjust_freq_unthr_context(ctx, throttled);
3277 }
3278
3279 static int event_enable_on_exec(struct perf_event *event,
3280                                 struct perf_event_context *ctx)
3281 {
3282         if (!event->attr.enable_on_exec)
3283                 return 0;
3284
3285         event->attr.enable_on_exec = 0;
3286         if (event->state >= PERF_EVENT_STATE_INACTIVE)
3287                 return 0;
3288
3289         __perf_event_mark_enabled(event);
3290
3291         return 1;
3292 }
3293
3294 /*
3295  * Enable all of a task's events that have been marked enable-on-exec.
3296  * This expects task == current.
3297  */
3298 static void perf_event_enable_on_exec(int ctxn)
3299 {
3300         struct perf_event_context *ctx, *clone_ctx = NULL;
3301         struct perf_cpu_context *cpuctx;
3302         struct perf_event *event;
3303         unsigned long flags;
3304         int enabled = 0;
3305
3306         local_irq_save(flags);
3307         ctx = current->perf_event_ctxp[ctxn];
3308         if (!ctx || !ctx->nr_events)
3309                 goto out;
3310
3311         cpuctx = __get_cpu_context(ctx);
3312         perf_ctx_lock(cpuctx, ctx);
3313         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3314         list_for_each_entry(event, &ctx->event_list, event_entry)
3315                 enabled |= event_enable_on_exec(event, ctx);
3316
3317         /*
3318          * Unclone and reschedule this context if we enabled any event.
3319          */
3320         if (enabled) {
3321                 clone_ctx = unclone_ctx(ctx);
3322                 ctx_resched(cpuctx, ctx);
3323         }
3324         perf_ctx_unlock(cpuctx, ctx);
3325
3326 out:
3327         local_irq_restore(flags);
3328
3329         if (clone_ctx)
3330                 put_ctx(clone_ctx);
3331 }
3332
3333 struct perf_read_data {
3334         struct perf_event *event;
3335         bool group;
3336         int ret;
3337 };
3338
3339 /*
3340  * Cross CPU call to read the hardware event
3341  */
3342 static void __perf_event_read(void *info)
3343 {
3344         struct perf_read_data *data = info;
3345         struct perf_event *sub, *event = data->event;
3346         struct perf_event_context *ctx = event->ctx;
3347         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3348         struct pmu *pmu = event->pmu;
3349
3350         /*
3351          * If this is a task context, we need to check whether it is
3352          * the current task context of this cpu.  If not it has been
3353          * scheduled out before the smp call arrived.  In that case
3354          * event->count would have been updated to a recent sample
3355          * when the event was scheduled out.
3356          */
3357         if (ctx->task && cpuctx->task_ctx != ctx)
3358                 return;
3359
3360         raw_spin_lock(&ctx->lock);
3361         if (ctx->is_active) {
3362                 update_context_time(ctx);
3363                 update_cgrp_time_from_event(event);
3364         }
3365
3366         update_event_times(event);
3367         if (event->state != PERF_EVENT_STATE_ACTIVE)
3368                 goto unlock;
3369
3370         if (!data->group) {
3371                 pmu->read(event);
3372                 data->ret = 0;
3373                 goto unlock;
3374         }
3375
3376         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3377
3378         pmu->read(event);
3379
3380         list_for_each_entry(sub, &event->sibling_list, group_entry) {
3381                 update_event_times(sub);
3382                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3383                         /*
3384                          * Use sibling's PMU rather than @event's since
3385                          * sibling could be on different (eg: software) PMU.
3386                          */
3387                         sub->pmu->read(sub);
3388                 }
3389         }
3390
3391         data->ret = pmu->commit_txn(pmu);
3392
3393 unlock:
3394         raw_spin_unlock(&ctx->lock);
3395 }
3396
3397 static inline u64 perf_event_count(struct perf_event *event)
3398 {
3399         if (event->pmu->count)
3400                 return event->pmu->count(event);
3401
3402         return __perf_event_count(event);
3403 }
3404
3405 /*
3406  * NMI-safe method to read a local event, that is an event that
3407  * is:
3408  *   - either for the current task, or for this CPU
3409  *   - does not have inherit set, for inherited task events
3410  *     will not be local and we cannot read them atomically
3411  *   - must not have a pmu::count method
3412  */
3413 u64 perf_event_read_local(struct perf_event *event)
3414 {
3415         unsigned long flags;
3416         u64 val;
3417
3418         /*
3419          * Disabling interrupts avoids all counter scheduling (context
3420          * switches, timer based rotation and IPIs).
3421          */
3422         local_irq_save(flags);
3423
3424         /* If this is a per-task event, it must be for current */
3425         WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3426                      event->hw.target != current);
3427
3428         /* If this is a per-CPU event, it must be for this CPU */
3429         WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3430                      event->cpu != smp_processor_id());
3431
3432         /*
3433          * It must not be an event with inherit set, we cannot read
3434          * all child counters from atomic context.
3435          */
3436         WARN_ON_ONCE(event->attr.inherit);
3437
3438         /*
3439          * It must not have a pmu::count method, those are not
3440          * NMI safe.
3441          */
3442         WARN_ON_ONCE(event->pmu->count);
3443
3444         /*
3445          * If the event is currently on this CPU, its either a per-task event,
3446          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3447          * oncpu == -1).
3448          */
3449         if (event->oncpu == smp_processor_id())
3450                 event->pmu->read(event);
3451
3452         val = local64_read(&event->count);
3453         local_irq_restore(flags);
3454
3455         return val;
3456 }
3457
3458 static int perf_event_read(struct perf_event *event, bool group)
3459 {
3460         int ret = 0;
3461
3462         /*
3463          * If event is enabled and currently active on a CPU, update the
3464          * value in the event structure:
3465          */
3466         if (event->state == PERF_EVENT_STATE_ACTIVE) {
3467                 struct perf_read_data data = {
3468                         .event = event,
3469                         .group = group,
3470                         .ret = 0,
3471                 };
3472                 smp_call_function_single(event->oncpu,
3473                                          __perf_event_read, &data, 1);
3474                 ret = data.ret;
3475         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3476                 struct perf_event_context *ctx = event->ctx;
3477                 unsigned long flags;
3478
3479                 raw_spin_lock_irqsave(&ctx->lock, flags);
3480                 /*
3481                  * may read while context is not active
3482                  * (e.g., thread is blocked), in that case
3483                  * we cannot update context time
3484                  */
3485                 if (ctx->is_active) {
3486                         update_context_time(ctx);
3487                         update_cgrp_time_from_event(event);
3488                 }
3489                 if (group)
3490                         update_group_times(event);
3491                 else
3492                         update_event_times(event);
3493                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3494         }
3495
3496         return ret;
3497 }
3498
3499 /*
3500  * Initialize the perf_event context in a task_struct:
3501  */
3502 static void __perf_event_init_context(struct perf_event_context *ctx)
3503 {
3504         raw_spin_lock_init(&ctx->lock);
3505         mutex_init(&ctx->mutex);
3506         INIT_LIST_HEAD(&ctx->active_ctx_list);
3507         INIT_LIST_HEAD(&ctx->pinned_groups);
3508         INIT_LIST_HEAD(&ctx->flexible_groups);
3509         INIT_LIST_HEAD(&ctx->event_list);
3510         atomic_set(&ctx->refcount, 1);
3511 }
3512
3513 static struct perf_event_context *
3514 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3515 {
3516         struct perf_event_context *ctx;
3517
3518         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3519         if (!ctx)
3520                 return NULL;
3521
3522         __perf_event_init_context(ctx);
3523         if (task) {
3524                 ctx->task = task;
3525                 get_task_struct(task);
3526         }
3527         ctx->pmu = pmu;
3528
3529         return ctx;
3530 }
3531
3532 static struct task_struct *
3533 find_lively_task_by_vpid(pid_t vpid)
3534 {
3535         struct task_struct *task;
3536
3537         rcu_read_lock();
3538         if (!vpid)
3539                 task = current;
3540         else
3541                 task = find_task_by_vpid(vpid);
3542         if (task)
3543                 get_task_struct(task);
3544         rcu_read_unlock();
3545
3546         if (!task)
3547                 return ERR_PTR(-ESRCH);
3548
3549         return task;
3550 }
3551
3552 /*
3553  * Returns a matching context with refcount and pincount.
3554  */
3555 static struct perf_event_context *
3556 find_get_context(struct pmu *pmu, struct task_struct *task,
3557                 struct perf_event *event)
3558 {
3559         struct perf_event_context *ctx, *clone_ctx = NULL;
3560         struct perf_cpu_context *cpuctx;
3561         void *task_ctx_data = NULL;
3562         unsigned long flags;
3563         int ctxn, err;
3564         int cpu = event->cpu;
3565
3566         if (!task) {
3567                 /* Must be root to operate on a CPU event: */
3568                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3569                         return ERR_PTR(-EACCES);
3570
3571                 /*
3572                  * We could be clever and allow to attach a event to an
3573                  * offline CPU and activate it when the CPU comes up, but
3574                  * that's for later.
3575                  */
3576                 if (!cpu_online(cpu))
3577                         return ERR_PTR(-ENODEV);
3578
3579                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3580                 ctx = &cpuctx->ctx;
3581                 get_ctx(ctx);
3582                 ++ctx->pin_count;
3583
3584                 return ctx;
3585         }
3586
3587         err = -EINVAL;
3588         ctxn = pmu->task_ctx_nr;
3589         if (ctxn < 0)
3590                 goto errout;
3591
3592         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3593                 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3594                 if (!task_ctx_data) {
3595                         err = -ENOMEM;
3596                         goto errout;
3597                 }
3598         }
3599
3600 retry:
3601         ctx = perf_lock_task_context(task, ctxn, &flags);
3602         if (ctx) {
3603                 clone_ctx = unclone_ctx(ctx);
3604                 ++ctx->pin_count;
3605
3606                 if (task_ctx_data && !ctx->task_ctx_data) {
3607                         ctx->task_ctx_data = task_ctx_data;
3608                         task_ctx_data = NULL;
3609                 }
3610                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3611
3612                 if (clone_ctx)
3613                         put_ctx(clone_ctx);
3614         } else {
3615                 ctx = alloc_perf_context(pmu, task);
3616                 err = -ENOMEM;
3617                 if (!ctx)
3618                         goto errout;
3619
3620                 if (task_ctx_data) {
3621                         ctx->task_ctx_data = task_ctx_data;
3622                         task_ctx_data = NULL;
3623                 }
3624
3625                 err = 0;
3626                 mutex_lock(&task->perf_event_mutex);
3627                 /*
3628                  * If it has already passed perf_event_exit_task().
3629                  * we must see PF_EXITING, it takes this mutex too.
3630                  */
3631                 if (task->flags & PF_EXITING)
3632                         err = -ESRCH;
3633                 else if (task->perf_event_ctxp[ctxn])
3634                         err = -EAGAIN;
3635                 else {
3636                         get_ctx(ctx);
3637                         ++ctx->pin_count;
3638                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3639                 }
3640                 mutex_unlock(&task->perf_event_mutex);
3641
3642                 if (unlikely(err)) {
3643                         put_ctx(ctx);
3644
3645                         if (err == -EAGAIN)
3646                                 goto retry;
3647                         goto errout;
3648                 }
3649         }
3650
3651         kfree(task_ctx_data);
3652         return ctx;
3653
3654 errout:
3655         kfree(task_ctx_data);
3656         return ERR_PTR(err);
3657 }
3658
3659 static void perf_event_free_filter(struct perf_event *event);
3660 static void perf_event_free_bpf_prog(struct perf_event *event);
3661
3662 static void free_event_rcu(struct rcu_head *head)
3663 {
3664         struct perf_event *event;
3665
3666         event = container_of(head, struct perf_event, rcu_head);
3667         if (event->ns)
3668                 put_pid_ns(event->ns);
3669         perf_event_free_filter(event);
3670         kfree(event);
3671 }
3672
3673 static void ring_buffer_attach(struct perf_event *event,
3674                                struct ring_buffer *rb);
3675
3676 static void detach_sb_event(struct perf_event *event)
3677 {
3678         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3679
3680         raw_spin_lock(&pel->lock);
3681         list_del_rcu(&event->sb_list);
3682         raw_spin_unlock(&pel->lock);
3683 }
3684
3685 static bool is_sb_event(struct perf_event *event)
3686 {
3687         struct perf_event_attr *attr = &event->attr;
3688
3689         if (event->parent)
3690                 return false;
3691
3692         if (event->attach_state & PERF_ATTACH_TASK)
3693                 return false;
3694
3695         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3696             attr->comm || attr->comm_exec ||
3697             attr->task ||
3698             attr->context_switch)
3699                 return true;
3700         return false;
3701 }
3702
3703 static void unaccount_pmu_sb_event(struct perf_event *event)
3704 {
3705         if (is_sb_event(event))
3706                 detach_sb_event(event);
3707 }
3708
3709 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3710 {
3711         if (event->parent)
3712                 return;
3713
3714         if (is_cgroup_event(event))
3715                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3716 }
3717
3718 #ifdef CONFIG_NO_HZ_FULL
3719 static DEFINE_SPINLOCK(nr_freq_lock);
3720 #endif
3721
3722 static void unaccount_freq_event_nohz(void)
3723 {
3724 #ifdef CONFIG_NO_HZ_FULL
3725         spin_lock(&nr_freq_lock);
3726         if (atomic_dec_and_test(&nr_freq_events))
3727                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3728         spin_unlock(&nr_freq_lock);
3729 #endif
3730 }
3731
3732 static void unaccount_freq_event(void)
3733 {
3734         if (tick_nohz_full_enabled())
3735                 unaccount_freq_event_nohz();
3736         else
3737                 atomic_dec(&nr_freq_events);
3738 }
3739
3740 static void unaccount_event(struct perf_event *event)
3741 {
3742         bool dec = false;
3743
3744         if (event->parent)
3745                 return;
3746
3747         if (event->attach_state & PERF_ATTACH_TASK)
3748                 dec = true;
3749         if (event->attr.mmap || event->attr.mmap_data)
3750                 atomic_dec(&nr_mmap_events);
3751         if (event->attr.comm)
3752                 atomic_dec(&nr_comm_events);
3753         if (event->attr.task)
3754                 atomic_dec(&nr_task_events);
3755         if (event->attr.freq)
3756                 unaccount_freq_event();
3757         if (event->attr.context_switch) {
3758                 dec = true;
3759                 atomic_dec(&nr_switch_events);
3760         }
3761         if (is_cgroup_event(event))
3762                 dec = true;
3763         if (has_branch_stack(event))
3764                 dec = true;
3765
3766         if (dec) {
3767                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
3768                         schedule_delayed_work(&perf_sched_work, HZ);
3769         }
3770
3771         unaccount_event_cpu(event, event->cpu);
3772
3773         unaccount_pmu_sb_event(event);
3774 }
3775
3776 static void perf_sched_delayed(struct work_struct *work)
3777 {
3778         mutex_lock(&perf_sched_mutex);
3779         if (atomic_dec_and_test(&perf_sched_count))
3780                 static_branch_disable(&perf_sched_events);
3781         mutex_unlock(&perf_sched_mutex);
3782 }
3783
3784 /*
3785  * The following implement mutual exclusion of events on "exclusive" pmus
3786  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3787  * at a time, so we disallow creating events that might conflict, namely:
3788  *
3789  *  1) cpu-wide events in the presence of per-task events,
3790  *  2) per-task events in the presence of cpu-wide events,
3791  *  3) two matching events on the same context.
3792  *
3793  * The former two cases are handled in the allocation path (perf_event_alloc(),
3794  * _free_event()), the latter -- before the first perf_install_in_context().
3795  */
3796 static int exclusive_event_init(struct perf_event *event)
3797 {
3798         struct pmu *pmu = event->pmu;
3799
3800         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3801                 return 0;
3802
3803         /*
3804          * Prevent co-existence of per-task and cpu-wide events on the
3805          * same exclusive pmu.
3806          *
3807          * Negative pmu::exclusive_cnt means there are cpu-wide
3808          * events on this "exclusive" pmu, positive means there are
3809          * per-task events.
3810          *
3811          * Since this is called in perf_event_alloc() path, event::ctx
3812          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3813          * to mean "per-task event", because unlike other attach states it
3814          * never gets cleared.
3815          */
3816         if (event->attach_state & PERF_ATTACH_TASK) {
3817                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3818                         return -EBUSY;
3819         } else {
3820                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3821                         return -EBUSY;
3822         }
3823
3824         return 0;
3825 }
3826
3827 static void exclusive_event_destroy(struct perf_event *event)
3828 {
3829         struct pmu *pmu = event->pmu;
3830
3831         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3832                 return;
3833
3834         /* see comment in exclusive_event_init() */
3835         if (event->attach_state & PERF_ATTACH_TASK)
3836                 atomic_dec(&pmu->exclusive_cnt);
3837         else
3838                 atomic_inc(&pmu->exclusive_cnt);
3839 }
3840
3841 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3842 {
3843         if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3844             (e1->cpu == e2->cpu ||
3845              e1->cpu == -1 ||
3846              e2->cpu == -1))
3847                 return true;
3848         return false;
3849 }
3850
3851 /* Called under the same ctx::mutex as perf_install_in_context() */
3852 static bool exclusive_event_installable(struct perf_event *event,
3853                                         struct perf_event_context *ctx)
3854 {
3855         struct perf_event *iter_event;
3856         struct pmu *pmu = event->pmu;
3857
3858         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3859                 return true;
3860
3861         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3862                 if (exclusive_event_match(iter_event, event))
3863                         return false;
3864         }
3865
3866         return true;
3867 }
3868
3869 static void perf_addr_filters_splice(struct perf_event *event,
3870                                        struct list_head *head);
3871
3872 static void _free_event(struct perf_event *event)
3873 {
3874         irq_work_sync(&event->pending);
3875
3876         unaccount_event(event);
3877
3878         if (event->rb) {
3879                 /*
3880                  * Can happen when we close an event with re-directed output.
3881                  *
3882                  * Since we have a 0 refcount, perf_mmap_close() will skip
3883                  * over us; possibly making our ring_buffer_put() the last.
3884                  */
3885                 mutex_lock(&event->mmap_mutex);
3886                 ring_buffer_attach(event, NULL);
3887                 mutex_unlock(&event->mmap_mutex);
3888         }
3889
3890         if (is_cgroup_event(event))
3891                 perf_detach_cgroup(event);
3892
3893         if (!event->parent) {
3894                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3895                         put_callchain_buffers();
3896         }
3897
3898         perf_event_free_bpf_prog(event);
3899         perf_addr_filters_splice(event, NULL);
3900         kfree(event->addr_filters_offs);
3901
3902         if (event->destroy)
3903                 event->destroy(event);
3904
3905         if (event->ctx)
3906                 put_ctx(event->ctx);
3907
3908         if (event->pmu) {
3909                 exclusive_event_destroy(event);
3910                 module_put(event->pmu->module);
3911         }
3912
3913         call_rcu(&event->rcu_head, free_event_rcu);
3914 }
3915
3916 /*
3917  * Used to free events which have a known refcount of 1, such as in error paths
3918  * where the event isn't exposed yet and inherited events.
3919  */
3920 static void free_event(struct perf_event *event)
3921 {
3922         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3923                                 "unexpected event refcount: %ld; ptr=%p\n",
3924                                 atomic_long_read(&event->refcount), event)) {
3925                 /* leak to avoid use-after-free */
3926                 return;
3927         }
3928
3929         _free_event(event);
3930 }
3931
3932 /*
3933  * Remove user event from the owner task.
3934  */
3935 static void perf_remove_from_owner(struct perf_event *event)
3936 {
3937         struct task_struct *owner;
3938
3939         rcu_read_lock();
3940         /*
3941          * Matches the smp_store_release() in perf_event_exit_task(). If we
3942          * observe !owner it means the list deletion is complete and we can
3943          * indeed free this event, otherwise we need to serialize on
3944          * owner->perf_event_mutex.
3945          */
3946         owner = lockless_dereference(event->owner);
3947         if (owner) {
3948                 /*
3949                  * Since delayed_put_task_struct() also drops the last
3950                  * task reference we can safely take a new reference
3951                  * while holding the rcu_read_lock().
3952                  */
3953                 get_task_struct(owner);
3954         }
3955         rcu_read_unlock();
3956
3957         if (owner) {
3958                 /*
3959                  * If we're here through perf_event_exit_task() we're already
3960                  * holding ctx->mutex which would be an inversion wrt. the
3961                  * normal lock order.
3962                  *
3963                  * However we can safely take this lock because its the child
3964                  * ctx->mutex.
3965                  */
3966                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3967
3968                 /*
3969                  * We have to re-check the event->owner field, if it is cleared
3970                  * we raced with perf_event_exit_task(), acquiring the mutex
3971                  * ensured they're done, and we can proceed with freeing the
3972                  * event.
3973                  */
3974                 if (event->owner) {
3975                         list_del_init(&event->owner_entry);
3976                         smp_store_release(&event->owner, NULL);
3977                 }
3978                 mutex_unlock(&owner->perf_event_mutex);
3979                 put_task_struct(owner);
3980         }
3981 }
3982
3983 static void put_event(struct perf_event *event)
3984 {
3985         if (!atomic_long_dec_and_test(&event->refcount))
3986                 return;
3987
3988         _free_event(event);
3989 }
3990
3991 /*
3992  * Kill an event dead; while event:refcount will preserve the event
3993  * object, it will not preserve its functionality. Once the last 'user'
3994  * gives up the object, we'll destroy the thing.
3995  */
3996 int perf_event_release_kernel(struct perf_event *event)
3997 {
3998         struct perf_event_context *ctx = event->ctx;
3999         struct perf_event *child, *tmp;
4000
4001         /*
4002          * If we got here through err_file: fput(event_file); we will not have
4003          * attached to a context yet.
4004          */
4005         if (!ctx) {
4006                 WARN_ON_ONCE(event->attach_state &
4007                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4008                 goto no_ctx;
4009         }
4010
4011         if (!is_kernel_event(event))
4012                 perf_remove_from_owner(event);
4013
4014         ctx = perf_event_ctx_lock(event);
4015         WARN_ON_ONCE(ctx->parent_ctx);
4016         perf_remove_from_context(event, DETACH_GROUP);
4017
4018         raw_spin_lock_irq(&ctx->lock);
4019         /*
4020          * Mark this even as STATE_DEAD, there is no external reference to it
4021          * anymore.
4022          *
4023          * Anybody acquiring event->child_mutex after the below loop _must_
4024          * also see this, most importantly inherit_event() which will avoid
4025          * placing more children on the list.
4026          *
4027          * Thus this guarantees that we will in fact observe and kill _ALL_
4028          * child events.
4029          */
4030         event->state = PERF_EVENT_STATE_DEAD;
4031         raw_spin_unlock_irq(&ctx->lock);
4032
4033         perf_event_ctx_unlock(event, ctx);
4034
4035 again:
4036         mutex_lock(&event->child_mutex);
4037         list_for_each_entry(child, &event->child_list, child_list) {
4038
4039                 /*
4040                  * Cannot change, child events are not migrated, see the
4041                  * comment with perf_event_ctx_lock_nested().
4042                  */
4043                 ctx = lockless_dereference(child->ctx);
4044                 /*
4045                  * Since child_mutex nests inside ctx::mutex, we must jump
4046                  * through hoops. We start by grabbing a reference on the ctx.
4047                  *
4048                  * Since the event cannot get freed while we hold the
4049                  * child_mutex, the context must also exist and have a !0
4050                  * reference count.
4051                  */
4052                 get_ctx(ctx);
4053
4054                 /*
4055                  * Now that we have a ctx ref, we can drop child_mutex, and
4056                  * acquire ctx::mutex without fear of it going away. Then we
4057                  * can re-acquire child_mutex.
4058                  */
4059                 mutex_unlock(&event->child_mutex);
4060                 mutex_lock(&ctx->mutex);
4061                 mutex_lock(&event->child_mutex);
4062
4063                 /*
4064                  * Now that we hold ctx::mutex and child_mutex, revalidate our
4065                  * state, if child is still the first entry, it didn't get freed
4066                  * and we can continue doing so.
4067                  */
4068                 tmp = list_first_entry_or_null(&event->child_list,
4069                                                struct perf_event, child_list);
4070                 if (tmp == child) {
4071                         perf_remove_from_context(child, DETACH_GROUP);
4072                         list_del(&child->child_list);
4073                         free_event(child);
4074                         /*
4075                          * This matches the refcount bump in inherit_event();
4076                          * this can't be the last reference.
4077                          */
4078                         put_event(event);
4079                 }
4080
4081                 mutex_unlock(&event->child_mutex);
4082                 mutex_unlock(&ctx->mutex);
4083                 put_ctx(ctx);
4084                 goto again;
4085         }
4086         mutex_unlock(&event->child_mutex);
4087
4088 no_ctx:
4089         put_event(event); /* Must be the 'last' reference */
4090         return 0;
4091 }
4092 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4093
4094 /*
4095  * Called when the last reference to the file is gone.
4096  */
4097 static int perf_release(struct inode *inode, struct file *file)
4098 {
4099         perf_event_release_kernel(file->private_data);
4100         return 0;
4101 }
4102
4103 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4104 {
4105         struct perf_event *child;
4106         u64 total = 0;
4107
4108         *enabled = 0;
4109         *running = 0;
4110
4111         mutex_lock(&event->child_mutex);
4112
4113         (void)perf_event_read(event, false);
4114         total += perf_event_count(event);
4115
4116         *enabled += event->total_time_enabled +
4117                         atomic64_read(&event->child_total_time_enabled);
4118         *running += event->total_time_running +
4119                         atomic64_read(&event->child_total_time_running);
4120
4121         list_for_each_entry(child, &event->child_list, child_list) {
4122                 (void)perf_event_read(child, false);
4123                 total += perf_event_count(child);
4124                 *enabled += child->total_time_enabled;
4125                 *running += child->total_time_running;
4126         }
4127         mutex_unlock(&event->child_mutex);
4128
4129         return total;
4130 }
4131 EXPORT_SYMBOL_GPL(perf_event_read_value);
4132
4133 static int __perf_read_group_add(struct perf_event *leader,
4134                                         u64 read_format, u64 *values)
4135 {
4136         struct perf_event *sub;
4137         int n = 1; /* skip @nr */
4138         int ret;
4139
4140         ret = perf_event_read(leader, true);
4141         if (ret)
4142                 return ret;
4143
4144         /*
4145          * Since we co-schedule groups, {enabled,running} times of siblings
4146          * will be identical to those of the leader, so we only publish one
4147          * set.
4148          */
4149         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4150                 values[n++] += leader->total_time_enabled +
4151                         atomic64_read(&leader->child_total_time_enabled);
4152         }
4153
4154         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4155                 values[n++] += leader->total_time_running +
4156                         atomic64_read(&leader->child_total_time_running);
4157         }
4158
4159         /*
4160          * Write {count,id} tuples for every sibling.
4161          */
4162         values[n++] += perf_event_count(leader);
4163         if (read_format & PERF_FORMAT_ID)
4164                 values[n++] = primary_event_id(leader);
4165
4166         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4167                 values[n++] += perf_event_count(sub);
4168                 if (read_format & PERF_FORMAT_ID)
4169                         values[n++] = primary_event_id(sub);
4170         }
4171
4172         return 0;
4173 }
4174
4175 static int perf_read_group(struct perf_event *event,
4176                                    u64 read_format, char __user *buf)
4177 {
4178         struct perf_event *leader = event->group_leader, *child;
4179         struct perf_event_context *ctx = leader->ctx;
4180         int ret;
4181         u64 *values;
4182
4183         lockdep_assert_held(&ctx->mutex);
4184
4185         values = kzalloc(event->read_size, GFP_KERNEL);
4186         if (!values)
4187                 return -ENOMEM;
4188
4189         values[0] = 1 + leader->nr_siblings;
4190
4191         /*
4192          * By locking the child_mutex of the leader we effectively
4193          * lock the child list of all siblings.. XXX explain how.
4194          */
4195         mutex_lock(&leader->child_mutex);
4196
4197         ret = __perf_read_group_add(leader, read_format, values);
4198         if (ret)
4199                 goto unlock;
4200
4201         list_for_each_entry(child, &leader->child_list, child_list) {
4202                 ret = __perf_read_group_add(child, read_format, values);
4203                 if (ret)
4204                         goto unlock;
4205         }
4206
4207         mutex_unlock(&leader->child_mutex);
4208
4209         ret = event->read_size;
4210         if (copy_to_user(buf, values, event->read_size))
4211                 ret = -EFAULT;
4212         goto out;
4213
4214 unlock:
4215         mutex_unlock(&leader->child_mutex);
4216 out:
4217         kfree(values);
4218         return ret;
4219 }
4220
4221 static int perf_read_one(struct perf_event *event,
4222                                  u64 read_format, char __user *buf)
4223 {
4224         u64 enabled, running;
4225         u64 values[4];
4226         int n = 0;
4227
4228         values[n++] = perf_event_read_value(event, &enabled, &running);
4229         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4230                 values[n++] = enabled;
4231         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4232                 values[n++] = running;
4233         if (read_format & PERF_FORMAT_ID)
4234                 values[n++] = primary_event_id(event);
4235
4236         if (copy_to_user(buf, values, n * sizeof(u64)))
4237                 return -EFAULT;
4238
4239         return n * sizeof(u64);
4240 }
4241
4242 static bool is_event_hup(struct perf_event *event)
4243 {
4244         bool no_children;
4245
4246         if (event->state > PERF_EVENT_STATE_EXIT)
4247                 return false;
4248
4249         mutex_lock(&event->child_mutex);
4250         no_children = list_empty(&event->child_list);
4251         mutex_unlock(&event->child_mutex);
4252         return no_children;
4253 }
4254
4255 /*
4256  * Read the performance event - simple non blocking version for now
4257  */
4258 static ssize_t
4259 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4260 {
4261         u64 read_format = event->attr.read_format;
4262         int ret;
4263
4264         /*
4265          * Return end-of-file for a read on a event that is in
4266          * error state (i.e. because it was pinned but it couldn't be
4267          * scheduled on to the CPU at some point).
4268          */
4269         if (event->state == PERF_EVENT_STATE_ERROR)
4270                 return 0;
4271
4272         if (count < event->read_size)
4273                 return -ENOSPC;
4274
4275         WARN_ON_ONCE(event->ctx->parent_ctx);
4276         if (read_format & PERF_FORMAT_GROUP)
4277                 ret = perf_read_group(event, read_format, buf);
4278         else
4279                 ret = perf_read_one(event, read_format, buf);
4280
4281         return ret;
4282 }
4283
4284 static ssize_t
4285 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4286 {
4287         struct perf_event *event = file->private_data;
4288         struct perf_event_context *ctx;
4289         int ret;
4290
4291         ctx = perf_event_ctx_lock(event);
4292         ret = __perf_read(event, buf, count);
4293         perf_event_ctx_unlock(event, ctx);
4294
4295         return ret;
4296 }
4297
4298 static unsigned int perf_poll(struct file *file, poll_table *wait)
4299 {
4300         struct perf_event *event = file->private_data;
4301         struct ring_buffer *rb;
4302         unsigned int events = POLLHUP;
4303
4304         poll_wait(file, &event->waitq, wait);
4305
4306         if (is_event_hup(event))
4307                 return events;
4308
4309         /*
4310          * Pin the event->rb by taking event->mmap_mutex; otherwise
4311          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4312          */
4313         mutex_lock(&event->mmap_mutex);
4314         rb = event->rb;
4315         if (rb)
4316                 events = atomic_xchg(&rb->poll, 0);
4317         mutex_unlock(&event->mmap_mutex);
4318         return events;
4319 }
4320
4321 static void _perf_event_reset(struct perf_event *event)
4322 {
4323         (void)perf_event_read(event, false);
4324         local64_set(&event->count, 0);
4325         perf_event_update_userpage(event);
4326 }
4327
4328 /*
4329  * Holding the top-level event's child_mutex means that any
4330  * descendant process that has inherited this event will block
4331  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4332  * task existence requirements of perf_event_enable/disable.
4333  */
4334 static void perf_event_for_each_child(struct perf_event *event,
4335                                         void (*func)(struct perf_event *))
4336 {
4337         struct perf_event *child;
4338
4339         WARN_ON_ONCE(event->ctx->parent_ctx);
4340
4341         mutex_lock(&event->child_mutex);
4342         func(event);
4343         list_for_each_entry(child, &event->child_list, child_list)
4344                 func(child);
4345         mutex_unlock(&event->child_mutex);
4346 }
4347
4348 static void perf_event_for_each(struct perf_event *event,
4349                                   void (*func)(struct perf_event *))
4350 {
4351         struct perf_event_context *ctx = event->ctx;
4352         struct perf_event *sibling;
4353
4354         lockdep_assert_held(&ctx->mutex);
4355
4356         event = event->group_leader;
4357
4358         perf_event_for_each_child(event, func);
4359         list_for_each_entry(sibling, &event->sibling_list, group_entry)
4360                 perf_event_for_each_child(sibling, func);
4361 }
4362
4363 static void __perf_event_period(struct perf_event *event,
4364                                 struct perf_cpu_context *cpuctx,
4365                                 struct perf_event_context *ctx,
4366                                 void *info)
4367 {
4368         u64 value = *((u64 *)info);
4369         bool active;
4370
4371         if (event->attr.freq) {
4372                 event->attr.sample_freq = value;
4373         } else {
4374                 event->attr.sample_period = value;
4375                 event->hw.sample_period = value;
4376         }
4377
4378         active = (event->state == PERF_EVENT_STATE_ACTIVE);
4379         if (active) {
4380                 perf_pmu_disable(ctx->pmu);
4381                 /*
4382                  * We could be throttled; unthrottle now to avoid the tick
4383                  * trying to unthrottle while we already re-started the event.
4384                  */
4385                 if (event->hw.interrupts == MAX_INTERRUPTS) {
4386                         event->hw.interrupts = 0;
4387                         perf_log_throttle(event, 1);
4388                 }
4389                 event->pmu->stop(event, PERF_EF_UPDATE);
4390         }
4391
4392         local64_set(&event->hw.period_left, 0);
4393
4394         if (active) {
4395                 event->pmu->start(event, PERF_EF_RELOAD);
4396                 perf_pmu_enable(ctx->pmu);
4397         }
4398 }
4399
4400 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4401 {
4402         u64 value;
4403
4404         if (!is_sampling_event(event))
4405                 return -EINVAL;
4406
4407         if (copy_from_user(&value, arg, sizeof(value)))
4408                 return -EFAULT;
4409
4410         if (!value)
4411                 return -EINVAL;
4412
4413         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4414                 return -EINVAL;
4415
4416         event_function_call(event, __perf_event_period, &value);
4417
4418         return 0;
4419 }
4420
4421 static const struct file_operations perf_fops;
4422
4423 static inline int perf_fget_light(int fd, struct fd *p)
4424 {
4425         struct fd f = fdget(fd);
4426         if (!f.file)
4427                 return -EBADF;
4428
4429         if (f.file->f_op != &perf_fops) {
4430                 fdput(f);
4431                 return -EBADF;
4432         }
4433         *p = f;
4434         return 0;
4435 }
4436
4437 static int perf_event_set_output(struct perf_event *event,
4438                                  struct perf_event *output_event);
4439 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4440 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4441
4442 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4443 {
4444         void (*func)(struct perf_event *);
4445         u32 flags = arg;
4446
4447         switch (cmd) {
4448         case PERF_EVENT_IOC_ENABLE:
4449                 func = _perf_event_enable;
4450                 break;
4451         case PERF_EVENT_IOC_DISABLE:
4452                 func = _perf_event_disable;
4453                 break;
4454         case PERF_EVENT_IOC_RESET:
4455                 func = _perf_event_reset;
4456                 break;
4457
4458         case PERF_EVENT_IOC_REFRESH:
4459                 return _perf_event_refresh(event, arg);
4460
4461         case PERF_EVENT_IOC_PERIOD:
4462                 return perf_event_period(event, (u64 __user *)arg);
4463
4464         case PERF_EVENT_IOC_ID:
4465         {
4466                 u64 id = primary_event_id(event);
4467
4468                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4469                         return -EFAULT;
4470                 return 0;
4471         }
4472
4473         case PERF_EVENT_IOC_SET_OUTPUT:
4474         {
4475                 int ret;
4476                 if (arg != -1) {
4477                         struct perf_event *output_event;
4478                         struct fd output;
4479                         ret = perf_fget_light(arg, &output);
4480                         if (ret)
4481                                 return ret;
4482                         output_event = output.file->private_data;
4483                         ret = perf_event_set_output(event, output_event);
4484                         fdput(output);
4485                 } else {
4486                         ret = perf_event_set_output(event, NULL);
4487                 }
4488                 return ret;
4489         }
4490
4491         case PERF_EVENT_IOC_SET_FILTER:
4492                 return perf_event_set_filter(event, (void __user *)arg);
4493
4494         case PERF_EVENT_IOC_SET_BPF:
4495                 return perf_event_set_bpf_prog(event, arg);
4496
4497         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4498                 struct ring_buffer *rb;
4499
4500                 rcu_read_lock();
4501                 rb = rcu_dereference(event->rb);
4502                 if (!rb || !rb->nr_pages) {
4503                         rcu_read_unlock();
4504                         return -EINVAL;
4505                 }
4506                 rb_toggle_paused(rb, !!arg);
4507                 rcu_read_unlock();
4508                 return 0;
4509         }
4510         default:
4511                 return -ENOTTY;
4512         }
4513
4514         if (flags & PERF_IOC_FLAG_GROUP)
4515                 perf_event_for_each(event, func);
4516         else
4517                 perf_event_for_each_child(event, func);
4518
4519         return 0;
4520 }
4521
4522 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4523 {
4524         struct perf_event *event = file->private_data;
4525         struct perf_event_context *ctx;
4526         long ret;
4527
4528         ctx = perf_event_ctx_lock(event);
4529         ret = _perf_ioctl(event, cmd, arg);
4530         perf_event_ctx_unlock(event, ctx);
4531
4532         return ret;
4533 }
4534
4535 #ifdef CONFIG_COMPAT
4536 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4537                                 unsigned long arg)
4538 {
4539         switch (_IOC_NR(cmd)) {
4540         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4541         case _IOC_NR(PERF_EVENT_IOC_ID):
4542                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4543                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4544                         cmd &= ~IOCSIZE_MASK;
4545                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4546                 }
4547                 break;
4548         }
4549         return perf_ioctl(file, cmd, arg);
4550 }
4551 #else
4552 # define perf_compat_ioctl NULL
4553 #endif
4554
4555 int perf_event_task_enable(void)
4556 {
4557         struct perf_event_context *ctx;
4558         struct perf_event *event;
4559
4560         mutex_lock(&current->perf_event_mutex);
4561         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4562                 ctx = perf_event_ctx_lock(event);
4563                 perf_event_for_each_child(event, _perf_event_enable);
4564                 perf_event_ctx_unlock(event, ctx);
4565         }
4566         mutex_unlock(&current->perf_event_mutex);
4567
4568         return 0;
4569 }
4570
4571 int perf_event_task_disable(void)
4572 {
4573         struct perf_event_context *ctx;
4574         struct perf_event *event;
4575
4576         mutex_lock(&current->perf_event_mutex);
4577         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4578                 ctx = perf_event_ctx_lock(event);
4579                 perf_event_for_each_child(event, _perf_event_disable);
4580                 perf_event_ctx_unlock(event, ctx);
4581         }
4582         mutex_unlock(&current->perf_event_mutex);
4583
4584         return 0;
4585 }
4586
4587 static int perf_event_index(struct perf_event *event)
4588 {
4589         if (event->hw.state & PERF_HES_STOPPED)
4590                 return 0;
4591
4592         if (event->state != PERF_EVENT_STATE_ACTIVE)
4593                 return 0;
4594
4595         return event->pmu->event_idx(event);
4596 }
4597
4598 static void calc_timer_values(struct perf_event *event,
4599                                 u64 *now,
4600                                 u64 *enabled,
4601                                 u64 *running)
4602 {
4603         u64 ctx_time;
4604
4605         *now = perf_clock();
4606         ctx_time = event->shadow_ctx_time + *now;
4607         *enabled = ctx_time - event->tstamp_enabled;
4608         *running = ctx_time - event->tstamp_running;
4609 }
4610
4611 static void perf_event_init_userpage(struct perf_event *event)
4612 {
4613         struct perf_event_mmap_page *userpg;
4614         struct ring_buffer *rb;
4615
4616         rcu_read_lock();
4617         rb = rcu_dereference(event->rb);
4618         if (!rb)
4619                 goto unlock;
4620
4621         userpg = rb->user_page;
4622
4623         /* Allow new userspace to detect that bit 0 is deprecated */
4624         userpg->cap_bit0_is_deprecated = 1;
4625         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4626         userpg->data_offset = PAGE_SIZE;
4627         userpg->data_size = perf_data_size(rb);
4628
4629 unlock:
4630         rcu_read_unlock();
4631 }
4632
4633 void __weak arch_perf_update_userpage(
4634         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4635 {
4636 }
4637
4638 /*
4639  * Callers need to ensure there can be no nesting of this function, otherwise
4640  * the seqlock logic goes bad. We can not serialize this because the arch
4641  * code calls this from NMI context.
4642  */
4643 void perf_event_update_userpage(struct perf_event *event)
4644 {
4645         struct perf_event_mmap_page *userpg;
4646         struct ring_buffer *rb;
4647         u64 enabled, running, now;
4648
4649         rcu_read_lock();
4650         rb = rcu_dereference(event->rb);
4651         if (!rb)
4652                 goto unlock;
4653
4654         /*
4655          * compute total_time_enabled, total_time_running
4656          * based on snapshot values taken when the event
4657          * was last scheduled in.
4658          *
4659          * we cannot simply called update_context_time()
4660          * because of locking issue as we can be called in
4661          * NMI context
4662          */
4663         calc_timer_values(event, &now, &enabled, &running);
4664
4665         userpg = rb->user_page;
4666         /*
4667          * Disable preemption so as to not let the corresponding user-space
4668          * spin too long if we get preempted.
4669          */
4670         preempt_disable();
4671         ++userpg->lock;
4672         barrier();
4673         userpg->index = perf_event_index(event);
4674         userpg->offset = perf_event_count(event);
4675         if (userpg->index)
4676                 userpg->offset -= local64_read(&event->hw.prev_count);
4677
4678         userpg->time_enabled = enabled +
4679                         atomic64_read(&event->child_total_time_enabled);
4680
4681         userpg->time_running = running +
4682                         atomic64_read(&event->child_total_time_running);
4683
4684         arch_perf_update_userpage(event, userpg, now);
4685
4686         barrier();
4687         ++userpg->lock;
4688         preempt_enable();
4689 unlock:
4690         rcu_read_unlock();
4691 }
4692
4693 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4694 {
4695         struct perf_event *event = vma->vm_file->private_data;
4696         struct ring_buffer *rb;
4697         int ret = VM_FAULT_SIGBUS;
4698
4699         if (vmf->flags & FAULT_FLAG_MKWRITE) {
4700                 if (vmf->pgoff == 0)
4701                         ret = 0;
4702                 return ret;
4703         }
4704
4705         rcu_read_lock();
4706         rb = rcu_dereference(event->rb);
4707         if (!rb)
4708                 goto unlock;
4709
4710         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4711                 goto unlock;
4712
4713         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4714         if (!vmf->page)
4715                 goto unlock;
4716
4717         get_page(vmf->page);
4718         vmf->page->mapping = vma->vm_file->f_mapping;
4719         vmf->page->index   = vmf->pgoff;
4720
4721         ret = 0;
4722 unlock:
4723         rcu_read_unlock();
4724
4725         return ret;
4726 }
4727
4728 static void ring_buffer_attach(struct perf_event *event,
4729                                struct ring_buffer *rb)
4730 {
4731         struct ring_buffer *old_rb = NULL;
4732         unsigned long flags;
4733
4734         if (event->rb) {
4735                 /*
4736                  * Should be impossible, we set this when removing
4737                  * event->rb_entry and wait/clear when adding event->rb_entry.
4738                  */
4739                 WARN_ON_ONCE(event->rcu_pending);
4740
4741                 old_rb = event->rb;
4742                 spin_lock_irqsave(&old_rb->event_lock, flags);
4743                 list_del_rcu(&event->rb_entry);
4744                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4745
4746                 event->rcu_batches = get_state_synchronize_rcu();
4747                 event->rcu_pending = 1;
4748         }
4749
4750         if (rb) {
4751                 if (event->rcu_pending) {
4752                         cond_synchronize_rcu(event->rcu_batches);
4753                         event->rcu_pending = 0;
4754                 }
4755
4756                 spin_lock_irqsave(&rb->event_lock, flags);
4757                 list_add_rcu(&event->rb_entry, &rb->event_list);
4758                 spin_unlock_irqrestore(&rb->event_lock, flags);
4759         }
4760
4761         rcu_assign_pointer(event->rb, rb);
4762
4763         if (old_rb) {
4764                 ring_buffer_put(old_rb);
4765                 /*
4766                  * Since we detached before setting the new rb, so that we
4767                  * could attach the new rb, we could have missed a wakeup.
4768                  * Provide it now.
4769                  */
4770                 wake_up_all(&event->waitq);
4771         }
4772 }
4773
4774 static void ring_buffer_wakeup(struct perf_event *event)
4775 {
4776         struct ring_buffer *rb;
4777
4778         rcu_read_lock();
4779         rb = rcu_dereference(event->rb);
4780         if (rb) {
4781                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4782                         wake_up_all(&event->waitq);
4783         }
4784         rcu_read_unlock();
4785 }
4786
4787 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4788 {
4789         struct ring_buffer *rb;
4790
4791         rcu_read_lock();
4792         rb = rcu_dereference(event->rb);
4793         if (rb) {
4794                 if (!atomic_inc_not_zero(&rb->refcount))
4795                         rb = NULL;
4796         }
4797         rcu_read_unlock();
4798
4799         return rb;
4800 }
4801
4802 void ring_buffer_put(struct ring_buffer *rb)
4803 {
4804         if (!atomic_dec_and_test(&rb->refcount))
4805                 return;
4806
4807         WARN_ON_ONCE(!list_empty(&rb->event_list));
4808
4809         call_rcu(&rb->rcu_head, rb_free_rcu);
4810 }
4811
4812 static void perf_mmap_open(struct vm_area_struct *vma)
4813 {
4814         struct perf_event *event = vma->vm_file->private_data;
4815
4816         atomic_inc(&event->mmap_count);
4817         atomic_inc(&event->rb->mmap_count);
4818
4819         if (vma->vm_pgoff)
4820                 atomic_inc(&event->rb->aux_mmap_count);
4821
4822         if (event->pmu->event_mapped)
4823                 event->pmu->event_mapped(event);
4824 }
4825
4826 static void perf_pmu_output_stop(struct perf_event *event);
4827
4828 /*
4829  * A buffer can be mmap()ed multiple times; either directly through the same
4830  * event, or through other events by use of perf_event_set_output().
4831  *
4832  * In order to undo the VM accounting done by perf_mmap() we need to destroy
4833  * the buffer here, where we still have a VM context. This means we need
4834  * to detach all events redirecting to us.
4835  */
4836 static void perf_mmap_close(struct vm_area_struct *vma)
4837 {
4838         struct perf_event *event = vma->vm_file->private_data;
4839
4840         struct ring_buffer *rb = ring_buffer_get(event);
4841         struct user_struct *mmap_user = rb->mmap_user;
4842         int mmap_locked = rb->mmap_locked;
4843         unsigned long size = perf_data_size(rb);
4844
4845         if (event->pmu->event_unmapped)
4846                 event->pmu->event_unmapped(event);
4847
4848         /*
4849          * rb->aux_mmap_count will always drop before rb->mmap_count and
4850          * event->mmap_count, so it is ok to use event->mmap_mutex to
4851          * serialize with perf_mmap here.
4852          */
4853         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4854             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4855                 /*
4856                  * Stop all AUX events that are writing to this buffer,
4857                  * so that we can free its AUX pages and corresponding PMU
4858                  * data. Note that after rb::aux_mmap_count dropped to zero,
4859                  * they won't start any more (see perf_aux_output_begin()).
4860                  */
4861                 perf_pmu_output_stop(event);
4862
4863                 /* now it's safe to free the pages */
4864                 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4865                 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4866
4867                 /* this has to be the last one */
4868                 rb_free_aux(rb);
4869                 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
4870
4871                 mutex_unlock(&event->mmap_mutex);
4872         }
4873
4874         atomic_dec(&rb->mmap_count);
4875
4876         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4877                 goto out_put;
4878
4879         ring_buffer_attach(event, NULL);
4880         mutex_unlock(&event->mmap_mutex);
4881
4882         /* If there's still other mmap()s of this buffer, we're done. */
4883         if (atomic_read(&rb->mmap_count))
4884                 goto out_put;
4885
4886         /*
4887          * No other mmap()s, detach from all other events that might redirect
4888          * into the now unreachable buffer. Somewhat complicated by the
4889          * fact that rb::event_lock otherwise nests inside mmap_mutex.
4890          */
4891 again:
4892         rcu_read_lock();
4893         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4894                 if (!atomic_long_inc_not_zero(&event->refcount)) {
4895                         /*
4896                          * This event is en-route to free_event() which will
4897                          * detach it and remove it from the list.
4898                          */
4899                         continue;
4900                 }
4901                 rcu_read_unlock();
4902
4903                 mutex_lock(&event->mmap_mutex);
4904                 /*
4905                  * Check we didn't race with perf_event_set_output() which can
4906                  * swizzle the rb from under us while we were waiting to
4907                  * acquire mmap_mutex.
4908                  *
4909                  * If we find a different rb; ignore this event, a next
4910                  * iteration will no longer find it on the list. We have to
4911                  * still restart the iteration to make sure we're not now
4912                  * iterating the wrong list.
4913                  */
4914                 if (event->rb == rb)
4915                         ring_buffer_attach(event, NULL);
4916
4917                 mutex_unlock(&event->mmap_mutex);
4918                 put_event(event);
4919
4920                 /*
4921                  * Restart the iteration; either we're on the wrong list or
4922                  * destroyed its integrity by doing a deletion.
4923                  */
4924                 goto again;
4925         }
4926         rcu_read_unlock();
4927
4928         /*
4929          * It could be there's still a few 0-ref events on the list; they'll
4930          * get cleaned up by free_event() -- they'll also still have their
4931          * ref on the rb and will free it whenever they are done with it.
4932          *
4933          * Aside from that, this buffer is 'fully' detached and unmapped,
4934          * undo the VM accounting.
4935          */
4936
4937         atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4938         vma->vm_mm->pinned_vm -= mmap_locked;
4939         free_uid(mmap_user);
4940
4941 out_put:
4942         ring_buffer_put(rb); /* could be last */
4943 }
4944
4945 static const struct vm_operations_struct perf_mmap_vmops = {
4946         .open           = perf_mmap_open,
4947         .close          = perf_mmap_close, /* non mergable */
4948         .fault          = perf_mmap_fault,
4949         .page_mkwrite   = perf_mmap_fault,
4950 };
4951
4952 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4953 {
4954         struct perf_event *event = file->private_data;
4955         unsigned long user_locked, user_lock_limit;
4956         struct user_struct *user = current_user();
4957         unsigned long locked, lock_limit;
4958         struct ring_buffer *rb = NULL;
4959         unsigned long vma_size;
4960         unsigned long nr_pages;
4961         long user_extra = 0, extra = 0;
4962         int ret = 0, flags = 0;
4963
4964         /*
4965          * Don't allow mmap() of inherited per-task counters. This would
4966          * create a performance issue due to all children writing to the
4967          * same rb.
4968          */
4969         if (event->cpu == -1 && event->attr.inherit)
4970                 return -EINVAL;
4971
4972         if (!(vma->vm_flags & VM_SHARED))
4973                 return -EINVAL;
4974
4975         vma_size = vma->vm_end - vma->vm_start;
4976
4977         if (vma->vm_pgoff == 0) {
4978                 nr_pages = (vma_size / PAGE_SIZE) - 1;
4979         } else {
4980                 /*
4981                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4982                  * mapped, all subsequent mappings should have the same size
4983                  * and offset. Must be above the normal perf buffer.
4984                  */
4985                 u64 aux_offset, aux_size;
4986
4987                 if (!event->rb)
4988                         return -EINVAL;
4989
4990                 nr_pages = vma_size / PAGE_SIZE;
4991
4992                 mutex_lock(&event->mmap_mutex);
4993                 ret = -EINVAL;
4994
4995                 rb = event->rb;
4996                 if (!rb)
4997                         goto aux_unlock;
4998
4999                 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5000                 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5001
5002                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5003                         goto aux_unlock;
5004
5005                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5006                         goto aux_unlock;
5007
5008                 /* already mapped with a different offset */
5009                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5010                         goto aux_unlock;
5011
5012                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5013                         goto aux_unlock;
5014
5015                 /* already mapped with a different size */
5016                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5017                         goto aux_unlock;
5018
5019                 if (!is_power_of_2(nr_pages))
5020                         goto aux_unlock;
5021
5022                 if (!atomic_inc_not_zero(&rb->mmap_count))
5023                         goto aux_unlock;
5024
5025                 if (rb_has_aux(rb)) {
5026                         atomic_inc(&rb->aux_mmap_count);
5027                         ret = 0;
5028                         goto unlock;
5029                 }
5030
5031                 atomic_set(&rb->aux_mmap_count, 1);
5032                 user_extra = nr_pages;
5033
5034                 goto accounting;
5035         }
5036
5037         /*
5038          * If we have rb pages ensure they're a power-of-two number, so we
5039          * can do bitmasks instead of modulo.
5040          */
5041         if (nr_pages != 0 && !is_power_of_2(nr_pages))
5042                 return -EINVAL;
5043
5044         if (vma_size != PAGE_SIZE * (1 + nr_pages))
5045                 return -EINVAL;
5046
5047         WARN_ON_ONCE(event->ctx->parent_ctx);
5048 again:
5049         mutex_lock(&event->mmap_mutex);
5050         if (event->rb) {
5051                 if (event->rb->nr_pages != nr_pages) {
5052                         ret = -EINVAL;
5053                         goto unlock;
5054                 }
5055
5056                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5057                         /*
5058                          * Raced against perf_mmap_close() through
5059                          * perf_event_set_output(). Try again, hope for better
5060                          * luck.
5061                          */
5062                         mutex_unlock(&event->mmap_mutex);
5063                         goto again;
5064                 }
5065
5066                 goto unlock;
5067         }
5068
5069         user_extra = nr_pages + 1;
5070
5071 accounting:
5072         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5073
5074         /*
5075          * Increase the limit linearly with more CPUs:
5076          */
5077         user_lock_limit *= num_online_cpus();
5078
5079         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5080
5081         if (user_locked > user_lock_limit)
5082                 extra = user_locked - user_lock_limit;
5083
5084         lock_limit = rlimit(RLIMIT_MEMLOCK);
5085         lock_limit >>= PAGE_SHIFT;
5086         locked = vma->vm_mm->pinned_vm + extra;
5087
5088         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5089                 !capable(CAP_IPC_LOCK)) {
5090                 ret = -EPERM;
5091                 goto unlock;
5092         }
5093
5094         WARN_ON(!rb && event->rb);
5095
5096         if (vma->vm_flags & VM_WRITE)
5097                 flags |= RING_BUFFER_WRITABLE;
5098
5099         if (!rb) {
5100                 rb = rb_alloc(nr_pages,
5101                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
5102                               event->cpu, flags);
5103
5104                 if (!rb) {
5105                         ret = -ENOMEM;
5106                         goto unlock;
5107                 }
5108
5109                 atomic_set(&rb->mmap_count, 1);
5110                 rb->mmap_user = get_current_user();
5111                 rb->mmap_locked = extra;
5112
5113                 ring_buffer_attach(event, rb);
5114
5115                 perf_event_init_userpage(event);
5116                 perf_event_update_userpage(event);
5117         } else {
5118                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5119                                    event->attr.aux_watermark, flags);
5120                 if (!ret)
5121                         rb->aux_mmap_locked = extra;
5122         }
5123
5124 unlock:
5125         if (!ret) {
5126                 atomic_long_add(user_extra, &user->locked_vm);
5127                 vma->vm_mm->pinned_vm += extra;
5128
5129                 atomic_inc(&event->mmap_count);
5130         } else if (rb) {
5131                 atomic_dec(&rb->mmap_count);
5132         }
5133 aux_unlock:
5134         mutex_unlock(&event->mmap_mutex);
5135
5136         /*
5137          * Since pinned accounting is per vm we cannot allow fork() to copy our
5138          * vma.
5139          */
5140         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5141         vma->vm_ops = &perf_mmap_vmops;
5142
5143         if (event->pmu->event_mapped)
5144                 event->pmu->event_mapped(event);
5145
5146         return ret;
5147 }
5148
5149 static int perf_fasync(int fd, struct file *filp, int on)
5150 {
5151         struct inode *inode = file_inode(filp);
5152         struct perf_event *event = filp->private_data;
5153         int retval;
5154
5155         inode_lock(inode);
5156         retval = fasync_helper(fd, filp, on, &event->fasync);
5157         inode_unlock(inode);
5158
5159         if (retval < 0)
5160                 return retval;
5161
5162         return 0;
5163 }
5164
5165 static const struct file_operations perf_fops = {
5166         .llseek                 = no_llseek,
5167         .release                = perf_release,
5168         .read                   = perf_read,
5169         .poll                   = perf_poll,
5170         .unlocked_ioctl         = perf_ioctl,
5171         .compat_ioctl           = perf_compat_ioctl,
5172         .mmap                   = perf_mmap,
5173         .fasync                 = perf_fasync,
5174 };
5175
5176 /*
5177  * Perf event wakeup
5178  *
5179  * If there's data, ensure we set the poll() state and publish everything
5180  * to user-space before waking everybody up.
5181  */
5182
5183 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5184 {
5185         /* only the parent has fasync state */
5186         if (event->parent)
5187                 event = event->parent;
5188         return &event->fasync;
5189 }
5190
5191 void perf_event_wakeup(struct perf_event *event)
5192 {
5193         ring_buffer_wakeup(event);
5194
5195         if (event->pending_kill) {
5196                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5197                 event->pending_kill = 0;
5198         }
5199 }
5200
5201 static void perf_pending_event(struct irq_work *entry)
5202 {
5203         struct perf_event *event = container_of(entry,
5204                         struct perf_event, pending);
5205         int rctx;
5206
5207         rctx = perf_swevent_get_recursion_context();
5208         /*
5209          * If we 'fail' here, that's OK, it means recursion is already disabled
5210          * and we won't recurse 'further'.
5211          */
5212
5213         if (event->pending_disable) {
5214                 event->pending_disable = 0;
5215                 perf_event_disable_local(event);
5216         }
5217
5218         if (event->pending_wakeup) {
5219                 event->pending_wakeup = 0;
5220                 perf_event_wakeup(event);
5221         }
5222
5223         if (rctx >= 0)
5224                 perf_swevent_put_recursion_context(rctx);
5225 }
5226
5227 /*
5228  * We assume there is only KVM supporting the callbacks.
5229  * Later on, we might change it to a list if there is
5230  * another virtualization implementation supporting the callbacks.
5231  */
5232 struct perf_guest_info_callbacks *perf_guest_cbs;
5233
5234 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5235 {
5236         perf_guest_cbs = cbs;
5237         return 0;
5238 }
5239 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5240
5241 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5242 {
5243         perf_guest_cbs = NULL;
5244         return 0;
5245 }
5246 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5247
5248 static void
5249 perf_output_sample_regs(struct perf_output_handle *handle,
5250                         struct pt_regs *regs, u64 mask)
5251 {
5252         int bit;
5253
5254         for_each_set_bit(bit, (const unsigned long *) &mask,
5255                          sizeof(mask) * BITS_PER_BYTE) {
5256                 u64 val;
5257
5258                 val = perf_reg_value(regs, bit);
5259                 perf_output_put(handle, val);
5260         }
5261 }
5262
5263 static void perf_sample_regs_user(struct perf_regs *regs_user,
5264                                   struct pt_regs *regs,
5265                                   struct pt_regs *regs_user_copy)
5266 {
5267         if (user_mode(regs)) {
5268                 regs_user->abi = perf_reg_abi(current);
5269                 regs_user->regs = regs;
5270         } else if (current->mm) {
5271                 perf_get_regs_user(regs_user, regs, regs_user_copy);
5272         } else {
5273                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5274                 regs_user->regs = NULL;
5275         }
5276 }
5277
5278 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5279                                   struct pt_regs *regs)
5280 {
5281         regs_intr->regs = regs;
5282         regs_intr->abi  = perf_reg_abi(current);
5283 }
5284
5285
5286 /*
5287  * Get remaining task size from user stack pointer.
5288  *
5289  * It'd be better to take stack vma map and limit this more
5290  * precisly, but there's no way to get it safely under interrupt,
5291  * so using TASK_SIZE as limit.
5292  */
5293 static u64 perf_ustack_task_size(struct pt_regs *regs)
5294 {
5295         unsigned long addr = perf_user_stack_pointer(regs);
5296
5297         if (!addr || addr >= TASK_SIZE)
5298                 return 0;
5299
5300         return TASK_SIZE - addr;
5301 }
5302
5303 static u16
5304 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5305                         struct pt_regs *regs)
5306 {
5307         u64 task_size;
5308
5309         /* No regs, no stack pointer, no dump. */
5310         if (!regs)
5311                 return 0;
5312
5313         /*
5314          * Check if we fit in with the requested stack size into the:
5315          * - TASK_SIZE
5316          *   If we don't, we limit the size to the TASK_SIZE.
5317          *
5318          * - remaining sample size
5319          *   If we don't, we customize the stack size to
5320          *   fit in to the remaining sample size.
5321          */
5322
5323         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5324         stack_size = min(stack_size, (u16) task_size);
5325
5326         /* Current header size plus static size and dynamic size. */
5327         header_size += 2 * sizeof(u64);
5328
5329         /* Do we fit in with the current stack dump size? */
5330         if ((u16) (header_size + stack_size) < header_size) {
5331                 /*
5332                  * If we overflow the maximum size for the sample,
5333                  * we customize the stack dump size to fit in.
5334                  */
5335                 stack_size = USHRT_MAX - header_size - sizeof(u64);
5336                 stack_size = round_up(stack_size, sizeof(u64));
5337         }
5338
5339         return stack_size;
5340 }
5341
5342 static void
5343 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5344                           struct pt_regs *regs)
5345 {
5346         /* Case of a kernel thread, nothing to dump */
5347         if (!regs) {
5348                 u64 size = 0;
5349                 perf_output_put(handle, size);
5350         } else {
5351                 unsigned long sp;
5352                 unsigned int rem;
5353                 u64 dyn_size;
5354
5355                 /*
5356                  * We dump:
5357                  * static size
5358                  *   - the size requested by user or the best one we can fit
5359                  *     in to the sample max size
5360                  * data
5361                  *   - user stack dump data
5362                  * dynamic size
5363                  *   - the actual dumped size
5364                  */
5365
5366                 /* Static size. */
5367                 perf_output_put(handle, dump_size);
5368
5369                 /* Data. */
5370                 sp = perf_user_stack_pointer(regs);
5371                 rem = __output_copy_user(handle, (void *) sp, dump_size);
5372                 dyn_size = dump_size - rem;
5373
5374                 perf_output_skip(handle, rem);
5375
5376                 /* Dynamic size. */
5377                 perf_output_put(handle, dyn_size);
5378         }
5379 }
5380
5381 static void __perf_event_header__init_id(struct perf_event_header *header,
5382                                          struct perf_sample_data *data,
5383                                          struct perf_event *event)
5384 {
5385         u64 sample_type = event->attr.sample_type;
5386
5387         data->type = sample_type;
5388         header->size += event->id_header_size;
5389
5390         if (sample_type & PERF_SAMPLE_TID) {
5391                 /* namespace issues */
5392                 data->tid_entry.pid = perf_event_pid(event, current);
5393                 data->tid_entry.tid = perf_event_tid(event, current);
5394         }
5395
5396         if (sample_type & PERF_SAMPLE_TIME)
5397                 data->time = perf_event_clock(event);
5398
5399         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5400                 data->id = primary_event_id(event);
5401
5402         if (sample_type & PERF_SAMPLE_STREAM_ID)
5403                 data->stream_id = event->id;
5404
5405         if (sample_type & PERF_SAMPLE_CPU) {
5406                 data->cpu_entry.cpu      = raw_smp_processor_id();
5407                 data->cpu_entry.reserved = 0;
5408         }
5409 }
5410
5411 void perf_event_header__init_id(struct perf_event_header *header,
5412                                 struct perf_sample_data *data,
5413                                 struct perf_event *event)
5414 {
5415         if (event->attr.sample_id_all)
5416                 __perf_event_header__init_id(header, data, event);
5417 }
5418
5419 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5420                                            struct perf_sample_data *data)
5421 {
5422         u64 sample_type = data->type;
5423
5424         if (sample_type & PERF_SAMPLE_TID)
5425                 perf_output_put(handle, data->tid_entry);
5426
5427         if (sample_type & PERF_SAMPLE_TIME)
5428                 perf_output_put(handle, data->time);
5429
5430         if (sample_type & PERF_SAMPLE_ID)
5431                 perf_output_put(handle, data->id);
5432
5433         if (sample_type & PERF_SAMPLE_STREAM_ID)
5434                 perf_output_put(handle, data->stream_id);
5435
5436         if (sample_type & PERF_SAMPLE_CPU)
5437                 perf_output_put(handle, data->cpu_entry);
5438
5439         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5440                 perf_output_put(handle, data->id);
5441 }
5442
5443 void perf_event__output_id_sample(struct perf_event *event,
5444                                   struct perf_output_handle *handle,
5445                                   struct perf_sample_data *sample)
5446 {
5447         if (event->attr.sample_id_all)
5448                 __perf_event__output_id_sample(handle, sample);
5449 }
5450
5451 static void perf_output_read_one(struct perf_output_handle *handle,
5452                                  struct perf_event *event,
5453                                  u64 enabled, u64 running)
5454 {
5455         u64 read_format = event->attr.read_format;
5456         u64 values[4];
5457         int n = 0;
5458
5459         values[n++] = perf_event_count(event);
5460         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5461                 values[n++] = enabled +
5462                         atomic64_read(&event->child_total_time_enabled);
5463         }
5464         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5465                 values[n++] = running +
5466                         atomic64_read(&event->child_total_time_running);
5467         }
5468         if (read_format & PERF_FORMAT_ID)
5469                 values[n++] = primary_event_id(event);
5470
5471         __output_copy(handle, values, n * sizeof(u64));
5472 }
5473
5474 /*
5475  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5476  */
5477 static void perf_output_read_group(struct perf_output_handle *handle,
5478                             struct perf_event *event,
5479                             u64 enabled, u64 running)
5480 {
5481         struct perf_event *leader = event->group_leader, *sub;
5482         u64 read_format = event->attr.read_format;
5483         u64 values[5];
5484         int n = 0;
5485
5486         values[n++] = 1 + leader->nr_siblings;
5487
5488         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5489                 values[n++] = enabled;
5490
5491         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5492                 values[n++] = running;
5493
5494         if (leader != event)
5495                 leader->pmu->read(leader);
5496
5497         values[n++] = perf_event_count(leader);
5498         if (read_format & PERF_FORMAT_ID)
5499                 values[n++] = primary_event_id(leader);
5500
5501         __output_copy(handle, values, n * sizeof(u64));
5502
5503         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5504                 n = 0;
5505
5506                 if ((sub != event) &&
5507                     (sub->state == PERF_EVENT_STATE_ACTIVE))
5508                         sub->pmu->read(sub);
5509
5510                 values[n++] = perf_event_count(sub);
5511                 if (read_format & PERF_FORMAT_ID)
5512                         values[n++] = primary_event_id(sub);
5513
5514                 __output_copy(handle, values, n * sizeof(u64));
5515         }
5516 }
5517
5518 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5519                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
5520
5521 static void perf_output_read(struct perf_output_handle *handle,
5522                              struct perf_event *event)
5523 {
5524         u64 enabled = 0, running = 0, now;
5525         u64 read_format = event->attr.read_format;
5526
5527         /*
5528          * compute total_time_enabled, total_time_running
5529          * based on snapshot values taken when the event
5530          * was last scheduled in.
5531          *
5532          * we cannot simply called update_context_time()
5533          * because of locking issue as we are called in
5534          * NMI context
5535          */
5536         if (read_format & PERF_FORMAT_TOTAL_TIMES)
5537                 calc_timer_values(event, &now, &enabled, &running);
5538
5539         if (event->attr.read_format & PERF_FORMAT_GROUP)
5540                 perf_output_read_group(handle, event, enabled, running);
5541         else
5542                 perf_output_read_one(handle, event, enabled, running);
5543 }
5544
5545 void perf_output_sample(struct perf_output_handle *handle,
5546                         struct perf_event_header *header,
5547                         struct perf_sample_data *data,
5548                         struct perf_event *event)
5549 {
5550         u64 sample_type = data->type;
5551
5552         perf_output_put(handle, *header);
5553
5554         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5555                 perf_output_put(handle, data->id);
5556
5557         if (sample_type & PERF_SAMPLE_IP)
5558                 perf_output_put(handle, data->ip);
5559
5560         if (sample_type & PERF_SAMPLE_TID)
5561                 perf_output_put(handle, data->tid_entry);
5562
5563         if (sample_type & PERF_SAMPLE_TIME)
5564                 perf_output_put(handle, data->time);
5565
5566         if (sample_type & PERF_SAMPLE_ADDR)
5567                 perf_output_put(handle, data->addr);
5568
5569         if (sample_type & PERF_SAMPLE_ID)
5570                 perf_output_put(handle, data->id);
5571
5572         if (sample_type & PERF_SAMPLE_STREAM_ID)
5573                 perf_output_put(handle, data->stream_id);
5574
5575         if (sample_type & PERF_SAMPLE_CPU)
5576                 perf_output_put(handle, data->cpu_entry);
5577
5578         if (sample_type & PERF_SAMPLE_PERIOD)
5579                 perf_output_put(handle, data->period);
5580
5581         if (sample_type & PERF_SAMPLE_READ)
5582                 perf_output_read(handle, event);
5583
5584         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5585                 if (data->callchain) {
5586                         int size = 1;
5587
5588                         if (data->callchain)
5589                                 size += data->callchain->nr;
5590
5591                         size *= sizeof(u64);
5592
5593                         __output_copy(handle, data->callchain, size);
5594                 } else {
5595                         u64 nr = 0;
5596                         perf_output_put(handle, nr);
5597                 }
5598         }
5599
5600         if (sample_type & PERF_SAMPLE_RAW) {
5601                 if (data->raw) {
5602                         u32 raw_size = data->raw->size;
5603                         u32 real_size = round_up(raw_size + sizeof(u32),
5604                                                  sizeof(u64)) - sizeof(u32);
5605                         u64 zero = 0;
5606
5607                         perf_output_put(handle, real_size);
5608                         __output_copy(handle, data->raw->data, raw_size);
5609                         if (real_size - raw_size)
5610                                 __output_copy(handle, &zero, real_size - raw_size);
5611                 } else {
5612                         struct {
5613                                 u32     size;
5614                                 u32     data;
5615                         } raw = {
5616                                 .size = sizeof(u32),
5617                                 .data = 0,
5618                         };
5619                         perf_output_put(handle, raw);
5620                 }
5621         }
5622
5623         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5624                 if (data->br_stack) {
5625                         size_t size;
5626
5627                         size = data->br_stack->nr
5628                              * sizeof(struct perf_branch_entry);
5629
5630                         perf_output_put(handle, data->br_stack->nr);
5631                         perf_output_copy(handle, data->br_stack->entries, size);
5632                 } else {
5633                         /*
5634                          * we always store at least the value of nr
5635                          */
5636                         u64 nr = 0;
5637                         perf_output_put(handle, nr);
5638                 }
5639         }
5640
5641         if (sample_type & PERF_SAMPLE_REGS_USER) {
5642                 u64 abi = data->regs_user.abi;
5643
5644                 /*
5645                  * If there are no regs to dump, notice it through
5646                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5647                  */
5648                 perf_output_put(handle, abi);
5649
5650                 if (abi) {
5651                         u64 mask = event->attr.sample_regs_user;
5652                         perf_output_sample_regs(handle,
5653                                                 data->regs_user.regs,
5654                                                 mask);
5655                 }
5656         }
5657
5658         if (sample_type & PERF_SAMPLE_STACK_USER) {
5659                 perf_output_sample_ustack(handle,
5660                                           data->stack_user_size,
5661                                           data->regs_user.regs);
5662         }
5663
5664         if (sample_type & PERF_SAMPLE_WEIGHT)
5665                 perf_output_put(handle, data->weight);
5666
5667         if (sample_type & PERF_SAMPLE_DATA_SRC)
5668                 perf_output_put(handle, data->data_src.val);
5669
5670         if (sample_type & PERF_SAMPLE_TRANSACTION)
5671                 perf_output_put(handle, data->txn);
5672
5673         if (sample_type & PERF_SAMPLE_REGS_INTR) {
5674                 u64 abi = data->regs_intr.abi;
5675                 /*
5676                  * If there are no regs to dump, notice it through
5677                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5678                  */
5679                 perf_output_put(handle, abi);
5680
5681                 if (abi) {
5682                         u64 mask = event->attr.sample_regs_intr;
5683
5684                         perf_output_sample_regs(handle,
5685                                                 data->regs_intr.regs,
5686                                                 mask);
5687                 }
5688         }
5689
5690         if (!event->attr.watermark) {
5691                 int wakeup_events = event->attr.wakeup_events;
5692
5693                 if (wakeup_events) {
5694                         struct ring_buffer *rb = handle->rb;
5695                         int events = local_inc_return(&rb->events);
5696
5697                         if (events >= wakeup_events) {
5698                                 local_sub(wakeup_events, &rb->events);
5699                                 local_inc(&rb->wakeup);
5700                         }
5701                 }
5702         }
5703 }
5704
5705 void perf_prepare_sample(struct perf_event_header *header,
5706                          struct perf_sample_data *data,
5707                          struct perf_event *event,
5708                          struct pt_regs *regs)
5709 {
5710         u64 sample_type = event->attr.sample_type;
5711
5712         header->type = PERF_RECORD_SAMPLE;
5713         header->size = sizeof(*header) + event->header_size;
5714
5715         header->misc = 0;
5716         header->misc |= perf_misc_flags(regs);
5717
5718         __perf_event_header__init_id(header, data, event);
5719
5720         if (sample_type & PERF_SAMPLE_IP)
5721                 data->ip = perf_instruction_pointer(regs);
5722
5723         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5724                 int size = 1;
5725
5726                 data->callchain = perf_callchain(event, regs);
5727
5728                 if (data->callchain)
5729                         size += data->callchain->nr;
5730
5731                 header->size += size * sizeof(u64);
5732         }
5733
5734         if (sample_type & PERF_SAMPLE_RAW) {
5735                 int size = sizeof(u32);
5736
5737                 if (data->raw)
5738                         size += data->raw->size;
5739                 else
5740                         size += sizeof(u32);
5741
5742                 header->size += round_up(size, sizeof(u64));
5743         }
5744
5745         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5746                 int size = sizeof(u64); /* nr */
5747                 if (data->br_stack) {
5748                         size += data->br_stack->nr
5749                               * sizeof(struct perf_branch_entry);
5750                 }
5751                 header->size += size;
5752         }
5753
5754         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5755                 perf_sample_regs_user(&data->regs_user, regs,
5756                                       &data->regs_user_copy);
5757
5758         if (sample_type & PERF_SAMPLE_REGS_USER) {
5759                 /* regs dump ABI info */
5760                 int size = sizeof(u64);
5761
5762                 if (data->regs_user.regs) {
5763                         u64 mask = event->attr.sample_regs_user;
5764                         size += hweight64(mask) * sizeof(u64);
5765                 }
5766
5767                 header->size += size;
5768         }
5769
5770         if (sample_type & PERF_SAMPLE_STACK_USER) {
5771                 /*
5772                  * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5773                  * processed as the last one or have additional check added
5774                  * in case new sample type is added, because we could eat
5775                  * up the rest of the sample size.
5776                  */
5777                 u16 stack_size = event->attr.sample_stack_user;
5778                 u16 size = sizeof(u64);
5779
5780                 stack_size = perf_sample_ustack_size(stack_size, header->size,
5781                                                      data->regs_user.regs);
5782
5783                 /*
5784                  * If there is something to dump, add space for the dump
5785                  * itself and for the field that tells the dynamic size,
5786                  * which is how many have been actually dumped.
5787                  */
5788                 if (stack_size)
5789                         size += sizeof(u64) + stack_size;
5790
5791                 data->stack_user_size = stack_size;
5792                 header->size += size;
5793         }
5794
5795         if (sample_type & PERF_SAMPLE_REGS_INTR) {
5796                 /* regs dump ABI info */
5797                 int size = sizeof(u64);
5798
5799                 perf_sample_regs_intr(&data->regs_intr, regs);
5800
5801                 if (data->regs_intr.regs) {
5802                         u64 mask = event->attr.sample_regs_intr;
5803
5804                         size += hweight64(mask) * sizeof(u64);
5805                 }
5806
5807                 header->size += size;
5808         }
5809 }
5810
5811 static void __always_inline
5812 __perf_event_output(struct perf_event *event,
5813                     struct perf_sample_data *data,
5814                     struct pt_regs *regs,
5815                     int (*output_begin)(struct perf_output_handle *,
5816                                         struct perf_event *,
5817                                         unsigned int))
5818 {
5819         struct perf_output_handle handle;
5820         struct perf_event_header header;
5821
5822         /* protect the callchain buffers */
5823         rcu_read_lock();
5824
5825         perf_prepare_sample(&header, data, event, regs);
5826
5827         if (output_begin(&handle, event, header.size))
5828                 goto exit;
5829
5830         perf_output_sample(&handle, &header, data, event);
5831
5832         perf_output_end(&handle);
5833
5834 exit:
5835         rcu_read_unlock();
5836 }
5837
5838 void
5839 perf_event_output_forward(struct perf_event *event,
5840                          struct perf_sample_data *data,
5841                          struct pt_regs *regs)
5842 {
5843         __perf_event_output(event, data, regs, perf_output_begin_forward);
5844 }
5845
5846 void
5847 perf_event_output_backward(struct perf_event *event,
5848                            struct perf_sample_data *data,
5849                            struct pt_regs *regs)
5850 {
5851         __perf_event_output(event, data, regs, perf_output_begin_backward);
5852 }
5853
5854 void
5855 perf_event_output(struct perf_event *event,
5856                   struct perf_sample_data *data,
5857                   struct pt_regs *regs)
5858 {
5859         __perf_event_output(event, data, regs, perf_output_begin);
5860 }
5861
5862 /*
5863  * read event_id
5864  */
5865
5866 struct perf_read_event {
5867         struct perf_event_header        header;
5868
5869         u32                             pid;
5870         u32                             tid;
5871 };
5872
5873 static void
5874 perf_event_read_event(struct perf_event *event,
5875                         struct task_struct *task)
5876 {
5877         struct perf_output_handle handle;
5878         struct perf_sample_data sample;
5879         struct perf_read_event read_event = {
5880                 .header = {
5881                         .type = PERF_RECORD_READ,
5882                         .misc = 0,
5883                         .size = sizeof(read_event) + event->read_size,
5884                 },
5885                 .pid = perf_event_pid(event, task),
5886                 .tid = perf_event_tid(event, task),
5887         };
5888         int ret;
5889
5890         perf_event_header__init_id(&read_event.header, &sample, event);
5891         ret = perf_output_begin(&handle, event, read_event.header.size);
5892         if (ret)
5893                 return;
5894
5895         perf_output_put(&handle, read_event);
5896         perf_output_read(&handle, event);
5897         perf_event__output_id_sample(event, &handle, &sample);
5898
5899         perf_output_end(&handle);
5900 }
5901
5902 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
5903
5904 static void
5905 perf_iterate_ctx(struct perf_event_context *ctx,
5906                    perf_iterate_f output,
5907                    void *data, bool all)
5908 {
5909         struct perf_event *event;
5910
5911         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5912                 if (!all) {
5913                         if (event->state < PERF_EVENT_STATE_INACTIVE)
5914                                 continue;
5915                         if (!event_filter_match(event))
5916                                 continue;
5917                 }
5918
5919                 output(event, data);
5920         }
5921 }
5922
5923 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
5924 {
5925         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
5926         struct perf_event *event;
5927
5928         list_for_each_entry_rcu(event, &pel->list, sb_list) {
5929                 if (event->state < PERF_EVENT_STATE_INACTIVE)
5930                         continue;
5931                 if (!event_filter_match(event))
5932                         continue;
5933                 output(event, data);
5934         }
5935 }
5936
5937 /*
5938  * Iterate all events that need to receive side-band events.
5939  *
5940  * For new callers; ensure that account_pmu_sb_event() includes
5941  * your event, otherwise it might not get delivered.
5942  */
5943 static void
5944 perf_iterate_sb(perf_iterate_f output, void *data,
5945                struct perf_event_context *task_ctx)
5946 {
5947         struct perf_event_context *ctx;
5948         int ctxn;
5949
5950         rcu_read_lock();
5951         preempt_disable();
5952
5953         /*
5954          * If we have task_ctx != NULL we only notify the task context itself.
5955          * The task_ctx is set only for EXIT events before releasing task
5956          * context.
5957          */
5958         if (task_ctx) {
5959                 perf_iterate_ctx(task_ctx, output, data, false);
5960                 goto done;
5961         }
5962
5963         perf_iterate_sb_cpu(output, data);
5964
5965         for_each_task_context_nr(ctxn) {
5966                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5967                 if (ctx)
5968                         perf_iterate_ctx(ctx, output, data, false);
5969         }
5970 done:
5971         preempt_enable();
5972         rcu_read_unlock();
5973 }
5974
5975 /*
5976  * Clear all file-based filters at exec, they'll have to be
5977  * re-instated when/if these objects are mmapped again.
5978  */
5979 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
5980 {
5981         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
5982         struct perf_addr_filter *filter;
5983         unsigned int restart = 0, count = 0;
5984         unsigned long flags;
5985
5986         if (!has_addr_filter(event))
5987                 return;
5988
5989         raw_spin_lock_irqsave(&ifh->lock, flags);
5990         list_for_each_entry(filter, &ifh->list, entry) {
5991                 if (filter->inode) {
5992                         event->addr_filters_offs[count] = 0;
5993                         restart++;
5994                 }
5995
5996                 count++;
5997         }
5998
5999         if (restart)
6000                 event->addr_filters_gen++;
6001         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6002
6003         if (restart)
6004                 perf_event_restart(event);
6005 }
6006
6007 void perf_event_exec(void)
6008 {
6009         struct perf_event_context *ctx;
6010         int ctxn;
6011
6012         rcu_read_lock();
6013         for_each_task_context_nr(ctxn) {
6014                 ctx = current->perf_event_ctxp[ctxn];
6015                 if (!ctx)
6016                         continue;
6017
6018                 perf_event_enable_on_exec(ctxn);
6019
6020                 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6021                                    true);
6022         }
6023         rcu_read_unlock();
6024 }
6025
6026 struct remote_output {
6027         struct ring_buffer      *rb;
6028         int                     err;
6029 };
6030
6031 static void __perf_event_output_stop(struct perf_event *event, void *data)
6032 {
6033         struct perf_event *parent = event->parent;
6034         struct remote_output *ro = data;
6035         struct ring_buffer *rb = ro->rb;
6036         struct stop_event_data sd = {
6037                 .event  = event,
6038         };
6039
6040         if (!has_aux(event))
6041                 return;
6042
6043         if (!parent)
6044                 parent = event;
6045
6046         /*
6047          * In case of inheritance, it will be the parent that links to the
6048          * ring-buffer, but it will be the child that's actually using it:
6049          */
6050         if (rcu_dereference(parent->rb) == rb)
6051                 ro->err = __perf_event_stop(&sd);
6052 }
6053
6054 static int __perf_pmu_output_stop(void *info)
6055 {
6056         struct perf_event *event = info;
6057         struct pmu *pmu = event->pmu;
6058         struct perf_cpu_context *cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
6059         struct remote_output ro = {
6060                 .rb     = event->rb,
6061         };
6062
6063         rcu_read_lock();
6064         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6065         if (cpuctx->task_ctx)
6066                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6067                                    &ro, false);
6068         rcu_read_unlock();
6069
6070         return ro.err;
6071 }
6072
6073 static void perf_pmu_output_stop(struct perf_event *event)
6074 {
6075         struct perf_event *iter;
6076         int err, cpu;
6077
6078 restart:
6079         rcu_read_lock();
6080         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6081                 /*
6082                  * For per-CPU events, we need to make sure that neither they
6083                  * nor their children are running; for cpu==-1 events it's
6084                  * sufficient to stop the event itself if it's active, since
6085                  * it can't have children.
6086                  */
6087                 cpu = iter->cpu;
6088                 if (cpu == -1)
6089                         cpu = READ_ONCE(iter->oncpu);
6090
6091                 if (cpu == -1)
6092                         continue;
6093
6094                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6095                 if (err == -EAGAIN) {
6096                         rcu_read_unlock();
6097                         goto restart;
6098                 }
6099         }
6100         rcu_read_unlock();
6101 }
6102
6103 /*
6104  * task tracking -- fork/exit
6105  *
6106  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6107  */
6108
6109 struct perf_task_event {
6110         struct task_struct              *task;
6111         struct perf_event_context       *task_ctx;
6112
6113         struct {
6114                 struct perf_event_header        header;
6115
6116                 u32                             pid;
6117                 u32                             ppid;
6118                 u32                             tid;
6119                 u32                             ptid;
6120                 u64                             time;
6121         } event_id;
6122 };
6123
6124 static int perf_event_task_match(struct perf_event *event)
6125 {
6126         return event->attr.comm  || event->attr.mmap ||
6127                event->attr.mmap2 || event->attr.mmap_data ||
6128                event->attr.task;
6129 }
6130
6131 static void perf_event_task_output(struct perf_event *event,
6132                                    void *data)
6133 {
6134         struct perf_task_event *task_event = data;
6135         struct perf_output_handle handle;
6136         struct perf_sample_data sample;
6137         struct task_struct *task = task_event->task;
6138         int ret, size = task_event->event_id.header.size;
6139
6140         if (!perf_event_task_match(event))
6141                 return;
6142
6143         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6144
6145         ret = perf_output_begin(&handle, event,
6146                                 task_event->event_id.header.size);
6147         if (ret)
6148                 goto out;
6149
6150         task_event->event_id.pid = perf_event_pid(event, task);
6151         task_event->event_id.ppid = perf_event_pid(event, current);
6152
6153         task_event->event_id.tid = perf_event_tid(event, task);
6154         task_event->event_id.ptid = perf_event_tid(event, current);
6155
6156         task_event->event_id.time = perf_event_clock(event);
6157
6158         perf_output_put(&handle, task_event->event_id);
6159
6160         perf_event__output_id_sample(event, &handle, &sample);
6161
6162         perf_output_end(&handle);
6163 out:
6164         task_event->event_id.header.size = size;
6165 }
6166
6167 static void perf_event_task(struct task_struct *task,
6168                               struct perf_event_context *task_ctx,
6169                               int new)
6170 {
6171         struct perf_task_event task_event;
6172
6173         if (!atomic_read(&nr_comm_events) &&
6174             !atomic_read(&nr_mmap_events) &&
6175             !atomic_read(&nr_task_events))
6176                 return;
6177
6178         task_event = (struct perf_task_event){
6179                 .task     = task,
6180                 .task_ctx = task_ctx,
6181                 .event_id    = {
6182                         .header = {
6183                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6184                                 .misc = 0,
6185                                 .size = sizeof(task_event.event_id),
6186                         },
6187                         /* .pid  */
6188                         /* .ppid */
6189                         /* .tid  */
6190                         /* .ptid */
6191                         /* .time */
6192                 },
6193         };
6194
6195         perf_iterate_sb(perf_event_task_output,
6196                        &task_event,
6197                        task_ctx);
6198 }
6199
6200 void perf_event_fork(struct task_struct *task)
6201 {
6202         perf_event_task(task, NULL, 1);
6203 }
6204
6205 /*
6206  * comm tracking
6207  */
6208
6209 struct perf_comm_event {
6210         struct task_struct      *task;
6211         char                    *comm;
6212         int                     comm_size;
6213
6214         struct {
6215                 struct perf_event_header        header;
6216
6217                 u32                             pid;
6218                 u32                             tid;
6219         } event_id;
6220 };
6221
6222 static int perf_event_comm_match(struct perf_event *event)
6223 {
6224         return event->attr.comm;
6225 }
6226
6227 static void perf_event_comm_output(struct perf_event *event,
6228                                    void *data)
6229 {
6230         struct perf_comm_event *comm_event = data;
6231         struct perf_output_handle handle;
6232         struct perf_sample_data sample;
6233         int size = comm_event->event_id.header.size;
6234         int ret;
6235
6236         if (!perf_event_comm_match(event))
6237                 return;
6238
6239         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6240         ret = perf_output_begin(&handle, event,
6241                                 comm_event->event_id.header.size);
6242
6243         if (ret)
6244                 goto out;
6245
6246         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6247         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6248
6249         perf_output_put(&handle, comm_event->event_id);
6250         __output_copy(&handle, comm_event->comm,
6251                                    comm_event->comm_size);
6252
6253         perf_event__output_id_sample(event, &handle, &sample);
6254
6255         perf_output_end(&handle);
6256 out:
6257         comm_event->event_id.header.size = size;
6258 }
6259
6260 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6261 {
6262         char comm[TASK_COMM_LEN];
6263         unsigned int size;
6264
6265         memset(comm, 0, sizeof(comm));
6266         strlcpy(comm, comm_event->task->comm, sizeof(comm));
6267         size = ALIGN(strlen(comm)+1, sizeof(u64));
6268
6269         comm_event->comm = comm;
6270         comm_event->comm_size = size;
6271
6272         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6273
6274         perf_iterate_sb(perf_event_comm_output,
6275                        comm_event,
6276                        NULL);
6277 }
6278
6279 void perf_event_comm(struct task_struct *task, bool exec)
6280 {
6281         struct perf_comm_event comm_event;
6282
6283         if (!atomic_read(&nr_comm_events))
6284                 return;
6285
6286         comm_event = (struct perf_comm_event){
6287                 .task   = task,
6288                 /* .comm      */
6289                 /* .comm_size */
6290                 .event_id  = {
6291                         .header = {
6292                                 .type = PERF_RECORD_COMM,
6293                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6294                                 /* .size */
6295                         },
6296                         /* .pid */
6297                         /* .tid */
6298                 },
6299         };
6300
6301         perf_event_comm_event(&comm_event);
6302 }
6303
6304 /*
6305  * mmap tracking
6306  */
6307
6308 struct perf_mmap_event {
6309         struct vm_area_struct   *vma;
6310
6311         const char              *file_name;
6312         int                     file_size;
6313         int                     maj, min;
6314         u64                     ino;
6315         u64                     ino_generation;
6316         u32                     prot, flags;
6317
6318         struct {
6319                 struct perf_event_header        header;
6320
6321                 u32                             pid;
6322                 u32                             tid;
6323                 u64                             start;
6324                 u64                             len;
6325                 u64                             pgoff;
6326         } event_id;
6327 };
6328
6329 static int perf_event_mmap_match(struct perf_event *event,
6330                                  void *data)
6331 {
6332         struct perf_mmap_event *mmap_event = data;
6333         struct vm_area_struct *vma = mmap_event->vma;
6334         int executable = vma->vm_flags & VM_EXEC;
6335
6336         return (!executable && event->attr.mmap_data) ||
6337                (executable && (event->attr.mmap || event->attr.mmap2));
6338 }
6339
6340 static void perf_event_mmap_output(struct perf_event *event,
6341                                    void *data)
6342 {
6343         struct perf_mmap_event *mmap_event = data;
6344         struct perf_output_handle handle;
6345         struct perf_sample_data sample;
6346         int size = mmap_event->event_id.header.size;
6347         int ret;
6348
6349         if (!perf_event_mmap_match(event, data))
6350                 return;
6351
6352         if (event->attr.mmap2) {
6353                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6354                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6355                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6356                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6357                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6358                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6359                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6360         }
6361
6362         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6363         ret = perf_output_begin(&handle, event,
6364                                 mmap_event->event_id.header.size);
6365         if (ret)
6366                 goto out;
6367
6368         mmap_event->event_id.pid = perf_event_pid(event, current);
6369         mmap_event->event_id.tid = perf_event_tid(event, current);
6370
6371         perf_output_put(&handle, mmap_event->event_id);
6372
6373         if (event->attr.mmap2) {
6374                 perf_output_put(&handle, mmap_event->maj);
6375                 perf_output_put(&handle, mmap_event->min);
6376                 perf_output_put(&handle, mmap_event->ino);
6377                 perf_output_put(&handle, mmap_event->ino_generation);
6378                 perf_output_put(&handle, mmap_event->prot);
6379                 perf_output_put(&handle, mmap_event->flags);
6380         }
6381
6382         __output_copy(&handle, mmap_event->file_name,
6383                                    mmap_event->file_size);
6384
6385         perf_event__output_id_sample(event, &handle, &sample);
6386
6387         perf_output_end(&handle);
6388 out:
6389         mmap_event->event_id.header.size = size;
6390 }
6391
6392 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6393 {
6394         struct vm_area_struct *vma = mmap_event->vma;
6395         struct file *file = vma->vm_file;
6396         int maj = 0, min = 0;
6397         u64 ino = 0, gen = 0;
6398         u32 prot = 0, flags = 0;
6399         unsigned int size;
6400         char tmp[16];
6401         char *buf = NULL;
6402         char *name;
6403
6404         if (file) {
6405                 struct inode *inode;
6406                 dev_t dev;
6407
6408                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6409                 if (!buf) {
6410                         name = "//enomem";
6411                         goto cpy_name;
6412                 }
6413                 /*
6414                  * d_path() works from the end of the rb backwards, so we
6415                  * need to add enough zero bytes after the string to handle
6416                  * the 64bit alignment we do later.
6417                  */
6418                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
6419                 if (IS_ERR(name)) {
6420                         name = "//toolong";
6421                         goto cpy_name;
6422                 }
6423                 inode = file_inode(vma->vm_file);
6424                 dev = inode->i_sb->s_dev;
6425                 ino = inode->i_ino;
6426                 gen = inode->i_generation;
6427                 maj = MAJOR(dev);
6428                 min = MINOR(dev);
6429
6430                 if (vma->vm_flags & VM_READ)
6431                         prot |= PROT_READ;
6432                 if (vma->vm_flags & VM_WRITE)
6433                         prot |= PROT_WRITE;
6434                 if (vma->vm_flags & VM_EXEC)
6435                         prot |= PROT_EXEC;
6436
6437                 if (vma->vm_flags & VM_MAYSHARE)
6438                         flags = MAP_SHARED;
6439                 else
6440                         flags = MAP_PRIVATE;
6441
6442                 if (vma->vm_flags & VM_DENYWRITE)
6443                         flags |= MAP_DENYWRITE;
6444                 if (vma->vm_flags & VM_MAYEXEC)
6445                         flags |= MAP_EXECUTABLE;
6446                 if (vma->vm_flags & VM_LOCKED)
6447                         flags |= MAP_LOCKED;
6448                 if (vma->vm_flags & VM_HUGETLB)
6449                         flags |= MAP_HUGETLB;
6450
6451                 goto got_name;
6452         } else {
6453                 if (vma->vm_ops && vma->vm_ops->name) {
6454                         name = (char *) vma->vm_ops->name(vma);
6455                         if (name)
6456                                 goto cpy_name;
6457                 }
6458
6459                 name = (char *)arch_vma_name(vma);
6460                 if (name)
6461                         goto cpy_name;
6462
6463                 if (vma->vm_start <= vma->vm_mm->start_brk &&
6464                                 vma->vm_end >= vma->vm_mm->brk) {
6465                         name = "[heap]";
6466                         goto cpy_name;
6467                 }
6468                 if (vma->vm_start <= vma->vm_mm->start_stack &&
6469                                 vma->vm_end >= vma->vm_mm->start_stack) {
6470                         name = "[stack]";
6471                         goto cpy_name;
6472                 }
6473
6474                 name = "//anon";
6475                 goto cpy_name;
6476         }
6477
6478 cpy_name:
6479         strlcpy(tmp, name, sizeof(tmp));
6480         name = tmp;
6481 got_name:
6482         /*
6483          * Since our buffer works in 8 byte units we need to align our string
6484          * size to a multiple of 8. However, we must guarantee the tail end is
6485          * zero'd out to avoid leaking random bits to userspace.
6486          */
6487         size = strlen(name)+1;
6488         while (!IS_ALIGNED(size, sizeof(u64)))
6489                 name[size++] = '\0';
6490
6491         mmap_event->file_name = name;
6492         mmap_event->file_size = size;
6493         mmap_event->maj = maj;
6494         mmap_event->min = min;
6495         mmap_event->ino = ino;
6496         mmap_event->ino_generation = gen;
6497         mmap_event->prot = prot;
6498         mmap_event->flags = flags;
6499
6500         if (!(vma->vm_flags & VM_EXEC))
6501                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6502
6503         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6504
6505         perf_iterate_sb(perf_event_mmap_output,
6506                        mmap_event,
6507                        NULL);
6508
6509         kfree(buf);
6510 }
6511
6512 /*
6513  * Whether this @filter depends on a dynamic object which is not loaded
6514  * yet or its load addresses are not known.
6515  */
6516 static bool perf_addr_filter_needs_mmap(struct perf_addr_filter *filter)
6517 {
6518         return filter->filter && filter->inode;
6519 }
6520
6521 /*
6522  * Check whether inode and address range match filter criteria.
6523  */
6524 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6525                                      struct file *file, unsigned long offset,
6526                                      unsigned long size)
6527 {
6528         if (filter->inode != file->f_inode)
6529                 return false;
6530
6531         if (filter->offset > offset + size)
6532                 return false;
6533
6534         if (filter->offset + filter->size < offset)
6535                 return false;
6536
6537         return true;
6538 }
6539
6540 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6541 {
6542         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6543         struct vm_area_struct *vma = data;
6544         unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6545         struct file *file = vma->vm_file;
6546         struct perf_addr_filter *filter;
6547         unsigned int restart = 0, count = 0;
6548
6549         if (!has_addr_filter(event))
6550                 return;
6551
6552         if (!file)
6553                 return;
6554
6555         raw_spin_lock_irqsave(&ifh->lock, flags);
6556         list_for_each_entry(filter, &ifh->list, entry) {
6557                 if (perf_addr_filter_match(filter, file, off,
6558                                              vma->vm_end - vma->vm_start)) {
6559                         event->addr_filters_offs[count] = vma->vm_start;
6560                         restart++;
6561                 }
6562
6563                 count++;
6564         }
6565
6566         if (restart)
6567                 event->addr_filters_gen++;
6568         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6569
6570         if (restart)
6571                 perf_event_restart(event);
6572 }
6573
6574 /*
6575  * Adjust all task's events' filters to the new vma
6576  */
6577 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6578 {
6579         struct perf_event_context *ctx;
6580         int ctxn;
6581
6582         rcu_read_lock();
6583         for_each_task_context_nr(ctxn) {
6584                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6585                 if (!ctx)
6586                         continue;
6587
6588                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
6589         }
6590         rcu_read_unlock();
6591 }
6592
6593 void perf_event_mmap(struct vm_area_struct *vma)
6594 {
6595         struct perf_mmap_event mmap_event;
6596
6597         if (!atomic_read(&nr_mmap_events))
6598                 return;
6599
6600         mmap_event = (struct perf_mmap_event){
6601                 .vma    = vma,
6602                 /* .file_name */
6603                 /* .file_size */
6604                 .event_id  = {
6605                         .header = {
6606                                 .type = PERF_RECORD_MMAP,
6607                                 .misc = PERF_RECORD_MISC_USER,
6608                                 /* .size */
6609                         },
6610                         /* .pid */
6611                         /* .tid */
6612                         .start  = vma->vm_start,
6613                         .len    = vma->vm_end - vma->vm_start,
6614                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6615                 },
6616                 /* .maj (attr_mmap2 only) */
6617                 /* .min (attr_mmap2 only) */
6618                 /* .ino (attr_mmap2 only) */
6619                 /* .ino_generation (attr_mmap2 only) */
6620                 /* .prot (attr_mmap2 only) */
6621                 /* .flags (attr_mmap2 only) */
6622         };
6623
6624         perf_addr_filters_adjust(vma);
6625         perf_event_mmap_event(&mmap_event);
6626 }
6627
6628 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6629                           unsigned long size, u64 flags)
6630 {
6631         struct perf_output_handle handle;
6632         struct perf_sample_data sample;
6633         struct perf_aux_event {
6634                 struct perf_event_header        header;
6635                 u64                             offset;
6636                 u64                             size;
6637                 u64                             flags;
6638         } rec = {
6639                 .header = {
6640                         .type = PERF_RECORD_AUX,
6641                         .misc = 0,
6642                         .size = sizeof(rec),
6643                 },
6644                 .offset         = head,
6645                 .size           = size,
6646                 .flags          = flags,
6647         };
6648         int ret;
6649
6650         perf_event_header__init_id(&rec.header, &sample, event);
6651         ret = perf_output_begin(&handle, event, rec.header.size);
6652
6653         if (ret)
6654                 return;
6655
6656         perf_output_put(&handle, rec);
6657         perf_event__output_id_sample(event, &handle, &sample);
6658
6659         perf_output_end(&handle);
6660 }
6661
6662 /*
6663  * Lost/dropped samples logging
6664  */
6665 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6666 {
6667         struct perf_output_handle handle;
6668         struct perf_sample_data sample;
6669         int ret;
6670
6671         struct {
6672                 struct perf_event_header        header;
6673                 u64                             lost;
6674         } lost_samples_event = {
6675                 .header = {
6676                         .type = PERF_RECORD_LOST_SAMPLES,
6677                         .misc = 0,
6678                         .size = sizeof(lost_samples_event),
6679                 },
6680                 .lost           = lost,
6681         };
6682
6683         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6684
6685         ret = perf_output_begin(&handle, event,
6686                                 lost_samples_event.header.size);
6687         if (ret)
6688                 return;
6689
6690         perf_output_put(&handle, lost_samples_event);
6691         perf_event__output_id_sample(event, &handle, &sample);
6692         perf_output_end(&handle);
6693 }
6694
6695 /*
6696  * context_switch tracking
6697  */
6698
6699 struct perf_switch_event {
6700         struct task_struct      *task;
6701         struct task_struct      *next_prev;
6702
6703         struct {
6704                 struct perf_event_header        header;
6705                 u32                             next_prev_pid;
6706                 u32                             next_prev_tid;
6707         } event_id;
6708 };
6709
6710 static int perf_event_switch_match(struct perf_event *event)
6711 {
6712         return event->attr.context_switch;
6713 }
6714
6715 static void perf_event_switch_output(struct perf_event *event, void *data)
6716 {
6717         struct perf_switch_event *se = data;
6718         struct perf_output_handle handle;
6719         struct perf_sample_data sample;
6720         int ret;
6721
6722         if (!perf_event_switch_match(event))
6723                 return;
6724
6725         /* Only CPU-wide events are allowed to see next/prev pid/tid */
6726         if (event->ctx->task) {
6727                 se->event_id.header.type = PERF_RECORD_SWITCH;
6728                 se->event_id.header.size = sizeof(se->event_id.header);
6729         } else {
6730                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6731                 se->event_id.header.size = sizeof(se->event_id);
6732                 se->event_id.next_prev_pid =
6733                                         perf_event_pid(event, se->next_prev);
6734                 se->event_id.next_prev_tid =
6735                                         perf_event_tid(event, se->next_prev);
6736         }
6737
6738         perf_event_header__init_id(&se->event_id.header, &sample, event);
6739
6740         ret = perf_output_begin(&handle, event, se->event_id.header.size);
6741         if (ret)
6742                 return;
6743
6744         if (event->ctx->task)
6745                 perf_output_put(&handle, se->event_id.header);
6746         else
6747                 perf_output_put(&handle, se->event_id);
6748
6749         perf_event__output_id_sample(event, &handle, &sample);
6750
6751         perf_output_end(&handle);
6752 }
6753
6754 static void perf_event_switch(struct task_struct *task,
6755                               struct task_struct *next_prev, bool sched_in)
6756 {
6757         struct perf_switch_event switch_event;
6758
6759         /* N.B. caller checks nr_switch_events != 0 */
6760
6761         switch_event = (struct perf_switch_event){
6762                 .task           = task,
6763                 .next_prev      = next_prev,
6764                 .event_id       = {
6765                         .header = {
6766                                 /* .type */
6767                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6768                                 /* .size */
6769                         },
6770                         /* .next_prev_pid */
6771                         /* .next_prev_tid */
6772                 },
6773         };
6774
6775         perf_iterate_sb(perf_event_switch_output,
6776                        &switch_event,
6777                        NULL);
6778 }
6779
6780 /*
6781  * IRQ throttle logging
6782  */
6783
6784 static void perf_log_throttle(struct perf_event *event, int enable)
6785 {
6786         struct perf_output_handle handle;
6787         struct perf_sample_data sample;
6788         int ret;
6789
6790         struct {
6791                 struct perf_event_header        header;
6792                 u64                             time;
6793                 u64                             id;
6794                 u64                             stream_id;
6795         } throttle_event = {
6796                 .header = {
6797                         .type = PERF_RECORD_THROTTLE,
6798                         .misc = 0,
6799                         .size = sizeof(throttle_event),
6800                 },
6801                 .time           = perf_event_clock(event),
6802                 .id             = primary_event_id(event),
6803                 .stream_id      = event->id,
6804         };
6805
6806         if (enable)
6807                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6808
6809         perf_event_header__init_id(&throttle_event.header, &sample, event);
6810
6811         ret = perf_output_begin(&handle, event,
6812                                 throttle_event.header.size);
6813         if (ret)
6814                 return;
6815
6816         perf_output_put(&handle, throttle_event);
6817         perf_event__output_id_sample(event, &handle, &sample);
6818         perf_output_end(&handle);
6819 }
6820
6821 static void perf_log_itrace_start(struct perf_event *event)
6822 {
6823         struct perf_output_handle handle;
6824         struct perf_sample_data sample;
6825         struct perf_aux_event {
6826                 struct perf_event_header        header;
6827                 u32                             pid;
6828                 u32                             tid;
6829         } rec;
6830         int ret;
6831
6832         if (event->parent)
6833                 event = event->parent;
6834
6835         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6836             event->hw.itrace_started)
6837                 return;
6838
6839         rec.header.type = PERF_RECORD_ITRACE_START;
6840         rec.header.misc = 0;
6841         rec.header.size = sizeof(rec);
6842         rec.pid = perf_event_pid(event, current);
6843         rec.tid = perf_event_tid(event, current);
6844
6845         perf_event_header__init_id(&rec.header, &sample, event);
6846         ret = perf_output_begin(&handle, event, rec.header.size);
6847
6848         if (ret)
6849                 return;
6850
6851         perf_output_put(&handle, rec);
6852         perf_event__output_id_sample(event, &handle, &sample);
6853
6854         perf_output_end(&handle);
6855 }
6856
6857 /*
6858  * Generic event overflow handling, sampling.
6859  */
6860
6861 static int __perf_event_overflow(struct perf_event *event,
6862                                    int throttle, struct perf_sample_data *data,
6863                                    struct pt_regs *regs)
6864 {
6865         int events = atomic_read(&event->event_limit);
6866         struct hw_perf_event *hwc = &event->hw;
6867         u64 seq;
6868         int ret = 0;
6869
6870         /*
6871          * Non-sampling counters might still use the PMI to fold short
6872          * hardware counters, ignore those.
6873          */
6874         if (unlikely(!is_sampling_event(event)))
6875                 return 0;
6876
6877         seq = __this_cpu_read(perf_throttled_seq);
6878         if (seq != hwc->interrupts_seq) {
6879                 hwc->interrupts_seq = seq;
6880                 hwc->interrupts = 1;
6881         } else {
6882                 hwc->interrupts++;
6883                 if (unlikely(throttle
6884                              && hwc->interrupts >= max_samples_per_tick)) {
6885                         __this_cpu_inc(perf_throttled_count);
6886                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
6887                         hwc->interrupts = MAX_INTERRUPTS;
6888                         perf_log_throttle(event, 0);
6889                         ret = 1;
6890                 }
6891         }
6892
6893         if (event->attr.freq) {
6894                 u64 now = perf_clock();
6895                 s64 delta = now - hwc->freq_time_stamp;
6896
6897                 hwc->freq_time_stamp = now;
6898
6899                 if (delta > 0 && delta < 2*TICK_NSEC)
6900                         perf_adjust_period(event, delta, hwc->last_period, true);
6901         }
6902
6903         /*
6904          * XXX event_limit might not quite work as expected on inherited
6905          * events
6906          */
6907
6908         event->pending_kill = POLL_IN;
6909         if (events && atomic_dec_and_test(&event->event_limit)) {
6910                 ret = 1;
6911                 event->pending_kill = POLL_HUP;
6912                 event->pending_disable = 1;
6913                 irq_work_queue(&event->pending);
6914         }
6915
6916         event->overflow_handler(event, data, regs);
6917
6918         if (*perf_event_fasync(event) && event->pending_kill) {
6919                 event->pending_wakeup = 1;
6920                 irq_work_queue(&event->pending);
6921         }
6922
6923         return ret;
6924 }
6925
6926 int perf_event_overflow(struct perf_event *event,
6927                           struct perf_sample_data *data,
6928                           struct pt_regs *regs)
6929 {
6930         return __perf_event_overflow(event, 1, data, regs);
6931 }
6932
6933 /*
6934  * Generic software event infrastructure
6935  */
6936
6937 struct swevent_htable {
6938         struct swevent_hlist            *swevent_hlist;
6939         struct mutex                    hlist_mutex;
6940         int                             hlist_refcount;
6941
6942         /* Recursion avoidance in each contexts */
6943         int                             recursion[PERF_NR_CONTEXTS];
6944 };
6945
6946 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6947
6948 /*
6949  * We directly increment event->count and keep a second value in
6950  * event->hw.period_left to count intervals. This period event
6951  * is kept in the range [-sample_period, 0] so that we can use the
6952  * sign as trigger.
6953  */
6954
6955 u64 perf_swevent_set_period(struct perf_event *event)
6956 {
6957         struct hw_perf_event *hwc = &event->hw;
6958         u64 period = hwc->last_period;
6959         u64 nr, offset;
6960         s64 old, val;
6961
6962         hwc->last_period = hwc->sample_period;
6963
6964 again:
6965         old = val = local64_read(&hwc->period_left);
6966         if (val < 0)
6967                 return 0;
6968
6969         nr = div64_u64(period + val, period);
6970         offset = nr * period;
6971         val -= offset;
6972         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6973                 goto again;
6974
6975         return nr;
6976 }
6977
6978 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6979                                     struct perf_sample_data *data,
6980                                     struct pt_regs *regs)
6981 {
6982         struct hw_perf_event *hwc = &event->hw;
6983         int throttle = 0;
6984
6985         if (!overflow)
6986                 overflow = perf_swevent_set_period(event);
6987
6988         if (hwc->interrupts == MAX_INTERRUPTS)
6989                 return;
6990
6991         for (; overflow; overflow--) {
6992                 if (__perf_event_overflow(event, throttle,
6993                                             data, regs)) {
6994                         /*
6995                          * We inhibit the overflow from happening when
6996                          * hwc->interrupts == MAX_INTERRUPTS.
6997                          */
6998                         break;
6999                 }
7000                 throttle = 1;
7001         }
7002 }
7003
7004 static void perf_swevent_event(struct perf_event *event, u64 nr,
7005                                struct perf_sample_data *data,
7006                                struct pt_regs *regs)
7007 {
7008         struct hw_perf_event *hwc = &event->hw;
7009
7010         local64_add(nr, &event->count);
7011
7012         if (!regs)
7013                 return;
7014
7015         if (!is_sampling_event(event))
7016                 return;
7017
7018         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7019                 data->period = nr;
7020                 return perf_swevent_overflow(event, 1, data, regs);
7021         } else
7022                 data->period = event->hw.last_period;
7023
7024         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7025                 return perf_swevent_overflow(event, 1, data, regs);
7026
7027         if (local64_add_negative(nr, &hwc->period_left))
7028                 return;
7029
7030         perf_swevent_overflow(event, 0, data, regs);
7031 }
7032
7033 static int perf_exclude_event(struct perf_event *event,
7034                               struct pt_regs *regs)
7035 {
7036         if (event->hw.state & PERF_HES_STOPPED)
7037                 return 1;
7038
7039         if (regs) {
7040                 if (event->attr.exclude_user && user_mode(regs))
7041                         return 1;
7042
7043                 if (event->attr.exclude_kernel && !user_mode(regs))
7044                         return 1;
7045         }
7046
7047         return 0;
7048 }
7049
7050 static int perf_swevent_match(struct perf_event *event,
7051                                 enum perf_type_id type,
7052                                 u32 event_id,
7053                                 struct perf_sample_data *data,
7054                                 struct pt_regs *regs)
7055 {
7056         if (event->attr.type != type)
7057                 return 0;
7058
7059         if (event->attr.config != event_id)
7060                 return 0;
7061
7062         if (perf_exclude_event(event, regs))
7063                 return 0;
7064
7065         return 1;
7066 }
7067
7068 static inline u64 swevent_hash(u64 type, u32 event_id)
7069 {
7070         u64 val = event_id | (type << 32);
7071
7072         return hash_64(val, SWEVENT_HLIST_BITS);
7073 }
7074
7075 static inline struct hlist_head *
7076 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7077 {
7078         u64 hash = swevent_hash(type, event_id);
7079
7080         return &hlist->heads[hash];
7081 }
7082
7083 /* For the read side: events when they trigger */
7084 static inline struct hlist_head *
7085 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7086 {
7087         struct swevent_hlist *hlist;
7088
7089         hlist = rcu_dereference(swhash->swevent_hlist);
7090         if (!hlist)
7091                 return NULL;
7092
7093         return __find_swevent_head(hlist, type, event_id);
7094 }
7095
7096 /* For the event head insertion and removal in the hlist */
7097 static inline struct hlist_head *
7098 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7099 {
7100         struct swevent_hlist *hlist;
7101         u32 event_id = event->attr.config;
7102         u64 type = event->attr.type;
7103
7104         /*
7105          * Event scheduling is always serialized against hlist allocation
7106          * and release. Which makes the protected version suitable here.
7107          * The context lock guarantees that.
7108          */
7109         hlist = rcu_dereference_protected(swhash->swevent_hlist,
7110                                           lockdep_is_held(&event->ctx->lock));
7111         if (!hlist)
7112                 return NULL;
7113
7114         return __find_swevent_head(hlist, type, event_id);
7115 }
7116
7117 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7118                                     u64 nr,
7119                                     struct perf_sample_data *data,
7120                                     struct pt_regs *regs)
7121 {
7122         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7123         struct perf_event *event;
7124         struct hlist_head *head;
7125
7126         rcu_read_lock();
7127         head = find_swevent_head_rcu(swhash, type, event_id);
7128         if (!head)
7129                 goto end;
7130
7131         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7132                 if (perf_swevent_match(event, type, event_id, data, regs))
7133                         perf_swevent_event(event, nr, data, regs);
7134         }
7135 end:
7136         rcu_read_unlock();
7137 }
7138
7139 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7140
7141 int perf_swevent_get_recursion_context(void)
7142 {
7143         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7144
7145         return get_recursion_context(swhash->recursion);
7146 }
7147 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7148
7149 void perf_swevent_put_recursion_context(int rctx)
7150 {
7151         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7152
7153         put_recursion_context(swhash->recursion, rctx);
7154 }
7155
7156 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7157 {
7158         struct perf_sample_data data;
7159
7160         if (WARN_ON_ONCE(!regs))
7161                 return;
7162
7163         perf_sample_data_init(&data, addr, 0);
7164         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7165 }
7166
7167 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7168 {
7169         int rctx;
7170
7171         preempt_disable_notrace();
7172         rctx = perf_swevent_get_recursion_context();
7173         if (unlikely(rctx < 0))
7174                 goto fail;
7175
7176         ___perf_sw_event(event_id, nr, regs, addr);
7177
7178         perf_swevent_put_recursion_context(rctx);
7179 fail:
7180         preempt_enable_notrace();
7181 }
7182
7183 static void perf_swevent_read(struct perf_event *event)
7184 {
7185 }
7186
7187 static int perf_swevent_add(struct perf_event *event, int flags)
7188 {
7189         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7190         struct hw_perf_event *hwc = &event->hw;
7191         struct hlist_head *head;
7192
7193         if (is_sampling_event(event)) {
7194                 hwc->last_period = hwc->sample_period;
7195                 perf_swevent_set_period(event);
7196         }
7197
7198         hwc->state = !(flags & PERF_EF_START);
7199
7200         head = find_swevent_head(swhash, event);
7201         if (WARN_ON_ONCE(!head))
7202                 return -EINVAL;
7203
7204         hlist_add_head_rcu(&event->hlist_entry, head);
7205         perf_event_update_userpage(event);
7206
7207         return 0;
7208 }
7209
7210 static void perf_swevent_del(struct perf_event *event, int flags)
7211 {
7212         hlist_del_rcu(&event->hlist_entry);
7213 }
7214
7215 static void perf_swevent_start(struct perf_event *event, int flags)
7216 {
7217         event->hw.state = 0;
7218 }
7219
7220 static void perf_swevent_stop(struct perf_event *event, int flags)
7221 {
7222         event->hw.state = PERF_HES_STOPPED;
7223 }
7224
7225 /* Deref the hlist from the update side */
7226 static inline struct swevent_hlist *
7227 swevent_hlist_deref(struct swevent_htable *swhash)
7228 {
7229         return rcu_dereference_protected(swhash->swevent_hlist,
7230                                          lockdep_is_held(&swhash->hlist_mutex));
7231 }
7232
7233 static void swevent_hlist_release(struct swevent_htable *swhash)
7234 {
7235         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7236
7237         if (!hlist)
7238                 return;
7239
7240         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7241         kfree_rcu(hlist, rcu_head);
7242 }
7243
7244 static void swevent_hlist_put_cpu(int cpu)
7245 {
7246         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7247
7248         mutex_lock(&swhash->hlist_mutex);
7249
7250         if (!--swhash->hlist_refcount)
7251                 swevent_hlist_release(swhash);
7252
7253         mutex_unlock(&swhash->hlist_mutex);
7254 }
7255
7256 static void swevent_hlist_put(void)
7257 {
7258         int cpu;
7259
7260         for_each_possible_cpu(cpu)
7261                 swevent_hlist_put_cpu(cpu);
7262 }
7263
7264 static int swevent_hlist_get_cpu(int cpu)
7265 {
7266         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7267         int err = 0;
7268
7269         mutex_lock(&swhash->hlist_mutex);
7270         if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
7271                 struct swevent_hlist *hlist;
7272
7273                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7274                 if (!hlist) {
7275                         err = -ENOMEM;
7276                         goto exit;
7277                 }
7278                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7279         }
7280         swhash->hlist_refcount++;
7281 exit:
7282         mutex_unlock(&swhash->hlist_mutex);
7283
7284         return err;
7285 }
7286
7287 static int swevent_hlist_get(void)
7288 {
7289         int err, cpu, failed_cpu;
7290
7291         get_online_cpus();
7292         for_each_possible_cpu(cpu) {
7293                 err = swevent_hlist_get_cpu(cpu);
7294                 if (err) {
7295                         failed_cpu = cpu;
7296                         goto fail;
7297                 }
7298         }
7299         put_online_cpus();
7300
7301         return 0;
7302 fail:
7303         for_each_possible_cpu(cpu) {
7304                 if (cpu == failed_cpu)
7305                         break;
7306                 swevent_hlist_put_cpu(cpu);
7307         }
7308
7309         put_online_cpus();
7310         return err;
7311 }
7312
7313 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7314
7315 static void sw_perf_event_destroy(struct perf_event *event)
7316 {
7317         u64 event_id = event->attr.config;
7318
7319         WARN_ON(event->parent);
7320
7321         static_key_slow_dec(&perf_swevent_enabled[event_id]);
7322         swevent_hlist_put();
7323 }
7324
7325 static int perf_swevent_init(struct perf_event *event)
7326 {
7327         u64 event_id = event->attr.config;
7328
7329         if (event->attr.type != PERF_TYPE_SOFTWARE)
7330                 return -ENOENT;
7331
7332         /*
7333          * no branch sampling for software events
7334          */
7335         if (has_branch_stack(event))
7336                 return -EOPNOTSUPP;
7337
7338         switch (event_id) {
7339         case PERF_COUNT_SW_CPU_CLOCK:
7340         case PERF_COUNT_SW_TASK_CLOCK:
7341                 return -ENOENT;
7342
7343         default:
7344                 break;
7345         }
7346
7347         if (event_id >= PERF_COUNT_SW_MAX)
7348                 return -ENOENT;
7349
7350         if (!event->parent) {
7351                 int err;
7352
7353                 err = swevent_hlist_get();
7354                 if (err)
7355                         return err;
7356
7357                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
7358                 event->destroy = sw_perf_event_destroy;
7359         }
7360
7361         return 0;
7362 }
7363
7364 static struct pmu perf_swevent = {
7365         .task_ctx_nr    = perf_sw_context,
7366
7367         .capabilities   = PERF_PMU_CAP_NO_NMI,
7368
7369         .event_init     = perf_swevent_init,
7370         .add            = perf_swevent_add,
7371         .del            = perf_swevent_del,
7372         .start          = perf_swevent_start,
7373         .stop           = perf_swevent_stop,
7374         .read           = perf_swevent_read,
7375 };
7376
7377 #ifdef CONFIG_EVENT_TRACING
7378
7379 static int perf_tp_filter_match(struct perf_event *event,
7380                                 struct perf_sample_data *data)
7381 {
7382         void *record = data->raw->data;
7383
7384         /* only top level events have filters set */
7385         if (event->parent)
7386                 event = event->parent;
7387
7388         if (likely(!event->filter) || filter_match_preds(event->filter, record))
7389                 return 1;
7390         return 0;
7391 }
7392
7393 static int perf_tp_event_match(struct perf_event *event,
7394                                 struct perf_sample_data *data,
7395                                 struct pt_regs *regs)
7396 {
7397         if (event->hw.state & PERF_HES_STOPPED)
7398                 return 0;
7399         /*
7400          * All tracepoints are from kernel-space.
7401          */
7402         if (event->attr.exclude_kernel)
7403                 return 0;
7404
7405         if (!perf_tp_filter_match(event, data))
7406                 return 0;
7407
7408         return 1;
7409 }
7410
7411 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7412                                struct trace_event_call *call, u64 count,
7413                                struct pt_regs *regs, struct hlist_head *head,
7414                                struct task_struct *task)
7415 {
7416         struct bpf_prog *prog = call->prog;
7417
7418         if (prog) {
7419                 *(struct pt_regs **)raw_data = regs;
7420                 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7421                         perf_swevent_put_recursion_context(rctx);
7422                         return;
7423                 }
7424         }
7425         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7426                       rctx, task);
7427 }
7428 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7429
7430 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7431                    struct pt_regs *regs, struct hlist_head *head, int rctx,
7432                    struct task_struct *task)
7433 {
7434         struct perf_sample_data data;
7435         struct perf_event *event;
7436
7437         struct perf_raw_record raw = {
7438                 .size = entry_size,
7439                 .data = record,
7440         };
7441
7442         perf_sample_data_init(&data, 0, 0);
7443         data.raw = &raw;
7444
7445         perf_trace_buf_update(record, event_type);
7446
7447         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7448                 if (perf_tp_event_match(event, &data, regs))
7449                         perf_swevent_event(event, count, &data, regs);
7450         }
7451
7452         /*
7453          * If we got specified a target task, also iterate its context and
7454          * deliver this event there too.
7455          */
7456         if (task && task != current) {
7457                 struct perf_event_context *ctx;
7458                 struct trace_entry *entry = record;
7459
7460                 rcu_read_lock();
7461                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7462                 if (!ctx)
7463                         goto unlock;
7464
7465                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7466                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7467                                 continue;
7468                         if (event->attr.config != entry->type)
7469                                 continue;
7470                         if (perf_tp_event_match(event, &data, regs))
7471                                 perf_swevent_event(event, count, &data, regs);
7472                 }
7473 unlock:
7474                 rcu_read_unlock();
7475         }
7476
7477         perf_swevent_put_recursion_context(rctx);
7478 }
7479 EXPORT_SYMBOL_GPL(perf_tp_event);
7480
7481 static void tp_perf_event_destroy(struct perf_event *event)
7482 {
7483         perf_trace_destroy(event);
7484 }
7485
7486 static int perf_tp_event_init(struct perf_event *event)
7487 {
7488         int err;
7489
7490         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7491                 return -ENOENT;
7492
7493         /*
7494          * no branch sampling for tracepoint events
7495          */
7496         if (has_branch_stack(event))
7497                 return -EOPNOTSUPP;
7498
7499         err = perf_trace_init(event);
7500         if (err)
7501                 return err;
7502
7503         event->destroy = tp_perf_event_destroy;
7504
7505         return 0;
7506 }
7507
7508 static struct pmu perf_tracepoint = {
7509         .task_ctx_nr    = perf_sw_context,
7510
7511         .event_init     = perf_tp_event_init,
7512         .add            = perf_trace_add,
7513         .del            = perf_trace_del,
7514         .start          = perf_swevent_start,
7515         .stop           = perf_swevent_stop,
7516         .read           = perf_swevent_read,
7517 };
7518
7519 static inline void perf_tp_register(void)
7520 {
7521         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7522 }
7523
7524 static void perf_event_free_filter(struct perf_event *event)
7525 {
7526         ftrace_profile_free_filter(event);
7527 }
7528
7529 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7530 {
7531         bool is_kprobe, is_tracepoint;
7532         struct bpf_prog *prog;
7533
7534         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7535                 return -EINVAL;
7536
7537         if (event->tp_event->prog)
7538                 return -EEXIST;
7539
7540         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
7541         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
7542         if (!is_kprobe && !is_tracepoint)
7543                 /* bpf programs can only be attached to u/kprobe or tracepoint */
7544                 return -EINVAL;
7545
7546         prog = bpf_prog_get(prog_fd);
7547         if (IS_ERR(prog))
7548                 return PTR_ERR(prog);
7549
7550         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
7551             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
7552                 /* valid fd, but invalid bpf program type */
7553                 bpf_prog_put(prog);
7554                 return -EINVAL;
7555         }
7556
7557         if (is_tracepoint) {
7558                 int off = trace_event_get_offsets(event->tp_event);
7559
7560                 if (prog->aux->max_ctx_offset > off) {
7561                         bpf_prog_put(prog);
7562                         return -EACCES;
7563                 }
7564         }
7565         event->tp_event->prog = prog;
7566
7567         return 0;
7568 }
7569
7570 static void perf_event_free_bpf_prog(struct perf_event *event)
7571 {
7572         struct bpf_prog *prog;
7573
7574         if (!event->tp_event)
7575                 return;
7576
7577         prog = event->tp_event->prog;
7578         if (prog) {
7579                 event->tp_event->prog = NULL;
7580                 bpf_prog_put(prog);
7581         }
7582 }
7583
7584 #else
7585
7586 static inline void perf_tp_register(void)
7587 {
7588 }
7589
7590 static void perf_event_free_filter(struct perf_event *event)
7591 {
7592 }
7593
7594 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7595 {
7596         return -ENOENT;
7597 }
7598
7599 static void perf_event_free_bpf_prog(struct perf_event *event)
7600 {
7601 }
7602 #endif /* CONFIG_EVENT_TRACING */
7603
7604 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7605 void perf_bp_event(struct perf_event *bp, void *data)
7606 {
7607         struct perf_sample_data sample;
7608         struct pt_regs *regs = data;
7609
7610         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7611
7612         if (!bp->hw.state && !perf_exclude_event(bp, regs))
7613                 perf_swevent_event(bp, 1, &sample, regs);
7614 }
7615 #endif
7616
7617 /*
7618  * Allocate a new address filter
7619  */
7620 static struct perf_addr_filter *
7621 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
7622 {
7623         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
7624         struct perf_addr_filter *filter;
7625
7626         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
7627         if (!filter)
7628                 return NULL;
7629
7630         INIT_LIST_HEAD(&filter->entry);
7631         list_add_tail(&filter->entry, filters);
7632
7633         return filter;
7634 }
7635
7636 static void free_filters_list(struct list_head *filters)
7637 {
7638         struct perf_addr_filter *filter, *iter;
7639
7640         list_for_each_entry_safe(filter, iter, filters, entry) {
7641                 if (filter->inode)
7642                         iput(filter->inode);
7643                 list_del(&filter->entry);
7644                 kfree(filter);
7645         }
7646 }
7647
7648 /*
7649  * Free existing address filters and optionally install new ones
7650  */
7651 static void perf_addr_filters_splice(struct perf_event *event,
7652                                      struct list_head *head)
7653 {
7654         unsigned long flags;
7655         LIST_HEAD(list);
7656
7657         if (!has_addr_filter(event))
7658                 return;
7659
7660         /* don't bother with children, they don't have their own filters */
7661         if (event->parent)
7662                 return;
7663
7664         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
7665
7666         list_splice_init(&event->addr_filters.list, &list);
7667         if (head)
7668                 list_splice(head, &event->addr_filters.list);
7669
7670         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
7671
7672         free_filters_list(&list);
7673 }
7674
7675 /*
7676  * Scan through mm's vmas and see if one of them matches the
7677  * @filter; if so, adjust filter's address range.
7678  * Called with mm::mmap_sem down for reading.
7679  */
7680 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
7681                                             struct mm_struct *mm)
7682 {
7683         struct vm_area_struct *vma;
7684
7685         for (vma = mm->mmap; vma; vma = vma->vm_next) {
7686                 struct file *file = vma->vm_file;
7687                 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7688                 unsigned long vma_size = vma->vm_end - vma->vm_start;
7689
7690                 if (!file)
7691                         continue;
7692
7693                 if (!perf_addr_filter_match(filter, file, off, vma_size))
7694                         continue;
7695
7696                 return vma->vm_start;
7697         }
7698
7699         return 0;
7700 }
7701
7702 /*
7703  * Update event's address range filters based on the
7704  * task's existing mappings, if any.
7705  */
7706 static void perf_event_addr_filters_apply(struct perf_event *event)
7707 {
7708         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7709         struct task_struct *task = READ_ONCE(event->ctx->task);
7710         struct perf_addr_filter *filter;
7711         struct mm_struct *mm = NULL;
7712         unsigned int count = 0;
7713         unsigned long flags;
7714
7715         /*
7716          * We may observe TASK_TOMBSTONE, which means that the event tear-down
7717          * will stop on the parent's child_mutex that our caller is also holding
7718          */
7719         if (task == TASK_TOMBSTONE)
7720                 return;
7721
7722         mm = get_task_mm(event->ctx->task);
7723         if (!mm)
7724                 goto restart;
7725
7726         down_read(&mm->mmap_sem);
7727
7728         raw_spin_lock_irqsave(&ifh->lock, flags);
7729         list_for_each_entry(filter, &ifh->list, entry) {
7730                 event->addr_filters_offs[count] = 0;
7731
7732                 if (perf_addr_filter_needs_mmap(filter))
7733                         event->addr_filters_offs[count] =
7734                                 perf_addr_filter_apply(filter, mm);
7735
7736                 count++;
7737         }
7738
7739         event->addr_filters_gen++;
7740         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7741
7742         up_read(&mm->mmap_sem);
7743
7744         mmput(mm);
7745
7746 restart:
7747         perf_event_restart(event);
7748 }
7749
7750 /*
7751  * Address range filtering: limiting the data to certain
7752  * instruction address ranges. Filters are ioctl()ed to us from
7753  * userspace as ascii strings.
7754  *
7755  * Filter string format:
7756  *
7757  * ACTION RANGE_SPEC
7758  * where ACTION is one of the
7759  *  * "filter": limit the trace to this region
7760  *  * "start": start tracing from this address
7761  *  * "stop": stop tracing at this address/region;
7762  * RANGE_SPEC is
7763  *  * for kernel addresses: <start address>[/<size>]
7764  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
7765  *
7766  * if <size> is not specified, the range is treated as a single address.
7767  */
7768 enum {
7769         IF_ACT_FILTER,
7770         IF_ACT_START,
7771         IF_ACT_STOP,
7772         IF_SRC_FILE,
7773         IF_SRC_KERNEL,
7774         IF_SRC_FILEADDR,
7775         IF_SRC_KERNELADDR,
7776 };
7777
7778 enum {
7779         IF_STATE_ACTION = 0,
7780         IF_STATE_SOURCE,
7781         IF_STATE_END,
7782 };
7783
7784 static const match_table_t if_tokens = {
7785         { IF_ACT_FILTER,        "filter" },
7786         { IF_ACT_START,         "start" },
7787         { IF_ACT_STOP,          "stop" },
7788         { IF_SRC_FILE,          "%u/%u@%s" },
7789         { IF_SRC_KERNEL,        "%u/%u" },
7790         { IF_SRC_FILEADDR,      "%u@%s" },
7791         { IF_SRC_KERNELADDR,    "%u" },
7792 };
7793
7794 /*
7795  * Address filter string parser
7796  */
7797 static int
7798 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
7799                              struct list_head *filters)
7800 {
7801         struct perf_addr_filter *filter = NULL;
7802         char *start, *orig, *filename = NULL;
7803         struct path path;
7804         substring_t args[MAX_OPT_ARGS];
7805         int state = IF_STATE_ACTION, token;
7806         unsigned int kernel = 0;
7807         int ret = -EINVAL;
7808
7809         orig = fstr = kstrdup(fstr, GFP_KERNEL);
7810         if (!fstr)
7811                 return -ENOMEM;
7812
7813         while ((start = strsep(&fstr, " ,\n")) != NULL) {
7814                 ret = -EINVAL;
7815
7816                 if (!*start)
7817                         continue;
7818
7819                 /* filter definition begins */
7820                 if (state == IF_STATE_ACTION) {
7821                         filter = perf_addr_filter_new(event, filters);
7822                         if (!filter)
7823                                 goto fail;
7824                 }
7825
7826                 token = match_token(start, if_tokens, args);
7827                 switch (token) {
7828                 case IF_ACT_FILTER:
7829                 case IF_ACT_START:
7830                         filter->filter = 1;
7831
7832                 case IF_ACT_STOP:
7833                         if (state != IF_STATE_ACTION)
7834                                 goto fail;
7835
7836                         state = IF_STATE_SOURCE;
7837                         break;
7838
7839                 case IF_SRC_KERNELADDR:
7840                 case IF_SRC_KERNEL:
7841                         kernel = 1;
7842
7843                 case IF_SRC_FILEADDR:
7844                 case IF_SRC_FILE:
7845                         if (state != IF_STATE_SOURCE)
7846                                 goto fail;
7847
7848                         if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
7849                                 filter->range = 1;
7850
7851                         *args[0].to = 0;
7852                         ret = kstrtoul(args[0].from, 0, &filter->offset);
7853                         if (ret)
7854                                 goto fail;
7855
7856                         if (filter->range) {
7857                                 *args[1].to = 0;
7858                                 ret = kstrtoul(args[1].from, 0, &filter->size);
7859                                 if (ret)
7860                                         goto fail;
7861                         }
7862
7863                         if (token == IF_SRC_FILE) {
7864                                 filename = match_strdup(&args[2]);
7865                                 if (!filename) {
7866                                         ret = -ENOMEM;
7867                                         goto fail;
7868                                 }
7869                         }
7870
7871                         state = IF_STATE_END;
7872                         break;
7873
7874                 default:
7875                         goto fail;
7876                 }
7877
7878                 /*
7879                  * Filter definition is fully parsed, validate and install it.
7880                  * Make sure that it doesn't contradict itself or the event's
7881                  * attribute.
7882                  */
7883                 if (state == IF_STATE_END) {
7884                         if (kernel && event->attr.exclude_kernel)
7885                                 goto fail;
7886
7887                         if (!kernel) {
7888                                 if (!filename)
7889                                         goto fail;
7890
7891                                 /* look up the path and grab its inode */
7892                                 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
7893                                 if (ret)
7894                                         goto fail_free_name;
7895
7896                                 filter->inode = igrab(d_inode(path.dentry));
7897                                 path_put(&path);
7898                                 kfree(filename);
7899                                 filename = NULL;
7900
7901                                 ret = -EINVAL;
7902                                 if (!filter->inode ||
7903                                     !S_ISREG(filter->inode->i_mode))
7904                                         /* free_filters_list() will iput() */
7905                                         goto fail;
7906                         }
7907
7908                         /* ready to consume more filters */
7909                         state = IF_STATE_ACTION;
7910                         filter = NULL;
7911                 }
7912         }
7913
7914         if (state != IF_STATE_ACTION)
7915                 goto fail;
7916
7917         kfree(orig);
7918
7919         return 0;
7920
7921 fail_free_name:
7922         kfree(filename);
7923 fail:
7924         free_filters_list(filters);
7925         kfree(orig);
7926
7927         return ret;
7928 }
7929
7930 static int
7931 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
7932 {
7933         LIST_HEAD(filters);
7934         int ret;
7935
7936         /*
7937          * Since this is called in perf_ioctl() path, we're already holding
7938          * ctx::mutex.
7939          */
7940         lockdep_assert_held(&event->ctx->mutex);
7941
7942         if (WARN_ON_ONCE(event->parent))
7943                 return -EINVAL;
7944
7945         /*
7946          * For now, we only support filtering in per-task events; doing so
7947          * for CPU-wide events requires additional context switching trickery,
7948          * since same object code will be mapped at different virtual
7949          * addresses in different processes.
7950          */
7951         if (!event->ctx->task)
7952                 return -EOPNOTSUPP;
7953
7954         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
7955         if (ret)
7956                 return ret;
7957
7958         ret = event->pmu->addr_filters_validate(&filters);
7959         if (ret) {
7960                 free_filters_list(&filters);
7961                 return ret;
7962         }
7963
7964         /* remove existing filters, if any */
7965         perf_addr_filters_splice(event, &filters);
7966
7967         /* install new filters */
7968         perf_event_for_each_child(event, perf_event_addr_filters_apply);
7969
7970         return ret;
7971 }
7972
7973 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7974 {
7975         char *filter_str;
7976         int ret = -EINVAL;
7977
7978         if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
7979             !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
7980             !has_addr_filter(event))
7981                 return -EINVAL;
7982
7983         filter_str = strndup_user(arg, PAGE_SIZE);
7984         if (IS_ERR(filter_str))
7985                 return PTR_ERR(filter_str);
7986
7987         if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
7988             event->attr.type == PERF_TYPE_TRACEPOINT)
7989                 ret = ftrace_profile_set_filter(event, event->attr.config,
7990                                                 filter_str);
7991         else if (has_addr_filter(event))
7992                 ret = perf_event_set_addr_filter(event, filter_str);
7993
7994         kfree(filter_str);
7995         return ret;
7996 }
7997
7998 /*
7999  * hrtimer based swevent callback
8000  */
8001
8002 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8003 {
8004         enum hrtimer_restart ret = HRTIMER_RESTART;
8005         struct perf_sample_data data;
8006         struct pt_regs *regs;
8007         struct perf_event *event;
8008         u64 period;
8009
8010         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8011
8012         if (event->state != PERF_EVENT_STATE_ACTIVE)
8013                 return HRTIMER_NORESTART;
8014
8015         event->pmu->read(event);
8016
8017         perf_sample_data_init(&data, 0, event->hw.last_period);
8018         regs = get_irq_regs();
8019
8020         if (regs && !perf_exclude_event(event, regs)) {
8021                 if (!(event->attr.exclude_idle && is_idle_task(current)))
8022                         if (__perf_event_overflow(event, 1, &data, regs))
8023                                 ret = HRTIMER_NORESTART;
8024         }
8025
8026         period = max_t(u64, 10000, event->hw.sample_period);
8027         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8028
8029         return ret;
8030 }
8031
8032 static void perf_swevent_start_hrtimer(struct perf_event *event)
8033 {
8034         struct hw_perf_event *hwc = &event->hw;
8035         s64 period;
8036
8037         if (!is_sampling_event(event))
8038                 return;
8039
8040         period = local64_read(&hwc->period_left);
8041         if (period) {
8042                 if (period < 0)
8043                         period = 10000;
8044
8045                 local64_set(&hwc->period_left, 0);
8046         } else {
8047                 period = max_t(u64, 10000, hwc->sample_period);
8048         }
8049         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8050                       HRTIMER_MODE_REL_PINNED);
8051 }
8052
8053 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8054 {
8055         struct hw_perf_event *hwc = &event->hw;
8056
8057         if (is_sampling_event(event)) {
8058                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8059                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
8060
8061                 hrtimer_cancel(&hwc->hrtimer);
8062         }
8063 }
8064
8065 static void perf_swevent_init_hrtimer(struct perf_event *event)
8066 {
8067         struct hw_perf_event *hwc = &event->hw;
8068
8069         if (!is_sampling_event(event))
8070                 return;
8071
8072         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8073         hwc->hrtimer.function = perf_swevent_hrtimer;
8074
8075         /*
8076          * Since hrtimers have a fixed rate, we can do a static freq->period
8077          * mapping and avoid the whole period adjust feedback stuff.
8078          */
8079         if (event->attr.freq) {
8080                 long freq = event->attr.sample_freq;
8081
8082                 event->attr.sample_period = NSEC_PER_SEC / freq;
8083                 hwc->sample_period = event->attr.sample_period;
8084                 local64_set(&hwc->period_left, hwc->sample_period);
8085                 hwc->last_period = hwc->sample_period;
8086                 event->attr.freq = 0;
8087         }
8088 }
8089
8090 /*
8091  * Software event: cpu wall time clock
8092  */
8093
8094 static void cpu_clock_event_update(struct perf_event *event)
8095 {
8096         s64 prev;
8097         u64 now;
8098
8099         now = local_clock();
8100         prev = local64_xchg(&event->hw.prev_count, now);
8101         local64_add(now - prev, &event->count);
8102 }
8103
8104 static void cpu_clock_event_start(struct perf_event *event, int flags)
8105 {
8106         local64_set(&event->hw.prev_count, local_clock());
8107         perf_swevent_start_hrtimer(event);
8108 }
8109
8110 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8111 {
8112         perf_swevent_cancel_hrtimer(event);
8113         cpu_clock_event_update(event);
8114 }
8115
8116 static int cpu_clock_event_add(struct perf_event *event, int flags)
8117 {
8118         if (flags & PERF_EF_START)
8119                 cpu_clock_event_start(event, flags);
8120         perf_event_update_userpage(event);
8121
8122         return 0;
8123 }
8124
8125 static void cpu_clock_event_del(struct perf_event *event, int flags)
8126 {
8127         cpu_clock_event_stop(event, flags);
8128 }
8129
8130 static void cpu_clock_event_read(struct perf_event *event)
8131 {
8132         cpu_clock_event_update(event);
8133 }
8134
8135 static int cpu_clock_event_init(struct perf_event *event)
8136 {
8137         if (event->attr.type != PERF_TYPE_SOFTWARE)
8138                 return -ENOENT;
8139
8140         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8141                 return -ENOENT;
8142
8143         /*
8144          * no branch sampling for software events
8145          */
8146         if (has_branch_stack(event))
8147                 return -EOPNOTSUPP;
8148
8149         perf_swevent_init_hrtimer(event);
8150
8151         return 0;
8152 }
8153
8154 static struct pmu perf_cpu_clock = {
8155         .task_ctx_nr    = perf_sw_context,
8156
8157         .capabilities   = PERF_PMU_CAP_NO_NMI,
8158
8159         .event_init     = cpu_clock_event_init,
8160         .add            = cpu_clock_event_add,
8161         .del            = cpu_clock_event_del,
8162         .start          = cpu_clock_event_start,
8163         .stop           = cpu_clock_event_stop,
8164         .read           = cpu_clock_event_read,
8165 };
8166
8167 /*
8168  * Software event: task time clock
8169  */
8170
8171 static void task_clock_event_update(struct perf_event *event, u64 now)
8172 {
8173         u64 prev;
8174         s64 delta;
8175
8176         prev = local64_xchg(&event->hw.prev_count, now);
8177         delta = now - prev;
8178         local64_add(delta, &event->count);
8179 }
8180
8181 static void task_clock_event_start(struct perf_event *event, int flags)
8182 {
8183         local64_set(&event->hw.prev_count, event->ctx->time);
8184         perf_swevent_start_hrtimer(event);
8185 }
8186
8187 static void task_clock_event_stop(struct perf_event *event, int flags)
8188 {
8189         perf_swevent_cancel_hrtimer(event);
8190         task_clock_event_update(event, event->ctx->time);
8191 }
8192
8193 static int task_clock_event_add(struct perf_event *event, int flags)
8194 {
8195         if (flags & PERF_EF_START)
8196                 task_clock_event_start(event, flags);
8197         perf_event_update_userpage(event);
8198
8199         return 0;
8200 }
8201
8202 static void task_clock_event_del(struct perf_event *event, int flags)
8203 {
8204         task_clock_event_stop(event, PERF_EF_UPDATE);
8205 }
8206
8207 static void task_clock_event_read(struct perf_event *event)
8208 {
8209         u64 now = perf_clock();
8210         u64 delta = now - event->ctx->timestamp;
8211         u64 time = event->ctx->time + delta;
8212
8213         task_clock_event_update(event, time);
8214 }
8215
8216 static int task_clock_event_init(struct perf_event *event)
8217 {
8218         if (event->attr.type != PERF_TYPE_SOFTWARE)
8219                 return -ENOENT;
8220
8221         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8222                 return -ENOENT;
8223
8224         /*
8225          * no branch sampling for software events
8226          */
8227         if (has_branch_stack(event))
8228                 return -EOPNOTSUPP;
8229
8230         perf_swevent_init_hrtimer(event);
8231
8232         return 0;
8233 }
8234
8235 static struct pmu perf_task_clock = {
8236         .task_ctx_nr    = perf_sw_context,
8237
8238         .capabilities   = PERF_PMU_CAP_NO_NMI,
8239
8240         .event_init     = task_clock_event_init,
8241         .add            = task_clock_event_add,
8242         .del            = task_clock_event_del,
8243         .start          = task_clock_event_start,
8244         .stop           = task_clock_event_stop,
8245         .read           = task_clock_event_read,
8246 };
8247
8248 static void perf_pmu_nop_void(struct pmu *pmu)
8249 {
8250 }
8251
8252 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8253 {
8254 }
8255
8256 static int perf_pmu_nop_int(struct pmu *pmu)
8257 {
8258         return 0;
8259 }
8260
8261 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8262
8263 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8264 {
8265         __this_cpu_write(nop_txn_flags, flags);
8266
8267         if (flags & ~PERF_PMU_TXN_ADD)
8268                 return;
8269
8270         perf_pmu_disable(pmu);
8271 }
8272
8273 static int perf_pmu_commit_txn(struct pmu *pmu)
8274 {
8275         unsigned int flags = __this_cpu_read(nop_txn_flags);
8276
8277         __this_cpu_write(nop_txn_flags, 0);
8278
8279         if (flags & ~PERF_PMU_TXN_ADD)
8280                 return 0;
8281
8282         perf_pmu_enable(pmu);
8283         return 0;
8284 }
8285
8286 static void perf_pmu_cancel_txn(struct pmu *pmu)
8287 {
8288         unsigned int flags =  __this_cpu_read(nop_txn_flags);
8289
8290         __this_cpu_write(nop_txn_flags, 0);
8291
8292         if (flags & ~PERF_PMU_TXN_ADD)
8293                 return;
8294
8295         perf_pmu_enable(pmu);
8296 }
8297
8298 static int perf_event_idx_default(struct perf_event *event)
8299 {
8300         return 0;
8301 }
8302
8303 /*
8304  * Ensures all contexts with the same task_ctx_nr have the same
8305  * pmu_cpu_context too.
8306  */
8307 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8308 {
8309         struct pmu *pmu;
8310
8311         if (ctxn < 0)
8312                 return NULL;
8313
8314         list_for_each_entry(pmu, &pmus, entry) {
8315                 if (pmu->task_ctx_nr == ctxn)
8316                         return pmu->pmu_cpu_context;
8317         }
8318
8319         return NULL;
8320 }
8321
8322 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
8323 {
8324         int cpu;
8325
8326         for_each_possible_cpu(cpu) {
8327                 struct perf_cpu_context *cpuctx;
8328
8329                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8330
8331                 if (cpuctx->unique_pmu == old_pmu)
8332                         cpuctx->unique_pmu = pmu;
8333         }
8334 }
8335
8336 static void free_pmu_context(struct pmu *pmu)
8337 {
8338         struct pmu *i;
8339
8340         mutex_lock(&pmus_lock);
8341         /*
8342          * Like a real lame refcount.
8343          */
8344         list_for_each_entry(i, &pmus, entry) {
8345                 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
8346                         update_pmu_context(i, pmu);
8347                         goto out;
8348                 }
8349         }
8350
8351         free_percpu(pmu->pmu_cpu_context);
8352 out:
8353         mutex_unlock(&pmus_lock);
8354 }
8355
8356 /*
8357  * Let userspace know that this PMU supports address range filtering:
8358  */
8359 static ssize_t nr_addr_filters_show(struct device *dev,
8360                                     struct device_attribute *attr,
8361                                     char *page)
8362 {
8363         struct pmu *pmu = dev_get_drvdata(dev);
8364
8365         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8366 }
8367 DEVICE_ATTR_RO(nr_addr_filters);
8368
8369 static struct idr pmu_idr;
8370
8371 static ssize_t
8372 type_show(struct device *dev, struct device_attribute *attr, char *page)
8373 {
8374         struct pmu *pmu = dev_get_drvdata(dev);
8375
8376         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8377 }
8378 static DEVICE_ATTR_RO(type);
8379
8380 static ssize_t
8381 perf_event_mux_interval_ms_show(struct device *dev,
8382                                 struct device_attribute *attr,
8383                                 char *page)
8384 {
8385         struct pmu *pmu = dev_get_drvdata(dev);
8386
8387         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8388 }
8389
8390 static DEFINE_MUTEX(mux_interval_mutex);
8391
8392 static ssize_t
8393 perf_event_mux_interval_ms_store(struct device *dev,
8394                                  struct device_attribute *attr,
8395                                  const char *buf, size_t count)
8396 {
8397         struct pmu *pmu = dev_get_drvdata(dev);
8398         int timer, cpu, ret;
8399
8400         ret = kstrtoint(buf, 0, &timer);
8401         if (ret)
8402                 return ret;
8403
8404         if (timer < 1)
8405                 return -EINVAL;
8406
8407         /* same value, noting to do */
8408         if (timer == pmu->hrtimer_interval_ms)
8409                 return count;
8410
8411         mutex_lock(&mux_interval_mutex);
8412         pmu->hrtimer_interval_ms = timer;
8413
8414         /* update all cpuctx for this PMU */
8415         get_online_cpus();
8416         for_each_online_cpu(cpu) {
8417                 struct perf_cpu_context *cpuctx;
8418                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8419                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8420
8421                 cpu_function_call(cpu,
8422                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8423         }
8424         put_online_cpus();
8425         mutex_unlock(&mux_interval_mutex);
8426
8427         return count;
8428 }
8429 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8430
8431 static struct attribute *pmu_dev_attrs[] = {
8432         &dev_attr_type.attr,
8433         &dev_attr_perf_event_mux_interval_ms.attr,
8434         NULL,
8435 };
8436 ATTRIBUTE_GROUPS(pmu_dev);
8437
8438 static int pmu_bus_running;
8439 static struct bus_type pmu_bus = {
8440         .name           = "event_source",
8441         .dev_groups     = pmu_dev_groups,
8442 };
8443
8444 static void pmu_dev_release(struct device *dev)
8445 {
8446         kfree(dev);
8447 }
8448
8449 static int pmu_dev_alloc(struct pmu *pmu)
8450 {
8451         int ret = -ENOMEM;
8452
8453         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8454         if (!pmu->dev)
8455                 goto out;
8456
8457         pmu->dev->groups = pmu->attr_groups;
8458         device_initialize(pmu->dev);
8459         ret = dev_set_name(pmu->dev, "%s", pmu->name);
8460         if (ret)
8461                 goto free_dev;
8462
8463         dev_set_drvdata(pmu->dev, pmu);
8464         pmu->dev->bus = &pmu_bus;
8465         pmu->dev->release = pmu_dev_release;
8466         ret = device_add(pmu->dev);
8467         if (ret)
8468                 goto free_dev;
8469
8470         /* For PMUs with address filters, throw in an extra attribute: */
8471         if (pmu->nr_addr_filters)
8472                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
8473
8474         if (ret)
8475                 goto del_dev;
8476
8477 out:
8478         return ret;
8479
8480 del_dev:
8481         device_del(pmu->dev);
8482
8483 free_dev:
8484         put_device(pmu->dev);
8485         goto out;
8486 }
8487
8488 static struct lock_class_key cpuctx_mutex;
8489 static struct lock_class_key cpuctx_lock;
8490
8491 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
8492 {
8493         int cpu, ret;
8494
8495         mutex_lock(&pmus_lock);
8496         ret = -ENOMEM;
8497         pmu->pmu_disable_count = alloc_percpu(int);
8498         if (!pmu->pmu_disable_count)
8499                 goto unlock;
8500
8501         pmu->type = -1;
8502         if (!name)
8503                 goto skip_type;
8504         pmu->name = name;
8505
8506         if (type < 0) {
8507                 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
8508                 if (type < 0) {
8509                         ret = type;
8510                         goto free_pdc;
8511                 }
8512         }
8513         pmu->type = type;
8514
8515         if (pmu_bus_running) {
8516                 ret = pmu_dev_alloc(pmu);
8517                 if (ret)
8518                         goto free_idr;
8519         }
8520
8521 skip_type:
8522         if (pmu->task_ctx_nr == perf_hw_context) {
8523                 static int hw_context_taken = 0;
8524
8525                 /*
8526                  * Other than systems with heterogeneous CPUs, it never makes
8527                  * sense for two PMUs to share perf_hw_context. PMUs which are
8528                  * uncore must use perf_invalid_context.
8529                  */
8530                 if (WARN_ON_ONCE(hw_context_taken &&
8531                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
8532                         pmu->task_ctx_nr = perf_invalid_context;
8533
8534                 hw_context_taken = 1;
8535         }
8536
8537         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
8538         if (pmu->pmu_cpu_context)
8539                 goto got_cpu_context;
8540
8541         ret = -ENOMEM;
8542         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
8543         if (!pmu->pmu_cpu_context)
8544                 goto free_dev;
8545
8546         for_each_possible_cpu(cpu) {
8547                 struct perf_cpu_context *cpuctx;
8548
8549                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8550                 __perf_event_init_context(&cpuctx->ctx);
8551                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
8552                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
8553                 cpuctx->ctx.pmu = pmu;
8554
8555                 __perf_mux_hrtimer_init(cpuctx, cpu);
8556
8557                 cpuctx->unique_pmu = pmu;
8558         }
8559
8560 got_cpu_context:
8561         if (!pmu->start_txn) {
8562                 if (pmu->pmu_enable) {
8563                         /*
8564                          * If we have pmu_enable/pmu_disable calls, install
8565                          * transaction stubs that use that to try and batch
8566                          * hardware accesses.
8567                          */
8568                         pmu->start_txn  = perf_pmu_start_txn;
8569                         pmu->commit_txn = perf_pmu_commit_txn;
8570                         pmu->cancel_txn = perf_pmu_cancel_txn;
8571                 } else {
8572                         pmu->start_txn  = perf_pmu_nop_txn;
8573                         pmu->commit_txn = perf_pmu_nop_int;
8574                         pmu->cancel_txn = perf_pmu_nop_void;
8575                 }
8576         }
8577
8578         if (!pmu->pmu_enable) {
8579                 pmu->pmu_enable  = perf_pmu_nop_void;
8580                 pmu->pmu_disable = perf_pmu_nop_void;
8581         }
8582
8583         if (!pmu->event_idx)
8584                 pmu->event_idx = perf_event_idx_default;
8585
8586         list_add_rcu(&pmu->entry, &pmus);
8587         atomic_set(&pmu->exclusive_cnt, 0);
8588         ret = 0;
8589 unlock:
8590         mutex_unlock(&pmus_lock);
8591
8592         return ret;
8593
8594 free_dev:
8595         device_del(pmu->dev);
8596         put_device(pmu->dev);
8597
8598 free_idr:
8599         if (pmu->type >= PERF_TYPE_MAX)
8600                 idr_remove(&pmu_idr, pmu->type);
8601
8602 free_pdc:
8603         free_percpu(pmu->pmu_disable_count);
8604         goto unlock;
8605 }
8606 EXPORT_SYMBOL_GPL(perf_pmu_register);
8607
8608 void perf_pmu_unregister(struct pmu *pmu)
8609 {
8610         mutex_lock(&pmus_lock);
8611         list_del_rcu(&pmu->entry);
8612         mutex_unlock(&pmus_lock);
8613
8614         /*
8615          * We dereference the pmu list under both SRCU and regular RCU, so
8616          * synchronize against both of those.
8617          */
8618         synchronize_srcu(&pmus_srcu);
8619         synchronize_rcu();
8620
8621         free_percpu(pmu->pmu_disable_count);
8622         if (pmu->type >= PERF_TYPE_MAX)
8623                 idr_remove(&pmu_idr, pmu->type);
8624         if (pmu->nr_addr_filters)
8625                 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
8626         device_del(pmu->dev);
8627         put_device(pmu->dev);
8628         free_pmu_context(pmu);
8629 }
8630 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
8631
8632 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
8633 {
8634         struct perf_event_context *ctx = NULL;
8635         int ret;
8636
8637         if (!try_module_get(pmu->module))
8638                 return -ENODEV;
8639
8640         if (event->group_leader != event) {
8641                 /*
8642                  * This ctx->mutex can nest when we're called through
8643                  * inheritance. See the perf_event_ctx_lock_nested() comment.
8644                  */
8645                 ctx = perf_event_ctx_lock_nested(event->group_leader,
8646                                                  SINGLE_DEPTH_NESTING);
8647                 BUG_ON(!ctx);
8648         }
8649
8650         event->pmu = pmu;
8651         ret = pmu->event_init(event);
8652
8653         if (ctx)
8654                 perf_event_ctx_unlock(event->group_leader, ctx);
8655
8656         if (ret)
8657                 module_put(pmu->module);
8658
8659         return ret;
8660 }
8661
8662 static struct pmu *perf_init_event(struct perf_event *event)
8663 {
8664         struct pmu *pmu = NULL;
8665         int idx;
8666         int ret;
8667
8668         idx = srcu_read_lock(&pmus_srcu);
8669
8670         rcu_read_lock();
8671         pmu = idr_find(&pmu_idr, event->attr.type);
8672         rcu_read_unlock();
8673         if (pmu) {
8674                 ret = perf_try_init_event(pmu, event);
8675                 if (ret)
8676                         pmu = ERR_PTR(ret);
8677                 goto unlock;
8678         }
8679
8680         list_for_each_entry_rcu(pmu, &pmus, entry) {
8681                 ret = perf_try_init_event(pmu, event);
8682                 if (!ret)
8683                         goto unlock;
8684
8685                 if (ret != -ENOENT) {
8686                         pmu = ERR_PTR(ret);
8687                         goto unlock;
8688                 }
8689         }
8690         pmu = ERR_PTR(-ENOENT);
8691 unlock:
8692         srcu_read_unlock(&pmus_srcu, idx);
8693
8694         return pmu;
8695 }
8696
8697 static void attach_sb_event(struct perf_event *event)
8698 {
8699         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
8700
8701         raw_spin_lock(&pel->lock);
8702         list_add_rcu(&event->sb_list, &pel->list);
8703         raw_spin_unlock(&pel->lock);
8704 }
8705
8706 /*
8707  * We keep a list of all !task (and therefore per-cpu) events
8708  * that need to receive side-band records.
8709  *
8710  * This avoids having to scan all the various PMU per-cpu contexts
8711  * looking for them.
8712  */
8713 static void account_pmu_sb_event(struct perf_event *event)
8714 {
8715         if (is_sb_event(event))
8716                 attach_sb_event(event);
8717 }
8718
8719 static void account_event_cpu(struct perf_event *event, int cpu)
8720 {
8721         if (event->parent)
8722                 return;
8723
8724         if (is_cgroup_event(event))
8725                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
8726 }
8727
8728 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
8729 static void account_freq_event_nohz(void)
8730 {
8731 #ifdef CONFIG_NO_HZ_FULL
8732         /* Lock so we don't race with concurrent unaccount */
8733         spin_lock(&nr_freq_lock);
8734         if (atomic_inc_return(&nr_freq_events) == 1)
8735                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
8736         spin_unlock(&nr_freq_lock);
8737 #endif
8738 }
8739
8740 static void account_freq_event(void)
8741 {
8742         if (tick_nohz_full_enabled())
8743                 account_freq_event_nohz();
8744         else
8745                 atomic_inc(&nr_freq_events);
8746 }
8747
8748
8749 static void account_event(struct perf_event *event)
8750 {
8751         bool inc = false;
8752
8753         if (event->parent)
8754                 return;
8755
8756         if (event->attach_state & PERF_ATTACH_TASK)
8757                 inc = true;
8758         if (event->attr.mmap || event->attr.mmap_data)
8759                 atomic_inc(&nr_mmap_events);
8760         if (event->attr.comm)
8761                 atomic_inc(&nr_comm_events);
8762         if (event->attr.task)
8763                 atomic_inc(&nr_task_events);
8764         if (event->attr.freq)
8765                 account_freq_event();
8766         if (event->attr.context_switch) {
8767                 atomic_inc(&nr_switch_events);
8768                 inc = true;
8769         }
8770         if (has_branch_stack(event))
8771                 inc = true;
8772         if (is_cgroup_event(event))
8773                 inc = true;
8774
8775         if (inc) {
8776                 if (atomic_inc_not_zero(&perf_sched_count))
8777                         goto enabled;
8778
8779                 mutex_lock(&perf_sched_mutex);
8780                 if (!atomic_read(&perf_sched_count)) {
8781                         static_branch_enable(&perf_sched_events);
8782                         /*
8783                          * Guarantee that all CPUs observe they key change and
8784                          * call the perf scheduling hooks before proceeding to
8785                          * install events that need them.
8786                          */
8787                         synchronize_sched();
8788                 }
8789                 /*
8790                  * Now that we have waited for the sync_sched(), allow further
8791                  * increments to by-pass the mutex.
8792                  */
8793                 atomic_inc(&perf_sched_count);
8794                 mutex_unlock(&perf_sched_mutex);
8795         }
8796 enabled:
8797
8798         account_event_cpu(event, event->cpu);
8799
8800         account_pmu_sb_event(event);
8801 }
8802
8803 /*
8804  * Allocate and initialize a event structure
8805  */
8806 static struct perf_event *
8807 perf_event_alloc(struct perf_event_attr *attr, int cpu,
8808                  struct task_struct *task,
8809                  struct perf_event *group_leader,
8810                  struct perf_event *parent_event,
8811                  perf_overflow_handler_t overflow_handler,
8812                  void *context, int cgroup_fd)
8813 {
8814         struct pmu *pmu;
8815         struct perf_event *event;
8816         struct hw_perf_event *hwc;
8817         long err = -EINVAL;
8818
8819         if ((unsigned)cpu >= nr_cpu_ids) {
8820                 if (!task || cpu != -1)
8821                         return ERR_PTR(-EINVAL);
8822         }
8823
8824         event = kzalloc(sizeof(*event), GFP_KERNEL);
8825         if (!event)
8826                 return ERR_PTR(-ENOMEM);
8827
8828         /*
8829          * Single events are their own group leaders, with an
8830          * empty sibling list:
8831          */
8832         if (!group_leader)
8833                 group_leader = event;
8834
8835         mutex_init(&event->child_mutex);
8836         INIT_LIST_HEAD(&event->child_list);
8837
8838         INIT_LIST_HEAD(&event->group_entry);
8839         INIT_LIST_HEAD(&event->event_entry);
8840         INIT_LIST_HEAD(&event->sibling_list);
8841         INIT_LIST_HEAD(&event->rb_entry);
8842         INIT_LIST_HEAD(&event->active_entry);
8843         INIT_LIST_HEAD(&event->addr_filters.list);
8844         INIT_HLIST_NODE(&event->hlist_entry);
8845
8846
8847         init_waitqueue_head(&event->waitq);
8848         init_irq_work(&event->pending, perf_pending_event);
8849
8850         mutex_init(&event->mmap_mutex);
8851         raw_spin_lock_init(&event->addr_filters.lock);
8852
8853         atomic_long_set(&event->refcount, 1);
8854         event->cpu              = cpu;
8855         event->attr             = *attr;
8856         event->group_leader     = group_leader;
8857         event->pmu              = NULL;
8858         event->oncpu            = -1;
8859
8860         event->parent           = parent_event;
8861
8862         event->ns               = get_pid_ns(task_active_pid_ns(current));
8863         event->id               = atomic64_inc_return(&perf_event_id);
8864
8865         event->state            = PERF_EVENT_STATE_INACTIVE;
8866
8867         if (task) {
8868                 event->attach_state = PERF_ATTACH_TASK;
8869                 /*
8870                  * XXX pmu::event_init needs to know what task to account to
8871                  * and we cannot use the ctx information because we need the
8872                  * pmu before we get a ctx.
8873                  */
8874                 event->hw.target = task;
8875         }
8876
8877         event->clock = &local_clock;
8878         if (parent_event)
8879                 event->clock = parent_event->clock;
8880
8881         if (!overflow_handler && parent_event) {
8882                 overflow_handler = parent_event->overflow_handler;
8883                 context = parent_event->overflow_handler_context;
8884         }
8885
8886         if (overflow_handler) {
8887                 event->overflow_handler = overflow_handler;
8888                 event->overflow_handler_context = context;
8889         } else if (is_write_backward(event)){
8890                 event->overflow_handler = perf_event_output_backward;
8891                 event->overflow_handler_context = NULL;
8892         } else {
8893                 event->overflow_handler = perf_event_output_forward;
8894                 event->overflow_handler_context = NULL;
8895         }
8896
8897         perf_event__state_init(event);
8898
8899         pmu = NULL;
8900
8901         hwc = &event->hw;
8902         hwc->sample_period = attr->sample_period;
8903         if (attr->freq && attr->sample_freq)
8904                 hwc->sample_period = 1;
8905         hwc->last_period = hwc->sample_period;
8906
8907         local64_set(&hwc->period_left, hwc->sample_period);
8908
8909         /*
8910          * we currently do not support PERF_FORMAT_GROUP on inherited events
8911          */
8912         if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
8913                 goto err_ns;
8914
8915         if (!has_branch_stack(event))
8916                 event->attr.branch_sample_type = 0;
8917
8918         if (cgroup_fd != -1) {
8919                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
8920                 if (err)
8921                         goto err_ns;
8922         }
8923
8924         pmu = perf_init_event(event);
8925         if (!pmu)
8926                 goto err_ns;
8927         else if (IS_ERR(pmu)) {
8928                 err = PTR_ERR(pmu);
8929                 goto err_ns;
8930         }
8931
8932         err = exclusive_event_init(event);
8933         if (err)
8934                 goto err_pmu;
8935
8936         if (has_addr_filter(event)) {
8937                 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
8938                                                    sizeof(unsigned long),
8939                                                    GFP_KERNEL);
8940                 if (!event->addr_filters_offs)
8941                         goto err_per_task;
8942
8943                 /* force hw sync on the address filters */
8944                 event->addr_filters_gen = 1;
8945         }
8946
8947         if (!event->parent) {
8948                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
8949                         err = get_callchain_buffers(attr->sample_max_stack);
8950                         if (err)
8951                                 goto err_addr_filters;
8952                 }
8953         }
8954
8955         /* symmetric to unaccount_event() in _free_event() */
8956         account_event(event);
8957
8958         return event;
8959
8960 err_addr_filters:
8961         kfree(event->addr_filters_offs);
8962
8963 err_per_task:
8964         exclusive_event_destroy(event);
8965
8966 err_pmu:
8967         if (event->destroy)
8968                 event->destroy(event);
8969         module_put(pmu->module);
8970 err_ns:
8971         if (is_cgroup_event(event))
8972                 perf_detach_cgroup(event);
8973         if (event->ns)
8974                 put_pid_ns(event->ns);
8975         kfree(event);
8976
8977         return ERR_PTR(err);
8978 }
8979
8980 static int perf_copy_attr(struct perf_event_attr __user *uattr,
8981                           struct perf_event_attr *attr)
8982 {
8983         u32 size;
8984         int ret;
8985
8986         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
8987                 return -EFAULT;
8988
8989         /*
8990          * zero the full structure, so that a short copy will be nice.
8991          */
8992         memset(attr, 0, sizeof(*attr));
8993
8994         ret = get_user(size, &uattr->size);
8995         if (ret)
8996                 return ret;
8997
8998         if (size > PAGE_SIZE)   /* silly large */
8999                 goto err_size;
9000
9001         if (!size)              /* abi compat */
9002                 size = PERF_ATTR_SIZE_VER0;
9003
9004         if (size < PERF_ATTR_SIZE_VER0)
9005                 goto err_size;
9006
9007         /*
9008          * If we're handed a bigger struct than we know of,
9009          * ensure all the unknown bits are 0 - i.e. new
9010          * user-space does not rely on any kernel feature
9011          * extensions we dont know about yet.
9012          */
9013         if (size > sizeof(*attr)) {
9014                 unsigned char __user *addr;
9015                 unsigned char __user *end;
9016                 unsigned char val;
9017
9018                 addr = (void __user *)uattr + sizeof(*attr);
9019                 end  = (void __user *)uattr + size;
9020
9021                 for (; addr < end; addr++) {
9022                         ret = get_user(val, addr);
9023                         if (ret)
9024                                 return ret;
9025                         if (val)
9026                                 goto err_size;
9027                 }
9028                 size = sizeof(*attr);
9029         }
9030
9031         ret = copy_from_user(attr, uattr, size);
9032         if (ret)
9033                 return -EFAULT;
9034
9035         if (attr->__reserved_1)
9036                 return -EINVAL;
9037
9038         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9039                 return -EINVAL;
9040
9041         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9042                 return -EINVAL;
9043
9044         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9045                 u64 mask = attr->branch_sample_type;
9046
9047                 /* only using defined bits */
9048                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9049                         return -EINVAL;
9050
9051                 /* at least one branch bit must be set */
9052                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9053                         return -EINVAL;
9054
9055                 /* propagate priv level, when not set for branch */
9056                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9057
9058                         /* exclude_kernel checked on syscall entry */
9059                         if (!attr->exclude_kernel)
9060                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9061
9062                         if (!attr->exclude_user)
9063                                 mask |= PERF_SAMPLE_BRANCH_USER;
9064
9065                         if (!attr->exclude_hv)
9066                                 mask |= PERF_SAMPLE_BRANCH_HV;
9067                         /*
9068                          * adjust user setting (for HW filter setup)
9069                          */
9070                         attr->branch_sample_type = mask;
9071                 }
9072                 /* privileged levels capture (kernel, hv): check permissions */
9073                 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9074                     && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9075                         return -EACCES;
9076         }
9077
9078         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9079                 ret = perf_reg_validate(attr->sample_regs_user);
9080                 if (ret)
9081                         return ret;
9082         }
9083
9084         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9085                 if (!arch_perf_have_user_stack_dump())
9086                         return -ENOSYS;
9087
9088                 /*
9089                  * We have __u32 type for the size, but so far
9090                  * we can only use __u16 as maximum due to the
9091                  * __u16 sample size limit.
9092                  */
9093                 if (attr->sample_stack_user >= USHRT_MAX)
9094                         ret = -EINVAL;
9095                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9096                         ret = -EINVAL;
9097         }
9098
9099         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9100                 ret = perf_reg_validate(attr->sample_regs_intr);
9101 out:
9102         return ret;
9103
9104 err_size:
9105         put_user(sizeof(*attr), &uattr->size);
9106         ret = -E2BIG;
9107         goto out;
9108 }
9109
9110 static int
9111 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9112 {
9113         struct ring_buffer *rb = NULL;
9114         int ret = -EINVAL;
9115
9116         if (!output_event)
9117                 goto set;
9118
9119         /* don't allow circular references */
9120         if (event == output_event)
9121                 goto out;
9122
9123         /*
9124          * Don't allow cross-cpu buffers
9125          */
9126         if (output_event->cpu != event->cpu)
9127                 goto out;
9128
9129         /*
9130          * If its not a per-cpu rb, it must be the same task.
9131          */
9132         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9133                 goto out;
9134
9135         /*
9136          * Mixing clocks in the same buffer is trouble you don't need.
9137          */
9138         if (output_event->clock != event->clock)
9139                 goto out;
9140
9141         /*
9142          * Either writing ring buffer from beginning or from end.
9143          * Mixing is not allowed.
9144          */
9145         if (is_write_backward(output_event) != is_write_backward(event))
9146                 goto out;
9147
9148         /*
9149          * If both events generate aux data, they must be on the same PMU
9150          */
9151         if (has_aux(event) && has_aux(output_event) &&
9152             event->pmu != output_event->pmu)
9153                 goto out;
9154
9155 set:
9156         mutex_lock(&event->mmap_mutex);
9157         /* Can't redirect output if we've got an active mmap() */
9158         if (atomic_read(&event->mmap_count))
9159                 goto unlock;
9160
9161         if (output_event) {
9162                 /* get the rb we want to redirect to */
9163                 rb = ring_buffer_get(output_event);
9164                 if (!rb)
9165                         goto unlock;
9166         }
9167
9168         ring_buffer_attach(event, rb);
9169
9170         ret = 0;
9171 unlock:
9172         mutex_unlock(&event->mmap_mutex);
9173
9174 out:
9175         return ret;
9176 }
9177
9178 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9179 {
9180         if (b < a)
9181                 swap(a, b);
9182
9183         mutex_lock(a);
9184         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9185 }
9186
9187 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9188 {
9189         bool nmi_safe = false;
9190
9191         switch (clk_id) {
9192         case CLOCK_MONOTONIC:
9193                 event->clock = &ktime_get_mono_fast_ns;
9194                 nmi_safe = true;
9195                 break;
9196
9197         case CLOCK_MONOTONIC_RAW:
9198                 event->clock = &ktime_get_raw_fast_ns;
9199                 nmi_safe = true;
9200                 break;
9201
9202         case CLOCK_REALTIME:
9203                 event->clock = &ktime_get_real_ns;
9204                 break;
9205
9206         case CLOCK_BOOTTIME:
9207                 event->clock = &ktime_get_boot_ns;
9208                 break;
9209
9210         case CLOCK_TAI:
9211                 event->clock = &ktime_get_tai_ns;
9212                 break;
9213
9214         default:
9215                 return -EINVAL;
9216         }
9217
9218         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9219                 return -EINVAL;
9220
9221         return 0;
9222 }
9223
9224 /**
9225  * sys_perf_event_open - open a performance event, associate it to a task/cpu
9226  *
9227  * @attr_uptr:  event_id type attributes for monitoring/sampling
9228  * @pid:                target pid
9229  * @cpu:                target cpu
9230  * @group_fd:           group leader event fd
9231  */
9232 SYSCALL_DEFINE5(perf_event_open,
9233                 struct perf_event_attr __user *, attr_uptr,
9234                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9235 {
9236         struct perf_event *group_leader = NULL, *output_event = NULL;
9237         struct perf_event *event, *sibling;
9238         struct perf_event_attr attr;
9239         struct perf_event_context *ctx, *uninitialized_var(gctx);
9240         struct file *event_file = NULL;
9241         struct fd group = {NULL, 0};
9242         struct task_struct *task = NULL;
9243         struct pmu *pmu;
9244         int event_fd;
9245         int move_group = 0;
9246         int err;
9247         int f_flags = O_RDWR;
9248         int cgroup_fd = -1;
9249
9250         /* for future expandability... */
9251         if (flags & ~PERF_FLAG_ALL)
9252                 return -EINVAL;
9253
9254         err = perf_copy_attr(attr_uptr, &attr);
9255         if (err)
9256                 return err;
9257
9258         if (!attr.exclude_kernel) {
9259                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9260                         return -EACCES;
9261         }
9262
9263         if (attr.freq) {
9264                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
9265                         return -EINVAL;
9266         } else {
9267                 if (attr.sample_period & (1ULL << 63))
9268                         return -EINVAL;
9269         }
9270
9271         if (!attr.sample_max_stack)
9272                 attr.sample_max_stack = sysctl_perf_event_max_stack;
9273
9274         /*
9275          * In cgroup mode, the pid argument is used to pass the fd
9276          * opened to the cgroup directory in cgroupfs. The cpu argument
9277          * designates the cpu on which to monitor threads from that
9278          * cgroup.
9279          */
9280         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9281                 return -EINVAL;
9282
9283         if (flags & PERF_FLAG_FD_CLOEXEC)
9284                 f_flags |= O_CLOEXEC;
9285
9286         event_fd = get_unused_fd_flags(f_flags);
9287         if (event_fd < 0)
9288                 return event_fd;
9289
9290         if (group_fd != -1) {
9291                 err = perf_fget_light(group_fd, &group);
9292                 if (err)
9293                         goto err_fd;
9294                 group_leader = group.file->private_data;
9295                 if (flags & PERF_FLAG_FD_OUTPUT)
9296                         output_event = group_leader;
9297                 if (flags & PERF_FLAG_FD_NO_GROUP)
9298                         group_leader = NULL;
9299         }
9300
9301         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9302                 task = find_lively_task_by_vpid(pid);
9303                 if (IS_ERR(task)) {
9304                         err = PTR_ERR(task);
9305                         goto err_group_fd;
9306                 }
9307         }
9308
9309         if (task && group_leader &&
9310             group_leader->attr.inherit != attr.inherit) {
9311                 err = -EINVAL;
9312                 goto err_task;
9313         }
9314
9315         get_online_cpus();
9316
9317         if (task) {
9318                 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9319                 if (err)
9320                         goto err_cpus;
9321
9322                 /*
9323                  * Reuse ptrace permission checks for now.
9324                  *
9325                  * We must hold cred_guard_mutex across this and any potential
9326                  * perf_install_in_context() call for this new event to
9327                  * serialize against exec() altering our credentials (and the
9328                  * perf_event_exit_task() that could imply).
9329                  */
9330                 err = -EACCES;
9331                 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9332                         goto err_cred;
9333         }
9334
9335         if (flags & PERF_FLAG_PID_CGROUP)
9336                 cgroup_fd = pid;
9337
9338         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9339                                  NULL, NULL, cgroup_fd);
9340         if (IS_ERR(event)) {
9341                 err = PTR_ERR(event);
9342                 goto err_cred;
9343         }
9344
9345         if (is_sampling_event(event)) {
9346                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9347                         err = -EOPNOTSUPP;
9348                         goto err_alloc;
9349                 }
9350         }
9351
9352         /*
9353          * Special case software events and allow them to be part of
9354          * any hardware group.
9355          */
9356         pmu = event->pmu;
9357
9358         if (attr.use_clockid) {
9359                 err = perf_event_set_clock(event, attr.clockid);
9360                 if (err)
9361                         goto err_alloc;
9362         }
9363
9364         if (group_leader &&
9365             (is_software_event(event) != is_software_event(group_leader))) {
9366                 if (is_software_event(event)) {
9367                         /*
9368                          * If event and group_leader are not both a software
9369                          * event, and event is, then group leader is not.
9370                          *
9371                          * Allow the addition of software events to !software
9372                          * groups, this is safe because software events never
9373                          * fail to schedule.
9374                          */
9375                         pmu = group_leader->pmu;
9376                 } else if (is_software_event(group_leader) &&
9377                            (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
9378                         /*
9379                          * In case the group is a pure software group, and we
9380                          * try to add a hardware event, move the whole group to
9381                          * the hardware context.
9382                          */
9383                         move_group = 1;
9384                 }
9385         }
9386
9387         /*
9388          * Get the target context (task or percpu):
9389          */
9390         ctx = find_get_context(pmu, task, event);
9391         if (IS_ERR(ctx)) {
9392                 err = PTR_ERR(ctx);
9393                 goto err_alloc;
9394         }
9395
9396         if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9397                 err = -EBUSY;
9398                 goto err_context;
9399         }
9400
9401         /*
9402          * Look up the group leader (we will attach this event to it):
9403          */
9404         if (group_leader) {
9405                 err = -EINVAL;
9406
9407                 /*
9408                  * Do not allow a recursive hierarchy (this new sibling
9409                  * becoming part of another group-sibling):
9410                  */
9411                 if (group_leader->group_leader != group_leader)
9412                         goto err_context;
9413
9414                 /* All events in a group should have the same clock */
9415                 if (group_leader->clock != event->clock)
9416                         goto err_context;
9417
9418                 /*
9419                  * Do not allow to attach to a group in a different
9420                  * task or CPU context:
9421                  */
9422                 if (move_group) {
9423                         /*
9424                          * Make sure we're both on the same task, or both
9425                          * per-cpu events.
9426                          */
9427                         if (group_leader->ctx->task != ctx->task)
9428                                 goto err_context;
9429
9430                         /*
9431                          * Make sure we're both events for the same CPU;
9432                          * grouping events for different CPUs is broken; since
9433                          * you can never concurrently schedule them anyhow.
9434                          */
9435                         if (group_leader->cpu != event->cpu)
9436                                 goto err_context;
9437                 } else {
9438                         if (group_leader->ctx != ctx)
9439                                 goto err_context;
9440                 }
9441
9442                 /*
9443                  * Only a group leader can be exclusive or pinned
9444                  */
9445                 if (attr.exclusive || attr.pinned)
9446                         goto err_context;
9447         }
9448
9449         if (output_event) {
9450                 err = perf_event_set_output(event, output_event);
9451                 if (err)
9452                         goto err_context;
9453         }
9454
9455         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
9456                                         f_flags);
9457         if (IS_ERR(event_file)) {
9458                 err = PTR_ERR(event_file);
9459                 event_file = NULL;
9460                 goto err_context;
9461         }
9462
9463         if (move_group) {
9464                 gctx = group_leader->ctx;
9465                 mutex_lock_double(&gctx->mutex, &ctx->mutex);
9466                 if (gctx->task == TASK_TOMBSTONE) {
9467                         err = -ESRCH;
9468                         goto err_locked;
9469                 }
9470         } else {
9471                 mutex_lock(&ctx->mutex);
9472         }
9473
9474         if (ctx->task == TASK_TOMBSTONE) {
9475                 err = -ESRCH;
9476                 goto err_locked;
9477         }
9478
9479         if (!perf_event_validate_size(event)) {
9480                 err = -E2BIG;
9481                 goto err_locked;
9482         }
9483
9484         /*
9485          * Must be under the same ctx::mutex as perf_install_in_context(),
9486          * because we need to serialize with concurrent event creation.
9487          */
9488         if (!exclusive_event_installable(event, ctx)) {
9489                 /* exclusive and group stuff are assumed mutually exclusive */
9490                 WARN_ON_ONCE(move_group);
9491
9492                 err = -EBUSY;
9493                 goto err_locked;
9494         }
9495
9496         WARN_ON_ONCE(ctx->parent_ctx);
9497
9498         /*
9499          * This is the point on no return; we cannot fail hereafter. This is
9500          * where we start modifying current state.
9501          */
9502
9503         if (move_group) {
9504                 /*
9505                  * See perf_event_ctx_lock() for comments on the details
9506                  * of swizzling perf_event::ctx.
9507                  */
9508                 perf_remove_from_context(group_leader, 0);
9509
9510                 list_for_each_entry(sibling, &group_leader->sibling_list,
9511                                     group_entry) {
9512                         perf_remove_from_context(sibling, 0);
9513                         put_ctx(gctx);
9514                 }
9515
9516                 /*
9517                  * Wait for everybody to stop referencing the events through
9518                  * the old lists, before installing it on new lists.
9519                  */
9520                 synchronize_rcu();
9521
9522                 /*
9523                  * Install the group siblings before the group leader.
9524                  *
9525                  * Because a group leader will try and install the entire group
9526                  * (through the sibling list, which is still in-tact), we can
9527                  * end up with siblings installed in the wrong context.
9528                  *
9529                  * By installing siblings first we NO-OP because they're not
9530                  * reachable through the group lists.
9531                  */
9532                 list_for_each_entry(sibling, &group_leader->sibling_list,
9533                                     group_entry) {
9534                         perf_event__state_init(sibling);
9535                         perf_install_in_context(ctx, sibling, sibling->cpu);
9536                         get_ctx(ctx);
9537                 }
9538
9539                 /*
9540                  * Removing from the context ends up with disabled
9541                  * event. What we want here is event in the initial
9542                  * startup state, ready to be add into new context.
9543                  */
9544                 perf_event__state_init(group_leader);
9545                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
9546                 get_ctx(ctx);
9547
9548                 /*
9549                  * Now that all events are installed in @ctx, nothing
9550                  * references @gctx anymore, so drop the last reference we have
9551                  * on it.
9552                  */
9553                 put_ctx(gctx);
9554         }
9555
9556         /*
9557          * Precalculate sample_data sizes; do while holding ctx::mutex such
9558          * that we're serialized against further additions and before
9559          * perf_install_in_context() which is the point the event is active and
9560          * can use these values.
9561          */
9562         perf_event__header_size(event);
9563         perf_event__id_header_size(event);
9564
9565         event->owner = current;
9566
9567         perf_install_in_context(ctx, event, event->cpu);
9568         perf_unpin_context(ctx);
9569
9570         if (move_group)
9571                 mutex_unlock(&gctx->mutex);
9572         mutex_unlock(&ctx->mutex);
9573
9574         if (task) {
9575                 mutex_unlock(&task->signal->cred_guard_mutex);
9576                 put_task_struct(task);
9577         }
9578
9579         put_online_cpus();
9580
9581         mutex_lock(&current->perf_event_mutex);
9582         list_add_tail(&event->owner_entry, &current->perf_event_list);
9583         mutex_unlock(&current->perf_event_mutex);
9584
9585         /*
9586          * Drop the reference on the group_event after placing the
9587          * new event on the sibling_list. This ensures destruction
9588          * of the group leader will find the pointer to itself in
9589          * perf_group_detach().
9590          */
9591         fdput(group);
9592         fd_install(event_fd, event_file);
9593         return event_fd;
9594
9595 err_locked:
9596         if (move_group)
9597                 mutex_unlock(&gctx->mutex);
9598         mutex_unlock(&ctx->mutex);
9599 /* err_file: */
9600         fput(event_file);
9601 err_context:
9602         perf_unpin_context(ctx);
9603         put_ctx(ctx);
9604 err_alloc:
9605         /*
9606          * If event_file is set, the fput() above will have called ->release()
9607          * and that will take care of freeing the event.
9608          */
9609         if (!event_file)
9610                 free_event(event);
9611 err_cred:
9612         if (task)
9613                 mutex_unlock(&task->signal->cred_guard_mutex);
9614 err_cpus:
9615         put_online_cpus();
9616 err_task:
9617         if (task)
9618                 put_task_struct(task);
9619 err_group_fd:
9620         fdput(group);
9621 err_fd:
9622         put_unused_fd(event_fd);
9623         return err;
9624 }
9625
9626 /**
9627  * perf_event_create_kernel_counter
9628  *
9629  * @attr: attributes of the counter to create
9630  * @cpu: cpu in which the counter is bound
9631  * @task: task to profile (NULL for percpu)
9632  */
9633 struct perf_event *
9634 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
9635                                  struct task_struct *task,
9636                                  perf_overflow_handler_t overflow_handler,
9637                                  void *context)
9638 {
9639         struct perf_event_context *ctx;
9640         struct perf_event *event;
9641         int err;
9642
9643         /*
9644          * Get the target context (task or percpu):
9645          */
9646
9647         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
9648                                  overflow_handler, context, -1);
9649         if (IS_ERR(event)) {
9650                 err = PTR_ERR(event);
9651                 goto err;
9652         }
9653
9654         /* Mark owner so we could distinguish it from user events. */
9655         event->owner = TASK_TOMBSTONE;
9656
9657         ctx = find_get_context(event->pmu, task, event);
9658         if (IS_ERR(ctx)) {
9659                 err = PTR_ERR(ctx);
9660                 goto err_free;
9661         }
9662
9663         WARN_ON_ONCE(ctx->parent_ctx);
9664         mutex_lock(&ctx->mutex);
9665         if (ctx->task == TASK_TOMBSTONE) {
9666                 err = -ESRCH;
9667                 goto err_unlock;
9668         }
9669
9670         if (!exclusive_event_installable(event, ctx)) {
9671                 err = -EBUSY;
9672                 goto err_unlock;
9673         }
9674
9675         perf_install_in_context(ctx, event, cpu);
9676         perf_unpin_context(ctx);
9677         mutex_unlock(&ctx->mutex);
9678
9679         return event;
9680
9681 err_unlock:
9682         mutex_unlock(&ctx->mutex);
9683         perf_unpin_context(ctx);
9684         put_ctx(ctx);
9685 err_free:
9686         free_event(event);
9687 err:
9688         return ERR_PTR(err);
9689 }
9690 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9691
9692 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
9693 {
9694         struct perf_event_context *src_ctx;
9695         struct perf_event_context *dst_ctx;
9696         struct perf_event *event, *tmp;
9697         LIST_HEAD(events);
9698
9699         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
9700         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
9701
9702         /*
9703          * See perf_event_ctx_lock() for comments on the details
9704          * of swizzling perf_event::ctx.
9705          */
9706         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
9707         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
9708                                  event_entry) {
9709                 perf_remove_from_context(event, 0);
9710                 unaccount_event_cpu(event, src_cpu);
9711                 put_ctx(src_ctx);
9712                 list_add(&event->migrate_entry, &events);
9713         }
9714
9715         /*
9716          * Wait for the events to quiesce before re-instating them.
9717          */
9718         synchronize_rcu();
9719
9720         /*
9721          * Re-instate events in 2 passes.
9722          *
9723          * Skip over group leaders and only install siblings on this first
9724          * pass, siblings will not get enabled without a leader, however a
9725          * leader will enable its siblings, even if those are still on the old
9726          * context.
9727          */
9728         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
9729                 if (event->group_leader == event)
9730                         continue;
9731
9732                 list_del(&event->migrate_entry);
9733                 if (event->state >= PERF_EVENT_STATE_OFF)
9734                         event->state = PERF_EVENT_STATE_INACTIVE;
9735                 account_event_cpu(event, dst_cpu);
9736                 perf_install_in_context(dst_ctx, event, dst_cpu);
9737                 get_ctx(dst_ctx);
9738         }
9739
9740         /*
9741          * Once all the siblings are setup properly, install the group leaders
9742          * to make it go.
9743          */
9744         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
9745                 list_del(&event->migrate_entry);
9746                 if (event->state >= PERF_EVENT_STATE_OFF)
9747                         event->state = PERF_EVENT_STATE_INACTIVE;
9748                 account_event_cpu(event, dst_cpu);
9749                 perf_install_in_context(dst_ctx, event, dst_cpu);
9750                 get_ctx(dst_ctx);
9751         }
9752         mutex_unlock(&dst_ctx->mutex);
9753         mutex_unlock(&src_ctx->mutex);
9754 }
9755 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
9756
9757 static void sync_child_event(struct perf_event *child_event,
9758                                struct task_struct *child)
9759 {
9760         struct perf_event *parent_event = child_event->parent;
9761         u64 child_val;
9762
9763         if (child_event->attr.inherit_stat)
9764                 perf_event_read_event(child_event, child);
9765
9766         child_val = perf_event_count(child_event);
9767
9768         /*
9769          * Add back the child's count to the parent's count:
9770          */
9771         atomic64_add(child_val, &parent_event->child_count);
9772         atomic64_add(child_event->total_time_enabled,
9773                      &parent_event->child_total_time_enabled);
9774         atomic64_add(child_event->total_time_running,
9775                      &parent_event->child_total_time_running);
9776 }
9777
9778 static void
9779 perf_event_exit_event(struct perf_event *child_event,
9780                       struct perf_event_context *child_ctx,
9781                       struct task_struct *child)
9782 {
9783         struct perf_event *parent_event = child_event->parent;
9784
9785         /*
9786          * Do not destroy the 'original' grouping; because of the context
9787          * switch optimization the original events could've ended up in a
9788          * random child task.
9789          *
9790          * If we were to destroy the original group, all group related
9791          * operations would cease to function properly after this random
9792          * child dies.
9793          *
9794          * Do destroy all inherited groups, we don't care about those
9795          * and being thorough is better.
9796          */
9797         raw_spin_lock_irq(&child_ctx->lock);
9798         WARN_ON_ONCE(child_ctx->is_active);
9799
9800         if (parent_event)
9801                 perf_group_detach(child_event);
9802         list_del_event(child_event, child_ctx);
9803         child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
9804         raw_spin_unlock_irq(&child_ctx->lock);
9805
9806         /*
9807          * Parent events are governed by their filedesc, retain them.
9808          */
9809         if (!parent_event) {
9810                 perf_event_wakeup(child_event);
9811                 return;
9812         }
9813         /*
9814          * Child events can be cleaned up.
9815          */
9816
9817         sync_child_event(child_event, child);
9818
9819         /*
9820          * Remove this event from the parent's list
9821          */
9822         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
9823         mutex_lock(&parent_event->child_mutex);
9824         list_del_init(&child_event->child_list);
9825         mutex_unlock(&parent_event->child_mutex);
9826
9827         /*
9828          * Kick perf_poll() for is_event_hup().
9829          */
9830         perf_event_wakeup(parent_event);
9831         free_event(child_event);
9832         put_event(parent_event);
9833 }
9834
9835 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9836 {
9837         struct perf_event_context *child_ctx, *clone_ctx = NULL;
9838         struct perf_event *child_event, *next;
9839
9840         WARN_ON_ONCE(child != current);
9841
9842         child_ctx = perf_pin_task_context(child, ctxn);
9843         if (!child_ctx)
9844                 return;
9845
9846         /*
9847          * In order to reduce the amount of tricky in ctx tear-down, we hold
9848          * ctx::mutex over the entire thing. This serializes against almost
9849          * everything that wants to access the ctx.
9850          *
9851          * The exception is sys_perf_event_open() /
9852          * perf_event_create_kernel_count() which does find_get_context()
9853          * without ctx::mutex (it cannot because of the move_group double mutex
9854          * lock thing). See the comments in perf_install_in_context().
9855          */
9856         mutex_lock(&child_ctx->mutex);
9857
9858         /*
9859          * In a single ctx::lock section, de-schedule the events and detach the
9860          * context from the task such that we cannot ever get it scheduled back
9861          * in.
9862          */
9863         raw_spin_lock_irq(&child_ctx->lock);
9864         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
9865
9866         /*
9867          * Now that the context is inactive, destroy the task <-> ctx relation
9868          * and mark the context dead.
9869          */
9870         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
9871         put_ctx(child_ctx); /* cannot be last */
9872         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
9873         put_task_struct(current); /* cannot be last */
9874
9875         clone_ctx = unclone_ctx(child_ctx);
9876         raw_spin_unlock_irq(&child_ctx->lock);
9877
9878         if (clone_ctx)
9879                 put_ctx(clone_ctx);
9880
9881         /*
9882          * Report the task dead after unscheduling the events so that we
9883          * won't get any samples after PERF_RECORD_EXIT. We can however still
9884          * get a few PERF_RECORD_READ events.
9885          */
9886         perf_event_task(child, child_ctx, 0);
9887
9888         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
9889                 perf_event_exit_event(child_event, child_ctx, child);
9890
9891         mutex_unlock(&child_ctx->mutex);
9892
9893         put_ctx(child_ctx);
9894 }
9895
9896 /*
9897  * When a child task exits, feed back event values to parent events.
9898  *
9899  * Can be called with cred_guard_mutex held when called from
9900  * install_exec_creds().
9901  */
9902 void perf_event_exit_task(struct task_struct *child)
9903 {
9904         struct perf_event *event, *tmp;
9905         int ctxn;
9906
9907         mutex_lock(&child->perf_event_mutex);
9908         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
9909                                  owner_entry) {
9910                 list_del_init(&event->owner_entry);
9911
9912                 /*
9913                  * Ensure the list deletion is visible before we clear
9914                  * the owner, closes a race against perf_release() where
9915                  * we need to serialize on the owner->perf_event_mutex.
9916                  */
9917                 smp_store_release(&event->owner, NULL);
9918         }
9919         mutex_unlock(&child->perf_event_mutex);
9920
9921         for_each_task_context_nr(ctxn)
9922                 perf_event_exit_task_context(child, ctxn);
9923
9924         /*
9925          * The perf_event_exit_task_context calls perf_event_task
9926          * with child's task_ctx, which generates EXIT events for
9927          * child contexts and sets child->perf_event_ctxp[] to NULL.
9928          * At this point we need to send EXIT events to cpu contexts.
9929          */
9930         perf_event_task(child, NULL, 0);
9931 }
9932
9933 static void perf_free_event(struct perf_event *event,
9934                             struct perf_event_context *ctx)
9935 {
9936         struct perf_event *parent = event->parent;
9937
9938         if (WARN_ON_ONCE(!parent))
9939                 return;
9940
9941         mutex_lock(&parent->child_mutex);
9942         list_del_init(&event->child_list);
9943         mutex_unlock(&parent->child_mutex);
9944
9945         put_event(parent);
9946
9947         raw_spin_lock_irq(&ctx->lock);
9948         perf_group_detach(event);
9949         list_del_event(event, ctx);
9950         raw_spin_unlock_irq(&ctx->lock);
9951         free_event(event);
9952 }
9953
9954 /*
9955  * Free an unexposed, unused context as created by inheritance by
9956  * perf_event_init_task below, used by fork() in case of fail.
9957  *
9958  * Not all locks are strictly required, but take them anyway to be nice and
9959  * help out with the lockdep assertions.
9960  */
9961 void perf_event_free_task(struct task_struct *task)
9962 {
9963         struct perf_event_context *ctx;
9964         struct perf_event *event, *tmp;
9965         int ctxn;
9966
9967         for_each_task_context_nr(ctxn) {
9968                 ctx = task->perf_event_ctxp[ctxn];
9969                 if (!ctx)
9970                         continue;
9971
9972                 mutex_lock(&ctx->mutex);
9973 again:
9974                 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
9975                                 group_entry)
9976                         perf_free_event(event, ctx);
9977
9978                 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
9979                                 group_entry)
9980                         perf_free_event(event, ctx);
9981
9982                 if (!list_empty(&ctx->pinned_groups) ||
9983                                 !list_empty(&ctx->flexible_groups))
9984                         goto again;
9985
9986                 mutex_unlock(&ctx->mutex);
9987
9988                 put_ctx(ctx);
9989         }
9990 }
9991
9992 void perf_event_delayed_put(struct task_struct *task)
9993 {
9994         int ctxn;
9995
9996         for_each_task_context_nr(ctxn)
9997                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
9998 }
9999
10000 struct file *perf_event_get(unsigned int fd)
10001 {
10002         struct file *file;
10003
10004         file = fget_raw(fd);
10005         if (!file)
10006                 return ERR_PTR(-EBADF);
10007
10008         if (file->f_op != &perf_fops) {
10009                 fput(file);
10010                 return ERR_PTR(-EBADF);
10011         }
10012
10013         return file;
10014 }
10015
10016 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10017 {
10018         if (!event)
10019                 return ERR_PTR(-EINVAL);
10020
10021         return &event->attr;
10022 }
10023
10024 /*
10025  * inherit a event from parent task to child task:
10026  */
10027 static struct perf_event *
10028 inherit_event(struct perf_event *parent_event,
10029               struct task_struct *parent,
10030               struct perf_event_context *parent_ctx,
10031               struct task_struct *child,
10032               struct perf_event *group_leader,
10033               struct perf_event_context *child_ctx)
10034 {
10035         enum perf_event_active_state parent_state = parent_event->state;
10036         struct perf_event *child_event;
10037         unsigned long flags;
10038
10039         /*
10040          * Instead of creating recursive hierarchies of events,
10041          * we link inherited events back to the original parent,
10042          * which has a filp for sure, which we use as the reference
10043          * count:
10044          */
10045         if (parent_event->parent)
10046                 parent_event = parent_event->parent;
10047
10048         child_event = perf_event_alloc(&parent_event->attr,
10049                                            parent_event->cpu,
10050                                            child,
10051                                            group_leader, parent_event,
10052                                            NULL, NULL, -1);
10053         if (IS_ERR(child_event))
10054                 return child_event;
10055
10056         /*
10057          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10058          * must be under the same lock in order to serialize against
10059          * perf_event_release_kernel(), such that either we must observe
10060          * is_orphaned_event() or they will observe us on the child_list.
10061          */
10062         mutex_lock(&parent_event->child_mutex);
10063         if (is_orphaned_event(parent_event) ||
10064             !atomic_long_inc_not_zero(&parent_event->refcount)) {
10065                 mutex_unlock(&parent_event->child_mutex);
10066                 free_event(child_event);
10067                 return NULL;
10068         }
10069
10070         get_ctx(child_ctx);
10071
10072         /*
10073          * Make the child state follow the state of the parent event,
10074          * not its attr.disabled bit.  We hold the parent's mutex,
10075          * so we won't race with perf_event_{en, dis}able_family.
10076          */
10077         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10078                 child_event->state = PERF_EVENT_STATE_INACTIVE;
10079         else
10080                 child_event->state = PERF_EVENT_STATE_OFF;
10081
10082         if (parent_event->attr.freq) {
10083                 u64 sample_period = parent_event->hw.sample_period;
10084                 struct hw_perf_event *hwc = &child_event->hw;
10085
10086                 hwc->sample_period = sample_period;
10087                 hwc->last_period   = sample_period;
10088
10089                 local64_set(&hwc->period_left, sample_period);
10090         }
10091
10092         child_event->ctx = child_ctx;
10093         child_event->overflow_handler = parent_event->overflow_handler;
10094         child_event->overflow_handler_context
10095                 = parent_event->overflow_handler_context;
10096
10097         /*
10098          * Precalculate sample_data sizes
10099          */
10100         perf_event__header_size(child_event);
10101         perf_event__id_header_size(child_event);
10102
10103         /*
10104          * Link it up in the child's context:
10105          */
10106         raw_spin_lock_irqsave(&child_ctx->lock, flags);
10107         add_event_to_ctx(child_event, child_ctx);
10108         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10109
10110         /*
10111          * Link this into the parent event's child list
10112          */
10113         list_add_tail(&child_event->child_list, &parent_event->child_list);
10114         mutex_unlock(&parent_event->child_mutex);
10115
10116         return child_event;
10117 }
10118
10119 static int inherit_group(struct perf_event *parent_event,
10120               struct task_struct *parent,
10121               struct perf_event_context *parent_ctx,
10122               struct task_struct *child,
10123               struct perf_event_context *child_ctx)
10124 {
10125         struct perf_event *leader;
10126         struct perf_event *sub;
10127         struct perf_event *child_ctr;
10128
10129         leader = inherit_event(parent_event, parent, parent_ctx,
10130                                  child, NULL, child_ctx);
10131         if (IS_ERR(leader))
10132                 return PTR_ERR(leader);
10133         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10134                 child_ctr = inherit_event(sub, parent, parent_ctx,
10135                                             child, leader, child_ctx);
10136                 if (IS_ERR(child_ctr))
10137                         return PTR_ERR(child_ctr);
10138         }
10139         return 0;
10140 }
10141
10142 static int
10143 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10144                    struct perf_event_context *parent_ctx,
10145                    struct task_struct *child, int ctxn,
10146                    int *inherited_all)
10147 {
10148         int ret;
10149         struct perf_event_context *child_ctx;
10150
10151         if (!event->attr.inherit) {
10152                 *inherited_all = 0;
10153                 return 0;
10154         }
10155
10156         child_ctx = child->perf_event_ctxp[ctxn];
10157         if (!child_ctx) {
10158                 /*
10159                  * This is executed from the parent task context, so
10160                  * inherit events that have been marked for cloning.
10161                  * First allocate and initialize a context for the
10162                  * child.
10163                  */
10164
10165                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10166                 if (!child_ctx)
10167                         return -ENOMEM;
10168
10169                 child->perf_event_ctxp[ctxn] = child_ctx;
10170         }
10171
10172         ret = inherit_group(event, parent, parent_ctx,
10173                             child, child_ctx);
10174
10175         if (ret)
10176                 *inherited_all = 0;
10177
10178         return ret;
10179 }
10180
10181 /*
10182  * Initialize the perf_event context in task_struct
10183  */
10184 static int perf_event_init_context(struct task_struct *child, int ctxn)
10185 {
10186         struct perf_event_context *child_ctx, *parent_ctx;
10187         struct perf_event_context *cloned_ctx;
10188         struct perf_event *event;
10189         struct task_struct *parent = current;
10190         int inherited_all = 1;
10191         unsigned long flags;
10192         int ret = 0;
10193
10194         if (likely(!parent->perf_event_ctxp[ctxn]))
10195                 return 0;
10196
10197         /*
10198          * If the parent's context is a clone, pin it so it won't get
10199          * swapped under us.
10200          */
10201         parent_ctx = perf_pin_task_context(parent, ctxn);
10202         if (!parent_ctx)
10203                 return 0;
10204
10205         /*
10206          * No need to check if parent_ctx != NULL here; since we saw
10207          * it non-NULL earlier, the only reason for it to become NULL
10208          * is if we exit, and since we're currently in the middle of
10209          * a fork we can't be exiting at the same time.
10210          */
10211
10212         /*
10213          * Lock the parent list. No need to lock the child - not PID
10214          * hashed yet and not running, so nobody can access it.
10215          */
10216         mutex_lock(&parent_ctx->mutex);
10217
10218         /*
10219          * We dont have to disable NMIs - we are only looking at
10220          * the list, not manipulating it:
10221          */
10222         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10223                 ret = inherit_task_group(event, parent, parent_ctx,
10224                                          child, ctxn, &inherited_all);
10225                 if (ret)
10226                         break;
10227         }
10228
10229         /*
10230          * We can't hold ctx->lock when iterating the ->flexible_group list due
10231          * to allocations, but we need to prevent rotation because
10232          * rotate_ctx() will change the list from interrupt context.
10233          */
10234         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10235         parent_ctx->rotate_disable = 1;
10236         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10237
10238         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10239                 ret = inherit_task_group(event, parent, parent_ctx,
10240                                          child, ctxn, &inherited_all);
10241                 if (ret)
10242                         break;
10243         }
10244
10245         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10246         parent_ctx->rotate_disable = 0;
10247
10248         child_ctx = child->perf_event_ctxp[ctxn];
10249
10250         if (child_ctx && inherited_all) {
10251                 /*
10252                  * Mark the child context as a clone of the parent
10253                  * context, or of whatever the parent is a clone of.
10254                  *
10255                  * Note that if the parent is a clone, the holding of
10256                  * parent_ctx->lock avoids it from being uncloned.
10257                  */
10258                 cloned_ctx = parent_ctx->parent_ctx;
10259                 if (cloned_ctx) {
10260                         child_ctx->parent_ctx = cloned_ctx;
10261                         child_ctx->parent_gen = parent_ctx->parent_gen;
10262                 } else {
10263                         child_ctx->parent_ctx = parent_ctx;
10264                         child_ctx->parent_gen = parent_ctx->generation;
10265                 }
10266                 get_ctx(child_ctx->parent_ctx);
10267         }
10268
10269         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10270         mutex_unlock(&parent_ctx->mutex);
10271
10272         perf_unpin_context(parent_ctx);
10273         put_ctx(parent_ctx);
10274
10275         return ret;
10276 }
10277
10278 /*
10279  * Initialize the perf_event context in task_struct
10280  */
10281 int perf_event_init_task(struct task_struct *child)
10282 {
10283         int ctxn, ret;
10284
10285         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10286         mutex_init(&child->perf_event_mutex);
10287         INIT_LIST_HEAD(&child->perf_event_list);
10288
10289         for_each_task_context_nr(ctxn) {
10290                 ret = perf_event_init_context(child, ctxn);
10291                 if (ret) {
10292                         perf_event_free_task(child);
10293                         return ret;
10294                 }
10295         }
10296
10297         return 0;
10298 }
10299
10300 static void __init perf_event_init_all_cpus(void)
10301 {
10302         struct swevent_htable *swhash;
10303         int cpu;
10304
10305         for_each_possible_cpu(cpu) {
10306                 swhash = &per_cpu(swevent_htable, cpu);
10307                 mutex_init(&swhash->hlist_mutex);
10308                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10309
10310                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10311                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
10312         }
10313 }
10314
10315 static void perf_event_init_cpu(int cpu)
10316 {
10317         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10318
10319         mutex_lock(&swhash->hlist_mutex);
10320         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10321                 struct swevent_hlist *hlist;
10322
10323                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10324                 WARN_ON(!hlist);
10325                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
10326         }
10327         mutex_unlock(&swhash->hlist_mutex);
10328 }
10329
10330 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
10331 static void __perf_event_exit_context(void *__info)
10332 {
10333         struct perf_event_context *ctx = __info;
10334         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10335         struct perf_event *event;
10336
10337         raw_spin_lock(&ctx->lock);
10338         list_for_each_entry(event, &ctx->event_list, event_entry)
10339                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
10340         raw_spin_unlock(&ctx->lock);
10341 }
10342
10343 static void perf_event_exit_cpu_context(int cpu)
10344 {
10345         struct perf_event_context *ctx;
10346         struct pmu *pmu;
10347         int idx;
10348
10349         idx = srcu_read_lock(&pmus_srcu);
10350         list_for_each_entry_rcu(pmu, &pmus, entry) {
10351                 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
10352
10353                 mutex_lock(&ctx->mutex);
10354                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
10355                 mutex_unlock(&ctx->mutex);
10356         }
10357         srcu_read_unlock(&pmus_srcu, idx);
10358 }
10359
10360 static void perf_event_exit_cpu(int cpu)
10361 {
10362         perf_event_exit_cpu_context(cpu);
10363 }
10364 #else
10365 static inline void perf_event_exit_cpu(int cpu) { }
10366 #endif
10367
10368 static int
10369 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
10370 {
10371         int cpu;
10372
10373         for_each_online_cpu(cpu)
10374                 perf_event_exit_cpu(cpu);
10375
10376         return NOTIFY_OK;
10377 }
10378
10379 /*
10380  * Run the perf reboot notifier at the very last possible moment so that
10381  * the generic watchdog code runs as long as possible.
10382  */
10383 static struct notifier_block perf_reboot_notifier = {
10384         .notifier_call = perf_reboot,
10385         .priority = INT_MIN,
10386 };
10387
10388 static int
10389 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
10390 {
10391         unsigned int cpu = (long)hcpu;
10392
10393         switch (action & ~CPU_TASKS_FROZEN) {
10394
10395         case CPU_UP_PREPARE:
10396                 /*
10397                  * This must be done before the CPU comes alive, because the
10398                  * moment we can run tasks we can encounter (software) events.
10399                  *
10400                  * Specifically, someone can have inherited events on kthreadd
10401                  * or a pre-existing worker thread that gets re-bound.
10402                  */
10403                 perf_event_init_cpu(cpu);
10404                 break;
10405
10406         case CPU_DOWN_PREPARE:
10407                 /*
10408                  * This must be done before the CPU dies because after that an
10409                  * active event might want to IPI the CPU and that'll not work
10410                  * so great for dead CPUs.
10411                  *
10412                  * XXX smp_call_function_single() return -ENXIO without a warn
10413                  * so we could possibly deal with this.
10414                  *
10415                  * This is safe against new events arriving because
10416                  * sys_perf_event_open() serializes against hotplug using
10417                  * get_online_cpus().
10418                  */
10419                 perf_event_exit_cpu(cpu);
10420                 break;
10421         default:
10422                 break;
10423         }
10424
10425         return NOTIFY_OK;
10426 }
10427
10428 void __init perf_event_init(void)
10429 {
10430         int ret;
10431
10432         idr_init(&pmu_idr);
10433
10434         perf_event_init_all_cpus();
10435         init_srcu_struct(&pmus_srcu);
10436         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
10437         perf_pmu_register(&perf_cpu_clock, NULL, -1);
10438         perf_pmu_register(&perf_task_clock, NULL, -1);
10439         perf_tp_register();
10440         perf_cpu_notifier(perf_cpu_notify);
10441         register_reboot_notifier(&perf_reboot_notifier);
10442
10443         ret = init_hw_breakpoint();
10444         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
10445
10446         /*
10447          * Build time assertion that we keep the data_head at the intended
10448          * location.  IOW, validation we got the __reserved[] size right.
10449          */
10450         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
10451                      != 1024);
10452 }
10453
10454 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
10455                               char *page)
10456 {
10457         struct perf_pmu_events_attr *pmu_attr =
10458                 container_of(attr, struct perf_pmu_events_attr, attr);
10459
10460         if (pmu_attr->event_str)
10461                 return sprintf(page, "%s\n", pmu_attr->event_str);
10462
10463         return 0;
10464 }
10465 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
10466
10467 static int __init perf_event_sysfs_init(void)
10468 {
10469         struct pmu *pmu;
10470         int ret;
10471
10472         mutex_lock(&pmus_lock);
10473
10474         ret = bus_register(&pmu_bus);
10475         if (ret)
10476                 goto unlock;
10477
10478         list_for_each_entry(pmu, &pmus, entry) {
10479                 if (!pmu->name || pmu->type < 0)
10480                         continue;
10481
10482                 ret = pmu_dev_alloc(pmu);
10483                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
10484         }
10485         pmu_bus_running = 1;
10486         ret = 0;
10487
10488 unlock:
10489         mutex_unlock(&pmus_lock);
10490
10491         return ret;
10492 }
10493 device_initcall(perf_event_sysfs_init);
10494
10495 #ifdef CONFIG_CGROUP_PERF
10496 static struct cgroup_subsys_state *
10497 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10498 {
10499         struct perf_cgroup *jc;
10500
10501         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
10502         if (!jc)
10503                 return ERR_PTR(-ENOMEM);
10504
10505         jc->info = alloc_percpu(struct perf_cgroup_info);
10506         if (!jc->info) {
10507                 kfree(jc);
10508                 return ERR_PTR(-ENOMEM);
10509         }
10510
10511         return &jc->css;
10512 }
10513
10514 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
10515 {
10516         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
10517
10518         free_percpu(jc->info);
10519         kfree(jc);
10520 }
10521
10522 static int __perf_cgroup_move(void *info)
10523 {
10524         struct task_struct *task = info;
10525         rcu_read_lock();
10526         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
10527         rcu_read_unlock();
10528         return 0;
10529 }
10530
10531 static void perf_cgroup_attach(struct cgroup_taskset *tset)
10532 {
10533         struct task_struct *task;
10534         struct cgroup_subsys_state *css;
10535
10536         cgroup_taskset_for_each(task, css, tset)
10537                 task_function_call(task, __perf_cgroup_move, task);
10538 }
10539
10540 struct cgroup_subsys perf_event_cgrp_subsys = {
10541         .css_alloc      = perf_cgroup_css_alloc,
10542         .css_free       = perf_cgroup_css_free,
10543         .attach         = perf_cgroup_attach,
10544 };
10545 #endif /* CONFIG_CGROUP_PERF */