6615c8922ee3719616f1559dc1b60b63beda29e4
[cascardo/linux.git] / kernel / events / core.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49
50 #include "internal.h"
51
52 #include <asm/irq_regs.h>
53
54 typedef int (*remote_function_f)(void *);
55
56 struct remote_function_call {
57         struct task_struct      *p;
58         remote_function_f       func;
59         void                    *info;
60         int                     ret;
61 };
62
63 static void remote_function(void *data)
64 {
65         struct remote_function_call *tfc = data;
66         struct task_struct *p = tfc->p;
67
68         if (p) {
69                 /* -EAGAIN */
70                 if (task_cpu(p) != smp_processor_id())
71                         return;
72
73                 /*
74                  * Now that we're on right CPU with IRQs disabled, we can test
75                  * if we hit the right task without races.
76                  */
77
78                 tfc->ret = -ESRCH; /* No such (running) process */
79                 if (p != current)
80                         return;
81         }
82
83         tfc->ret = tfc->func(tfc->info);
84 }
85
86 /**
87  * task_function_call - call a function on the cpu on which a task runs
88  * @p:          the task to evaluate
89  * @func:       the function to be called
90  * @info:       the function call argument
91  *
92  * Calls the function @func when the task is currently running. This might
93  * be on the current CPU, which just calls the function directly
94  *
95  * returns: @func return value, or
96  *          -ESRCH  - when the process isn't running
97  *          -EAGAIN - when the process moved away
98  */
99 static int
100 task_function_call(struct task_struct *p, remote_function_f func, void *info)
101 {
102         struct remote_function_call data = {
103                 .p      = p,
104                 .func   = func,
105                 .info   = info,
106                 .ret    = -EAGAIN,
107         };
108         int ret;
109
110         do {
111                 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
112                 if (!ret)
113                         ret = data.ret;
114         } while (ret == -EAGAIN);
115
116         return ret;
117 }
118
119 /**
120  * cpu_function_call - call a function on the cpu
121  * @func:       the function to be called
122  * @info:       the function call argument
123  *
124  * Calls the function @func on the remote cpu.
125  *
126  * returns: @func return value or -ENXIO when the cpu is offline
127  */
128 static int cpu_function_call(int cpu, remote_function_f func, void *info)
129 {
130         struct remote_function_call data = {
131                 .p      = NULL,
132                 .func   = func,
133                 .info   = info,
134                 .ret    = -ENXIO, /* No such CPU */
135         };
136
137         smp_call_function_single(cpu, remote_function, &data, 1);
138
139         return data.ret;
140 }
141
142 static inline struct perf_cpu_context *
143 __get_cpu_context(struct perf_event_context *ctx)
144 {
145         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
146 }
147
148 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
149                           struct perf_event_context *ctx)
150 {
151         raw_spin_lock(&cpuctx->ctx.lock);
152         if (ctx)
153                 raw_spin_lock(&ctx->lock);
154 }
155
156 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
157                             struct perf_event_context *ctx)
158 {
159         if (ctx)
160                 raw_spin_unlock(&ctx->lock);
161         raw_spin_unlock(&cpuctx->ctx.lock);
162 }
163
164 #define TASK_TOMBSTONE ((void *)-1L)
165
166 static bool is_kernel_event(struct perf_event *event)
167 {
168         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
169 }
170
171 /*
172  * On task ctx scheduling...
173  *
174  * When !ctx->nr_events a task context will not be scheduled. This means
175  * we can disable the scheduler hooks (for performance) without leaving
176  * pending task ctx state.
177  *
178  * This however results in two special cases:
179  *
180  *  - removing the last event from a task ctx; this is relatively straight
181  *    forward and is done in __perf_remove_from_context.
182  *
183  *  - adding the first event to a task ctx; this is tricky because we cannot
184  *    rely on ctx->is_active and therefore cannot use event_function_call().
185  *    See perf_install_in_context().
186  *
187  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
188  */
189
190 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
191                         struct perf_event_context *, void *);
192
193 struct event_function_struct {
194         struct perf_event *event;
195         event_f func;
196         void *data;
197 };
198
199 static int event_function(void *info)
200 {
201         struct event_function_struct *efs = info;
202         struct perf_event *event = efs->event;
203         struct perf_event_context *ctx = event->ctx;
204         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
205         struct perf_event_context *task_ctx = cpuctx->task_ctx;
206         int ret = 0;
207
208         WARN_ON_ONCE(!irqs_disabled());
209
210         perf_ctx_lock(cpuctx, task_ctx);
211         /*
212          * Since we do the IPI call without holding ctx->lock things can have
213          * changed, double check we hit the task we set out to hit.
214          */
215         if (ctx->task) {
216                 if (ctx->task != current) {
217                         ret = -ESRCH;
218                         goto unlock;
219                 }
220
221                 /*
222                  * We only use event_function_call() on established contexts,
223                  * and event_function() is only ever called when active (or
224                  * rather, we'll have bailed in task_function_call() or the
225                  * above ctx->task != current test), therefore we must have
226                  * ctx->is_active here.
227                  */
228                 WARN_ON_ONCE(!ctx->is_active);
229                 /*
230                  * And since we have ctx->is_active, cpuctx->task_ctx must
231                  * match.
232                  */
233                 WARN_ON_ONCE(task_ctx != ctx);
234         } else {
235                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
236         }
237
238         efs->func(event, cpuctx, ctx, efs->data);
239 unlock:
240         perf_ctx_unlock(cpuctx, task_ctx);
241
242         return ret;
243 }
244
245 static void event_function_local(struct perf_event *event, event_f func, void *data)
246 {
247         struct event_function_struct efs = {
248                 .event = event,
249                 .func = func,
250                 .data = data,
251         };
252
253         int ret = event_function(&efs);
254         WARN_ON_ONCE(ret);
255 }
256
257 static void event_function_call(struct perf_event *event, event_f func, void *data)
258 {
259         struct perf_event_context *ctx = event->ctx;
260         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
261         struct event_function_struct efs = {
262                 .event = event,
263                 .func = func,
264                 .data = data,
265         };
266
267         if (!event->parent) {
268                 /*
269                  * If this is a !child event, we must hold ctx::mutex to
270                  * stabilize the the event->ctx relation. See
271                  * perf_event_ctx_lock().
272                  */
273                 lockdep_assert_held(&ctx->mutex);
274         }
275
276         if (!task) {
277                 cpu_function_call(event->cpu, event_function, &efs);
278                 return;
279         }
280
281         if (task == TASK_TOMBSTONE)
282                 return;
283
284 again:
285         if (!task_function_call(task, event_function, &efs))
286                 return;
287
288         raw_spin_lock_irq(&ctx->lock);
289         /*
290          * Reload the task pointer, it might have been changed by
291          * a concurrent perf_event_context_sched_out().
292          */
293         task = ctx->task;
294         if (task == TASK_TOMBSTONE) {
295                 raw_spin_unlock_irq(&ctx->lock);
296                 return;
297         }
298         if (ctx->is_active) {
299                 raw_spin_unlock_irq(&ctx->lock);
300                 goto again;
301         }
302         func(event, NULL, ctx, data);
303         raw_spin_unlock_irq(&ctx->lock);
304 }
305
306 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
307                        PERF_FLAG_FD_OUTPUT  |\
308                        PERF_FLAG_PID_CGROUP |\
309                        PERF_FLAG_FD_CLOEXEC)
310
311 /*
312  * branch priv levels that need permission checks
313  */
314 #define PERF_SAMPLE_BRANCH_PERM_PLM \
315         (PERF_SAMPLE_BRANCH_KERNEL |\
316          PERF_SAMPLE_BRANCH_HV)
317
318 enum event_type_t {
319         EVENT_FLEXIBLE = 0x1,
320         EVENT_PINNED = 0x2,
321         EVENT_TIME = 0x4,
322         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
323 };
324
325 /*
326  * perf_sched_events : >0 events exist
327  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
328  */
329
330 static void perf_sched_delayed(struct work_struct *work);
331 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
332 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
333 static DEFINE_MUTEX(perf_sched_mutex);
334 static atomic_t perf_sched_count;
335
336 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
337 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
338 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
339
340 static atomic_t nr_mmap_events __read_mostly;
341 static atomic_t nr_comm_events __read_mostly;
342 static atomic_t nr_task_events __read_mostly;
343 static atomic_t nr_freq_events __read_mostly;
344 static atomic_t nr_switch_events __read_mostly;
345
346 static LIST_HEAD(pmus);
347 static DEFINE_MUTEX(pmus_lock);
348 static struct srcu_struct pmus_srcu;
349
350 /*
351  * perf event paranoia level:
352  *  -1 - not paranoid at all
353  *   0 - disallow raw tracepoint access for unpriv
354  *   1 - disallow cpu events for unpriv
355  *   2 - disallow kernel profiling for unpriv
356  */
357 int sysctl_perf_event_paranoid __read_mostly = 2;
358
359 /* Minimum for 512 kiB + 1 user control page */
360 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
361
362 /*
363  * max perf event sample rate
364  */
365 #define DEFAULT_MAX_SAMPLE_RATE         100000
366 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
367 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
368
369 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
370
371 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
372 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
373
374 static int perf_sample_allowed_ns __read_mostly =
375         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
376
377 static void update_perf_cpu_limits(void)
378 {
379         u64 tmp = perf_sample_period_ns;
380
381         tmp *= sysctl_perf_cpu_time_max_percent;
382         tmp = div_u64(tmp, 100);
383         if (!tmp)
384                 tmp = 1;
385
386         WRITE_ONCE(perf_sample_allowed_ns, tmp);
387 }
388
389 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
390
391 int perf_proc_update_handler(struct ctl_table *table, int write,
392                 void __user *buffer, size_t *lenp,
393                 loff_t *ppos)
394 {
395         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
396
397         if (ret || !write)
398                 return ret;
399
400         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
401         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
402         update_perf_cpu_limits();
403
404         return 0;
405 }
406
407 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
408
409 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
410                                 void __user *buffer, size_t *lenp,
411                                 loff_t *ppos)
412 {
413         int ret = proc_dointvec(table, write, buffer, lenp, ppos);
414
415         if (ret || !write)
416                 return ret;
417
418         if (sysctl_perf_cpu_time_max_percent == 100 ||
419             sysctl_perf_cpu_time_max_percent == 0) {
420                 printk(KERN_WARNING
421                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
422                 WRITE_ONCE(perf_sample_allowed_ns, 0);
423         } else {
424                 update_perf_cpu_limits();
425         }
426
427         return 0;
428 }
429
430 /*
431  * perf samples are done in some very critical code paths (NMIs).
432  * If they take too much CPU time, the system can lock up and not
433  * get any real work done.  This will drop the sample rate when
434  * we detect that events are taking too long.
435  */
436 #define NR_ACCUMULATED_SAMPLES 128
437 static DEFINE_PER_CPU(u64, running_sample_length);
438
439 static u64 __report_avg;
440 static u64 __report_allowed;
441
442 static void perf_duration_warn(struct irq_work *w)
443 {
444         printk_ratelimited(KERN_WARNING
445                 "perf: interrupt took too long (%lld > %lld), lowering "
446                 "kernel.perf_event_max_sample_rate to %d\n",
447                 __report_avg, __report_allowed,
448                 sysctl_perf_event_sample_rate);
449 }
450
451 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
452
453 void perf_sample_event_took(u64 sample_len_ns)
454 {
455         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
456         u64 running_len;
457         u64 avg_len;
458         u32 max;
459
460         if (max_len == 0)
461                 return;
462
463         /* Decay the counter by 1 average sample. */
464         running_len = __this_cpu_read(running_sample_length);
465         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
466         running_len += sample_len_ns;
467         __this_cpu_write(running_sample_length, running_len);
468
469         /*
470          * Note: this will be biased artifically low until we have
471          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
472          * from having to maintain a count.
473          */
474         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
475         if (avg_len <= max_len)
476                 return;
477
478         __report_avg = avg_len;
479         __report_allowed = max_len;
480
481         /*
482          * Compute a throttle threshold 25% below the current duration.
483          */
484         avg_len += avg_len / 4;
485         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
486         if (avg_len < max)
487                 max /= (u32)avg_len;
488         else
489                 max = 1;
490
491         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
492         WRITE_ONCE(max_samples_per_tick, max);
493
494         sysctl_perf_event_sample_rate = max * HZ;
495         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
496
497         if (!irq_work_queue(&perf_duration_work)) {
498                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
499                              "kernel.perf_event_max_sample_rate to %d\n",
500                              __report_avg, __report_allowed,
501                              sysctl_perf_event_sample_rate);
502         }
503 }
504
505 static atomic64_t perf_event_id;
506
507 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
508                               enum event_type_t event_type);
509
510 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
511                              enum event_type_t event_type,
512                              struct task_struct *task);
513
514 static void update_context_time(struct perf_event_context *ctx);
515 static u64 perf_event_time(struct perf_event *event);
516
517 void __weak perf_event_print_debug(void)        { }
518
519 extern __weak const char *perf_pmu_name(void)
520 {
521         return "pmu";
522 }
523
524 static inline u64 perf_clock(void)
525 {
526         return local_clock();
527 }
528
529 static inline u64 perf_event_clock(struct perf_event *event)
530 {
531         return event->clock();
532 }
533
534 #ifdef CONFIG_CGROUP_PERF
535
536 static inline bool
537 perf_cgroup_match(struct perf_event *event)
538 {
539         struct perf_event_context *ctx = event->ctx;
540         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
541
542         /* @event doesn't care about cgroup */
543         if (!event->cgrp)
544                 return true;
545
546         /* wants specific cgroup scope but @cpuctx isn't associated with any */
547         if (!cpuctx->cgrp)
548                 return false;
549
550         /*
551          * Cgroup scoping is recursive.  An event enabled for a cgroup is
552          * also enabled for all its descendant cgroups.  If @cpuctx's
553          * cgroup is a descendant of @event's (the test covers identity
554          * case), it's a match.
555          */
556         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
557                                     event->cgrp->css.cgroup);
558 }
559
560 static inline void perf_detach_cgroup(struct perf_event *event)
561 {
562         css_put(&event->cgrp->css);
563         event->cgrp = NULL;
564 }
565
566 static inline int is_cgroup_event(struct perf_event *event)
567 {
568         return event->cgrp != NULL;
569 }
570
571 static inline u64 perf_cgroup_event_time(struct perf_event *event)
572 {
573         struct perf_cgroup_info *t;
574
575         t = per_cpu_ptr(event->cgrp->info, event->cpu);
576         return t->time;
577 }
578
579 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
580 {
581         struct perf_cgroup_info *info;
582         u64 now;
583
584         now = perf_clock();
585
586         info = this_cpu_ptr(cgrp->info);
587
588         info->time += now - info->timestamp;
589         info->timestamp = now;
590 }
591
592 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
593 {
594         struct perf_cgroup *cgrp_out = cpuctx->cgrp;
595         if (cgrp_out)
596                 __update_cgrp_time(cgrp_out);
597 }
598
599 static inline void update_cgrp_time_from_event(struct perf_event *event)
600 {
601         struct perf_cgroup *cgrp;
602
603         /*
604          * ensure we access cgroup data only when needed and
605          * when we know the cgroup is pinned (css_get)
606          */
607         if (!is_cgroup_event(event))
608                 return;
609
610         cgrp = perf_cgroup_from_task(current, event->ctx);
611         /*
612          * Do not update time when cgroup is not active
613          */
614         if (cgrp == event->cgrp)
615                 __update_cgrp_time(event->cgrp);
616 }
617
618 static inline void
619 perf_cgroup_set_timestamp(struct task_struct *task,
620                           struct perf_event_context *ctx)
621 {
622         struct perf_cgroup *cgrp;
623         struct perf_cgroup_info *info;
624
625         /*
626          * ctx->lock held by caller
627          * ensure we do not access cgroup data
628          * unless we have the cgroup pinned (css_get)
629          */
630         if (!task || !ctx->nr_cgroups)
631                 return;
632
633         cgrp = perf_cgroup_from_task(task, ctx);
634         info = this_cpu_ptr(cgrp->info);
635         info->timestamp = ctx->timestamp;
636 }
637
638 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
639 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
640
641 /*
642  * reschedule events based on the cgroup constraint of task.
643  *
644  * mode SWOUT : schedule out everything
645  * mode SWIN : schedule in based on cgroup for next
646  */
647 static void perf_cgroup_switch(struct task_struct *task, int mode)
648 {
649         struct perf_cpu_context *cpuctx;
650         struct pmu *pmu;
651         unsigned long flags;
652
653         /*
654          * disable interrupts to avoid geting nr_cgroup
655          * changes via __perf_event_disable(). Also
656          * avoids preemption.
657          */
658         local_irq_save(flags);
659
660         /*
661          * we reschedule only in the presence of cgroup
662          * constrained events.
663          */
664
665         list_for_each_entry_rcu(pmu, &pmus, entry) {
666                 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
667                 if (cpuctx->unique_pmu != pmu)
668                         continue; /* ensure we process each cpuctx once */
669
670                 /*
671                  * perf_cgroup_events says at least one
672                  * context on this CPU has cgroup events.
673                  *
674                  * ctx->nr_cgroups reports the number of cgroup
675                  * events for a context.
676                  */
677                 if (cpuctx->ctx.nr_cgroups > 0) {
678                         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
679                         perf_pmu_disable(cpuctx->ctx.pmu);
680
681                         if (mode & PERF_CGROUP_SWOUT) {
682                                 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
683                                 /*
684                                  * must not be done before ctxswout due
685                                  * to event_filter_match() in event_sched_out()
686                                  */
687                                 cpuctx->cgrp = NULL;
688                         }
689
690                         if (mode & PERF_CGROUP_SWIN) {
691                                 WARN_ON_ONCE(cpuctx->cgrp);
692                                 /*
693                                  * set cgrp before ctxsw in to allow
694                                  * event_filter_match() to not have to pass
695                                  * task around
696                                  * we pass the cpuctx->ctx to perf_cgroup_from_task()
697                                  * because cgorup events are only per-cpu
698                                  */
699                                 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
700                                 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
701                         }
702                         perf_pmu_enable(cpuctx->ctx.pmu);
703                         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
704                 }
705         }
706
707         local_irq_restore(flags);
708 }
709
710 static inline void perf_cgroup_sched_out(struct task_struct *task,
711                                          struct task_struct *next)
712 {
713         struct perf_cgroup *cgrp1;
714         struct perf_cgroup *cgrp2 = NULL;
715
716         rcu_read_lock();
717         /*
718          * we come here when we know perf_cgroup_events > 0
719          * we do not need to pass the ctx here because we know
720          * we are holding the rcu lock
721          */
722         cgrp1 = perf_cgroup_from_task(task, NULL);
723         cgrp2 = perf_cgroup_from_task(next, NULL);
724
725         /*
726          * only schedule out current cgroup events if we know
727          * that we are switching to a different cgroup. Otherwise,
728          * do no touch the cgroup events.
729          */
730         if (cgrp1 != cgrp2)
731                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
732
733         rcu_read_unlock();
734 }
735
736 static inline void perf_cgroup_sched_in(struct task_struct *prev,
737                                         struct task_struct *task)
738 {
739         struct perf_cgroup *cgrp1;
740         struct perf_cgroup *cgrp2 = NULL;
741
742         rcu_read_lock();
743         /*
744          * we come here when we know perf_cgroup_events > 0
745          * we do not need to pass the ctx here because we know
746          * we are holding the rcu lock
747          */
748         cgrp1 = perf_cgroup_from_task(task, NULL);
749         cgrp2 = perf_cgroup_from_task(prev, NULL);
750
751         /*
752          * only need to schedule in cgroup events if we are changing
753          * cgroup during ctxsw. Cgroup events were not scheduled
754          * out of ctxsw out if that was not the case.
755          */
756         if (cgrp1 != cgrp2)
757                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
758
759         rcu_read_unlock();
760 }
761
762 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
763                                       struct perf_event_attr *attr,
764                                       struct perf_event *group_leader)
765 {
766         struct perf_cgroup *cgrp;
767         struct cgroup_subsys_state *css;
768         struct fd f = fdget(fd);
769         int ret = 0;
770
771         if (!f.file)
772                 return -EBADF;
773
774         css = css_tryget_online_from_dir(f.file->f_path.dentry,
775                                          &perf_event_cgrp_subsys);
776         if (IS_ERR(css)) {
777                 ret = PTR_ERR(css);
778                 goto out;
779         }
780
781         cgrp = container_of(css, struct perf_cgroup, css);
782         event->cgrp = cgrp;
783
784         /*
785          * all events in a group must monitor
786          * the same cgroup because a task belongs
787          * to only one perf cgroup at a time
788          */
789         if (group_leader && group_leader->cgrp != cgrp) {
790                 perf_detach_cgroup(event);
791                 ret = -EINVAL;
792         }
793 out:
794         fdput(f);
795         return ret;
796 }
797
798 static inline void
799 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
800 {
801         struct perf_cgroup_info *t;
802         t = per_cpu_ptr(event->cgrp->info, event->cpu);
803         event->shadow_ctx_time = now - t->timestamp;
804 }
805
806 static inline void
807 perf_cgroup_defer_enabled(struct perf_event *event)
808 {
809         /*
810          * when the current task's perf cgroup does not match
811          * the event's, we need to remember to call the
812          * perf_mark_enable() function the first time a task with
813          * a matching perf cgroup is scheduled in.
814          */
815         if (is_cgroup_event(event) && !perf_cgroup_match(event))
816                 event->cgrp_defer_enabled = 1;
817 }
818
819 static inline void
820 perf_cgroup_mark_enabled(struct perf_event *event,
821                          struct perf_event_context *ctx)
822 {
823         struct perf_event *sub;
824         u64 tstamp = perf_event_time(event);
825
826         if (!event->cgrp_defer_enabled)
827                 return;
828
829         event->cgrp_defer_enabled = 0;
830
831         event->tstamp_enabled = tstamp - event->total_time_enabled;
832         list_for_each_entry(sub, &event->sibling_list, group_entry) {
833                 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
834                         sub->tstamp_enabled = tstamp - sub->total_time_enabled;
835                         sub->cgrp_defer_enabled = 0;
836                 }
837         }
838 }
839 #else /* !CONFIG_CGROUP_PERF */
840
841 static inline bool
842 perf_cgroup_match(struct perf_event *event)
843 {
844         return true;
845 }
846
847 static inline void perf_detach_cgroup(struct perf_event *event)
848 {}
849
850 static inline int is_cgroup_event(struct perf_event *event)
851 {
852         return 0;
853 }
854
855 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
856 {
857         return 0;
858 }
859
860 static inline void update_cgrp_time_from_event(struct perf_event *event)
861 {
862 }
863
864 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
865 {
866 }
867
868 static inline void perf_cgroup_sched_out(struct task_struct *task,
869                                          struct task_struct *next)
870 {
871 }
872
873 static inline void perf_cgroup_sched_in(struct task_struct *prev,
874                                         struct task_struct *task)
875 {
876 }
877
878 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
879                                       struct perf_event_attr *attr,
880                                       struct perf_event *group_leader)
881 {
882         return -EINVAL;
883 }
884
885 static inline void
886 perf_cgroup_set_timestamp(struct task_struct *task,
887                           struct perf_event_context *ctx)
888 {
889 }
890
891 void
892 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
893 {
894 }
895
896 static inline void
897 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
898 {
899 }
900
901 static inline u64 perf_cgroup_event_time(struct perf_event *event)
902 {
903         return 0;
904 }
905
906 static inline void
907 perf_cgroup_defer_enabled(struct perf_event *event)
908 {
909 }
910
911 static inline void
912 perf_cgroup_mark_enabled(struct perf_event *event,
913                          struct perf_event_context *ctx)
914 {
915 }
916 #endif
917
918 /*
919  * set default to be dependent on timer tick just
920  * like original code
921  */
922 #define PERF_CPU_HRTIMER (1000 / HZ)
923 /*
924  * function must be called with interrupts disbled
925  */
926 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
927 {
928         struct perf_cpu_context *cpuctx;
929         int rotations = 0;
930
931         WARN_ON(!irqs_disabled());
932
933         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
934         rotations = perf_rotate_context(cpuctx);
935
936         raw_spin_lock(&cpuctx->hrtimer_lock);
937         if (rotations)
938                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
939         else
940                 cpuctx->hrtimer_active = 0;
941         raw_spin_unlock(&cpuctx->hrtimer_lock);
942
943         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
944 }
945
946 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
947 {
948         struct hrtimer *timer = &cpuctx->hrtimer;
949         struct pmu *pmu = cpuctx->ctx.pmu;
950         u64 interval;
951
952         /* no multiplexing needed for SW PMU */
953         if (pmu->task_ctx_nr == perf_sw_context)
954                 return;
955
956         /*
957          * check default is sane, if not set then force to
958          * default interval (1/tick)
959          */
960         interval = pmu->hrtimer_interval_ms;
961         if (interval < 1)
962                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
963
964         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
965
966         raw_spin_lock_init(&cpuctx->hrtimer_lock);
967         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
968         timer->function = perf_mux_hrtimer_handler;
969 }
970
971 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
972 {
973         struct hrtimer *timer = &cpuctx->hrtimer;
974         struct pmu *pmu = cpuctx->ctx.pmu;
975         unsigned long flags;
976
977         /* not for SW PMU */
978         if (pmu->task_ctx_nr == perf_sw_context)
979                 return 0;
980
981         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
982         if (!cpuctx->hrtimer_active) {
983                 cpuctx->hrtimer_active = 1;
984                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
985                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
986         }
987         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
988
989         return 0;
990 }
991
992 void perf_pmu_disable(struct pmu *pmu)
993 {
994         int *count = this_cpu_ptr(pmu->pmu_disable_count);
995         if (!(*count)++)
996                 pmu->pmu_disable(pmu);
997 }
998
999 void perf_pmu_enable(struct pmu *pmu)
1000 {
1001         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1002         if (!--(*count))
1003                 pmu->pmu_enable(pmu);
1004 }
1005
1006 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1007
1008 /*
1009  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1010  * perf_event_task_tick() are fully serialized because they're strictly cpu
1011  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1012  * disabled, while perf_event_task_tick is called from IRQ context.
1013  */
1014 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1015 {
1016         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1017
1018         WARN_ON(!irqs_disabled());
1019
1020         WARN_ON(!list_empty(&ctx->active_ctx_list));
1021
1022         list_add(&ctx->active_ctx_list, head);
1023 }
1024
1025 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1026 {
1027         WARN_ON(!irqs_disabled());
1028
1029         WARN_ON(list_empty(&ctx->active_ctx_list));
1030
1031         list_del_init(&ctx->active_ctx_list);
1032 }
1033
1034 static void get_ctx(struct perf_event_context *ctx)
1035 {
1036         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1037 }
1038
1039 static void free_ctx(struct rcu_head *head)
1040 {
1041         struct perf_event_context *ctx;
1042
1043         ctx = container_of(head, struct perf_event_context, rcu_head);
1044         kfree(ctx->task_ctx_data);
1045         kfree(ctx);
1046 }
1047
1048 static void put_ctx(struct perf_event_context *ctx)
1049 {
1050         if (atomic_dec_and_test(&ctx->refcount)) {
1051                 if (ctx->parent_ctx)
1052                         put_ctx(ctx->parent_ctx);
1053                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1054                         put_task_struct(ctx->task);
1055                 call_rcu(&ctx->rcu_head, free_ctx);
1056         }
1057 }
1058
1059 /*
1060  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1061  * perf_pmu_migrate_context() we need some magic.
1062  *
1063  * Those places that change perf_event::ctx will hold both
1064  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1065  *
1066  * Lock ordering is by mutex address. There are two other sites where
1067  * perf_event_context::mutex nests and those are:
1068  *
1069  *  - perf_event_exit_task_context()    [ child , 0 ]
1070  *      perf_event_exit_event()
1071  *        put_event()                   [ parent, 1 ]
1072  *
1073  *  - perf_event_init_context()         [ parent, 0 ]
1074  *      inherit_task_group()
1075  *        inherit_group()
1076  *          inherit_event()
1077  *            perf_event_alloc()
1078  *              perf_init_event()
1079  *                perf_try_init_event() [ child , 1 ]
1080  *
1081  * While it appears there is an obvious deadlock here -- the parent and child
1082  * nesting levels are inverted between the two. This is in fact safe because
1083  * life-time rules separate them. That is an exiting task cannot fork, and a
1084  * spawning task cannot (yet) exit.
1085  *
1086  * But remember that that these are parent<->child context relations, and
1087  * migration does not affect children, therefore these two orderings should not
1088  * interact.
1089  *
1090  * The change in perf_event::ctx does not affect children (as claimed above)
1091  * because the sys_perf_event_open() case will install a new event and break
1092  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1093  * concerned with cpuctx and that doesn't have children.
1094  *
1095  * The places that change perf_event::ctx will issue:
1096  *
1097  *   perf_remove_from_context();
1098  *   synchronize_rcu();
1099  *   perf_install_in_context();
1100  *
1101  * to affect the change. The remove_from_context() + synchronize_rcu() should
1102  * quiesce the event, after which we can install it in the new location. This
1103  * means that only external vectors (perf_fops, prctl) can perturb the event
1104  * while in transit. Therefore all such accessors should also acquire
1105  * perf_event_context::mutex to serialize against this.
1106  *
1107  * However; because event->ctx can change while we're waiting to acquire
1108  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1109  * function.
1110  *
1111  * Lock order:
1112  *    cred_guard_mutex
1113  *      task_struct::perf_event_mutex
1114  *        perf_event_context::mutex
1115  *          perf_event::child_mutex;
1116  *            perf_event_context::lock
1117  *          perf_event::mmap_mutex
1118  *          mmap_sem
1119  */
1120 static struct perf_event_context *
1121 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1122 {
1123         struct perf_event_context *ctx;
1124
1125 again:
1126         rcu_read_lock();
1127         ctx = ACCESS_ONCE(event->ctx);
1128         if (!atomic_inc_not_zero(&ctx->refcount)) {
1129                 rcu_read_unlock();
1130                 goto again;
1131         }
1132         rcu_read_unlock();
1133
1134         mutex_lock_nested(&ctx->mutex, nesting);
1135         if (event->ctx != ctx) {
1136                 mutex_unlock(&ctx->mutex);
1137                 put_ctx(ctx);
1138                 goto again;
1139         }
1140
1141         return ctx;
1142 }
1143
1144 static inline struct perf_event_context *
1145 perf_event_ctx_lock(struct perf_event *event)
1146 {
1147         return perf_event_ctx_lock_nested(event, 0);
1148 }
1149
1150 static void perf_event_ctx_unlock(struct perf_event *event,
1151                                   struct perf_event_context *ctx)
1152 {
1153         mutex_unlock(&ctx->mutex);
1154         put_ctx(ctx);
1155 }
1156
1157 /*
1158  * This must be done under the ctx->lock, such as to serialize against
1159  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1160  * calling scheduler related locks and ctx->lock nests inside those.
1161  */
1162 static __must_check struct perf_event_context *
1163 unclone_ctx(struct perf_event_context *ctx)
1164 {
1165         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1166
1167         lockdep_assert_held(&ctx->lock);
1168
1169         if (parent_ctx)
1170                 ctx->parent_ctx = NULL;
1171         ctx->generation++;
1172
1173         return parent_ctx;
1174 }
1175
1176 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1177 {
1178         /*
1179          * only top level events have the pid namespace they were created in
1180          */
1181         if (event->parent)
1182                 event = event->parent;
1183
1184         return task_tgid_nr_ns(p, event->ns);
1185 }
1186
1187 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1188 {
1189         /*
1190          * only top level events have the pid namespace they were created in
1191          */
1192         if (event->parent)
1193                 event = event->parent;
1194
1195         return task_pid_nr_ns(p, event->ns);
1196 }
1197
1198 /*
1199  * If we inherit events we want to return the parent event id
1200  * to userspace.
1201  */
1202 static u64 primary_event_id(struct perf_event *event)
1203 {
1204         u64 id = event->id;
1205
1206         if (event->parent)
1207                 id = event->parent->id;
1208
1209         return id;
1210 }
1211
1212 /*
1213  * Get the perf_event_context for a task and lock it.
1214  *
1215  * This has to cope with with the fact that until it is locked,
1216  * the context could get moved to another task.
1217  */
1218 static struct perf_event_context *
1219 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1220 {
1221         struct perf_event_context *ctx;
1222
1223 retry:
1224         /*
1225          * One of the few rules of preemptible RCU is that one cannot do
1226          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1227          * part of the read side critical section was irqs-enabled -- see
1228          * rcu_read_unlock_special().
1229          *
1230          * Since ctx->lock nests under rq->lock we must ensure the entire read
1231          * side critical section has interrupts disabled.
1232          */
1233         local_irq_save(*flags);
1234         rcu_read_lock();
1235         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1236         if (ctx) {
1237                 /*
1238                  * If this context is a clone of another, it might
1239                  * get swapped for another underneath us by
1240                  * perf_event_task_sched_out, though the
1241                  * rcu_read_lock() protects us from any context
1242                  * getting freed.  Lock the context and check if it
1243                  * got swapped before we could get the lock, and retry
1244                  * if so.  If we locked the right context, then it
1245                  * can't get swapped on us any more.
1246                  */
1247                 raw_spin_lock(&ctx->lock);
1248                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1249                         raw_spin_unlock(&ctx->lock);
1250                         rcu_read_unlock();
1251                         local_irq_restore(*flags);
1252                         goto retry;
1253                 }
1254
1255                 if (ctx->task == TASK_TOMBSTONE ||
1256                     !atomic_inc_not_zero(&ctx->refcount)) {
1257                         raw_spin_unlock(&ctx->lock);
1258                         ctx = NULL;
1259                 } else {
1260                         WARN_ON_ONCE(ctx->task != task);
1261                 }
1262         }
1263         rcu_read_unlock();
1264         if (!ctx)
1265                 local_irq_restore(*flags);
1266         return ctx;
1267 }
1268
1269 /*
1270  * Get the context for a task and increment its pin_count so it
1271  * can't get swapped to another task.  This also increments its
1272  * reference count so that the context can't get freed.
1273  */
1274 static struct perf_event_context *
1275 perf_pin_task_context(struct task_struct *task, int ctxn)
1276 {
1277         struct perf_event_context *ctx;
1278         unsigned long flags;
1279
1280         ctx = perf_lock_task_context(task, ctxn, &flags);
1281         if (ctx) {
1282                 ++ctx->pin_count;
1283                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1284         }
1285         return ctx;
1286 }
1287
1288 static void perf_unpin_context(struct perf_event_context *ctx)
1289 {
1290         unsigned long flags;
1291
1292         raw_spin_lock_irqsave(&ctx->lock, flags);
1293         --ctx->pin_count;
1294         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1295 }
1296
1297 /*
1298  * Update the record of the current time in a context.
1299  */
1300 static void update_context_time(struct perf_event_context *ctx)
1301 {
1302         u64 now = perf_clock();
1303
1304         ctx->time += now - ctx->timestamp;
1305         ctx->timestamp = now;
1306 }
1307
1308 static u64 perf_event_time(struct perf_event *event)
1309 {
1310         struct perf_event_context *ctx = event->ctx;
1311
1312         if (is_cgroup_event(event))
1313                 return perf_cgroup_event_time(event);
1314
1315         return ctx ? ctx->time : 0;
1316 }
1317
1318 /*
1319  * Update the total_time_enabled and total_time_running fields for a event.
1320  */
1321 static void update_event_times(struct perf_event *event)
1322 {
1323         struct perf_event_context *ctx = event->ctx;
1324         u64 run_end;
1325
1326         lockdep_assert_held(&ctx->lock);
1327
1328         if (event->state < PERF_EVENT_STATE_INACTIVE ||
1329             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1330                 return;
1331
1332         /*
1333          * in cgroup mode, time_enabled represents
1334          * the time the event was enabled AND active
1335          * tasks were in the monitored cgroup. This is
1336          * independent of the activity of the context as
1337          * there may be a mix of cgroup and non-cgroup events.
1338          *
1339          * That is why we treat cgroup events differently
1340          * here.
1341          */
1342         if (is_cgroup_event(event))
1343                 run_end = perf_cgroup_event_time(event);
1344         else if (ctx->is_active)
1345                 run_end = ctx->time;
1346         else
1347                 run_end = event->tstamp_stopped;
1348
1349         event->total_time_enabled = run_end - event->tstamp_enabled;
1350
1351         if (event->state == PERF_EVENT_STATE_INACTIVE)
1352                 run_end = event->tstamp_stopped;
1353         else
1354                 run_end = perf_event_time(event);
1355
1356         event->total_time_running = run_end - event->tstamp_running;
1357
1358 }
1359
1360 /*
1361  * Update total_time_enabled and total_time_running for all events in a group.
1362  */
1363 static void update_group_times(struct perf_event *leader)
1364 {
1365         struct perf_event *event;
1366
1367         update_event_times(leader);
1368         list_for_each_entry(event, &leader->sibling_list, group_entry)
1369                 update_event_times(event);
1370 }
1371
1372 static struct list_head *
1373 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1374 {
1375         if (event->attr.pinned)
1376                 return &ctx->pinned_groups;
1377         else
1378                 return &ctx->flexible_groups;
1379 }
1380
1381 /*
1382  * Add a event from the lists for its context.
1383  * Must be called with ctx->mutex and ctx->lock held.
1384  */
1385 static void
1386 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1387 {
1388         lockdep_assert_held(&ctx->lock);
1389
1390         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1391         event->attach_state |= PERF_ATTACH_CONTEXT;
1392
1393         /*
1394          * If we're a stand alone event or group leader, we go to the context
1395          * list, group events are kept attached to the group so that
1396          * perf_group_detach can, at all times, locate all siblings.
1397          */
1398         if (event->group_leader == event) {
1399                 struct list_head *list;
1400
1401                 if (is_software_event(event))
1402                         event->group_flags |= PERF_GROUP_SOFTWARE;
1403
1404                 list = ctx_group_list(event, ctx);
1405                 list_add_tail(&event->group_entry, list);
1406         }
1407
1408         if (is_cgroup_event(event))
1409                 ctx->nr_cgroups++;
1410
1411         list_add_rcu(&event->event_entry, &ctx->event_list);
1412         ctx->nr_events++;
1413         if (event->attr.inherit_stat)
1414                 ctx->nr_stat++;
1415
1416         ctx->generation++;
1417 }
1418
1419 /*
1420  * Initialize event state based on the perf_event_attr::disabled.
1421  */
1422 static inline void perf_event__state_init(struct perf_event *event)
1423 {
1424         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1425                                               PERF_EVENT_STATE_INACTIVE;
1426 }
1427
1428 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1429 {
1430         int entry = sizeof(u64); /* value */
1431         int size = 0;
1432         int nr = 1;
1433
1434         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1435                 size += sizeof(u64);
1436
1437         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1438                 size += sizeof(u64);
1439
1440         if (event->attr.read_format & PERF_FORMAT_ID)
1441                 entry += sizeof(u64);
1442
1443         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1444                 nr += nr_siblings;
1445                 size += sizeof(u64);
1446         }
1447
1448         size += entry * nr;
1449         event->read_size = size;
1450 }
1451
1452 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1453 {
1454         struct perf_sample_data *data;
1455         u16 size = 0;
1456
1457         if (sample_type & PERF_SAMPLE_IP)
1458                 size += sizeof(data->ip);
1459
1460         if (sample_type & PERF_SAMPLE_ADDR)
1461                 size += sizeof(data->addr);
1462
1463         if (sample_type & PERF_SAMPLE_PERIOD)
1464                 size += sizeof(data->period);
1465
1466         if (sample_type & PERF_SAMPLE_WEIGHT)
1467                 size += sizeof(data->weight);
1468
1469         if (sample_type & PERF_SAMPLE_READ)
1470                 size += event->read_size;
1471
1472         if (sample_type & PERF_SAMPLE_DATA_SRC)
1473                 size += sizeof(data->data_src.val);
1474
1475         if (sample_type & PERF_SAMPLE_TRANSACTION)
1476                 size += sizeof(data->txn);
1477
1478         event->header_size = size;
1479 }
1480
1481 /*
1482  * Called at perf_event creation and when events are attached/detached from a
1483  * group.
1484  */
1485 static void perf_event__header_size(struct perf_event *event)
1486 {
1487         __perf_event_read_size(event,
1488                                event->group_leader->nr_siblings);
1489         __perf_event_header_size(event, event->attr.sample_type);
1490 }
1491
1492 static void perf_event__id_header_size(struct perf_event *event)
1493 {
1494         struct perf_sample_data *data;
1495         u64 sample_type = event->attr.sample_type;
1496         u16 size = 0;
1497
1498         if (sample_type & PERF_SAMPLE_TID)
1499                 size += sizeof(data->tid_entry);
1500
1501         if (sample_type & PERF_SAMPLE_TIME)
1502                 size += sizeof(data->time);
1503
1504         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1505                 size += sizeof(data->id);
1506
1507         if (sample_type & PERF_SAMPLE_ID)
1508                 size += sizeof(data->id);
1509
1510         if (sample_type & PERF_SAMPLE_STREAM_ID)
1511                 size += sizeof(data->stream_id);
1512
1513         if (sample_type & PERF_SAMPLE_CPU)
1514                 size += sizeof(data->cpu_entry);
1515
1516         event->id_header_size = size;
1517 }
1518
1519 static bool perf_event_validate_size(struct perf_event *event)
1520 {
1521         /*
1522          * The values computed here will be over-written when we actually
1523          * attach the event.
1524          */
1525         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1526         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1527         perf_event__id_header_size(event);
1528
1529         /*
1530          * Sum the lot; should not exceed the 64k limit we have on records.
1531          * Conservative limit to allow for callchains and other variable fields.
1532          */
1533         if (event->read_size + event->header_size +
1534             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1535                 return false;
1536
1537         return true;
1538 }
1539
1540 static void perf_group_attach(struct perf_event *event)
1541 {
1542         struct perf_event *group_leader = event->group_leader, *pos;
1543
1544         /*
1545          * We can have double attach due to group movement in perf_event_open.
1546          */
1547         if (event->attach_state & PERF_ATTACH_GROUP)
1548                 return;
1549
1550         event->attach_state |= PERF_ATTACH_GROUP;
1551
1552         if (group_leader == event)
1553                 return;
1554
1555         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1556
1557         if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1558                         !is_software_event(event))
1559                 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1560
1561         list_add_tail(&event->group_entry, &group_leader->sibling_list);
1562         group_leader->nr_siblings++;
1563
1564         perf_event__header_size(group_leader);
1565
1566         list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1567                 perf_event__header_size(pos);
1568 }
1569
1570 /*
1571  * Remove a event from the lists for its context.
1572  * Must be called with ctx->mutex and ctx->lock held.
1573  */
1574 static void
1575 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1576 {
1577         struct perf_cpu_context *cpuctx;
1578
1579         WARN_ON_ONCE(event->ctx != ctx);
1580         lockdep_assert_held(&ctx->lock);
1581
1582         /*
1583          * We can have double detach due to exit/hot-unplug + close.
1584          */
1585         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1586                 return;
1587
1588         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1589
1590         if (is_cgroup_event(event)) {
1591                 ctx->nr_cgroups--;
1592                 /*
1593                  * Because cgroup events are always per-cpu events, this will
1594                  * always be called from the right CPU.
1595                  */
1596                 cpuctx = __get_cpu_context(ctx);
1597                 /*
1598                  * If there are no more cgroup events then clear cgrp to avoid
1599                  * stale pointer in update_cgrp_time_from_cpuctx().
1600                  */
1601                 if (!ctx->nr_cgroups)
1602                         cpuctx->cgrp = NULL;
1603         }
1604
1605         ctx->nr_events--;
1606         if (event->attr.inherit_stat)
1607                 ctx->nr_stat--;
1608
1609         list_del_rcu(&event->event_entry);
1610
1611         if (event->group_leader == event)
1612                 list_del_init(&event->group_entry);
1613
1614         update_group_times(event);
1615
1616         /*
1617          * If event was in error state, then keep it
1618          * that way, otherwise bogus counts will be
1619          * returned on read(). The only way to get out
1620          * of error state is by explicit re-enabling
1621          * of the event
1622          */
1623         if (event->state > PERF_EVENT_STATE_OFF)
1624                 event->state = PERF_EVENT_STATE_OFF;
1625
1626         ctx->generation++;
1627 }
1628
1629 static void perf_group_detach(struct perf_event *event)
1630 {
1631         struct perf_event *sibling, *tmp;
1632         struct list_head *list = NULL;
1633
1634         /*
1635          * We can have double detach due to exit/hot-unplug + close.
1636          */
1637         if (!(event->attach_state & PERF_ATTACH_GROUP))
1638                 return;
1639
1640         event->attach_state &= ~PERF_ATTACH_GROUP;
1641
1642         /*
1643          * If this is a sibling, remove it from its group.
1644          */
1645         if (event->group_leader != event) {
1646                 list_del_init(&event->group_entry);
1647                 event->group_leader->nr_siblings--;
1648                 goto out;
1649         }
1650
1651         if (!list_empty(&event->group_entry))
1652                 list = &event->group_entry;
1653
1654         /*
1655          * If this was a group event with sibling events then
1656          * upgrade the siblings to singleton events by adding them
1657          * to whatever list we are on.
1658          */
1659         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1660                 if (list)
1661                         list_move_tail(&sibling->group_entry, list);
1662                 sibling->group_leader = sibling;
1663
1664                 /* Inherit group flags from the previous leader */
1665                 sibling->group_flags = event->group_flags;
1666
1667                 WARN_ON_ONCE(sibling->ctx != event->ctx);
1668         }
1669
1670 out:
1671         perf_event__header_size(event->group_leader);
1672
1673         list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1674                 perf_event__header_size(tmp);
1675 }
1676
1677 static bool is_orphaned_event(struct perf_event *event)
1678 {
1679         return event->state == PERF_EVENT_STATE_DEAD;
1680 }
1681
1682 static inline int pmu_filter_match(struct perf_event *event)
1683 {
1684         struct pmu *pmu = event->pmu;
1685         return pmu->filter_match ? pmu->filter_match(event) : 1;
1686 }
1687
1688 static inline int
1689 event_filter_match(struct perf_event *event)
1690 {
1691         return (event->cpu == -1 || event->cpu == smp_processor_id())
1692             && perf_cgroup_match(event) && pmu_filter_match(event);
1693 }
1694
1695 static void
1696 event_sched_out(struct perf_event *event,
1697                   struct perf_cpu_context *cpuctx,
1698                   struct perf_event_context *ctx)
1699 {
1700         u64 tstamp = perf_event_time(event);
1701         u64 delta;
1702
1703         WARN_ON_ONCE(event->ctx != ctx);
1704         lockdep_assert_held(&ctx->lock);
1705
1706         /*
1707          * An event which could not be activated because of
1708          * filter mismatch still needs to have its timings
1709          * maintained, otherwise bogus information is return
1710          * via read() for time_enabled, time_running:
1711          */
1712         if (event->state == PERF_EVENT_STATE_INACTIVE
1713             && !event_filter_match(event)) {
1714                 delta = tstamp - event->tstamp_stopped;
1715                 event->tstamp_running += delta;
1716                 event->tstamp_stopped = tstamp;
1717         }
1718
1719         if (event->state != PERF_EVENT_STATE_ACTIVE)
1720                 return;
1721
1722         perf_pmu_disable(event->pmu);
1723
1724         event->tstamp_stopped = tstamp;
1725         event->pmu->del(event, 0);
1726         event->oncpu = -1;
1727         event->state = PERF_EVENT_STATE_INACTIVE;
1728         if (event->pending_disable) {
1729                 event->pending_disable = 0;
1730                 event->state = PERF_EVENT_STATE_OFF;
1731         }
1732
1733         if (!is_software_event(event))
1734                 cpuctx->active_oncpu--;
1735         if (!--ctx->nr_active)
1736                 perf_event_ctx_deactivate(ctx);
1737         if (event->attr.freq && event->attr.sample_freq)
1738                 ctx->nr_freq--;
1739         if (event->attr.exclusive || !cpuctx->active_oncpu)
1740                 cpuctx->exclusive = 0;
1741
1742         perf_pmu_enable(event->pmu);
1743 }
1744
1745 static void
1746 group_sched_out(struct perf_event *group_event,
1747                 struct perf_cpu_context *cpuctx,
1748                 struct perf_event_context *ctx)
1749 {
1750         struct perf_event *event;
1751         int state = group_event->state;
1752
1753         event_sched_out(group_event, cpuctx, ctx);
1754
1755         /*
1756          * Schedule out siblings (if any):
1757          */
1758         list_for_each_entry(event, &group_event->sibling_list, group_entry)
1759                 event_sched_out(event, cpuctx, ctx);
1760
1761         if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1762                 cpuctx->exclusive = 0;
1763 }
1764
1765 #define DETACH_GROUP    0x01UL
1766
1767 /*
1768  * Cross CPU call to remove a performance event
1769  *
1770  * We disable the event on the hardware level first. After that we
1771  * remove it from the context list.
1772  */
1773 static void
1774 __perf_remove_from_context(struct perf_event *event,
1775                            struct perf_cpu_context *cpuctx,
1776                            struct perf_event_context *ctx,
1777                            void *info)
1778 {
1779         unsigned long flags = (unsigned long)info;
1780
1781         event_sched_out(event, cpuctx, ctx);
1782         if (flags & DETACH_GROUP)
1783                 perf_group_detach(event);
1784         list_del_event(event, ctx);
1785
1786         if (!ctx->nr_events && ctx->is_active) {
1787                 ctx->is_active = 0;
1788                 if (ctx->task) {
1789                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1790                         cpuctx->task_ctx = NULL;
1791                 }
1792         }
1793 }
1794
1795 /*
1796  * Remove the event from a task's (or a CPU's) list of events.
1797  *
1798  * If event->ctx is a cloned context, callers must make sure that
1799  * every task struct that event->ctx->task could possibly point to
1800  * remains valid.  This is OK when called from perf_release since
1801  * that only calls us on the top-level context, which can't be a clone.
1802  * When called from perf_event_exit_task, it's OK because the
1803  * context has been detached from its task.
1804  */
1805 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1806 {
1807         lockdep_assert_held(&event->ctx->mutex);
1808
1809         event_function_call(event, __perf_remove_from_context, (void *)flags);
1810 }
1811
1812 /*
1813  * Cross CPU call to disable a performance event
1814  */
1815 static void __perf_event_disable(struct perf_event *event,
1816                                  struct perf_cpu_context *cpuctx,
1817                                  struct perf_event_context *ctx,
1818                                  void *info)
1819 {
1820         if (event->state < PERF_EVENT_STATE_INACTIVE)
1821                 return;
1822
1823         update_context_time(ctx);
1824         update_cgrp_time_from_event(event);
1825         update_group_times(event);
1826         if (event == event->group_leader)
1827                 group_sched_out(event, cpuctx, ctx);
1828         else
1829                 event_sched_out(event, cpuctx, ctx);
1830         event->state = PERF_EVENT_STATE_OFF;
1831 }
1832
1833 /*
1834  * Disable a event.
1835  *
1836  * If event->ctx is a cloned context, callers must make sure that
1837  * every task struct that event->ctx->task could possibly point to
1838  * remains valid.  This condition is satisifed when called through
1839  * perf_event_for_each_child or perf_event_for_each because they
1840  * hold the top-level event's child_mutex, so any descendant that
1841  * goes to exit will block in perf_event_exit_event().
1842  *
1843  * When called from perf_pending_event it's OK because event->ctx
1844  * is the current context on this CPU and preemption is disabled,
1845  * hence we can't get into perf_event_task_sched_out for this context.
1846  */
1847 static void _perf_event_disable(struct perf_event *event)
1848 {
1849         struct perf_event_context *ctx = event->ctx;
1850
1851         raw_spin_lock_irq(&ctx->lock);
1852         if (event->state <= PERF_EVENT_STATE_OFF) {
1853                 raw_spin_unlock_irq(&ctx->lock);
1854                 return;
1855         }
1856         raw_spin_unlock_irq(&ctx->lock);
1857
1858         event_function_call(event, __perf_event_disable, NULL);
1859 }
1860
1861 void perf_event_disable_local(struct perf_event *event)
1862 {
1863         event_function_local(event, __perf_event_disable, NULL);
1864 }
1865
1866 /*
1867  * Strictly speaking kernel users cannot create groups and therefore this
1868  * interface does not need the perf_event_ctx_lock() magic.
1869  */
1870 void perf_event_disable(struct perf_event *event)
1871 {
1872         struct perf_event_context *ctx;
1873
1874         ctx = perf_event_ctx_lock(event);
1875         _perf_event_disable(event);
1876         perf_event_ctx_unlock(event, ctx);
1877 }
1878 EXPORT_SYMBOL_GPL(perf_event_disable);
1879
1880 static void perf_set_shadow_time(struct perf_event *event,
1881                                  struct perf_event_context *ctx,
1882                                  u64 tstamp)
1883 {
1884         /*
1885          * use the correct time source for the time snapshot
1886          *
1887          * We could get by without this by leveraging the
1888          * fact that to get to this function, the caller
1889          * has most likely already called update_context_time()
1890          * and update_cgrp_time_xx() and thus both timestamp
1891          * are identical (or very close). Given that tstamp is,
1892          * already adjusted for cgroup, we could say that:
1893          *    tstamp - ctx->timestamp
1894          * is equivalent to
1895          *    tstamp - cgrp->timestamp.
1896          *
1897          * Then, in perf_output_read(), the calculation would
1898          * work with no changes because:
1899          * - event is guaranteed scheduled in
1900          * - no scheduled out in between
1901          * - thus the timestamp would be the same
1902          *
1903          * But this is a bit hairy.
1904          *
1905          * So instead, we have an explicit cgroup call to remain
1906          * within the time time source all along. We believe it
1907          * is cleaner and simpler to understand.
1908          */
1909         if (is_cgroup_event(event))
1910                 perf_cgroup_set_shadow_time(event, tstamp);
1911         else
1912                 event->shadow_ctx_time = tstamp - ctx->timestamp;
1913 }
1914
1915 #define MAX_INTERRUPTS (~0ULL)
1916
1917 static void perf_log_throttle(struct perf_event *event, int enable);
1918 static void perf_log_itrace_start(struct perf_event *event);
1919
1920 static int
1921 event_sched_in(struct perf_event *event,
1922                  struct perf_cpu_context *cpuctx,
1923                  struct perf_event_context *ctx)
1924 {
1925         u64 tstamp = perf_event_time(event);
1926         int ret = 0;
1927
1928         lockdep_assert_held(&ctx->lock);
1929
1930         if (event->state <= PERF_EVENT_STATE_OFF)
1931                 return 0;
1932
1933         WRITE_ONCE(event->oncpu, smp_processor_id());
1934         /*
1935          * Order event::oncpu write to happen before the ACTIVE state
1936          * is visible.
1937          */
1938         smp_wmb();
1939         WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
1940
1941         /*
1942          * Unthrottle events, since we scheduled we might have missed several
1943          * ticks already, also for a heavily scheduling task there is little
1944          * guarantee it'll get a tick in a timely manner.
1945          */
1946         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1947                 perf_log_throttle(event, 1);
1948                 event->hw.interrupts = 0;
1949         }
1950
1951         /*
1952          * The new state must be visible before we turn it on in the hardware:
1953          */
1954         smp_wmb();
1955
1956         perf_pmu_disable(event->pmu);
1957
1958         perf_set_shadow_time(event, ctx, tstamp);
1959
1960         perf_log_itrace_start(event);
1961
1962         if (event->pmu->add(event, PERF_EF_START)) {
1963                 event->state = PERF_EVENT_STATE_INACTIVE;
1964                 event->oncpu = -1;
1965                 ret = -EAGAIN;
1966                 goto out;
1967         }
1968
1969         event->tstamp_running += tstamp - event->tstamp_stopped;
1970
1971         if (!is_software_event(event))
1972                 cpuctx->active_oncpu++;
1973         if (!ctx->nr_active++)
1974                 perf_event_ctx_activate(ctx);
1975         if (event->attr.freq && event->attr.sample_freq)
1976                 ctx->nr_freq++;
1977
1978         if (event->attr.exclusive)
1979                 cpuctx->exclusive = 1;
1980
1981 out:
1982         perf_pmu_enable(event->pmu);
1983
1984         return ret;
1985 }
1986
1987 static int
1988 group_sched_in(struct perf_event *group_event,
1989                struct perf_cpu_context *cpuctx,
1990                struct perf_event_context *ctx)
1991 {
1992         struct perf_event *event, *partial_group = NULL;
1993         struct pmu *pmu = ctx->pmu;
1994         u64 now = ctx->time;
1995         bool simulate = false;
1996
1997         if (group_event->state == PERF_EVENT_STATE_OFF)
1998                 return 0;
1999
2000         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2001
2002         if (event_sched_in(group_event, cpuctx, ctx)) {
2003                 pmu->cancel_txn(pmu);
2004                 perf_mux_hrtimer_restart(cpuctx);
2005                 return -EAGAIN;
2006         }
2007
2008         /*
2009          * Schedule in siblings as one group (if any):
2010          */
2011         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2012                 if (event_sched_in(event, cpuctx, ctx)) {
2013                         partial_group = event;
2014                         goto group_error;
2015                 }
2016         }
2017
2018         if (!pmu->commit_txn(pmu))
2019                 return 0;
2020
2021 group_error:
2022         /*
2023          * Groups can be scheduled in as one unit only, so undo any
2024          * partial group before returning:
2025          * The events up to the failed event are scheduled out normally,
2026          * tstamp_stopped will be updated.
2027          *
2028          * The failed events and the remaining siblings need to have
2029          * their timings updated as if they had gone thru event_sched_in()
2030          * and event_sched_out(). This is required to get consistent timings
2031          * across the group. This also takes care of the case where the group
2032          * could never be scheduled by ensuring tstamp_stopped is set to mark
2033          * the time the event was actually stopped, such that time delta
2034          * calculation in update_event_times() is correct.
2035          */
2036         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2037                 if (event == partial_group)
2038                         simulate = true;
2039
2040                 if (simulate) {
2041                         event->tstamp_running += now - event->tstamp_stopped;
2042                         event->tstamp_stopped = now;
2043                 } else {
2044                         event_sched_out(event, cpuctx, ctx);
2045                 }
2046         }
2047         event_sched_out(group_event, cpuctx, ctx);
2048
2049         pmu->cancel_txn(pmu);
2050
2051         perf_mux_hrtimer_restart(cpuctx);
2052
2053         return -EAGAIN;
2054 }
2055
2056 /*
2057  * Work out whether we can put this event group on the CPU now.
2058  */
2059 static int group_can_go_on(struct perf_event *event,
2060                            struct perf_cpu_context *cpuctx,
2061                            int can_add_hw)
2062 {
2063         /*
2064          * Groups consisting entirely of software events can always go on.
2065          */
2066         if (event->group_flags & PERF_GROUP_SOFTWARE)
2067                 return 1;
2068         /*
2069          * If an exclusive group is already on, no other hardware
2070          * events can go on.
2071          */
2072         if (cpuctx->exclusive)
2073                 return 0;
2074         /*
2075          * If this group is exclusive and there are already
2076          * events on the CPU, it can't go on.
2077          */
2078         if (event->attr.exclusive && cpuctx->active_oncpu)
2079                 return 0;
2080         /*
2081          * Otherwise, try to add it if all previous groups were able
2082          * to go on.
2083          */
2084         return can_add_hw;
2085 }
2086
2087 static void add_event_to_ctx(struct perf_event *event,
2088                                struct perf_event_context *ctx)
2089 {
2090         u64 tstamp = perf_event_time(event);
2091
2092         list_add_event(event, ctx);
2093         perf_group_attach(event);
2094         event->tstamp_enabled = tstamp;
2095         event->tstamp_running = tstamp;
2096         event->tstamp_stopped = tstamp;
2097 }
2098
2099 static void ctx_sched_out(struct perf_event_context *ctx,
2100                           struct perf_cpu_context *cpuctx,
2101                           enum event_type_t event_type);
2102 static void
2103 ctx_sched_in(struct perf_event_context *ctx,
2104              struct perf_cpu_context *cpuctx,
2105              enum event_type_t event_type,
2106              struct task_struct *task);
2107
2108 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2109                                struct perf_event_context *ctx)
2110 {
2111         if (!cpuctx->task_ctx)
2112                 return;
2113
2114         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2115                 return;
2116
2117         ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2118 }
2119
2120 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2121                                 struct perf_event_context *ctx,
2122                                 struct task_struct *task)
2123 {
2124         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2125         if (ctx)
2126                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2127         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2128         if (ctx)
2129                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2130 }
2131
2132 static void ctx_resched(struct perf_cpu_context *cpuctx,
2133                         struct perf_event_context *task_ctx)
2134 {
2135         perf_pmu_disable(cpuctx->ctx.pmu);
2136         if (task_ctx)
2137                 task_ctx_sched_out(cpuctx, task_ctx);
2138         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2139         perf_event_sched_in(cpuctx, task_ctx, current);
2140         perf_pmu_enable(cpuctx->ctx.pmu);
2141 }
2142
2143 /*
2144  * Cross CPU call to install and enable a performance event
2145  *
2146  * Very similar to remote_function() + event_function() but cannot assume that
2147  * things like ctx->is_active and cpuctx->task_ctx are set.
2148  */
2149 static int  __perf_install_in_context(void *info)
2150 {
2151         struct perf_event *event = info;
2152         struct perf_event_context *ctx = event->ctx;
2153         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2154         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2155         bool activate = true;
2156         int ret = 0;
2157
2158         raw_spin_lock(&cpuctx->ctx.lock);
2159         if (ctx->task) {
2160                 raw_spin_lock(&ctx->lock);
2161                 task_ctx = ctx;
2162
2163                 /* If we're on the wrong CPU, try again */
2164                 if (task_cpu(ctx->task) != smp_processor_id()) {
2165                         ret = -ESRCH;
2166                         goto unlock;
2167                 }
2168
2169                 /*
2170                  * If we're on the right CPU, see if the task we target is
2171                  * current, if not we don't have to activate the ctx, a future
2172                  * context switch will do that for us.
2173                  */
2174                 if (ctx->task != current)
2175                         activate = false;
2176                 else
2177                         WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2178
2179         } else if (task_ctx) {
2180                 raw_spin_lock(&task_ctx->lock);
2181         }
2182
2183         if (activate) {
2184                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2185                 add_event_to_ctx(event, ctx);
2186                 ctx_resched(cpuctx, task_ctx);
2187         } else {
2188                 add_event_to_ctx(event, ctx);
2189         }
2190
2191 unlock:
2192         perf_ctx_unlock(cpuctx, task_ctx);
2193
2194         return ret;
2195 }
2196
2197 /*
2198  * Attach a performance event to a context.
2199  *
2200  * Very similar to event_function_call, see comment there.
2201  */
2202 static void
2203 perf_install_in_context(struct perf_event_context *ctx,
2204                         struct perf_event *event,
2205                         int cpu)
2206 {
2207         struct task_struct *task = READ_ONCE(ctx->task);
2208
2209         lockdep_assert_held(&ctx->mutex);
2210
2211         event->ctx = ctx;
2212         if (event->cpu != -1)
2213                 event->cpu = cpu;
2214
2215         if (!task) {
2216                 cpu_function_call(cpu, __perf_install_in_context, event);
2217                 return;
2218         }
2219
2220         /*
2221          * Should not happen, we validate the ctx is still alive before calling.
2222          */
2223         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2224                 return;
2225
2226         /*
2227          * Installing events is tricky because we cannot rely on ctx->is_active
2228          * to be set in case this is the nr_events 0 -> 1 transition.
2229          */
2230 again:
2231         /*
2232          * Cannot use task_function_call() because we need to run on the task's
2233          * CPU regardless of whether its current or not.
2234          */
2235         if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event))
2236                 return;
2237
2238         raw_spin_lock_irq(&ctx->lock);
2239         task = ctx->task;
2240         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2241                 /*
2242                  * Cannot happen because we already checked above (which also
2243                  * cannot happen), and we hold ctx->mutex, which serializes us
2244                  * against perf_event_exit_task_context().
2245                  */
2246                 raw_spin_unlock_irq(&ctx->lock);
2247                 return;
2248         }
2249         raw_spin_unlock_irq(&ctx->lock);
2250         /*
2251          * Since !ctx->is_active doesn't mean anything, we must IPI
2252          * unconditionally.
2253          */
2254         goto again;
2255 }
2256
2257 /*
2258  * Put a event into inactive state and update time fields.
2259  * Enabling the leader of a group effectively enables all
2260  * the group members that aren't explicitly disabled, so we
2261  * have to update their ->tstamp_enabled also.
2262  * Note: this works for group members as well as group leaders
2263  * since the non-leader members' sibling_lists will be empty.
2264  */
2265 static void __perf_event_mark_enabled(struct perf_event *event)
2266 {
2267         struct perf_event *sub;
2268         u64 tstamp = perf_event_time(event);
2269
2270         event->state = PERF_EVENT_STATE_INACTIVE;
2271         event->tstamp_enabled = tstamp - event->total_time_enabled;
2272         list_for_each_entry(sub, &event->sibling_list, group_entry) {
2273                 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2274                         sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2275         }
2276 }
2277
2278 /*
2279  * Cross CPU call to enable a performance event
2280  */
2281 static void __perf_event_enable(struct perf_event *event,
2282                                 struct perf_cpu_context *cpuctx,
2283                                 struct perf_event_context *ctx,
2284                                 void *info)
2285 {
2286         struct perf_event *leader = event->group_leader;
2287         struct perf_event_context *task_ctx;
2288
2289         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2290             event->state <= PERF_EVENT_STATE_ERROR)
2291                 return;
2292
2293         if (ctx->is_active)
2294                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2295
2296         __perf_event_mark_enabled(event);
2297
2298         if (!ctx->is_active)
2299                 return;
2300
2301         if (!event_filter_match(event)) {
2302                 if (is_cgroup_event(event))
2303                         perf_cgroup_defer_enabled(event);
2304                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2305                 return;
2306         }
2307
2308         /*
2309          * If the event is in a group and isn't the group leader,
2310          * then don't put it on unless the group is on.
2311          */
2312         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2313                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2314                 return;
2315         }
2316
2317         task_ctx = cpuctx->task_ctx;
2318         if (ctx->task)
2319                 WARN_ON_ONCE(task_ctx != ctx);
2320
2321         ctx_resched(cpuctx, task_ctx);
2322 }
2323
2324 /*
2325  * Enable a event.
2326  *
2327  * If event->ctx is a cloned context, callers must make sure that
2328  * every task struct that event->ctx->task could possibly point to
2329  * remains valid.  This condition is satisfied when called through
2330  * perf_event_for_each_child or perf_event_for_each as described
2331  * for perf_event_disable.
2332  */
2333 static void _perf_event_enable(struct perf_event *event)
2334 {
2335         struct perf_event_context *ctx = event->ctx;
2336
2337         raw_spin_lock_irq(&ctx->lock);
2338         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2339             event->state <  PERF_EVENT_STATE_ERROR) {
2340                 raw_spin_unlock_irq(&ctx->lock);
2341                 return;
2342         }
2343
2344         /*
2345          * If the event is in error state, clear that first.
2346          *
2347          * That way, if we see the event in error state below, we know that it
2348          * has gone back into error state, as distinct from the task having
2349          * been scheduled away before the cross-call arrived.
2350          */
2351         if (event->state == PERF_EVENT_STATE_ERROR)
2352                 event->state = PERF_EVENT_STATE_OFF;
2353         raw_spin_unlock_irq(&ctx->lock);
2354
2355         event_function_call(event, __perf_event_enable, NULL);
2356 }
2357
2358 /*
2359  * See perf_event_disable();
2360  */
2361 void perf_event_enable(struct perf_event *event)
2362 {
2363         struct perf_event_context *ctx;
2364
2365         ctx = perf_event_ctx_lock(event);
2366         _perf_event_enable(event);
2367         perf_event_ctx_unlock(event, ctx);
2368 }
2369 EXPORT_SYMBOL_GPL(perf_event_enable);
2370
2371 struct stop_event_data {
2372         struct perf_event       *event;
2373         unsigned int            restart;
2374 };
2375
2376 static int __perf_event_stop(void *info)
2377 {
2378         struct stop_event_data *sd = info;
2379         struct perf_event *event = sd->event;
2380
2381         /* if it's already INACTIVE, do nothing */
2382         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2383                 return 0;
2384
2385         /* matches smp_wmb() in event_sched_in() */
2386         smp_rmb();
2387
2388         /*
2389          * There is a window with interrupts enabled before we get here,
2390          * so we need to check again lest we try to stop another CPU's event.
2391          */
2392         if (READ_ONCE(event->oncpu) != smp_processor_id())
2393                 return -EAGAIN;
2394
2395         event->pmu->stop(event, PERF_EF_UPDATE);
2396
2397         /*
2398          * May race with the actual stop (through perf_pmu_output_stop()),
2399          * but it is only used for events with AUX ring buffer, and such
2400          * events will refuse to restart because of rb::aux_mmap_count==0,
2401          * see comments in perf_aux_output_begin().
2402          *
2403          * Since this is happening on a event-local CPU, no trace is lost
2404          * while restarting.
2405          */
2406         if (sd->restart)
2407                 event->pmu->start(event, PERF_EF_START);
2408
2409         return 0;
2410 }
2411
2412 static int perf_event_restart(struct perf_event *event)
2413 {
2414         struct stop_event_data sd = {
2415                 .event          = event,
2416                 .restart        = 1,
2417         };
2418         int ret = 0;
2419
2420         do {
2421                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2422                         return 0;
2423
2424                 /* matches smp_wmb() in event_sched_in() */
2425                 smp_rmb();
2426
2427                 /*
2428                  * We only want to restart ACTIVE events, so if the event goes
2429                  * inactive here (event->oncpu==-1), there's nothing more to do;
2430                  * fall through with ret==-ENXIO.
2431                  */
2432                 ret = cpu_function_call(READ_ONCE(event->oncpu),
2433                                         __perf_event_stop, &sd);
2434         } while (ret == -EAGAIN);
2435
2436         return ret;
2437 }
2438
2439 /*
2440  * In order to contain the amount of racy and tricky in the address filter
2441  * configuration management, it is a two part process:
2442  *
2443  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2444  *      we update the addresses of corresponding vmas in
2445  *      event::addr_filters_offs array and bump the event::addr_filters_gen;
2446  * (p2) when an event is scheduled in (pmu::add), it calls
2447  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2448  *      if the generation has changed since the previous call.
2449  *
2450  * If (p1) happens while the event is active, we restart it to force (p2).
2451  *
2452  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2453  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2454  *     ioctl;
2455  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2456  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2457  *     for reading;
2458  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2459  *     of exec.
2460  */
2461 void perf_event_addr_filters_sync(struct perf_event *event)
2462 {
2463         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2464
2465         if (!has_addr_filter(event))
2466                 return;
2467
2468         raw_spin_lock(&ifh->lock);
2469         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2470                 event->pmu->addr_filters_sync(event);
2471                 event->hw.addr_filters_gen = event->addr_filters_gen;
2472         }
2473         raw_spin_unlock(&ifh->lock);
2474 }
2475 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2476
2477 static int _perf_event_refresh(struct perf_event *event, int refresh)
2478 {
2479         /*
2480          * not supported on inherited events
2481          */
2482         if (event->attr.inherit || !is_sampling_event(event))
2483                 return -EINVAL;
2484
2485         atomic_add(refresh, &event->event_limit);
2486         _perf_event_enable(event);
2487
2488         return 0;
2489 }
2490
2491 /*
2492  * See perf_event_disable()
2493  */
2494 int perf_event_refresh(struct perf_event *event, int refresh)
2495 {
2496         struct perf_event_context *ctx;
2497         int ret;
2498
2499         ctx = perf_event_ctx_lock(event);
2500         ret = _perf_event_refresh(event, refresh);
2501         perf_event_ctx_unlock(event, ctx);
2502
2503         return ret;
2504 }
2505 EXPORT_SYMBOL_GPL(perf_event_refresh);
2506
2507 static void ctx_sched_out(struct perf_event_context *ctx,
2508                           struct perf_cpu_context *cpuctx,
2509                           enum event_type_t event_type)
2510 {
2511         int is_active = ctx->is_active;
2512         struct perf_event *event;
2513
2514         lockdep_assert_held(&ctx->lock);
2515
2516         if (likely(!ctx->nr_events)) {
2517                 /*
2518                  * See __perf_remove_from_context().
2519                  */
2520                 WARN_ON_ONCE(ctx->is_active);
2521                 if (ctx->task)
2522                         WARN_ON_ONCE(cpuctx->task_ctx);
2523                 return;
2524         }
2525
2526         ctx->is_active &= ~event_type;
2527         if (!(ctx->is_active & EVENT_ALL))
2528                 ctx->is_active = 0;
2529
2530         if (ctx->task) {
2531                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2532                 if (!ctx->is_active)
2533                         cpuctx->task_ctx = NULL;
2534         }
2535
2536         /*
2537          * Always update time if it was set; not only when it changes.
2538          * Otherwise we can 'forget' to update time for any but the last
2539          * context we sched out. For example:
2540          *
2541          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2542          *   ctx_sched_out(.event_type = EVENT_PINNED)
2543          *
2544          * would only update time for the pinned events.
2545          */
2546         if (is_active & EVENT_TIME) {
2547                 /* update (and stop) ctx time */
2548                 update_context_time(ctx);
2549                 update_cgrp_time_from_cpuctx(cpuctx);
2550         }
2551
2552         is_active ^= ctx->is_active; /* changed bits */
2553
2554         if (!ctx->nr_active || !(is_active & EVENT_ALL))
2555                 return;
2556
2557         perf_pmu_disable(ctx->pmu);
2558         if (is_active & EVENT_PINNED) {
2559                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2560                         group_sched_out(event, cpuctx, ctx);
2561         }
2562
2563         if (is_active & EVENT_FLEXIBLE) {
2564                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2565                         group_sched_out(event, cpuctx, ctx);
2566         }
2567         perf_pmu_enable(ctx->pmu);
2568 }
2569
2570 /*
2571  * Test whether two contexts are equivalent, i.e. whether they have both been
2572  * cloned from the same version of the same context.
2573  *
2574  * Equivalence is measured using a generation number in the context that is
2575  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2576  * and list_del_event().
2577  */
2578 static int context_equiv(struct perf_event_context *ctx1,
2579                          struct perf_event_context *ctx2)
2580 {
2581         lockdep_assert_held(&ctx1->lock);
2582         lockdep_assert_held(&ctx2->lock);
2583
2584         /* Pinning disables the swap optimization */
2585         if (ctx1->pin_count || ctx2->pin_count)
2586                 return 0;
2587
2588         /* If ctx1 is the parent of ctx2 */
2589         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2590                 return 1;
2591
2592         /* If ctx2 is the parent of ctx1 */
2593         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2594                 return 1;
2595
2596         /*
2597          * If ctx1 and ctx2 have the same parent; we flatten the parent
2598          * hierarchy, see perf_event_init_context().
2599          */
2600         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2601                         ctx1->parent_gen == ctx2->parent_gen)
2602                 return 1;
2603
2604         /* Unmatched */
2605         return 0;
2606 }
2607
2608 static void __perf_event_sync_stat(struct perf_event *event,
2609                                      struct perf_event *next_event)
2610 {
2611         u64 value;
2612
2613         if (!event->attr.inherit_stat)
2614                 return;
2615
2616         /*
2617          * Update the event value, we cannot use perf_event_read()
2618          * because we're in the middle of a context switch and have IRQs
2619          * disabled, which upsets smp_call_function_single(), however
2620          * we know the event must be on the current CPU, therefore we
2621          * don't need to use it.
2622          */
2623         switch (event->state) {
2624         case PERF_EVENT_STATE_ACTIVE:
2625                 event->pmu->read(event);
2626                 /* fall-through */
2627
2628         case PERF_EVENT_STATE_INACTIVE:
2629                 update_event_times(event);
2630                 break;
2631
2632         default:
2633                 break;
2634         }
2635
2636         /*
2637          * In order to keep per-task stats reliable we need to flip the event
2638          * values when we flip the contexts.
2639          */
2640         value = local64_read(&next_event->count);
2641         value = local64_xchg(&event->count, value);
2642         local64_set(&next_event->count, value);
2643
2644         swap(event->total_time_enabled, next_event->total_time_enabled);
2645         swap(event->total_time_running, next_event->total_time_running);
2646
2647         /*
2648          * Since we swizzled the values, update the user visible data too.
2649          */
2650         perf_event_update_userpage(event);
2651         perf_event_update_userpage(next_event);
2652 }
2653
2654 static void perf_event_sync_stat(struct perf_event_context *ctx,
2655                                    struct perf_event_context *next_ctx)
2656 {
2657         struct perf_event *event, *next_event;
2658
2659         if (!ctx->nr_stat)
2660                 return;
2661
2662         update_context_time(ctx);
2663
2664         event = list_first_entry(&ctx->event_list,
2665                                    struct perf_event, event_entry);
2666
2667         next_event = list_first_entry(&next_ctx->event_list,
2668                                         struct perf_event, event_entry);
2669
2670         while (&event->event_entry != &ctx->event_list &&
2671                &next_event->event_entry != &next_ctx->event_list) {
2672
2673                 __perf_event_sync_stat(event, next_event);
2674
2675                 event = list_next_entry(event, event_entry);
2676                 next_event = list_next_entry(next_event, event_entry);
2677         }
2678 }
2679
2680 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2681                                          struct task_struct *next)
2682 {
2683         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2684         struct perf_event_context *next_ctx;
2685         struct perf_event_context *parent, *next_parent;
2686         struct perf_cpu_context *cpuctx;
2687         int do_switch = 1;
2688
2689         if (likely(!ctx))
2690                 return;
2691
2692         cpuctx = __get_cpu_context(ctx);
2693         if (!cpuctx->task_ctx)
2694                 return;
2695
2696         rcu_read_lock();
2697         next_ctx = next->perf_event_ctxp[ctxn];
2698         if (!next_ctx)
2699                 goto unlock;
2700
2701         parent = rcu_dereference(ctx->parent_ctx);
2702         next_parent = rcu_dereference(next_ctx->parent_ctx);
2703
2704         /* If neither context have a parent context; they cannot be clones. */
2705         if (!parent && !next_parent)
2706                 goto unlock;
2707
2708         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2709                 /*
2710                  * Looks like the two contexts are clones, so we might be
2711                  * able to optimize the context switch.  We lock both
2712                  * contexts and check that they are clones under the
2713                  * lock (including re-checking that neither has been
2714                  * uncloned in the meantime).  It doesn't matter which
2715                  * order we take the locks because no other cpu could
2716                  * be trying to lock both of these tasks.
2717                  */
2718                 raw_spin_lock(&ctx->lock);
2719                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2720                 if (context_equiv(ctx, next_ctx)) {
2721                         WRITE_ONCE(ctx->task, next);
2722                         WRITE_ONCE(next_ctx->task, task);
2723
2724                         swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2725
2726                         /*
2727                          * RCU_INIT_POINTER here is safe because we've not
2728                          * modified the ctx and the above modification of
2729                          * ctx->task and ctx->task_ctx_data are immaterial
2730                          * since those values are always verified under
2731                          * ctx->lock which we're now holding.
2732                          */
2733                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2734                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2735
2736                         do_switch = 0;
2737
2738                         perf_event_sync_stat(ctx, next_ctx);
2739                 }
2740                 raw_spin_unlock(&next_ctx->lock);
2741                 raw_spin_unlock(&ctx->lock);
2742         }
2743 unlock:
2744         rcu_read_unlock();
2745
2746         if (do_switch) {
2747                 raw_spin_lock(&ctx->lock);
2748                 task_ctx_sched_out(cpuctx, ctx);
2749                 raw_spin_unlock(&ctx->lock);
2750         }
2751 }
2752
2753 void perf_sched_cb_dec(struct pmu *pmu)
2754 {
2755         this_cpu_dec(perf_sched_cb_usages);
2756 }
2757
2758 void perf_sched_cb_inc(struct pmu *pmu)
2759 {
2760         this_cpu_inc(perf_sched_cb_usages);
2761 }
2762
2763 /*
2764  * This function provides the context switch callback to the lower code
2765  * layer. It is invoked ONLY when the context switch callback is enabled.
2766  */
2767 static void perf_pmu_sched_task(struct task_struct *prev,
2768                                 struct task_struct *next,
2769                                 bool sched_in)
2770 {
2771         struct perf_cpu_context *cpuctx;
2772         struct pmu *pmu;
2773         unsigned long flags;
2774
2775         if (prev == next)
2776                 return;
2777
2778         local_irq_save(flags);
2779
2780         rcu_read_lock();
2781
2782         list_for_each_entry_rcu(pmu, &pmus, entry) {
2783                 if (pmu->sched_task) {
2784                         cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2785
2786                         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2787
2788                         perf_pmu_disable(pmu);
2789
2790                         pmu->sched_task(cpuctx->task_ctx, sched_in);
2791
2792                         perf_pmu_enable(pmu);
2793
2794                         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2795                 }
2796         }
2797
2798         rcu_read_unlock();
2799
2800         local_irq_restore(flags);
2801 }
2802
2803 static void perf_event_switch(struct task_struct *task,
2804                               struct task_struct *next_prev, bool sched_in);
2805
2806 #define for_each_task_context_nr(ctxn)                                  \
2807         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2808
2809 /*
2810  * Called from scheduler to remove the events of the current task,
2811  * with interrupts disabled.
2812  *
2813  * We stop each event and update the event value in event->count.
2814  *
2815  * This does not protect us against NMI, but disable()
2816  * sets the disabled bit in the control field of event _before_
2817  * accessing the event control register. If a NMI hits, then it will
2818  * not restart the event.
2819  */
2820 void __perf_event_task_sched_out(struct task_struct *task,
2821                                  struct task_struct *next)
2822 {
2823         int ctxn;
2824
2825         if (__this_cpu_read(perf_sched_cb_usages))
2826                 perf_pmu_sched_task(task, next, false);
2827
2828         if (atomic_read(&nr_switch_events))
2829                 perf_event_switch(task, next, false);
2830
2831         for_each_task_context_nr(ctxn)
2832                 perf_event_context_sched_out(task, ctxn, next);
2833
2834         /*
2835          * if cgroup events exist on this CPU, then we need
2836          * to check if we have to switch out PMU state.
2837          * cgroup event are system-wide mode only
2838          */
2839         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2840                 perf_cgroup_sched_out(task, next);
2841 }
2842
2843 /*
2844  * Called with IRQs disabled
2845  */
2846 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2847                               enum event_type_t event_type)
2848 {
2849         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2850 }
2851
2852 static void
2853 ctx_pinned_sched_in(struct perf_event_context *ctx,
2854                     struct perf_cpu_context *cpuctx)
2855 {
2856         struct perf_event *event;
2857
2858         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2859                 if (event->state <= PERF_EVENT_STATE_OFF)
2860                         continue;
2861                 if (!event_filter_match(event))
2862                         continue;
2863
2864                 /* may need to reset tstamp_enabled */
2865                 if (is_cgroup_event(event))
2866                         perf_cgroup_mark_enabled(event, ctx);
2867
2868                 if (group_can_go_on(event, cpuctx, 1))
2869                         group_sched_in(event, cpuctx, ctx);
2870
2871                 /*
2872                  * If this pinned group hasn't been scheduled,
2873                  * put it in error state.
2874                  */
2875                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2876                         update_group_times(event);
2877                         event->state = PERF_EVENT_STATE_ERROR;
2878                 }
2879         }
2880 }
2881
2882 static void
2883 ctx_flexible_sched_in(struct perf_event_context *ctx,
2884                       struct perf_cpu_context *cpuctx)
2885 {
2886         struct perf_event *event;
2887         int can_add_hw = 1;
2888
2889         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2890                 /* Ignore events in OFF or ERROR state */
2891                 if (event->state <= PERF_EVENT_STATE_OFF)
2892                         continue;
2893                 /*
2894                  * Listen to the 'cpu' scheduling filter constraint
2895                  * of events:
2896                  */
2897                 if (!event_filter_match(event))
2898                         continue;
2899
2900                 /* may need to reset tstamp_enabled */
2901                 if (is_cgroup_event(event))
2902                         perf_cgroup_mark_enabled(event, ctx);
2903
2904                 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2905                         if (group_sched_in(event, cpuctx, ctx))
2906                                 can_add_hw = 0;
2907                 }
2908         }
2909 }
2910
2911 static void
2912 ctx_sched_in(struct perf_event_context *ctx,
2913              struct perf_cpu_context *cpuctx,
2914              enum event_type_t event_type,
2915              struct task_struct *task)
2916 {
2917         int is_active = ctx->is_active;
2918         u64 now;
2919
2920         lockdep_assert_held(&ctx->lock);
2921
2922         if (likely(!ctx->nr_events))
2923                 return;
2924
2925         ctx->is_active |= (event_type | EVENT_TIME);
2926         if (ctx->task) {
2927                 if (!is_active)
2928                         cpuctx->task_ctx = ctx;
2929                 else
2930                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2931         }
2932
2933         is_active ^= ctx->is_active; /* changed bits */
2934
2935         if (is_active & EVENT_TIME) {
2936                 /* start ctx time */
2937                 now = perf_clock();
2938                 ctx->timestamp = now;
2939                 perf_cgroup_set_timestamp(task, ctx);
2940         }
2941
2942         /*
2943          * First go through the list and put on any pinned groups
2944          * in order to give them the best chance of going on.
2945          */
2946         if (is_active & EVENT_PINNED)
2947                 ctx_pinned_sched_in(ctx, cpuctx);
2948
2949         /* Then walk through the lower prio flexible groups */
2950         if (is_active & EVENT_FLEXIBLE)
2951                 ctx_flexible_sched_in(ctx, cpuctx);
2952 }
2953
2954 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2955                              enum event_type_t event_type,
2956                              struct task_struct *task)
2957 {
2958         struct perf_event_context *ctx = &cpuctx->ctx;
2959
2960         ctx_sched_in(ctx, cpuctx, event_type, task);
2961 }
2962
2963 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2964                                         struct task_struct *task)
2965 {
2966         struct perf_cpu_context *cpuctx;
2967
2968         cpuctx = __get_cpu_context(ctx);
2969         if (cpuctx->task_ctx == ctx)
2970                 return;
2971
2972         perf_ctx_lock(cpuctx, ctx);
2973         perf_pmu_disable(ctx->pmu);
2974         /*
2975          * We want to keep the following priority order:
2976          * cpu pinned (that don't need to move), task pinned,
2977          * cpu flexible, task flexible.
2978          */
2979         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2980         perf_event_sched_in(cpuctx, ctx, task);
2981         perf_pmu_enable(ctx->pmu);
2982         perf_ctx_unlock(cpuctx, ctx);
2983 }
2984
2985 /*
2986  * Called from scheduler to add the events of the current task
2987  * with interrupts disabled.
2988  *
2989  * We restore the event value and then enable it.
2990  *
2991  * This does not protect us against NMI, but enable()
2992  * sets the enabled bit in the control field of event _before_
2993  * accessing the event control register. If a NMI hits, then it will
2994  * keep the event running.
2995  */
2996 void __perf_event_task_sched_in(struct task_struct *prev,
2997                                 struct task_struct *task)
2998 {
2999         struct perf_event_context *ctx;
3000         int ctxn;
3001
3002         /*
3003          * If cgroup events exist on this CPU, then we need to check if we have
3004          * to switch in PMU state; cgroup event are system-wide mode only.
3005          *
3006          * Since cgroup events are CPU events, we must schedule these in before
3007          * we schedule in the task events.
3008          */
3009         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3010                 perf_cgroup_sched_in(prev, task);
3011
3012         for_each_task_context_nr(ctxn) {
3013                 ctx = task->perf_event_ctxp[ctxn];
3014                 if (likely(!ctx))
3015                         continue;
3016
3017                 perf_event_context_sched_in(ctx, task);
3018         }
3019
3020         if (atomic_read(&nr_switch_events))
3021                 perf_event_switch(task, prev, true);
3022
3023         if (__this_cpu_read(perf_sched_cb_usages))
3024                 perf_pmu_sched_task(prev, task, true);
3025 }
3026
3027 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3028 {
3029         u64 frequency = event->attr.sample_freq;
3030         u64 sec = NSEC_PER_SEC;
3031         u64 divisor, dividend;
3032
3033         int count_fls, nsec_fls, frequency_fls, sec_fls;
3034
3035         count_fls = fls64(count);
3036         nsec_fls = fls64(nsec);
3037         frequency_fls = fls64(frequency);
3038         sec_fls = 30;
3039
3040         /*
3041          * We got @count in @nsec, with a target of sample_freq HZ
3042          * the target period becomes:
3043          *
3044          *             @count * 10^9
3045          * period = -------------------
3046          *          @nsec * sample_freq
3047          *
3048          */
3049
3050         /*
3051          * Reduce accuracy by one bit such that @a and @b converge
3052          * to a similar magnitude.
3053          */
3054 #define REDUCE_FLS(a, b)                \
3055 do {                                    \
3056         if (a##_fls > b##_fls) {        \
3057                 a >>= 1;                \
3058                 a##_fls--;              \
3059         } else {                        \
3060                 b >>= 1;                \
3061                 b##_fls--;              \
3062         }                               \
3063 } while (0)
3064
3065         /*
3066          * Reduce accuracy until either term fits in a u64, then proceed with
3067          * the other, so that finally we can do a u64/u64 division.
3068          */
3069         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3070                 REDUCE_FLS(nsec, frequency);
3071                 REDUCE_FLS(sec, count);
3072         }
3073
3074         if (count_fls + sec_fls > 64) {
3075                 divisor = nsec * frequency;
3076
3077                 while (count_fls + sec_fls > 64) {
3078                         REDUCE_FLS(count, sec);
3079                         divisor >>= 1;
3080                 }
3081
3082                 dividend = count * sec;
3083         } else {
3084                 dividend = count * sec;
3085
3086                 while (nsec_fls + frequency_fls > 64) {
3087                         REDUCE_FLS(nsec, frequency);
3088                         dividend >>= 1;
3089                 }
3090
3091                 divisor = nsec * frequency;
3092         }
3093
3094         if (!divisor)
3095                 return dividend;
3096
3097         return div64_u64(dividend, divisor);
3098 }
3099
3100 static DEFINE_PER_CPU(int, perf_throttled_count);
3101 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3102
3103 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3104 {
3105         struct hw_perf_event *hwc = &event->hw;
3106         s64 period, sample_period;
3107         s64 delta;
3108
3109         period = perf_calculate_period(event, nsec, count);
3110
3111         delta = (s64)(period - hwc->sample_period);
3112         delta = (delta + 7) / 8; /* low pass filter */
3113
3114         sample_period = hwc->sample_period + delta;
3115
3116         if (!sample_period)
3117                 sample_period = 1;
3118
3119         hwc->sample_period = sample_period;
3120
3121         if (local64_read(&hwc->period_left) > 8*sample_period) {
3122                 if (disable)
3123                         event->pmu->stop(event, PERF_EF_UPDATE);
3124
3125                 local64_set(&hwc->period_left, 0);
3126
3127                 if (disable)
3128                         event->pmu->start(event, PERF_EF_RELOAD);
3129         }
3130 }
3131
3132 /*
3133  * combine freq adjustment with unthrottling to avoid two passes over the
3134  * events. At the same time, make sure, having freq events does not change
3135  * the rate of unthrottling as that would introduce bias.
3136  */
3137 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3138                                            int needs_unthr)
3139 {
3140         struct perf_event *event;
3141         struct hw_perf_event *hwc;
3142         u64 now, period = TICK_NSEC;
3143         s64 delta;
3144
3145         /*
3146          * only need to iterate over all events iff:
3147          * - context have events in frequency mode (needs freq adjust)
3148          * - there are events to unthrottle on this cpu
3149          */
3150         if (!(ctx->nr_freq || needs_unthr))
3151                 return;
3152
3153         raw_spin_lock(&ctx->lock);
3154         perf_pmu_disable(ctx->pmu);
3155
3156         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3157                 if (event->state != PERF_EVENT_STATE_ACTIVE)
3158                         continue;
3159
3160                 if (!event_filter_match(event))
3161                         continue;
3162
3163                 perf_pmu_disable(event->pmu);
3164
3165                 hwc = &event->hw;
3166
3167                 if (hwc->interrupts == MAX_INTERRUPTS) {
3168                         hwc->interrupts = 0;
3169                         perf_log_throttle(event, 1);
3170                         event->pmu->start(event, 0);
3171                 }
3172
3173                 if (!event->attr.freq || !event->attr.sample_freq)
3174                         goto next;
3175
3176                 /*
3177                  * stop the event and update event->count
3178                  */
3179                 event->pmu->stop(event, PERF_EF_UPDATE);
3180
3181                 now = local64_read(&event->count);
3182                 delta = now - hwc->freq_count_stamp;
3183                 hwc->freq_count_stamp = now;
3184
3185                 /*
3186                  * restart the event
3187                  * reload only if value has changed
3188                  * we have stopped the event so tell that
3189                  * to perf_adjust_period() to avoid stopping it
3190                  * twice.
3191                  */
3192                 if (delta > 0)
3193                         perf_adjust_period(event, period, delta, false);
3194
3195                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3196         next:
3197                 perf_pmu_enable(event->pmu);
3198         }
3199
3200         perf_pmu_enable(ctx->pmu);
3201         raw_spin_unlock(&ctx->lock);
3202 }
3203
3204 /*
3205  * Round-robin a context's events:
3206  */
3207 static void rotate_ctx(struct perf_event_context *ctx)
3208 {
3209         /*
3210          * Rotate the first entry last of non-pinned groups. Rotation might be
3211          * disabled by the inheritance code.
3212          */
3213         if (!ctx->rotate_disable)
3214                 list_rotate_left(&ctx->flexible_groups);
3215 }
3216
3217 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3218 {
3219         struct perf_event_context *ctx = NULL;
3220         int rotate = 0;
3221
3222         if (cpuctx->ctx.nr_events) {
3223                 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3224                         rotate = 1;
3225         }
3226
3227         ctx = cpuctx->task_ctx;
3228         if (ctx && ctx->nr_events) {
3229                 if (ctx->nr_events != ctx->nr_active)
3230                         rotate = 1;
3231         }
3232
3233         if (!rotate)
3234                 goto done;
3235
3236         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3237         perf_pmu_disable(cpuctx->ctx.pmu);
3238
3239         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3240         if (ctx)
3241                 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3242
3243         rotate_ctx(&cpuctx->ctx);
3244         if (ctx)
3245                 rotate_ctx(ctx);
3246
3247         perf_event_sched_in(cpuctx, ctx, current);
3248
3249         perf_pmu_enable(cpuctx->ctx.pmu);
3250         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3251 done:
3252
3253         return rotate;
3254 }
3255
3256 void perf_event_task_tick(void)
3257 {
3258         struct list_head *head = this_cpu_ptr(&active_ctx_list);
3259         struct perf_event_context *ctx, *tmp;
3260         int throttled;
3261
3262         WARN_ON(!irqs_disabled());
3263
3264         __this_cpu_inc(perf_throttled_seq);
3265         throttled = __this_cpu_xchg(perf_throttled_count, 0);
3266         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3267
3268         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3269                 perf_adjust_freq_unthr_context(ctx, throttled);
3270 }
3271
3272 static int event_enable_on_exec(struct perf_event *event,
3273                                 struct perf_event_context *ctx)
3274 {
3275         if (!event->attr.enable_on_exec)
3276                 return 0;
3277
3278         event->attr.enable_on_exec = 0;
3279         if (event->state >= PERF_EVENT_STATE_INACTIVE)
3280                 return 0;
3281
3282         __perf_event_mark_enabled(event);
3283
3284         return 1;
3285 }
3286
3287 /*
3288  * Enable all of a task's events that have been marked enable-on-exec.
3289  * This expects task == current.
3290  */
3291 static void perf_event_enable_on_exec(int ctxn)
3292 {
3293         struct perf_event_context *ctx, *clone_ctx = NULL;
3294         struct perf_cpu_context *cpuctx;
3295         struct perf_event *event;
3296         unsigned long flags;
3297         int enabled = 0;
3298
3299         local_irq_save(flags);
3300         ctx = current->perf_event_ctxp[ctxn];
3301         if (!ctx || !ctx->nr_events)
3302                 goto out;
3303
3304         cpuctx = __get_cpu_context(ctx);
3305         perf_ctx_lock(cpuctx, ctx);
3306         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3307         list_for_each_entry(event, &ctx->event_list, event_entry)
3308                 enabled |= event_enable_on_exec(event, ctx);
3309
3310         /*
3311          * Unclone and reschedule this context if we enabled any event.
3312          */
3313         if (enabled) {
3314                 clone_ctx = unclone_ctx(ctx);
3315                 ctx_resched(cpuctx, ctx);
3316         }
3317         perf_ctx_unlock(cpuctx, ctx);
3318
3319 out:
3320         local_irq_restore(flags);
3321
3322         if (clone_ctx)
3323                 put_ctx(clone_ctx);
3324 }
3325
3326 struct perf_read_data {
3327         struct perf_event *event;
3328         bool group;
3329         int ret;
3330 };
3331
3332 /*
3333  * Cross CPU call to read the hardware event
3334  */
3335 static void __perf_event_read(void *info)
3336 {
3337         struct perf_read_data *data = info;
3338         struct perf_event *sub, *event = data->event;
3339         struct perf_event_context *ctx = event->ctx;
3340         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3341         struct pmu *pmu = event->pmu;
3342
3343         /*
3344          * If this is a task context, we need to check whether it is
3345          * the current task context of this cpu.  If not it has been
3346          * scheduled out before the smp call arrived.  In that case
3347          * event->count would have been updated to a recent sample
3348          * when the event was scheduled out.
3349          */
3350         if (ctx->task && cpuctx->task_ctx != ctx)
3351                 return;
3352
3353         raw_spin_lock(&ctx->lock);
3354         if (ctx->is_active) {
3355                 update_context_time(ctx);
3356                 update_cgrp_time_from_event(event);
3357         }
3358
3359         update_event_times(event);
3360         if (event->state != PERF_EVENT_STATE_ACTIVE)
3361                 goto unlock;
3362
3363         if (!data->group) {
3364                 pmu->read(event);
3365                 data->ret = 0;
3366                 goto unlock;
3367         }
3368
3369         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3370
3371         pmu->read(event);
3372
3373         list_for_each_entry(sub, &event->sibling_list, group_entry) {
3374                 update_event_times(sub);
3375                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3376                         /*
3377                          * Use sibling's PMU rather than @event's since
3378                          * sibling could be on different (eg: software) PMU.
3379                          */
3380                         sub->pmu->read(sub);
3381                 }
3382         }
3383
3384         data->ret = pmu->commit_txn(pmu);
3385
3386 unlock:
3387         raw_spin_unlock(&ctx->lock);
3388 }
3389
3390 static inline u64 perf_event_count(struct perf_event *event)
3391 {
3392         if (event->pmu->count)
3393                 return event->pmu->count(event);
3394
3395         return __perf_event_count(event);
3396 }
3397
3398 /*
3399  * NMI-safe method to read a local event, that is an event that
3400  * is:
3401  *   - either for the current task, or for this CPU
3402  *   - does not have inherit set, for inherited task events
3403  *     will not be local and we cannot read them atomically
3404  *   - must not have a pmu::count method
3405  */
3406 u64 perf_event_read_local(struct perf_event *event)
3407 {
3408         unsigned long flags;
3409         u64 val;
3410
3411         /*
3412          * Disabling interrupts avoids all counter scheduling (context
3413          * switches, timer based rotation and IPIs).
3414          */
3415         local_irq_save(flags);
3416
3417         /* If this is a per-task event, it must be for current */
3418         WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3419                      event->hw.target != current);
3420
3421         /* If this is a per-CPU event, it must be for this CPU */
3422         WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3423                      event->cpu != smp_processor_id());
3424
3425         /*
3426          * It must not be an event with inherit set, we cannot read
3427          * all child counters from atomic context.
3428          */
3429         WARN_ON_ONCE(event->attr.inherit);
3430
3431         /*
3432          * It must not have a pmu::count method, those are not
3433          * NMI safe.
3434          */
3435         WARN_ON_ONCE(event->pmu->count);
3436
3437         /*
3438          * If the event is currently on this CPU, its either a per-task event,
3439          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3440          * oncpu == -1).
3441          */
3442         if (event->oncpu == smp_processor_id())
3443                 event->pmu->read(event);
3444
3445         val = local64_read(&event->count);
3446         local_irq_restore(flags);
3447
3448         return val;
3449 }
3450
3451 static int perf_event_read(struct perf_event *event, bool group)
3452 {
3453         int ret = 0;
3454
3455         /*
3456          * If event is enabled and currently active on a CPU, update the
3457          * value in the event structure:
3458          */
3459         if (event->state == PERF_EVENT_STATE_ACTIVE) {
3460                 struct perf_read_data data = {
3461                         .event = event,
3462                         .group = group,
3463                         .ret = 0,
3464                 };
3465                 smp_call_function_single(event->oncpu,
3466                                          __perf_event_read, &data, 1);
3467                 ret = data.ret;
3468         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3469                 struct perf_event_context *ctx = event->ctx;
3470                 unsigned long flags;
3471
3472                 raw_spin_lock_irqsave(&ctx->lock, flags);
3473                 /*
3474                  * may read while context is not active
3475                  * (e.g., thread is blocked), in that case
3476                  * we cannot update context time
3477                  */
3478                 if (ctx->is_active) {
3479                         update_context_time(ctx);
3480                         update_cgrp_time_from_event(event);
3481                 }
3482                 if (group)
3483                         update_group_times(event);
3484                 else
3485                         update_event_times(event);
3486                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3487         }
3488
3489         return ret;
3490 }
3491
3492 /*
3493  * Initialize the perf_event context in a task_struct:
3494  */
3495 static void __perf_event_init_context(struct perf_event_context *ctx)
3496 {
3497         raw_spin_lock_init(&ctx->lock);
3498         mutex_init(&ctx->mutex);
3499         INIT_LIST_HEAD(&ctx->active_ctx_list);
3500         INIT_LIST_HEAD(&ctx->pinned_groups);
3501         INIT_LIST_HEAD(&ctx->flexible_groups);
3502         INIT_LIST_HEAD(&ctx->event_list);
3503         atomic_set(&ctx->refcount, 1);
3504 }
3505
3506 static struct perf_event_context *
3507 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3508 {
3509         struct perf_event_context *ctx;
3510
3511         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3512         if (!ctx)
3513                 return NULL;
3514
3515         __perf_event_init_context(ctx);
3516         if (task) {
3517                 ctx->task = task;
3518                 get_task_struct(task);
3519         }
3520         ctx->pmu = pmu;
3521
3522         return ctx;
3523 }
3524
3525 static struct task_struct *
3526 find_lively_task_by_vpid(pid_t vpid)
3527 {
3528         struct task_struct *task;
3529
3530         rcu_read_lock();
3531         if (!vpid)
3532                 task = current;
3533         else
3534                 task = find_task_by_vpid(vpid);
3535         if (task)
3536                 get_task_struct(task);
3537         rcu_read_unlock();
3538
3539         if (!task)
3540                 return ERR_PTR(-ESRCH);
3541
3542         return task;
3543 }
3544
3545 /*
3546  * Returns a matching context with refcount and pincount.
3547  */
3548 static struct perf_event_context *
3549 find_get_context(struct pmu *pmu, struct task_struct *task,
3550                 struct perf_event *event)
3551 {
3552         struct perf_event_context *ctx, *clone_ctx = NULL;
3553         struct perf_cpu_context *cpuctx;
3554         void *task_ctx_data = NULL;
3555         unsigned long flags;
3556         int ctxn, err;
3557         int cpu = event->cpu;
3558
3559         if (!task) {
3560                 /* Must be root to operate on a CPU event: */
3561                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3562                         return ERR_PTR(-EACCES);
3563
3564                 /*
3565                  * We could be clever and allow to attach a event to an
3566                  * offline CPU and activate it when the CPU comes up, but
3567                  * that's for later.
3568                  */
3569                 if (!cpu_online(cpu))
3570                         return ERR_PTR(-ENODEV);
3571
3572                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3573                 ctx = &cpuctx->ctx;
3574                 get_ctx(ctx);
3575                 ++ctx->pin_count;
3576
3577                 return ctx;
3578         }
3579
3580         err = -EINVAL;
3581         ctxn = pmu->task_ctx_nr;
3582         if (ctxn < 0)
3583                 goto errout;
3584
3585         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3586                 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3587                 if (!task_ctx_data) {
3588                         err = -ENOMEM;
3589                         goto errout;
3590                 }
3591         }
3592
3593 retry:
3594         ctx = perf_lock_task_context(task, ctxn, &flags);
3595         if (ctx) {
3596                 clone_ctx = unclone_ctx(ctx);
3597                 ++ctx->pin_count;
3598
3599                 if (task_ctx_data && !ctx->task_ctx_data) {
3600                         ctx->task_ctx_data = task_ctx_data;
3601                         task_ctx_data = NULL;
3602                 }
3603                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3604
3605                 if (clone_ctx)
3606                         put_ctx(clone_ctx);
3607         } else {
3608                 ctx = alloc_perf_context(pmu, task);
3609                 err = -ENOMEM;
3610                 if (!ctx)
3611                         goto errout;
3612
3613                 if (task_ctx_data) {
3614                         ctx->task_ctx_data = task_ctx_data;
3615                         task_ctx_data = NULL;
3616                 }
3617
3618                 err = 0;
3619                 mutex_lock(&task->perf_event_mutex);
3620                 /*
3621                  * If it has already passed perf_event_exit_task().
3622                  * we must see PF_EXITING, it takes this mutex too.
3623                  */
3624                 if (task->flags & PF_EXITING)
3625                         err = -ESRCH;
3626                 else if (task->perf_event_ctxp[ctxn])
3627                         err = -EAGAIN;
3628                 else {
3629                         get_ctx(ctx);
3630                         ++ctx->pin_count;
3631                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3632                 }
3633                 mutex_unlock(&task->perf_event_mutex);
3634
3635                 if (unlikely(err)) {
3636                         put_ctx(ctx);
3637
3638                         if (err == -EAGAIN)
3639                                 goto retry;
3640                         goto errout;
3641                 }
3642         }
3643
3644         kfree(task_ctx_data);
3645         return ctx;
3646
3647 errout:
3648         kfree(task_ctx_data);
3649         return ERR_PTR(err);
3650 }
3651
3652 static void perf_event_free_filter(struct perf_event *event);
3653 static void perf_event_free_bpf_prog(struct perf_event *event);
3654
3655 static void free_event_rcu(struct rcu_head *head)
3656 {
3657         struct perf_event *event;
3658
3659         event = container_of(head, struct perf_event, rcu_head);
3660         if (event->ns)
3661                 put_pid_ns(event->ns);
3662         perf_event_free_filter(event);
3663         kfree(event);
3664 }
3665
3666 static void ring_buffer_attach(struct perf_event *event,
3667                                struct ring_buffer *rb);
3668
3669 static void detach_sb_event(struct perf_event *event)
3670 {
3671         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3672
3673         raw_spin_lock(&pel->lock);
3674         list_del_rcu(&event->sb_list);
3675         raw_spin_unlock(&pel->lock);
3676 }
3677
3678 static void unaccount_pmu_sb_event(struct perf_event *event)
3679 {
3680         if (event->parent)
3681                 return;
3682
3683         if (event->attach_state & PERF_ATTACH_TASK)
3684                 return;
3685
3686         detach_sb_event(event);
3687 }
3688
3689 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3690 {
3691         if (event->parent)
3692                 return;
3693
3694         if (is_cgroup_event(event))
3695                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3696 }
3697
3698 #ifdef CONFIG_NO_HZ_FULL
3699 static DEFINE_SPINLOCK(nr_freq_lock);
3700 #endif
3701
3702 static void unaccount_freq_event_nohz(void)
3703 {
3704 #ifdef CONFIG_NO_HZ_FULL
3705         spin_lock(&nr_freq_lock);
3706         if (atomic_dec_and_test(&nr_freq_events))
3707                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3708         spin_unlock(&nr_freq_lock);
3709 #endif
3710 }
3711
3712 static void unaccount_freq_event(void)
3713 {
3714         if (tick_nohz_full_enabled())
3715                 unaccount_freq_event_nohz();
3716         else
3717                 atomic_dec(&nr_freq_events);
3718 }
3719
3720 static void unaccount_event(struct perf_event *event)
3721 {
3722         bool dec = false;
3723
3724         if (event->parent)
3725                 return;
3726
3727         if (event->attach_state & PERF_ATTACH_TASK)
3728                 dec = true;
3729         if (event->attr.mmap || event->attr.mmap_data)
3730                 atomic_dec(&nr_mmap_events);
3731         if (event->attr.comm)
3732                 atomic_dec(&nr_comm_events);
3733         if (event->attr.task)
3734                 atomic_dec(&nr_task_events);
3735         if (event->attr.freq)
3736                 unaccount_freq_event();
3737         if (event->attr.context_switch) {
3738                 dec = true;
3739                 atomic_dec(&nr_switch_events);
3740         }
3741         if (is_cgroup_event(event))
3742                 dec = true;
3743         if (has_branch_stack(event))
3744                 dec = true;
3745
3746         if (dec) {
3747                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
3748                         schedule_delayed_work(&perf_sched_work, HZ);
3749         }
3750
3751         unaccount_event_cpu(event, event->cpu);
3752
3753         unaccount_pmu_sb_event(event);
3754 }
3755
3756 static void perf_sched_delayed(struct work_struct *work)
3757 {
3758         mutex_lock(&perf_sched_mutex);
3759         if (atomic_dec_and_test(&perf_sched_count))
3760                 static_branch_disable(&perf_sched_events);
3761         mutex_unlock(&perf_sched_mutex);
3762 }
3763
3764 /*
3765  * The following implement mutual exclusion of events on "exclusive" pmus
3766  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3767  * at a time, so we disallow creating events that might conflict, namely:
3768  *
3769  *  1) cpu-wide events in the presence of per-task events,
3770  *  2) per-task events in the presence of cpu-wide events,
3771  *  3) two matching events on the same context.
3772  *
3773  * The former two cases are handled in the allocation path (perf_event_alloc(),
3774  * _free_event()), the latter -- before the first perf_install_in_context().
3775  */
3776 static int exclusive_event_init(struct perf_event *event)
3777 {
3778         struct pmu *pmu = event->pmu;
3779
3780         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3781                 return 0;
3782
3783         /*
3784          * Prevent co-existence of per-task and cpu-wide events on the
3785          * same exclusive pmu.
3786          *
3787          * Negative pmu::exclusive_cnt means there are cpu-wide
3788          * events on this "exclusive" pmu, positive means there are
3789          * per-task events.
3790          *
3791          * Since this is called in perf_event_alloc() path, event::ctx
3792          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3793          * to mean "per-task event", because unlike other attach states it
3794          * never gets cleared.
3795          */
3796         if (event->attach_state & PERF_ATTACH_TASK) {
3797                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3798                         return -EBUSY;
3799         } else {
3800                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3801                         return -EBUSY;
3802         }
3803
3804         return 0;
3805 }
3806
3807 static void exclusive_event_destroy(struct perf_event *event)
3808 {
3809         struct pmu *pmu = event->pmu;
3810
3811         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3812                 return;
3813
3814         /* see comment in exclusive_event_init() */
3815         if (event->attach_state & PERF_ATTACH_TASK)
3816                 atomic_dec(&pmu->exclusive_cnt);
3817         else
3818                 atomic_inc(&pmu->exclusive_cnt);
3819 }
3820
3821 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3822 {
3823         if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3824             (e1->cpu == e2->cpu ||
3825              e1->cpu == -1 ||
3826              e2->cpu == -1))
3827                 return true;
3828         return false;
3829 }
3830
3831 /* Called under the same ctx::mutex as perf_install_in_context() */
3832 static bool exclusive_event_installable(struct perf_event *event,
3833                                         struct perf_event_context *ctx)
3834 {
3835         struct perf_event *iter_event;
3836         struct pmu *pmu = event->pmu;
3837
3838         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3839                 return true;
3840
3841         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3842                 if (exclusive_event_match(iter_event, event))
3843                         return false;
3844         }
3845
3846         return true;
3847 }
3848
3849 static void perf_addr_filters_splice(struct perf_event *event,
3850                                        struct list_head *head);
3851
3852 static void _free_event(struct perf_event *event)
3853 {
3854         irq_work_sync(&event->pending);
3855
3856         unaccount_event(event);
3857
3858         if (event->rb) {
3859                 /*
3860                  * Can happen when we close an event with re-directed output.
3861                  *
3862                  * Since we have a 0 refcount, perf_mmap_close() will skip
3863                  * over us; possibly making our ring_buffer_put() the last.
3864                  */
3865                 mutex_lock(&event->mmap_mutex);
3866                 ring_buffer_attach(event, NULL);
3867                 mutex_unlock(&event->mmap_mutex);
3868         }
3869
3870         if (is_cgroup_event(event))
3871                 perf_detach_cgroup(event);
3872
3873         if (!event->parent) {
3874                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3875                         put_callchain_buffers();
3876         }
3877
3878         perf_event_free_bpf_prog(event);
3879         perf_addr_filters_splice(event, NULL);
3880         kfree(event->addr_filters_offs);
3881
3882         if (event->destroy)
3883                 event->destroy(event);
3884
3885         if (event->ctx)
3886                 put_ctx(event->ctx);
3887
3888         if (event->pmu) {
3889                 exclusive_event_destroy(event);
3890                 module_put(event->pmu->module);
3891         }
3892
3893         call_rcu(&event->rcu_head, free_event_rcu);
3894 }
3895
3896 /*
3897  * Used to free events which have a known refcount of 1, such as in error paths
3898  * where the event isn't exposed yet and inherited events.
3899  */
3900 static void free_event(struct perf_event *event)
3901 {
3902         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3903                                 "unexpected event refcount: %ld; ptr=%p\n",
3904                                 atomic_long_read(&event->refcount), event)) {
3905                 /* leak to avoid use-after-free */
3906                 return;
3907         }
3908
3909         _free_event(event);
3910 }
3911
3912 /*
3913  * Remove user event from the owner task.
3914  */
3915 static void perf_remove_from_owner(struct perf_event *event)
3916 {
3917         struct task_struct *owner;
3918
3919         rcu_read_lock();
3920         /*
3921          * Matches the smp_store_release() in perf_event_exit_task(). If we
3922          * observe !owner it means the list deletion is complete and we can
3923          * indeed free this event, otherwise we need to serialize on
3924          * owner->perf_event_mutex.
3925          */
3926         owner = lockless_dereference(event->owner);
3927         if (owner) {
3928                 /*
3929                  * Since delayed_put_task_struct() also drops the last
3930                  * task reference we can safely take a new reference
3931                  * while holding the rcu_read_lock().
3932                  */
3933                 get_task_struct(owner);
3934         }
3935         rcu_read_unlock();
3936
3937         if (owner) {
3938                 /*
3939                  * If we're here through perf_event_exit_task() we're already
3940                  * holding ctx->mutex which would be an inversion wrt. the
3941                  * normal lock order.
3942                  *
3943                  * However we can safely take this lock because its the child
3944                  * ctx->mutex.
3945                  */
3946                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3947
3948                 /*
3949                  * We have to re-check the event->owner field, if it is cleared
3950                  * we raced with perf_event_exit_task(), acquiring the mutex
3951                  * ensured they're done, and we can proceed with freeing the
3952                  * event.
3953                  */
3954                 if (event->owner) {
3955                         list_del_init(&event->owner_entry);
3956                         smp_store_release(&event->owner, NULL);
3957                 }
3958                 mutex_unlock(&owner->perf_event_mutex);
3959                 put_task_struct(owner);
3960         }
3961 }
3962
3963 static void put_event(struct perf_event *event)
3964 {
3965         if (!atomic_long_dec_and_test(&event->refcount))
3966                 return;
3967
3968         _free_event(event);
3969 }
3970
3971 /*
3972  * Kill an event dead; while event:refcount will preserve the event
3973  * object, it will not preserve its functionality. Once the last 'user'
3974  * gives up the object, we'll destroy the thing.
3975  */
3976 int perf_event_release_kernel(struct perf_event *event)
3977 {
3978         struct perf_event_context *ctx = event->ctx;
3979         struct perf_event *child, *tmp;
3980
3981         /*
3982          * If we got here through err_file: fput(event_file); we will not have
3983          * attached to a context yet.
3984          */
3985         if (!ctx) {
3986                 WARN_ON_ONCE(event->attach_state &
3987                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
3988                 goto no_ctx;
3989         }
3990
3991         if (!is_kernel_event(event))
3992                 perf_remove_from_owner(event);
3993
3994         ctx = perf_event_ctx_lock(event);
3995         WARN_ON_ONCE(ctx->parent_ctx);
3996         perf_remove_from_context(event, DETACH_GROUP);
3997
3998         raw_spin_lock_irq(&ctx->lock);
3999         /*
4000          * Mark this even as STATE_DEAD, there is no external reference to it
4001          * anymore.
4002          *
4003          * Anybody acquiring event->child_mutex after the below loop _must_
4004          * also see this, most importantly inherit_event() which will avoid
4005          * placing more children on the list.
4006          *
4007          * Thus this guarantees that we will in fact observe and kill _ALL_
4008          * child events.
4009          */
4010         event->state = PERF_EVENT_STATE_DEAD;
4011         raw_spin_unlock_irq(&ctx->lock);
4012
4013         perf_event_ctx_unlock(event, ctx);
4014
4015 again:
4016         mutex_lock(&event->child_mutex);
4017         list_for_each_entry(child, &event->child_list, child_list) {
4018
4019                 /*
4020                  * Cannot change, child events are not migrated, see the
4021                  * comment with perf_event_ctx_lock_nested().
4022                  */
4023                 ctx = lockless_dereference(child->ctx);
4024                 /*
4025                  * Since child_mutex nests inside ctx::mutex, we must jump
4026                  * through hoops. We start by grabbing a reference on the ctx.
4027                  *
4028                  * Since the event cannot get freed while we hold the
4029                  * child_mutex, the context must also exist and have a !0
4030                  * reference count.
4031                  */
4032                 get_ctx(ctx);
4033
4034                 /*
4035                  * Now that we have a ctx ref, we can drop child_mutex, and
4036                  * acquire ctx::mutex without fear of it going away. Then we
4037                  * can re-acquire child_mutex.
4038                  */
4039                 mutex_unlock(&event->child_mutex);
4040                 mutex_lock(&ctx->mutex);
4041                 mutex_lock(&event->child_mutex);
4042
4043                 /*
4044                  * Now that we hold ctx::mutex and child_mutex, revalidate our
4045                  * state, if child is still the first entry, it didn't get freed
4046                  * and we can continue doing so.
4047                  */
4048                 tmp = list_first_entry_or_null(&event->child_list,
4049                                                struct perf_event, child_list);
4050                 if (tmp == child) {
4051                         perf_remove_from_context(child, DETACH_GROUP);
4052                         list_del(&child->child_list);
4053                         free_event(child);
4054                         /*
4055                          * This matches the refcount bump in inherit_event();
4056                          * this can't be the last reference.
4057                          */
4058                         put_event(event);
4059                 }
4060
4061                 mutex_unlock(&event->child_mutex);
4062                 mutex_unlock(&ctx->mutex);
4063                 put_ctx(ctx);
4064                 goto again;
4065         }
4066         mutex_unlock(&event->child_mutex);
4067
4068 no_ctx:
4069         put_event(event); /* Must be the 'last' reference */
4070         return 0;
4071 }
4072 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4073
4074 /*
4075  * Called when the last reference to the file is gone.
4076  */
4077 static int perf_release(struct inode *inode, struct file *file)
4078 {
4079         perf_event_release_kernel(file->private_data);
4080         return 0;
4081 }
4082
4083 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4084 {
4085         struct perf_event *child;
4086         u64 total = 0;
4087
4088         *enabled = 0;
4089         *running = 0;
4090
4091         mutex_lock(&event->child_mutex);
4092
4093         (void)perf_event_read(event, false);
4094         total += perf_event_count(event);
4095
4096         *enabled += event->total_time_enabled +
4097                         atomic64_read(&event->child_total_time_enabled);
4098         *running += event->total_time_running +
4099                         atomic64_read(&event->child_total_time_running);
4100
4101         list_for_each_entry(child, &event->child_list, child_list) {
4102                 (void)perf_event_read(child, false);
4103                 total += perf_event_count(child);
4104                 *enabled += child->total_time_enabled;
4105                 *running += child->total_time_running;
4106         }
4107         mutex_unlock(&event->child_mutex);
4108
4109         return total;
4110 }
4111 EXPORT_SYMBOL_GPL(perf_event_read_value);
4112
4113 static int __perf_read_group_add(struct perf_event *leader,
4114                                         u64 read_format, u64 *values)
4115 {
4116         struct perf_event *sub;
4117         int n = 1; /* skip @nr */
4118         int ret;
4119
4120         ret = perf_event_read(leader, true);
4121         if (ret)
4122                 return ret;
4123
4124         /*
4125          * Since we co-schedule groups, {enabled,running} times of siblings
4126          * will be identical to those of the leader, so we only publish one
4127          * set.
4128          */
4129         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4130                 values[n++] += leader->total_time_enabled +
4131                         atomic64_read(&leader->child_total_time_enabled);
4132         }
4133
4134         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4135                 values[n++] += leader->total_time_running +
4136                         atomic64_read(&leader->child_total_time_running);
4137         }
4138
4139         /*
4140          * Write {count,id} tuples for every sibling.
4141          */
4142         values[n++] += perf_event_count(leader);
4143         if (read_format & PERF_FORMAT_ID)
4144                 values[n++] = primary_event_id(leader);
4145
4146         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4147                 values[n++] += perf_event_count(sub);
4148                 if (read_format & PERF_FORMAT_ID)
4149                         values[n++] = primary_event_id(sub);
4150         }
4151
4152         return 0;
4153 }
4154
4155 static int perf_read_group(struct perf_event *event,
4156                                    u64 read_format, char __user *buf)
4157 {
4158         struct perf_event *leader = event->group_leader, *child;
4159         struct perf_event_context *ctx = leader->ctx;
4160         int ret;
4161         u64 *values;
4162
4163         lockdep_assert_held(&ctx->mutex);
4164
4165         values = kzalloc(event->read_size, GFP_KERNEL);
4166         if (!values)
4167                 return -ENOMEM;
4168
4169         values[0] = 1 + leader->nr_siblings;
4170
4171         /*
4172          * By locking the child_mutex of the leader we effectively
4173          * lock the child list of all siblings.. XXX explain how.
4174          */
4175         mutex_lock(&leader->child_mutex);
4176
4177         ret = __perf_read_group_add(leader, read_format, values);
4178         if (ret)
4179                 goto unlock;
4180
4181         list_for_each_entry(child, &leader->child_list, child_list) {
4182                 ret = __perf_read_group_add(child, read_format, values);
4183                 if (ret)
4184                         goto unlock;
4185         }
4186
4187         mutex_unlock(&leader->child_mutex);
4188
4189         ret = event->read_size;
4190         if (copy_to_user(buf, values, event->read_size))
4191                 ret = -EFAULT;
4192         goto out;
4193
4194 unlock:
4195         mutex_unlock(&leader->child_mutex);
4196 out:
4197         kfree(values);
4198         return ret;
4199 }
4200
4201 static int perf_read_one(struct perf_event *event,
4202                                  u64 read_format, char __user *buf)
4203 {
4204         u64 enabled, running;
4205         u64 values[4];
4206         int n = 0;
4207
4208         values[n++] = perf_event_read_value(event, &enabled, &running);
4209         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4210                 values[n++] = enabled;
4211         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4212                 values[n++] = running;
4213         if (read_format & PERF_FORMAT_ID)
4214                 values[n++] = primary_event_id(event);
4215
4216         if (copy_to_user(buf, values, n * sizeof(u64)))
4217                 return -EFAULT;
4218
4219         return n * sizeof(u64);
4220 }
4221
4222 static bool is_event_hup(struct perf_event *event)
4223 {
4224         bool no_children;
4225
4226         if (event->state > PERF_EVENT_STATE_EXIT)
4227                 return false;
4228
4229         mutex_lock(&event->child_mutex);
4230         no_children = list_empty(&event->child_list);
4231         mutex_unlock(&event->child_mutex);
4232         return no_children;
4233 }
4234
4235 /*
4236  * Read the performance event - simple non blocking version for now
4237  */
4238 static ssize_t
4239 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4240 {
4241         u64 read_format = event->attr.read_format;
4242         int ret;
4243
4244         /*
4245          * Return end-of-file for a read on a event that is in
4246          * error state (i.e. because it was pinned but it couldn't be
4247          * scheduled on to the CPU at some point).
4248          */
4249         if (event->state == PERF_EVENT_STATE_ERROR)
4250                 return 0;
4251
4252         if (count < event->read_size)
4253                 return -ENOSPC;
4254
4255         WARN_ON_ONCE(event->ctx->parent_ctx);
4256         if (read_format & PERF_FORMAT_GROUP)
4257                 ret = perf_read_group(event, read_format, buf);
4258         else
4259                 ret = perf_read_one(event, read_format, buf);
4260
4261         return ret;
4262 }
4263
4264 static ssize_t
4265 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4266 {
4267         struct perf_event *event = file->private_data;
4268         struct perf_event_context *ctx;
4269         int ret;
4270
4271         ctx = perf_event_ctx_lock(event);
4272         ret = __perf_read(event, buf, count);
4273         perf_event_ctx_unlock(event, ctx);
4274
4275         return ret;
4276 }
4277
4278 static unsigned int perf_poll(struct file *file, poll_table *wait)
4279 {
4280         struct perf_event *event = file->private_data;
4281         struct ring_buffer *rb;
4282         unsigned int events = POLLHUP;
4283
4284         poll_wait(file, &event->waitq, wait);
4285
4286         if (is_event_hup(event))
4287                 return events;
4288
4289         /*
4290          * Pin the event->rb by taking event->mmap_mutex; otherwise
4291          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4292          */
4293         mutex_lock(&event->mmap_mutex);
4294         rb = event->rb;
4295         if (rb)
4296                 events = atomic_xchg(&rb->poll, 0);
4297         mutex_unlock(&event->mmap_mutex);
4298         return events;
4299 }
4300
4301 static void _perf_event_reset(struct perf_event *event)
4302 {
4303         (void)perf_event_read(event, false);
4304         local64_set(&event->count, 0);
4305         perf_event_update_userpage(event);
4306 }
4307
4308 /*
4309  * Holding the top-level event's child_mutex means that any
4310  * descendant process that has inherited this event will block
4311  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4312  * task existence requirements of perf_event_enable/disable.
4313  */
4314 static void perf_event_for_each_child(struct perf_event *event,
4315                                         void (*func)(struct perf_event *))
4316 {
4317         struct perf_event *child;
4318
4319         WARN_ON_ONCE(event->ctx->parent_ctx);
4320
4321         mutex_lock(&event->child_mutex);
4322         func(event);
4323         list_for_each_entry(child, &event->child_list, child_list)
4324                 func(child);
4325         mutex_unlock(&event->child_mutex);
4326 }
4327
4328 static void perf_event_for_each(struct perf_event *event,
4329                                   void (*func)(struct perf_event *))
4330 {
4331         struct perf_event_context *ctx = event->ctx;
4332         struct perf_event *sibling;
4333
4334         lockdep_assert_held(&ctx->mutex);
4335
4336         event = event->group_leader;
4337
4338         perf_event_for_each_child(event, func);
4339         list_for_each_entry(sibling, &event->sibling_list, group_entry)
4340                 perf_event_for_each_child(sibling, func);
4341 }
4342
4343 static void __perf_event_period(struct perf_event *event,
4344                                 struct perf_cpu_context *cpuctx,
4345                                 struct perf_event_context *ctx,
4346                                 void *info)
4347 {
4348         u64 value = *((u64 *)info);
4349         bool active;
4350
4351         if (event->attr.freq) {
4352                 event->attr.sample_freq = value;
4353         } else {
4354                 event->attr.sample_period = value;
4355                 event->hw.sample_period = value;
4356         }
4357
4358         active = (event->state == PERF_EVENT_STATE_ACTIVE);
4359         if (active) {
4360                 perf_pmu_disable(ctx->pmu);
4361                 /*
4362                  * We could be throttled; unthrottle now to avoid the tick
4363                  * trying to unthrottle while we already re-started the event.
4364                  */
4365                 if (event->hw.interrupts == MAX_INTERRUPTS) {
4366                         event->hw.interrupts = 0;
4367                         perf_log_throttle(event, 1);
4368                 }
4369                 event->pmu->stop(event, PERF_EF_UPDATE);
4370         }
4371
4372         local64_set(&event->hw.period_left, 0);
4373
4374         if (active) {
4375                 event->pmu->start(event, PERF_EF_RELOAD);
4376                 perf_pmu_enable(ctx->pmu);
4377         }
4378 }
4379
4380 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4381 {
4382         u64 value;
4383
4384         if (!is_sampling_event(event))
4385                 return -EINVAL;
4386
4387         if (copy_from_user(&value, arg, sizeof(value)))
4388                 return -EFAULT;
4389
4390         if (!value)
4391                 return -EINVAL;
4392
4393         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4394                 return -EINVAL;
4395
4396         event_function_call(event, __perf_event_period, &value);
4397
4398         return 0;
4399 }
4400
4401 static const struct file_operations perf_fops;
4402
4403 static inline int perf_fget_light(int fd, struct fd *p)
4404 {
4405         struct fd f = fdget(fd);
4406         if (!f.file)
4407                 return -EBADF;
4408
4409         if (f.file->f_op != &perf_fops) {
4410                 fdput(f);
4411                 return -EBADF;
4412         }
4413         *p = f;
4414         return 0;
4415 }
4416
4417 static int perf_event_set_output(struct perf_event *event,
4418                                  struct perf_event *output_event);
4419 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4420 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4421
4422 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4423 {
4424         void (*func)(struct perf_event *);
4425         u32 flags = arg;
4426
4427         switch (cmd) {
4428         case PERF_EVENT_IOC_ENABLE:
4429                 func = _perf_event_enable;
4430                 break;
4431         case PERF_EVENT_IOC_DISABLE:
4432                 func = _perf_event_disable;
4433                 break;
4434         case PERF_EVENT_IOC_RESET:
4435                 func = _perf_event_reset;
4436                 break;
4437
4438         case PERF_EVENT_IOC_REFRESH:
4439                 return _perf_event_refresh(event, arg);
4440
4441         case PERF_EVENT_IOC_PERIOD:
4442                 return perf_event_period(event, (u64 __user *)arg);
4443
4444         case PERF_EVENT_IOC_ID:
4445         {
4446                 u64 id = primary_event_id(event);
4447
4448                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4449                         return -EFAULT;
4450                 return 0;
4451         }
4452
4453         case PERF_EVENT_IOC_SET_OUTPUT:
4454         {
4455                 int ret;
4456                 if (arg != -1) {
4457                         struct perf_event *output_event;
4458                         struct fd output;
4459                         ret = perf_fget_light(arg, &output);
4460                         if (ret)
4461                                 return ret;
4462                         output_event = output.file->private_data;
4463                         ret = perf_event_set_output(event, output_event);
4464                         fdput(output);
4465                 } else {
4466                         ret = perf_event_set_output(event, NULL);
4467                 }
4468                 return ret;
4469         }
4470
4471         case PERF_EVENT_IOC_SET_FILTER:
4472                 return perf_event_set_filter(event, (void __user *)arg);
4473
4474         case PERF_EVENT_IOC_SET_BPF:
4475                 return perf_event_set_bpf_prog(event, arg);
4476
4477         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4478                 struct ring_buffer *rb;
4479
4480                 rcu_read_lock();
4481                 rb = rcu_dereference(event->rb);
4482                 if (!rb || !rb->nr_pages) {
4483                         rcu_read_unlock();
4484                         return -EINVAL;
4485                 }
4486                 rb_toggle_paused(rb, !!arg);
4487                 rcu_read_unlock();
4488                 return 0;
4489         }
4490         default:
4491                 return -ENOTTY;
4492         }
4493
4494         if (flags & PERF_IOC_FLAG_GROUP)
4495                 perf_event_for_each(event, func);
4496         else
4497                 perf_event_for_each_child(event, func);
4498
4499         return 0;
4500 }
4501
4502 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4503 {
4504         struct perf_event *event = file->private_data;
4505         struct perf_event_context *ctx;
4506         long ret;
4507
4508         ctx = perf_event_ctx_lock(event);
4509         ret = _perf_ioctl(event, cmd, arg);
4510         perf_event_ctx_unlock(event, ctx);
4511
4512         return ret;
4513 }
4514
4515 #ifdef CONFIG_COMPAT
4516 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4517                                 unsigned long arg)
4518 {
4519         switch (_IOC_NR(cmd)) {
4520         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4521         case _IOC_NR(PERF_EVENT_IOC_ID):
4522                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4523                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4524                         cmd &= ~IOCSIZE_MASK;
4525                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4526                 }
4527                 break;
4528         }
4529         return perf_ioctl(file, cmd, arg);
4530 }
4531 #else
4532 # define perf_compat_ioctl NULL
4533 #endif
4534
4535 int perf_event_task_enable(void)
4536 {
4537         struct perf_event_context *ctx;
4538         struct perf_event *event;
4539
4540         mutex_lock(&current->perf_event_mutex);
4541         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4542                 ctx = perf_event_ctx_lock(event);
4543                 perf_event_for_each_child(event, _perf_event_enable);
4544                 perf_event_ctx_unlock(event, ctx);
4545         }
4546         mutex_unlock(&current->perf_event_mutex);
4547
4548         return 0;
4549 }
4550
4551 int perf_event_task_disable(void)
4552 {
4553         struct perf_event_context *ctx;
4554         struct perf_event *event;
4555
4556         mutex_lock(&current->perf_event_mutex);
4557         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4558                 ctx = perf_event_ctx_lock(event);
4559                 perf_event_for_each_child(event, _perf_event_disable);
4560                 perf_event_ctx_unlock(event, ctx);
4561         }
4562         mutex_unlock(&current->perf_event_mutex);
4563
4564         return 0;
4565 }
4566
4567 static int perf_event_index(struct perf_event *event)
4568 {
4569         if (event->hw.state & PERF_HES_STOPPED)
4570                 return 0;
4571
4572         if (event->state != PERF_EVENT_STATE_ACTIVE)
4573                 return 0;
4574
4575         return event->pmu->event_idx(event);
4576 }
4577
4578 static void calc_timer_values(struct perf_event *event,
4579                                 u64 *now,
4580                                 u64 *enabled,
4581                                 u64 *running)
4582 {
4583         u64 ctx_time;
4584
4585         *now = perf_clock();
4586         ctx_time = event->shadow_ctx_time + *now;
4587         *enabled = ctx_time - event->tstamp_enabled;
4588         *running = ctx_time - event->tstamp_running;
4589 }
4590
4591 static void perf_event_init_userpage(struct perf_event *event)
4592 {
4593         struct perf_event_mmap_page *userpg;
4594         struct ring_buffer *rb;
4595
4596         rcu_read_lock();
4597         rb = rcu_dereference(event->rb);
4598         if (!rb)
4599                 goto unlock;
4600
4601         userpg = rb->user_page;
4602
4603         /* Allow new userspace to detect that bit 0 is deprecated */
4604         userpg->cap_bit0_is_deprecated = 1;
4605         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4606         userpg->data_offset = PAGE_SIZE;
4607         userpg->data_size = perf_data_size(rb);
4608
4609 unlock:
4610         rcu_read_unlock();
4611 }
4612
4613 void __weak arch_perf_update_userpage(
4614         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4615 {
4616 }
4617
4618 /*
4619  * Callers need to ensure there can be no nesting of this function, otherwise
4620  * the seqlock logic goes bad. We can not serialize this because the arch
4621  * code calls this from NMI context.
4622  */
4623 void perf_event_update_userpage(struct perf_event *event)
4624 {
4625         struct perf_event_mmap_page *userpg;
4626         struct ring_buffer *rb;
4627         u64 enabled, running, now;
4628
4629         rcu_read_lock();
4630         rb = rcu_dereference(event->rb);
4631         if (!rb)
4632                 goto unlock;
4633
4634         /*
4635          * compute total_time_enabled, total_time_running
4636          * based on snapshot values taken when the event
4637          * was last scheduled in.
4638          *
4639          * we cannot simply called update_context_time()
4640          * because of locking issue as we can be called in
4641          * NMI context
4642          */
4643         calc_timer_values(event, &now, &enabled, &running);
4644
4645         userpg = rb->user_page;
4646         /*
4647          * Disable preemption so as to not let the corresponding user-space
4648          * spin too long if we get preempted.
4649          */
4650         preempt_disable();
4651         ++userpg->lock;
4652         barrier();
4653         userpg->index = perf_event_index(event);
4654         userpg->offset = perf_event_count(event);
4655         if (userpg->index)
4656                 userpg->offset -= local64_read(&event->hw.prev_count);
4657
4658         userpg->time_enabled = enabled +
4659                         atomic64_read(&event->child_total_time_enabled);
4660
4661         userpg->time_running = running +
4662                         atomic64_read(&event->child_total_time_running);
4663
4664         arch_perf_update_userpage(event, userpg, now);
4665
4666         barrier();
4667         ++userpg->lock;
4668         preempt_enable();
4669 unlock:
4670         rcu_read_unlock();
4671 }
4672
4673 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4674 {
4675         struct perf_event *event = vma->vm_file->private_data;
4676         struct ring_buffer *rb;
4677         int ret = VM_FAULT_SIGBUS;
4678
4679         if (vmf->flags & FAULT_FLAG_MKWRITE) {
4680                 if (vmf->pgoff == 0)
4681                         ret = 0;
4682                 return ret;
4683         }
4684
4685         rcu_read_lock();
4686         rb = rcu_dereference(event->rb);
4687         if (!rb)
4688                 goto unlock;
4689
4690         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4691                 goto unlock;
4692
4693         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4694         if (!vmf->page)
4695                 goto unlock;
4696
4697         get_page(vmf->page);
4698         vmf->page->mapping = vma->vm_file->f_mapping;
4699         vmf->page->index   = vmf->pgoff;
4700
4701         ret = 0;
4702 unlock:
4703         rcu_read_unlock();
4704
4705         return ret;
4706 }
4707
4708 static void ring_buffer_attach(struct perf_event *event,
4709                                struct ring_buffer *rb)
4710 {
4711         struct ring_buffer *old_rb = NULL;
4712         unsigned long flags;
4713
4714         if (event->rb) {
4715                 /*
4716                  * Should be impossible, we set this when removing
4717                  * event->rb_entry and wait/clear when adding event->rb_entry.
4718                  */
4719                 WARN_ON_ONCE(event->rcu_pending);
4720
4721                 old_rb = event->rb;
4722                 spin_lock_irqsave(&old_rb->event_lock, flags);
4723                 list_del_rcu(&event->rb_entry);
4724                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4725
4726                 event->rcu_batches = get_state_synchronize_rcu();
4727                 event->rcu_pending = 1;
4728         }
4729
4730         if (rb) {
4731                 if (event->rcu_pending) {
4732                         cond_synchronize_rcu(event->rcu_batches);
4733                         event->rcu_pending = 0;
4734                 }
4735
4736                 spin_lock_irqsave(&rb->event_lock, flags);
4737                 list_add_rcu(&event->rb_entry, &rb->event_list);
4738                 spin_unlock_irqrestore(&rb->event_lock, flags);
4739         }
4740
4741         rcu_assign_pointer(event->rb, rb);
4742
4743         if (old_rb) {
4744                 ring_buffer_put(old_rb);
4745                 /*
4746                  * Since we detached before setting the new rb, so that we
4747                  * could attach the new rb, we could have missed a wakeup.
4748                  * Provide it now.
4749                  */
4750                 wake_up_all(&event->waitq);
4751         }
4752 }
4753
4754 static void ring_buffer_wakeup(struct perf_event *event)
4755 {
4756         struct ring_buffer *rb;
4757
4758         rcu_read_lock();
4759         rb = rcu_dereference(event->rb);
4760         if (rb) {
4761                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4762                         wake_up_all(&event->waitq);
4763         }
4764         rcu_read_unlock();
4765 }
4766
4767 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4768 {
4769         struct ring_buffer *rb;
4770
4771         rcu_read_lock();
4772         rb = rcu_dereference(event->rb);
4773         if (rb) {
4774                 if (!atomic_inc_not_zero(&rb->refcount))
4775                         rb = NULL;
4776         }
4777         rcu_read_unlock();
4778
4779         return rb;
4780 }
4781
4782 void ring_buffer_put(struct ring_buffer *rb)
4783 {
4784         if (!atomic_dec_and_test(&rb->refcount))
4785                 return;
4786
4787         WARN_ON_ONCE(!list_empty(&rb->event_list));
4788
4789         call_rcu(&rb->rcu_head, rb_free_rcu);
4790 }
4791
4792 static void perf_mmap_open(struct vm_area_struct *vma)
4793 {
4794         struct perf_event *event = vma->vm_file->private_data;
4795
4796         atomic_inc(&event->mmap_count);
4797         atomic_inc(&event->rb->mmap_count);
4798
4799         if (vma->vm_pgoff)
4800                 atomic_inc(&event->rb->aux_mmap_count);
4801
4802         if (event->pmu->event_mapped)
4803                 event->pmu->event_mapped(event);
4804 }
4805
4806 static void perf_pmu_output_stop(struct perf_event *event);
4807
4808 /*
4809  * A buffer can be mmap()ed multiple times; either directly through the same
4810  * event, or through other events by use of perf_event_set_output().
4811  *
4812  * In order to undo the VM accounting done by perf_mmap() we need to destroy
4813  * the buffer here, where we still have a VM context. This means we need
4814  * to detach all events redirecting to us.
4815  */
4816 static void perf_mmap_close(struct vm_area_struct *vma)
4817 {
4818         struct perf_event *event = vma->vm_file->private_data;
4819
4820         struct ring_buffer *rb = ring_buffer_get(event);
4821         struct user_struct *mmap_user = rb->mmap_user;
4822         int mmap_locked = rb->mmap_locked;
4823         unsigned long size = perf_data_size(rb);
4824
4825         if (event->pmu->event_unmapped)
4826                 event->pmu->event_unmapped(event);
4827
4828         /*
4829          * rb->aux_mmap_count will always drop before rb->mmap_count and
4830          * event->mmap_count, so it is ok to use event->mmap_mutex to
4831          * serialize with perf_mmap here.
4832          */
4833         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4834             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4835                 /*
4836                  * Stop all AUX events that are writing to this buffer,
4837                  * so that we can free its AUX pages and corresponding PMU
4838                  * data. Note that after rb::aux_mmap_count dropped to zero,
4839                  * they won't start any more (see perf_aux_output_begin()).
4840                  */
4841                 perf_pmu_output_stop(event);
4842
4843                 /* now it's safe to free the pages */
4844                 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4845                 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4846
4847                 /* this has to be the last one */
4848                 rb_free_aux(rb);
4849                 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
4850
4851                 mutex_unlock(&event->mmap_mutex);
4852         }
4853
4854         atomic_dec(&rb->mmap_count);
4855
4856         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4857                 goto out_put;
4858
4859         ring_buffer_attach(event, NULL);
4860         mutex_unlock(&event->mmap_mutex);
4861
4862         /* If there's still other mmap()s of this buffer, we're done. */
4863         if (atomic_read(&rb->mmap_count))
4864                 goto out_put;
4865
4866         /*
4867          * No other mmap()s, detach from all other events that might redirect
4868          * into the now unreachable buffer. Somewhat complicated by the
4869          * fact that rb::event_lock otherwise nests inside mmap_mutex.
4870          */
4871 again:
4872         rcu_read_lock();
4873         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4874                 if (!atomic_long_inc_not_zero(&event->refcount)) {
4875                         /*
4876                          * This event is en-route to free_event() which will
4877                          * detach it and remove it from the list.
4878                          */
4879                         continue;
4880                 }
4881                 rcu_read_unlock();
4882
4883                 mutex_lock(&event->mmap_mutex);
4884                 /*
4885                  * Check we didn't race with perf_event_set_output() which can
4886                  * swizzle the rb from under us while we were waiting to
4887                  * acquire mmap_mutex.
4888                  *
4889                  * If we find a different rb; ignore this event, a next
4890                  * iteration will no longer find it on the list. We have to
4891                  * still restart the iteration to make sure we're not now
4892                  * iterating the wrong list.
4893                  */
4894                 if (event->rb == rb)
4895                         ring_buffer_attach(event, NULL);
4896
4897                 mutex_unlock(&event->mmap_mutex);
4898                 put_event(event);
4899
4900                 /*
4901                  * Restart the iteration; either we're on the wrong list or
4902                  * destroyed its integrity by doing a deletion.
4903                  */
4904                 goto again;
4905         }
4906         rcu_read_unlock();
4907
4908         /*
4909          * It could be there's still a few 0-ref events on the list; they'll
4910          * get cleaned up by free_event() -- they'll also still have their
4911          * ref on the rb and will free it whenever they are done with it.
4912          *
4913          * Aside from that, this buffer is 'fully' detached and unmapped,
4914          * undo the VM accounting.
4915          */
4916
4917         atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4918         vma->vm_mm->pinned_vm -= mmap_locked;
4919         free_uid(mmap_user);
4920
4921 out_put:
4922         ring_buffer_put(rb); /* could be last */
4923 }
4924
4925 static const struct vm_operations_struct perf_mmap_vmops = {
4926         .open           = perf_mmap_open,
4927         .close          = perf_mmap_close, /* non mergable */
4928         .fault          = perf_mmap_fault,
4929         .page_mkwrite   = perf_mmap_fault,
4930 };
4931
4932 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4933 {
4934         struct perf_event *event = file->private_data;
4935         unsigned long user_locked, user_lock_limit;
4936         struct user_struct *user = current_user();
4937         unsigned long locked, lock_limit;
4938         struct ring_buffer *rb = NULL;
4939         unsigned long vma_size;
4940         unsigned long nr_pages;
4941         long user_extra = 0, extra = 0;
4942         int ret = 0, flags = 0;
4943
4944         /*
4945          * Don't allow mmap() of inherited per-task counters. This would
4946          * create a performance issue due to all children writing to the
4947          * same rb.
4948          */
4949         if (event->cpu == -1 && event->attr.inherit)
4950                 return -EINVAL;
4951
4952         if (!(vma->vm_flags & VM_SHARED))
4953                 return -EINVAL;
4954
4955         vma_size = vma->vm_end - vma->vm_start;
4956
4957         if (vma->vm_pgoff == 0) {
4958                 nr_pages = (vma_size / PAGE_SIZE) - 1;
4959         } else {
4960                 /*
4961                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4962                  * mapped, all subsequent mappings should have the same size
4963                  * and offset. Must be above the normal perf buffer.
4964                  */
4965                 u64 aux_offset, aux_size;
4966
4967                 if (!event->rb)
4968                         return -EINVAL;
4969
4970                 nr_pages = vma_size / PAGE_SIZE;
4971
4972                 mutex_lock(&event->mmap_mutex);
4973                 ret = -EINVAL;
4974
4975                 rb = event->rb;
4976                 if (!rb)
4977                         goto aux_unlock;
4978
4979                 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4980                 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4981
4982                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4983                         goto aux_unlock;
4984
4985                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4986                         goto aux_unlock;
4987
4988                 /* already mapped with a different offset */
4989                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4990                         goto aux_unlock;
4991
4992                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4993                         goto aux_unlock;
4994
4995                 /* already mapped with a different size */
4996                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4997                         goto aux_unlock;
4998
4999                 if (!is_power_of_2(nr_pages))
5000                         goto aux_unlock;
5001
5002                 if (!atomic_inc_not_zero(&rb->mmap_count))
5003                         goto aux_unlock;
5004
5005                 if (rb_has_aux(rb)) {
5006                         atomic_inc(&rb->aux_mmap_count);
5007                         ret = 0;
5008                         goto unlock;
5009                 }
5010
5011                 atomic_set(&rb->aux_mmap_count, 1);
5012                 user_extra = nr_pages;
5013
5014                 goto accounting;
5015         }
5016
5017         /*
5018          * If we have rb pages ensure they're a power-of-two number, so we
5019          * can do bitmasks instead of modulo.
5020          */
5021         if (nr_pages != 0 && !is_power_of_2(nr_pages))
5022                 return -EINVAL;
5023
5024         if (vma_size != PAGE_SIZE * (1 + nr_pages))
5025                 return -EINVAL;
5026
5027         WARN_ON_ONCE(event->ctx->parent_ctx);
5028 again:
5029         mutex_lock(&event->mmap_mutex);
5030         if (event->rb) {
5031                 if (event->rb->nr_pages != nr_pages) {
5032                         ret = -EINVAL;
5033                         goto unlock;
5034                 }
5035
5036                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5037                         /*
5038                          * Raced against perf_mmap_close() through
5039                          * perf_event_set_output(). Try again, hope for better
5040                          * luck.
5041                          */
5042                         mutex_unlock(&event->mmap_mutex);
5043                         goto again;
5044                 }
5045
5046                 goto unlock;
5047         }
5048
5049         user_extra = nr_pages + 1;
5050
5051 accounting:
5052         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5053
5054         /*
5055          * Increase the limit linearly with more CPUs:
5056          */
5057         user_lock_limit *= num_online_cpus();
5058
5059         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5060
5061         if (user_locked > user_lock_limit)
5062                 extra = user_locked - user_lock_limit;
5063
5064         lock_limit = rlimit(RLIMIT_MEMLOCK);
5065         lock_limit >>= PAGE_SHIFT;
5066         locked = vma->vm_mm->pinned_vm + extra;
5067
5068         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5069                 !capable(CAP_IPC_LOCK)) {
5070                 ret = -EPERM;
5071                 goto unlock;
5072         }
5073
5074         WARN_ON(!rb && event->rb);
5075
5076         if (vma->vm_flags & VM_WRITE)
5077                 flags |= RING_BUFFER_WRITABLE;
5078
5079         if (!rb) {
5080                 rb = rb_alloc(nr_pages,
5081                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
5082                               event->cpu, flags);
5083
5084                 if (!rb) {
5085                         ret = -ENOMEM;
5086                         goto unlock;
5087                 }
5088
5089                 atomic_set(&rb->mmap_count, 1);
5090                 rb->mmap_user = get_current_user();
5091                 rb->mmap_locked = extra;
5092
5093                 ring_buffer_attach(event, rb);
5094
5095                 perf_event_init_userpage(event);
5096                 perf_event_update_userpage(event);
5097         } else {
5098                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5099                                    event->attr.aux_watermark, flags);
5100                 if (!ret)
5101                         rb->aux_mmap_locked = extra;
5102         }
5103
5104 unlock:
5105         if (!ret) {
5106                 atomic_long_add(user_extra, &user->locked_vm);
5107                 vma->vm_mm->pinned_vm += extra;
5108
5109                 atomic_inc(&event->mmap_count);
5110         } else if (rb) {
5111                 atomic_dec(&rb->mmap_count);
5112         }
5113 aux_unlock:
5114         mutex_unlock(&event->mmap_mutex);
5115
5116         /*
5117          * Since pinned accounting is per vm we cannot allow fork() to copy our
5118          * vma.
5119          */
5120         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5121         vma->vm_ops = &perf_mmap_vmops;
5122
5123         if (event->pmu->event_mapped)
5124                 event->pmu->event_mapped(event);
5125
5126         return ret;
5127 }
5128
5129 static int perf_fasync(int fd, struct file *filp, int on)
5130 {
5131         struct inode *inode = file_inode(filp);
5132         struct perf_event *event = filp->private_data;
5133         int retval;
5134
5135         inode_lock(inode);
5136         retval = fasync_helper(fd, filp, on, &event->fasync);
5137         inode_unlock(inode);
5138
5139         if (retval < 0)
5140                 return retval;
5141
5142         return 0;
5143 }
5144
5145 static const struct file_operations perf_fops = {
5146         .llseek                 = no_llseek,
5147         .release                = perf_release,
5148         .read                   = perf_read,
5149         .poll                   = perf_poll,
5150         .unlocked_ioctl         = perf_ioctl,
5151         .compat_ioctl           = perf_compat_ioctl,
5152         .mmap                   = perf_mmap,
5153         .fasync                 = perf_fasync,
5154 };
5155
5156 /*
5157  * Perf event wakeup
5158  *
5159  * If there's data, ensure we set the poll() state and publish everything
5160  * to user-space before waking everybody up.
5161  */
5162
5163 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5164 {
5165         /* only the parent has fasync state */
5166         if (event->parent)
5167                 event = event->parent;
5168         return &event->fasync;
5169 }
5170
5171 void perf_event_wakeup(struct perf_event *event)
5172 {
5173         ring_buffer_wakeup(event);
5174
5175         if (event->pending_kill) {
5176                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5177                 event->pending_kill = 0;
5178         }
5179 }
5180
5181 static void perf_pending_event(struct irq_work *entry)
5182 {
5183         struct perf_event *event = container_of(entry,
5184                         struct perf_event, pending);
5185         int rctx;
5186
5187         rctx = perf_swevent_get_recursion_context();
5188         /*
5189          * If we 'fail' here, that's OK, it means recursion is already disabled
5190          * and we won't recurse 'further'.
5191          */
5192
5193         if (event->pending_disable) {
5194                 event->pending_disable = 0;
5195                 perf_event_disable_local(event);
5196         }
5197
5198         if (event->pending_wakeup) {
5199                 event->pending_wakeup = 0;
5200                 perf_event_wakeup(event);
5201         }
5202
5203         if (rctx >= 0)
5204                 perf_swevent_put_recursion_context(rctx);
5205 }
5206
5207 /*
5208  * We assume there is only KVM supporting the callbacks.
5209  * Later on, we might change it to a list if there is
5210  * another virtualization implementation supporting the callbacks.
5211  */
5212 struct perf_guest_info_callbacks *perf_guest_cbs;
5213
5214 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5215 {
5216         perf_guest_cbs = cbs;
5217         return 0;
5218 }
5219 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5220
5221 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5222 {
5223         perf_guest_cbs = NULL;
5224         return 0;
5225 }
5226 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5227
5228 static void
5229 perf_output_sample_regs(struct perf_output_handle *handle,
5230                         struct pt_regs *regs, u64 mask)
5231 {
5232         int bit;
5233
5234         for_each_set_bit(bit, (const unsigned long *) &mask,
5235                          sizeof(mask) * BITS_PER_BYTE) {
5236                 u64 val;
5237
5238                 val = perf_reg_value(regs, bit);
5239                 perf_output_put(handle, val);
5240         }
5241 }
5242
5243 static void perf_sample_regs_user(struct perf_regs *regs_user,
5244                                   struct pt_regs *regs,
5245                                   struct pt_regs *regs_user_copy)
5246 {
5247         if (user_mode(regs)) {
5248                 regs_user->abi = perf_reg_abi(current);
5249                 regs_user->regs = regs;
5250         } else if (current->mm) {
5251                 perf_get_regs_user(regs_user, regs, regs_user_copy);
5252         } else {
5253                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5254                 regs_user->regs = NULL;
5255         }
5256 }
5257
5258 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5259                                   struct pt_regs *regs)
5260 {
5261         regs_intr->regs = regs;
5262         regs_intr->abi  = perf_reg_abi(current);
5263 }
5264
5265
5266 /*
5267  * Get remaining task size from user stack pointer.
5268  *
5269  * It'd be better to take stack vma map and limit this more
5270  * precisly, but there's no way to get it safely under interrupt,
5271  * so using TASK_SIZE as limit.
5272  */
5273 static u64 perf_ustack_task_size(struct pt_regs *regs)
5274 {
5275         unsigned long addr = perf_user_stack_pointer(regs);
5276
5277         if (!addr || addr >= TASK_SIZE)
5278                 return 0;
5279
5280         return TASK_SIZE - addr;
5281 }
5282
5283 static u16
5284 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5285                         struct pt_regs *regs)
5286 {
5287         u64 task_size;
5288
5289         /* No regs, no stack pointer, no dump. */
5290         if (!regs)
5291                 return 0;
5292
5293         /*
5294          * Check if we fit in with the requested stack size into the:
5295          * - TASK_SIZE
5296          *   If we don't, we limit the size to the TASK_SIZE.
5297          *
5298          * - remaining sample size
5299          *   If we don't, we customize the stack size to
5300          *   fit in to the remaining sample size.
5301          */
5302
5303         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5304         stack_size = min(stack_size, (u16) task_size);
5305
5306         /* Current header size plus static size and dynamic size. */
5307         header_size += 2 * sizeof(u64);
5308
5309         /* Do we fit in with the current stack dump size? */
5310         if ((u16) (header_size + stack_size) < header_size) {
5311                 /*
5312                  * If we overflow the maximum size for the sample,
5313                  * we customize the stack dump size to fit in.
5314                  */
5315                 stack_size = USHRT_MAX - header_size - sizeof(u64);
5316                 stack_size = round_up(stack_size, sizeof(u64));
5317         }
5318
5319         return stack_size;
5320 }
5321
5322 static void
5323 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5324                           struct pt_regs *regs)
5325 {
5326         /* Case of a kernel thread, nothing to dump */
5327         if (!regs) {
5328                 u64 size = 0;
5329                 perf_output_put(handle, size);
5330         } else {
5331                 unsigned long sp;
5332                 unsigned int rem;
5333                 u64 dyn_size;
5334
5335                 /*
5336                  * We dump:
5337                  * static size
5338                  *   - the size requested by user or the best one we can fit
5339                  *     in to the sample max size
5340                  * data
5341                  *   - user stack dump data
5342                  * dynamic size
5343                  *   - the actual dumped size
5344                  */
5345
5346                 /* Static size. */
5347                 perf_output_put(handle, dump_size);
5348
5349                 /* Data. */
5350                 sp = perf_user_stack_pointer(regs);
5351                 rem = __output_copy_user(handle, (void *) sp, dump_size);
5352                 dyn_size = dump_size - rem;
5353
5354                 perf_output_skip(handle, rem);
5355
5356                 /* Dynamic size. */
5357                 perf_output_put(handle, dyn_size);
5358         }
5359 }
5360
5361 static void __perf_event_header__init_id(struct perf_event_header *header,
5362                                          struct perf_sample_data *data,
5363                                          struct perf_event *event)
5364 {
5365         u64 sample_type = event->attr.sample_type;
5366
5367         data->type = sample_type;
5368         header->size += event->id_header_size;
5369
5370         if (sample_type & PERF_SAMPLE_TID) {
5371                 /* namespace issues */
5372                 data->tid_entry.pid = perf_event_pid(event, current);
5373                 data->tid_entry.tid = perf_event_tid(event, current);
5374         }
5375
5376         if (sample_type & PERF_SAMPLE_TIME)
5377                 data->time = perf_event_clock(event);
5378
5379         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5380                 data->id = primary_event_id(event);
5381
5382         if (sample_type & PERF_SAMPLE_STREAM_ID)
5383                 data->stream_id = event->id;
5384
5385         if (sample_type & PERF_SAMPLE_CPU) {
5386                 data->cpu_entry.cpu      = raw_smp_processor_id();
5387                 data->cpu_entry.reserved = 0;
5388         }
5389 }
5390
5391 void perf_event_header__init_id(struct perf_event_header *header,
5392                                 struct perf_sample_data *data,
5393                                 struct perf_event *event)
5394 {
5395         if (event->attr.sample_id_all)
5396                 __perf_event_header__init_id(header, data, event);
5397 }
5398
5399 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5400                                            struct perf_sample_data *data)
5401 {
5402         u64 sample_type = data->type;
5403
5404         if (sample_type & PERF_SAMPLE_TID)
5405                 perf_output_put(handle, data->tid_entry);
5406
5407         if (sample_type & PERF_SAMPLE_TIME)
5408                 perf_output_put(handle, data->time);
5409
5410         if (sample_type & PERF_SAMPLE_ID)
5411                 perf_output_put(handle, data->id);
5412
5413         if (sample_type & PERF_SAMPLE_STREAM_ID)
5414                 perf_output_put(handle, data->stream_id);
5415
5416         if (sample_type & PERF_SAMPLE_CPU)
5417                 perf_output_put(handle, data->cpu_entry);
5418
5419         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5420                 perf_output_put(handle, data->id);
5421 }
5422
5423 void perf_event__output_id_sample(struct perf_event *event,
5424                                   struct perf_output_handle *handle,
5425                                   struct perf_sample_data *sample)
5426 {
5427         if (event->attr.sample_id_all)
5428                 __perf_event__output_id_sample(handle, sample);
5429 }
5430
5431 static void perf_output_read_one(struct perf_output_handle *handle,
5432                                  struct perf_event *event,
5433                                  u64 enabled, u64 running)
5434 {
5435         u64 read_format = event->attr.read_format;
5436         u64 values[4];
5437         int n = 0;
5438
5439         values[n++] = perf_event_count(event);
5440         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5441                 values[n++] = enabled +
5442                         atomic64_read(&event->child_total_time_enabled);
5443         }
5444         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5445                 values[n++] = running +
5446                         atomic64_read(&event->child_total_time_running);
5447         }
5448         if (read_format & PERF_FORMAT_ID)
5449                 values[n++] = primary_event_id(event);
5450
5451         __output_copy(handle, values, n * sizeof(u64));
5452 }
5453
5454 /*
5455  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5456  */
5457 static void perf_output_read_group(struct perf_output_handle *handle,
5458                             struct perf_event *event,
5459                             u64 enabled, u64 running)
5460 {
5461         struct perf_event *leader = event->group_leader, *sub;
5462         u64 read_format = event->attr.read_format;
5463         u64 values[5];
5464         int n = 0;
5465
5466         values[n++] = 1 + leader->nr_siblings;
5467
5468         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5469                 values[n++] = enabled;
5470
5471         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5472                 values[n++] = running;
5473
5474         if (leader != event)
5475                 leader->pmu->read(leader);
5476
5477         values[n++] = perf_event_count(leader);
5478         if (read_format & PERF_FORMAT_ID)
5479                 values[n++] = primary_event_id(leader);
5480
5481         __output_copy(handle, values, n * sizeof(u64));
5482
5483         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5484                 n = 0;
5485
5486                 if ((sub != event) &&
5487                     (sub->state == PERF_EVENT_STATE_ACTIVE))
5488                         sub->pmu->read(sub);
5489
5490                 values[n++] = perf_event_count(sub);
5491                 if (read_format & PERF_FORMAT_ID)
5492                         values[n++] = primary_event_id(sub);
5493
5494                 __output_copy(handle, values, n * sizeof(u64));
5495         }
5496 }
5497
5498 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5499                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
5500
5501 static void perf_output_read(struct perf_output_handle *handle,
5502                              struct perf_event *event)
5503 {
5504         u64 enabled = 0, running = 0, now;
5505         u64 read_format = event->attr.read_format;
5506
5507         /*
5508          * compute total_time_enabled, total_time_running
5509          * based on snapshot values taken when the event
5510          * was last scheduled in.
5511          *
5512          * we cannot simply called update_context_time()
5513          * because of locking issue as we are called in
5514          * NMI context
5515          */
5516         if (read_format & PERF_FORMAT_TOTAL_TIMES)
5517                 calc_timer_values(event, &now, &enabled, &running);
5518
5519         if (event->attr.read_format & PERF_FORMAT_GROUP)
5520                 perf_output_read_group(handle, event, enabled, running);
5521         else
5522                 perf_output_read_one(handle, event, enabled, running);
5523 }
5524
5525 void perf_output_sample(struct perf_output_handle *handle,
5526                         struct perf_event_header *header,
5527                         struct perf_sample_data *data,
5528                         struct perf_event *event)
5529 {
5530         u64 sample_type = data->type;
5531
5532         perf_output_put(handle, *header);
5533
5534         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5535                 perf_output_put(handle, data->id);
5536
5537         if (sample_type & PERF_SAMPLE_IP)
5538                 perf_output_put(handle, data->ip);
5539
5540         if (sample_type & PERF_SAMPLE_TID)
5541                 perf_output_put(handle, data->tid_entry);
5542
5543         if (sample_type & PERF_SAMPLE_TIME)
5544                 perf_output_put(handle, data->time);
5545
5546         if (sample_type & PERF_SAMPLE_ADDR)
5547                 perf_output_put(handle, data->addr);
5548
5549         if (sample_type & PERF_SAMPLE_ID)
5550                 perf_output_put(handle, data->id);
5551
5552         if (sample_type & PERF_SAMPLE_STREAM_ID)
5553                 perf_output_put(handle, data->stream_id);
5554
5555         if (sample_type & PERF_SAMPLE_CPU)
5556                 perf_output_put(handle, data->cpu_entry);
5557
5558         if (sample_type & PERF_SAMPLE_PERIOD)
5559                 perf_output_put(handle, data->period);
5560
5561         if (sample_type & PERF_SAMPLE_READ)
5562                 perf_output_read(handle, event);
5563
5564         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5565                 if (data->callchain) {
5566                         int size = 1;
5567
5568                         if (data->callchain)
5569                                 size += data->callchain->nr;
5570
5571                         size *= sizeof(u64);
5572
5573                         __output_copy(handle, data->callchain, size);
5574                 } else {
5575                         u64 nr = 0;
5576                         perf_output_put(handle, nr);
5577                 }
5578         }
5579
5580         if (sample_type & PERF_SAMPLE_RAW) {
5581                 if (data->raw) {
5582                         u32 raw_size = data->raw->size;
5583                         u32 real_size = round_up(raw_size + sizeof(u32),
5584                                                  sizeof(u64)) - sizeof(u32);
5585                         u64 zero = 0;
5586
5587                         perf_output_put(handle, real_size);
5588                         __output_copy(handle, data->raw->data, raw_size);
5589                         if (real_size - raw_size)
5590                                 __output_copy(handle, &zero, real_size - raw_size);
5591                 } else {
5592                         struct {
5593                                 u32     size;
5594                                 u32     data;
5595                         } raw = {
5596                                 .size = sizeof(u32),
5597                                 .data = 0,
5598                         };
5599                         perf_output_put(handle, raw);
5600                 }
5601         }
5602
5603         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5604                 if (data->br_stack) {
5605                         size_t size;
5606
5607                         size = data->br_stack->nr
5608                              * sizeof(struct perf_branch_entry);
5609
5610                         perf_output_put(handle, data->br_stack->nr);
5611                         perf_output_copy(handle, data->br_stack->entries, size);
5612                 } else {
5613                         /*
5614                          * we always store at least the value of nr
5615                          */
5616                         u64 nr = 0;
5617                         perf_output_put(handle, nr);
5618                 }
5619         }
5620
5621         if (sample_type & PERF_SAMPLE_REGS_USER) {
5622                 u64 abi = data->regs_user.abi;
5623
5624                 /*
5625                  * If there are no regs to dump, notice it through
5626                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5627                  */
5628                 perf_output_put(handle, abi);
5629
5630                 if (abi) {
5631                         u64 mask = event->attr.sample_regs_user;
5632                         perf_output_sample_regs(handle,
5633                                                 data->regs_user.regs,
5634                                                 mask);
5635                 }
5636         }
5637
5638         if (sample_type & PERF_SAMPLE_STACK_USER) {
5639                 perf_output_sample_ustack(handle,
5640                                           data->stack_user_size,
5641                                           data->regs_user.regs);
5642         }
5643
5644         if (sample_type & PERF_SAMPLE_WEIGHT)
5645                 perf_output_put(handle, data->weight);
5646
5647         if (sample_type & PERF_SAMPLE_DATA_SRC)
5648                 perf_output_put(handle, data->data_src.val);
5649
5650         if (sample_type & PERF_SAMPLE_TRANSACTION)
5651                 perf_output_put(handle, data->txn);
5652
5653         if (sample_type & PERF_SAMPLE_REGS_INTR) {
5654                 u64 abi = data->regs_intr.abi;
5655                 /*
5656                  * If there are no regs to dump, notice it through
5657                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5658                  */
5659                 perf_output_put(handle, abi);
5660
5661                 if (abi) {
5662                         u64 mask = event->attr.sample_regs_intr;
5663
5664                         perf_output_sample_regs(handle,
5665                                                 data->regs_intr.regs,
5666                                                 mask);
5667                 }
5668         }
5669
5670         if (!event->attr.watermark) {
5671                 int wakeup_events = event->attr.wakeup_events;
5672
5673                 if (wakeup_events) {
5674                         struct ring_buffer *rb = handle->rb;
5675                         int events = local_inc_return(&rb->events);
5676
5677                         if (events >= wakeup_events) {
5678                                 local_sub(wakeup_events, &rb->events);
5679                                 local_inc(&rb->wakeup);
5680                         }
5681                 }
5682         }
5683 }
5684
5685 void perf_prepare_sample(struct perf_event_header *header,
5686                          struct perf_sample_data *data,
5687                          struct perf_event *event,
5688                          struct pt_regs *regs)
5689 {
5690         u64 sample_type = event->attr.sample_type;
5691
5692         header->type = PERF_RECORD_SAMPLE;
5693         header->size = sizeof(*header) + event->header_size;
5694
5695         header->misc = 0;
5696         header->misc |= perf_misc_flags(regs);
5697
5698         __perf_event_header__init_id(header, data, event);
5699
5700         if (sample_type & PERF_SAMPLE_IP)
5701                 data->ip = perf_instruction_pointer(regs);
5702
5703         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5704                 int size = 1;
5705
5706                 data->callchain = perf_callchain(event, regs);
5707
5708                 if (data->callchain)
5709                         size += data->callchain->nr;
5710
5711                 header->size += size * sizeof(u64);
5712         }
5713
5714         if (sample_type & PERF_SAMPLE_RAW) {
5715                 int size = sizeof(u32);
5716
5717                 if (data->raw)
5718                         size += data->raw->size;
5719                 else
5720                         size += sizeof(u32);
5721
5722                 header->size += round_up(size, sizeof(u64));
5723         }
5724
5725         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5726                 int size = sizeof(u64); /* nr */
5727                 if (data->br_stack) {
5728                         size += data->br_stack->nr
5729                               * sizeof(struct perf_branch_entry);
5730                 }
5731                 header->size += size;
5732         }
5733
5734         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5735                 perf_sample_regs_user(&data->regs_user, regs,
5736                                       &data->regs_user_copy);
5737
5738         if (sample_type & PERF_SAMPLE_REGS_USER) {
5739                 /* regs dump ABI info */
5740                 int size = sizeof(u64);
5741
5742                 if (data->regs_user.regs) {
5743                         u64 mask = event->attr.sample_regs_user;
5744                         size += hweight64(mask) * sizeof(u64);
5745                 }
5746
5747                 header->size += size;
5748         }
5749
5750         if (sample_type & PERF_SAMPLE_STACK_USER) {
5751                 /*
5752                  * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5753                  * processed as the last one or have additional check added
5754                  * in case new sample type is added, because we could eat
5755                  * up the rest of the sample size.
5756                  */
5757                 u16 stack_size = event->attr.sample_stack_user;
5758                 u16 size = sizeof(u64);
5759
5760                 stack_size = perf_sample_ustack_size(stack_size, header->size,
5761                                                      data->regs_user.regs);
5762
5763                 /*
5764                  * If there is something to dump, add space for the dump
5765                  * itself and for the field that tells the dynamic size,
5766                  * which is how many have been actually dumped.
5767                  */
5768                 if (stack_size)
5769                         size += sizeof(u64) + stack_size;
5770
5771                 data->stack_user_size = stack_size;
5772                 header->size += size;
5773         }
5774
5775         if (sample_type & PERF_SAMPLE_REGS_INTR) {
5776                 /* regs dump ABI info */
5777                 int size = sizeof(u64);
5778
5779                 perf_sample_regs_intr(&data->regs_intr, regs);
5780
5781                 if (data->regs_intr.regs) {
5782                         u64 mask = event->attr.sample_regs_intr;
5783
5784                         size += hweight64(mask) * sizeof(u64);
5785                 }
5786
5787                 header->size += size;
5788         }
5789 }
5790
5791 static void __always_inline
5792 __perf_event_output(struct perf_event *event,
5793                     struct perf_sample_data *data,
5794                     struct pt_regs *regs,
5795                     int (*output_begin)(struct perf_output_handle *,
5796                                         struct perf_event *,
5797                                         unsigned int))
5798 {
5799         struct perf_output_handle handle;
5800         struct perf_event_header header;
5801
5802         /* protect the callchain buffers */
5803         rcu_read_lock();
5804
5805         perf_prepare_sample(&header, data, event, regs);
5806
5807         if (output_begin(&handle, event, header.size))
5808                 goto exit;
5809
5810         perf_output_sample(&handle, &header, data, event);
5811
5812         perf_output_end(&handle);
5813
5814 exit:
5815         rcu_read_unlock();
5816 }
5817
5818 void
5819 perf_event_output_forward(struct perf_event *event,
5820                          struct perf_sample_data *data,
5821                          struct pt_regs *regs)
5822 {
5823         __perf_event_output(event, data, regs, perf_output_begin_forward);
5824 }
5825
5826 void
5827 perf_event_output_backward(struct perf_event *event,
5828                            struct perf_sample_data *data,
5829                            struct pt_regs *regs)
5830 {
5831         __perf_event_output(event, data, regs, perf_output_begin_backward);
5832 }
5833
5834 void
5835 perf_event_output(struct perf_event *event,
5836                   struct perf_sample_data *data,
5837                   struct pt_regs *regs)
5838 {
5839         __perf_event_output(event, data, regs, perf_output_begin);
5840 }
5841
5842 /*
5843  * read event_id
5844  */
5845
5846 struct perf_read_event {
5847         struct perf_event_header        header;
5848
5849         u32                             pid;
5850         u32                             tid;
5851 };
5852
5853 static void
5854 perf_event_read_event(struct perf_event *event,
5855                         struct task_struct *task)
5856 {
5857         struct perf_output_handle handle;
5858         struct perf_sample_data sample;
5859         struct perf_read_event read_event = {
5860                 .header = {
5861                         .type = PERF_RECORD_READ,
5862                         .misc = 0,
5863                         .size = sizeof(read_event) + event->read_size,
5864                 },
5865                 .pid = perf_event_pid(event, task),
5866                 .tid = perf_event_tid(event, task),
5867         };
5868         int ret;
5869
5870         perf_event_header__init_id(&read_event.header, &sample, event);
5871         ret = perf_output_begin(&handle, event, read_event.header.size);
5872         if (ret)
5873                 return;
5874
5875         perf_output_put(&handle, read_event);
5876         perf_output_read(&handle, event);
5877         perf_event__output_id_sample(event, &handle, &sample);
5878
5879         perf_output_end(&handle);
5880 }
5881
5882 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5883
5884 static void
5885 perf_event_aux_ctx(struct perf_event_context *ctx,
5886                    perf_event_aux_output_cb output,
5887                    void *data, bool all)
5888 {
5889         struct perf_event *event;
5890
5891         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5892                 if (!all) {
5893                         if (event->state < PERF_EVENT_STATE_INACTIVE)
5894                                 continue;
5895                         if (!event_filter_match(event))
5896                                 continue;
5897                 }
5898
5899                 output(event, data);
5900         }
5901 }
5902
5903 static void
5904 perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
5905                         struct perf_event_context *task_ctx)
5906 {
5907         rcu_read_lock();
5908         preempt_disable();
5909         perf_event_aux_ctx(task_ctx, output, data, false);
5910         preempt_enable();
5911         rcu_read_unlock();
5912 }
5913
5914 static void perf_event_sb_iterate(perf_event_aux_output_cb output, void *data)
5915 {
5916         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
5917         struct perf_event *event;
5918
5919         list_for_each_entry_rcu(event, &pel->list, sb_list) {
5920                 if (event->state < PERF_EVENT_STATE_INACTIVE)
5921                         continue;
5922                 if (!event_filter_match(event))
5923                         continue;
5924                 output(event, data);
5925         }
5926 }
5927
5928 static void
5929 perf_event_aux(perf_event_aux_output_cb output, void *data,
5930                struct perf_event_context *task_ctx)
5931 {
5932         struct perf_event_context *ctx;
5933         int ctxn;
5934
5935         /*
5936          * If we have task_ctx != NULL we only notify
5937          * the task context itself. The task_ctx is set
5938          * only for EXIT events before releasing task
5939          * context.
5940          */
5941         if (task_ctx) {
5942                 perf_event_aux_task_ctx(output, data, task_ctx);
5943                 return;
5944         }
5945
5946         rcu_read_lock();
5947         preempt_disable();
5948         perf_event_sb_iterate(output, data);
5949
5950         for_each_task_context_nr(ctxn) {
5951                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5952                 if (ctx)
5953                         perf_event_aux_ctx(ctx, output, data, false);
5954         }
5955         preempt_enable();
5956         rcu_read_unlock();
5957 }
5958
5959 /*
5960  * Clear all file-based filters at exec, they'll have to be
5961  * re-instated when/if these objects are mmapped again.
5962  */
5963 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
5964 {
5965         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
5966         struct perf_addr_filter *filter;
5967         unsigned int restart = 0, count = 0;
5968         unsigned long flags;
5969
5970         if (!has_addr_filter(event))
5971                 return;
5972
5973         raw_spin_lock_irqsave(&ifh->lock, flags);
5974         list_for_each_entry(filter, &ifh->list, entry) {
5975                 if (filter->inode) {
5976                         event->addr_filters_offs[count] = 0;
5977                         restart++;
5978                 }
5979
5980                 count++;
5981         }
5982
5983         if (restart)
5984                 event->addr_filters_gen++;
5985         raw_spin_unlock_irqrestore(&ifh->lock, flags);
5986
5987         if (restart)
5988                 perf_event_restart(event);
5989 }
5990
5991 void perf_event_exec(void)
5992 {
5993         struct perf_event_context *ctx;
5994         int ctxn;
5995
5996         rcu_read_lock();
5997         for_each_task_context_nr(ctxn) {
5998                 ctx = current->perf_event_ctxp[ctxn];
5999                 if (!ctx)
6000                         continue;
6001
6002                 perf_event_enable_on_exec(ctxn);
6003
6004                 perf_event_aux_ctx(ctx, perf_event_addr_filters_exec, NULL,
6005                                    true);
6006         }
6007         rcu_read_unlock();
6008 }
6009
6010 struct remote_output {
6011         struct ring_buffer      *rb;
6012         int                     err;
6013 };
6014
6015 static void __perf_event_output_stop(struct perf_event *event, void *data)
6016 {
6017         struct perf_event *parent = event->parent;
6018         struct remote_output *ro = data;
6019         struct ring_buffer *rb = ro->rb;
6020         struct stop_event_data sd = {
6021                 .event  = event,
6022         };
6023
6024         if (!has_aux(event))
6025                 return;
6026
6027         if (!parent)
6028                 parent = event;
6029
6030         /*
6031          * In case of inheritance, it will be the parent that links to the
6032          * ring-buffer, but it will be the child that's actually using it:
6033          */
6034         if (rcu_dereference(parent->rb) == rb)
6035                 ro->err = __perf_event_stop(&sd);
6036 }
6037
6038 static int __perf_pmu_output_stop(void *info)
6039 {
6040         struct perf_event *event = info;
6041         struct pmu *pmu = event->pmu;
6042         struct perf_cpu_context *cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
6043         struct remote_output ro = {
6044                 .rb     = event->rb,
6045         };
6046
6047         rcu_read_lock();
6048         perf_event_aux_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6049         if (cpuctx->task_ctx)
6050                 perf_event_aux_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6051                                    &ro, false);
6052         rcu_read_unlock();
6053
6054         return ro.err;
6055 }
6056
6057 static void perf_pmu_output_stop(struct perf_event *event)
6058 {
6059         struct perf_event *iter;
6060         int err, cpu;
6061
6062 restart:
6063         rcu_read_lock();
6064         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6065                 /*
6066                  * For per-CPU events, we need to make sure that neither they
6067                  * nor their children are running; for cpu==-1 events it's
6068                  * sufficient to stop the event itself if it's active, since
6069                  * it can't have children.
6070                  */
6071                 cpu = iter->cpu;
6072                 if (cpu == -1)
6073                         cpu = READ_ONCE(iter->oncpu);
6074
6075                 if (cpu == -1)
6076                         continue;
6077
6078                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6079                 if (err == -EAGAIN) {
6080                         rcu_read_unlock();
6081                         goto restart;
6082                 }
6083         }
6084         rcu_read_unlock();
6085 }
6086
6087 /*
6088  * task tracking -- fork/exit
6089  *
6090  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6091  */
6092
6093 struct perf_task_event {
6094         struct task_struct              *task;
6095         struct perf_event_context       *task_ctx;
6096
6097         struct {
6098                 struct perf_event_header        header;
6099
6100                 u32                             pid;
6101                 u32                             ppid;
6102                 u32                             tid;
6103                 u32                             ptid;
6104                 u64                             time;
6105         } event_id;
6106 };
6107
6108 static int perf_event_task_match(struct perf_event *event)
6109 {
6110         return event->attr.comm  || event->attr.mmap ||
6111                event->attr.mmap2 || event->attr.mmap_data ||
6112                event->attr.task;
6113 }
6114
6115 static void perf_event_task_output(struct perf_event *event,
6116                                    void *data)
6117 {
6118         struct perf_task_event *task_event = data;
6119         struct perf_output_handle handle;
6120         struct perf_sample_data sample;
6121         struct task_struct *task = task_event->task;
6122         int ret, size = task_event->event_id.header.size;
6123
6124         if (!perf_event_task_match(event))
6125                 return;
6126
6127         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6128
6129         ret = perf_output_begin(&handle, event,
6130                                 task_event->event_id.header.size);
6131         if (ret)
6132                 goto out;
6133
6134         task_event->event_id.pid = perf_event_pid(event, task);
6135         task_event->event_id.ppid = perf_event_pid(event, current);
6136
6137         task_event->event_id.tid = perf_event_tid(event, task);
6138         task_event->event_id.ptid = perf_event_tid(event, current);
6139
6140         task_event->event_id.time = perf_event_clock(event);
6141
6142         perf_output_put(&handle, task_event->event_id);
6143
6144         perf_event__output_id_sample(event, &handle, &sample);
6145
6146         perf_output_end(&handle);
6147 out:
6148         task_event->event_id.header.size = size;
6149 }
6150
6151 static void perf_event_task(struct task_struct *task,
6152                               struct perf_event_context *task_ctx,
6153                               int new)
6154 {
6155         struct perf_task_event task_event;
6156
6157         if (!atomic_read(&nr_comm_events) &&
6158             !atomic_read(&nr_mmap_events) &&
6159             !atomic_read(&nr_task_events))
6160                 return;
6161
6162         task_event = (struct perf_task_event){
6163                 .task     = task,
6164                 .task_ctx = task_ctx,
6165                 .event_id    = {
6166                         .header = {
6167                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6168                                 .misc = 0,
6169                                 .size = sizeof(task_event.event_id),
6170                         },
6171                         /* .pid  */
6172                         /* .ppid */
6173                         /* .tid  */
6174                         /* .ptid */
6175                         /* .time */
6176                 },
6177         };
6178
6179         perf_event_aux(perf_event_task_output,
6180                        &task_event,
6181                        task_ctx);
6182 }
6183
6184 void perf_event_fork(struct task_struct *task)
6185 {
6186         perf_event_task(task, NULL, 1);
6187 }
6188
6189 /*
6190  * comm tracking
6191  */
6192
6193 struct perf_comm_event {
6194         struct task_struct      *task;
6195         char                    *comm;
6196         int                     comm_size;
6197
6198         struct {
6199                 struct perf_event_header        header;
6200
6201                 u32                             pid;
6202                 u32                             tid;
6203         } event_id;
6204 };
6205
6206 static int perf_event_comm_match(struct perf_event *event)
6207 {
6208         return event->attr.comm;
6209 }
6210
6211 static void perf_event_comm_output(struct perf_event *event,
6212                                    void *data)
6213 {
6214         struct perf_comm_event *comm_event = data;
6215         struct perf_output_handle handle;
6216         struct perf_sample_data sample;
6217         int size = comm_event->event_id.header.size;
6218         int ret;
6219
6220         if (!perf_event_comm_match(event))
6221                 return;
6222
6223         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6224         ret = perf_output_begin(&handle, event,
6225                                 comm_event->event_id.header.size);
6226
6227         if (ret)
6228                 goto out;
6229
6230         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6231         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6232
6233         perf_output_put(&handle, comm_event->event_id);
6234         __output_copy(&handle, comm_event->comm,
6235                                    comm_event->comm_size);
6236
6237         perf_event__output_id_sample(event, &handle, &sample);
6238
6239         perf_output_end(&handle);
6240 out:
6241         comm_event->event_id.header.size = size;
6242 }
6243
6244 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6245 {
6246         char comm[TASK_COMM_LEN];
6247         unsigned int size;
6248
6249         memset(comm, 0, sizeof(comm));
6250         strlcpy(comm, comm_event->task->comm, sizeof(comm));
6251         size = ALIGN(strlen(comm)+1, sizeof(u64));
6252
6253         comm_event->comm = comm;
6254         comm_event->comm_size = size;
6255
6256         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6257
6258         perf_event_aux(perf_event_comm_output,
6259                        comm_event,
6260                        NULL);
6261 }
6262
6263 void perf_event_comm(struct task_struct *task, bool exec)
6264 {
6265         struct perf_comm_event comm_event;
6266
6267         if (!atomic_read(&nr_comm_events))
6268                 return;
6269
6270         comm_event = (struct perf_comm_event){
6271                 .task   = task,
6272                 /* .comm      */
6273                 /* .comm_size */
6274                 .event_id  = {
6275                         .header = {
6276                                 .type = PERF_RECORD_COMM,
6277                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6278                                 /* .size */
6279                         },
6280                         /* .pid */
6281                         /* .tid */
6282                 },
6283         };
6284
6285         perf_event_comm_event(&comm_event);
6286 }
6287
6288 /*
6289  * mmap tracking
6290  */
6291
6292 struct perf_mmap_event {
6293         struct vm_area_struct   *vma;
6294
6295         const char              *file_name;
6296         int                     file_size;
6297         int                     maj, min;
6298         u64                     ino;
6299         u64                     ino_generation;
6300         u32                     prot, flags;
6301
6302         struct {
6303                 struct perf_event_header        header;
6304
6305                 u32                             pid;
6306                 u32                             tid;
6307                 u64                             start;
6308                 u64                             len;
6309                 u64                             pgoff;
6310         } event_id;
6311 };
6312
6313 static int perf_event_mmap_match(struct perf_event *event,
6314                                  void *data)
6315 {
6316         struct perf_mmap_event *mmap_event = data;
6317         struct vm_area_struct *vma = mmap_event->vma;
6318         int executable = vma->vm_flags & VM_EXEC;
6319
6320         return (!executable && event->attr.mmap_data) ||
6321                (executable && (event->attr.mmap || event->attr.mmap2));
6322 }
6323
6324 static void perf_event_mmap_output(struct perf_event *event,
6325                                    void *data)
6326 {
6327         struct perf_mmap_event *mmap_event = data;
6328         struct perf_output_handle handle;
6329         struct perf_sample_data sample;
6330         int size = mmap_event->event_id.header.size;
6331         int ret;
6332
6333         if (!perf_event_mmap_match(event, data))
6334                 return;
6335
6336         if (event->attr.mmap2) {
6337                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6338                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6339                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6340                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6341                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6342                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6343                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6344         }
6345
6346         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6347         ret = perf_output_begin(&handle, event,
6348                                 mmap_event->event_id.header.size);
6349         if (ret)
6350                 goto out;
6351
6352         mmap_event->event_id.pid = perf_event_pid(event, current);
6353         mmap_event->event_id.tid = perf_event_tid(event, current);
6354
6355         perf_output_put(&handle, mmap_event->event_id);
6356
6357         if (event->attr.mmap2) {
6358                 perf_output_put(&handle, mmap_event->maj);
6359                 perf_output_put(&handle, mmap_event->min);
6360                 perf_output_put(&handle, mmap_event->ino);
6361                 perf_output_put(&handle, mmap_event->ino_generation);
6362                 perf_output_put(&handle, mmap_event->prot);
6363                 perf_output_put(&handle, mmap_event->flags);
6364         }
6365
6366         __output_copy(&handle, mmap_event->file_name,
6367                                    mmap_event->file_size);
6368
6369         perf_event__output_id_sample(event, &handle, &sample);
6370
6371         perf_output_end(&handle);
6372 out:
6373         mmap_event->event_id.header.size = size;
6374 }
6375
6376 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6377 {
6378         struct vm_area_struct *vma = mmap_event->vma;
6379         struct file *file = vma->vm_file;
6380         int maj = 0, min = 0;
6381         u64 ino = 0, gen = 0;
6382         u32 prot = 0, flags = 0;
6383         unsigned int size;
6384         char tmp[16];
6385         char *buf = NULL;
6386         char *name;
6387
6388         if (file) {
6389                 struct inode *inode;
6390                 dev_t dev;
6391
6392                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6393                 if (!buf) {
6394                         name = "//enomem";
6395                         goto cpy_name;
6396                 }
6397                 /*
6398                  * d_path() works from the end of the rb backwards, so we
6399                  * need to add enough zero bytes after the string to handle
6400                  * the 64bit alignment we do later.
6401                  */
6402                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
6403                 if (IS_ERR(name)) {
6404                         name = "//toolong";
6405                         goto cpy_name;
6406                 }
6407                 inode = file_inode(vma->vm_file);
6408                 dev = inode->i_sb->s_dev;
6409                 ino = inode->i_ino;
6410                 gen = inode->i_generation;
6411                 maj = MAJOR(dev);
6412                 min = MINOR(dev);
6413
6414                 if (vma->vm_flags & VM_READ)
6415                         prot |= PROT_READ;
6416                 if (vma->vm_flags & VM_WRITE)
6417                         prot |= PROT_WRITE;
6418                 if (vma->vm_flags & VM_EXEC)
6419                         prot |= PROT_EXEC;
6420
6421                 if (vma->vm_flags & VM_MAYSHARE)
6422                         flags = MAP_SHARED;
6423                 else
6424                         flags = MAP_PRIVATE;
6425
6426                 if (vma->vm_flags & VM_DENYWRITE)
6427                         flags |= MAP_DENYWRITE;
6428                 if (vma->vm_flags & VM_MAYEXEC)
6429                         flags |= MAP_EXECUTABLE;
6430                 if (vma->vm_flags & VM_LOCKED)
6431                         flags |= MAP_LOCKED;
6432                 if (vma->vm_flags & VM_HUGETLB)
6433                         flags |= MAP_HUGETLB;
6434
6435                 goto got_name;
6436         } else {
6437                 if (vma->vm_ops && vma->vm_ops->name) {
6438                         name = (char *) vma->vm_ops->name(vma);
6439                         if (name)
6440                                 goto cpy_name;
6441                 }
6442
6443                 name = (char *)arch_vma_name(vma);
6444                 if (name)
6445                         goto cpy_name;
6446
6447                 if (vma->vm_start <= vma->vm_mm->start_brk &&
6448                                 vma->vm_end >= vma->vm_mm->brk) {
6449                         name = "[heap]";
6450                         goto cpy_name;
6451                 }
6452                 if (vma->vm_start <= vma->vm_mm->start_stack &&
6453                                 vma->vm_end >= vma->vm_mm->start_stack) {
6454                         name = "[stack]";
6455                         goto cpy_name;
6456                 }
6457
6458                 name = "//anon";
6459                 goto cpy_name;
6460         }
6461
6462 cpy_name:
6463         strlcpy(tmp, name, sizeof(tmp));
6464         name = tmp;
6465 got_name:
6466         /*
6467          * Since our buffer works in 8 byte units we need to align our string
6468          * size to a multiple of 8. However, we must guarantee the tail end is
6469          * zero'd out to avoid leaking random bits to userspace.
6470          */
6471         size = strlen(name)+1;
6472         while (!IS_ALIGNED(size, sizeof(u64)))
6473                 name[size++] = '\0';
6474
6475         mmap_event->file_name = name;
6476         mmap_event->file_size = size;
6477         mmap_event->maj = maj;
6478         mmap_event->min = min;
6479         mmap_event->ino = ino;
6480         mmap_event->ino_generation = gen;
6481         mmap_event->prot = prot;
6482         mmap_event->flags = flags;
6483
6484         if (!(vma->vm_flags & VM_EXEC))
6485                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6486
6487         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6488
6489         perf_event_aux(perf_event_mmap_output,
6490                        mmap_event,
6491                        NULL);
6492
6493         kfree(buf);
6494 }
6495
6496 /*
6497  * Whether this @filter depends on a dynamic object which is not loaded
6498  * yet or its load addresses are not known.
6499  */
6500 static bool perf_addr_filter_needs_mmap(struct perf_addr_filter *filter)
6501 {
6502         return filter->filter && filter->inode;
6503 }
6504
6505 /*
6506  * Check whether inode and address range match filter criteria.
6507  */
6508 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6509                                      struct file *file, unsigned long offset,
6510                                      unsigned long size)
6511 {
6512         if (filter->inode != file->f_inode)
6513                 return false;
6514
6515         if (filter->offset > offset + size)
6516                 return false;
6517
6518         if (filter->offset + filter->size < offset)
6519                 return false;
6520
6521         return true;
6522 }
6523
6524 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6525 {
6526         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6527         struct vm_area_struct *vma = data;
6528         unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6529         struct file *file = vma->vm_file;
6530         struct perf_addr_filter *filter;
6531         unsigned int restart = 0, count = 0;
6532
6533         if (!has_addr_filter(event))
6534                 return;
6535
6536         if (!file)
6537                 return;
6538
6539         raw_spin_lock_irqsave(&ifh->lock, flags);
6540         list_for_each_entry(filter, &ifh->list, entry) {
6541                 if (perf_addr_filter_match(filter, file, off,
6542                                              vma->vm_end - vma->vm_start)) {
6543                         event->addr_filters_offs[count] = vma->vm_start;
6544                         restart++;
6545                 }
6546
6547                 count++;
6548         }
6549
6550         if (restart)
6551                 event->addr_filters_gen++;
6552         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6553
6554         if (restart)
6555                 perf_event_restart(event);
6556 }
6557
6558 /*
6559  * Adjust all task's events' filters to the new vma
6560  */
6561 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6562 {
6563         struct perf_event_context *ctx;
6564         int ctxn;
6565
6566         rcu_read_lock();
6567         for_each_task_context_nr(ctxn) {
6568                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6569                 if (!ctx)
6570                         continue;
6571
6572                 perf_event_aux_ctx(ctx, __perf_addr_filters_adjust, vma, true);
6573         }
6574         rcu_read_unlock();
6575 }
6576
6577 void perf_event_mmap(struct vm_area_struct *vma)
6578 {
6579         struct perf_mmap_event mmap_event;
6580
6581         if (!atomic_read(&nr_mmap_events))
6582                 return;
6583
6584         mmap_event = (struct perf_mmap_event){
6585                 .vma    = vma,
6586                 /* .file_name */
6587                 /* .file_size */
6588                 .event_id  = {
6589                         .header = {
6590                                 .type = PERF_RECORD_MMAP,
6591                                 .misc = PERF_RECORD_MISC_USER,
6592                                 /* .size */
6593                         },
6594                         /* .pid */
6595                         /* .tid */
6596                         .start  = vma->vm_start,
6597                         .len    = vma->vm_end - vma->vm_start,
6598                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6599                 },
6600                 /* .maj (attr_mmap2 only) */
6601                 /* .min (attr_mmap2 only) */
6602                 /* .ino (attr_mmap2 only) */
6603                 /* .ino_generation (attr_mmap2 only) */
6604                 /* .prot (attr_mmap2 only) */
6605                 /* .flags (attr_mmap2 only) */
6606         };
6607
6608         perf_addr_filters_adjust(vma);
6609         perf_event_mmap_event(&mmap_event);
6610 }
6611
6612 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6613                           unsigned long size, u64 flags)
6614 {
6615         struct perf_output_handle handle;
6616         struct perf_sample_data sample;
6617         struct perf_aux_event {
6618                 struct perf_event_header        header;
6619                 u64                             offset;
6620                 u64                             size;
6621                 u64                             flags;
6622         } rec = {
6623                 .header = {
6624                         .type = PERF_RECORD_AUX,
6625                         .misc = 0,
6626                         .size = sizeof(rec),
6627                 },
6628                 .offset         = head,
6629                 .size           = size,
6630                 .flags          = flags,
6631         };
6632         int ret;
6633
6634         perf_event_header__init_id(&rec.header, &sample, event);
6635         ret = perf_output_begin(&handle, event, rec.header.size);
6636
6637         if (ret)
6638                 return;
6639
6640         perf_output_put(&handle, rec);
6641         perf_event__output_id_sample(event, &handle, &sample);
6642
6643         perf_output_end(&handle);
6644 }
6645
6646 /*
6647  * Lost/dropped samples logging
6648  */
6649 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6650 {
6651         struct perf_output_handle handle;
6652         struct perf_sample_data sample;
6653         int ret;
6654
6655         struct {
6656                 struct perf_event_header        header;
6657                 u64                             lost;
6658         } lost_samples_event = {
6659                 .header = {
6660                         .type = PERF_RECORD_LOST_SAMPLES,
6661                         .misc = 0,
6662                         .size = sizeof(lost_samples_event),
6663                 },
6664                 .lost           = lost,
6665         };
6666
6667         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6668
6669         ret = perf_output_begin(&handle, event,
6670                                 lost_samples_event.header.size);
6671         if (ret)
6672                 return;
6673
6674         perf_output_put(&handle, lost_samples_event);
6675         perf_event__output_id_sample(event, &handle, &sample);
6676         perf_output_end(&handle);
6677 }
6678
6679 /*
6680  * context_switch tracking
6681  */
6682
6683 struct perf_switch_event {
6684         struct task_struct      *task;
6685         struct task_struct      *next_prev;
6686
6687         struct {
6688                 struct perf_event_header        header;
6689                 u32                             next_prev_pid;
6690                 u32                             next_prev_tid;
6691         } event_id;
6692 };
6693
6694 static int perf_event_switch_match(struct perf_event *event)
6695 {
6696         return event->attr.context_switch;
6697 }
6698
6699 static void perf_event_switch_output(struct perf_event *event, void *data)
6700 {
6701         struct perf_switch_event *se = data;
6702         struct perf_output_handle handle;
6703         struct perf_sample_data sample;
6704         int ret;
6705
6706         if (!perf_event_switch_match(event))
6707                 return;
6708
6709         /* Only CPU-wide events are allowed to see next/prev pid/tid */
6710         if (event->ctx->task) {
6711                 se->event_id.header.type = PERF_RECORD_SWITCH;
6712                 se->event_id.header.size = sizeof(se->event_id.header);
6713         } else {
6714                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6715                 se->event_id.header.size = sizeof(se->event_id);
6716                 se->event_id.next_prev_pid =
6717                                         perf_event_pid(event, se->next_prev);
6718                 se->event_id.next_prev_tid =
6719                                         perf_event_tid(event, se->next_prev);
6720         }
6721
6722         perf_event_header__init_id(&se->event_id.header, &sample, event);
6723
6724         ret = perf_output_begin(&handle, event, se->event_id.header.size);
6725         if (ret)
6726                 return;
6727
6728         if (event->ctx->task)
6729                 perf_output_put(&handle, se->event_id.header);
6730         else
6731                 perf_output_put(&handle, se->event_id);
6732
6733         perf_event__output_id_sample(event, &handle, &sample);
6734
6735         perf_output_end(&handle);
6736 }
6737
6738 static void perf_event_switch(struct task_struct *task,
6739                               struct task_struct *next_prev, bool sched_in)
6740 {
6741         struct perf_switch_event switch_event;
6742
6743         /* N.B. caller checks nr_switch_events != 0 */
6744
6745         switch_event = (struct perf_switch_event){
6746                 .task           = task,
6747                 .next_prev      = next_prev,
6748                 .event_id       = {
6749                         .header = {
6750                                 /* .type */
6751                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6752                                 /* .size */
6753                         },
6754                         /* .next_prev_pid */
6755                         /* .next_prev_tid */
6756                 },
6757         };
6758
6759         perf_event_aux(perf_event_switch_output,
6760                        &switch_event,
6761                        NULL);
6762 }
6763
6764 /*
6765  * IRQ throttle logging
6766  */
6767
6768 static void perf_log_throttle(struct perf_event *event, int enable)
6769 {
6770         struct perf_output_handle handle;
6771         struct perf_sample_data sample;
6772         int ret;
6773
6774         struct {
6775                 struct perf_event_header        header;
6776                 u64                             time;
6777                 u64                             id;
6778                 u64                             stream_id;
6779         } throttle_event = {
6780                 .header = {
6781                         .type = PERF_RECORD_THROTTLE,
6782                         .misc = 0,
6783                         .size = sizeof(throttle_event),
6784                 },
6785                 .time           = perf_event_clock(event),
6786                 .id             = primary_event_id(event),
6787                 .stream_id      = event->id,
6788         };
6789
6790         if (enable)
6791                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6792
6793         perf_event_header__init_id(&throttle_event.header, &sample, event);
6794
6795         ret = perf_output_begin(&handle, event,
6796                                 throttle_event.header.size);
6797         if (ret)
6798                 return;
6799
6800         perf_output_put(&handle, throttle_event);
6801         perf_event__output_id_sample(event, &handle, &sample);
6802         perf_output_end(&handle);
6803 }
6804
6805 static void perf_log_itrace_start(struct perf_event *event)
6806 {
6807         struct perf_output_handle handle;
6808         struct perf_sample_data sample;
6809         struct perf_aux_event {
6810                 struct perf_event_header        header;
6811                 u32                             pid;
6812                 u32                             tid;
6813         } rec;
6814         int ret;
6815
6816         if (event->parent)
6817                 event = event->parent;
6818
6819         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6820             event->hw.itrace_started)
6821                 return;
6822
6823         rec.header.type = PERF_RECORD_ITRACE_START;
6824         rec.header.misc = 0;
6825         rec.header.size = sizeof(rec);
6826         rec.pid = perf_event_pid(event, current);
6827         rec.tid = perf_event_tid(event, current);
6828
6829         perf_event_header__init_id(&rec.header, &sample, event);
6830         ret = perf_output_begin(&handle, event, rec.header.size);
6831
6832         if (ret)
6833                 return;
6834
6835         perf_output_put(&handle, rec);
6836         perf_event__output_id_sample(event, &handle, &sample);
6837
6838         perf_output_end(&handle);
6839 }
6840
6841 /*
6842  * Generic event overflow handling, sampling.
6843  */
6844
6845 static int __perf_event_overflow(struct perf_event *event,
6846                                    int throttle, struct perf_sample_data *data,
6847                                    struct pt_regs *regs)
6848 {
6849         int events = atomic_read(&event->event_limit);
6850         struct hw_perf_event *hwc = &event->hw;
6851         u64 seq;
6852         int ret = 0;
6853
6854         /*
6855          * Non-sampling counters might still use the PMI to fold short
6856          * hardware counters, ignore those.
6857          */
6858         if (unlikely(!is_sampling_event(event)))
6859                 return 0;
6860
6861         seq = __this_cpu_read(perf_throttled_seq);
6862         if (seq != hwc->interrupts_seq) {
6863                 hwc->interrupts_seq = seq;
6864                 hwc->interrupts = 1;
6865         } else {
6866                 hwc->interrupts++;
6867                 if (unlikely(throttle
6868                              && hwc->interrupts >= max_samples_per_tick)) {
6869                         __this_cpu_inc(perf_throttled_count);
6870                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
6871                         hwc->interrupts = MAX_INTERRUPTS;
6872                         perf_log_throttle(event, 0);
6873                         ret = 1;
6874                 }
6875         }
6876
6877         if (event->attr.freq) {
6878                 u64 now = perf_clock();
6879                 s64 delta = now - hwc->freq_time_stamp;
6880
6881                 hwc->freq_time_stamp = now;
6882
6883                 if (delta > 0 && delta < 2*TICK_NSEC)
6884                         perf_adjust_period(event, delta, hwc->last_period, true);
6885         }
6886
6887         /*
6888          * XXX event_limit might not quite work as expected on inherited
6889          * events
6890          */
6891
6892         event->pending_kill = POLL_IN;
6893         if (events && atomic_dec_and_test(&event->event_limit)) {
6894                 ret = 1;
6895                 event->pending_kill = POLL_HUP;
6896                 event->pending_disable = 1;
6897                 irq_work_queue(&event->pending);
6898         }
6899
6900         event->overflow_handler(event, data, regs);
6901
6902         if (*perf_event_fasync(event) && event->pending_kill) {
6903                 event->pending_wakeup = 1;
6904                 irq_work_queue(&event->pending);
6905         }
6906
6907         return ret;
6908 }
6909
6910 int perf_event_overflow(struct perf_event *event,
6911                           struct perf_sample_data *data,
6912                           struct pt_regs *regs)
6913 {
6914         return __perf_event_overflow(event, 1, data, regs);
6915 }
6916
6917 /*
6918  * Generic software event infrastructure
6919  */
6920
6921 struct swevent_htable {
6922         struct swevent_hlist            *swevent_hlist;
6923         struct mutex                    hlist_mutex;
6924         int                             hlist_refcount;
6925
6926         /* Recursion avoidance in each contexts */
6927         int                             recursion[PERF_NR_CONTEXTS];
6928 };
6929
6930 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6931
6932 /*
6933  * We directly increment event->count and keep a second value in
6934  * event->hw.period_left to count intervals. This period event
6935  * is kept in the range [-sample_period, 0] so that we can use the
6936  * sign as trigger.
6937  */
6938
6939 u64 perf_swevent_set_period(struct perf_event *event)
6940 {
6941         struct hw_perf_event *hwc = &event->hw;
6942         u64 period = hwc->last_period;
6943         u64 nr, offset;
6944         s64 old, val;
6945
6946         hwc->last_period = hwc->sample_period;
6947
6948 again:
6949         old = val = local64_read(&hwc->period_left);
6950         if (val < 0)
6951                 return 0;
6952
6953         nr = div64_u64(period + val, period);
6954         offset = nr * period;
6955         val -= offset;
6956         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6957                 goto again;
6958
6959         return nr;
6960 }
6961
6962 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6963                                     struct perf_sample_data *data,
6964                                     struct pt_regs *regs)
6965 {
6966         struct hw_perf_event *hwc = &event->hw;
6967         int throttle = 0;
6968
6969         if (!overflow)
6970                 overflow = perf_swevent_set_period(event);
6971
6972         if (hwc->interrupts == MAX_INTERRUPTS)
6973                 return;
6974
6975         for (; overflow; overflow--) {
6976                 if (__perf_event_overflow(event, throttle,
6977                                             data, regs)) {
6978                         /*
6979                          * We inhibit the overflow from happening when
6980                          * hwc->interrupts == MAX_INTERRUPTS.
6981                          */
6982                         break;
6983                 }
6984                 throttle = 1;
6985         }
6986 }
6987
6988 static void perf_swevent_event(struct perf_event *event, u64 nr,
6989                                struct perf_sample_data *data,
6990                                struct pt_regs *regs)
6991 {
6992         struct hw_perf_event *hwc = &event->hw;
6993
6994         local64_add(nr, &event->count);
6995
6996         if (!regs)
6997                 return;
6998
6999         if (!is_sampling_event(event))
7000                 return;
7001
7002         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7003                 data->period = nr;
7004                 return perf_swevent_overflow(event, 1, data, regs);
7005         } else
7006                 data->period = event->hw.last_period;
7007
7008         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7009                 return perf_swevent_overflow(event, 1, data, regs);
7010
7011         if (local64_add_negative(nr, &hwc->period_left))
7012                 return;
7013
7014         perf_swevent_overflow(event, 0, data, regs);
7015 }
7016
7017 static int perf_exclude_event(struct perf_event *event,
7018                               struct pt_regs *regs)
7019 {
7020         if (event->hw.state & PERF_HES_STOPPED)
7021                 return 1;
7022
7023         if (regs) {
7024                 if (event->attr.exclude_user && user_mode(regs))
7025                         return 1;
7026
7027                 if (event->attr.exclude_kernel && !user_mode(regs))
7028                         return 1;
7029         }
7030
7031         return 0;
7032 }
7033
7034 static int perf_swevent_match(struct perf_event *event,
7035                                 enum perf_type_id type,
7036                                 u32 event_id,
7037                                 struct perf_sample_data *data,
7038                                 struct pt_regs *regs)
7039 {
7040         if (event->attr.type != type)
7041                 return 0;
7042
7043         if (event->attr.config != event_id)
7044                 return 0;
7045
7046         if (perf_exclude_event(event, regs))
7047                 return 0;
7048
7049         return 1;
7050 }
7051
7052 static inline u64 swevent_hash(u64 type, u32 event_id)
7053 {
7054         u64 val = event_id | (type << 32);
7055
7056         return hash_64(val, SWEVENT_HLIST_BITS);
7057 }
7058
7059 static inline struct hlist_head *
7060 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7061 {
7062         u64 hash = swevent_hash(type, event_id);
7063
7064         return &hlist->heads[hash];
7065 }
7066
7067 /* For the read side: events when they trigger */
7068 static inline struct hlist_head *
7069 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7070 {
7071         struct swevent_hlist *hlist;
7072
7073         hlist = rcu_dereference(swhash->swevent_hlist);
7074         if (!hlist)
7075                 return NULL;
7076
7077         return __find_swevent_head(hlist, type, event_id);
7078 }
7079
7080 /* For the event head insertion and removal in the hlist */
7081 static inline struct hlist_head *
7082 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7083 {
7084         struct swevent_hlist *hlist;
7085         u32 event_id = event->attr.config;
7086         u64 type = event->attr.type;
7087
7088         /*
7089          * Event scheduling is always serialized against hlist allocation
7090          * and release. Which makes the protected version suitable here.
7091          * The context lock guarantees that.
7092          */
7093         hlist = rcu_dereference_protected(swhash->swevent_hlist,
7094                                           lockdep_is_held(&event->ctx->lock));
7095         if (!hlist)
7096                 return NULL;
7097
7098         return __find_swevent_head(hlist, type, event_id);
7099 }
7100
7101 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7102                                     u64 nr,
7103                                     struct perf_sample_data *data,
7104                                     struct pt_regs *regs)
7105 {
7106         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7107         struct perf_event *event;
7108         struct hlist_head *head;
7109
7110         rcu_read_lock();
7111         head = find_swevent_head_rcu(swhash, type, event_id);
7112         if (!head)
7113                 goto end;
7114
7115         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7116                 if (perf_swevent_match(event, type, event_id, data, regs))
7117                         perf_swevent_event(event, nr, data, regs);
7118         }
7119 end:
7120         rcu_read_unlock();
7121 }
7122
7123 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7124
7125 int perf_swevent_get_recursion_context(void)
7126 {
7127         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7128
7129         return get_recursion_context(swhash->recursion);
7130 }
7131 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7132
7133 inline void perf_swevent_put_recursion_context(int rctx)
7134 {
7135         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7136
7137         put_recursion_context(swhash->recursion, rctx);
7138 }
7139
7140 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7141 {
7142         struct perf_sample_data data;
7143
7144         if (WARN_ON_ONCE(!regs))
7145                 return;
7146
7147         perf_sample_data_init(&data, addr, 0);
7148         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7149 }
7150
7151 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7152 {
7153         int rctx;
7154
7155         preempt_disable_notrace();
7156         rctx = perf_swevent_get_recursion_context();
7157         if (unlikely(rctx < 0))
7158                 goto fail;
7159
7160         ___perf_sw_event(event_id, nr, regs, addr);
7161
7162         perf_swevent_put_recursion_context(rctx);
7163 fail:
7164         preempt_enable_notrace();
7165 }
7166
7167 static void perf_swevent_read(struct perf_event *event)
7168 {
7169 }
7170
7171 static int perf_swevent_add(struct perf_event *event, int flags)
7172 {
7173         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7174         struct hw_perf_event *hwc = &event->hw;
7175         struct hlist_head *head;
7176
7177         if (is_sampling_event(event)) {
7178                 hwc->last_period = hwc->sample_period;
7179                 perf_swevent_set_period(event);
7180         }
7181
7182         hwc->state = !(flags & PERF_EF_START);
7183
7184         head = find_swevent_head(swhash, event);
7185         if (WARN_ON_ONCE(!head))
7186                 return -EINVAL;
7187
7188         hlist_add_head_rcu(&event->hlist_entry, head);
7189         perf_event_update_userpage(event);
7190
7191         return 0;
7192 }
7193
7194 static void perf_swevent_del(struct perf_event *event, int flags)
7195 {
7196         hlist_del_rcu(&event->hlist_entry);
7197 }
7198
7199 static void perf_swevent_start(struct perf_event *event, int flags)
7200 {
7201         event->hw.state = 0;
7202 }
7203
7204 static void perf_swevent_stop(struct perf_event *event, int flags)
7205 {
7206         event->hw.state = PERF_HES_STOPPED;
7207 }
7208
7209 /* Deref the hlist from the update side */
7210 static inline struct swevent_hlist *
7211 swevent_hlist_deref(struct swevent_htable *swhash)
7212 {
7213         return rcu_dereference_protected(swhash->swevent_hlist,
7214                                          lockdep_is_held(&swhash->hlist_mutex));
7215 }
7216
7217 static void swevent_hlist_release(struct swevent_htable *swhash)
7218 {
7219         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7220
7221         if (!hlist)
7222                 return;
7223
7224         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7225         kfree_rcu(hlist, rcu_head);
7226 }
7227
7228 static void swevent_hlist_put_cpu(int cpu)
7229 {
7230         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7231
7232         mutex_lock(&swhash->hlist_mutex);
7233
7234         if (!--swhash->hlist_refcount)
7235                 swevent_hlist_release(swhash);
7236
7237         mutex_unlock(&swhash->hlist_mutex);
7238 }
7239
7240 static void swevent_hlist_put(void)
7241 {
7242         int cpu;
7243
7244         for_each_possible_cpu(cpu)
7245                 swevent_hlist_put_cpu(cpu);
7246 }
7247
7248 static int swevent_hlist_get_cpu(int cpu)
7249 {
7250         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7251         int err = 0;
7252
7253         mutex_lock(&swhash->hlist_mutex);
7254         if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
7255                 struct swevent_hlist *hlist;
7256
7257                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7258                 if (!hlist) {
7259                         err = -ENOMEM;
7260                         goto exit;
7261                 }
7262                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7263         }
7264         swhash->hlist_refcount++;
7265 exit:
7266         mutex_unlock(&swhash->hlist_mutex);
7267
7268         return err;
7269 }
7270
7271 static int swevent_hlist_get(void)
7272 {
7273         int err, cpu, failed_cpu;
7274
7275         get_online_cpus();
7276         for_each_possible_cpu(cpu) {
7277                 err = swevent_hlist_get_cpu(cpu);
7278                 if (err) {
7279                         failed_cpu = cpu;
7280                         goto fail;
7281                 }
7282         }
7283         put_online_cpus();
7284
7285         return 0;
7286 fail:
7287         for_each_possible_cpu(cpu) {
7288                 if (cpu == failed_cpu)
7289                         break;
7290                 swevent_hlist_put_cpu(cpu);
7291         }
7292
7293         put_online_cpus();
7294         return err;
7295 }
7296
7297 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7298
7299 static void sw_perf_event_destroy(struct perf_event *event)
7300 {
7301         u64 event_id = event->attr.config;
7302
7303         WARN_ON(event->parent);
7304
7305         static_key_slow_dec(&perf_swevent_enabled[event_id]);
7306         swevent_hlist_put();
7307 }
7308
7309 static int perf_swevent_init(struct perf_event *event)
7310 {
7311         u64 event_id = event->attr.config;
7312
7313         if (event->attr.type != PERF_TYPE_SOFTWARE)
7314                 return -ENOENT;
7315
7316         /*
7317          * no branch sampling for software events
7318          */
7319         if (has_branch_stack(event))
7320                 return -EOPNOTSUPP;
7321
7322         switch (event_id) {
7323         case PERF_COUNT_SW_CPU_CLOCK:
7324         case PERF_COUNT_SW_TASK_CLOCK:
7325                 return -ENOENT;
7326
7327         default:
7328                 break;
7329         }
7330
7331         if (event_id >= PERF_COUNT_SW_MAX)
7332                 return -ENOENT;
7333
7334         if (!event->parent) {
7335                 int err;
7336
7337                 err = swevent_hlist_get();
7338                 if (err)
7339                         return err;
7340
7341                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
7342                 event->destroy = sw_perf_event_destroy;
7343         }
7344
7345         return 0;
7346 }
7347
7348 static struct pmu perf_swevent = {
7349         .task_ctx_nr    = perf_sw_context,
7350
7351         .capabilities   = PERF_PMU_CAP_NO_NMI,
7352
7353         .event_init     = perf_swevent_init,
7354         .add            = perf_swevent_add,
7355         .del            = perf_swevent_del,
7356         .start          = perf_swevent_start,
7357         .stop           = perf_swevent_stop,
7358         .read           = perf_swevent_read,
7359 };
7360
7361 #ifdef CONFIG_EVENT_TRACING
7362
7363 static int perf_tp_filter_match(struct perf_event *event,
7364                                 struct perf_sample_data *data)
7365 {
7366         void *record = data->raw->data;
7367
7368         /* only top level events have filters set */
7369         if (event->parent)
7370                 event = event->parent;
7371
7372         if (likely(!event->filter) || filter_match_preds(event->filter, record))
7373                 return 1;
7374         return 0;
7375 }
7376
7377 static int perf_tp_event_match(struct perf_event *event,
7378                                 struct perf_sample_data *data,
7379                                 struct pt_regs *regs)
7380 {
7381         if (event->hw.state & PERF_HES_STOPPED)
7382                 return 0;
7383         /*
7384          * All tracepoints are from kernel-space.
7385          */
7386         if (event->attr.exclude_kernel)
7387                 return 0;
7388
7389         if (!perf_tp_filter_match(event, data))
7390                 return 0;
7391
7392         return 1;
7393 }
7394
7395 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
7396                    struct pt_regs *regs, struct hlist_head *head, int rctx,
7397                    struct task_struct *task)
7398 {
7399         struct perf_sample_data data;
7400         struct perf_event *event;
7401
7402         struct perf_raw_record raw = {
7403                 .size = entry_size,
7404                 .data = record,
7405         };
7406
7407         perf_sample_data_init(&data, addr, 0);
7408         data.raw = &raw;
7409
7410         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7411                 if (perf_tp_event_match(event, &data, regs))
7412                         perf_swevent_event(event, count, &data, regs);
7413         }
7414
7415         /*
7416          * If we got specified a target task, also iterate its context and
7417          * deliver this event there too.
7418          */
7419         if (task && task != current) {
7420                 struct perf_event_context *ctx;
7421                 struct trace_entry *entry = record;
7422
7423                 rcu_read_lock();
7424                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7425                 if (!ctx)
7426                         goto unlock;
7427
7428                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7429                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7430                                 continue;
7431                         if (event->attr.config != entry->type)
7432                                 continue;
7433                         if (perf_tp_event_match(event, &data, regs))
7434                                 perf_swevent_event(event, count, &data, regs);
7435                 }
7436 unlock:
7437                 rcu_read_unlock();
7438         }
7439
7440         perf_swevent_put_recursion_context(rctx);
7441 }
7442 EXPORT_SYMBOL_GPL(perf_tp_event);
7443
7444 static void tp_perf_event_destroy(struct perf_event *event)
7445 {
7446         perf_trace_destroy(event);
7447 }
7448
7449 static int perf_tp_event_init(struct perf_event *event)
7450 {
7451         int err;
7452
7453         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7454                 return -ENOENT;
7455
7456         /*
7457          * no branch sampling for tracepoint events
7458          */
7459         if (has_branch_stack(event))
7460                 return -EOPNOTSUPP;
7461
7462         err = perf_trace_init(event);
7463         if (err)
7464                 return err;
7465
7466         event->destroy = tp_perf_event_destroy;
7467
7468         return 0;
7469 }
7470
7471 static struct pmu perf_tracepoint = {
7472         .task_ctx_nr    = perf_sw_context,
7473
7474         .event_init     = perf_tp_event_init,
7475         .add            = perf_trace_add,
7476         .del            = perf_trace_del,
7477         .start          = perf_swevent_start,
7478         .stop           = perf_swevent_stop,
7479         .read           = perf_swevent_read,
7480 };
7481
7482 static inline void perf_tp_register(void)
7483 {
7484         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7485 }
7486
7487 static void perf_event_free_filter(struct perf_event *event)
7488 {
7489         ftrace_profile_free_filter(event);
7490 }
7491
7492 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7493 {
7494         struct bpf_prog *prog;
7495
7496         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7497                 return -EINVAL;
7498
7499         if (event->tp_event->prog)
7500                 return -EEXIST;
7501
7502         if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
7503                 /* bpf programs can only be attached to u/kprobes */
7504                 return -EINVAL;
7505
7506         prog = bpf_prog_get(prog_fd);
7507         if (IS_ERR(prog))
7508                 return PTR_ERR(prog);
7509
7510         if (prog->type != BPF_PROG_TYPE_KPROBE) {
7511                 /* valid fd, but invalid bpf program type */
7512                 bpf_prog_put(prog);
7513                 return -EINVAL;
7514         }
7515
7516         event->tp_event->prog = prog;
7517
7518         return 0;
7519 }
7520
7521 static void perf_event_free_bpf_prog(struct perf_event *event)
7522 {
7523         struct bpf_prog *prog;
7524
7525         if (!event->tp_event)
7526                 return;
7527
7528         prog = event->tp_event->prog;
7529         if (prog) {
7530                 event->tp_event->prog = NULL;
7531                 bpf_prog_put(prog);
7532         }
7533 }
7534
7535 #else
7536
7537 static inline void perf_tp_register(void)
7538 {
7539 }
7540
7541 static void perf_event_free_filter(struct perf_event *event)
7542 {
7543 }
7544
7545 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7546 {
7547         return -ENOENT;
7548 }
7549
7550 static void perf_event_free_bpf_prog(struct perf_event *event)
7551 {
7552 }
7553 #endif /* CONFIG_EVENT_TRACING */
7554
7555 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7556 void perf_bp_event(struct perf_event *bp, void *data)
7557 {
7558         struct perf_sample_data sample;
7559         struct pt_regs *regs = data;
7560
7561         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7562
7563         if (!bp->hw.state && !perf_exclude_event(bp, regs))
7564                 perf_swevent_event(bp, 1, &sample, regs);
7565 }
7566 #endif
7567
7568 /*
7569  * Allocate a new address filter
7570  */
7571 static struct perf_addr_filter *
7572 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
7573 {
7574         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
7575         struct perf_addr_filter *filter;
7576
7577         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
7578         if (!filter)
7579                 return NULL;
7580
7581         INIT_LIST_HEAD(&filter->entry);
7582         list_add_tail(&filter->entry, filters);
7583
7584         return filter;
7585 }
7586
7587 static void free_filters_list(struct list_head *filters)
7588 {
7589         struct perf_addr_filter *filter, *iter;
7590
7591         list_for_each_entry_safe(filter, iter, filters, entry) {
7592                 if (filter->inode)
7593                         iput(filter->inode);
7594                 list_del(&filter->entry);
7595                 kfree(filter);
7596         }
7597 }
7598
7599 /*
7600  * Free existing address filters and optionally install new ones
7601  */
7602 static void perf_addr_filters_splice(struct perf_event *event,
7603                                      struct list_head *head)
7604 {
7605         unsigned long flags;
7606         LIST_HEAD(list);
7607
7608         if (!has_addr_filter(event))
7609                 return;
7610
7611         /* don't bother with children, they don't have their own filters */
7612         if (event->parent)
7613                 return;
7614
7615         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
7616
7617         list_splice_init(&event->addr_filters.list, &list);
7618         if (head)
7619                 list_splice(head, &event->addr_filters.list);
7620
7621         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
7622
7623         free_filters_list(&list);
7624 }
7625
7626 /*
7627  * Scan through mm's vmas and see if one of them matches the
7628  * @filter; if so, adjust filter's address range.
7629  * Called with mm::mmap_sem down for reading.
7630  */
7631 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
7632                                             struct mm_struct *mm)
7633 {
7634         struct vm_area_struct *vma;
7635
7636         for (vma = mm->mmap; vma; vma = vma->vm_next) {
7637                 struct file *file = vma->vm_file;
7638                 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7639                 unsigned long vma_size = vma->vm_end - vma->vm_start;
7640
7641                 if (!file)
7642                         continue;
7643
7644                 if (!perf_addr_filter_match(filter, file, off, vma_size))
7645                         continue;
7646
7647                 return vma->vm_start;
7648         }
7649
7650         return 0;
7651 }
7652
7653 /*
7654  * Update event's address range filters based on the
7655  * task's existing mappings, if any.
7656  */
7657 static void perf_event_addr_filters_apply(struct perf_event *event)
7658 {
7659         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7660         struct task_struct *task = READ_ONCE(event->ctx->task);
7661         struct perf_addr_filter *filter;
7662         struct mm_struct *mm = NULL;
7663         unsigned int count = 0;
7664         unsigned long flags;
7665
7666         /*
7667          * We may observe TASK_TOMBSTONE, which means that the event tear-down
7668          * will stop on the parent's child_mutex that our caller is also holding
7669          */
7670         if (task == TASK_TOMBSTONE)
7671                 return;
7672
7673         mm = get_task_mm(event->ctx->task);
7674         if (!mm)
7675                 goto restart;
7676
7677         down_read(&mm->mmap_sem);
7678
7679         raw_spin_lock_irqsave(&ifh->lock, flags);
7680         list_for_each_entry(filter, &ifh->list, entry) {
7681                 event->addr_filters_offs[count] = 0;
7682
7683                 if (perf_addr_filter_needs_mmap(filter))
7684                         event->addr_filters_offs[count] =
7685                                 perf_addr_filter_apply(filter, mm);
7686
7687                 count++;
7688         }
7689
7690         event->addr_filters_gen++;
7691         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7692
7693         up_read(&mm->mmap_sem);
7694
7695         mmput(mm);
7696
7697 restart:
7698         perf_event_restart(event);
7699 }
7700
7701 /*
7702  * Address range filtering: limiting the data to certain
7703  * instruction address ranges. Filters are ioctl()ed to us from
7704  * userspace as ascii strings.
7705  *
7706  * Filter string format:
7707  *
7708  * ACTION RANGE_SPEC
7709  * where ACTION is one of the
7710  *  * "filter": limit the trace to this region
7711  *  * "start": start tracing from this address
7712  *  * "stop": stop tracing at this address/region;
7713  * RANGE_SPEC is
7714  *  * for kernel addresses: <start address>[/<size>]
7715  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
7716  *
7717  * if <size> is not specified, the range is treated as a single address.
7718  */
7719 enum {
7720         IF_ACT_FILTER,
7721         IF_ACT_START,
7722         IF_ACT_STOP,
7723         IF_SRC_FILE,
7724         IF_SRC_KERNEL,
7725         IF_SRC_FILEADDR,
7726         IF_SRC_KERNELADDR,
7727 };
7728
7729 enum {
7730         IF_STATE_ACTION = 0,
7731         IF_STATE_SOURCE,
7732         IF_STATE_END,
7733 };
7734
7735 static const match_table_t if_tokens = {
7736         { IF_ACT_FILTER,        "filter" },
7737         { IF_ACT_START,         "start" },
7738         { IF_ACT_STOP,          "stop" },
7739         { IF_SRC_FILE,          "%u/%u@%s" },
7740         { IF_SRC_KERNEL,        "%u/%u" },
7741         { IF_SRC_FILEADDR,      "%u@%s" },
7742         { IF_SRC_KERNELADDR,    "%u" },
7743 };
7744
7745 /*
7746  * Address filter string parser
7747  */
7748 static int
7749 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
7750                              struct list_head *filters)
7751 {
7752         struct perf_addr_filter *filter = NULL;
7753         char *start, *orig, *filename = NULL;
7754         struct path path;
7755         substring_t args[MAX_OPT_ARGS];
7756         int state = IF_STATE_ACTION, token;
7757         unsigned int kernel = 0;
7758         int ret = -EINVAL;
7759
7760         orig = fstr = kstrdup(fstr, GFP_KERNEL);
7761         if (!fstr)
7762                 return -ENOMEM;
7763
7764         while ((start = strsep(&fstr, " ,\n")) != NULL) {
7765                 ret = -EINVAL;
7766
7767                 if (!*start)
7768                         continue;
7769
7770                 /* filter definition begins */
7771                 if (state == IF_STATE_ACTION) {
7772                         filter = perf_addr_filter_new(event, filters);
7773                         if (!filter)
7774                                 goto fail;
7775                 }
7776
7777                 token = match_token(start, if_tokens, args);
7778                 switch (token) {
7779                 case IF_ACT_FILTER:
7780                 case IF_ACT_START:
7781                         filter->filter = 1;
7782
7783                 case IF_ACT_STOP:
7784                         if (state != IF_STATE_ACTION)
7785                                 goto fail;
7786
7787                         state = IF_STATE_SOURCE;
7788                         break;
7789
7790                 case IF_SRC_KERNELADDR:
7791                 case IF_SRC_KERNEL:
7792                         kernel = 1;
7793
7794                 case IF_SRC_FILEADDR:
7795                 case IF_SRC_FILE:
7796                         if (state != IF_STATE_SOURCE)
7797                                 goto fail;
7798
7799                         if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
7800                                 filter->range = 1;
7801
7802                         *args[0].to = 0;
7803                         ret = kstrtoul(args[0].from, 0, &filter->offset);
7804                         if (ret)
7805                                 goto fail;
7806
7807                         if (filter->range) {
7808                                 *args[1].to = 0;
7809                                 ret = kstrtoul(args[1].from, 0, &filter->size);
7810                                 if (ret)
7811                                         goto fail;
7812                         }
7813
7814                         if (token == IF_SRC_FILE) {
7815                                 filename = match_strdup(&args[2]);
7816                                 if (!filename) {
7817                                         ret = -ENOMEM;
7818                                         goto fail;
7819                                 }
7820                         }
7821
7822                         state = IF_STATE_END;
7823                         break;
7824
7825                 default:
7826                         goto fail;
7827                 }
7828
7829                 /*
7830                  * Filter definition is fully parsed, validate and install it.
7831                  * Make sure that it doesn't contradict itself or the event's
7832                  * attribute.
7833                  */
7834                 if (state == IF_STATE_END) {
7835                         if (kernel && event->attr.exclude_kernel)
7836                                 goto fail;
7837
7838                         if (!kernel) {
7839                                 if (!filename)
7840                                         goto fail;
7841
7842                                 /* look up the path and grab its inode */
7843                                 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
7844                                 if (ret)
7845                                         goto fail_free_name;
7846
7847                                 filter->inode = igrab(d_inode(path.dentry));
7848                                 path_put(&path);
7849                                 kfree(filename);
7850                                 filename = NULL;
7851
7852                                 ret = -EINVAL;
7853                                 if (!filter->inode ||
7854                                     !S_ISREG(filter->inode->i_mode))
7855                                         /* free_filters_list() will iput() */
7856                                         goto fail;
7857                         }
7858
7859                         /* ready to consume more filters */
7860                         state = IF_STATE_ACTION;
7861                         filter = NULL;
7862                 }
7863         }
7864
7865         if (state != IF_STATE_ACTION)
7866                 goto fail;
7867
7868         kfree(orig);
7869
7870         return 0;
7871
7872 fail_free_name:
7873         kfree(filename);
7874 fail:
7875         free_filters_list(filters);
7876         kfree(orig);
7877
7878         return ret;
7879 }
7880
7881 static int
7882 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
7883 {
7884         LIST_HEAD(filters);
7885         int ret;
7886
7887         /*
7888          * Since this is called in perf_ioctl() path, we're already holding
7889          * ctx::mutex.
7890          */
7891         lockdep_assert_held(&event->ctx->mutex);
7892
7893         if (WARN_ON_ONCE(event->parent))
7894                 return -EINVAL;
7895
7896         /*
7897          * For now, we only support filtering in per-task events; doing so
7898          * for CPU-wide events requires additional context switching trickery,
7899          * since same object code will be mapped at different virtual
7900          * addresses in different processes.
7901          */
7902         if (!event->ctx->task)
7903                 return -EOPNOTSUPP;
7904
7905         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
7906         if (ret)
7907                 return ret;
7908
7909         ret = event->pmu->addr_filters_validate(&filters);
7910         if (ret) {
7911                 free_filters_list(&filters);
7912                 return ret;
7913         }
7914
7915         /* remove existing filters, if any */
7916         perf_addr_filters_splice(event, &filters);
7917
7918         /* install new filters */
7919         perf_event_for_each_child(event, perf_event_addr_filters_apply);
7920
7921         return ret;
7922 }
7923
7924 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7925 {
7926         char *filter_str;
7927         int ret = -EINVAL;
7928
7929         if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
7930             !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
7931             !has_addr_filter(event))
7932                 return -EINVAL;
7933
7934         filter_str = strndup_user(arg, PAGE_SIZE);
7935         if (IS_ERR(filter_str))
7936                 return PTR_ERR(filter_str);
7937
7938         if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
7939             event->attr.type == PERF_TYPE_TRACEPOINT)
7940                 ret = ftrace_profile_set_filter(event, event->attr.config,
7941                                                 filter_str);
7942         else if (has_addr_filter(event))
7943                 ret = perf_event_set_addr_filter(event, filter_str);
7944
7945         kfree(filter_str);
7946         return ret;
7947 }
7948
7949 /*
7950  * hrtimer based swevent callback
7951  */
7952
7953 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7954 {
7955         enum hrtimer_restart ret = HRTIMER_RESTART;
7956         struct perf_sample_data data;
7957         struct pt_regs *regs;
7958         struct perf_event *event;
7959         u64 period;
7960
7961         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
7962
7963         if (event->state != PERF_EVENT_STATE_ACTIVE)
7964                 return HRTIMER_NORESTART;
7965
7966         event->pmu->read(event);
7967
7968         perf_sample_data_init(&data, 0, event->hw.last_period);
7969         regs = get_irq_regs();
7970
7971         if (regs && !perf_exclude_event(event, regs)) {
7972                 if (!(event->attr.exclude_idle && is_idle_task(current)))
7973                         if (__perf_event_overflow(event, 1, &data, regs))
7974                                 ret = HRTIMER_NORESTART;
7975         }
7976
7977         period = max_t(u64, 10000, event->hw.sample_period);
7978         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
7979
7980         return ret;
7981 }
7982
7983 static void perf_swevent_start_hrtimer(struct perf_event *event)
7984 {
7985         struct hw_perf_event *hwc = &event->hw;
7986         s64 period;
7987
7988         if (!is_sampling_event(event))
7989                 return;
7990
7991         period = local64_read(&hwc->period_left);
7992         if (period) {
7993                 if (period < 0)
7994                         period = 10000;
7995
7996                 local64_set(&hwc->period_left, 0);
7997         } else {
7998                 period = max_t(u64, 10000, hwc->sample_period);
7999         }
8000         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8001                       HRTIMER_MODE_REL_PINNED);
8002 }
8003
8004 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8005 {
8006         struct hw_perf_event *hwc = &event->hw;
8007
8008         if (is_sampling_event(event)) {
8009                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8010                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
8011
8012                 hrtimer_cancel(&hwc->hrtimer);
8013         }
8014 }
8015
8016 static void perf_swevent_init_hrtimer(struct perf_event *event)
8017 {
8018         struct hw_perf_event *hwc = &event->hw;
8019
8020         if (!is_sampling_event(event))
8021                 return;
8022
8023         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8024         hwc->hrtimer.function = perf_swevent_hrtimer;
8025
8026         /*
8027          * Since hrtimers have a fixed rate, we can do a static freq->period
8028          * mapping and avoid the whole period adjust feedback stuff.
8029          */
8030         if (event->attr.freq) {
8031                 long freq = event->attr.sample_freq;
8032
8033                 event->attr.sample_period = NSEC_PER_SEC / freq;
8034                 hwc->sample_period = event->attr.sample_period;
8035                 local64_set(&hwc->period_left, hwc->sample_period);
8036                 hwc->last_period = hwc->sample_period;
8037                 event->attr.freq = 0;
8038         }
8039 }
8040
8041 /*
8042  * Software event: cpu wall time clock
8043  */
8044
8045 static void cpu_clock_event_update(struct perf_event *event)
8046 {
8047         s64 prev;
8048         u64 now;
8049
8050         now = local_clock();
8051         prev = local64_xchg(&event->hw.prev_count, now);
8052         local64_add(now - prev, &event->count);
8053 }
8054
8055 static void cpu_clock_event_start(struct perf_event *event, int flags)
8056 {
8057         local64_set(&event->hw.prev_count, local_clock());
8058         perf_swevent_start_hrtimer(event);
8059 }
8060
8061 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8062 {
8063         perf_swevent_cancel_hrtimer(event);
8064         cpu_clock_event_update(event);
8065 }
8066
8067 static int cpu_clock_event_add(struct perf_event *event, int flags)
8068 {
8069         if (flags & PERF_EF_START)
8070                 cpu_clock_event_start(event, flags);
8071         perf_event_update_userpage(event);
8072
8073         return 0;
8074 }
8075
8076 static void cpu_clock_event_del(struct perf_event *event, int flags)
8077 {
8078         cpu_clock_event_stop(event, flags);
8079 }
8080
8081 static void cpu_clock_event_read(struct perf_event *event)
8082 {
8083         cpu_clock_event_update(event);
8084 }
8085
8086 static int cpu_clock_event_init(struct perf_event *event)
8087 {
8088         if (event->attr.type != PERF_TYPE_SOFTWARE)
8089                 return -ENOENT;
8090
8091         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8092                 return -ENOENT;
8093
8094         /*
8095          * no branch sampling for software events
8096          */
8097         if (has_branch_stack(event))
8098                 return -EOPNOTSUPP;
8099
8100         perf_swevent_init_hrtimer(event);
8101
8102         return 0;
8103 }
8104
8105 static struct pmu perf_cpu_clock = {
8106         .task_ctx_nr    = perf_sw_context,
8107
8108         .capabilities   = PERF_PMU_CAP_NO_NMI,
8109
8110         .event_init     = cpu_clock_event_init,
8111         .add            = cpu_clock_event_add,
8112         .del            = cpu_clock_event_del,
8113         .start          = cpu_clock_event_start,
8114         .stop           = cpu_clock_event_stop,
8115         .read           = cpu_clock_event_read,
8116 };
8117
8118 /*
8119  * Software event: task time clock
8120  */
8121
8122 static void task_clock_event_update(struct perf_event *event, u64 now)
8123 {
8124         u64 prev;
8125         s64 delta;
8126
8127         prev = local64_xchg(&event->hw.prev_count, now);
8128         delta = now - prev;
8129         local64_add(delta, &event->count);
8130 }
8131
8132 static void task_clock_event_start(struct perf_event *event, int flags)
8133 {
8134         local64_set(&event->hw.prev_count, event->ctx->time);
8135         perf_swevent_start_hrtimer(event);
8136 }
8137
8138 static void task_clock_event_stop(struct perf_event *event, int flags)
8139 {
8140         perf_swevent_cancel_hrtimer(event);
8141         task_clock_event_update(event, event->ctx->time);
8142 }
8143
8144 static int task_clock_event_add(struct perf_event *event, int flags)
8145 {
8146         if (flags & PERF_EF_START)
8147                 task_clock_event_start(event, flags);
8148         perf_event_update_userpage(event);
8149
8150         return 0;
8151 }
8152
8153 static void task_clock_event_del(struct perf_event *event, int flags)
8154 {
8155         task_clock_event_stop(event, PERF_EF_UPDATE);
8156 }
8157
8158 static void task_clock_event_read(struct perf_event *event)
8159 {
8160         u64 now = perf_clock();
8161         u64 delta = now - event->ctx->timestamp;
8162         u64 time = event->ctx->time + delta;
8163
8164         task_clock_event_update(event, time);
8165 }
8166
8167 static int task_clock_event_init(struct perf_event *event)
8168 {
8169         if (event->attr.type != PERF_TYPE_SOFTWARE)
8170                 return -ENOENT;
8171
8172         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8173                 return -ENOENT;
8174
8175         /*
8176          * no branch sampling for software events
8177          */
8178         if (has_branch_stack(event))
8179                 return -EOPNOTSUPP;
8180
8181         perf_swevent_init_hrtimer(event);
8182
8183         return 0;
8184 }
8185
8186 static struct pmu perf_task_clock = {
8187         .task_ctx_nr    = perf_sw_context,
8188
8189         .capabilities   = PERF_PMU_CAP_NO_NMI,
8190
8191         .event_init     = task_clock_event_init,
8192         .add            = task_clock_event_add,
8193         .del            = task_clock_event_del,
8194         .start          = task_clock_event_start,
8195         .stop           = task_clock_event_stop,
8196         .read           = task_clock_event_read,
8197 };
8198
8199 static void perf_pmu_nop_void(struct pmu *pmu)
8200 {
8201 }
8202
8203 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8204 {
8205 }
8206
8207 static int perf_pmu_nop_int(struct pmu *pmu)
8208 {
8209         return 0;
8210 }
8211
8212 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8213
8214 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8215 {
8216         __this_cpu_write(nop_txn_flags, flags);
8217
8218         if (flags & ~PERF_PMU_TXN_ADD)
8219                 return;
8220
8221         perf_pmu_disable(pmu);
8222 }
8223
8224 static int perf_pmu_commit_txn(struct pmu *pmu)
8225 {
8226         unsigned int flags = __this_cpu_read(nop_txn_flags);
8227
8228         __this_cpu_write(nop_txn_flags, 0);
8229
8230         if (flags & ~PERF_PMU_TXN_ADD)
8231                 return 0;
8232
8233         perf_pmu_enable(pmu);
8234         return 0;
8235 }
8236
8237 static void perf_pmu_cancel_txn(struct pmu *pmu)
8238 {
8239         unsigned int flags =  __this_cpu_read(nop_txn_flags);
8240
8241         __this_cpu_write(nop_txn_flags, 0);
8242
8243         if (flags & ~PERF_PMU_TXN_ADD)
8244                 return;
8245
8246         perf_pmu_enable(pmu);
8247 }
8248
8249 static int perf_event_idx_default(struct perf_event *event)
8250 {
8251         return 0;
8252 }
8253
8254 /*
8255  * Ensures all contexts with the same task_ctx_nr have the same
8256  * pmu_cpu_context too.
8257  */
8258 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8259 {
8260         struct pmu *pmu;
8261
8262         if (ctxn < 0)
8263                 return NULL;
8264
8265         list_for_each_entry(pmu, &pmus, entry) {
8266                 if (pmu->task_ctx_nr == ctxn)
8267                         return pmu->pmu_cpu_context;
8268         }
8269
8270         return NULL;
8271 }
8272
8273 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
8274 {
8275         int cpu;
8276
8277         for_each_possible_cpu(cpu) {
8278                 struct perf_cpu_context *cpuctx;
8279
8280                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8281
8282                 if (cpuctx->unique_pmu == old_pmu)
8283                         cpuctx->unique_pmu = pmu;
8284         }
8285 }
8286
8287 static void free_pmu_context(struct pmu *pmu)
8288 {
8289         struct pmu *i;
8290
8291         mutex_lock(&pmus_lock);
8292         /*
8293          * Like a real lame refcount.
8294          */
8295         list_for_each_entry(i, &pmus, entry) {
8296                 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
8297                         update_pmu_context(i, pmu);
8298                         goto out;
8299                 }
8300         }
8301
8302         free_percpu(pmu->pmu_cpu_context);
8303 out:
8304         mutex_unlock(&pmus_lock);
8305 }
8306
8307 /*
8308  * Let userspace know that this PMU supports address range filtering:
8309  */
8310 static ssize_t nr_addr_filters_show(struct device *dev,
8311                                     struct device_attribute *attr,
8312                                     char *page)
8313 {
8314         struct pmu *pmu = dev_get_drvdata(dev);
8315
8316         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8317 }
8318 DEVICE_ATTR_RO(nr_addr_filters);
8319
8320 static struct idr pmu_idr;
8321
8322 static ssize_t
8323 type_show(struct device *dev, struct device_attribute *attr, char *page)
8324 {
8325         struct pmu *pmu = dev_get_drvdata(dev);
8326
8327         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8328 }
8329 static DEVICE_ATTR_RO(type);
8330
8331 static ssize_t
8332 perf_event_mux_interval_ms_show(struct device *dev,
8333                                 struct device_attribute *attr,
8334                                 char *page)
8335 {
8336         struct pmu *pmu = dev_get_drvdata(dev);
8337
8338         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8339 }
8340
8341 static DEFINE_MUTEX(mux_interval_mutex);
8342
8343 static ssize_t
8344 perf_event_mux_interval_ms_store(struct device *dev,
8345                                  struct device_attribute *attr,
8346                                  const char *buf, size_t count)
8347 {
8348         struct pmu *pmu = dev_get_drvdata(dev);
8349         int timer, cpu, ret;
8350
8351         ret = kstrtoint(buf, 0, &timer);
8352         if (ret)
8353                 return ret;
8354
8355         if (timer < 1)
8356                 return -EINVAL;
8357
8358         /* same value, noting to do */
8359         if (timer == pmu->hrtimer_interval_ms)
8360                 return count;
8361
8362         mutex_lock(&mux_interval_mutex);
8363         pmu->hrtimer_interval_ms = timer;
8364
8365         /* update all cpuctx for this PMU */
8366         get_online_cpus();
8367         for_each_online_cpu(cpu) {
8368                 struct perf_cpu_context *cpuctx;
8369                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8370                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8371
8372                 cpu_function_call(cpu,
8373                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8374         }
8375         put_online_cpus();
8376         mutex_unlock(&mux_interval_mutex);
8377
8378         return count;
8379 }
8380 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8381
8382 static struct attribute *pmu_dev_attrs[] = {
8383         &dev_attr_type.attr,
8384         &dev_attr_perf_event_mux_interval_ms.attr,
8385         NULL,
8386 };
8387 ATTRIBUTE_GROUPS(pmu_dev);
8388
8389 static int pmu_bus_running;
8390 static struct bus_type pmu_bus = {
8391         .name           = "event_source",
8392         .dev_groups     = pmu_dev_groups,
8393 };
8394
8395 static void pmu_dev_release(struct device *dev)
8396 {
8397         kfree(dev);
8398 }
8399
8400 static int pmu_dev_alloc(struct pmu *pmu)
8401 {
8402         int ret = -ENOMEM;
8403
8404         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8405         if (!pmu->dev)
8406                 goto out;
8407
8408         pmu->dev->groups = pmu->attr_groups;
8409         device_initialize(pmu->dev);
8410         ret = dev_set_name(pmu->dev, "%s", pmu->name);
8411         if (ret)
8412                 goto free_dev;
8413
8414         dev_set_drvdata(pmu->dev, pmu);
8415         pmu->dev->bus = &pmu_bus;
8416         pmu->dev->release = pmu_dev_release;
8417         ret = device_add(pmu->dev);
8418         if (ret)
8419                 goto free_dev;
8420
8421         /* For PMUs with address filters, throw in an extra attribute: */
8422         if (pmu->nr_addr_filters)
8423                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
8424
8425         if (ret)
8426                 goto del_dev;
8427
8428 out:
8429         return ret;
8430
8431 del_dev:
8432         device_del(pmu->dev);
8433
8434 free_dev:
8435         put_device(pmu->dev);
8436         goto out;
8437 }
8438
8439 static struct lock_class_key cpuctx_mutex;
8440 static struct lock_class_key cpuctx_lock;
8441
8442 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
8443 {
8444         int cpu, ret;
8445
8446         mutex_lock(&pmus_lock);
8447         ret = -ENOMEM;
8448         pmu->pmu_disable_count = alloc_percpu(int);
8449         if (!pmu->pmu_disable_count)
8450                 goto unlock;
8451
8452         pmu->type = -1;
8453         if (!name)
8454                 goto skip_type;
8455         pmu->name = name;
8456
8457         if (type < 0) {
8458                 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
8459                 if (type < 0) {
8460                         ret = type;
8461                         goto free_pdc;
8462                 }
8463         }
8464         pmu->type = type;
8465
8466         if (pmu_bus_running) {
8467                 ret = pmu_dev_alloc(pmu);
8468                 if (ret)
8469                         goto free_idr;
8470         }
8471
8472 skip_type:
8473         if (pmu->task_ctx_nr == perf_hw_context) {
8474                 static int hw_context_taken = 0;
8475
8476                 /*
8477                  * Other than systems with heterogeneous CPUs, it never makes
8478                  * sense for two PMUs to share perf_hw_context. PMUs which are
8479                  * uncore must use perf_invalid_context.
8480                  */
8481                 if (WARN_ON_ONCE(hw_context_taken &&
8482                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
8483                         pmu->task_ctx_nr = perf_invalid_context;
8484
8485                 hw_context_taken = 1;
8486         }
8487
8488         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
8489         if (pmu->pmu_cpu_context)
8490                 goto got_cpu_context;
8491
8492         ret = -ENOMEM;
8493         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
8494         if (!pmu->pmu_cpu_context)
8495                 goto free_dev;
8496
8497         for_each_possible_cpu(cpu) {
8498                 struct perf_cpu_context *cpuctx;
8499
8500                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8501                 __perf_event_init_context(&cpuctx->ctx);
8502                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
8503                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
8504                 cpuctx->ctx.pmu = pmu;
8505
8506                 __perf_mux_hrtimer_init(cpuctx, cpu);
8507
8508                 cpuctx->unique_pmu = pmu;
8509         }
8510
8511 got_cpu_context:
8512         if (!pmu->start_txn) {
8513                 if (pmu->pmu_enable) {
8514                         /*
8515                          * If we have pmu_enable/pmu_disable calls, install
8516                          * transaction stubs that use that to try and batch
8517                          * hardware accesses.
8518                          */
8519                         pmu->start_txn  = perf_pmu_start_txn;
8520                         pmu->commit_txn = perf_pmu_commit_txn;
8521                         pmu->cancel_txn = perf_pmu_cancel_txn;
8522                 } else {
8523                         pmu->start_txn  = perf_pmu_nop_txn;
8524                         pmu->commit_txn = perf_pmu_nop_int;
8525                         pmu->cancel_txn = perf_pmu_nop_void;
8526                 }
8527         }
8528
8529         if (!pmu->pmu_enable) {
8530                 pmu->pmu_enable  = perf_pmu_nop_void;
8531                 pmu->pmu_disable = perf_pmu_nop_void;
8532         }
8533
8534         if (!pmu->event_idx)
8535                 pmu->event_idx = perf_event_idx_default;
8536
8537         list_add_rcu(&pmu->entry, &pmus);
8538         atomic_set(&pmu->exclusive_cnt, 0);
8539         ret = 0;
8540 unlock:
8541         mutex_unlock(&pmus_lock);
8542
8543         return ret;
8544
8545 free_dev:
8546         device_del(pmu->dev);
8547         put_device(pmu->dev);
8548
8549 free_idr:
8550         if (pmu->type >= PERF_TYPE_MAX)
8551                 idr_remove(&pmu_idr, pmu->type);
8552
8553 free_pdc:
8554         free_percpu(pmu->pmu_disable_count);
8555         goto unlock;
8556 }
8557 EXPORT_SYMBOL_GPL(perf_pmu_register);
8558
8559 void perf_pmu_unregister(struct pmu *pmu)
8560 {
8561         mutex_lock(&pmus_lock);
8562         list_del_rcu(&pmu->entry);
8563         mutex_unlock(&pmus_lock);
8564
8565         /*
8566          * We dereference the pmu list under both SRCU and regular RCU, so
8567          * synchronize against both of those.
8568          */
8569         synchronize_srcu(&pmus_srcu);
8570         synchronize_rcu();
8571
8572         free_percpu(pmu->pmu_disable_count);
8573         if (pmu->type >= PERF_TYPE_MAX)
8574                 idr_remove(&pmu_idr, pmu->type);
8575         if (pmu->nr_addr_filters)
8576                 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
8577         device_del(pmu->dev);
8578         put_device(pmu->dev);
8579         free_pmu_context(pmu);
8580 }
8581 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
8582
8583 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
8584 {
8585         struct perf_event_context *ctx = NULL;
8586         int ret;
8587
8588         if (!try_module_get(pmu->module))
8589                 return -ENODEV;
8590
8591         if (event->group_leader != event) {
8592                 /*
8593                  * This ctx->mutex can nest when we're called through
8594                  * inheritance. See the perf_event_ctx_lock_nested() comment.
8595                  */
8596                 ctx = perf_event_ctx_lock_nested(event->group_leader,
8597                                                  SINGLE_DEPTH_NESTING);
8598                 BUG_ON(!ctx);
8599         }
8600
8601         event->pmu = pmu;
8602         ret = pmu->event_init(event);
8603
8604         if (ctx)
8605                 perf_event_ctx_unlock(event->group_leader, ctx);
8606
8607         if (ret)
8608                 module_put(pmu->module);
8609
8610         return ret;
8611 }
8612
8613 static struct pmu *perf_init_event(struct perf_event *event)
8614 {
8615         struct pmu *pmu = NULL;
8616         int idx;
8617         int ret;
8618
8619         idx = srcu_read_lock(&pmus_srcu);
8620
8621         rcu_read_lock();
8622         pmu = idr_find(&pmu_idr, event->attr.type);
8623         rcu_read_unlock();
8624         if (pmu) {
8625                 ret = perf_try_init_event(pmu, event);
8626                 if (ret)
8627                         pmu = ERR_PTR(ret);
8628                 goto unlock;
8629         }
8630
8631         list_for_each_entry_rcu(pmu, &pmus, entry) {
8632                 ret = perf_try_init_event(pmu, event);
8633                 if (!ret)
8634                         goto unlock;
8635
8636                 if (ret != -ENOENT) {
8637                         pmu = ERR_PTR(ret);
8638                         goto unlock;
8639                 }
8640         }
8641         pmu = ERR_PTR(-ENOENT);
8642 unlock:
8643         srcu_read_unlock(&pmus_srcu, idx);
8644
8645         return pmu;
8646 }
8647
8648 static void attach_sb_event(struct perf_event *event)
8649 {
8650         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
8651
8652         raw_spin_lock(&pel->lock);
8653         list_add_rcu(&event->sb_list, &pel->list);
8654         raw_spin_unlock(&pel->lock);
8655 }
8656
8657 static void account_pmu_sb_event(struct perf_event *event)
8658 {
8659         struct perf_event_attr *attr = &event->attr;
8660
8661         if (event->parent)
8662                 return;
8663
8664         if (event->attach_state & PERF_ATTACH_TASK)
8665                 return;
8666
8667         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
8668             attr->comm || attr->comm_exec ||
8669             attr->task ||
8670             attr->context_switch)
8671                 attach_sb_event(event);
8672 }
8673
8674 static void account_event_cpu(struct perf_event *event, int cpu)
8675 {
8676         if (event->parent)
8677                 return;
8678
8679         if (is_cgroup_event(event))
8680                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
8681 }
8682
8683 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
8684 static void account_freq_event_nohz(void)
8685 {
8686 #ifdef CONFIG_NO_HZ_FULL
8687         /* Lock so we don't race with concurrent unaccount */
8688         spin_lock(&nr_freq_lock);
8689         if (atomic_inc_return(&nr_freq_events) == 1)
8690                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
8691         spin_unlock(&nr_freq_lock);
8692 #endif
8693 }
8694
8695 static void account_freq_event(void)
8696 {
8697         if (tick_nohz_full_enabled())
8698                 account_freq_event_nohz();
8699         else
8700                 atomic_inc(&nr_freq_events);
8701 }
8702
8703
8704 static void account_event(struct perf_event *event)
8705 {
8706         bool inc = false;
8707
8708         if (event->parent)
8709                 return;
8710
8711         if (event->attach_state & PERF_ATTACH_TASK)
8712                 inc = true;
8713         if (event->attr.mmap || event->attr.mmap_data)
8714                 atomic_inc(&nr_mmap_events);
8715         if (event->attr.comm)
8716                 atomic_inc(&nr_comm_events);
8717         if (event->attr.task)
8718                 atomic_inc(&nr_task_events);
8719         if (event->attr.freq)
8720                 account_freq_event();
8721         if (event->attr.context_switch) {
8722                 atomic_inc(&nr_switch_events);
8723                 inc = true;
8724         }
8725         if (has_branch_stack(event))
8726                 inc = true;
8727         if (is_cgroup_event(event))
8728                 inc = true;
8729
8730         if (inc) {
8731                 if (atomic_inc_not_zero(&perf_sched_count))
8732                         goto enabled;
8733
8734                 mutex_lock(&perf_sched_mutex);
8735                 if (!atomic_read(&perf_sched_count)) {
8736                         static_branch_enable(&perf_sched_events);
8737                         /*
8738                          * Guarantee that all CPUs observe they key change and
8739                          * call the perf scheduling hooks before proceeding to
8740                          * install events that need them.
8741                          */
8742                         synchronize_sched();
8743                 }
8744                 /*
8745                  * Now that we have waited for the sync_sched(), allow further
8746                  * increments to by-pass the mutex.
8747                  */
8748                 atomic_inc(&perf_sched_count);
8749                 mutex_unlock(&perf_sched_mutex);
8750         }
8751 enabled:
8752
8753         account_event_cpu(event, event->cpu);
8754
8755         account_pmu_sb_event(event);
8756 }
8757
8758 /*
8759  * Allocate and initialize a event structure
8760  */
8761 static struct perf_event *
8762 perf_event_alloc(struct perf_event_attr *attr, int cpu,
8763                  struct task_struct *task,
8764                  struct perf_event *group_leader,
8765                  struct perf_event *parent_event,
8766                  perf_overflow_handler_t overflow_handler,
8767                  void *context, int cgroup_fd)
8768 {
8769         struct pmu *pmu;
8770         struct perf_event *event;
8771         struct hw_perf_event *hwc;
8772         long err = -EINVAL;
8773
8774         if ((unsigned)cpu >= nr_cpu_ids) {
8775                 if (!task || cpu != -1)
8776                         return ERR_PTR(-EINVAL);
8777         }
8778
8779         event = kzalloc(sizeof(*event), GFP_KERNEL);
8780         if (!event)
8781                 return ERR_PTR(-ENOMEM);
8782
8783         /*
8784          * Single events are their own group leaders, with an
8785          * empty sibling list:
8786          */
8787         if (!group_leader)
8788                 group_leader = event;
8789
8790         mutex_init(&event->child_mutex);
8791         INIT_LIST_HEAD(&event->child_list);
8792
8793         INIT_LIST_HEAD(&event->group_entry);
8794         INIT_LIST_HEAD(&event->event_entry);
8795         INIT_LIST_HEAD(&event->sibling_list);
8796         INIT_LIST_HEAD(&event->rb_entry);
8797         INIT_LIST_HEAD(&event->active_entry);
8798         INIT_LIST_HEAD(&event->addr_filters.list);
8799         INIT_HLIST_NODE(&event->hlist_entry);
8800
8801
8802         init_waitqueue_head(&event->waitq);
8803         init_irq_work(&event->pending, perf_pending_event);
8804
8805         mutex_init(&event->mmap_mutex);
8806         raw_spin_lock_init(&event->addr_filters.lock);
8807
8808         atomic_long_set(&event->refcount, 1);
8809         event->cpu              = cpu;
8810         event->attr             = *attr;
8811         event->group_leader     = group_leader;
8812         event->pmu              = NULL;
8813         event->oncpu            = -1;
8814
8815         event->parent           = parent_event;
8816
8817         event->ns               = get_pid_ns(task_active_pid_ns(current));
8818         event->id               = atomic64_inc_return(&perf_event_id);
8819
8820         event->state            = PERF_EVENT_STATE_INACTIVE;
8821
8822         if (task) {
8823                 event->attach_state = PERF_ATTACH_TASK;
8824                 /*
8825                  * XXX pmu::event_init needs to know what task to account to
8826                  * and we cannot use the ctx information because we need the
8827                  * pmu before we get a ctx.
8828                  */
8829                 event->hw.target = task;
8830         }
8831
8832         event->clock = &local_clock;
8833         if (parent_event)
8834                 event->clock = parent_event->clock;
8835
8836         if (!overflow_handler && parent_event) {
8837                 overflow_handler = parent_event->overflow_handler;
8838                 context = parent_event->overflow_handler_context;
8839         }
8840
8841         if (overflow_handler) {
8842                 event->overflow_handler = overflow_handler;
8843                 event->overflow_handler_context = context;
8844         } else if (is_write_backward(event)){
8845                 event->overflow_handler = perf_event_output_backward;
8846                 event->overflow_handler_context = NULL;
8847         } else {
8848                 event->overflow_handler = perf_event_output_forward;
8849                 event->overflow_handler_context = NULL;
8850         }
8851
8852         perf_event__state_init(event);
8853
8854         pmu = NULL;
8855
8856         hwc = &event->hw;
8857         hwc->sample_period = attr->sample_period;
8858         if (attr->freq && attr->sample_freq)
8859                 hwc->sample_period = 1;
8860         hwc->last_period = hwc->sample_period;
8861
8862         local64_set(&hwc->period_left, hwc->sample_period);
8863
8864         /*
8865          * we currently do not support PERF_FORMAT_GROUP on inherited events
8866          */
8867         if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
8868                 goto err_ns;
8869
8870         if (!has_branch_stack(event))
8871                 event->attr.branch_sample_type = 0;
8872
8873         if (cgroup_fd != -1) {
8874                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
8875                 if (err)
8876                         goto err_ns;
8877         }
8878
8879         pmu = perf_init_event(event);
8880         if (!pmu)
8881                 goto err_ns;
8882         else if (IS_ERR(pmu)) {
8883                 err = PTR_ERR(pmu);
8884                 goto err_ns;
8885         }
8886
8887         err = exclusive_event_init(event);
8888         if (err)
8889                 goto err_pmu;
8890
8891         if (has_addr_filter(event)) {
8892                 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
8893                                                    sizeof(unsigned long),
8894                                                    GFP_KERNEL);
8895                 if (!event->addr_filters_offs)
8896                         goto err_per_task;
8897
8898                 /* force hw sync on the address filters */
8899                 event->addr_filters_gen = 1;
8900         }
8901
8902         if (!event->parent) {
8903                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
8904                         err = get_callchain_buffers(attr->sample_max_stack);
8905                         if (err)
8906                                 goto err_addr_filters;
8907                 }
8908         }
8909
8910         /* symmetric to unaccount_event() in _free_event() */
8911         account_event(event);
8912
8913         return event;
8914
8915 err_addr_filters:
8916         kfree(event->addr_filters_offs);
8917
8918 err_per_task:
8919         exclusive_event_destroy(event);
8920
8921 err_pmu:
8922         if (event->destroy)
8923                 event->destroy(event);
8924         module_put(pmu->module);
8925 err_ns:
8926         if (is_cgroup_event(event))
8927                 perf_detach_cgroup(event);
8928         if (event->ns)
8929                 put_pid_ns(event->ns);
8930         kfree(event);
8931
8932         return ERR_PTR(err);
8933 }
8934
8935 static int perf_copy_attr(struct perf_event_attr __user *uattr,
8936                           struct perf_event_attr *attr)
8937 {
8938         u32 size;
8939         int ret;
8940
8941         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
8942                 return -EFAULT;
8943
8944         /*
8945          * zero the full structure, so that a short copy will be nice.
8946          */
8947         memset(attr, 0, sizeof(*attr));
8948
8949         ret = get_user(size, &uattr->size);
8950         if (ret)
8951                 return ret;
8952
8953         if (size > PAGE_SIZE)   /* silly large */
8954                 goto err_size;
8955
8956         if (!size)              /* abi compat */
8957                 size = PERF_ATTR_SIZE_VER0;
8958
8959         if (size < PERF_ATTR_SIZE_VER0)
8960                 goto err_size;
8961
8962         /*
8963          * If we're handed a bigger struct than we know of,
8964          * ensure all the unknown bits are 0 - i.e. new
8965          * user-space does not rely on any kernel feature
8966          * extensions we dont know about yet.
8967          */
8968         if (size > sizeof(*attr)) {
8969                 unsigned char __user *addr;
8970                 unsigned char __user *end;
8971                 unsigned char val;
8972
8973                 addr = (void __user *)uattr + sizeof(*attr);
8974                 end  = (void __user *)uattr + size;
8975
8976                 for (; addr < end; addr++) {
8977                         ret = get_user(val, addr);
8978                         if (ret)
8979                                 return ret;
8980                         if (val)
8981                                 goto err_size;
8982                 }
8983                 size = sizeof(*attr);
8984         }
8985
8986         ret = copy_from_user(attr, uattr, size);
8987         if (ret)
8988                 return -EFAULT;
8989
8990         if (attr->__reserved_1)
8991                 return -EINVAL;
8992
8993         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
8994                 return -EINVAL;
8995
8996         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
8997                 return -EINVAL;
8998
8999         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9000                 u64 mask = attr->branch_sample_type;
9001
9002                 /* only using defined bits */
9003                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9004                         return -EINVAL;
9005
9006                 /* at least one branch bit must be set */
9007                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9008                         return -EINVAL;
9009
9010                 /* propagate priv level, when not set for branch */
9011                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9012
9013                         /* exclude_kernel checked on syscall entry */
9014                         if (!attr->exclude_kernel)
9015                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9016
9017                         if (!attr->exclude_user)
9018                                 mask |= PERF_SAMPLE_BRANCH_USER;
9019
9020                         if (!attr->exclude_hv)
9021                                 mask |= PERF_SAMPLE_BRANCH_HV;
9022                         /*
9023                          * adjust user setting (for HW filter setup)
9024                          */
9025                         attr->branch_sample_type = mask;
9026                 }
9027                 /* privileged levels capture (kernel, hv): check permissions */
9028                 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9029                     && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9030                         return -EACCES;
9031         }
9032
9033         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9034                 ret = perf_reg_validate(attr->sample_regs_user);
9035                 if (ret)
9036                         return ret;
9037         }
9038
9039         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9040                 if (!arch_perf_have_user_stack_dump())
9041                         return -ENOSYS;
9042
9043                 /*
9044                  * We have __u32 type for the size, but so far
9045                  * we can only use __u16 as maximum due to the
9046                  * __u16 sample size limit.
9047                  */
9048                 if (attr->sample_stack_user >= USHRT_MAX)
9049                         ret = -EINVAL;
9050                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9051                         ret = -EINVAL;
9052         }
9053
9054         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9055                 ret = perf_reg_validate(attr->sample_regs_intr);
9056 out:
9057         return ret;
9058
9059 err_size:
9060         put_user(sizeof(*attr), &uattr->size);
9061         ret = -E2BIG;
9062         goto out;
9063 }
9064
9065 static int
9066 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9067 {
9068         struct ring_buffer *rb = NULL;
9069         int ret = -EINVAL;
9070
9071         if (!output_event)
9072                 goto set;
9073
9074         /* don't allow circular references */
9075         if (event == output_event)
9076                 goto out;
9077
9078         /*
9079          * Don't allow cross-cpu buffers
9080          */
9081         if (output_event->cpu != event->cpu)
9082                 goto out;
9083
9084         /*
9085          * If its not a per-cpu rb, it must be the same task.
9086          */
9087         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9088                 goto out;
9089
9090         /*
9091          * Mixing clocks in the same buffer is trouble you don't need.
9092          */
9093         if (output_event->clock != event->clock)
9094                 goto out;
9095
9096         /*
9097          * Either writing ring buffer from beginning or from end.
9098          * Mixing is not allowed.
9099          */
9100         if (is_write_backward(output_event) != is_write_backward(event))
9101                 goto out;
9102
9103         /*
9104          * If both events generate aux data, they must be on the same PMU
9105          */
9106         if (has_aux(event) && has_aux(output_event) &&
9107             event->pmu != output_event->pmu)
9108                 goto out;
9109
9110 set:
9111         mutex_lock(&event->mmap_mutex);
9112         /* Can't redirect output if we've got an active mmap() */
9113         if (atomic_read(&event->mmap_count))
9114                 goto unlock;
9115
9116         if (output_event) {
9117                 /* get the rb we want to redirect to */
9118                 rb = ring_buffer_get(output_event);
9119                 if (!rb)
9120                         goto unlock;
9121         }
9122
9123         ring_buffer_attach(event, rb);
9124
9125         ret = 0;
9126 unlock:
9127         mutex_unlock(&event->mmap_mutex);
9128
9129 out:
9130         return ret;
9131 }
9132
9133 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9134 {
9135         if (b < a)
9136                 swap(a, b);
9137
9138         mutex_lock(a);
9139         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9140 }
9141
9142 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9143 {
9144         bool nmi_safe = false;
9145
9146         switch (clk_id) {
9147         case CLOCK_MONOTONIC:
9148                 event->clock = &ktime_get_mono_fast_ns;
9149                 nmi_safe = true;
9150                 break;
9151
9152         case CLOCK_MONOTONIC_RAW:
9153                 event->clock = &ktime_get_raw_fast_ns;
9154                 nmi_safe = true;
9155                 break;
9156
9157         case CLOCK_REALTIME:
9158                 event->clock = &ktime_get_real_ns;
9159                 break;
9160
9161         case CLOCK_BOOTTIME:
9162                 event->clock = &ktime_get_boot_ns;
9163                 break;
9164
9165         case CLOCK_TAI:
9166                 event->clock = &ktime_get_tai_ns;
9167                 break;
9168
9169         default:
9170                 return -EINVAL;
9171         }
9172
9173         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9174                 return -EINVAL;
9175
9176         return 0;
9177 }
9178
9179 /**
9180  * sys_perf_event_open - open a performance event, associate it to a task/cpu
9181  *
9182  * @attr_uptr:  event_id type attributes for monitoring/sampling
9183  * @pid:                target pid
9184  * @cpu:                target cpu
9185  * @group_fd:           group leader event fd
9186  */
9187 SYSCALL_DEFINE5(perf_event_open,
9188                 struct perf_event_attr __user *, attr_uptr,
9189                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9190 {
9191         struct perf_event *group_leader = NULL, *output_event = NULL;
9192         struct perf_event *event, *sibling;
9193         struct perf_event_attr attr;
9194         struct perf_event_context *ctx, *uninitialized_var(gctx);
9195         struct file *event_file = NULL;
9196         struct fd group = {NULL, 0};
9197         struct task_struct *task = NULL;
9198         struct pmu *pmu;
9199         int event_fd;
9200         int move_group = 0;
9201         int err;
9202         int f_flags = O_RDWR;
9203         int cgroup_fd = -1;
9204
9205         /* for future expandability... */
9206         if (flags & ~PERF_FLAG_ALL)
9207                 return -EINVAL;
9208
9209         err = perf_copy_attr(attr_uptr, &attr);
9210         if (err)
9211                 return err;
9212
9213         if (!attr.exclude_kernel) {
9214                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9215                         return -EACCES;
9216         }
9217
9218         if (attr.freq) {
9219                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
9220                         return -EINVAL;
9221         } else {
9222                 if (attr.sample_period & (1ULL << 63))
9223                         return -EINVAL;
9224         }
9225
9226         if (!attr.sample_max_stack)
9227                 attr.sample_max_stack = sysctl_perf_event_max_stack;
9228
9229         /*
9230          * In cgroup mode, the pid argument is used to pass the fd
9231          * opened to the cgroup directory in cgroupfs. The cpu argument
9232          * designates the cpu on which to monitor threads from that
9233          * cgroup.
9234          */
9235         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9236                 return -EINVAL;
9237
9238         if (flags & PERF_FLAG_FD_CLOEXEC)
9239                 f_flags |= O_CLOEXEC;
9240
9241         event_fd = get_unused_fd_flags(f_flags);
9242         if (event_fd < 0)
9243                 return event_fd;
9244
9245         if (group_fd != -1) {
9246                 err = perf_fget_light(group_fd, &group);
9247                 if (err)
9248                         goto err_fd;
9249                 group_leader = group.file->private_data;
9250                 if (flags & PERF_FLAG_FD_OUTPUT)
9251                         output_event = group_leader;
9252                 if (flags & PERF_FLAG_FD_NO_GROUP)
9253                         group_leader = NULL;
9254         }
9255
9256         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9257                 task = find_lively_task_by_vpid(pid);
9258                 if (IS_ERR(task)) {
9259                         err = PTR_ERR(task);
9260                         goto err_group_fd;
9261                 }
9262         }
9263
9264         if (task && group_leader &&
9265             group_leader->attr.inherit != attr.inherit) {
9266                 err = -EINVAL;
9267                 goto err_task;
9268         }
9269
9270         get_online_cpus();
9271
9272         if (task) {
9273                 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9274                 if (err)
9275                         goto err_cpus;
9276
9277                 /*
9278                  * Reuse ptrace permission checks for now.
9279                  *
9280                  * We must hold cred_guard_mutex across this and any potential
9281                  * perf_install_in_context() call for this new event to
9282                  * serialize against exec() altering our credentials (and the
9283                  * perf_event_exit_task() that could imply).
9284                  */
9285                 err = -EACCES;
9286                 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9287                         goto err_cred;
9288         }
9289
9290         if (flags & PERF_FLAG_PID_CGROUP)
9291                 cgroup_fd = pid;
9292
9293         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9294                                  NULL, NULL, cgroup_fd);
9295         if (IS_ERR(event)) {
9296                 err = PTR_ERR(event);
9297                 goto err_cred;
9298         }
9299
9300         if (is_sampling_event(event)) {
9301                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9302                         err = -ENOTSUPP;
9303                         goto err_alloc;
9304                 }
9305         }
9306
9307         /*
9308          * Special case software events and allow them to be part of
9309          * any hardware group.
9310          */
9311         pmu = event->pmu;
9312
9313         if (attr.use_clockid) {
9314                 err = perf_event_set_clock(event, attr.clockid);
9315                 if (err)
9316                         goto err_alloc;
9317         }
9318
9319         if (group_leader &&
9320             (is_software_event(event) != is_software_event(group_leader))) {
9321                 if (is_software_event(event)) {
9322                         /*
9323                          * If event and group_leader are not both a software
9324                          * event, and event is, then group leader is not.
9325                          *
9326                          * Allow the addition of software events to !software
9327                          * groups, this is safe because software events never
9328                          * fail to schedule.
9329                          */
9330                         pmu = group_leader->pmu;
9331                 } else if (is_software_event(group_leader) &&
9332                            (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
9333                         /*
9334                          * In case the group is a pure software group, and we
9335                          * try to add a hardware event, move the whole group to
9336                          * the hardware context.
9337                          */
9338                         move_group = 1;
9339                 }
9340         }
9341
9342         /*
9343          * Get the target context (task or percpu):
9344          */
9345         ctx = find_get_context(pmu, task, event);
9346         if (IS_ERR(ctx)) {
9347                 err = PTR_ERR(ctx);
9348                 goto err_alloc;
9349         }
9350
9351         if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9352                 err = -EBUSY;
9353                 goto err_context;
9354         }
9355
9356         /*
9357          * Look up the group leader (we will attach this event to it):
9358          */
9359         if (group_leader) {
9360                 err = -EINVAL;
9361
9362                 /*
9363                  * Do not allow a recursive hierarchy (this new sibling
9364                  * becoming part of another group-sibling):
9365                  */
9366                 if (group_leader->group_leader != group_leader)
9367                         goto err_context;
9368
9369                 /* All events in a group should have the same clock */
9370                 if (group_leader->clock != event->clock)
9371                         goto err_context;
9372
9373                 /*
9374                  * Do not allow to attach to a group in a different
9375                  * task or CPU context:
9376                  */
9377                 if (move_group) {
9378                         /*
9379                          * Make sure we're both on the same task, or both
9380                          * per-cpu events.
9381                          */
9382                         if (group_leader->ctx->task != ctx->task)
9383                                 goto err_context;
9384
9385                         /*
9386                          * Make sure we're both events for the same CPU;
9387                          * grouping events for different CPUs is broken; since
9388                          * you can never concurrently schedule them anyhow.
9389                          */
9390                         if (group_leader->cpu != event->cpu)
9391                                 goto err_context;
9392                 } else {
9393                         if (group_leader->ctx != ctx)
9394                                 goto err_context;
9395                 }
9396
9397                 /*
9398                  * Only a group leader can be exclusive or pinned
9399                  */
9400                 if (attr.exclusive || attr.pinned)
9401                         goto err_context;
9402         }
9403
9404         if (output_event) {
9405                 err = perf_event_set_output(event, output_event);
9406                 if (err)
9407                         goto err_context;
9408         }
9409
9410         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
9411                                         f_flags);
9412         if (IS_ERR(event_file)) {
9413                 err = PTR_ERR(event_file);
9414                 event_file = NULL;
9415                 goto err_context;
9416         }
9417
9418         if (move_group) {
9419                 gctx = group_leader->ctx;
9420                 mutex_lock_double(&gctx->mutex, &ctx->mutex);
9421                 if (gctx->task == TASK_TOMBSTONE) {
9422                         err = -ESRCH;
9423                         goto err_locked;
9424                 }
9425         } else {
9426                 mutex_lock(&ctx->mutex);
9427         }
9428
9429         if (ctx->task == TASK_TOMBSTONE) {
9430                 err = -ESRCH;
9431                 goto err_locked;
9432         }
9433
9434         if (!perf_event_validate_size(event)) {
9435                 err = -E2BIG;
9436                 goto err_locked;
9437         }
9438
9439         /*
9440          * Must be under the same ctx::mutex as perf_install_in_context(),
9441          * because we need to serialize with concurrent event creation.
9442          */
9443         if (!exclusive_event_installable(event, ctx)) {
9444                 /* exclusive and group stuff are assumed mutually exclusive */
9445                 WARN_ON_ONCE(move_group);
9446
9447                 err = -EBUSY;
9448                 goto err_locked;
9449         }
9450
9451         WARN_ON_ONCE(ctx->parent_ctx);
9452
9453         /*
9454          * This is the point on no return; we cannot fail hereafter. This is
9455          * where we start modifying current state.
9456          */
9457
9458         if (move_group) {
9459                 /*
9460                  * See perf_event_ctx_lock() for comments on the details
9461                  * of swizzling perf_event::ctx.
9462                  */
9463                 perf_remove_from_context(group_leader, 0);
9464
9465                 list_for_each_entry(sibling, &group_leader->sibling_list,
9466                                     group_entry) {
9467                         perf_remove_from_context(sibling, 0);
9468                         put_ctx(gctx);
9469                 }
9470
9471                 /*
9472                  * Wait for everybody to stop referencing the events through
9473                  * the old lists, before installing it on new lists.
9474                  */
9475                 synchronize_rcu();
9476
9477                 /*
9478                  * Install the group siblings before the group leader.
9479                  *
9480                  * Because a group leader will try and install the entire group
9481                  * (through the sibling list, which is still in-tact), we can
9482                  * end up with siblings installed in the wrong context.
9483                  *
9484                  * By installing siblings first we NO-OP because they're not
9485                  * reachable through the group lists.
9486                  */
9487                 list_for_each_entry(sibling, &group_leader->sibling_list,
9488                                     group_entry) {
9489                         perf_event__state_init(sibling);
9490                         perf_install_in_context(ctx, sibling, sibling->cpu);
9491                         get_ctx(ctx);
9492                 }
9493
9494                 /*
9495                  * Removing from the context ends up with disabled
9496                  * event. What we want here is event in the initial
9497                  * startup state, ready to be add into new context.
9498                  */
9499                 perf_event__state_init(group_leader);
9500                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
9501                 get_ctx(ctx);
9502
9503                 /*
9504                  * Now that all events are installed in @ctx, nothing
9505                  * references @gctx anymore, so drop the last reference we have
9506                  * on it.
9507                  */
9508                 put_ctx(gctx);
9509         }
9510
9511         /*
9512          * Precalculate sample_data sizes; do while holding ctx::mutex such
9513          * that we're serialized against further additions and before
9514          * perf_install_in_context() which is the point the event is active and
9515          * can use these values.
9516          */
9517         perf_event__header_size(event);
9518         perf_event__id_header_size(event);
9519
9520         event->owner = current;
9521
9522         perf_install_in_context(ctx, event, event->cpu);
9523         perf_unpin_context(ctx);
9524
9525         if (move_group)
9526                 mutex_unlock(&gctx->mutex);
9527         mutex_unlock(&ctx->mutex);
9528
9529         if (task) {
9530                 mutex_unlock(&task->signal->cred_guard_mutex);
9531                 put_task_struct(task);
9532         }
9533
9534         put_online_cpus();
9535
9536         mutex_lock(&current->perf_event_mutex);
9537         list_add_tail(&event->owner_entry, &current->perf_event_list);
9538         mutex_unlock(&current->perf_event_mutex);
9539
9540         /*
9541          * Drop the reference on the group_event after placing the
9542          * new event on the sibling_list. This ensures destruction
9543          * of the group leader will find the pointer to itself in
9544          * perf_group_detach().
9545          */
9546         fdput(group);
9547         fd_install(event_fd, event_file);
9548         return event_fd;
9549
9550 err_locked:
9551         if (move_group)
9552                 mutex_unlock(&gctx->mutex);
9553         mutex_unlock(&ctx->mutex);
9554 /* err_file: */
9555         fput(event_file);
9556 err_context:
9557         perf_unpin_context(ctx);
9558         put_ctx(ctx);
9559 err_alloc:
9560         /*
9561          * If event_file is set, the fput() above will have called ->release()
9562          * and that will take care of freeing the event.
9563          */
9564         if (!event_file)
9565                 free_event(event);
9566 err_cred:
9567         if (task)
9568                 mutex_unlock(&task->signal->cred_guard_mutex);
9569 err_cpus:
9570         put_online_cpus();
9571 err_task:
9572         if (task)
9573                 put_task_struct(task);
9574 err_group_fd:
9575         fdput(group);
9576 err_fd:
9577         put_unused_fd(event_fd);
9578         return err;
9579 }
9580
9581 /**
9582  * perf_event_create_kernel_counter
9583  *
9584  * @attr: attributes of the counter to create
9585  * @cpu: cpu in which the counter is bound
9586  * @task: task to profile (NULL for percpu)
9587  */
9588 struct perf_event *
9589 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
9590                                  struct task_struct *task,
9591                                  perf_overflow_handler_t overflow_handler,
9592                                  void *context)
9593 {
9594         struct perf_event_context *ctx;
9595         struct perf_event *event;
9596         int err;
9597
9598         /*
9599          * Get the target context (task or percpu):
9600          */
9601
9602         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
9603                                  overflow_handler, context, -1);
9604         if (IS_ERR(event)) {
9605                 err = PTR_ERR(event);
9606                 goto err;
9607         }
9608
9609         /* Mark owner so we could distinguish it from user events. */
9610         event->owner = TASK_TOMBSTONE;
9611
9612         ctx = find_get_context(event->pmu, task, event);
9613         if (IS_ERR(ctx)) {
9614                 err = PTR_ERR(ctx);
9615                 goto err_free;
9616         }
9617
9618         WARN_ON_ONCE(ctx->parent_ctx);
9619         mutex_lock(&ctx->mutex);
9620         if (ctx->task == TASK_TOMBSTONE) {
9621                 err = -ESRCH;
9622                 goto err_unlock;
9623         }
9624
9625         if (!exclusive_event_installable(event, ctx)) {
9626                 err = -EBUSY;
9627                 goto err_unlock;
9628         }
9629
9630         perf_install_in_context(ctx, event, cpu);
9631         perf_unpin_context(ctx);
9632         mutex_unlock(&ctx->mutex);
9633
9634         return event;
9635
9636 err_unlock:
9637         mutex_unlock(&ctx->mutex);
9638         perf_unpin_context(ctx);
9639         put_ctx(ctx);
9640 err_free:
9641         free_event(event);
9642 err:
9643         return ERR_PTR(err);
9644 }
9645 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9646
9647 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
9648 {
9649         struct perf_event_context *src_ctx;
9650         struct perf_event_context *dst_ctx;
9651         struct perf_event *event, *tmp;
9652         LIST_HEAD(events);
9653
9654         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
9655         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
9656
9657         /*
9658          * See perf_event_ctx_lock() for comments on the details
9659          * of swizzling perf_event::ctx.
9660          */
9661         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
9662         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
9663                                  event_entry) {
9664                 perf_remove_from_context(event, 0);
9665                 unaccount_event_cpu(event, src_cpu);
9666                 put_ctx(src_ctx);
9667                 list_add(&event->migrate_entry, &events);
9668         }
9669
9670         /*
9671          * Wait for the events to quiesce before re-instating them.
9672          */
9673         synchronize_rcu();
9674
9675         /*
9676          * Re-instate events in 2 passes.
9677          *
9678          * Skip over group leaders and only install siblings on this first
9679          * pass, siblings will not get enabled without a leader, however a
9680          * leader will enable its siblings, even if those are still on the old
9681          * context.
9682          */
9683         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
9684                 if (event->group_leader == event)
9685                         continue;
9686
9687                 list_del(&event->migrate_entry);
9688                 if (event->state >= PERF_EVENT_STATE_OFF)
9689                         event->state = PERF_EVENT_STATE_INACTIVE;
9690                 account_event_cpu(event, dst_cpu);
9691                 perf_install_in_context(dst_ctx, event, dst_cpu);
9692                 get_ctx(dst_ctx);
9693         }
9694
9695         /*
9696          * Once all the siblings are setup properly, install the group leaders
9697          * to make it go.
9698          */
9699         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
9700                 list_del(&event->migrate_entry);
9701                 if (event->state >= PERF_EVENT_STATE_OFF)
9702                         event->state = PERF_EVENT_STATE_INACTIVE;
9703                 account_event_cpu(event, dst_cpu);
9704                 perf_install_in_context(dst_ctx, event, dst_cpu);
9705                 get_ctx(dst_ctx);
9706         }
9707         mutex_unlock(&dst_ctx->mutex);
9708         mutex_unlock(&src_ctx->mutex);
9709 }
9710 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
9711
9712 static void sync_child_event(struct perf_event *child_event,
9713                                struct task_struct *child)
9714 {
9715         struct perf_event *parent_event = child_event->parent;
9716         u64 child_val;
9717
9718         if (child_event->attr.inherit_stat)
9719                 perf_event_read_event(child_event, child);
9720
9721         child_val = perf_event_count(child_event);
9722
9723         /*
9724          * Add back the child's count to the parent's count:
9725          */
9726         atomic64_add(child_val, &parent_event->child_count);
9727         atomic64_add(child_event->total_time_enabled,
9728                      &parent_event->child_total_time_enabled);
9729         atomic64_add(child_event->total_time_running,
9730                      &parent_event->child_total_time_running);
9731 }
9732
9733 static void
9734 perf_event_exit_event(struct perf_event *child_event,
9735                       struct perf_event_context *child_ctx,
9736                       struct task_struct *child)
9737 {
9738         struct perf_event *parent_event = child_event->parent;
9739
9740         /*
9741          * Do not destroy the 'original' grouping; because of the context
9742          * switch optimization the original events could've ended up in a
9743          * random child task.
9744          *
9745          * If we were to destroy the original group, all group related
9746          * operations would cease to function properly after this random
9747          * child dies.
9748          *
9749          * Do destroy all inherited groups, we don't care about those
9750          * and being thorough is better.
9751          */
9752         raw_spin_lock_irq(&child_ctx->lock);
9753         WARN_ON_ONCE(child_ctx->is_active);
9754
9755         if (parent_event)
9756                 perf_group_detach(child_event);
9757         list_del_event(child_event, child_ctx);
9758         child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
9759         raw_spin_unlock_irq(&child_ctx->lock);
9760
9761         /*
9762          * Parent events are governed by their filedesc, retain them.
9763          */
9764         if (!parent_event) {
9765                 perf_event_wakeup(child_event);
9766                 return;
9767         }
9768         /*
9769          * Child events can be cleaned up.
9770          */
9771
9772         sync_child_event(child_event, child);
9773
9774         /*
9775          * Remove this event from the parent's list
9776          */
9777         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
9778         mutex_lock(&parent_event->child_mutex);
9779         list_del_init(&child_event->child_list);
9780         mutex_unlock(&parent_event->child_mutex);
9781
9782         /*
9783          * Kick perf_poll() for is_event_hup().
9784          */
9785         perf_event_wakeup(parent_event);
9786         free_event(child_event);
9787         put_event(parent_event);
9788 }
9789
9790 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9791 {
9792         struct perf_event_context *child_ctx, *clone_ctx = NULL;
9793         struct perf_event *child_event, *next;
9794
9795         WARN_ON_ONCE(child != current);
9796
9797         child_ctx = perf_pin_task_context(child, ctxn);
9798         if (!child_ctx)
9799                 return;
9800
9801         /*
9802          * In order to reduce the amount of tricky in ctx tear-down, we hold
9803          * ctx::mutex over the entire thing. This serializes against almost
9804          * everything that wants to access the ctx.
9805          *
9806          * The exception is sys_perf_event_open() /
9807          * perf_event_create_kernel_count() which does find_get_context()
9808          * without ctx::mutex (it cannot because of the move_group double mutex
9809          * lock thing). See the comments in perf_install_in_context().
9810          */
9811         mutex_lock(&child_ctx->mutex);
9812
9813         /*
9814          * In a single ctx::lock section, de-schedule the events and detach the
9815          * context from the task such that we cannot ever get it scheduled back
9816          * in.
9817          */
9818         raw_spin_lock_irq(&child_ctx->lock);
9819         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
9820
9821         /*
9822          * Now that the context is inactive, destroy the task <-> ctx relation
9823          * and mark the context dead.
9824          */
9825         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
9826         put_ctx(child_ctx); /* cannot be last */
9827         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
9828         put_task_struct(current); /* cannot be last */
9829
9830         clone_ctx = unclone_ctx(child_ctx);
9831         raw_spin_unlock_irq(&child_ctx->lock);
9832
9833         if (clone_ctx)
9834                 put_ctx(clone_ctx);
9835
9836         /*
9837          * Report the task dead after unscheduling the events so that we
9838          * won't get any samples after PERF_RECORD_EXIT. We can however still
9839          * get a few PERF_RECORD_READ events.
9840          */
9841         perf_event_task(child, child_ctx, 0);
9842
9843         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
9844                 perf_event_exit_event(child_event, child_ctx, child);
9845
9846         mutex_unlock(&child_ctx->mutex);
9847
9848         put_ctx(child_ctx);
9849 }
9850
9851 /*
9852  * When a child task exits, feed back event values to parent events.
9853  *
9854  * Can be called with cred_guard_mutex held when called from
9855  * install_exec_creds().
9856  */
9857 void perf_event_exit_task(struct task_struct *child)
9858 {
9859         struct perf_event *event, *tmp;
9860         int ctxn;
9861
9862         mutex_lock(&child->perf_event_mutex);
9863         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
9864                                  owner_entry) {
9865                 list_del_init(&event->owner_entry);
9866
9867                 /*
9868                  * Ensure the list deletion is visible before we clear
9869                  * the owner, closes a race against perf_release() where
9870                  * we need to serialize on the owner->perf_event_mutex.
9871                  */
9872                 smp_store_release(&event->owner, NULL);
9873         }
9874         mutex_unlock(&child->perf_event_mutex);
9875
9876         for_each_task_context_nr(ctxn)
9877                 perf_event_exit_task_context(child, ctxn);
9878
9879         /*
9880          * The perf_event_exit_task_context calls perf_event_task
9881          * with child's task_ctx, which generates EXIT events for
9882          * child contexts and sets child->perf_event_ctxp[] to NULL.
9883          * At this point we need to send EXIT events to cpu contexts.
9884          */
9885         perf_event_task(child, NULL, 0);
9886 }
9887
9888 static void perf_free_event(struct perf_event *event,
9889                             struct perf_event_context *ctx)
9890 {
9891         struct perf_event *parent = event->parent;
9892
9893         if (WARN_ON_ONCE(!parent))
9894                 return;
9895
9896         mutex_lock(&parent->child_mutex);
9897         list_del_init(&event->child_list);
9898         mutex_unlock(&parent->child_mutex);
9899
9900         put_event(parent);
9901
9902         raw_spin_lock_irq(&ctx->lock);
9903         perf_group_detach(event);
9904         list_del_event(event, ctx);
9905         raw_spin_unlock_irq(&ctx->lock);
9906         free_event(event);
9907 }
9908
9909 /*
9910  * Free an unexposed, unused context as created by inheritance by
9911  * perf_event_init_task below, used by fork() in case of fail.
9912  *
9913  * Not all locks are strictly required, but take them anyway to be nice and
9914  * help out with the lockdep assertions.
9915  */
9916 void perf_event_free_task(struct task_struct *task)
9917 {
9918         struct perf_event_context *ctx;
9919         struct perf_event *event, *tmp;
9920         int ctxn;
9921
9922         for_each_task_context_nr(ctxn) {
9923                 ctx = task->perf_event_ctxp[ctxn];
9924                 if (!ctx)
9925                         continue;
9926
9927                 mutex_lock(&ctx->mutex);
9928 again:
9929                 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
9930                                 group_entry)
9931                         perf_free_event(event, ctx);
9932
9933                 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
9934                                 group_entry)
9935                         perf_free_event(event, ctx);
9936
9937                 if (!list_empty(&ctx->pinned_groups) ||
9938                                 !list_empty(&ctx->flexible_groups))
9939                         goto again;
9940
9941                 mutex_unlock(&ctx->mutex);
9942
9943                 put_ctx(ctx);
9944         }
9945 }
9946
9947 void perf_event_delayed_put(struct task_struct *task)
9948 {
9949         int ctxn;
9950
9951         for_each_task_context_nr(ctxn)
9952                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
9953 }
9954
9955 struct file *perf_event_get(unsigned int fd)
9956 {
9957         struct file *file;
9958
9959         file = fget_raw(fd);
9960         if (!file)
9961                 return ERR_PTR(-EBADF);
9962
9963         if (file->f_op != &perf_fops) {
9964                 fput(file);
9965                 return ERR_PTR(-EBADF);
9966         }
9967
9968         return file;
9969 }
9970
9971 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
9972 {
9973         if (!event)
9974                 return ERR_PTR(-EINVAL);
9975
9976         return &event->attr;
9977 }
9978
9979 /*
9980  * inherit a event from parent task to child task:
9981  */
9982 static struct perf_event *
9983 inherit_event(struct perf_event *parent_event,
9984               struct task_struct *parent,
9985               struct perf_event_context *parent_ctx,
9986               struct task_struct *child,
9987               struct perf_event *group_leader,
9988               struct perf_event_context *child_ctx)
9989 {
9990         enum perf_event_active_state parent_state = parent_event->state;
9991         struct perf_event *child_event;
9992         unsigned long flags;
9993
9994         /*
9995          * Instead of creating recursive hierarchies of events,
9996          * we link inherited events back to the original parent,
9997          * which has a filp for sure, which we use as the reference
9998          * count:
9999          */
10000         if (parent_event->parent)
10001                 parent_event = parent_event->parent;
10002
10003         child_event = perf_event_alloc(&parent_event->attr,
10004                                            parent_event->cpu,
10005                                            child,
10006                                            group_leader, parent_event,
10007                                            NULL, NULL, -1);
10008         if (IS_ERR(child_event))
10009                 return child_event;
10010
10011         /*
10012          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10013          * must be under the same lock in order to serialize against
10014          * perf_event_release_kernel(), such that either we must observe
10015          * is_orphaned_event() or they will observe us on the child_list.
10016          */
10017         mutex_lock(&parent_event->child_mutex);
10018         if (is_orphaned_event(parent_event) ||
10019             !atomic_long_inc_not_zero(&parent_event->refcount)) {
10020                 mutex_unlock(&parent_event->child_mutex);
10021                 free_event(child_event);
10022                 return NULL;
10023         }
10024
10025         get_ctx(child_ctx);
10026
10027         /*
10028          * Make the child state follow the state of the parent event,
10029          * not its attr.disabled bit.  We hold the parent's mutex,
10030          * so we won't race with perf_event_{en, dis}able_family.
10031          */
10032         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10033                 child_event->state = PERF_EVENT_STATE_INACTIVE;
10034         else
10035                 child_event->state = PERF_EVENT_STATE_OFF;
10036
10037         if (parent_event->attr.freq) {
10038                 u64 sample_period = parent_event->hw.sample_period;
10039                 struct hw_perf_event *hwc = &child_event->hw;
10040
10041                 hwc->sample_period = sample_period;
10042                 hwc->last_period   = sample_period;
10043
10044                 local64_set(&hwc->period_left, sample_period);
10045         }
10046
10047         child_event->ctx = child_ctx;
10048         child_event->overflow_handler = parent_event->overflow_handler;
10049         child_event->overflow_handler_context
10050                 = parent_event->overflow_handler_context;
10051
10052         /*
10053          * Precalculate sample_data sizes
10054          */
10055         perf_event__header_size(child_event);
10056         perf_event__id_header_size(child_event);
10057
10058         /*
10059          * Link it up in the child's context:
10060          */
10061         raw_spin_lock_irqsave(&child_ctx->lock, flags);
10062         add_event_to_ctx(child_event, child_ctx);
10063         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10064
10065         /*
10066          * Link this into the parent event's child list
10067          */
10068         list_add_tail(&child_event->child_list, &parent_event->child_list);
10069         mutex_unlock(&parent_event->child_mutex);
10070
10071         return child_event;
10072 }
10073
10074 static int inherit_group(struct perf_event *parent_event,
10075               struct task_struct *parent,
10076               struct perf_event_context *parent_ctx,
10077               struct task_struct *child,
10078               struct perf_event_context *child_ctx)
10079 {
10080         struct perf_event *leader;
10081         struct perf_event *sub;
10082         struct perf_event *child_ctr;
10083
10084         leader = inherit_event(parent_event, parent, parent_ctx,
10085                                  child, NULL, child_ctx);
10086         if (IS_ERR(leader))
10087                 return PTR_ERR(leader);
10088         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10089                 child_ctr = inherit_event(sub, parent, parent_ctx,
10090                                             child, leader, child_ctx);
10091                 if (IS_ERR(child_ctr))
10092                         return PTR_ERR(child_ctr);
10093         }
10094         return 0;
10095 }
10096
10097 static int
10098 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10099                    struct perf_event_context *parent_ctx,
10100                    struct task_struct *child, int ctxn,
10101                    int *inherited_all)
10102 {
10103         int ret;
10104         struct perf_event_context *child_ctx;
10105
10106         if (!event->attr.inherit) {
10107                 *inherited_all = 0;
10108                 return 0;
10109         }
10110
10111         child_ctx = child->perf_event_ctxp[ctxn];
10112         if (!child_ctx) {
10113                 /*
10114                  * This is executed from the parent task context, so
10115                  * inherit events that have been marked for cloning.
10116                  * First allocate and initialize a context for the
10117                  * child.
10118                  */
10119
10120                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10121                 if (!child_ctx)
10122                         return -ENOMEM;
10123
10124                 child->perf_event_ctxp[ctxn] = child_ctx;
10125         }
10126
10127         ret = inherit_group(event, parent, parent_ctx,
10128                             child, child_ctx);
10129
10130         if (ret)
10131                 *inherited_all = 0;
10132
10133         return ret;
10134 }
10135
10136 /*
10137  * Initialize the perf_event context in task_struct
10138  */
10139 static int perf_event_init_context(struct task_struct *child, int ctxn)
10140 {
10141         struct perf_event_context *child_ctx, *parent_ctx;
10142         struct perf_event_context *cloned_ctx;
10143         struct perf_event *event;
10144         struct task_struct *parent = current;
10145         int inherited_all = 1;
10146         unsigned long flags;
10147         int ret = 0;
10148
10149         if (likely(!parent->perf_event_ctxp[ctxn]))
10150                 return 0;
10151
10152         /*
10153          * If the parent's context is a clone, pin it so it won't get
10154          * swapped under us.
10155          */
10156         parent_ctx = perf_pin_task_context(parent, ctxn);
10157         if (!parent_ctx)
10158                 return 0;
10159
10160         /*
10161          * No need to check if parent_ctx != NULL here; since we saw
10162          * it non-NULL earlier, the only reason for it to become NULL
10163          * is if we exit, and since we're currently in the middle of
10164          * a fork we can't be exiting at the same time.
10165          */
10166
10167         /*
10168          * Lock the parent list. No need to lock the child - not PID
10169          * hashed yet and not running, so nobody can access it.
10170          */
10171         mutex_lock(&parent_ctx->mutex);
10172
10173         /*
10174          * We dont have to disable NMIs - we are only looking at
10175          * the list, not manipulating it:
10176          */
10177         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10178                 ret = inherit_task_group(event, parent, parent_ctx,
10179                                          child, ctxn, &inherited_all);
10180                 if (ret)
10181                         break;
10182         }
10183
10184         /*
10185          * We can't hold ctx->lock when iterating the ->flexible_group list due
10186          * to allocations, but we need to prevent rotation because
10187          * rotate_ctx() will change the list from interrupt context.
10188          */
10189         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10190         parent_ctx->rotate_disable = 1;
10191         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10192
10193         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10194                 ret = inherit_task_group(event, parent, parent_ctx,
10195                                          child, ctxn, &inherited_all);
10196                 if (ret)
10197                         break;
10198         }
10199
10200         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10201         parent_ctx->rotate_disable = 0;
10202
10203         child_ctx = child->perf_event_ctxp[ctxn];
10204
10205         if (child_ctx && inherited_all) {
10206                 /*
10207                  * Mark the child context as a clone of the parent
10208                  * context, or of whatever the parent is a clone of.
10209                  *
10210                  * Note that if the parent is a clone, the holding of
10211                  * parent_ctx->lock avoids it from being uncloned.
10212                  */
10213                 cloned_ctx = parent_ctx->parent_ctx;
10214                 if (cloned_ctx) {
10215                         child_ctx->parent_ctx = cloned_ctx;
10216                         child_ctx->parent_gen = parent_ctx->parent_gen;
10217                 } else {
10218                         child_ctx->parent_ctx = parent_ctx;
10219                         child_ctx->parent_gen = parent_ctx->generation;
10220                 }
10221                 get_ctx(child_ctx->parent_ctx);
10222         }
10223
10224         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10225         mutex_unlock(&parent_ctx->mutex);
10226
10227         perf_unpin_context(parent_ctx);
10228         put_ctx(parent_ctx);
10229
10230         return ret;
10231 }
10232
10233 /*
10234  * Initialize the perf_event context in task_struct
10235  */
10236 int perf_event_init_task(struct task_struct *child)
10237 {
10238         int ctxn, ret;
10239
10240         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10241         mutex_init(&child->perf_event_mutex);
10242         INIT_LIST_HEAD(&child->perf_event_list);
10243
10244         for_each_task_context_nr(ctxn) {
10245                 ret = perf_event_init_context(child, ctxn);
10246                 if (ret) {
10247                         perf_event_free_task(child);
10248                         return ret;
10249                 }
10250         }
10251
10252         return 0;
10253 }
10254
10255 static void __init perf_event_init_all_cpus(void)
10256 {
10257         struct swevent_htable *swhash;
10258         int cpu;
10259
10260         for_each_possible_cpu(cpu) {
10261                 swhash = &per_cpu(swevent_htable, cpu);
10262                 mutex_init(&swhash->hlist_mutex);
10263                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10264
10265                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10266                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
10267         }
10268 }
10269
10270 static void perf_event_init_cpu(int cpu)
10271 {
10272         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10273
10274         mutex_lock(&swhash->hlist_mutex);
10275         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10276                 struct swevent_hlist *hlist;
10277
10278                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10279                 WARN_ON(!hlist);
10280                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
10281         }
10282         mutex_unlock(&swhash->hlist_mutex);
10283 }
10284
10285 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
10286 static void __perf_event_exit_context(void *__info)
10287 {
10288         struct perf_event_context *ctx = __info;
10289         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10290         struct perf_event *event;
10291
10292         raw_spin_lock(&ctx->lock);
10293         list_for_each_entry(event, &ctx->event_list, event_entry)
10294                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
10295         raw_spin_unlock(&ctx->lock);
10296 }
10297
10298 static void perf_event_exit_cpu_context(int cpu)
10299 {
10300         struct perf_event_context *ctx;
10301         struct pmu *pmu;
10302         int idx;
10303
10304         idx = srcu_read_lock(&pmus_srcu);
10305         list_for_each_entry_rcu(pmu, &pmus, entry) {
10306                 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
10307
10308                 mutex_lock(&ctx->mutex);
10309                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
10310                 mutex_unlock(&ctx->mutex);
10311         }
10312         srcu_read_unlock(&pmus_srcu, idx);
10313 }
10314
10315 static void perf_event_exit_cpu(int cpu)
10316 {
10317         perf_event_exit_cpu_context(cpu);
10318 }
10319 #else
10320 static inline void perf_event_exit_cpu(int cpu) { }
10321 #endif
10322
10323 static int
10324 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
10325 {
10326         int cpu;
10327
10328         for_each_online_cpu(cpu)
10329                 perf_event_exit_cpu(cpu);
10330
10331         return NOTIFY_OK;
10332 }
10333
10334 /*
10335  * Run the perf reboot notifier at the very last possible moment so that
10336  * the generic watchdog code runs as long as possible.
10337  */
10338 static struct notifier_block perf_reboot_notifier = {
10339         .notifier_call = perf_reboot,
10340         .priority = INT_MIN,
10341 };
10342
10343 static int
10344 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
10345 {
10346         unsigned int cpu = (long)hcpu;
10347
10348         switch (action & ~CPU_TASKS_FROZEN) {
10349
10350         case CPU_UP_PREPARE:
10351                 /*
10352                  * This must be done before the CPU comes alive, because the
10353                  * moment we can run tasks we can encounter (software) events.
10354                  *
10355                  * Specifically, someone can have inherited events on kthreadd
10356                  * or a pre-existing worker thread that gets re-bound.
10357                  */
10358                 perf_event_init_cpu(cpu);
10359                 break;
10360
10361         case CPU_DOWN_PREPARE:
10362                 /*
10363                  * This must be done before the CPU dies because after that an
10364                  * active event might want to IPI the CPU and that'll not work
10365                  * so great for dead CPUs.
10366                  *
10367                  * XXX smp_call_function_single() return -ENXIO without a warn
10368                  * so we could possibly deal with this.
10369                  *
10370                  * This is safe against new events arriving because
10371                  * sys_perf_event_open() serializes against hotplug using
10372                  * get_online_cpus().
10373                  */
10374                 perf_event_exit_cpu(cpu);
10375                 break;
10376         default:
10377                 break;
10378         }
10379
10380         return NOTIFY_OK;
10381 }
10382
10383 void __init perf_event_init(void)
10384 {
10385         int ret;
10386
10387         idr_init(&pmu_idr);
10388
10389         perf_event_init_all_cpus();
10390         init_srcu_struct(&pmus_srcu);
10391         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
10392         perf_pmu_register(&perf_cpu_clock, NULL, -1);
10393         perf_pmu_register(&perf_task_clock, NULL, -1);
10394         perf_tp_register();
10395         perf_cpu_notifier(perf_cpu_notify);
10396         register_reboot_notifier(&perf_reboot_notifier);
10397
10398         ret = init_hw_breakpoint();
10399         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
10400
10401         /*
10402          * Build time assertion that we keep the data_head at the intended
10403          * location.  IOW, validation we got the __reserved[] size right.
10404          */
10405         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
10406                      != 1024);
10407 }
10408
10409 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
10410                               char *page)
10411 {
10412         struct perf_pmu_events_attr *pmu_attr =
10413                 container_of(attr, struct perf_pmu_events_attr, attr);
10414
10415         if (pmu_attr->event_str)
10416                 return sprintf(page, "%s\n", pmu_attr->event_str);
10417
10418         return 0;
10419 }
10420 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
10421
10422 static int __init perf_event_sysfs_init(void)
10423 {
10424         struct pmu *pmu;
10425         int ret;
10426
10427         mutex_lock(&pmus_lock);
10428
10429         ret = bus_register(&pmu_bus);
10430         if (ret)
10431                 goto unlock;
10432
10433         list_for_each_entry(pmu, &pmus, entry) {
10434                 if (!pmu->name || pmu->type < 0)
10435                         continue;
10436
10437                 ret = pmu_dev_alloc(pmu);
10438                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
10439         }
10440         pmu_bus_running = 1;
10441         ret = 0;
10442
10443 unlock:
10444         mutex_unlock(&pmus_lock);
10445
10446         return ret;
10447 }
10448 device_initcall(perf_event_sysfs_init);
10449
10450 #ifdef CONFIG_CGROUP_PERF
10451 static struct cgroup_subsys_state *
10452 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10453 {
10454         struct perf_cgroup *jc;
10455
10456         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
10457         if (!jc)
10458                 return ERR_PTR(-ENOMEM);
10459
10460         jc->info = alloc_percpu(struct perf_cgroup_info);
10461         if (!jc->info) {
10462                 kfree(jc);
10463                 return ERR_PTR(-ENOMEM);
10464         }
10465
10466         return &jc->css;
10467 }
10468
10469 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
10470 {
10471         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
10472
10473         free_percpu(jc->info);
10474         kfree(jc);
10475 }
10476
10477 static int __perf_cgroup_move(void *info)
10478 {
10479         struct task_struct *task = info;
10480         rcu_read_lock();
10481         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
10482         rcu_read_unlock();
10483         return 0;
10484 }
10485
10486 static void perf_cgroup_attach(struct cgroup_taskset *tset)
10487 {
10488         struct task_struct *task;
10489         struct cgroup_subsys_state *css;
10490
10491         cgroup_taskset_for_each(task, css, tset)
10492                 task_function_call(task, __perf_cgroup_move, task);
10493 }
10494
10495 struct cgroup_subsys perf_event_cgrp_subsys = {
10496         .css_alloc      = perf_cgroup_css_alloc,
10497         .css_free       = perf_cgroup_css_free,
10498         .attach         = perf_cgroup_attach,
10499 };
10500 #endif /* CONFIG_CGROUP_PERF */